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ABSTRACT

On Delay-Sensitive Communication Over Wireless Systems. (May 2008)

Lingjia Liu, B.S., Shanghai Jiao Tong University, China

Co–Chairs of Advisory Committee: Jean-François Chamberland
Scott Miller

This dissertation addresses some of the most important issues in delay-sensitive

communication over wireless systems and networks. Traditionally, the design of com-

munication networks adopts a layered framework where each layer serves as a “black

box” abstraction for higher layers. However, in the context of wireless networks with

delay-sensitive applications such as Voice over Internet Protocol (VoIP), on-line gam-

ing, and video conferencing, this layered architecture does not offer a complete picture.

For example, an information theoretic perspective on the physical layer typically ig-

nores the bursty nature of practical sources and often overlooks the role of delay in

service quality. The purpose of this dissertation is to take on a cross-disciplinary

approach to derive new fundamental limits on the performance, in terms of capacity

and delay, of wireless systems and to apply these limits to the design of practical

wireless systems that support delay-sensitive applications. To realize this goal, we

consider a number of objectives.

1. Develop an integrated methodology for the analysis of wireless systems that

support delay-sensitive applications based, in part, on large deviation theory.

2. Use this methodology to identify fundamental performance limits and to design

systems which allocate resources efficiently under stringent service requirements.

3. Analyze the performance of wireless communication networks that takes advan-
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tage of novel paradigms such as user cooperation, and multi-antenna systems.

Based on the proposed framework, we find that delay constraints significantly

influence how system resources should be allocated. Channel correlation has a major

impact on the performance of wireless communication systems. Sophisticated power

control based on the joint space of channel and buffer states are essential for delay-

sensitive communications.
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CHAPTER I

INTRODUCTION

Recent years have been marked by a soaring demand for network access. This trend

is exemplified by the constant growth of the Internet. The strong demand for network

connectivity is fueled, partly, by new software applications, utility computing, and a

widespread desire for real-time information access. To bridge the gap between mobile

users and established communication infrastructures, wireless technology is being

embraced with increasing vigor. Emerging applications for wireless communication

and their corresponding service requirements are illustrated in Fig. 1.

Fig. 1. Challenges in wireless communications.

It is clear that various applications have different service requirements. For exam-

ple, data communication has a very high rate requirement, but it also has relatively

The journal model is IEEE Transactions on Automatic Control.
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high delay tolerance. On the other hand, voice communication requires low com-

munication rate while being very delay-sensitive. Rate and throughput are not the

only performance measures; delay plays a very important role in user’s satisfaction

especially for real-time applications.

Future wireless communication networks will face the dual challenge of support-

ing large traffic volumes while providing reliable service to delay-sensitive applications

such as VoIP, video conferencing, electronic commerce, and gaming. This is a difficult

task, especially considering the unreliable nature of wireless environments. Tradition-

ally, the design of wireless networks has borrowed heavily from the design paradigm

of wired networks. Functionalities such as resource allocation, signal modulation,

routing and error control coding are partitioned into separate network layers with

minimum interaction between adjacent layers. Each layer serves as a “black box”

abstraction for higher layers. For example, from the medium access control (MAC)

and network layers point of view, the overall performance of the underlying physical

and data link layers are modeled as “bit pipes” that deliver data at a fixed rate with

occasional random errors. This layered framework has somehow caused the research

community to split into two distinct groups, namely the networking community and

the communication community. The main focus of the communication community is

to build better bit pipes while the networking community has concentrated on how

to best allocate these bit pipes. Information theory, which lies at the heart of the

theory of communication, has played a central role in the design of wireless com-

munication systems at the physical layer. In particular, most of the literature in

this field focuses on maximizing the Shannon capacity [1], outage capacity, or spec-

tral efficiency of wireless systems. These approaches give a foundation for improving

throughput in wireless networks. However, the stringent service requirements typical

of real-time traffic suggest that a classical capacity/throughput analysis alone does
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not offer a complete assessment of service quality for the communication infrastruc-

ture associated with a wireless network. Real sources of information may be bursty

and time-varying. Furthermore, wireless channels are prone to attenuation, fading,

and interference. Variations in the sources and channels impair user satisfaction as

they negatively impact packet loss probabilities, queue lengths, and delay distribu-

tions. For example, the user capacities of VoIP systems over wireless links are delay

limited rather than throughput limited.

In many communication systems, power control and error-correcting codes have

been employed to mitigate the effects of the channel fluctuations intrinsic to wire-

less communications. Yet, as the popularity of real-time applications grows, next

generation wireless communication systems will have to pay much more attention to

the role of delay as an important performance measure, as seen in Fig 1. Various

real-time applications have hard delay constraints and various wireless systems are

subject to statistical service requirement. For example, the current draft of the IEEE

802.16m (WiMax) standard specifies that the maximum delay bound for the voice

communication is 50 ms. A user in this system is defined to have experienced voice

outage if more than 2% of the VoIP packets are dropped, erased or not delivered

successfully. New paradigms that better account for delay profiles and service quality

are becoming highly desirable. Much work has been done in the networking commu-

nity on the topics of scheduling and admission control to provide statistical service

guarantees for various applications [2, 3, 4, 5, 6, 7]. Accordingly, the statistical ser-

vice requirements of various delay-sensitive applications will also have a great impact

in the physical layer system design. In particular, the end-to-end delay restrictions

imposed on a communication system may preclude the use of error-correcting codes

with long block-length, thereby forcing the system to operate away from its Shannon

limit. It is clear that, with finite resources and under stringent service requirements,
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the maximum throughput of a delay-sensitive system may be much lower than its

Shannon capacity. Although several notable contributions to the subject [8, 9, 10, 11]

have improved our understanding of delay-sensitive communications, the trade-off be-

tween throughput and service quality, and especially delay in wireless environment,

is far from fully developed. While the physics governing the transmission of informa-

tion over wireless channels has been carefully considered, fundamental parts of the

relationship between the physical attributes of wireless channels and their impact on

delay-sensitive communications remain largely unexplored.

A. Integrated Framework

In this dissertation, we propose a cross-layer approach and study the interplay be-

tween the physical layer infrastructure and the queueing behavior of a wireless com-

munication system. Due to the time-varying nature of wireless channels, it is often

impractical or impossible to provide deterministic service guarantees for a specific

link. There are two different performance criteria that are commonly considered:

buffer overflow probability and delay violation probability. In most communication

systems, explicit expressions for probabilities of buffer overflow and delay violation

are hard to obtain. It is often easier and equally desirable to evaluate the proba-

bility that the system deviates significantly from its expected operating point. The

large deviation principle (LDP) characterizes the asymptotic behavior, as ǫ→ 0, of a

collection of probability measures {µǫ} in terms of a rate function [12]. The LDP is

closely related to the error exponent of random codes, it also forms a basis for Sanov’s

Theorem and the method of types. In this work, we adopt a statistical performance

measure that captures the asymptotic decay-rate of buffer occupancy:

θ = − lim
x→∞

log Pr {L > x}
x

(1.1)
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where L is the steady-state queue-length distribution of the buffer present at the

transmitter. The parameter θ is also termed the LDP governing the buffer occupancy

or the service exponent, and it reflects the perceived quality of a communication link.

A larger θ represents a more reliable connection or a tighter service constraint. For

a specific delay-sensitive application, the service requirement would be of the form

θ ≥ θ0, where θ0 is the target decay-rate of buffer occupancy for the correspond-

ing application. This performance metric is closely tied to the concept of effective

bandwidth and network calculus, which has been studied extensively in the context

of wired networks [13, 14, 15]. Given a stochastic arrival process, the effective band-

width characterizes the minimum service rate required for the communication system

to meet a certain service requirement θ0 [16, 17]. The literature on the effective

bandwidth is rich. Comprehensive discussions on the subject and its applications are

provided by Kelly [18] and Chang [14]. The decay-rate of (1.1) also forms a basis for

the dual concept of effective capacity popularized by Wu and Negi [19, 20, 21]. Unlike

wired connections where the service rates are typically constant, wireless channels are

inherently unreliable and the associated service rates are time-varying. Assuming a

constant flow of incoming data, the effective capacity characterizes the maximum con-

stant arrival rate that a wireless system can support subject to a service requirement

specified by θ0. When the target decay-rate θ0 approaches zero, the effective capacity

converges to the Shannon capacity of the corresponding wireless channel.

The notions of effective bandwidth and effective capacity provide a useful plat-

form to identify system limitations in terms of link-layer service requirements, such

as buffer overflow probabilities and delay violation probabilities. Based on concepts

from large deviation theory, this dissertation discusses the structure of an evaluation

methodology suitable to characterize user dynamics and system limitations under ser-

vice constraints. This framework leads to achievability results akin to Shannon capac-
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ity, albeit in the context of delay-aware systems. Based on the proposed methodology,

we are able to analyze the performance of various wireless communication schemes

under stringent service constraints.

B. Resource Allocation

System resources allocation in the context of wireless communication under service

constraints θ0 is considered in [22, 23]. Through a simple example, the interplay

between the characteristics of the physical layer, resource allocation, and system

performance is exposed. The example presents the important aspects of data trans-

mission over wireless channels using first-order models. Assuming that channel state

information (CSI) is not available at the transmitter, a Markov model is introduced

to capture the unreliable nature of wireless systems. For a given error correcting code,

the behavior of the overall wireless connection is assumed equivalent to a continuous-

time Markov chain. Coderate selection does affect system throughput. A higher

coderate allows more information to be transmitted when the channel is ON, but

it also reduces the probability of this event occurring. Conversely, a lower coderate

increases the probability of the channel being ON, yet it decreases the rate at which

information flows when the wireless link is ON. The throughput of a system can then

be optimized by proper code selection.

As opposed to the throughput analysis, we also characterize the effective capacity

of the corresponding Gilbert-Elliott channel as a function of the service constraint

θ > 0. The effective capacity is found to decay sharply as a function of θ, which

reveals a fundamental trade-off between delay and throughput. Furthermore, the

optimal code selection for a wireless system depends on its service requirement. A

more stringent constraint on θ lowers the optimal coderate R.
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Correlation is also found to have a major impact on performance. The effective

capacity of a slowly varying channel can be very small. For delay-sensitive applica-

tions over wireless systems, the popular assumption of independent and identically

distributed channel realizations results in an over-optimistic assessment of system

performance. The impact of correlation on system performance is perhaps best ex-

emplified by the fact that constant arrival at a rate a can only be supported if θ < κ/a,

where κ is the exponential decay rate of the channel memory. That is, even with un-

limited amount of physical resources, the maximum constant arrival rate supported

under service constraint θ is bounded.

C. User-Cooperation Networks

User cooperation is a relatively new concept in wireless communications, and it re-

mains the focus of much research today. Sendonaris, Erkip, and Aazhang [24] demon-

strated that cooperative schemes whereby many users pool their resources together

to form a virtual antenna array can significantly enlarge the achievable rate region of

the corresponding system. We subsequently showed that the achievable rate region of

a multi-user system can still be enlarged, despite the lack of side information at the

transmitters [25, 26]. Thus, cooperative schemes provide users with higher data-rates

and more flexibility in choosing how to best share system resource.

In this dissertation, we seek to quantify the potential benefits of multi-user

paradigms where mobile users cooperate to transmit information to an access point.

For delay-aware systems, these gains originate from two interconnected aspects. First,

user-cooperation augments the achievable rate region of a system and results in a

higher sum throughput. Second, it allows the dynamic and fair distribution of system

resources among users. The first-order fluid models described in the previous section
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can be extended to wireless communications in the context of user-cooperation. In

this case, users not only transmit data directly to an access point, but they may also

elect to cooperate with one another.

The achievable rate region of a simple user-cooperation scheme is characterized

and it is compared to the rate region of a non-cooperative system under different

service constraints. Numerical results suggest that user-cooperation yields a large gain

over traditional systems. Furthermore, this gain increases as the service requirement

becomes more and more stringent. User-cooperation can therefore provide wireless

users with the flexibility to better share system resources. Our queueing analysis also

hints at the fact that overall performance depends heavily on the time-correlation

of the underlying physical channel. In that sense, effective capacity is much more

sensitive to higher-order statistics than, say, ergodic capacity or outage capacity.

D. Multi-Antenna Systems

The recent adoption of wireless systems with multiple antennas has resulted in sig-

nificant improvements in the capacity of point-to-point wireless links [27]. From an

information theoretic point of view, the use of multiple antennas greatly increases

the amount of diversity and the number of degrees of freedom in a wireless commu-

nication system. In the high signal-to-noise ratio (SNR) regime, the capacity of a

Rayleigh channel with m transmit antennas and n receive antennas grows linearly

with SNR [27, 28]

Capacity (SNR) = min {m,n} log SNR + O(1) as SNR → ∞.

In general, multi-antenna configurations can be used to increase data rates and to

reduce the probability of symbol error at the receiver [29]. In the context of delay-
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sensitive communications, the gains of multi-antenna configuration promise to be

even more significant. The independence between antenna pairs, which can be met

with enough separation within the receiving antennas and the transmitting antennas,

decreases the instantaneous variations in the wireless channel. This, in turn, greatly

improves the effective capacity of a particular system, as channel variations impairs

system performance when operating under stringent service constraints. In this dis-

sertation, we seek to identify the potential benefits of a multi-antenna configuration

on the effective capacity of a wireless system. The expressions for the effective capaci-

ties of single-antenna systems, vector Gaussian channels, and multi-antenna Gaussian

systems are found under a Rayleigh block fading model. The effective capacity of the

single-antenna system is compared to those of the vector Gaussian systems in the low

SNR regime. Our results suggest that there is a substantial gain in using multiple

antennas at the transmitter or receiver for delay-sensitive communications. At low

SNR, just as there is a power gain associated with using multiple receive antennas in

terms of ergodic capacity [30], there is a statistical gain associated with using multiple

transmit antennas in terms of effective capacity. For the general multi-antenna case,

asymptotic upper and lower bounds for the effective capacity are derived. The lower

bound indicates that the effective capacity of multiple-input-multiple-output (MIMO)

systems scales linearly with the minimum number of transmit or receive antennas. An

approximation for the effective capacity of the MIMO system is obtained in the low

SNR regime when the number of transmit and/or receive antennas is large. Again, the

effective capacity expression indicates that in the low SNR regime, a multi-antenna

system offers a statistical gain as well as a power gain over a single-antenna system.

This suggests that multi-antenna systems are especially suitable for delay-sensitive

communication over wireless systems.
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CHAPTER II

AN INTEGRATED FRAMEWORK

In this chapter, we introduce an integrated methodology for the analysis of wireless

systems that support real-time traffic and delay-sensitive applications such as voice,

video conferencing, and on-line gaming. A brief mathematical review of limit theo-

rems and large deviations will be presented in Section A. In Section B, we analyze the

transmission delay of a single-user wireless communication system. The steady-state

delay violation probability is related to the steady-state buffer overflow probability by

properly choosing the threshold of the buffer. This result allows us to analyze delay-

sensitive applications over wireless systems by focusing on buffer overflow probability.

The notions of effective bandwidth and effective capacity are introduced in Section C.

We also discuss their corresponding operational meanings.

A. Limit Theorems and Large Deviation Principles

In this section, we review concepts and theorems from large deviations. For a sequence

of independent and identically distributed (iiḋ)̇ random variable {Xn, n ≥ 1}, let Sn =

X1 + . . . + Xn. It is known from the strong law of large numbers (LLN) that the

empirical average converges to its mean almost surely, that is,

Sn

n
=

∑n
i=1Xi

n
→ E [X1] .

We can further expand Sn around its mean on the order of
√
n through the central

limit theorem. Let Var(X1) be the variance of X1. Then

lim
n→∞

Pr

(

∑n
i=1 (Xi − nE [Xi])
√

nVar (X1)
≤ x

)

= Φ (x) ,
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where

Φ (x) =

∫ x

−∞

1√
2π
e−t2/2dt

is the cumulative distribution function (CDF) of the standard normal random vari-

able. Intuitively, one may view the above result as a theorem for small deviation with

the order O (
√
n) around the mean. On the other hand, the large deviation principle

characterizes the probability of a large deviation with the order O (n) from the mean.

One of the most important concept in the theory of large deviation is the Leg-

endre transform. For a function Λ(θ) : R → R, the function

Λ∗(λ) = sup
θ

[θλ− Λ(θ)]

is called the Legendre transform of Λ(θ). Since it is easy to show that Λ∗(λ) is convex,

the Legendre transform sometimes is also called the convex transform. Again, consider

the sequence {Xn, n ≥ 1} with the generic random variable X, and let

Λ(θ) = log E
[

eθX
]

Λ∗(λ) = sup
θ

[θλ− Λ (θ)] .

Assume E
[

eθX
]

<∞ for all θ, then Cramér’s theorem holds. That is,

1. for every close set F ⊂ R,

lim sup
n→∞

log Pr (Sn/n ∈ F)

n
≤ − inf

λ∈F
Λ∗(λ);

2. for every open set G ⊂ R,

lim inf
n→∞

log Pr (Sn/n ∈ G)

n
≥ − inf

λ∈G
Λ∗(λ).

The function Λ∗(λ) is called the rate function. For the special case where X is a real
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random variable with E [X] = X̄, for any a > X̄, applying Cramér’s theorem we have

− inf
λ>a

Λ∗(λ) ≤ lim
n→∞

log Pr (Sn/n ≥ a)

n
≤ − inf

λ≥a
Λ∗(λ).

We say that the empirical average Sn satisfies the LDP with rate function Λ∗(λ).

Extensions of Cramér’s theorem to sequences of not necessarily independent ran-

dom variables are possible, as illustrated through the Gärtner-Ellis theorem. Consider

a sequence of random variables {Yn, n ≥ 1}. Let

Λn (θ) =
log E

[

eθYn

]

n
.

Assume

lim
n→∞

Λn (θ) = Λ (θ) <∞ ∀θ ∈ R,

and Λ (θ) is differentiable for all θ ∈ R. Let

Λ∗ (λ) = sup
θ

[θλ− Λ (θ)] .

Then the Gärtner-Ellis theorem holds, i.e.,

1. for every close set F ⊂ R,

lim sup
n→∞

log Pr (Yn/n ∈ F)

n
≤ − inf

λ∈F
Λ∗(λ);

2. for every open set G ⊂ R,

lim inf
n→∞

log Pr (Yn/n ∈ G)

n
≥ − inf

λ∈G
Λ∗(λ).

