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Resumen and Abstract IX 

 

Resumen 

Debido a la creciente demanda energética a nivel global y el decrecimiento en las fuentes 

convencionales de petróleo, la industria energética ha optado por explotar otras fuentes de crudo no 

convencionales tales como los crudos pesados y extra pesados y contribuir de esta manera al 

suplemento de la demanda energética. Sin embargo, los crudos pesados pueden acarrear diferentes 

tipos de problemas en todo el sistema de producción, generando costos y operaciones adicionales en 

procesos de recobro o mejoramiento de la calidad del crudo, además del empleo de grandes 

cantidades de agua que directamente generan un impacto ambiental negativo. Adicionalmente, la 

vida productora de un yacimiento puede verse afectada por componentes de alto peso molecular 

como los asfaltenos. Los asfaltenos pueden generar problemas operacionales en la producción y 

procesamiento del crudo tanto a nivel de yacimiento, pozo o superficie. La nanotecnología se 

presenta como una solución viable para mejorar la calidad de crudos pesados y extra pesados, 

mitigar/inhibir problemas relacionados con los asfaltenos y aumentar el recobro de petróleo 

mediante su aplicación a nivel de yacimiento. En este orden de ideas, esta tesis tiene como objetivo 

principal la síntesis y aplicación de nanopartículas soportadas con óxidos metálicos o multimetálicos 

de NiO y/o PdO que tengan una alta selectividad actividad catalítica hacia la adsorción y posterior 

descomposición de asfaltenos. Mediante este estudio se pretende generar un mejor panorama acerca 

de la influencia del proceso de adsorción de asfaltenos en la actividad catalítica de nanopartículas 

funcionalizadas y dar un mejor entendimiento acerca del uso de la nanotecnología para 

mejoramiento in-situ de crudos pesados y extra-pesados y la inhibición del daño de formación por 

asfaltenos.  

 

Palabras clave: Nanopartículas, Daño de Formación, Crudos Pesados, Asfaltenos, Adsorción, 

Catálisis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X Nanoparticles for in-situ upgrading and inhibition of formation damage 

 

 

Abstract 

With the increasing world energy demand and the subsequent decrease in the world's easy-access 

oil supplies, conventional oil, the energy industry is increasingly turning to unconventional resources 

to recover oil, such as heavy and extra heavy oil and meet the world energy demand. However, in 

the current context, upgrading and recovery of heavy oil are highly energy and water intensive that 

requires a substantial capital and operating cost and consequently results in environmental 

footprints. In addition, asphaltenes are one of the most difficult problems to overcome in oil 

production and processing. The presence of asphaltenes in crude oil, and consequently, the 

adsorption and deposition of asphaltenes on the rock surfaces, affects the rock properties, such as 

porosity, permeability, and wettability. An alternative to the current upgrading, mitigate/inhibit 

asphaltene-related problems and enhance recovery processes is the potential employment of 

nanoparticle technology at reservoir conditions. This thesis aims at synthesize and apply metallic 

and/or multi-metallic oxides (e.g, Ni, and Pd) supported nanoparticles that have high adsorption 

selectivity and catalytic activity towards heavy hydrocarbons like asphaltenes. This study should 

provide a better insight on the influence of the adsorption process on the catalytic activity of the 

nanoparticles and give a better understanding about the use of nanotechnology for in-situ upgrading 

of heavy and extra-heavy oils and inhibition of formation damage.  

 

Keywords: Nanoparticles, Formation Damage, Heavy Oil, Asphaltenes, Adsorption, Catalysis.  
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Introduction 

The available conventional energy supplies have become an area of global concern as these supplies 

are decreasing due to several factors,1 such as worldwide population growth, competing demands 

from a variety of users, increasing  industrialization and motorization of the world, increasing 

technical development and living standard, etc.  Accordingly, energy industries strive for finding 

alternative energy supplies that can be produced from natural resources that would be available and 

suitable for use. The utilization of fossil fuels, like unconventional crude oil, has now become an 

important source of alternative energy resources.2 3-5 According to the International Energy Agency 

(IEA), by the year of 2035 the demand for fossil fuels will increase about one-third.3, 6 However, 

with the gradual depletion of conventional resources as light and medium crude oil, the rise of 

unconventional oil is changing the way we understand the distribution of the world’s energy 

resources.6 Accordingly, the oil and gas industries have recently paid special attention to 

unconventional resources such as tight gas,7, 8 gas/oil shale and oil sands,9 coal-bed methane 

(CBM),10, 11 gas from hydrates,12, 13 heavy oil (HO) and extra-heavy oil (EHO).3, 9, 14, 15 Deposits of 

HO and EHO are approximately of the same order than those of conventional crude oil according to 

the International Energy Agency.16, 17 In fact, in the scenario 2014-2035 about the 9% of the 

cumulative investment upstream is necessary for developing heavy and extra heavy oil resources.18 

 

Actually, Venezuela, Canada and Russia represent about the 87% of the future recovery and 81% of 

the future production of HO and EHO.16 Other key players are Cuba, Peru, Mexico and Brazil in 

Latin America and China with the greatest resource in the eastern hemisphere.9 It is expected that 

the growth of production in the next years in Colombia and Brazil will increase the overall regional 

production. In Colombia, the resources of HO and EHO represent the fourth market with more 

potential for the exploration and production.19 The 45% of the current oil production in Colombia is 

related to HO and EHO and is expected that for 2018 this percentage will increase to 60%.20 

However, in the current context, the production of HO and EHO is complex as it involves higher 

costs than conventional resources and requires improved technology not just in production, but also 

in the evaluation, exploration, transportation and processing.9, 21 These kinds of crude oils have large 

amount of heavy hydrocarbon compounds like asphaltenes that reduce the American Petroleum 

Institute gravity (°API) and increase drastically the oil viscosity. Some problems associated with 

asphaltenes are reduction of oil mobility at reservoir conditions, changes in the reservoir wettability 

and deposition on refining equipment.22  

 

Asphaltenes typically are defined as the heaviest, most aromatic and surface-active fraction of the 

crude oil, being insoluble in light paraffins like n-pentane, n-hexane and n-heptane, but soluble in 

light aromatics like benzene, toluene or pyridine.22-24 Although, the structure of asphaltenes is 

complex, a general description is that they have a nucleus composed by one or more cross-linked 

poly aromatic hydrocarbons (PAH’s).23-25 Asphaltenes have heteroatoms like N, S and O, and metals 

such as V, Fe and Ni.26 Thus, the presence of functional groups such as carboxyl, ketones, aldehydes, 

benzothiophenes, dibenzothiophenes, naftenobenzotiophenes, alkyl sulfides, aryl alkyl sulfides and 
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aryl sulfides is likely to be in asphaltene structure.23, 27, 28 Several hypothesis on asphaltenes chemical 

structures are proposed in literature; including island, archipelago, continental or rosary-type.24, 25, 29, 

30 The island architecture is composed by seven fused rings and one PAH while the archipelago 

architecture is composed by more than one PAH per asphaltene molecule connected by alkyl 

chains.24, 30 The continental architecture is composed also by one or two PAH’s but with a larger 

number of fused rings than seven.29, 30 The rosary-type asphaltenes are very flexible and are 

composed by two or more PAH’s joined by flexible aliphatic chains. However, owing to its complex 

chemical structure, asphaltene architectures get updated with time. The most accepted model that 

describes the asphaltenes colloidal and molecular structure is known as the Yen-Mullis model.23, 24, 

31-34 This model considers that island-type architecture is the dominant molecular architecture of 

asphaltenes with an average of seven fused rings in the PAH core and with an asphaltene molecular 

weight of ~750 Da. As the asphaltenes concentration increases, its self-associative nature leads to 

form nanoaggregates with an average size of 2 nm. Further increase in asphaltene concentration, 

higher concentration, the nanoaggregates form clusters, with an average size of 5 nm and aggregation 

numbers < 10.24 This aggregation behavior of asphaltenes is also highly dependent on the chemical 

nature of the crude oil, temperature, compositions and the true vertical depth of the well that is 

directly associated with the reservoir pressure.35 For instance, the asphaltenes in condensate oils with 

an average gas–oil–ratio (GOR) of 350 m3/m3 behave as molecules with a size of 1.5 nm based on 

the Yen–Mullins model.24, 31 In black oils with a GOR of 90–180 m3/m3, asphaltenes behave as 

aggregates with an approximate size of 2 nm; however, for low GOR oils, such as heavy and extra 

heavy crude oils, asphaltenes may behave like clusters with a minimum size of 5 nm.35 Asphaltenes 

self-association and further formation of large asphaltic flocs that also increase the HO viscosity.36-

38 In addition, asphaltenes that contain high content of sulfur form strong C-S and C=S bonds and 

subsequently increase drastically the crude oil viscosity.39, 40 Further, presence of large amounts of 

N and S in the asphaltene structure leads to production of SOx, NOx and H2S during processing. 

These characteristics of asphaltenes and their high content in HO and EHO make it difficult for 

production, transportation and processing.  