Essentially, Λ(θ) plays the role of the logarithmic moment generating function in the

iiḋċase.
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B. Statistical Service Guarantee

As mentioned in the previous section, real-time applications such as video conferenc-

ing and voice signals require bounded delay service. Once the delay requirement is

violated, the data or the packet is discarded. For wireless systems, using deterministic

delay bounds is often impractical due to the fading nature of wireless channels. As

such, there are two important statistical performance measures for a communication

system: probability of buffer overflow and delay violation probability.

Consider a single-user wireless communication system. In this situation, data

a (t) r (h(t))

Q (t)

Fig. 2. A wireless queueing system model.

arrives and is placed into a transmission buffer before it gets transmitted. Periodically,

the transmitter removes some of the data from the buffer, encodes it and transmits

the encoded data over a fading channel. After sufficient information is received, the

data is decoded at the receiver. The delay experienced by the data in the system is

due to two major components: queueing delay and coding delay. Queueing delay is

simply the time data spends in the buffer while the coding delay is the time from

when data is encoded until it is decoded. In general, coding delay is related to the

codeword length, interleaving, and probability of decoding failure [31, 32, 33]. For

most of the practical wireless communication systems, the coding delay is on the order

of the channel coherence time which is typically much smaller than the relevant time-

scales of the queueing delay. Therefore, in this dissertation we restrict our attention

to the queueing delay of a communication system. The joint analysis of these two
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components can be regarded as a future research topic listed in Chapter VI.

At time t, let a(t) denote the instantaneous arrival rate and r(h(t)) be the in-

stantaneous service rate where h(t) is the channel state. Q(t) is the queue length

of the buffer and D(t) is the delay experienced by the packet which is about to get

serviced. Given a specified delay bound Dmax, a service constraint may require the

delay violation probability to be no greater than a certain threshold ε. That is,

Pr {D > Dmax} ≤ ε,

where D is the steady-state delay experienced by a packet.

For the special case when the service rate is constant, r(h(t)) = r, the delay at

any time is a constant multiple of the queue length. This is because when a packet

arrives at the buffer, we know exactly how long the packet is going to stay in the

buffer by looking at the queue length. Therefore, any delay performance criterion

can be translated into an equivalent buffer overflow probability requirement.

Consider another special case when the arrival rate is constant, a(t) = a. This

case is much more complicated than the case when the service rate is constant. Due

to the time-varying nature of the wireless channel, we cannot figure out how long a

packet will stay in the buffer by looking at the queue length of the buffer when the

packet arrives. However, since D (t) denotes the delay experienced by a packet which

is about to get serviced at time t, D(t) can be related to Q(t) through Q (t) = aD (t).

When the communication system is stable, it can be shown (see Appendix A) that

Pr {D > Dmax} ≤ c ·
√

Pr {Q > Qmax},

where c is some positive constant, Q is the steady-state queue length of the buffer,

and Qmax = aDmax. Therefore, the service constraint for the communication system
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can be redefined as

Pr {Q > Qmax} ≤ ε2/c2.

The above equation indicates that the delay performance criterion can be upper-

bounded by a buffer overflow probability requirement.

Now let us consider a general communication system with a random arrival pro-

cess a(t) and a stochastic service process r(h(t)). Compare this single queueing system

with a system that contains two queues. The arrival rate in the first queue is again

a(t) and the service offered to the second queue is r(h(t)). Moreover, the first queue

is serviced at a constant rate v whenever it is non-empty, and the departed packets

from the first queue are immediately placed in the second queue. This is illustrated

in Figure 3. Because of the additional constraint present in the second scenario, the

queue length in the first system is always less than or equal to the sum of the queues

in the latter system. The same result can also be applied to delay. Now compare

Fig. 3. Illustration of the three systems introduced in the buffer decoupling argument.

the second system with a network composed of two independent queues. The arrival

process in the first queue is a(t), and this queue is served at a constant rate v when it
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is non-empty. Packets arrive in the second queue at a constant rate v, and they are

served at a rate r(h(t)). Note that the length of the first queue in the third system

is always equal to the length of the first queue in the second system. Furthermore,

the length of the second queue in the second system is always less than or equal to

the length of the second queue in the third system. Clearly, both of the queues in the

third system can be analyzed using special cases where either the arrival rate or the

service rate is constant. Therefore, we can work directly on the buffer overflow prob-

ability to guarantee delay violation probability requirement imposed on the system.

Throughout this dissertation we will use requirements on buffer overflow probability

to indicate the delay-sensitivity of various applications. Defining the performance

metric in terms of queue length rather than delay leads to a much simpler character-

ization for service constraints. Yet it is instructive to emphasize the relation between

the two approaches.

One of the key results in the theory of statistical quality of service (QoS) guar-

antees [17, page 290] is that for a queueing system with stationary ergodic arrival

and service processes, and under sufficient conditions, the queue length process Q (t)

converges in distribution to a random variable Q that satisfies

− lim
Qmax→∞

log Pr
{

Q ≥ Qmax

}

Qmax

= θ,

where θ is called the asymptotic decay-rate of buffer occupancy or, alternatively, the

LDP governing buffer overflow. The above result indicates that the probability of the

steady-state queue-length exceeding a certain threshold Qmax decays exponentially

fast as Qmax increases, i.e.,

Pr {Q ≥ Qmax} ≈ e−θQmax.
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For a communication system where the value of Qmax is typically large, the above

approximation of the buffer overflow probability is very accurate. Therefore, the

queueing behavior of a wireless system can be specified by the pair {Qmax, θ}. Note

that the parameter θ plays a critical role in meeting the service requirement. A

larger θ leads to a faster decay-rate of the buffer overflow probability and, hence,

the delay violation probability. For the special case where θ approaches zero, the

communication system can tolerate arbitrarily long delay. On the other hand, when

θ tends to infinity, the communication system can tolerate no instantaneous delay.

In this scenario, the throughput of the system cannot be larger than the minimum

instantaneous service rate of the channel.

C. Effective Bandwidth and Effective Capacity

The performance measure θ is closely related to the concepts of effective bandwidth

and effective capacity. Effective bandwidth is introduced to analyze the system where

the service rate is constant. Consider the system in Fig. 2. Assume the service rate

is constant with r(h(t)) = r. It is clear that, given a random arrival process, the

probability of buffer overflow will increase and hence the LDP governing the buffer

occupancy will decrease as r decreases. Therefore, for a particular service requirement

specified by

− lim
Qmax→∞

log Pr
{

Q ≥ Qmax

}

Qmax
≥ θ, (2.1)

effective bandwidth answers the question: how large does r need to be to satisfy the

service constraint. Mathematically, the effective bandwidth can be expressed as

β(θ) = inf

{

r : − lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

≥ θ

}

.

Similarly, we can consider the special case where the arrival rate is constant with
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a(t) = a. Given a stochastic service process r(h(t)), the probability of buffer overflow

will increase and hence the LDP governing the buffer occupancy will decrease as a

increases. So the effective capacity answers the question: how large can a be to meet

the service constraint specified in (2.1). Mathematically, the effective capacity can

be written as

α(θ) = sup

{

a : − lim
Qmax→∞

log Pr{Q > Qmax}
Qmax

≥ θ

}

.

Alternatively, the effective capacity can be formally defined as follows. Let r (t) be

the instantaneous service rate of the wireless channel at time t. Let S̃ (t) =
∫ t

0
r (τ) dτ

be the service offered by the wireless channel in the interval from 0 to t. Suppose

that the service process is stationary and the Gärtner-Ellis limit of S̃ (t)

Λ (−θ) = lim
t→∞

1

t
logE

[

e−θ
R t

0
r(τ)dτ

]

= lim
t→∞

1

t
logE

[

e−θS̃(t)
]

exists and is differentiable for all θ > 0. Then the effective capacity of the service

process is defined by

α (θ) =
−Λ (−θ)

θ
= − lim

t→∞

1

θt
logE

[

e−θS̃(t)
]

∀ θ ≥ 0. (2.2)

Following the analysis of statistical service guarantees in wired networks [17], it can

be shown [34] that if the constant arrival rate a satisfies a ≤ α (θ0), then the LDP

governing buffer occupancy θ defined in (1.1) satisfies θ ≥ θ0. In other words, the

service constraint θ0 will be fulfilled if and only if a ≤ α (θ0).

Consider a block fading model for the wireless channel. That is, the channel

coefficients stay invariant within a block of duration T , but vary independently from

block to block. In this case, an equivalent discrete-time channel model can then be

applied. Assume the service process is stationary and ergodic, let r be a random

variable that represents the system throughput during one block, then the Gärtner-
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Ellis limit of S̃ (t) and the effective capacity in (2.2) reduces to

Λ (−θ) =
1

T
logE

[

e−θr
]

,

α (θ) =
−Λ (−θ)

θ
= − 1

θT
logE

[

e−θr
]

.

(2.3)

Since the notion of effective capacity serves as an important performance measure

throughout the dissertation, we first show some useful properties of the effective

capacity expression in (2.3).

Lemma 1 For a random variable r, let g(θ) = θα (θ) = −Λ (−θ), where α (θ) and

Λ (−θ) are defined in (2.3). The function g(θ) is concave in θ.

Proof: Note that g (θ) is differentiable, and

g′(θ) = Λ′ (−θ) =
E
[

re−θr
]

TE [e−θr]
,

g′′(θ) = −Λ′′ (−θ) =

(

E
[

re−θr
])2 − E

[

r2e−θr
]

E
[

e−θr
]

T (E [e−θr])2

Applying the Cauchy-Schwartz inequality yields

E
[

r2e−θr
]

E
[

e−θr
]

= E

[

(

re−
θ
2
r
)2
]

E

[

(

e−
θ
2
r
)2
]

≥
(

E
[

re−θr
])2

.

Therefore, g′′(θ) ≤ 0 and g(θ) is concave. �

Lemma 2 The function α(θ) is monotonically decreasing in θ for θ > 0.

Proof: Let g(θ) = θα (θ). Note that g(0) = −Λ (0) = 0. From the concavity of g(θ)

and g(0) = 0, it follows that for 0 < θ1 < θ2,

g(θ1) = g

((

1 − θ1
θ2

)

· 0 +
θ1
θ2

θ2

)

≥
(

1 − θ1
θ2

)

g(0) +
θ1
θ2

g (θ2) =
θ1
θ2

g (θ2) .

Clearly, α(θ1) = g(θ1)/θ1 ≥ g(θ2)/θ2 = α(θ2). Therefore, α(θ) = g(θ)/θ is monotoni-

cally decreasing in θ for θ > 0. �
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Lemma 2 implies that the maximum admissible constant arrival rate decreases as the

service requirement θ0 becomes more and more stringent. This reveals a fundamen-

tal trade-off between system throughput and service requirement, delay constraint in

particular.

Lemma 3 If the service process is stationary, then α(θ) ≤ E [r] /T . Furthermore, if

r ≥ cT almost surely for some constant c, then α(θ) ≥ c.

Proof: Lemma 2 states us that α(θ) is monotonically decreasing in θ for θ > 0. Hence

limθ↓0 α(θ) serves as an upper bound for α(θ) with θ > 0. Taking the limit, we get

lim
θ↓0

α(θ) = lim
θ↓0

E
[

re−θr
]

TE [e−θr]
=

E [r]

T
.

This upper bound can also be visualized from Jensen’s inequality,

α(θ) = − 1

θT
log E

[

e−θr
]

≤ − 1

θT
E
[

log
(

e−θr
)]

=
E [r]

T
= lim

θ↓0
α(θ).

To prove the second part of the lemma, we note that r ≥ cT almost surely implies

E
[

e−θr
]

≤ e−cθT. Thus, if r ≥ cT then

α(θ) = − 1

θT
log E

[

e−θr
]

≥ − 1

θT
log e−cθT = c.�

Lemma 3 gives two nontrivial bounds for the effective capacity of a wireless system.

Namely, the effective capacity is upper bounded by the expected capacity and lower

bounded by the minimum instantaneous service rate of the corresponding wireless

system.
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CHAPTER III

RESOURCE ALLOCATION

In this chapter, we study the problem of resource allocation in the context of stringent

service constraints. To relate radio resources to system performance and statistical

service requirements introduced in Chapter II, we link the behavior of the system to

its physical-layer infrastructure. A mobile terminal and its associated wireless con-

nection can be modeled as a single-server queue, provided that the receiver has the

ability to acknowledge reception of the data. For example, a simple physical-layer

automatic repeat request (ARQ) mechanism may be incorporated in the communi-

cation protocol to insure that erroneous data is retransmitted. We assume that such

a mechanism is in place throughout. Drawing intuition from information theory and

error-control coding, the service offered to a mobile terminal can be modeled as a

Markov-modulated fluid process. Previous results on Markov-modulated fluid pro-

cesses and large deviations can therefore be leveraged to characterize the interplay

between system resources at the physical layer and the statistical behavior of queues.

The remainder of this chapter is as follows. In Section A, we describe the generic

wireless connection that is used as an abstraction for the physical layer. Based on a

Markov assumption, we then construct a mathematical representation for the overall

channel behavior. Section B contains a derivation of the equilibrium distribution for a

system with a constant arrival rate and a Gilbert-Elliott wireless channel. Specifically,

buffer overflow probabilities, the corresponding large deviations, and the effective ca-

pacity function are given explicit expressions in terms of physical system parameters.

This analysis is subsequently extended to a variable data source. The performance

analysis of the Gilbert-Elliott queueing system is presented in Section C. We com-

pare and contrast the statistical characteristics of the Gilbert-Elliott model with the
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characteristics of a continuous-state Markov channel using numerical simulations in

Section D. This is followed by a discussion of these results of this chapter in the last

section.

A. Wireless Channel

The complex base-band representation of the wireless channel under consideration is

shown in Fig. 4. The term g(d) accounts for the mean path attenuation, and h(t; ζ)

represents the small-scale variations due to the motion of the terminals and changes

in the environment [35]. The additive noise term w(t) is modeled as a proper complex

white Gaussian process. Note that h(t; ζ) is normalized so that the expected power

x(t) y(t) z(t)
h(t; ζ)

g(d) w(t)

Fig. 4. Block diagram of a wireless communication channel where the transmitted

signal is subject to attenuation, fading, and noise corruption.

gain introduced by h(t; ζ) is equal to one. The bandwidth of the transmitted signal

x(t) is assumed to be much smaller than the reciprocal of the delay spread. The

channel is therefore purely time-selective, with no frequency distortion [36]. In this

case, the standard channel model of Fig. 4 can be written as

z(t) = g(d)h(t)x(t) + w(t),

where h(t; ζ) = h(t)δ(ζ). Furthermore, we assume that the channel is subject to

purely diffuse scattering, i.e., no specular component is present. For a rich scat-
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tering environment, the multipath component h(t) is well-modeled as a zero-mean,

proper complex Gaussian process. In particular, the envelope process |h(t)| and the

phase process are independent, with |h(t)| having a Rayleigh probability distribution

function and the phase being uniform over [0, 2π).

While it is straightforward to describe the first order statistics of h(t), a complete

characterization of this random process requires that joint distributions be specified as

well. Under a Gaussian process model, it suffices to describe the correlation between

any two sample points of the process. For Rayleigh flat fading, the auto-correlation

function of the envelope process can be modeled using the zeroth order Bessel function

of the first kind. This function is reasonable over short time horizons corresponding

to terminal movements of the order of a few wavelengths. It is derived under the

assumption that a mobile terminal is moving in an isotropic environment at a constant

velocity. Alternatively, an auto-correlation function can be derived by assuming that

the in-phase and quadrature components of h(t) are independent stationary Ornstein-

Uhlenbeck processes [37]. The latter model states that the correlation between two

samples decays exponentially over time.

These two auto-correlation structures are useful in various contexts. However, for

the sake of mathematical tractability, we consider a slightly simplified channel model.

We retain the first-order statistics of the channel and assume that the marginal dis-

tribution of the envelope process is Rayleigh. Second, we assume that for a fixed

threshold η the probability of |h(t)| being above or below this threshold is accurately

modeled as a continuous-time Markov chain. We refer to the channel envelope ex-

ceeding η as the “ON” state; otherwise the channel is in its “OFF” state. Such a

channel structure is commonly referred to as the Gilbert-Elliott model. It is assumed

to provide a sufficiently accurate representation for the statistical behavior of the

quantized Rayleigh channel. This quantized channel model appears in Fig. 5. The
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λ

µ

OFF ON

Fig. 5. Continuous-time Gilbert-Elliott Markov representation of a wireless communi-

cation link.

transition rate from OFF to ON is denoted by λ; while the transition rate from ON

to OFF, by µ. The generator matrix for this Markov chain is given by

Qs =







−λ λ

µ −µ






=

1

λ+ µ







1 λ

1 −µ













0 0

0 −(λ+ µ)













µ λ

1 −1






.

It is easy to verify that the invariant probability for the ON state is λ/(λ+ µ), while

the invariant probability of being OFF is µ/(λ + µ). For consistency, the stationary

distribution of the Markov chain should agree with the marginal distribution of the

underlying channel,

Pr {|h(t)| ≤ η} =
µ

λ+ µ
=

∫ η

0

2ξe−ξ2

dξ = 1 − e−η2

Pr {|h(t)| > η} =
λ

λ+ µ
=

∫ ∞

η

2ξe−ξ2

dξ = e−η2

(3.1)

where f(ξ) = 2ξe−ξ2

with ξ ≥ 0 is the marginal distribution of the normalized

envelope process. To solve for λ and µ, two equations are needed. The first one

is given by condition (3.1). The second condition can be derived from the Markov

structure of the wireless link.

Let Pt(t) = eQst be the probability transition matrix of the the Gilbert-Elliott
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channel. More specifically, entry pi,j(t) of the matrix Pt(t) represents the probability

of being in state j after t seconds, when starting in state i. For a time interval t, this

probability transition matrix is given by

Pt(t) =
1

λ+ µ







1 λ

1 −µ













1 0

0 e−t(λ+µ)













µ λ

1 −1







=
1

λ+ µ







µ+ λe−t(λ+µ) λ− λe−t(λ+µ)

µ− µe−t(λ+µ) λ+ µe−t(λ+µ)






.

We note that the channel memory of this two-state Markov process decays at a

rate λ + µ. Thus, if the memory of the underlying quantized Rayleigh channel has

an exponential decay rate κ, we must have λ + µ = κ. This relationship provides

the second equation necessary to determine λ and µ. Solving for these parameters

explicitly in terms of the channel parameters, we get

λ = κe−η2

µ = κ− κe−η2

.

The quantized channel and its associated Markov structure will prove instrumental

in computing the probability of buffer overflow and the effective capacity of the as-

sociated wireless connection. The more elaborate channel description whose in-phase

and quadrature components are independent stationary Orstein-Uhlenbeck processes

will be revisited in Section D.

1. Coding and Information Theory

A celebrated result from information theory is the Shannon capacity of the Gaussian

channel,

C = W log2

(

1 +
P

N0W

)

bits per second. (3.2)
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The variable P represents the power of the signal, N0/2 denotes the power spectral

density of the noise process, and W is the channel bandwidth. In theory, error-

free communication can be achieved on this channel for any rate below the capacity

using asymptotically long codewords [31]. Today, there exists a collection of practical

codes that operate close to capacity, with minimal error-rates and small delays. The

capacity expression of (3.2) can therefore be employed as an optimistic approximation

of code performance. If a code is designed to operate at a rate R, the sent information

is decoded reliably whenever R < C; it is lost otherwise.

A similar performance description can be employed for time-varying channels

such as the one introduced at the beginning of Section A. Suppose that a wireless

channel varies slowly, data is assumed to reach its destination provided that R < C(t),

where

C(t) = W log2

(

1 +
P |h(t)|2
N0W

)

bits per second (3.3)

is the instantaneous capacity. On the other hand, if R ≥ C(t) then information is

lost. This simplified characterization is valid provided that the decoding delay is

small compared to the coherence time of the wireless channel. It is used in this work

for mathematical convenience and because it yields useful guidelines on how to select

coderates for specific systems and statistical service requirements. This model can be

altered to accommodate real codes and probabilities of link failures.

The state of the Gilbert-Elliott channel is related to the instantaneous capacity

and the coderate as follows. Let coderate R be given. The Gilbert-Elliott channel is

ON if R < C(t) or, equivalently,

|h(t)| > η =

√

N0W

P

(

2
R
W − 1

)

. (3.4)

It is OFF otherwise. We can rewrite the generator matrix for this Gilbert-Elliott
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channel as

Qs =







−κe−η2

κe−η2

κ− κe−η2 −κ + κe−η2






, (3.5)

where κ is the exponential decay parameter of the Markov chain and η is the threshold

defined in (3.4). The corresponding service rate is zero when the channel is OFF and

R when the channel is in its ON state.

Under these assumptions, the maximum throughput of this wireless channel is

immediately seen to equal

R Pr {|h(t)| > η} = Re−η2

.

This throughput can be optimized by selecting a proper coderate R. A higher rate

allows more information to be transmitted when the channel is ON. However, it

also implies that the channel is ON less often (larger η). Conversely, a lower rate

increases the probability of the channel being ON but reduces the rate at which data

is transferred. Fig. 6 plots the throughput as a function of coderate R. The parameter

values for the wireless channel used in this example appear in Table I. The maximum

average throughput is 508 Kbps, and it is achieved with a coderate R = 1.33 Mbps.

Table I. System parameters.

N0 = 10−7 W/Hz Noise power spectral density

W = 11 MHz Bandwidth

P = 100 mW Received Power
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Fig. 6. Mean throughput as a function of coderate R for a Gilbert-Elliott channel

model.
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B. Queueing Performance of Markov-Modulated Processes

In a wireless system, much like in a broadband network, the usage of system resources

may not be well assessed by the single value of throughput or Shannon capacity.

Performance measures such as queue length, packet loss probability, and delay play

an instrumental role in user satisfaction. Requirements on these attributes may force

a wireless system to operate much below its theoretical Shannon limit. Furthermore,

the unreliable link-quality intrinsic to wireless communication along with stringent

delay and loss constraints may significantly alter the optimal allocation of system

resources. This is exemplified below.

1. Markov Fluid Model of a Queue

Consider a simple fluid queueing system with a single queue and one server. Let a(t)

denote the instantaneous arrival rate, and let r(t) be the instantaneous service rate.

The cumulative arrival function over interval [0, t] is given by

A[0, t] =

∫

[0,t]

a(τ)dτ.

Similarly, the amount of service offered in the interval [0, t] is equal to

S[0, t] =

∫

[0,t]

r(τ)dτ.

Under a work-conserving policy and provided that the queue is initially empty, the

state of the queue is governed by the following equation [17],

Lt = (A[0, t] − S[0, t]) − inf
0<τ<t

{A[0, τ ] − S[0, τ ]} .

This generic model provides an appropriate framework for evaluating the performance

of a queueing system subject to service constraints.
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A natural choice to model the communication system introduced in the previous

section is a Markov-modulated fluid process. Consider a queue subject to a Markov-

modulated rate process. Let Q be the generator matrix of the underlying finite-state

Markov process, and assume that Q is irreducible with state space {1, . . . ,M}. In

particular, the off-diagonal entry qn,m represents the transition rate of going from

state n to m; and the corresponding diagonal entry is qn,n = −∑m6=n qn,m, making

the total row sum zero. The state m is associated with a rate dm, which represents the

difference between the instantaneous arrival rate and the instantaneous service rate.

Hence, the net rate of change in the buffer while in state m is dm when the buffer is

not empty, and it is equal to max{0, dm} when the buffer is empty. In other words,

when the buffer is empty and the Markov process is in state m with dm ≤ 0 then the

buffer simply remains empty. We denote the diagonal matrix diag(d1, . . . , dM) by D.

If we use Lt to denote the level of fluid in the buffer at time t and we let ut be the

state of the underlying Markov chain at time t, then (Lt, ut) forms a continuous-state

Markov process. Define the event probability

F (x,m, t) = Pr {ut = m,Lt ≤ x} .

Using the Chapman-Kolmogorov equation, we find that the function F (x,m, t) sat-

isfies

∂F

∂t
= FQ− ∂F

∂x
D (3.6)

where F = (F (x, 1, t), . . . , F (x,M, t)). The equilibrium distribution F (x,m) of the

continuous state Markov process (Lt, ut) is subject to ∂F/∂t = 0, which in turn yields

FQ =
∂F

∂x
D. (3.7)

We denote the invariant probability distribution of the underlying Markov chain by
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w, with wQ = 0. Then

lim
x→∞

F (x,m) = wm.

Since the equilibrium distribution is a bounded solution to (3.7), it has spectral

representation

F (x, ·) = w −
k
∑

i=1

aiφie
xzi (3.8)

where {(φi, zi)} are the stable eigenvector-eigenvalue pairs of the eigenvalue problem

φQ = zφD. (3.9)

If Q is reversible [38], then all such eigenvalues are real numbers [39]. Moreover,

there are k = |{m : dm > 0}| strictly negative eigenvalues (counting multiplicity).

These values are the ones included in (3.8). The coefficients {ai} are found using the

boundary conditions

F (0, m) = 0 ∀ {m : dm > 0}.

The unique solution to this boundary value problem is the equilibrium distribu-

tion [40]. The reader is referred to Mitra [41] and Meyn [42] for additional information

about fluid models.

2. Equilibrium Distribution of Gilbert-Elliott Systems

Consider a communication system where data arrives in a buffer at a constant rate

a(t) = a. Suppose that this buffer is serviced through a wireless connection at a

rate r(t), where r(t) is the Markov-modulated process described in Section A. That

is, r(t) is equal to R when the channel is ON, and zero otherwise. We assume that

the generator matrix of the underlying finite-state Markov chain is the matrix Qs
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obtained in (3.5), i.e.,

Q = Qs =







−λ λ

µ −µ






.

Note that Q is reversible since Q and w are in detailed balance, w1q1,2 = w2q2,1. The

net arrival rate in the buffer when the buffer is not empty is

D =







a 0

0 a− R






.

The eigenvalue problem φQ = zφD has two solution pairs:

(w, 0) =

((

µ

λ+ µ
,

λ

λ+ µ

)

, 0

)

(φ, z) =

(

(R− a, a) ,
aλ+ aµ− Rλ

a(R− a)

)

.

The queue will be stable provided that

a <
λ

λ+ µ
R. (3.10)

Under this condition, Lt converges in distribution to a finite random variable L. Using

the boundary condition F (0, 1) = 0, we obtain the equilibrium solution

F (x, ·) =

(

µ

λ+ µ
,

λ

λ+ µ

)

−
(

µ

λ+ µ
,

a

R− a

µ

λ+ µ

)

exp

(

aλ + aµ−Rλ

a(R− a)
x

)

=
(

1 − e−η2

, e−η2
)

−
(

1 − e−η2
)

(

1,
a

R − a

)

exp

(

κa− Rκe−η2

a(R− a)
x

)

.

(3.11)

Based on this equilibrium distribution, we can compute a number of performance

metrics including the probability of buffer overflow, its exponential rate of convergence

to zero, and the effective capacity of the system.

The probability of buffer overflow is an important performance metric. For the

Gilbert-Elliott system at hand, the probability of the buffer exceeding a threshold x
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is given by

Pr{L > x} = 1 − 〈F (x, ·), (1, 1)〉 = 1 − 〈F (x, ·), 1〉

=
R

R− a

µ

λ+ µ
exp

(

aλ+ aµ− Rλ

a(R− a)
x

)

=
R

R− a

(

1 − e−η2
)

exp

(

κa− Rκe−η2

a(R− a)
x

)

.

As seen in (3.11), the eigenvalue problem (3.9) applied to the present two-state system

contains only one negative solution. The large deviation principle governing the

probability of buffer overflow is therefore immediately seen to equal

− lim
x→∞

log Pr{L > x}
x

= −aλ + aµ− Rλ

a(R − a)
= −κa− Rκe−η2

a(R − a)
.

The large deviation principle governing the distribution of a queue is sometimes prefer-

able as a design criterion because it admits a simpler form.

Given specific system parameters and an exponential decay rate θ, the effective

capacity is the maximum arrival rate for which the service requirement θ is fulfilled.

Mathematically, this can be expressed as

α(θ) = sup

{

a ≥ 0 : − lim
x→∞

log Pr{L > x}
x

≥ θ

}

. (3.12)

For the simple problem considered in this section, (3.12) leads to

α(θ) = sup

{

a ≥ 0 :
aλ+ aµ− Rλ

a(R − a)
≤ −θ

}

= sup
{

a ≥ 0 : θa2 − (θR + λ+ µ)a+Rλ ≥ 0
}

.

(3.13)

Taking into account condition (3.10), this yields an explicit formula for the effective
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capacity of the Gilbert-Elliott channel

α(θ) =
θR + λ+ µ−

√

(θR + λ+ µ)2 − 4θRλ

2θ

=
θR + κ−

√

(θR + κ)2 − 4θRκe−η2

2θ
.

(3.14)

Appendix B shows that (3.14) can also be obtained directly from (2.2).

3. On-Off Information Sources

Some traffic sources are better modeled as on-off sources. Voice, for instance, is a

good example of an information process that can be accurately modeled as an on-off

source. When two people are carrying a conversation, they are unlikely to speak

simultaneously. On average, a person involved in a discussion speaks at most half

of the time. Other data sources such as instant messaging applications and wireless

sensors [43] can also be modeled as on-off sources. As such, we extend the analysis

of the previous section to the case where the data source features an on-off behavior.

Suppose that data arrive in the buffer at a rate a(t), where a(t) is a two-state

Markov-modulated source. We assume that the arrival rate is equal to a > 0 when

the source is ON; it is equal to zero otherwise. The generator matrix of the underlying

Markov chain for this arrival process can be written as

Qa =







−λa λa

µa −µa






.

Again, we assume that the service offered through the wireless channel is a Markov-

modulated process with generator matrix Qs, as defined in (3.5). The aggregate

system is therefore a stochastic fluid process modulated by a four-state Markov chain.

The evolution of the buffer content is governed by (3.6), where the generator matrix
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Q is equal to

Q =



















−λa − λ λa λ 0

µa −µa − λ 0 λ

µ 0 −λa − µ λa

0 µ µa −µa − µ



















= Qs ⊗ I + I ⊗Qa.

Throughout, we use A ⊗ B to denote the Kronecker product of matrices A and B.

Again, it is straightforward to verify that the generator matrix Q is reversible. The

net arrival rate in the buffer is represented by

D = diag(0, a,−R, a−R)

= −RE ⊗ I + aI ⊗ E,

where the matrix E is defined by

E =







0 0

0 1






.

We assume that the system is stable; that is, the following condition is satisfied

λa

λa + µa
a <

λ

λ+ µ
R.

The equilibrium distribution of this system is governed by (3.7), and its spectral

representation follows the general form of (3.8).

The generalized eigenvalue problem φQ = zφD admits three eigenvector-eigenvalue

pairs in the present case because det(Q − zD) is a third order polynomial (a 6= R).

We note that the underlying Markov chain is reversible since it satisfies the detailed

balance condition, wiQij = wjQji for 1 ≤ i, j ≤ 4. This property insures that all

the eigenvalues of φQ = zφD are real numbers. The first eigenvector is the invariant



36

distribution given by

w =

(

µ

λ+ µ
,

λ

λ+ µ

)

⊗
(

µa

λa + µa
,

λa

λa + µa

)

=
(µµa, µλa, λµa, λλa)

(λ+ µ)(λa + µa)
.

(3.15)

The associated eigenvalue is, of course, zero. To find the remaining two eigenvector-

eigenvalue pairs, we make an educated guess based on a standard decomposition

technique popularized by Mitra [41]. For any vector of the form φ = φs ⊗ φa, we can

rewrite (3.9) as

(φsQs +RzφsE) ⊗ φa = φs ⊗ (azφaE − φaQa) . (3.16)

Consider the two vectors defined by

φv = (R− v, v) ⊗ (a− v, v) (3.17)

where v is either solution of the quadratic form

v2(λ+ µ+ λa + µa) − vR(λ+ λa + µa)

− va(λ+ µ+ λa) + aR(λ+ λa) = 0.

(3.18)

It is straightforward to show that the vectors jointly defined by (3.17) and (3.18) are

eigenvectors of (3.16), with corresponding eigenvalues

z =
vλ+ vµ− Rλ

v(R− v)
=
aλa − vλa − vµa

v(a− v)
. (3.19)

Incidentally, (3.18) is obtained by equating the above two expressions for z. Since

(3.18) has two distinct real roots, the two associated eigenvectors along with the in-

variant distribution described in (3.15) completely characterize the eigenvalue prob-

lem φQ = zφD. We can see from the spectral representation of the equilibrium

distribution (3.8) that the large deviation principle governing the queue occupancy is
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dominated by the largest negative eigenvalue of (3.16).

Consider an exponential decay rate requirement of θ > 0 on the probability of

buffer overflow,

− lim
x→∞

log Pr{L > x}
x

≥ θ. (3.20)

This requirement will be satisfied provided that the largest negative eigenvalue of (3.19)

is less than −θ. In particular, we want the following equations to hold:

v2θ − v(θR + λ+ µ) +Rλ ≥ 0

v2θ − v(θa− λa − µa) − aλa ≥ 0.

These conditions will be fulfilled if and only if the value of v corresponding to the

largest negative eigenvalue of (3.19) is less than α(θ) but greater than β(θ), where

α(θ) is the effective capacity introduced earlier

α(θ) = sup

{

ν ≥ 0 :
νλ + νµ−Rλ

ν(R − ν)
≤ −θ

}

= sup
{

ν ≥ 0 : θν2 − (θR + λ+ µ)ν +Rλ ≥ 0
}

and β(θ) is the effective bandwidth of a two-state Markov-modulated fluid source [44,

13, 45]

β(θ) = inf

{

ν ≥ 0 :
aλa − νλa − νµa

ν(a− ν)
≤ −θ

}

= inf
{

ν ≥ 0 : θν2 − (θa− λa − µa)ν − aλa ≥ 0
}

.

Clearly, the service requirement of (3.20) can only be met if α(θ) ≥ β(θ). The fact

that this inequality is a necessary and sufficient condition for (3.20) to hold is proved

in Chapter IV.

This observation greatly facilitates the performance analysis contained in the

next section. In particular, for a service requirement such as (3.20), an on-off source
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shares the same service needs as a constant source with rate β(θ). Thus, for a given

θ > 0, the allocation of system resources can be studied in terms of fixed arrival rates,

whether the source rate is a constant or a Markov modulated fluid model. This is

illustrated in the next section.

C. Performance Analysis of Gilbert-Elliott Systems

We proceed to analyze the performance of the Gilbert-Elliott system as a function

of physical resources. Following the literature on effective bandwidth, we use the

exponential decay rate as our primary performance measure.

1. Effective Capacity Analysis

The effective capacity quantifies the maximum supported arrival rate for a set of

system parameters and a service constraint θ > 0. It is an appropriate tool to quantify

the optimal operating point of a wireless system. This maximum rate can either be

the true rate of a constant source or the effective bandwidth of a time-varying source.

Fig. 7 shows the maximal supported arrival rate α(θ) as a function of the service

constraint θ for the system parameters of Table I and the Markov decay parameters

κ ∈ {102, 103, 104}. This figure also includes the optimal coderate R as a function of

θ. We emphasize that for queueing constraint θ > 0, the optimal coderate R differs

from the throughput maximizing rate introduced in Section 1. Not surprisingly,

more stringent service constraints result in lower effective capacities for fixed system

parameters. This is intuitive since a lower arrival rate reduces the expected queue

length. More importantly, we see that the optimal coderate R is also a function of

the service requirements. Under strict service constraints, an error-control code with

a lower rate performs better as it reduces the probability of the channel being OFF.
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nential decay rate θ for various Markov decay parameters κ ∈ {102, 103, 104}.
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This analysis provides a new and systematic way to select the coderate as a function

of the channel profile and the service requirement of a specific system.

It is interesting to note that the maximum throughput and the corresponding

coderate are independent of the Markov decay parameter κ,

lim
θ→0

α(θ) = lim
θ→0

θR + λ+ µ−
√

(θR + λ+ µ)2 − 4θRλ

2θ

= lim
θ→0

[

R

2
− (θR + λ+ µ)R− 2Rλ

2
√

(θR + λ+ µ)2 − 4θRλ

]

=
Rλ

λ+ µ
= Re−η2

.

However, the effective capacity for θ > 0 depends heavily on the statistical profile

of the channel. Correlation impairs effective capacity. The higher the correlation

coefficient, the lower the effective capacity. In other words, a throughput analysis

of this system is not sufficient to provide an accurate assessment of supported rates

under strict service constraints. This also implies that the common assumption that

channel realizations are independent and identically distributed through time may

lead to over-optimistic performance predictions on effective capacity.