 

Injection of naphtha or CO2 for viscosity reduction are proven techniques for improving the 

production of HO and EHO. However, these techniques could lead to serious problems due to the 

possibility of modifying the flow and phase behaviour of the oil at reservoir conditions, leading to 

asphaltenes precipitation and deposition in the porous media and through the production system.37, 

41-43 For sub-surface application, if asphaltene precipitation and deposition occur in the reservoir rock 

it could reduce both porosity and permeability, and affecting negatively the reservoir wettability 

from a water-wet system to an oil-wet system that together with the high HO viscosities result in the 

reduction of the crude oil mobility.37, 43 For on surface application, if asphaltene precipitation occurs 

throughout the production system, it could have a negative impact on pumps, pipelines and surface 

facilities due to flow blocking and corrosion.39 In both cases these adverse effects result in reducing 

production and hence the energy return on investment (EROI), and in the worst scenario it could 

cause the abandonment of the operation.42 Besides the role of asphaltenes in increasing crude oil 

viscosity and reducing its mobility in the reservoir, these asphaltenic compounds have significant 

effect on catalytic processes in refinery such as hydrocracking, hydrodesulfurization, 

hydrodenitrogenation and hydrodemetallisation, as they are considered the precursors of 

heteroatoms and high coke yield that lead to inefficient catalysis and reduce the distillable fraction 

of crude oil.38, 44, 45 Modern techniques for in situ upgrading and recovery of crude oil consist in 

fractionating the chemical structure of the heaviest compounds present in the crude oil through in 

situ combustion,46-48 pyrolysis,49, 50 aquathermolysis 50-52 and oxidation at low temperatures.53 More 

recently the steam assisted gravity drainage (SAGD) process appears as promising alternative to 

enhance the oil recovery.54-56 However, all the aforementioned techniques have an average recovery 
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of 20-25% of the oil in place and up to 50% for SAGD procces.20, 57 Besides the low EROI, during 

HO and EHO production and processing other problems like high greenhouse gases (GHG) 

emissions, disposal of wastewater and disposal of by-product carbon and sulfur have to be taken into 

account.9 

 

Further, modern techniques for in situ upgrading and damage inhibition involve destabilization and 

deposition of asphaltenes or fractionating the chemical structure of the heaviest compounds present 

in the crude oil, leading to low energy return on investment (EROI) and a higher emission of 

greenhouse gas.22  

 

Consequently, nanoparticles have recently become an area of interest for the oil and gas industries. 

Nanoparticle technology (i.e., the technology related to the preparation and/or applications of 

materials at nanoscale, 1–100 nm) has emerged as an area of interest for many applications;58 

including  energy storage, production and conversion,59-61 agricultural productivity enhancement and 

food processing,62-66 water treatment and remediation,67-72 medicine,73-78 air pollution and 

remediation,79-81 construction,82, 83  pest detention and control, and so forth.84, 85 In the oil industry, 

nanoparticles have potential to be used in several applications like enhancing the upgrading and 

recovery of bitumen,56, 86-89 improving the efficiency of drilling fluids90-94 and drilling bit,95, 96 fines 

migration control 97-99 and oil removal from produced wastewater.67, 68, 72 Further, because of their 

unique and exceptional properties, such as large surface area and size-and shape-dependent catalytic 

properties, nanoparticles can also be employed as adsorbents and/or catalysts for removal of heavy 

waste polar hydrocarbons from crude oil, like asphaltenes.100-114 Nanoparticles have the flexibility 

for in-situ (in place) application, where the particles can travel smoothly with good degree of 

dispersion through the porous media without risk of pore blocking. 115 One would anticipate that by 

in-situ sequestration of the asphaltene molecules from the crude oil would enhance the in situ 

upgrading and inhibit asphaltene damage. This consequently leads to a lighter crude oil with an 

improved mobility through the reservoir, easier production and transporting processes, with a higher 

distillable fraction and higher EROI. 

 

Although some published research works have focused on the role of nanoparticles as catalysts in 

crude oil upgrading and as inhibitors of the asphaltene damage, there is still a lack of understanding 

on the mechanism of interactions between the asphaltene molecules and nanoparticle surface. 

Accordingly, a depth and extensive investigation on different key variables, such as nanoparticle 

functionality and the presence of co-existing molecules will provide an insight on the mechanism 

and behavior of the nanoparticles efficiency as catalysts and inhibitors, resulting in an enhanced oil 

recovery and improving its quality. Hence, the main objective of this study is to synthesize and apply 

metallic and/or multi-metallic oxides (e.g, Ni, and Pd) supported nanoparticles that have high 

adsorption selectivity and catalytic activity towards heavy hydrocarbons like asphaltenes. Further, 

the specific objectives are: 

 

I. Synthesize and characterize the supported and unsupported nanomaterials.  

II. Evaluate the chemical nature of asphaltenes and the synthetized nanoparticles in adsorption 

and subsequent thermo-oxidative decomposition of adsorbed asphaltenes.  
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III. Develop a model that describes and captures the kinetic behavior of asphaltene aggregation 

in oil matrix in presence and absence of nanomaterials.  

IV. Perform displacement tests in porous media to corroborate the effect of the nanomaterials in 

enhancing the crude oil mobility and the increase of the oil recovery using an in-house designed 

displacement setup.  

V. Determine the catalytic activity of the synthesized nanomaterials towards asphaltenes 

thermo-oxidative decomposition by estimating the effective activation energy using the 

isoconversional method of Ozawa-Flyn-Wall.  

VI. Propose different reaction mechanisms for the thermo-oxidative decomposition of 

asphaltenes in the presence and absence of nanomaterials.  

VII. Develop a correlation between the adsorption affinity, the degree of asphaltene aggregation 

and the effective activation energy for asphaltene adsorption and subsequent thermal 

decomposition.  

 

 

Hence, this document is divided in six main chapters that include: 1) Synthesis and 

characterization of nanoparticles, 2) Adsorption and subsequent catalytic thermal 

decomposition of n-C7 asphaltenes, 3) Influence of n-C7 asphaltene aggregation on their 

adsorption and catalytic behavior of nanoparticles, 4) Effect of Resin I on n-C7 asphaltene 

adsorption onto nanoparticles, 5) Influence of shear and nanoparticles on the aggregation 

and fragmentation of asphaltene aggregates and 6) Heavy oil upgrading and enhance 

recovery in a continuous steam injection process assisted by nanoparticulated catalysts.  
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1. Synthesis and characterization of nanoparticles 

According to the International Union of Pure and Applied Chemistry (IUPAC), a nanoparticle is 

defined as a “Microscopic particle whose size is measured in nanometers, often restricted to so-

called nanosized particles (NSPs; <100 nm in aerodynamic diameter), also called ultrafine 

particles”.1 Recently, nanoparticle technology has promised many benefits through nano-enabled 

applications in multiple sectors, including energy,2-4 environment,5-12 medicine13-18 and agriculture,19-

23 among others.24 The applications of nanoparticle technology to enhance upgrading and recover of 

crude oil are well recognized in the oil industry due to their high stability, superior adsorption and 

catalytic behavior, as well as their excellent dispersion ability.25, 26 Hence, the characterization of the 

nanoparticles is of paramount importance in the understanding of the nanoparticles’ role in the heavy 

oil and extra-heavy oil upgrading and inhibition of formation damage. Nanoparticles’ size is a key 

parameter to take into account when considering these materials for an in-situ application. It has to 

be ensured that the material available for injection into the reservoir meets the size constraints to 

ensure that nanoparticles would not cause a further damage into the reservoir due to pore throat 

bridging or blockage. According to the one-third to one-seventh arch principles, the particle size 

could contribute to the bridging/blockage as follows: i) particles larger than 1/3 of pore size are prone 

to generate pore blocking, ii) particles in the range 1/7 – 1/3 of pore size would generate a bridge in 

the pore throat that further will generate pore blockage and iii) particles with size lower than 1/7 of 

pore size are able to pass through the pore throat.27-29 It is expected that nanoparticles employed for 

injection into the reservoir would accomplish the third aforementioned scenario. Properties such as 

surface area and thermal stability of nanoparticles are important in the understanding of the uptake 

capacity and availability of its use at determined temperature.30 In this order, this chapter describes 

the synthesis and characterization of the selected nanoparticles. Silica and carbon sphere 

nanoparticles were synthesized through the sol-gel and resorcinol-formaldehyde polycondensation 

methods, respectively. Additionally, a selected support was functionalized with NiO and PdO 

nanocrystals by the incipient wetness technique followed by calcination in order to obtain the metal 

oxide dispersed over the support surface. Nanoparticles were characterized trough thermal stability, 

particle size and surface area measurements.  