2. Resource Requirement Analysis

The effective capacity shown in Fig. 7 decays rapidly as a function of θ. It is therefore

of interest to look at the reverse problem; for a given arrival rate a, we wish to

characterize the amount of physical resources necessary to meet a prescribed service

constraint θ > 0. First, we note that a necessary condition for a solution to exist

is the stability criterion a < Re−η2

. However, this condition may not be sufficient.

Looking at (3.13), we see that a solution exists if and only if we can find a power P
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and a bandwidth W such that

θa2 − (θR + κ)a+Rκe−η2

= 0.

This equation can be rearranged as

η2 =
N0W

P

(

2
R
W − 1

)

= − log

(

θRa+ κa− θa2

Rκ

)

.

Since η2 > 0, the following inequality must apply

0 < θRa + κa− θa2 < Rκ.

A necessary and sufficient condition for a solution to exist is θ < κ/a. We emphasize

that, even with an unlimited power and spectral bandwidth budget, only a finite

arrival rate can be supported for a service constraint θ > 0. Furthermore, this

bound is independent of the actual coderate R used in the system. This fact is in

sharp contrast with Shannon capacity, which goes to infinity as power and spectral

bandwidth grow unbounded. This limitation is partly due to the fact that, in the

system under study, the transmitter has no knowledge of the channel gain. Thus, it

cannot transmit at the (error-free) instantaneous channel capacity. Without channel

state information, the best decay rate θ is limited by the ratio of κ to the arrival

rate a. In the limit where the power and spectral bandwidth become very large,

the queueing behavior of the system is increasingly dominated by the holding time

of its OFF state. The queue is drained almost instantaneously when the channel is

ON, while it rises linearly when the channel is OFF. The probability of the queue

exceeding a threshold is then dominated by the duration of an OFF period, which is

exponentially distributed.

Fig. 8 shows the target power P as a function of the service constraint θ for an

arrival rate a = 14.4 Kbps and the parameters of Table I. Note that power P can be
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Fig. 8. Signal power as a function of exponential decay rate θ for various Markov decay

parameters κ ∈ {102, 103, 104}.

obtained in closed form as

P = −
N0W

(

2
R
W − 1

)

(log (θRa + κa− θa2) − log (Rκ))
.

As expected, the required power goes to infinity for a finite θ. The set of supported

exponential decay rates is intimately connected to the Markov decay factor κ. Not

only does correlation decrease effective capacity, it also limits the rates and qualities

of service that can be sustained on a given wireless channel. Similar findings can be

obtained for the spectral bandwidth requirement as a function of arrival rate a and

service constraint θ. Fig. 9 shows minimum spectral bandwidth as a function of decay

rate θ for an arrival rate of a = 14.4 Kbps. Again, the amount of resource required

goes to infinity for a finite θ.

The speech process of an interlocutor involved in an English conversation can be
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Fig. 9. Spectral bandwidth as a function of exponential decay rate θ for various Markov

decay parameters κ ∈ {102, 103, 104}.

modeled as an on-off information source [46]. Exponentially distributed talk spurts

with a mean duration of µ−1
a ≈ 352 ms are followed by silent periods with mean λ−1

a ≈

650 ms. Using advanced signal processing techniques, active speech can be compressed

to a rate of 14.4 Kbps. The average throughput of an encoded speech process is

therefore 5.06 Kbps. However, for a delay constraint of 20 ms or an approximately

equivalent service constraint θ = 0.5, the effective bandwidth of speech is essentially

equal to 14.4 Kbps. The very strict delay constraint imposed on speech traffic forces

the effective bandwidth to be nearly equal to its peak rate, which is much higher than

the average throughput. As seen on Fig. 8 & 9, voice traffic cannot be successfully

transmitted over highly correlated channels without sophisticated power control. This

partly explains why power control is critical to cellular telephony [47, 48, 49].
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D. Numerical Analysis

In Section A, the Gilbert-Elliott channel model is introduced as a first-order approx-

imation to the auto-correlation of a Rayleigh fading channel. This simplified channel

model permits the derivation in close form of many important quantities, including

the probability of buffer overflow and the effective capacity. Recall that the Gilbert-

Elliott model is based on two assumptions. First, the state of the Gilbert-Elliott

channel identifies whether the instantaneous realization of the underlying Rayleigh

channel lies above or below a prescribed threshold. Second, the stochastic process

representing the time evolution of this quantized channel is accurately modeled as a

two-state, continuous-time Markov chain.

While it is mathematically convenient to assume that the quantized channel pos-

sesses the Markov property, a more common approach is to assume that the channel

itself is Markov (not the quantized version). Furthermore, we note that it is straight-

forward to construct a Rayleigh fading channel that possesses the Markov property.

In particular, consider the Ornstein-Uhlenbeck equation

dXt = −κXtdt+ σdBt

where κ, σ are real constants and Bt is a one-dimensional Brownian motion. The solu-

tion to this stochastic differential equation is called the Ornstein-Uhlenbeck process.

This solution has the Markov property and it is given by [37, 50]

Xt = X0e
−κt +

∫ t

0

e−κ(t−s)σdBs.



45

The variance of this process at time t can be computed explicitly as

E
[

(Xt − E[Xt])
2
]

= E

[

(

X0e
−κt +

∫ t

0

e−κ(t−s)σdBs − E[X0]e
−κt

)2
]

= E
[

(X0 − E[X0])
2] e−2κt + E

[

(∫ t

0

e−κ(t−s)σdBs

)2
]

= E
[

(X0 − E[X0])
2] e−2κt + E

[∫ t

0

e−2κ(t−s)σ2ds

]

= E
[

(X0 − E[X0])
2] e−2κt +

σ2

2κ

(

1 − e−2κt
)

.

If X0 ∼ N
(

0, 1
2

)

and σ2 = κ, then Xt ∼ N
(

0, 1
2

)

for all t ≥ 0. A Raleigh fading

channel that possesses the Markov property can therefore be obtained by assigning

independent stationary Ornstein-Uhlenbeck processes to the in-phase and quadrature

component of the channel. The first order statistic of the corresponding h(t) is a zero-

mean, proper complex Gaussian process as desired. The caveat in this approach is

that the quantized version of the channel becomes a hidden Markov process. This

precludes the application of various results and techniques including the Chapman-

Kolmogorov equation of Section B and the large-deviation principle for Markov fluid

processes. These limitations and the vast literature on Markov-modulated processes

explain our early adoption of the Gilbert-Elliott model in Section A.

In this section, we use numerical simulations to assess the validity of the Gilbert-

Elliott channel model in approximating the behavior of a Markov Raleigh fading

channel. Since most of our results are based on the equilibrium distributions of

queues, we compare the analytic probability of buffer overflow for the Gilbert-Elliott

channel with the empirical distribution of the queue length for the Markov Raleigh

fading channel. Recall that the probability of buffer overflow for the Gilbert-Elliott
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channel is given by

Pr{L > x} =
R

R − a

(

1 − e−η2
)

exp

(

κa − Rκe−η2

a(R − a)
x

)

.

Fig. 10 shows Pr{L > x} for the Gilbert-Elliott channel along with the empirically

measured probabilities of buffer overflow for the Markov Raleigh fading model. As
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Fig. 10. Comparison of Pr{L > x} for the two-state Markov channel (solid) along

with the empirically measure probabilities of buffer overflow for the Markov

Raleigh fading model (dashed) for decay parameters κ = 103.

seen on the graph, there is a noticeable difference between the two systems. Never-

theless, the exponential decay rate associated with the Gilbert-Elliott channel seems

to provide an upper bound for the decay rate of the Orstein-Uhlenbeck system. This

is encouraging as the Gilbert-Elliott model appears to provide a conservative measure

of effective capacity. Note also that the probability of buffer overflow will converge in

distribution as κ ↑ ∞. Thus, the Gilbert-Elliott model is an accurate representation
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of the Orstein-Uhlenbeck system when the channel varies rapidly.

E. Discussion

We considered the allocation of system resources in the context of wireless communi-

cations under quality of service constraints. The service metric is defined in Chapter II

and it is used to conduct a performance analysis of the Gilbert-Elliott system as a

function of physical resources. The effective capacity is found to decay rapidly as a

function of service constraint θ > 0. System resource should be allocated according

to the service constraint. For example, a more stringent constraint on θ lowers the

optimal coderate R of the wireless system. An arrival rate a can only be sustained

if θ < κ/a. This is somewhat surprising. With an unlimited spectral bandwidth and

power budget, only a finite rate can be supported for a stringent service constraint.

In addition, this bound is independent of actual coderate R used in the system. This

fact is in stark contrast with throughput, which goes to infinity as power and spec-

tral bandwidth grow unbounded. It underlines the fundamental difference between

Shannon capacity and delay-sensitive communications. Such insights are crucial for

developing efficient wireless communication networks.

The numerical analysis section suggests that alternative Markov models for the

underlying wireless channel should be explored. For instance, a finite-state Markov

model can be used to represent the channel itself, rather than modeling the ability of

the decoder to recover data reliably. The performance evaluation method presented in

this work provides, nonetheless, an elegant framework to quantify the amount of phys-

ical resources necessary to support rate a under service constraint θ. Alternatively,

this framework can be used in conjunction with the effective capacity to characterize

the maximal arrival rate a subject to specific resource and service constraints.
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CHAPTER IV

WIRELESS USER-COOPERATION NETWORKS

The concept of user cooperation was first introduced by Sendonaris, Erkip, and

Aazhang [24]. In a companion paper, they discuss implementation issues and pro-

vide a performance analysis for practical systems [51]. Virtual antenna arrays formed

through user cooperation can be employed to increase the diversity or the spatial mul-

tiplexing gain of a communication system in a manner similar to a standard MIMO

system. Research in this area mainly falls into three categories: designing coding

techniques to improve the diversity of a system, deriving transmission strategies that

increase the multiplexing gain of a system, or studying communication schemes that

meet the optimal diversity-multiplexing trade-off curve [52]. In [53], transmission pro-

tocols for cooperative communications are classified into different approaches. The

performance of each protocol is analyzed in terms of outage probability. This work

has encouraged coding theorists to develop efficient error-control codes for user coop-

eration. From a coding theory perspective the work of Laneman et al. [54] employs

repetition coding across time. Once a first user has transmitted its data, a second

user simply retransmits the data it has received to the base station. More sophis-

ticated coding schemes including coded cooperation [55] and space-time cooperation

scheme [53] have been proposed.

User-cooperation techniques have also been employed to enlarge the achievable

rate regions of wireless communication networks. One particular example where user-

cooperation can be used is for wireless networks where several relay nodes are incorpo-

rated in the network to help improve the transmission rates of certain users. The liter-

ature on user-cooperation concepts applied to relay networks is rich. Comprehensive

discussions on the subject are provided by Kramer et al. [56], Høst-Madsen [57], and
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Khojastepour et al. [58]. Recent results by Azarian, El Gamal and Schniter [59] show

that the diversity-multiplexing trade-off methodology can be extended to coopera-

tive networks. Furthermore, the decode-and-forward transmission strategy achieves

optimal performance.

Most of the existing work on user-cooperation focuses on improving peer-to-peer

link quality while considering other users as relays. In this chapter, we explore the

joint benefits that user-cooperation may offer to all the users present in a system.

Specifically, we characterize the achievable rate region of a simple user-cooperation

scheme as a function of statistical service requirements. The cooperative scheme is

shown to significantly enlarge the achievable rate region of the service constrained

communication system, provided that the quality of the wireless link between coop-

erating users is better than the individual connections from the users to their intended

destination. Furthermore, the gain of the user-cooperation network increases as the

service requirement becomes more and more stringent.

The remainder of the chapter is organized as follows. Section A presents the

system model we adopt, along with a precise problem formulation. The proposed

user-cooperation scheme is also introduced. Section B contains a derivation of the

equilibrium queue-length distribution for the underlying communication system. This

distribution is used to compute the statistical performance measure θ associated with

the system introduced in Chapter II. This metric allows us to characterize the achiev-

able rate-region of the cooperative scheme under study for an arbitrary service con-

straint θ0 in Section C. Generalizations of the system model considered in this chapter

are compared and contrasted in Section D.
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A. System Model

Consider a wireless communication system where two users collaborate to transmit

their respective data to a common destination, as shown in Fig. 11. The system is

Wireless User 1

Wireless User 2

Destination

Fig. 11. Abstract model for a cooperative system with two users.

assumed to operate in a frequency division multiplexing (FDM) mode. Each wireless

user is subject to a mean power constraint and a finite spectral bandwidth allocation.

A large buffer is available at every transmitter where outgoing packets are stored

before being sent to their destination. Furthermore, we assume that the system must

satisfy a global service constraint specified by θ0. That is, the asymptotic decay-rates

of buffer occupancy, θ1 for user 1 and θ2 for user 2, must satisfy min (θ1, θ2) ≥ θ0.

Finally, we assume that channel state information is not available at the transmitters,

although the channel statistics are. In practice, it is often costly for a transmitter

to acquire accurate channel state information. This explains why we focus on the

situation where channel state information is available only at the receiver, not at the

transmitter.
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Let ai(t) denote the instantaneous arrival rate of user i at time t. Many real-time

traffic sources such as voice, instant messaging, and wireless sensors can be accurately

represented by on-off sources [43]. As such, we model ai(t) using a two-state Markov-

modulated fluid process. We remark that a constant source can be viewed as a

limiting case of an on-off source where the off-time approaches zero. For an on-off

model, the instantaneous arrival rate of user i is ai > 0 when the source is on, and

zero otherwise. The arrival drift matrix for wireless user i can then be written as

Dai =







0 0

0 ai






.

We denote the mean off-time of this user by λ−1
ai ; and its mean on-time, by µ−1

ai . The

generator matrices for the underlying continuous-time Markov chain of the arrival

processes can then be expressed as

Qai =







−λai λai

µai −µai






, i = 1, 2.

In the situation where users do not cooperate, each wireless device transmits

its data independently based on its allocated bandwidth and power budget. The

connection of each user can therefore be modeled as a single-server queue, where the

arrival process represents the data produced by the user and the service process is

determined by the information received at the destination. As in the case presented

in Chapter III, we assume that the receiver have the ability to acknowledge reception

of the transmitted packets and the wireless system can be modeled as a single server

queue. We emphasize, again, that the links between the users and their destination

are orthogonal in a frequency-division multiplexing system. In this case, a two-user

system can effectively be decomposed into two independent point-to-point systems.
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More specifically, the maximum arrival rate that each user can support under the

service constraint θ0 can be obtained separately.

In a typical wireless environment, channel conditions vary with location and time.

As such, the maximum throughput of two different users may be vastly asymmetric.

For real-time traffic subject to stringent service constraints, this imbalance can be even

larger. The goal of this chapter is to design a system where cooperation among users

enables them to share system resources equitably. This is accomplished by designing

a communication strategy that enlarges their collective achievable rate-region under

various service requirements. An expanded rate-region creates the flexibility necessary

to share system resources fairly among users.

To take advantage of their mutual wireless links, the two users must first exchange

data. In the proposed user-cooperation scheme, we allow each user to apply part of

its own power and bandwidth to the exchange of information with its counterpart, as

shown in Fig. 12. We represent the fraction of physical resources employed by user i

a1 (t)

a2 (t)

r1 (γ1)

r2 (γ2)

L1

L2

Destination

Fig. 12. User-cooperation scheme with two users.

to maintain communication with its peer by γi, and we let the capacity of the newly
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created inter-user channel be denoted by ri(γi). We consider the specific scenario

where the inter-user links are symmetric additive white Gaussian noise (AWGN)

channels with constant gains. Thus, when generating traffic, user 1 sends data at

rate r1(γ1) to user 2, and stores the remaining data in its own buffer. User 2 follows

a similar procedure, sending part of its data to user 1 and storing excess data locally

whenever active. Based on the respective values of γ1 and γ2, we can characterize

the achievable rate-region for the cooperative system of Fig. 12 under an arbitrary

service requirement θ0. The union of these rate-regions over all admissible pairs

(γ1, γ2) ∈ [0, 1]2 yields an achievable rate-region for the proposed user-cooperation

scheme. We denote this region by R (θ0), and point out that it is a function of the

service requirement θ0. As θ0 → 0, this achievable region converges to the stability

region of the system, which is characterized by its throughput optimal boundary.

B. Queueing Performance Analysis

To relate the effects of the physical layer to the performance of the network, we

must first understand the queueing dynamics that govern the system. We start by

considering a single server fluid queue with independent arrival and service processes.

We assume that these two processes are coupled by a buffer of infinite length, and that

they are modulated by finite-state continuous-time Markov chains with irreducible

generator matrices Qa ∈ RM×M and Qs ∈ RN×N , respectively. We let am represent

the instantaneous arrival rate when the arrival process is in state m, and we write

pa(t;m) to denote the probability of occurrence of this event at any given time t ≥ 0.

Similarly, the offered service has instantaneous rate Rn when the underlying process

is in state n, and ps(t;n) represents the probability of being in this state at time t.

We can write the arrival and the service drift matrices as Da = diag(a1, . . . , aM)
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and Ds = diag(R1, . . . , RN ), respectively. In vector form, the arrival and service

probability distributions become

pa(t) = (pa(t; 1), pa(t; 2), . . . , pa(t;M))

ps(t) = (ps(t; 1), ps(t; 2), . . . , ps(t;N)) .

Using these definitions, we can write the evolution of the probability vectors in a

compact fashion,

d

dt
pa(t) = pa(t)Qa

d

dt
ps(t) = ps(t)Qs.

We use the vectors wa and ws to represent the steady-state distributions of the arrival

and service processes, with waQa = wsQs = 0.

For the combined arrival and service process, let

Xt ∈ {(m,n) : 1 ≤ m ≤M, 1 ≤ n ≤ N}

be the situation where the arrival is in state m and the offered service is in state n at

time t. The probability of this event is simply equal to p(t;m,n) = pa(t;m)ps(t;n).

We employ p(t) to denote the vector consisting of the elements {p(t;m,n)} in lex-

icographic order. It follows that p(t) = pa(t) ⊗ ps(t), where ⊗ is the Kronecker

product [60, 41]. The joint probability vector p(t) satisfies

d

dt
p(t) = p(t)Q,

where Q is the generator matrix of the joint process. This matrix can be written as

Q = Qa ⊗ IN + IM ⊗Qs (4.1)
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where IK is a K×K identity matrix. The matrix Q is recurrent and irreducible, and

w = wa ⊗ws is the steady-state distribution for the aggregate process. The net drift

matrix D of the joint process is

D = Da ⊗ IN − IM ⊗Ds. (4.2)

Let Lt represent the queue-length of the user at time t. The evolution of Lt in

time can be expressed as [61, 62]

d

dt
Lt = (am −Rn) 1{Lt>0} + (am −Rn)+ 1{Lt=0}, (4.3)

which is a stochastic differential equation on the Markov process (Lt, Xt). Define the

event probability

F (x,m, n, t) = Pr {Xt = (m,n), Lt ≤ x} ,

and let F (x, t) be the lexicographic arrangement of {F (x,m, n, t)}. Using this no-

tation, we can write the Chapman-Kolmogorov forward equation in matrix form

as [61, 13, 41, 62]

∂

∂t
F +

∂

∂x
FD = FQ.

The mean arrival rate and mean service rate are given by ā = 〈waDa, 1〉 and

R̄ = 〈wsDs, 1〉, respectively. If the system is stable (i.e., ā < R̄), then the underlying

Markov process is positive recurrent [61]. As such, there exists a steady-state distri-

bution for the aggregate process (Lt, Xt) [38]. Let π(x,m, n) denote the steady-state

queue-length distribution of the buffer, with

∂

∂x
π (x)D = π (x)Q.
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Since π(x) is a bounded solution, it has spectral representation

π(x) = w −
k
∑

l=1

αlφle
zlx, (4.4)

where {(φl, zl) : Re(zl) ≤ 0} are k eigenvector/eigenvalue pairs that satisfy the eigen-

value problem

zφD = φQ. (4.5)

We emphasize that αl = 0 for any l such that Re{zl} > 0 because the system is

stable [41]. Thus, we only need to consider eigenvalues with negative real parts.

Note that the system is subject to the boundary conditions π(0, m, n) = 0 whenever

am − Rn > 0. If am 6= Rn for all m and n, then there are exactly k such boundary

conditions and the steady-state distribution is unique [41].

Solving the eigenvalue problem of (4.5) for the whole system can be somewhat

involved. However, taking advantage of the special structure of D and Q, we can

decompose the original system and reduce the complexity of the problem.

Lemma 4 For any eigenvector/eigenvalue pair (φl, zl) that satisfies zlφlD = φlQ,

there exist φal
, φsl

, and ν ∈ C such that

zlφal
(Da − νIM ) = φal

Qa, (4.6)

zlφsl
(νIN −Ds) = φsl

Qs. (4.7)

Proof: For zl = 0, the result is trivial. For any ν, the vector φ = φal
⊗ φsl

= wa ⊗ws

satisfies (4.6) and (4.7). Assume zl 6= 0, then zlφlD = φlQ is equivalent to

φl

(

D − Q

zl

)

= 0. (4.8)
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Substituting (4.1) and (4.2) into (4.8), we obtain

φl

(

(Da ⊗ IN − IM ⊗Ds) −
(

Qa

zl
⊗ IN + IM ⊗ Qs

zl

)

)

= 0,

which can be rewritten as

φl

((

Da −
Qa

zl

)

⊗ IN + IM ⊗
(

−Ds −
Qs

zl

))

= 0.

The above equation shows that zero is an eigenvalue of the matrix

(

Da −
Qa

zl

)

⊗ IN + IM ⊗
(

−Ds −
Qs

zl

)

.

According to [60, page 268], zero is an eigenvalue of the above matrix if and only if

there exists ν ∈ C such that

ν ∈ σ

(

Da −
Qa

zl

)

−ν ∈ σ

(

−Ds −
Qs

zl

) (4.9)

where σ (A) denotes the spectrum of matrix A. Expression (4.9) is equivalent to

stating that there exist φal
and φsl

such that

φal

(

Da −
Qa

zl
− νIM

)

= 0,

φsl

(

νIN −Ds −
Qs

zl

)

= 0. �

Lemma 4 allows us to solve (4.5) by decomposing the original system into two

subsystems: the arrival subsystem of (4.6) that features a Markov-modulated arrival

process and a constant service rate ν; and the subsystem described in (4.7) with

a constant arrival rate ν and a Markov-modulated fluid service process. A similar

decomposition argument can be found in [41] where (4.6) and (4.7) are shown to be

sufficient conditions for zl to be a solution to (4.5). Lemma 4 provides both necessary
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and sufficient conditions for this decomposition to exist.

Based on the equilibrium queue-length distribution of the buffer (4.4), a number

of performance metrics can be computed as in Chapter III. A simple and important

one is the probability of buffer overflow, which can be expressed as

Pr {L > x} = 1 − 〈π (x) , 1〉.

As shown in the previous chapter, the probability of buffer overflow is related to

the delay violation probability of a communication system and hence can be treated

as a service requirement for delay-sensitive applications over wireless networks. In

practice, buffers are often large and their decay rates of buffer overflow probabilities

are determined primarily by the large deviation principle governing each buffer oc-

cupancy. From this perspective, the service constraint θ for the Markov-modulated

fluid process becomes

θ = − lim
x→∞

log Pr{L > x}
x

= − lim
x→∞

log (1 − 〈π(x), 1〉)
x

= − lim
x→∞

log
(

∑k
l=1 αl〈φl, 1〉ezlx

)

x
= − max

l∈{1,...,k}
Re {zl} .

(4.10)

In other words, the service requirement θ of the system is the absolute value of the

largest negative real eigenvalue satisfying (4.5).

Let the absolute values of the maximum negative eigenvalues for the aggregate

system and its individual components be denoted by

θ = −max {Re{z} < 0 : det(zD −Q) = 0}

θa(ν) = −max {Re{z} < 0 : det(zDa − zνIM −Qa) = 0}

θs(ν) = −max {Re{z} < 0 : det(zνIN − zDs −Qs) = 0} .

It is well-known [63, 64, 65] that for an irreducible generator matrix Qa and a real
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positive diagonal matrix Da, θa(ν) is continuous and monotonically increasing from

zero to infinity as ν ranges from the mean rate to the peak rate, i.e. ν ∈ [ā,maxm am].

Similarly, θs(ν) is continuous and monotonically decreasing from infinity to zero for

ν ∈
[

minnRn, R̄
]

. If maxm am > minnRn and ā < R̄ then there exists a ν∗ ∈

[ā, maxm am] such that θa (ν∗) = θs (ν∗), as illustrated in Fig. 13. On the other hand,

if maxm am ≤ minnRn, the buffer is always empty and hence θ = ∞. The following

theorem asserts that, for a stable system, the large deviation principle associated with

the joint system is identical to that governing the two subsystems with parameter ν∗.

Theorem 1 Let Qa and Qs be irreducible, recurrent generator matrices, and let Da

and Ds be non-negative diagonal matrices. If the system is stable (i.e., ā < R̄), then

there exists a ν∗ ∈
[

ā, R̄
]

such that

θ = θa (ν∗) = θs (ν∗) .

Proof: Denote the value where these two functions meet by θ∗ = θa (ν∗) = θs (ν∗).

Clearly, ν∗ ∈
[

ā, R̄
]

. We need to show that θ∗ = θ. Assume not, then θ < θ∗ by the

minimality of θ. In addition, lemma 4 implies that there exists a ν0 ∈ C such that

z0 is an eigenvalue of both decoupled systems and θ = Re{z0}. It follows from the

minimality of θa(ν) and θs(ν) that θa(ν0) ≤ θ < θa (ν∗) and θs(ν0) ≤ θ < θs (ν∗). From

the monotonicity of θa(ν), we conclude that ν0 < ν∗. However, from the monotonicity

of θs(ν), we get ν0 > ν∗. This is a contradiction. We then conclude that θ = θ∗. �

From theorem 1, we find that once ν∗ is determined, the service metric θ of the

system can be obtained by analyzing the behavior of the two independent subsystems.

Define

β(θ) = θ−1
a (θ)

α(θ) = θ−1
s (θ).
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θ

ā minRn max am R̄
ν

θa (ν) θs (ν)

ν∗

Fig. 13. θa(ν) and θs(ν) as a function of ν.

For a specific service constraint θ∗, β (θ∗) is the effective bandwidth of the arrival

process [17], and α (θ∗) is the effective capacity of the service process [19]. Under the

conditions of Theorem 1, the parameter θ∗ is the unique solution to the equation

ν∗ = β (θ∗) = α (θ∗) . (4.11)

Note that in (4.11), ν∗ is the effective bandwidth of the arrival process and the

effective capacity of the service process under the service constraint θ∗. A service

constraint θ0 for the aggregate system is said to be achievable if and only if θ∗ ≥ θ0.

Since β(θ) is monotonically increasing in θ and α(θ) is monotonically decreasing, the

service constraint θ0 can be fulfilled if and only if

β(θ0) ≤ α(θ0). (4.12)
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C. Achievable Rate-Regions for a Two-User System

In this section, we characterize the achievable rate-region of the user-cooperation

system depicted in Fig. 12 when operating under service constraint θ0 > 0. Because

the system employs frequency-division multiplexing, the wireless links between the

users and their common destination can be modeled as independent Gilbert-Elliott

channels. Assume that both wireless channels have the same expected power gain.

The generator matrix Qsi corresponding to the modulating Markov process of user i

is given by

Qsi =







−κie
−η2

i κie
−η2

i

κi − κie
−η2

i −κi + κie
−η2

i






;

the drift matrix Dsi is equal to

Dsi =







0 0

0 Ri







where κi denotes the exponential decay rate of the channel of user i, and Ri and ηi are

respectively the selected coderate and decoding threshold of that same user, as defined

in (3.4). When the two users do not cooperate, user i sets up a wireless connection

to the destination using its own physical resources, power Pi and spectral bandwidth

allocation Wi. The effective bandwidth of source i, as described in Section A can

then be expressed as [18]

βi(θ0, ai) =
θ0ai − λai − µai +

√

(θ0ai − λai − µai)2 + 4θ0aiλai

2θ0
, (4.13)
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where ai denotes the peak rate of the underlying on-off source. Similarly, the effective

capacity of the wireless channel of user i is [23]

αi(θ0,Wi, Pi) = max
Ri







θ0Ri + κi −
√

(θ0Ri + κi)2 − 4θ0Riκie−η2
i

2θ0







.

Recall that the value of ηi depends implicitly on Pi, Wi, and Ri, as seen in (3.4).

According to (4.12), the peak rate pair (a1, a2) is achievable under the QoS parameter

θ0 if and only if the effective bandwidth of the traffic generated by user i is less than

or equal to the effective capacity of the corresponding wireless channel, i.e.,

βi(θ0, ai) ≤ αi(θ0,Wi, Pi) (4.14)

for i = 1, 2. Since the wireless channels are orthogonal, using (4.13) and (4.14) we

can solve for the maximum supported arrival peak-rate a∗i for user i subject to the

service constraint θ0. The achievable rate-region of the non-cooperative FDM system

is in the form of a rectangle limited by the maximum supported peak-rates of the two

links under the parameter θ0,

ai ≤ a∗i = αi(θ0,Wi, Pi)

(

1 +
µai

θ0αi(θ0,Wi, Pi) + λai

)

. (4.15)

Now, consider the situation where the two wireless users cooperate by taking

advantage of the AWGN inter-user channels. We assume that user i assigns a fraction

γi of its power and bandwidth to the exchange of information with its counterpart.

If the expected gain of the inter-user channel is G, then its Shannon capacity is given

by

ri(γi) = γiWi log

(

1 +
GPi

N0Wi

)

.

The power and bandwidth remaining for the uplink connection between user i and

the destination become (1− γi)Pi and (1− γi)Wi respectively. The effective capacity



63

for the resulting wireless channel can be expressed as

νi(γi) = αi(θ0, (1 − γi)Wi, (1 − γi)Pi).

It is clear from the system model described in Section A that the inter-user traffic

originating from user i is an on-off process with peak-rate ri(γi). This traffic is

modulated by the same two-state Markov chain that modulates the original source.

Therefore, the effective bandwidth of this traffic can be expressed as βi(θ0, ri(γi)).

Similarly, the portion of the traffic generated by user i which is stored locally and

sent directly to the destination is an on-off process with peak-rate ai − ri(γi). The

effective bandwidth of this local traffic then becomes βi(θ0, ai − ri(γi)).

Independence of the traffic generated by the two users and the additivity property

of the effective bandwidth for independent sources [13] imply that the total effective

bandwidth of the input process to buffer i is the sum of the effective bandwidths of the

local traffic and the inter-user traffic coming from its counterpart. Equation (4.12)

states that a service constraint θ0 is achievable if and only if the total effective band-

width of the incoming traffic is smaller than the effective capacity of the offered

service. In the present case, this condition yields two inequalities

β1(θ0, a1 − r(γ1)) + β2(θ0, r(γ2)) ≤ ν1 (γ1)

β2(θ0, a2 − r(γ2)) + β1(θ0, r(γ1)) ≤ ν2(γ2).

(4.16)

Since β1(θ0, a1 − r(γ1)) and β2(θ0, a2 − r(γ2)) are both non-negative, the values of the

parameter pair (γ1, γ2) are further constrained by

β2(θ0, r(γ2)) ≤ ν1(γ1)

β1(θ0, r(γ1)) ≤ ν2(γ2).

Let C denote the set of pairs of the form (γ1, γ2) for which the above inequalities hold.
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For any (γ1, γ2) ∈ C, the achievable rate-region of the cooperative system, which we

denote by R(θ0, γ1, γ2), is found to be

a1 ≤ r1(γ1) +
(

ν1(γ1) − β2

(

θ0, r2(γ2)
))

×
(

1 +
µa1

θ0
(

ν1(γ1) − β2

(

θ0, r2(γ2)
))

+ λa1

)

a2 ≤ r2(γ2) +
(

ν2(γ2) − β1

(

θ0, r1(γ1)
))

×
(

1 +
µa2

θ0
(

ν2(γ2) − β1

(

θ0, r1(γ1)
))

+ λa2

)

.

(4.17)

The achievable rate-region of the user-cooperation scheme under service constraint θ0

is then given by

R(θ0) =
⋃

(γ1,γ2)∈C
R(θ0, γ1, γ2).

Note that the achievable rate-region of the non-cooperative system is R(θ0, 0, 0). It is

therefore a subset of R (θ0). The boundary of R(θ0) can be obtained by maximizing

a2 over (γ1, γ2) while keeping a1 fixed in (4.17). The solution of the boundary problem

can be obtained by standard optimization techniques such as the Lagrange multiplier

method.

The comparison between the achievable rate-regions is illustrated though an ex-

ample. Numerical values of the parameters for the wireless channels and the arrival

processes used in this example appear in Table II. The two wireless channels are

assumed to have the same expected power gains. However, the channel of user 2

changes faster than that of user 1, with κ2 > κ1. Suppose that the gain of the AWGN

inter-user channel is one (G = 1). The achievable rate-region of the system under

the cooperative scheme is compared to that of the non-cooperative scheme in Fig. 14

and Fig. 15, where the numerical values for θ are equal to 0.001 and 0.01 respectively.

From these figures, we see that the achievable rate-region of the cooperative sys-

tem is strictly larger than the region of the traditional FDM system. We note that,
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Table II. System parameters for user-cooperation networks.

N0 = 10−6 W/Hz Noise power spectral density

W1 = W2 = 11 MHz Bandwidth

P1 = P2 = 100 mW Received power

κ1 = 102 sec−1 Decay parameter of channel 1

κ2 = 103 sec−1 Decay parameter of channel 2

λ−1
a1 = λ−1

a2 = 650 ms Average silent period

µ−1
a1 = µ−1

a2 = 352 ms Average talk burst
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Fig. 14. Comparison of the achievable rate-regions when θ = 0.001.
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Fig. 15. Comparison of the achievable rate-regions when θ = 0.01.

even though the expected channel gains of the two wireless channels are the same,

there is a large imbalance between the maximum supported peak-rates of the two

users under service constraint θ0. This can be explained by the fact that the channel

memory of user 2 decays faster than the channel memory of user 1, resulting in a

higher order of time-diversity for user 2 [66]. Furthermore, the asymmetry between

the maximum achievable rates of the two users increases as the service constraint

becomes more stringent. Both figures suggest that, under strict service requirements,

user-cooperation provides an efficient means to share radio resources fairly among

users.

In the idealized scenario where G → ∞, the users can exchange an arbitrary

amount of information at no extra cost in terms of power and bandwidth. Let ri be

the rate at which user i sends information to its counterpart through the inter-user

channel when its source is on. The effective bandwidth of the inter-user traffic is
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βi(θ0, ri), while the effective bandwidth of the excess traffic stored in the local buffer

becomes βi(θ0, ai − ri). From (4.12), we know that the rate-pair (a1, a2) is achievable

under service constraint θ0 provided that

β1(θ0, a1 − r1) + β2(θ0, r2) ≤ α1(θ0,W1)

β2(θ0, a2 − r2) + β1(θ0, r1) ≤ α2(θ0,W2).

(4.18)

We note that the effective bandwidth is a concave function, with strict inequality

over a non-trivial set of values [13]. There are therefore situations where peak-rates

a1 and a2 can be supported through user-cooperation, but not by a traditional FDM

system.

These results are easier to understand through an example. For the system

parameters listed in Table II, but with G → ∞, the achievable rate-region of the

cooperative system is plotted along with that of the non-cooperative system in Fig. 16

for θ = 0.001, and in Fig. 17 for θ = 0.01.

As shown in the figures, user-cooperation provides a significant statistical gain

over non-cooperative system in terms of achievable rates. This gain becomes larger

as the service constraint becomes more stringent. We can infer from Fig. 16 that

the sum peak-rate, a1 + a2, increases when the two users are cooperating through

a perfect inter-user channel, as discussed above. The achievable rate-region of the

user-cooperation scheme gets larger as the quality of the inter-user channel improves.

Yet this gain is less significant when the service constraint θ0 becomes large. This can

be explained by the fact that, as θ0 increases, the effective capacity of each variable

channel decreases dramatically [23]. Because the throughput of the AWGN inter-user

channel does not vary with θ0, this latter channel behaves more like an idealized

channel to the users as the service constraint becomes increasingly stringent. Thus,

user-cooperation seems to be beneficial as long as the channel gain of the AWGN
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Fig. 16. Comparison of the achievable rate-regions when θ0 = 0.001.

inter-user channel is adequate.