1.1 Experimental 

1.1.1 Materials 

In-house prepared silica nanoparticles (SS) and carbon nanospheres (CNS) and commercial 

nanoparticles of fumed silica (CS), magnetite (CM), titania (CTi), and γ-alumina (CAl) were used 

as adsorbents along the thesis work. The commercial nanoparticles of fumed silica, titania and γ-

alumina were obtained from Sigma-Aldrich (St. Louis, MO) and commercial magnetite 

nanoparticles from Nanostructured & Amorphous Materials (Houston, TX).  
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Tetraethyl orthosilicate (TEOS, > 99%), ethanol (99.9%) and NH4OH (28%) were used to synthesize 

the silica nanoparticles. Additionally, formaldehyde (37%), resorcinol (99%), hexadecyltrimethyl - 

ammonium bromide (CTAB, >99%), tert-butanol (99.5%), Cs2O3 (99.9%), acetone (>99.5%), 

deionized water and gaseous N2 were used for the CNS synthesis. All reactants employed for the SS 

and CNS synthesis were purchased from Sigma-Aldrich (St. Louis, MO). The nanoparticles’ surface 

was functionalized with Pd and Ni oxides using salt precursors Ni(NO3)2∙(6H2O) and Pd(NO3)2 

obtained from MercK KGaA, Germany.  

1.1.2 Nanoparticles Synthesis  

 Silica nanoparticles  

The SS nanoparticles were synthetized using the sol-gel method following two different basic routes, 

namely A and B,  based on the procedure initially proposed by Stöber et al.31, 32 The sol-gel method 

consists in a sol preparation, its further gelation and solvent removal and could be produced from 

inorganic or organic precursors. Here, silica nanoparticles were obtained by forming a 3-D structure 

of interconnected siloxane bridges (Si–O–Si) achieved through simultaneous and repeated 

hydrolysis and polycondensation of determined precursor such as TEOS.33 NH4OH and ethanol are 

used, respectively, as catalyst of the hydrolysis reaction and as mutual solvent between water and 

TEOS.31 Route A consisted in stirring the previously mixed reactants at 300 rpm for 4 hours. Then, 

the solution is centrifuged at 4500 rpm for 30 min using a Hermle Z 306 Universal Centrifuge 

(Labnet, NJ) and left to stand overnight. Finally, the result is washed with ethanol and deionized 

water and dried overnight at 120°C. For route A two TEOS:H2O:NH4OH:ethanol molar ratios of 

1:6:1:0.25 and 1:3:0.5:0.17 were used. For route B the TEOS:H2O:NH4OH:ethanol molar ratio was 

changed to 1:6:1:3 and the initial stirring of the reactants was carried out for 24 h. The following 

steps of the procedure were the same as for route A. In this document, SS nanoparticles are 

nomenclated according to the employed route and the H2O/TEOS molar ratio. For instance, SS 

nanoparticles obtained through route A using a H2O/TEOS molar ratio of 6 are labeled as SSA6.  

 Carbon nanospheres  

The CNS were prepared trough resorcinol-formaldehyde polycondensation in water.34 Cs2CO3 was 

used as catalyst of the polymerization reaction and tert-butanol was employed as surfactant. Figure 

1.1 shows the experimental set-up required for the CNS synthesis. Two different CNS were 

synthesized by varying the resorcinol:Cs2CO3 molar ratio in 150:1 and 300:1. First, a solution of 

CTAB, tert-butanol and water is prepared at a molar ratio of H2O:CTAB:ter-butanol of 1:323:153 

and is preheated at 85°C in the tripple-neck round-bottom flask. At the same time, a resorcinol-

formaldehyde solution is prepared at recorcinol:formaldehyde:H2O molar ratio of 1:0.19:0.006 and 

the Cs2CO3 is added until the desired resorcinol:Cs2CO3 molar ratio is reached. Once the 

H2O+CTAB+ter-butanol reaches the desired temperature, the resorcinol+formaldehyde+catalyst is 

carefully added by one of the lateral necks of the round-bottom flask. The system is then closed and 

maintained under stirring at 250 rpm for 34 hours at the desired temperature. Posteriorly, the solution 

is recovered and filtered. The product is immersed in acetone for three days and the acetone is 

replaced each 12 hours in order to prevent the structure collapse during the drying or carbonization 

steps.35  After, the product is filtered again and dried at 80°C using a stove. Finally, the material was 

carbonized in an inert atmosphere using a tubular furnace with a constant N2 flow of 150 cm3/min 

and a heating rate of 1°C/min until 600°C were the sample was left in an isotherm for 2 hours. In 

this document CNS with resorcinol:Cs2CO3 molar ratios of 150:1 and 300:1 are labeled CNS150 and 

CNS300, respectively.  
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Figure 1.1. Experimental set-up for CNS synthesis. 

 Nanoparticles functionalization  

Nanoparticles were functionalized with NiO and/or PdO in order to provide a higher selectivity and 

catalytic activity to asphaltenes adsorption and subsequent decomposition. CS was used as support 

for evaluating the efficiency of the incorporation of the aforementioned metal oxides in the 

adsorption and decomposition of asphaltenes under oxidation, pyrolysis and gasification catalytic 

processes. In addition, CTi and CAl nanoparticles were used as support for evaluating the effect of 

the inorganic oxide support on the asphaltenes adsorption and post catalytic gasification. Then, the 

following procedure was applied independently of the support employed. In brief, the desired 

support was firstly dried at 120°C and posteriorly impregnated with an aqueous solutions of nickel 

nitrate Ni(NO3)2 and/or Pd(NO3)2 at the defined mass percentage for 3 h according to a 

Simplex−centroid mixture design (SCMD). The SCMD was used to determine the optimal mixture 

of palladium, nickel, and support nanoparticles to minimize the decomposition temperature of the 

asphaltenes. Normally, SCMD is used to study the relationships between the proportions of different 

variables and responses.36 Figure 1.2 shows the SCMD with CS, NiO and PdO. Details of the used 

SCMD can be found in Appendix A. The impregnated material was then further dried at 120°C for 

6 h. The obtained solid was calcined at 450°C for 6 h to obtain the hybrid nanoparticle support. The 

aqueous solution used for impregnation containing an X wt % of Pd(NO3)2 and/or Y wt % of 

Ni(NO3)2 quantity was used for the synthesis of CSNiYPdX nanoparticles on the silica support with 

the incipient wetness technique.37, 38 Should be noted here that the Ni and Pd precursors are 

hygroscopic salts. These materials become oxides after calcination. The hybrid nanomaterials 

obtained in this study are called supported hygroscopic salt (SHS) and denoted by the initial letter 

of the support followed by the symbol of the cation of the resulting metal oxide after calcination and 

the weight percentage of the aqueous solutions of nickel nitrate Ni(NO3)2 and/or Pd(NO3)2 employed 

for impregnation. For instance, CSNi1Pd1 denotes a SHS synthesized by using commercial silica 

nanoparticles as support and containing 1 wt % of Ni(NO3)2 and 1 wt % Pd(NO3)2, which would 

produce, after calcination, a nanosilica with NiO and PdO nanoparticles on its surface. 
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Figure 1.2. Simplex−centroid mixture design with CS, NiO and/or PdO. 

 

1.1.3 Nanoparticles characterization   

Commercial, synthesized and functionalized nanoparticles were characterized trough particles size 

and surface area. Additionally, the thermal stability of the synthesized nanoparticles was evaluated 

trough thermo-gravimetric analyses (TGA). Particle or crystallite size of nanoparticles was 

determined using field emission scanning electron microscopy (FESEM) X-ray diffraction (XRD 

and dynamic light scattering (DLS) measurements. The surface areas (SBET) of the selected 

nanoparticles were measured following the Brunauer−Emmett−Teller (BET)39, 40 method and was 

compared to the geometrical surface area according to the estimated particle size.  

 Thermo-gravimetric analyses (TGA)  

 
TGA studies are important for understanding the temperature effect on the stability of the different 

synthesized nanoparticles. The thermogravimetric analyses were carried out with a TGA analyzer 

(Q50, TA Instruments, Inc., New Castle, DE) by heating the samples in air from 30°C to 700°C at a 

fixed heating rate of 20°C/min. The sample mass was kept low to circumvent the diffusion 

limitations (ca. 5 mg). The airflow rate was a constant 100 cm3/min throughout the experiment. 

Before the samples were transferred for TGA analysis, they were dried overnight in a vacuum oven. 

Further, before the TGA experiments, the instrument was calibrated for mass and heat changes as 

well as temperature readings, using nickel as a reference material. Each run was repeated at least 

twice to confirm the reproducibility of the experiment, which was achieved successfully. 
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 Particle size measurements 

 
The size of the evaluated nanoparticles (dp) was determined by FESEM, DLS and XRD. A JSM-

6701F (JEOL, Japan) field emission scanning electron microscope was used to obtain images of the 

selected materials with their particle size distribution. Sample was prepared by dispersing the 

material on ethanol in a concentration of 100 mg/L and sonicated for 3 h at room temperature. Then, 

a drop of the dispersion was carefully placed in a graphite tape previously stuck in the apparatus 

sampler. Finally, the sample is gold-plated and further introduced to the microscope. 