D. Alternative System Models

So far we have shown that, under various service constraints, the achievable rate-

region of the cooperative strategy is significantly larger than that of the non-cooperative

FDM system. The FDM model for the non-cooperative system is employed to cir-

cumvent mathematical difficulties that arise from inter-user interference. Moreover,

to keep our abstract model simple, we assume that the inter-user traffic is transmit-

ted instantaneously to the other users. That is, there is no buffer associated with

the inter-user channel. A valid criticism of our model is that the FDM assumption

may unfairly penalize the performance of the non-cooperative system, as compared to

its performance when successive interference cancellation is used at the destination.

Another observation regarding our model is the fact that having a queue for the inter-
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Fig. 17. Comparison of the achievable rate-regions when θ0 = 0.01.

user channel may improve the performance of the cooperative system. In this section,

we consider these more elaborate systems and discuss their impacts on performance

analysis. In particular, we argue that the intuition gained from the simpler model

holds for these more intricate models as well.

1. Successive Interference Cancellation

From [1], we know that the maximum achievable rate-region for the multi-access

channel encompasses the region achieved by a FDM system. This greater flexibility

is obtained by using successive interference cancellation at the receiver. For any

fading realization (h1, h2), the achievable rate-region of a multi-access channel is the
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polyhedron bounded by the inequalities

C1 ≤W log2

(

1 +
|h1|2P1

N0W

)

C2 ≤W log2

(

1 +
|h2|2P2

N0W

)

C1 + C2 ≤W log2

(

1 +
|h1|2P1 + |h2|2P2

N0W

)

.

(4.19)

Here, Pi is the mean received power of user i and W is the total spectral bandwidth

available to the two users. We note that this region is upper-bounded by the rate-

region of a FDM system with twice the spectral bandwidth (2W ). In particular,

consider a FDM system with allocation W1 = W2 = W , the achievable rate-region of

this alternate system is specified by

C1 ≤W log2

(

1 +
|h1|2P1

N0W

)

C2 ≤W log2

(

1 +
|h2|2P2

N0W

)

.

(4.20)

Clearly, the region defined by (4.19) is a subset of (4.20). Thus, we can upper-bound

the rate-region of a non-cooperative multiple-access system that uses successive inter-

ference cancellation by that of a FDM system that has double the spectral bandwidth

of the original system.

Assume the total system bandwidth is W = 11 MHz. We compare the achiev-

able rate-region of the user-cooperation system to the region corresponding to a FDM

system with twice the bandwidth in Fig. 18. The latter region is an absolute upper-

bound for the region of a non-cooperative system that supports successive interference

cancellation. The result suggests that user-cooperation may offer significant gains in

performance over a non-cooperative system that uses successive interference cancel-

lation. This behavior is explained, partly, by the fact that additional spectral band-

width offers diminishing returns in terms of effective capacity. The effective capacity
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of a service constrained system appears to level off even before the system enters its

information theoretic wideband regime [23].

For the system parameters listed in Table II, the effective capacities αi(θ0,W, P )

of the two wireless channels are plotted as a function of spectral bandwidth W in

Fig. 19. We can see from the figure that the effective capacities of the two channels

level off rapidly once W is large enough. This explains why doubling the spectral

bandwidth of a FDM system does not necessarily improve the effective capacity by

much. This limitation is also partly due to the underlying assumption that channel

state information is not available at the transmitters. Incidentally, users cannot

transmit at the (error-free) instantaneous Shannon capacity, and therefore they do

not benefit from the additional degrees of freedom associated with a larger spectral

bandwidth. When the available spectrum is large enough, the queueing behavior
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Fig. 19. Effective capacity for θ0 = 0.01.

of the system is dominated by the holding time of the service off state, which is

independent of the channel bandwidth [23].

2. Cooperation with Inter-User Buffers

A straightforward generalization of the user-cooperation scheme proposed in Sec-

tion A is to add buffers for the inter-user traffic of both transmitters. In this case,

the inter-user traffic can be buffered locally and, as such, data can be sent to the

other user even when the source is in its off state. This more flexible set-up can only

improve system performance and thereby enlarge the achievable rate-region of the

user-cooperation system. To characterize the achievable rate-region of this communi-

cation scheme, we need to derive the effective bandwidth of the departure process of

the inter-user traffic. Since the gain of the inter-user channel is constant, the effective
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bandwidth of the inter-user traffic can be analytically characterized [17]. However,

we elect not to compute the exact achievable rate-region for the problem at hand

when buffers are used for the inter-user channels. Rather, we provide tight upper and

lower bounds for the periphery of the achievable rate-region.

The user-cooperation system without inter-user buffers can be thought of as a

special case of the cooperative system described above. It corresponds to the sit-

uation where the inter-user buffers remain empty at all times. In this sense, the

achievable rate-region of the user-cooperation system without inter-user buffers serves

as a lower-bound for the achievable rate-region of the user-cooperation system with

inter-user buffers. On the other hand, the achievable rate-region of the idealized

user-cooperation system (G→ ∞) serves as an upper-bound for the user-cooperation

system with inter-user buffers. Indeed, as G approaches infinity, the constant service

rates of the inter-user channels become increasingly large. This insures that these

buffers remain empty. The boundary of the achievable rate-region for the buffered

user-cooperation system must lie between the dotted line and the solid line in Fig. 16

and in Fig. 17. Since the gap between the upper and lower bounds is quite narrow,

the gains associated with using inter-user buffers for the system under study must

be somewhat marginal. The tedious analysis of the more elaborate buffered scheme

provides little additional insight about the possible benefits of user-cooperation in

wireless systems, it is therefore not included in this thesis.

E. Discussion

In this chapter, we proposed a simple user-cooperation scheme that works under the

assumption that channel state information is only available at the receivers, not at

the transmitters. A Markov model was introduced to capture the unreliable nature of
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the wireless environment. For a fixed coderate, the overall performance of the wireless

channel is modeled as a two-state Gilbert-Elliott model.

The achievable rate-region of the proposed user-cooperation scheme is character-

ized and it is compared to the region of a non-cooperative system. Numerical results

suggest that cooperation yields a large gain over traditional systems. Furthermore,

the gain increases as the service constraint imposed on the system becomes more

stringent. User-cooperation can therefore provide wireless users with the flexibility

to better share system resources. Our queueing analysis also hints at the fact that

overall performance depends heavily on the time correlation of the underlying phys-

ical channel. In that sense, effective capacity is much more sensitive to higher-order

statistics than, say, ergodic capacity or outage capacity. It is therefore imperative

to use channel models that are amenable to analysis while providing an accurate

representation of reality.
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CHAPTER V

MULTI-ANTENNA GAUSSIAN SYSTEMS

Using multiple antennas has been shown to improve the performance of wireless com-

munication systems in various circumstances [30]. For instance, a multi-antenna con-

figuration can be used to increase the diversity [29] or the spatial multiplexing [27]

of a point-to-point wireless connection. Several research initiatives are focusing on

designing practical multiple-input multiple-output systems that improve the through-

put of wireless links. Yet, very little work has been done to quantify the impact of a

multi-antenna configuration on delay-sensitive communication over wireless systems.

This is an important research topic that demands attention. In this chapter, we seek

to identify the potential benefits of a MIMO configuration on the effective capacity

of a wireless system [67].

To insure that packets received at the destination can be decoded, we assume

that channel state information is available both at the transmitter and at the receiver.

It is clear that, when CSI is available at the transmitter, the optimal power control

policy takes as input the channel state and the buffer occupancy level. However,

this design strategy leads to a very difficult optimization problem because of the

time-dynamics of the system [10]. Herein, we assume that power is fixed at the

transmitter. This allows us to focus on the benefits of using multiple antennas at

the transmitter and/or receiver. Expressions for the effective capacities of a single-

antenna system, vector Gaussian channels, and MIMO Gaussian systems are found

under a Rayleigh block fading model. The effective capacity of the single-antenna

system is compared to those of the vector Gaussian systems in the low signal-to-noise

ratio (SNR) regime. Our results suggest that there is a substantial gain in using

multiple antennas at the transmitter or receiver for delay-sensitive communication.
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At low SNR, just as there is a power gain associated with using multiple receive

antennas in terms of ergodic capacity [30], there is a statistical gain associated with

using multiple transmit antennas in terms of effective capacity. For the MIMO case,

asymptotic upper and lower bounds for the effective capacity are derived. The lower

bound indicates that the effective capacity of a MIMO system scales linearly with the

minimum number of transmit or receive antennas. An approximation for the effective

capacity of the MIMO system is obtained in the low SNR regime when the number

of transmit and/or receive antennas is large. Again, the effective capacity expression

indicates that in the low SNR regime, a multi-antenna system offers a statistical gain

as well as a power gain over a single-antenna system. This suggests that multi-antenna

systems are especially suitable for service constrained communication.

The remainder of this chapter is organized as follows. Explicit formulas for

the effective capacities of single-antenna and multi-antenna systems are derived in

Section A. To gain better design intuition, system performance is characterized in

the low SNR regime. In Section B, we analyze the asymptotic behavior of the effective

capacity for MIMO systems as the number of transmit and/or receive antennas grows

large. An upper bound and a lower bound for the effective capacity are obtained.

Both suggest that the effective capacity of a MIMO system scales linearly with the

minimum number of transmit or receive antennas. For systems with a large but

finite number of antennas, we obtain approximations for the effective capacities of

the corresponding multi-antenna configurations. Performance is again analyzed in

the low SNR regime. Section C contains conclusions and final remarks.
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A. Effective Capacity of Vector Gaussian Channels

In this section, we study the effective capacities of single-antenna and multi-antenna

systems under Rayleigh block fading. Note that the general expression and the prop-

erties of the effective capacity of block fading channels are explained in Chapter II.

The single-user multi-antenna wireless system of interest is illustrated in Fig. 20.

Suppose that the wireless user has a mean power constraint P and a total spectral

a (t)

...
Q (t)

h1,1

hnT ,nR

Fig. 20. A wireless queueing system model.

bandwidth allocation W . A large buffer is available to the wireless user, where the

outgoing packets are stored before being transmitted to their destination. Through-

out, we assume that CSI is known both at the transmitter and at the receiver. We

also assume that the transmitter sends uncorrelated circularly symmetric zero-mean

complex Gaussian signals of equal power across all the transmit antennas [27].

In this model, the multi-antenna system has nT transmit antennas and nR receive

antennas, and the channel is Rayleigh block fading. Let x denote the nT × 1 vector

of transmitted symbols, and y be the nR × 1 vector of received signals related by

y = Hx + n,
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where H is an nR × nT complex matrix, and n ∼ CN (0, N0InR
) is an nR × 1 vector

of additive white Gaussian noise. The matrix H is called the channel matrix for

this multi-antenna system. The element hi,j of this matrix denotes the channel gain

from transmit antenna j to receive antenna i. We assume that the {hi,j}’s are i.i.d.

zero-mean complex Gaussian random variables with unit variance.

1. Single-Antenna System

In the situation where the service process is governed by a single-input single-output

(SISO) channel, the channel matrix H reduces to a scalar h for each block. Under

the assumption that CSI is known at the transmitter, the channel capacity r during

each block can be expressed as [1]

r = WT log

(

1 +
|h|2P
N0W

)

nats per second, (5.1)

where N0/2 denotes the power spectral density of the noise process. This maximum

achievable rate during each block can be realized through Gaussian signaling with

mean power P . We note that the assumption about CSI at the transmitter can be

relaxed if the receiver has the ability to acknowledge reception of the data to ensure

that the erroneous data is retransmitted. In this case, the maximum achievable rate r

in (5.1) can still be achieved using hybrid ARQ [68] or rateless codes [69, 70, 71]. The

variable r can be used to represent the instantaneous service rate of the corresponding

wireless system. The moment generating function of the service process E
[

e−θr
]

can

be obtained as follows,

E
[

e−θr
]

=

∫ ∞

0

e
−θWT log

„

1+ |h|2P

N0W

«

2|h|e−|h|2d|h| =

∫ ∞

0

(

1 +
|h|2P
N0W

)−θWT

e−|h|2d|h|2

= e
N0W

P

(

P

N0W

)−θWT

Γ

(

1 − θWT,
N0W

P

)

,
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where Γ (z, x) is the upper incomplete gamma function given by

Γ (z, x) =

∫ ∞

x

tz−1e−tdt.

According to (2.3), the Gärtner-Ellis limit of the service process and the effective

capacity for the SISO system can be obtained as

Λ (−θ) =
1

T

(

log

(

Γ

(

1 − θWT,
N0W

P

))

+
N0W

P

)

− θW log

(

P

N0W

)

α (θ) = W log

(

P

N0W

)

− 1

θT

(

log

(

Γ

(

1 − θWT,
N0W

P

))

+
N0W

P

)

.

(5.2)

Even though the expression for the effective capacity in (5.2) can be evaluated nu-

merically, not much intuition can be drawn from looking at these equations alone. In

the low SNR regime, the nature of the effective capacity for the SISO system can be

seen more clearly. At low SNRs, the approximation

log

(

1 +
|h|2P
N0W

)

≈ |h|2P
N0W

(5.3)

holds and E
[

e−θr
]

can be approximated by

E
[

e−θr
]

≈
∫ ∞

0

e
− θT |h|2P

N0 e−|h|2d|h|2 =

(

1 +
θTP

N0

)−1

.

Accordingly, in the power-limited regime, the effective capacity of the corresponding

SISO system can be expressed as

α (θ) =
1

θT
log

(

1 +
θTP

N0

)

. (5.4)

For example, when P = 10 mW, W = 1 MHz, T = 5 ms, and N0 = 10−6 W/Hz,

the effective capacity and the low SNR approximation of the SISO system appear in

Fig. 21. As shown in Chapter II, the effective capacity is a monotonically decreasing

function of θ. When the mean received power P is small, the system is operating in the
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Fig. 21. Effective capacity and the low SNR approximation for SISO systems.

power-limited regime and the first-order approximation is very accurate. To further

our understanding of the SISO system, we analyze (5.4) in both the small service

exponent regime (large delay asymptotic) and the large service exponent regime (small

delay asymptotic). It is easy to show that the effective capacity evaluated at θ ↓ 0

converges to the ergodic capacity of the wireless system in the low SNR regime,

lim
θ↓0

α (θ) = lim
θ↓0

1

θT
log

(

1 +
θTP

N0

)

= lim
θ↓0

TP

T (N0 + θTP )

=
P

N0
= E

[ |h|2P
N0

]

≈ E

[

W log

(

1 +
|h|2P
N0W

)]

.

This result coincides with the information theoretic statement that a wireless system

can support a positive rate when the service has no delay requirement [72]. In the

large service exponent regime, the effective capacity of the SISO system is given by

lim
θ↑∞

α (θ) = lim
θ↑∞

1

θT
log

(

1 +
θTP

N0

)

= lim
θ↑∞

TP

T (N0 + θTP )
= 0.
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Thus, when the communication system cannot tolerate any delay, the effective capac-

ity of the SISO system converges to zero. That is, for any arrival rate ǫ > 0, there

exits a non-negligible probability that ǫ exceeds the instantaneous system through-

put r in (5.1). The zero-outage capacity of this SISO channel is zero. These findings

are not surprising in the light of Lemma 3. The effective capacity is upper bounded

by the ergodic capacity of the wireless system and lower bounded by the minimum

instantaneous system throughput which is zero for Rayleigh single-antenna system.

Define the first-order derivative of the effective capacity as the decay function of

the wireless system,

α′ (θ) =
θT 2P − (N0T + θT 2P ) log

(

1 + θTP
N0

)

θ2T 2 (N0 + θTP )
.

The magnitude of this function indicates the decay speed of the effective capacity as

the service exponent θ increases. As illustrated in Fig. 21, the decay speed of the

effective capacity increases as θ approaches zero. Let

ρ , − lim
θ↓0

α′ (θ) ,

denote the initial decay-rate of the effective capacity for the corresponding wireless

system. The initial decay-rate for the SISO system is equal to

ρSISO =
TP 2

2N2
0

. (5.5)

The usefulness of this quantity will become obvious when we start comparing various

systems.
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2. Multi-Antenna Systems

In this section, we consider the more general situation where the service process of a

wireless system is governed by a multi-antenna channel. The effective capacity for the

MIMO channel is obtained based on the moment generating function of its mutual

information. The performance gains of the vector Gaussian systems over the single-

antenna configuration are evaluated in the low SNR regime. Our results suggest that,

at low SNR, a multiple receive antenna configuration provides a power gain of nR

and a multiple transmit antenna configuration provides a statistical gain of nT over

a single-antenna system.

For a fixed channel matrix H, the mutual information between x and y during

a block is given by [27]

I (H,Kx) = WT log det

(

InT
+

1

N0W
KxH

∗H

)

= WT log det

(

InR
+

1

N0W
HKxH

∗
)

,

where H∗ denotes the conjugate transpose of the channel matrix H, and Kx is the

correlation matrix of the transmitted symbols Kx = E [xx∗]. Since the transmitter

sends uncorrelated circularly symmetric zero mean complex Gaussian signals of equal

power across all the transmit antennas, we have Kx = (P/nT ) InT
. Accordingly,

the mutual information between x and y, which is also the channel capacity of the

corresponding MIMO system during each block, is equal to

I (H, (P/nT ) InT
) = WT log det

(

InT
+

H∗HP

N0WnT

)

= WT log det

(

InR
+

HH∗P

N0WnT

)

.

As in the single-antenna case, we use r = I (H, (P/nT ) InT
) to represent the realized

service rate of the wireless system during each block.
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Let

W =











H∗H nT ≤ nR

HH∗ nT > nR,

n = max {nT , nR}, andm = min {nT , nR}. Then W is anm×m random non-negative

definite matrix called the Wishart matrix [73]. Using a weak version of the matrix

determinant lemma, det (InT
+ AC) = det (InR

+ CA) where A and C are nT × nR

and nR × nT matrices respectively, it is easy to show that

r = WT log det

(

Im +
WP

N0WnT

)

= WT
m
∑

i=1

log

(

1 +
λiP

N0WnT

)

, (5.6)

where λi is the ith unordered eigenvalue of W. The unordered eigenvalues of the

Wishart matrix W have the joint probability density function [73]

pλ (λ1, . . . , λm) = (m!Km,n)−1 e−
P

i λi

∏

i

λn−m
i

∏

i<j

(λi − λj)
2 ,

where Km,n is a normalizing factor. Based on the joint density function of the eigen-

values, the moment generating function E
[

e−θr
]

of the MIMO service process can be

directly computed as shown in [74, Theorem 1]. Let d = n−m, then

E
[

e−θr
]

= B−1 det [G (θ)]

where B =
∏k

i=1 Γ (d+ i), and G (θ) is an m×m Hankel matrix whose (i, j)th entry

is defined by

gi,j =

∫ ∞

0

(

1 +
Pλ

N0WnT

)−θWT

λi+j+de−λdλ, i, j = 0, . . . , m− 1.

The effective capacity for the MIMO system can therefore be expressed as

α (θ) = − 1

θT
log
(

B−1 det [G (θ)]
)

. (5.7)

The effective capacity expressed in (5.7) is somewhat intricate. Not much insight can
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be gained from it alone. When considering the low SNR regime where the analog

of (5.3) applies, the performance gains associated with the vector Gaussian systems

can be seen more clearly.

Consider the situation where the wireless system has one transmit antenna and

nR receive antennas. The channel matrix of the corresponding single-input multiple-

output (SIMO) system H = [h1, . . . , hnR
]T becomes an nR ×1 vector of i.i.d. complex

Gaussian random variables. During each block, the realized system throughput of

the corresponding SIMO channel can be expressed as

r = WT log

(

1 +

∑nR

k=1 |hk|2P
N0W

)

nats per second.

The moment generating function of the service process, E
[

e−θr
]

, can be written as

E
[

e−θr
]

=

∫

H

e
−θWT log

„

1+

PnR
k=1

|hk |2P

N0W

«

fH (H) dH.

Using the low SNR approximation of (5.3), and the fact that the components of the

channel vector H are independent, E
[

e−θr
]

can be expressed as

E
[

e−θr
]

=

[
∫ ∞

0

e
− θT |h|2P

N0 e−|h|2d|h|2
]nR

=

(

1 +
θTP

N0

)−nR

.

Accordingly, the effective capacity of the SIMO system in the low SNR regime is

found to be

α (θ) =
nR

θT
log

(

1 +
θTP

N0

)

. (5.8)

Comparing (5.8) with (5.4), we find that the use of multiple receive antenna results in

a power gain of nR. As in the single-antenna case, the behavior of the effective capacity

for a SIMO system can be seen more clearly in the asymptotic service exponent
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regimes. Evaluating the effective capacity as θ ↓ 0 in the low SNR regime gives us

lim
θ↓0

α (θ) = lim
θ↓0

nRTP

T (N0 + θTP )
=
nRP

N0
≈

nR
∑

i=1

E

[

W log

(

1 +
|hi|2P
N0W

)]

,

which is the ergodic capacity of the SIMO channel in the low SNR regime [30]. As in

the single-antenna case, in the large service exponent regime, the effective capacity

of the SIMO channel goes to zero. This coincides with the fact that the minimum

instantaneous service rate of a SIMO Rayleigh channel is zero. Furthermore, the

decay function for the effective capacity of the SIMO system can be expressed as

α′ (θ) =
nRθTP − (nRN0 + nRθTP ) log

(

1 + θTP
N0

)

θ2T (N0 + θTP )
. (5.9)

Since the effective capacity of the SIMO system is nR times that of the SISO system,

it is not surprising to find out that the initial decay-rate of the SIMO system is also

nR times that of the SISO system,

ρSIMO =
nRTP

2

2N2
0

. (5.10)

Again, the multiple receive antenna configuration provides a power gain of nR.

For a SIMO system with the same parameters as in Fig. 21, the exact and

approximated effective capacities of the SISO system and SIMO systems are shown

in Fig. 22. Just as in the single-antenna case, the approximation of the effective

capacity for the SIMO system in the low SNR regime is quite accurate. Furthermore,

the effective capacity of the SIMO system scales linearly with the number of receive

antennas for all service exponent θ0. This result can be viewed as an extension of the

statement that the ergodic capacity of the SIMO system scales linearly with nR in

the low SNR regime [30].

In the situation where the service process is governed by a multiple-input single-
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Fig. 22. Effective capacity for SIMO systems.

output (MISO) channel (nT transmit antennas and one receive antenna), the channel

matrix H = [h1, . . . , hnT
] becomes a 1× nT vector of i.i.d. complex Gaussian random

variables. The realized system throughput of the MISO channel during each block

can be expressed as

r = WT log

(

1 +

∑nT

k=1 |hk|2P
N0WnT

)

nats per second.

The moment generating function of the service process can be expressed as

E
[

e−θr
]

=

∫

H

e
−θWT log

„

1+

PnT
k=1

|hk |2P

N0WnT

«

fH (H) dH.

Using the low SNR approximation of (5.3) and the independence assumption between
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the components of H, E
[

e−θr
]

can be further simplified to

E
[

e−θr
]

=

[
∫ ∞

0

e
− θT |h|2P

N0nT e−|h|2d|h|2
]nT

=

(

1 +
θTP

N0nT

)−nT

.

The effective capacity of the service process for the MISO system can then be ex-

pressed as

α (θ) =
nT

θT
log

(

1 +
θTP

N0nT

)

. (5.11)

The gain of using multiple transmit antennas over the single-antenna case is not en-

tirely obvious by comparing (5.11) and (5.4). As before, we compare the performance

of the effective capacity in the two asymptotic delay regimes. We know that in the

low SNR regime, a multiple transmit antenna configuration is not beneficial without

dynamic power allocation among the transmit antennas [30]. This statement follows

from the fact that, without power allocation, having multiple transmit antennas does

not increase the ergodic capacity at low SNRs. This can also be shown by evaluating

the effective capacity as θ ↓ 0,

lim
θ↓0

α (θ) = lim
θ↓0

nTTP

T (N0nT + θTP )
=

P

N0
≈ E

[

W log

(

1 +

∑nT

i=1 |hi|2P
N0WnT

)]

.

However, by analyzing the effective capacity of the MISO system, it can be shown

that there is a statistical gain of nT associated with a multiple transmit antenna

configuration. This statistical gain can be seen more clearly from the decay function

of the effective capacity. The decay function of the MISO system is given by

α′ (θ) =
nT θTP − (N0n

2
T + nT θTP ) log

(

1 + θTP
N0nT

)

θ2T (N0nT + θTP )
, (5.12)

and the initial decay-rate of the corresponding effective capacity becomes

ρMISO =
TP 2

2nTN2
0

. (5.13)
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Comparing (5.13) and (5.5), we find that the decay-rate of the effective capacity for

the MISO system is 1/nT that of the single-antenna system. This implies that having

multiple transmit antennas reduces the decay of the effective capacity as a function

of θ. This is especially beneficial to delay sensitive traffic. Since both the SIMO

system and the SISO system have the same ergodic capacity in the low SNR regime,

we define the statistical gain of the MISO system over the single-antenna system by

g =
ρSISO

ρMISO
= nT . (5.14)

The multiple transmit antenna configuration results in a statistical gain of nT , but

no gain in terms of ergodic capacity. It is also interesting to note that as nT ↑ ∞,

ρMISO ↓ 0 which means that as the number of transmit antenna becomes large the

effective capacity does not decay at all when the service exponent θ is small. The

results are easier to understand through a simple example. For the same parameters

as in the SIMO case, the exact and approximated effective capacities for the SISO and

MISO systems are shown in Fig. 23. The ergodic capacities of the 2×1 system and the

3× 1 system are the same as that of the single-antenna system. This result coincides

with the information theoretic prediction that multiple transmit antennas cannot

improve the ergodic capacity of a wireless system in the low SNR regime. However,

when considering the effective capacities of the corresponding systems, using multiple

transmit antennas induces a statistical gain that prevents the effective capacity from

decaying rapidly as a function of service constraint θ. Furthermore, as the service

requirement θ increases, the gains in terms of the effective capacity for the MISO

systems over the SISO system become larger. In fact, in the large antenna array

regime, we will show that as the number of transmit antennas grows unbounded,

the effective capacity of the corresponding MISO system becomes a constant over all

values of θ.
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Fig. 23. Effective capacity for MISO systems.

For the general case of MIMO systems, the effective capacity in the low SNR

regime can be illustrated in Fig. 24. That is, the multiple transmit antennas will

provide a statistical gain of nT which prevent the effective capacity from decaying too

fast and the multiple receive antennas will bring a power gain of nR that scales the

whole curve up.

The results obtained in this section suggest that a multi-antenna configuration is

especially beneficial for delay-sensitive applications over sensor networks using a two-

tier architecture [75]. The timely processing and dissemination of information over

wireless sensor networks is a key aspect of their future success. This is important for

delay-sensitive applications such as detection and estimation. A two-tier architecture

for wireless sensor networks contains sensor nodes which are simple devices equipped

with one antenna, and cluster heads which are more powerful units endowed with
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multiple antennas each. The cluster heads collect information from the sensor nodes,

process data locally, and then relay pertinent information across the network. The

fact that transmit antenna can bring a statistical gain of nT and the receive antenna

can bring a power gain of nR provides support for the two-tier architecture and for

cluster heads having multiple antennas. This is a direct application of the effective

capacity analysis of multi-antenna systems.

B. Asymptotic Analysis of MIMO Systems

In this section, we analyze the behavior of the effective capacity for MIMO systems in

the large antenna-array regime. Various asymptotic analysis of multi-antenna systems

are possible: (1) large nR and fixed nT , (2) large nT and fixed nR, and (3) increasingly

large nT and nR, while keeping β = nR/nT constant. As described in Section A, the
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realized system throughput of a MIMO channel during each block can be expressed

as

r = WT log det

(

Im +
WP

N0WnT

)

,

where W is the Wishart matrix defined in Section 2. Moreover, the moment gener-

ating function of the service process E
[

e−θr
]

can be expressed as

E
[

e−θr
]

= E

[

e
−θWT log det

“

Im+ WP
N0WnT

”

]

= E

[

e
−θWT

Pm
i=1

log
“

1+
λiP

N0WnT

”

]

, (5.15)

where the joint density of the ordered eigenvalues is known to be

pλ,ordered (λ1, . . . , λm) = K−1
m,ne

−P

i λi

∏

i

λn−m
i

∏

i<j

(λi − λj)
2 , λ1 ≥ . . . ≥ λm ≥ 0.

The moment generating function of E
[

e−θr
]

can be computed numerically from the

joint density function of the eigenvalues. To gain better insight, we proceed to derive

upper and lower bounds that can be used to characterize the behavior of the effective

capacity in the large antenna array regime. Since the eigenvalues of the Wishart

matrix can be ordered as λ1 ≥ . . . ≥ λm ≥ 0, it is clear that E
[

e−θr
]

is upper-

bounded by

E
[

e−θr
]

≤ E

[

e
−mθWT log

“

1+ λmP
N0WnT

”

]

,

where λm is the minimal eigenvalue of the Wishart matrix W. The effective capacity

α (θ) of the MIMO channel can therefore be lower-bounded by

− 1

θT
log

(

E

[

(

1 +
λmP

N0WnT

)−mθWT
])

≤ α (θ) . (5.16)
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According to Lemma 3, the effective capacity α(θ) of a MIMO system is upper-

bounded by its ergodic capacity. Using Jensen’s inequality, we obtain

α (θ) = − 1

θT
logE

[

e−θr
]

= − 1

θT
logE

[

e
−θWT log det

“

Im+ WP
N0WnT

”

]

≤WE

[

log det

(

Im +
WP

N0WnT

)]

= WE

[

m
∑

i=1

log

(

1 +
λiP

N0WnT

)

]

=

m
∑

i=1

WE

[

log

(

1 +
λiP

N0WnT

)]

= mWE

[

log

(

1 +
λP

N0WnT

)]

,

where λ is an unordered eigenvalue of the matrix W with probability density function

pλ (λ) =

∫

· · ·
∫

pλ (λ1, . . . , λm) dλ2 · · · dλm.

Taking (5.16) into consideration, α (θ) is bounded by

− 1

θT
log

(

E

[

(

1 +
λmP

N0WnT

)−mθWT
])

≤ α (θ) ≤ mWE

[

log

(

1 +
λP

N0WnT

)]

.

1. Large nR and Fixed nT

In the case where nR is asymptotically large and nT is fixed, we have n = nR and

m = nT . By a random matrix result due to Marčenko and Pastur [76], the empir-

ical distribution of the eigenvalues of the normalized m × m Wishart matrix W/n

converges in distribution to a point mass at λ = 1 as n→ ∞. Note that

W

nT
=

W

nR
× nR

nT
=

W

n
× n

m
.

The effective capacity of the MIMO system can then be obtained from (5.15),

α (θ)
.
= nTW log

(

1 +
nRP

N0WnT

)

as nR → ∞ (5.17)

where the above notation means that the ratio between the two sides of the equation

tends to one as nR increases. For a fixed number of transmit antennas, when the
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number of receive antenna goes to infinity, the effective capacity does not decay as θ

increases. Furthermore, the effective capacity α(θ) converges to the ergodic capacity

of this MIMO system for all θ. This phenomenon is termed channel-hardening. It

plays an important role for delay-sensitive communication. Consider the situation

where n = nR is large but finite. It can be shown that the distribution of the realized

throughput during each block is well approximated by [77, Theorem 1]

r ∼ N
(

nTWT log

(

1 +
nRP

N0WnT

)

,
nTW

2T 2

nR

)

.

The Gaussianity of the realized throughput for the MIMO system can be justified us-

ing Lyapunov’s central limit theorem. The realized throughput in (5.6) is expressed

as a sum of random variables that are correlated. When the number of transmit an-

tennas and/or receive antennas becomes large, the throughput converges to a normal

distribution. Accordingly, the effective capacity can be approximated by

α(θ) ≈ nTW log

(

1 +
nRP

N0WnT

)

− nT θW
2T

2nR
. (5.18)

In particular, when the number of receive antennas nR is finite, the effective capacity

decays with the service constraint θ and is strictly less than the ergodic capacity of

the same MIMO system. We note that for positive random variables, convergence in

distribution implies convergence in effective capacity. This fact provides reasonable

ground for (5.17) and for the approximations of (5.18), (5.19), and (5.23). This

convergence property is discussed in greater detail in Appendix C.

2. Large nT and Fixed nR

In this second scenario, nT grows asymptotically large and nR is fixed. We then have

n = nT and m = nR. To obtain convergence results, we use arguments similar to

our previous ones. The m eigenvalues of matrix W/nT converge to a point mass at
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λ = 1. The effective capacity of the MIMO system can then be obtained as

lim
nT→∞

α (θ) = nRW log

(

1 +
P

N0W

)

.

As nT increases, the effective capacity converges to the ergodic capacity of the MIMO

channel for all values of θ. When nT is large but finite, the distribution of the realized

throughput during each block is well approximated by [77, Theorem 2]

r ∼ N
(

nRWT log

(

1 +
P

N0W

)

,
nRW

2T 2P 2

nT (N0W + P )2

)

.

The effective capacity can then be approximated by

α(θ) ≈ nRW log

(

1 +
P

N0W

)

− nRθW
2TP 2

2nT (N0W + P )2
. (5.19)

We can evaluate the effective capacity for this MIMO systems in the low SNR regime.

Its decay-rate can be computed from the approximated effective capacity of (5.19) as

ρ =
nRTP

2

2nTN2
0

.

As pointed out in [30], the ergodic capacity of the MIMO system in this setting

does not change with the number of transmit antennas. In other words, the effective

capacities of the corresponding MIMO systems converge to a unique value as θ ↓ 0,

independently of the number of transmit antennas. However, a statistical gain of nT

is achieved by the multiple transmit antenna systems over the single-antenna system.

As the number of transmit antennas becomes large, the statistical gain of the multiple

transmit antenna system increases and the effective capacity converges to the ergodic

capacity for all θ > 0.
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3. Asymptotically Large nT and nR

We now address the third case where the number of transmit antennas nT and the

number of receive antennas nR increase with their ratio β = nR/nT kept constant.

In this situation, the eigenvalues of the normalized Wishart matrix W/nT do not

necessarily converge to deterministic quantities. However, these eigenvalues converge

weakly to a known distribution.

Suppose that nT < nR, then n = nR, m = nT , and β = nR/nT > 1. The un-

ordered eigenvalues of the normalized Wishart matrix W/nT converge in distribution

to [78],

pλ (λ) →











1
π

√

β
λ
− 1

4

(

1 + β−1
λ

)2 (√
β − 1

)2 ≤ λ ≤
(√

β + 1
)2

0 otherwise.

The ergodic capacity which is an upper-bound for the effective capacity of the MIMO

system can be computed as

mWE

[

log

(

1 +
λP

N0WnT

)]

=
mW

π

∫ (
√

β+1)
2

(
√

β−1)
2

log

(

1 +
λP

N0W

)

√

β

λ
− 1

4

(

1 +
β − 1

λ

)2

dλ.

Let

F

(

β,
P

N0W

)

=
1

π

∫ (
√

β+1)
2

(
√

β−1)
2

log

(

1 +
λP

N0W

)

√

β

λ
− 1

4

(

1 +
β − 1

λ

)2

dλ.

Using this notation, we can write this asymptotic upper bound for the effective ca-

pacity α (θ) as

mWF

(

β,
P

N0W

)

.

On the other hand, the minimal eigenvalue of the normalized Wishart matrix W/nT
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converges almost surely to
(√

β − 1
)2

[79]. That is,

lim
m→∞

λm

(

W

nT

)

=
(

√

β − 1
)2

almost surely.

Hence an asymptotic lower-bound for the effective capacity of the MIMO system is

− 1

θT
log

(

E

[

(

1 +
λmP

N0WnT

)−mθWT
])

= mW log

(

1 +

(√
β − 1

)2
P

N0W

)

.

Combining these two results, we get an asymptotic interval for the effective capacity

α (θ),

mW log

(

1 +

(√
β − 1

)2
P

N0W

)

≤ α (θ) ≤ mWF

(

β,
P

N0W

)

. (5.20)

It is interesting to note that unlike the SISO case, the effective capacity of the MIMO

channel in the large antenna regime is bounded away from zero. It scales linearly

with m, which is the minimum number of transmit and receive antennas.

When nT = nR, the unordered eigenvalues of W/nT converge in distribution to

pλ (λ) →











1
π

√

1
λ
− 1

4
0 ≤ λ ≤ 4

0 otherwise.