DLS measurements were performed using a nanoplus-3 from Micromeritics (Norcross, ATL) set at 

room temperature and equipped with a 0.9 mL glass cell.41-43 The solid sample was dispersed in 

water in a relation of 0.5 mg/10 mL and sonicated for four hours. Then, an aliquot of the sonicated 

sample was placed on the glass cell. The scattering angle varies according to the solvent used to 

optimize the intensity of the flocculation of scattering light. The mean particle diameter 

(hydrodynamic diameter) is obtained from the Stokes-Einstein equation, as follows: 44 

3

B

a

k T
dp

D
  (1.1) 

where Bk  (1.38 x 10-23 m2kg∙s-2K-1) is the Boltzmann constant, T (K) is temperature,  (cP) is the 

viscosity of the medium, and aD  (m2∙s-1) is the diffusion coefficient of the particles.   

The crystallite size of the nanoparticles was measured by applying the Scherrer equation to the 

primary XRD peak. XRD patterns were recorded with an X Pert PRO MPD X-ray diffractometer 

from PANalytical using Cu Ka radiation operating at 60 kV and 40 mA with a θ/2θ goniometer.  

 Surface area estimation 

 

The SBET of the selected nanoparticles were measured following the BET method.39, 40 This was 

achieved by performing nitrogen adsorption−desorption at 196°C, using an Autosorb-1 from 

Quantacrome. The samples were degassed at 140°C under N2 flow overnight before analysis. Surface 

areas were calculated using the BET equation. 

 

Additionally, assuming non-porous spheres with sphericity = 1, the geometrical surface area (SA, 

m2/g) of the nanoparticles was calculated according to Eq. 1.2: 45, 46 

 

6000
SA

dp 



 (1.2) 

 

where  (g/cm3) is the material true density taken as 2.65, 4.23, 3.95, 4.95 and 1.80 g/cm3 

for SiO2, TiO2, Al2O3, Fe3O4 and CNS, respectively.   
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1.2 Results 

1.2.1 Thermal stability of synthesized nanoparticles 

Panels a and b of Figure 1.3 show the mas loss profile of a) SS nanoparticles and b) CNS under an 

oxidative atmosphere at a fixed heating rate of 20°C/min. From Figure 1.3a it can observed that the 

mass loss follows the trend SSA6 < SSB6 < SSA3. The mass loss could be due to remaining solvent 

in the particles structure, adsorbed water or expulsion of silanol groups from the silica structure.47 

When comparing SSA6 and SSB6 nanoparticles, one can infer that, as the only difference in the 

molar ratios corresponds to ethanol, the higher mass loss for SSB6 than SSA6 nanoparticles could 

lie in the remaining amount of adsorbed solvent in the material structure. Jal et al.,47 found that until 

360°C the complete removal of entrapped or adsorbed water is achieved, leading then to a phase 

transition of the nanoparticles. Also, Fyfe et al.48 reported that vicinal silanol are expelled in the 

range 200°C – 400°C and germinal and isolated silanols between 400°C and 800°C.48 Regarding to 

the CNS, it is observed from Figure 1.3b that about the 10% of the sample mass is oxidized until 

560°C for both CNS150 and CNS300. However, the main mass loss occurs around 600°C. This is 

due at 600°C the CNS were carbonized and is expected that for higher temperatures their thermal 

stability decreases. 

 

 

Figure 1.3. Thermal stability of a) SS nanoparticles and b) CNS materials under an oxidative 

atmosphere. Air flow, 100 cm3/min; heating rate, 20°C/min. 

 

1.2.2 Particle size 

 Synthesized nanoparticles 

Panels a−f from Figure 1.4 show the FESEM images and the corresponding particle size probability 

distribution for the synthesized nanoparticles (a and b) SSA3, (c and d) SSA6, (e and f) SSB6, (g 
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and h) CNS150 and (i and j) CNS 300. Additionally, Table 1.1 shows the estimated values of the 

mean particle size and surface areas of the selected nanoparticles obtained by the methods previously 

described. As observed in Figure 1.4 almost all synthesized materials, except CNS150, have a mean 

particle diameter in the nano-scale according to the definition of nanotechnology. For the SS 

nanoparticles, it is observed that the mean particle diameter increases in the order SSA3 < SSA6 < 

SSB6, indicating that by increasing the amount of the silicate precursor, the size of the particle can 

be reduced. This could be due to as the amount of the water decreases, the rate of hydrolysis reaction 

is reduced and the addition of a monomer to the network is inhibited, hence reducing the particle 

size.49 In addition, as SSB6 have larger mean particle size than SSA6 nanoparticles, it can be also 

inferred that as the as the amount of catalyst increases, the particle diameter increases due to the 

increased hydrolysis rate.47, 49 Results are in excellent agreement with Dabbaghian et al.,14 who 

synthesized silica nanoparticles trough the sol-gel method using TEOS as the precursor and NH4OH 

as catalyst and found that for molar ratios NH4OH/H2O < 2 the particle size increased as the 

NH4OH/H2O molar ratio increased. In Table 1.1 it can be observed that for the SS nanoparticles the 

crystallite size is much lower than the mean particle size measured by FESEM, indicating that the 

synthesized materials have polycrystalline structures. Figure 1.5 shows the DLS results for the 

synthesized nanoparticles. As seen in Figure 1.5a and Table 1.1, the mean particle of SS 

nanoparticles has the same trend than the one observed trough FESEM and XRD. This could be due 

to great van der Waals attractive forces between nanoparticles in the aqueous medium because of 

Brownian motion.45, 50  

 

Regarding to the synthesized CNS, it can be observed in Figure 1.4c,d that the mean particle size of 

CNS300 sample is about 49 nm larger than the one acceptable for classifying them as nanoparticles. 

However, sample will be considered for asphaltenes adsorption and subsequent oxidation tests due 

to two main reasons: i) nanoparticles could be sufficiently small for neglecting the possibility of 

blockage or bridging in a HO reservoir formation51, 52 and ii) about the 15% of the particles are in 

the nanoscale range. For example, Pachón25 evaluated the petrophysic properties of the K1 and K2 

units from the Gacheta and Une formations in the Castilla field (HO) placed in the Meta department, 

central region of Colombia. The author found that for depths between 6417 and 6911 ft the 

predominant mean pore diameter was about 204 μm. Hence, according to the bridge arch principle, 

bridging due to particle intrusion in the pore throats would happen for particles with an average size 

between 29 and 68 μm, values much higher than that of the mean particle size of CNS150. 

Nevertheless, when the resorcinol:Cs2CO3 molar ratio increased from 150:1 to 300:1, the mean 

particle size decreased. From Figure 1.3 i.j it can be seen that the mean particle size of CNS300 is 

95 nm. This increase in the particle size by increasing the amount catalyst could be to the accelerated 

rate of polymerization reaction. Also, DLS results (Figure 1.5b) showed that the hydrodynamic 

diameter of the CNS particles is greater than that of 
Crystallitedp  and 50FESEMdp . 
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Figure 1.4. FESEM images and the corresponding particle size probability distribution for (a and 

b) SSA3, (c and d) SSA6, (e and f) SSB6, (g and h) CNS150 and (i and j) CNS 300. 

  

Figure 1.5. Normalized number distribution obtained by DLS for a) SS and b) CNS materials.  

 Commercial nanoparticles 

Panels a−h from Figure 1.6 show the FESEM images and the corresponding particle size probability 

distribution for the commercial nanoparticles (a and b) CS, (c and d) CAl, (e and f) CTi and (g and 
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h) CM. As seen, and in agreement with the values obtained for the crystallite size from XRD results 

(Table 1.1), the trend of the mean particle size is CS < CTi < CAl < CM. Additionally, the size 

distribution is wider for CM nanoparticles than for CS, CTi and CAl nanoparticles with a mean 

particle diameter ( 50FESEMdp ) of 97, 9, 29 and 52 nm, respectively. When comparing the mean 

crystallite size from XRD and FESEM, the values from FESEM are greater than those from XRD, 

indicating that a portion of the size distribution has a polycrystalline structure. Accordingly, the d48, 

d45, d25 and d46 values from the probability distributions for CS, CAl, CTi and CM nanoparticles 

would correspond to single-crystallite structures, respectively, i.e. less than the 48, 45, 25 and 46% 

of the particles are single crystallite structured. Figure 1.7 shows the normalized number distribution 

obtained for commercial nanoparticles trough DLS technique. As it was observed for SS and CNS 

materials, for all commercial nanoparticles the hydrodynamic size was higher than that obtained with 

FESEM and XRD. It can be observed from Figure 1.7 that a higher aggregation occurs for the CM 

nanoparticles, and is due to the magnetic characteristics of magnetite nanoparticles, they tend 

to aggregate due to anisotropic dipolar attraction and form clusters.53 
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Figure 1.6. FESEM images and the corresponding particle size probability distribution for (a and 

b) CS, (c and d) CAl, (e and f) CTi and (g and h) CM. 

 

 
Figure 1.7. Normalized number distribution obtained by DLS for commercial nanoparticles.  

Table 1.1 Estimated surface area and particle size of the selected nanoparticles. 

Material 
                    Particle size (nm)                   Surface Area (m2/g) 

Crystallitedp  50FESEMdp  50DLSdp  BETS  SA  

SSA3 1.4 72 87 42.6 31.4 

SSA6 1.5 87  89 26.9 26.0 

SSB6 1.5 97 100 23.6 23.3 

CNS150 - 149 173 57.1 22.3 

CNS300 - 95 104 89.7 35.1 

CS 7.2 9 51 389.1 314.5 
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 SHS nanoparticles 

The crystallite size of NiO and PdO nanocrystals was determined through XRD 

measurements. Table 1.2. shows the estimated values of NiO and PdO crystallite size over the 

support surface. As seen, the 
Crystallitedp  increases as the metal oxide loading on the adsorbent surface 

increases. For bimetallic SHS nanoparticles, it is observed that the degree of crystal growth is 

inhibited. For example, if crystal growth inhibition does not occur, the crystal size of NiO and PdO 

for the sample CSNi0.66Pd0.66 would be 1.3 and 1.6 nm, respectively, indicating a value 31 

and 25% higher than the one measured by XRD. Similar observation can be made for 

CSNi1Pd1 nanoparticles.  It is well known that the sintering of metals on the support surface 

could be alleviated in complex materials by the presence of noble metals54 and is dependent 

on many factors in the synthesis step such as temperature, time, atmosphere and metal 

content.55 Hence, these results are an indicative of good dispersion and better homogeneity 

in the coordination of the PdO and NiO over the support surface for bimetallic nanoparticles 

than for monometallic SHS.  

 

Table 1.2. Estimated values of NiO and PdO crystallite size and surface area of selected 

nanoparticles. 

Material BETS  (m2/g) ,Crystallite NiOdp (nm) ,Crystallite PdOdp (nm) 

CSNi1 290.31 1.9 - 

CSPd1 265.56 - 2.4 

CSNi2 233.63 2.9 - 

CSPd2 205.15 - 4.1 

CSNi0.66Pd0.66 220.79 0.9 1.2 

CSNi1Pd1 201.50 1.3 2.2 

1.2.3 Surface area 

 Synthesized and commercial nanoparticles 

Table 1.1 shows the estimated values of the surface areas obtained through the BET method and the 

geometrical calculation according to the 50FESEMdp . As observed, except for CTi sample, the surface 

area estimated geometrically is lower than that obtained through the BET method and could be due 

to four main reasons: i) geometrical surface area is estimated assuming a mean particle size while 

the whole sample is represented by a distribution of particles with different sizes, ii) the density 

employed for calculations could be not the exact density of the material, iii) synthesized 

nanoparticles have no sphericity = 1 and nanoparticles could have even a small volume of micropores 

that would alter the surface area calculation. Among the SS nanoparticles, it can be observed that as 

expected, the surface area increases as the size of the particle decreases. Same trend can be observed 

for CNS materials. Regarding to the commercial nanoparticles, the trend followed by the surface 

area is CS > CAl > CM > CTi. 
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 SHS nanoparticles 

The  BETS of the functionalized nanoparticles was determined through N2 physisorption at -196°C 

after the functionalization process. Results of the obtained BETS  are shown in Table 1.2.  As seen in 

Table 1.2, the BETS was drastically reduced by including NiO and PdO nanocrystals on the support 

surface. It is worth to mention that the inclusion of the metal oxide on the nanoparticles surface could 

alter significantly the surface area of the materials. As seen in Table 1.2, the estimated crystallite 

size of the PdO is about one third than for the fumed silica support and by their deposition on the 

surface, a percentage of the possibly existing micropores can be blocked. Also, the heat treatment at 

450°C for the metal oxides obtaining could lead to the support sintering and hence in the reduction 

of the surface area. Additionally, the cubic special model (see appendix A) described in an excellent 

way the experimental results for the obtained BETS  with and R2 = 1.0.  Table 1.3 lists the cubic 

special model parameters that describes the behavior of the BETS  and Figure 1.8 shows the contour 

lines according to the stablished SCMD.  It can be seen from Figure 1.8 that the contour lines shift 

to lower values of as the amount of PdO on the sample increases and could be due to PdO 

nanocrystals are larger than that of NiO. 

Table 1.3. Calculated Parameters of the Special Cubic Model for the BETS . 

1  2  3  12  13  23  123  

389.00 233.63 205.15 -84.02 -126.06 -71.56 -643.882 

 

 

 

Figure 1.8. Response surface for the BETS  according to the cubic special model of the SCMD. 
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1.3 Partial conclusions 

 

Silica and carbon spheres nanoparticles were successfully synthesized through the sol-gel 

method and polycondensation of resorcinol-formaldehyde, respectively. Obtained materials were 

characterized by thermal stability, particle size and surface area. SS nanoparticles resulted in mean 

particle diameters in the nanoscale and with a decreasing trend as the amount of precursor increased. 

In the case of CNS, nano-spheres with a higher R:C molar ratio resulted in particles with lower mean 

diameter. Also, commercial nanoparticles were characterized by particle size and surface area. The 

trend followed by the surface area of the commercial nanoparticles was CS > CAl > CM > CTi. In 

addition, the crystallite size of NiO and PdO nano-crystals over the support surface was estimated 

trough XRD measurements. Surface are determination of functionalized nanoparticles was 

successfully described by the special cubic model according to the postulated SCMD. 
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2. Adsorption and subsequent catalytic thermal 

decomposition of n-C7 asphaltenes 

Because of their unique and exceptional properties, such as large surface area and size-and shape-

dependent catalytic properties, nanoparticles can also be employed as adsorbents and/or catalysts for 

removal of heavy waste polar hydrocarbons from crude oil, like asphaltenes.1-10 Nanoparticles have 

the flexibility for in-situ (in place) application, where the particles can travel smoothly with good 

degree of dispersion through the porous media without risk of pore blocking.11 One would anticipate 

that by in-situ sequestration of the asphaltene molecules from the crude oil would enhance the in-

situ upgrading and inhibit asphaltene damage. This consequently leads to a lighter crude oil with an 

improved mobility through the reservoir, easier production and transporting processes, with a higher 

distillable fraction and higher EROI.  

 

Asphaltene adsorption onto solid surfaces has been widely studied.12-22 Although asphaltene 

adsorption onto different solid surfaces of nanoparticles has been reported in literature, there is still 

lack of understanding of the mechanisms of interaction between the asphaltenes and nanoparticle 

surface and how the chemical nature of both affects adsorption and catalytic processes. The 

adsorption and subsequent catalytic thermal decomposition of asphaltenes onto different surfaces of 

nanoparticles was first introduced by Nassar and coworkers.2, 4-9, 23, 24. In his earlier study,24 Nassar 

investigated the kinetics and thermodynamic of the asphaltene adsorption on -Al2O3 nanoparticles. 

The author reported that adsorption was fast as adsorption equilibrium was achieved in less than 2 

h. This was attributed to the non-porous character of the material, where the external adsorption is 

dominated. Adsorption was influenced by the temperature, n-heptane/toluene ratio, and water 

content. As the temperature increased the amount adsorbed of asphaltenes decreased, indicating that 

asphaltene adsorption onto the surface of nanoparticles is an exothermic process. Further, Nassar24 

found that the asphaltene adsorption in presence of a precipitating agent like n-heptane is enhanced, 

this because of asphaltene self-association and the subsequent formation of colloidal aggregates. In 

other studies, Nassar et al.7 evaluated the asphaltene adsorption and subsequent oxidation in presence 

of alumina with different surface acidity and different particle size. The authors found that for same 

acidic surfaces and different particle sizes, and on surface area basis, the adsorption capacity of 

asphaltenes onto nanoalumina is higher than that of microalumina, while the microalumina has a 

higher catalytic activity than that of nanoalumina, revealing that the textural properties are more 

important than the particle size during the catalytic oxidation of asphaltenes. For different surface 

acidity, and on surface area basis, acidic alumina has the highest adsorption of asphaltenes, and basic 

alumina has the highest catalytic activity toward asphaltene oxidation. Nassar et al.6, 8-10 have also 

tested other nanoparticles on asphaltene adsorption and oxidation (i.e., NiO, Co3O4, Fe3O4, TiO2, 

and CaO). During the adsorption process, the authors observed a monolayer adsorption isotherm 

with good fitting to the Langmuir model. The adsorption capacity followed the trend CaO > Co3O4 

> Fe3O4 > MgO > NiO > TiO2. After the adsorption process, the authors evaluated the catalytic 



50 Nanoparticles for in-situ upgrading and inhibition of formation damage 

 

activity of the nanoparticles; the oxidation temperature of asphaltene decreased by 140, 136 and 

100°C relative to the non-catalytic oxidation of virgin asphaltenes in the presence of NiO, Co3O4, 

and Fe3O4 nanoparticles, respectively. Further, the nanoparticles significantly decreased the 

activation energy, confirming their catalytic activity toward asphaltene decomposition. The authors 

confirmed that the asphaltene adsorption/oxidation is metal oxide specific. Similar results were 

observed by the same authors for asphaltenes steam gasification/cracking and thermal decomposition 

under inert conditions.8 For these two processes the catalytic activity also followed the same trend 

NiO > Co3O4 > Fe3O4. A correlation between the adsorption affinity and the catalytic activity of the 

metal oxide nanoparticles was reported, indicating that the higher the adsorption affinity the better 

the catalytic activity of the nanoparticles.8, 25 A similar study, but for Iranian n-C7 asphaltenes, were 

reported by Hosseinpour et al.26, 27 The authors used metal oxide nanoparticles similar to the ones 

reported by Nassar et al9 for adsorption and subsequent oxidation and pyrolysis of Iranian 

asphaltenes and also found that the outcome gases in the process are particle-type dependent,27 

confirming the catalytic role of the selected metal oxide nanoparticles.  