An asymptotic upper-bound for the effective capacity of this MIMO system can be

computed as

mWE

[

log

(

1 +
λP

N0WnT

)]

=
mW

π

∫ 4

0

log

(

1 +
λP

N0W

)

√

1

λ
− 1

4
dλ

= mWF

(

1,
P

N0W

)

.

On the other hand, the realized throughput r of the corresponding MIMO system

during each block can be lower-bounded by [28]

m
∑

k=1

WT log

(

1 +
P

N0Wm
χ2

2k

)

< r,
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where {χ2
2k : k = 1, . . . , m} are independent chi-square random variables with the

given degrees of freedom as subscripts. The lower-bound above should be interpreted

in a probabilistic sense. Two random variables A and B satisfy the inequality A < B

if Pr {B < τ} < Pr {A < τ} for any τ . As m becomes large, it is shown in [28] that

the scaled lower-bound converges to a constant

1

m

m
∑

k=1

WT log

(

1 +
P

N0Wm
χ2

2k

)

→
∫ 1

0

log

(

1 +
xP

N0W

)

dx as m→ ∞.

Consequently,

1

m

m
∑

k=1

WT log

(

1 +
P

N0Wm
χ2

2k

)

→
(

1 +
N0W

P

)

log

(

1 +
P

N0W

)

−1 asm→ ∞.

Using Lemma 3, we conclude that the effective capacity of the MIMO system can be

lower-bounded by

α (θ) ≥ m

((

1 +
N0W

P

)

log

(

1 +
P

N0W

)

− 1 − ǫ

)

,

where ǫ > 0. Since ǫ is arbitrary, α (θ) must lie in the interval

m

((

1 +
N0W

P

)

log

(

1 +
P

N0W

)

− 1

)

≤ α (θ) ≤ mWF

(

1,
P

N0W

)

(5.21)

for all large enough systems. Hence, the effective capacity is bounded away from zero

for all values of θ and scales linearly with m.

Finally, suppose that nT > nR, then n = nT , m = nR and β = nR/nT <

1. The unordered eigenvalues of the normalized Wishart matrix W/nR converge in

distribution to [78]

pλ (λ) →











1
π

√

1
λβ

− 1
4

(

1 + 1−β
λβ

)2 (1−
√

β)
2

β
≤ λ ≤ (1+

√
β)

2

β

0 otherwise.

Accordingly, the upper-bound for the effective capacity of the MIMO system can be
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computed as

mWE

[

log

(

1 +
λβP

N0W

)]

=
mW

π

∫
(1+

√
β)2

β

(1−
√

β)2

β

log

(

1 +
λβP

N0W

)

√

1

λβ
− 1

4

(

1 +
1 − β

λβ

)2

dλ

= mWF

(

1

β
,
βP

N0W

)

.

The minimal eigenvalue of the normalized Wishart matrix W/nR can be shown to

equal [79]

lim
m→∞

λm

(

W

nR

)

=

(

1 −√
β
)2

β
almost surely.

Thus, a lower bound for the effective capacity of the MIMO system is

− 1

θT
log

(

E

[

(

1 +
λmβP

N0W

)−mθWT
])

= mW log

(

1 +

(

1 −√
β
)2
P

N0W

)

.

The effective capacity of this system can then be asymptotically bounded by

mW log

(

1 +

(√
β − 1

)2
P

N0W

)

≤ α (θ) ≤ mWF

(

1

β
,
βP

N0W

)

. (5.22)

Both the upper and lower bounds produce a linear growth in the effective capacity

at any SNR.

The performance gains of the MIMO system studied in the current section can be

seen most clearly in the low SNR regime. When the number of transmit antennas nT

and the number of receive antennas nR are large but finite, the realized throughput

r of each block can be approximated by a Gaussian random variable [77, Theorem 3]

r ∼ N
(

nRTP

N0

,
nRT

2P 2

nTN
2
0

)

.

The effective capacity of the MIMO system becomes

α(θ) ≈ nRP

N0

− nRθTP
2

2nTN
2
0

. (5.23)

From the approximated effective capacity of (5.23), it is clear that in the low SNR
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regime an nT × nR MIMO system yields a power gain of nR over a nT × 1 MIMO

system and a statistical gain of nT over an 1 × nR MIMO system. In the situation

where nT and nR increase jointly with β = nR/nT kept constant, and considering the

low SNR regime, the effective capacity of the corresponding MIMO system can be

approximated by

α(θ) ≈ nR

(

P

N0
− θβTP 2

2nRN2
0

)

.

As nT becomes large, an nT × nR system will achieve a statistical gain of β = nT/nR

over an nR × nR MIMO system.

C. Discussion

In this chapter, we studied the interplay between the physical layer infrastructure

and the queueing behavior of a wireless communication system. More specifically, we

studied the impacts of a multi-antenna configuration on the perceived service quality

at the link layer. As described in Chapter II, the quality of service is defined in

terms of the LDP governing the probability of buffer overflow. It is closely related

to the probability of delay violation. Based on this framework, we characterized the

effective capacities of single-antenna systems as well as multi-antenna systems. There

is a substantial gain in using a multi-antenna configuration over a single-antenna. In

the low SNR regime, we have shown that having multiple transmit antennas can

provide a statistical gain of nT , while multiple receive antennas bring a power gain

of nR. The power gain of receive antennas is not surprising, however, the statistical

gain of the transmit antennas offers some new insights on the multi-antenna systems.

The statistical gain is a result of channel-hardening which cannot be visible from an

ergodic capacity analysis of the multi-antenna systems alone. This suggests that a

multi-antenna configuration is especially beneficial to delay-sensitive traffic.
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CHAPTER VI

SUMMARY AND FUTURE WORKS

This dissertation seeks to take a cross-disciplinary approach to analyze delay-sensitive

communication over wireless systems. The problem formulation in this dissertation

addresses issues that lie at the boundary between the physical layer and higher net-

work layers. It is often tempting to adopt a layered framework where each layer serves

as a “black box” abstraction to higher layers. A system can then be implemented by

designing each layer separately. However, in the context of wireless networks with

delay-sensitive traffic, such a layered architecture does not offer a complete picture.

For instance, using multiple transmit antennas in the low SNR regime yields a statis-

tical gain that cannot be observed by looking solely at the throughput of a wireless

connection. Accordingly, we proposed an integrated framework to analyze delay-

sensitive applications over wireless systems. More specifically, the large deviation

principle governing buffer occupancy serves as the foundation for our performance

evaluation methodology. The analysis presented in this dissertation offers a new per-

spective to improve our understanding of delay-sensitive applications over wireless

systems. The insights obtained from this work include the following guidelines.

• Delay constraints significantly influence how to allocate system resources:

as service requirements become more stringent, a communication system should

use a lower coderate to increase the probability of the channel being ON.

• Channel correlation is found to have a major impact on system performance

as it impairs system performance. The higher the correlation coefficient is, the

lower the effective capacity becomes.
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• When channel state information is not available at the transmitter, a system

may only be able to support a finite arrival rate, even with unlimited amount

of physical resources.

• User cooperation is beneficial for delay-sensitive applications. The gain in-

creases as the service constraint becomes more stringent.

• Multi-antenna systems can bring a statistical gain of nT and a power gain of

nR over single antenna systems.

The results obtained in the framework of this dissertation lead to new research

questions on the topic of delay-sensitive communication over wireless systems. Av-

enues of future research in the area include the following topics.

• Joint Analysis of Queueing Delay and Coding Delay: As mentioned

in Chapter II, the overall transmission delay is the sum of the two distinct

components. For a given finite-state channel and service requirement θ, we

can derive expressions for the optimum block length with random codes under

various traffic and channel profiles. Intuitively, if the block length is large,

the block error probability will be small while the queueing delay will be large

since we will have to wait until the whole block is received to decode the sent

information. Expressing the LDP of the queue as a function of code rate and

block error probability will help us characterize the closed form solution to an

optimal block length selection problem.

• Delay-Aware Resource Allocation: Much of the work on resource allocation

for wireless systems focuses on the situation where the channel gain of every

user is either constant or subject to slow fading. However, these assumptions

may not hold in practice. Part of the benefits of the proposed methodology is
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to have the ability to include a stochastic dynamic channel model as part of

the problem definition. This strategy will allow us to take full advantage of our

understanding of wireless channels rather than relying chiefly on their first-order

statistics. Queueing models can thereafter be used for the optimal allocation

of radio resources for correlated communication channels under various service

constraints. This work can be seen as the extension of the resource allocation

of the single-antenna system described in Chapter III. Extensions to multi-

antenna systems in the framework described in Chapter V are also possible.

• Delay and Distortion Trade-off: It is clear that there is a trade-off between

delay and distortion for end-to-end communication systems. However, in most

of the current literature, delay is captured as the average delay of the communi-

cation system obtaining through Little’s Law. Our work in [67] shows that the

delay-violation probability of a communication system can be upper-bounded

through the LDP governing buffer occupancy. Accordingly, we will be able to

obtain a more meaningful delay outage and distortion tradeoff curve based on

the new methodology proposed in Chapter II.
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APPENDIX A

DELAY VIOLATION PROBABILITY

Suppose that the joint process of the queue length and channel, (Q(t), h(t)), is

stationary and ergodic. Then this process converges in distribution to a probability

law µ. Let D(∞) be a random variable whose distribution coincides with the delay

experienced by packets at steady-state, and Dmax be the delay constraint imposed

on the traffic. Similarly, let Q(∞) be a random variable whose distribution is equal

to the queue-length distribution of the buffer at steady-state, and Qmax = aDmax be

the delay-violation threshold for the queue. Note that this relationship holds because

of the constant arrival rate in the buffer. The probability that the queue-length at

steady-state exceeds Qmax is

Pr {Q(∞) > Qmax} =

∫

R+×H
1{q>Qmax}dµ(q, h),

where 1{·} is the indicator function.

At time t, the delay D(t) experienced by a packet that is about to leave the

buffer is related to the queue length of the buffer Q(t) through Q(t) = aD(t). For a

specific realization of the system, the empirical probability that a packet transmitted

during time interval [0, T ] exceeds Dmax is given by

∫ T

0
1{Q(t)>Qmax}v (t) dt
∫ T

0
v (t) dt

,

where v (t) is the instantaneous departure rate of the system at time t. Note that

when the buffer is non-empty, v(t) is equal to r(h(t)), the instantaneous service rate
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of the wireless channel. Thus, the limiting delay-violation probability is equal to

lim
T→∞

1
T

∫ T

0
1{Q(t)>Qmax}r (h(t)) dt

1
T

∫ T

0
v (t) dt

= lim
T→∞

1
T

∫ T

0
1{Q(t)>Qmax}r (h(t)) dt

1
T

(aT +Q(0) −Q(T ))
.

The stability of the system implies that

lim
T→∞

1

T
(aT +Q(0) −Q(T )) = a.

Since the joint process (Q(t), h(t)) is stationary and ergodic, we can compute the

delay-violation probability using the limiting distribution µ,

Pr {D(∞) > Dmax} =
1

a

∫

R+×H
1{q>Qmax}r (h) dµ(q, h).

Accordingly, the delay-violation probability can be bounded as follows,

Pr {D(∞) > Dmax} =
1

a

∫

R+×H
1{q>Qmax}r (h) dµ(q, h)

≤ 1

a

√

∫

R+×H
12
{q>Qmax}dµ(q, h)

√

∫

R+×H
r2(h)dµ(q, h)

=
1

a

√

∫

R+×H
1{q>Qmax}dµ(q, h)

√

∫

R+×H
r2(h)dµ(q, h)

=
1

a

√

Pr {Q(∞) > Qmax}
√

∫

R+×H
r2(h)dµ(q, h),

where the first inequality comes from the Cauchy-Schwartz inequality, and the second

equality comes from the fact that 12
A = 1A. Let ν be the probability law for the

marginal distribution of the channel in steady-state, we have

∫

R+×H
r2(h)dµ(q, h) =

∫

H
r2(h)dν(h).
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Therefore,

Pr {D((∞) > Dmax} ≤ c
√

Pr {Q (∞) > Qmax},

where c = 1
a

√

∫

H r
2(h)dν(h) is a constant independent of the queue distribution.
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APPENDIX B

EFFECTIVE CAPACITY OF SERVICE PROCESS

In this section, we use the Kolmogorov backward equation to derive a formula

for the effective capacity of a Markov-modulated service process. We parallel an

argument by Kesidis et al. [44], albeit in the context of effective capacity.

Consider the stationary fluid process introduced in Section B. Recall that a

process is said to be Markov fluid if its time derivative is a function of a continuous-

time, finite-state Markov chain. Let S[0, t] be the amount of service offered to a

user during the interval [0, t], and suppose that S[0, t] is a Markov fluid process. Let

ut denote the state of the modulating Markov chain, taking value in {1, 2, . . . ,M}.

Using our previously established notation, ut has generator matrix Qs and invariant

distribution w. When the modulating chain ut is in state m, we denote the offered

service rate by sm. We assume that 0 ≤ sm ≤ sm+1 <∞ for all m ∈ {1, 2, . . . ,M−1}.

Given that the generator matrix Qs is irreducible and reversible, we can write the

effective capacity of this channel as

α(θ) = lim
t→∞

− 1

θt
log E

[

e−θS[0,t]
]

, 0 < θ <∞.

We proceed to evaluate α(θ) explicitly. Define the function

ψj(θ, t) = Ej

[

e−θS[0,t]
]

= E
[

e−θS[0,t]
∣

∣

∣
u0 = j

]

.

For positive ǫ≪ 1, the transition matrix Pt(ǫ) can be written as

Pt(ǫ) = eQsǫ = I + ǫQs + o(ǫ).
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Using this notation, the standard backward equation becomes

ψj(θ, t) = E
[

E
[

e−θS[0,t]
∣

∣

∣
uǫ

] ∣

∣

∣
u0 = j

]

=
M
∑

i=1

e−θǫsjψi(θ, t− ǫ)eǫQs (j, i) + o(ǫ)

=

M
∑

i=1

(1 − θǫsj)ψi(θ, t− ǫ) (I + ǫQs) (j, i) + o(ǫ).

Rearrange the above equation, we get

ψj(θ, t) − ψj(θ, t− ǫ)

ǫ

= ψj(θ, t− ǫ) (Qs(j, j) − θsj)

+
∑

i6=j

(1 − θǫsj)ψi(θ, t− ǫ)Qs(j, i) +
o(ǫ)

ǫ
.

(B.1)

As ǫ→ 0, (B.1) becomes

∂ψj(θ, t)

∂t
= ψj(θ, t) (Qs (j, j) − θsj) +

∑

i6=j

ψi(θ, t)Qs(j, i).

Defining the diagonal matrix S = diag (s1, . . . , sM) and the vector

Ψ(θ, t) = (ψ1(θ, t), . . . , ψM(θ, t)) ,

we can write the above equations in matrix form as

∂Ψ(θ, t)

∂t
= (Qs − θS)Ψ(θ, t). (B.2)

This differential equation is subject to the boundary conditions Ψ(θ, 0) = 1. It follows

that

Ψ(θ, t) = exp ((Qs − θS)t) 1.
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We can rewrite the effective capacity as

α(θ) = lim
t→∞

− 1

θt
log E

[

e−θS[0,t]
]

= lim
t→∞

− 1

θt
log (w exp ((Qs − θS)t) 1) .

Using the Perron-Frobenius theorem [12], we obtain

α(θ) = −1

θ
max

i
γi,

where {γi} are the eigenvalues of the matrix Qs − θS.

Consider the Gilbert-Elliott channel model introduced in Section A. For this

channel, the generator matrix Qs is given by

Qs =







−λ λ

µ −µ






.

The characteristic equation of the matrix (Qs − θS) is equal to

det [γI − (Qs − θS)] = det







γ + λ −λ

−µ γ + µ+ θR







= γ2 + (θR + λ+ µ) γ + θRλ.

The maximum eigenvalue of the matrix (Qs − θS) is immediately found to be

max
i
γi =

−(θR + λ+ µ) +
√

(θR + λ+ µ)2 − 4θRλ

2
.

Thus, the effective capacity of the Gilbert-Elliott channel model is

α(θ) = lim
t→∞

− 1

θt
log






w exp













−λ λ

µ −µ− θR






t






1







=
(θR + λ + µ) −

√

(θR + λ+ µ)2 − 4θRλ

2θ
.

(B.3)
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Using the relations λ = κe−η2

and µ = κ− κe−η2

, the effective capacity function can

be expressed as

α (θ) =
θR + κ−

√

(θR + κ)2 − 4θRκe−η2

2θ
,

which coincides with (3.14).
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APPENDIX C

CONVERGENCE IN EFFECTIVE CAPACITY

In this section, we show that under suitable conditions convergence in distribution

implies convergence in effective capacity. Let r1, r2, . . . be a sequence of positive

random variables, each with cumulative distribution function Fri
. Assume that this

sequence converges in distribution to a positive random variable r with cumulative

distribution function Fr. We claim that, for θ > 0, the equation limi→∞ αri
(θ) = αr(θ)

holds.

First, consider the moment generating function of random variable ri with θ > 0,

E
[

e−θri
]

=

∫ ∞

0

e−θxdFri
(x)

=

∫ ∞

0

∫ ∞

x

θe−θydydFri
(x)

=

∫ ∞

0

∫ y

0

dFri
(x)θe−θydy

=

∫ ∞

0

Fri
(y)θe−θydy.

Interchanging the order of integration above can be justified using Fubini’s Theo-

rem [80]. Furthermore, we note that |Fri
(y)θe−θy| ≤ θe−θy for all values of i and y,

with
∫ ∞

0

θe−θydy = 1 <∞.
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Then, by Lebesgue’s Dominated Convergence Theorem [80], we have

lim
i→∞

E
[

e−θri
]

= lim
i→∞

∫ ∞

0

Fri
(y)θe−θydy

=

∫ ∞

0

lim
i→∞

(

Fri
(y)θe−θy

)

dy

=

∫ ∞

0

Fr(y)θe
−θydy

= E
[

e−θr
]

.

Using the effective capacity of (2.3) and noting that log is a continuous function on

(0,∞), we get

lim
i→∞

αri
(θ) = − lim

i→∞

1

θT
logE

[

e−θri
]

= − 1

θT
log
(

lim
i→∞

E
[

e−θri
]

)

= − 1

θT
logE

[

e−θr
]

= αr(θ).

Thus, convergence in distribution implies convergence in effective capacity for all

θ > 0. This result provides ground for the approximate expressions of Sections 1

and 2.
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