 

More recently, Cortés et al.28 and Franco et al. 37  has developed several studies on the adsorption of 

n-C7 asphaltenes extracted from Colombian crude oils using NiO nanoparticles supported onto 

nanoparticles of silica and alumina,29-31 respectively. Authors found that the selected nanoparticles 

have high adsorptive capacities and the adsorption equilibrium time was very short (i.e., about two 

minutes).30 Also found that these kinds of materials do not allow the formation of multilayers 

adsorption, hence facilitating later processes of asphaltenes such catalytic thermal cracking and 

inhibition of formation damage.29-31 It is worth noting here that all the reported studies have 

confirmed that nanoparticles are effective adsorbents and catalysts for adsorption and thermal 

decomposition of heavy hydrocarbons and enhancing heavy oil upgrading and recovery as well. 

Owing to the complex structure of HO, heavy hydrocarbon species like asphaltenes can be adsorbed 

onto the nanoparticle surfaces as colloidal aggregates, micelles, or single molecules, depending on 

their concentration and experimental conditions. Hence, the changes in the colloidal state of the 

asphaltenes can impact the catalytic activity of the nanoparticle surfaces.  

 

However, none of the aforementioned study correlates the self-association of asphaltenes with the 

adsorption affinity or catalytic activity of the nanoparticle surfaces. Although some authors reported 

multilayer adsorption according to the adsorption isotherms they obtained, there was no evidence 

about the effect of the size of the asphaltene aggregate on the catalytic activity of nanoparticle 

surface. Thus, it is very important to have an estimation of the asphaltene aggregate on the catalyst 

surface as larger aggregates could result in reducing the catalytic activity of the catalyst, even up to 

a point where there is no catalytic effect of the nanoparticle on asphaltene decomposition. Further, 

until now the evaluation of metallic and/or multi-metallic oxides supported and unsupported 

nanoparticles on asphaltenes adsorption and subsequent thermal decomposition processes for 

enhancing HO and EHO upgrading and inhibition of asphaltene formation damage is not yet fully 

understood. Therefore, there is a need to study and evaluate the effect of the chemical nature of the 

interaction of asphaltene-nanoparticle to obtain a better understanding of the mechanisms of the 

aforementioned processes. Hence, this chapter is aimed at synthesizing and applying different types 

of supported and unsupported nanoparticles for adsorption and subsequent catalytic thermal 

decomposition of the adsorbed asphaltenes under different atmospheres. In addition, a correlation 

between adsorption affinity, extent of asphaltene aggregation and catalytic activity is for the first 

time established using the solid-liquid equilibrium adsorption model (SLE model) and the OFW 

isoconversional method.  
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2.1 Experimental 

Synthesized SS nanoparticles, CNS and commercial nanoparticles were employed for the adsorption 

and subsequent oxidation of n-C7 asphaltenes extracted from three different crude oils. Further, CS 

nanoparticles functionalized with NiO and/or PdO were used for the evaluation of the enhancement 

of the adsorption capacity and catalytic active towards asphaltenes thermal decomposition under 

different atmospheres. Also, CAl and CTi nanoparticles were evaluated as an alternative ceramic 

support for the NiO and PdO nanocrystals. Adsorption experiments were carried out trough batch-

mode adsorption experiments and catalytic activity of nanoparticles was evaluated trough TGA/DSC 

analyses. SLE model and OFW method were employed for adsorption isotherms modeling and 

estimation of effective activation energies of n-C7 asphaltenes decompositions, respectively.  

2.1.1 Materials 

Detailed information about employed nanoparticles can be found in Chapter 1. Two different crude 

oils AK9 and AK18 from the Akacías field and one from Capella field (Capella HO) were used as 

source of n-C7 asphaltenes. The Akacías and Capella fields are located in the Meta and 

Puntumayo departments in center and south regions of Colombia, respectively. Table 2.1 shows 

some properties of the selected crude oils. n-heptane (99%, Sigma-Aldrich, St. Louis, MO) was 

used for n-C7 asphaltene isolation. After n-C7 asphaltenes extraction, n-C7 asphaltenes were 

dissolved in toluene (99.5%, Merk KGaA, Germany) for preparing a stock solution of 2000 

mg/L.  

Table 2.1. Properties of selected crude oil samples and their extracted n-C7 asphaltenes at 25°C. 

Crude Oil API gravity (degrees) Viscosity (cP) Asphaltenes content (wt%) 

AK9 7.2 5.6  106 13.1 

AK18 7.9 2.5 105 11.9 

Capella 10.9 4.8 105 9.0 

 

2.1.2 Methods  

 Batch-mode adsorption experiments 

Batch- mode adsorption experiments were carried out in a set of 10 mL vials by mixing 100 mg 

nanoparticles with 10 mL of the prepared heavy oil solution containing a known concentration of 

asphaltenes at different temperatures between 25 and 55°C. Subsequently, the mixtures were agitated 

at 200 rpm by placing the vials in a temperature-controlled incubator and were allowed to equilibrate 

for 24 h because that was the amount of time needed to ensure equilibrium. The mixture was 

separated by allowing the nanoparticles containing the adsorbed asphaltenes to precipitate and by 

decanting the supernatant. The residual asphaltene concentration in the supernatant was measured 
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using UV−vis spectrophotometry37 with a Genesys 10S (Thermo Scientific, Waltham, MA) 

spectrophotometer at a defined wavelength according to the n-C7 asphaltene in evaluation. A 

calibration curve of the UV−vis absorbance at the respective wavelength against the n-C7 asphaltene 

concentration was established using standard laboratory-made model solutions with known 

concentrations. For high asphaltene concentrations (>250 mg/L), the solutions were diluted with 

toluene to the desired absorbance value, and the actual concentration was estimated by multiplying 

the obtained concentration by the dilution factor. Accordingly, the amount adsorbed ( ) of 

asphaltenes per surface area of nanoparticles is estimated with a simple mass balance as described 

by Eq. 2.1: 

 
(2.1) 

where,  and  both in units of mg/L are the initial and equilibrium concentrations of asphaltenes 

in solution, respectively;  is the solution volume in liters and  is the dry surface area of 

nanoparticles in m2. 

 Thermogravimetric analyses of n-C7 asphaltenes  

The thermogravimetric analyses were carried out with a thermos gravimetric TGA Q50 analyzer and 

a differential scanning calorimeter DSC Q20 analyzer from TA Instruments, Inc. (New Castle, DE) 

by heating the virgin n-C7 asphaltenes and n-C7 asphaltenes in presence of nanoparticles under the 

desired atmosphere from 30 °C to 800°C at three rates (5, 10, and 20°C/min). Air, Ar, and Ar 

saturated with and H2O(g) were used in the oxidation, pyrolysis and gasification processes, 

respectively. The sample mass was kept low the diffusion limitations (ca. 5 mg).9 The gas flow rate 

was fixed at 100 cm3/min throughout the experiment. In the case of gasification process, to allow the 

steam to be present above the sample in excess, the H2O(g) was introduced into the system using a 

saturator filled with distilled water at a desired temperature controlled with a thermostatic bath. 

Before the samples were transferred for TGA analysis, they were dried overnight in a vacuum oven. 

The nanoparticles selected for TGA analysis have the same amount of asphaltenes/surface area (ca. 

0.2 mg/m2). Details of apparatus calibration can be found in Chapter 1, Section 1.1.3. The produced 

gases were analyzed using a coupled FTIR spectrophotometer IRAffinity-1 (Shimadzu, Japan) 

operating in transmission mode at a resolution of 2 cm-1 with 16 scans per minute in the range of 

4000–400 cm-1. This TGA–FTIR assembly has been recently used to investigate the gases produced 

in catalytic reactions of asphaltenes decomposition in presence of nanoparticles due to their 

simplicity and flexibility.27 The FTIR allows the online measurement of the produced gases in real 

time, avoiding delays in the sampling that could be present in other techniques. The characteristic 

intensity of the adsorption bands centered at 2143 cm-1 for CO and 1304 and 3016 cm-1 for CH4 were 

used to obtain the gas evolution profiles and were normalized based on the highest signal. The lower 

limits for CO andCH4 measurement were sensitive enough for this purpose within 9.4 and 6.9 ppm, 

respectively. Additionally, the upper limits for the measurement were 3750 ppm for CO and 2750 

ppm for CH4. To estimate the amount of coke formed after gasification was complete, the sample 

was exposed to an oxidative atmosphere with an airflow of 100 mL/min from 30 to 900°C at a fixed 

heating rate of 20°C/min. 

q
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2.2 Modeling 

The solid-liquid equilibrium model (SLE) is used for describing the adsorption isotherms of 

asphaltenes on nanoparticles and for estimating the thermodynamic properties of adsorption. 

Corrected Ozawa-Flynn-Wall method (OFW) is employed for estimating the effective activation 

energies and describing the kinetic mechanism of the catalytic thermal decomposition of n-C7 

asphaltenes.  

2.2.1 Solid-Liquid equilibrium model (SLE)  

The adsorption isotherm of n-C7 asphaltenes onto nanoparticles is described by using the association 

theory suggested by Talu and Meunier32 for the adsorption of associating molecules in micropores 

and further developed by Montoya et al.33 for describing the adsorption isotherms of self-assemble 

asphaltenes onto non-porous surfaces. The model is expressed as follows:33  

exp
1

E

m

H
C

K q A

 



 
  

  
 (2.2) 

where (mg/m2) is the maximum adsorption capacity,  is the measured Henry’s law constant, 

which is only a function of temperature, and an indicator of the adsorption affinity (i.e., the strength 

of interactions for adsorption) of asphaltenes onto nanoparticle surface. The lower the  value (i.e., 

higher Henry’s constant) is the higher the affinity (i.e., the active sites are in locations which are 

easily accessible by asphaltenes).  is constant and an indicator of rapid association of asphaltenes 

molecules once the primary sites are occupied. A (m2/mg) is the measured surface area per mass 

of nanoparticles and CE (mg/g) is the equilibrium concentration of asphaltenes. The other 

parameters are defined as follows:  

TK RT
K

A
   (2.3) 
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where,  is a constant defined as  

m

m

q q
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q q


 
  

 
 (2.5) 

 is the amount adsorbed (mg/m2) and KT is the reaction constant for dimer formation. For describing 

the thermodynamic properties of asphaltene adsorption, a five-parameter-temperature independent 

SLE model is used. In this case, and  parameters in Eq. 2.2 are replaced by the following 

correlations:33 
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 (2.7) 

where and are related to the reaction entropy and reaction enthalpy of asphaltenes adsorption 

on the nanoparticles surface and  is the absolute temperature. Accordingly, the change in standard 

entropy ( ) and standard enthalpy ( ) are calculated as follows 

 (2.8) 

 (2.9) 

Using the Gibbs equation,34 the change in Gibbs free energy can be estimated as follows: 

 (2.10) 

The accuracy of the model was evaluated through the root-mean-square error (RMSE%) using the 

excel package:
35

 

2.2.2 Effective activation energy estimation: The corrected Ozawa-

Flynn-Wall Model 

The corrected Ozawa-Flynn-Wall Model (OFW) give us an estimate of the effective activation 

energies assuming that for a constant reaction conversion, the reaction rate (Eq. 2.11) is function of 

the temperature and the state.36, 37  

exp ( )
Ed

A f
dt RT







 
  

 
 

(2.11) 

with A (1/s) as the pre-exponential factor, E (kJ/mol) the effective activation energy for a constant 

conversion, R (J/mol∙K) the ideal gas constant, T (K) the reaction temperature and the reaction 

conversion described by Eq. 2.12: 
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where 0m is the initial mass of the sample; fm the final mass of the sample and the mass 

at a given temperature. Defining the heating rate as /dT dt   and integrating, Eq. 2.13 is 

obtained: 
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The right hand side of Eq. 2.13 is solved by a commonly approach employed for isoconversional 

methods by defining /x E RT   and applying the Doyle approximation. 38, 39 After arrangement, 

the effective activation energy at each value of  can by estimated from the slope of the linear fit 

from the plot of ln( ) against 1/ T  according to Eq. 2.14:37, 40, 41 

ln( ) ln 1.052
205.54 ( )

A E E

R g RT

  


 
  

 
 (2.14) 

The error in the estimation of E  due to Doyle’s approximation is corrected using a correction factor 

as showed in Eq. 2.15:37, 42, 43 

, / ( )corrected mE E F x   (2.15) 

with,   

/m mx E RT  (2.16) 

2

7.770439
( ) 0.94961 1

1 4.56092 0.48843
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x
F x

x x

 
  

  
 (2.17) 

where mT (K) is the mean temperature at determined value of selected  .   

 Estimation of the thermodynamic parameters of the transition state functions 

Thermodynamic parameters of the transition state functions such as changes in the Gibbs free energy 

(
‡G ), enthalpy (

‡H ) and entropy (
‡S ) of activation are of importance in the understanding of 

the catalytic role of the SHS’s nanoparticles. A conversion of 50% at a fixed heating rate of 5°C/min 

was used for the estimation of the thermodynamic parameters at the respective temperature pT (K). 

Hence, 
‡G can be estimated as shown in Eq. 2.18:   

‡ ‡ ‡

pG H T S      (2.18) 

where 
‡H can be approximated to 

‡ ‡

pH E RT   , with 
‡E as the effective activation energy at 

the selecte.45 In addition, after arrangement of the Arrhenius and Eyring equations,37, 44-46 
‡S can 

be estimated as follows:  

‡ ln
p B

A h
S R

eT k


 

    
 

 (2.19) 

where h (6.6261 x 10-34 J∙s) is the Planck’s constant; e (2.7183) is the Neper number and Bk (1.3806 

x 10-23 J/K) the Boltzmann’s constant. The pre-exponential factor A can be estimated from the 

intercept of the linear plots of ln[ ( )]g  against ln( ) according to Eq. 2.14. The n-order kinetic 
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expressions 
1(1 ) 1n     and  

1
1

1

n

n



were used for the estimation of the best-fit chemical 

reaction models ( )g  and ( )f  , respectively. n is the mechanism order and was estimated as the 

value where the slope and the 
2R of the linear plots of ln[ ( )]g  against ln( ) are equal to -1.0 and 

1.0, respectively.  

2.3 Results and discussions 

2.3.1 Effect of n-C7 asphaltenes origin on their adsorption and 

subsequent catalytic oxidation 

 Adsorption of n-C7 asphaltenes from different origin over CS nanoparticles  

A number of factors can influence the adsorption of asphaltenes onto nanoparticles; including 

adsorbent surface chemistry, heterogeneity of adsorbent surface, particle size, asphaltenes chemical 

structure, heteroatom content, etc.47 Figure 2.1 shows the experimental data of adsorption isotherms 

of Capella, AK9 and AK18 n-C7 asphaltenes onto nanoparticles of CS together with the SLE model 

fits. As seen, there is excellent agreement between the model and experimental results. The values 

of the obtained model parameters and their corresponding RSME% values are presented in Table 

2.2. Further, for all cases, the obtained adsorption isotherms followed Type I behavior according to 

the International Union of Pure and Applied Chemistry (IUPAC).148 This is could be due to the strong 

interaction between the functional groups present on the asphaltene structure and the Si-OH group 

of the CS nanoparticle surface,49 in agreement with previous studies on the adsorption of n-C7 

asphaltenes over silica nanoparticles.29, 31 As observed in Figure 2.1, adsorption isotherms are similar 

for n-C7 asphaltenes extracted from crude oils from the Akacías field and present a higher uptake 

than that for Capella n-C7 asphaltenes. This results indicate that the asphaltenes origin strongly 

influences their adsorption over CS nanoparticles. However, for asphaltenes from the same reservoir 

it could be said that there is a similar uptake. Regarding to the SLE model, from Table 2.2 it can be 

observed that the H parameter follows the order Capella > AK18 > AK9, indicating that the 

adsorption affinity is highest for AK9 n-C7 asphaltenes. This is in agreement with the shape of the 

adsorption isotherms that indicates that bigger slopes in the Henry’s region (low CE) are indicative 

of higher affinity between the adsorbent – adsorbate couple.31  It is worth to mention that a direct 

relationship was found between the crude oil API gravity and the H parameter (adsorption affinity) 

of the SLE model: as the API gravity increases, the adsorption affinity decreases.   

                                                           
1In general, adsorption isotherms of n-C7 asphaltenes in this work followed a Type I behavior according to 
the IUPAC. Although other classifications exists, IUPAC scheme is the most used for description of 
asphaltenes adsorption over nanoparticles. Actually, IUPAC reports six different types of adsorption 
isotherms. Differences among the different types could be attributed to many factors that are involved in 
the adsorbate – adsorbate and adsorbate – adsorbent surface interactions. 
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Figure 2.1. Adsorption isotherms of n-C7 asphaltenes from different sources over CS nanoparticles 

at 25°C.  

 

Thermodynamic studies are important for understanding the temperature effects on the adsorption 

of asphaltenes on different nanoparticle surfaces. Panels a-c from Figure 2.2 show the adsorption 

isotherms for Capella, AK9 and AK18 n-C7 asphaltenes onto CS nanoparticles at 25, 50 and 55°C 

together with the five-parameters SLE model fits. For all systems, the amount of adsorbed 

asphaltenes decreases as the temperature increases because asphaltene adsorption onto nanoparticle 

surfaces is an exothermic process, while temperature affects the colloidal state of the asphaltenes.2 3, 

24, 29, 50, 51 This could be explained as the solubility of n-C7 asphaltenes increases, they tend to stay 

more in the liquid phase than in the adsorbed phase. Further, the increase in the system temperature 

can influence the degree of n-C7 asphaltenes self-association and subsequently decrease the size of 

the asphaltenes aggregates. 25 In addition, the increase of the temperature could result in the reduction 

of Si−OH groups and, consequently, the number of sites available for adsorption is decreased.49, 52 

The values of the obtained model parameters, their corresponding errors and the estimated 

thermodynamic parameters are listed in Table 2.3. The negative 
0

adsG  values reveal the feasibility 

and spontaneity of the adsorption processes; specifically, the adsorption process is spontaneous and 

thermodynamically favorable. The negative values of the standard enthalpy change (
0

adsH ) 

confirmed the exothermic nature of the sorption process. The positive values for the standard entropy 

change (
0

adsS ) were caused by the increased randomness at the solid−liquid interface during the 

sorption process. These findings agree with those reported by Nassar et al.,24 Cortés et al.,28 and 

Franco et al.37 for the adsorption of different asphaltenes onto different nanoparticle surfaces.  

 

 

                                                           
2 Decrease in the amount adsorbed as system temperature increases is a common behavior in the adsorption 
phenomena of n-C7 asphaltenes over solid surfaces and was observed for all adsorption isotherms obtained 
in this document. 
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Figure 2.2. Adsorption isotherms of n-C7 asphaltenes extracted from a) Capella, b) AK9 and c) 

AK18 crude oils over CS nanoparticles at different temperatures.  

 

Table 2.2. Estimated SLE model parameters for n-C7 asphaltenes from different sources adsorption 

over CS nanoparticles at 25°C. 

n-C7 

asphaltene 
H  (mg/g) K  (g/g) × 10-4 mq  (mg/m2) 2R  %RSME  

Capella 2.13 4.39 0.47 0.99 6.69 

AK9 0.99 4.46 1.18 0.99 3.93 

AK18 2.02 4.51 2.89 0.99 8.72 
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 Catalytic thermal oxidation of n-C7 asphaltenes from different origin in absence and 

presence of CS nanoparticles  

Catalytic thermal oxidation of n-C7 asphaltenes was performed to obtain insight into the effects of 

the selected nanoparticles under thermogravimetric conditions. The oxidation tests were carried out 

in an air atmosphere for a specific asphaltene loading in every sample (ca. 0.20 mg/m2), and each 

sample had a minimal mass to preclude any mass-transfer limitations. Panels a-d of Figure 2.3 show 

a) Comparison of rate of mass loss for oxidation of virgin n-C7 asphaltenes extracted from different 

crude oils and rate of mass loss of n-C7 asphaltenes oxidation in presence of CS nanoparticles for b) 

Capella, c) AK9 and d) AK18 samples. It can be observed from Figure 2.3a that for the three different 

n-C7 asphaltenes evaluated, there is no significant mass change in the asphaltenes below 300°C. 

However, for higher temperatures the asphaltenes underwent thermal cracking, and above 580°C, 

the oxidation to form gaseous products was complete. These results agree with those of Nassar et 

al.,4 who studied the rate of mass loss in asphaltenes obtained from the Athabasca bitumen. 

 

From the rate of mass loss plot, it can be observed that for the three samples there are two main peaks 

located between 430 and 500°C, indicating that the asphaltene decomposition occurs in different 

steps, initiating by thermal cracking with low-temperature oxidation followed by complete oxidation 

to gaseous products. Before 450°C, the mass loss could correspond to the oxidation of the aliphatic 

moieties of asphaltenes, and for the peaks observed after 450°C may correspond to opening and 

oxidation of the PAH core.27 It can also be observed from Figure 2.3a that for n-C7 asphaltenes from 

the same reservoir the oxidation starts and finishes at approximately the same temperature. The only 

difference lies in the height of each peak, being the one at lower temperatures smaller for AK9 n-C7 

asphaltenes than that of AK18 n-C7 asphaltenes and could be due to the different proportions between 

the aliphatic and aromatic moieties in both samples. Oxidation of Capella n-C7 asphaltenes occurred 

later than for n-C7 asphaltenes from Akacías field, possible due to a larger PAH core that results in 

a more refractory molecule. Regarding to n-C7 asphaltenes catalytic oxidation in presence of CS 

nanoparticles, it can be clearly seen from Figure 2.3b-d that in all cases the temperature of maximum 

rate of mass loss was reduced. In comparison with the first peak in the rate of mass loss plots for 

each asphaltene, the temperature was reduced about a 18, 14 and 15% for Capella, AK9 and AK18 

n-C7 asphaltenes, respectively, indicating that the CS nanoparticles catalyze asphaltene oxidation 

and that the catalytic activity is in a certain way influenced by the n-C7 asphaltenes chemical nature.  

 

 

It is worth to mention that for all cases of n-C7 asphaltenes decomposition in presence of 

nanoparticles, noise from mass loss from the support was corrected. Nevertheless, as an example and 

in order to corroborate that mass loss is occurring due to asphaltenes, in Figure 2.4 is shown the plot 

of heat flow that describes the heat changes that occurred during oxidation for Capella n-C7 

asphaltenes in absence and presence of CS nanoparticles. According to Figure 2.4, the mass loss is 

not exothermic until 470 °C, when the complete oxidation to gaseous products by the presence of air 

occurs, as revealed by the similarity between the curves in Figure 2.3b and 2.4 for the virgin n-C7 

asphaltenes in this region. However, for the asphaltene oxidation with CS nanoparticles, the 

oxidation temperature decreased to 355 °C, indicating that the nanoparticles catalyze asphaltene 

oxidation. Figure 2.4 illustrates an exothermic behavior similar to that of the virgin asphaltenes 

except that it occurs at a temperature near the oxidation temperature of the asphaltenes with CS, 

confirming the catalytic role of CS. 
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Figure 2.3.  a) Comparison of rate of mass loss for oxidation of virgin n-C7 asphaltenes extracted 

from different crude oils and rate of mass loss of n-C7 asphaltenes oxidation in presence of CS 

nanoparticles for b) Capella, c) AK9 and d) AK18 samples.  

Table 2.3. Estimated parameters of the five-parameter SLE model and thermodynamic properties 

for n-C7 asphaltenes from different sources adsorption over CS nanoparticles at 25°C. 

n-C7 

asphaltene 

Temperature 

(°C) 0H  1H  0K  1K  mq  

(g/g) 

-
0

adsG

(kJ/mol) 

-
0

adsH

(kJ/mol) 

-
0

adsS

(J/mol∙K) 

2R  
%RSME

 

Capella 

25 

14.19 

    28.48     

40 -4396.97 3.48 -2388.31 0.21 28.93 19.86 28.95 0.99 2.71 

55     29.35     

            

AK9 

25 

3.79 

    50.29     

40 -915.62 10.16 -3019.93 0.27 51.56 25.10 84.52 0.99 0.86 

55     52.83     
            

AK18 

25 

6.24 

    34.58     

40 1174.39 7.16 -2025.07 0.83 35.47 16.83 59.54 0.99 6.77 

55     36.36     
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Figure 2.4.  DTA-plot heat flow as a function of temperature for Capella n-C7 asphaltenes oxidation 

in absence and presence of CS nanoparticles. 

To further validate the catalytic activity of the nanoparticles, the isoconversional OFW method was 

used for estimating the effective activation energies using TGA mass loss rate measurements 

performed at heating rates of 5, 10 and 20°C/min. Panels a-c in Figure 2.5 show plots of conversion 

for virgin a) Capella, b) AK9 and c) AK18 n-C7 asphaltenes as a function of temperature at three 

different heating rates. As anticipated, the rate of mass loss changes with the heating rate: at a fixed 

temperature, a slower heating rate yields a higher conversion3. Conversion plots of n-C7 asphaltenes 

in presence of CS nanoparticles presented the same behavior as function of the heating rate than that 

of virgin n-C7 asphaltenes. 

Panels a-d from Figure 2.6 show the estimated effective activation energies ( E ) by the  

Ozawa−Flynn−Wall (OFW) method as a function of the conversion for oxidation of a) virgin 

Capella, AK9 and AK18 n-C7 asphaltenes and b) Capella, c) AK9 and d) AK18 n-C7 asphaltenes in 

presence of CS nanoparticles. In the case of virgin n-C7 asphaltenes (Figure 2.6a) the E  decreases 

with conversion and might occur because the virgin n-C7 asphaltenes undergo thermal cracking in a 

more “homogeneous” step; there is no discrimination based on the self-association of the 

asphaltenes. However, the adsorption process onto the CS nanoparticle surfaces from the oil model 

solution might first adsorb the smaller asphaltene aggregates that reach the nanoparticles via 

diffusive processes before the larger aggregates are adsorbed in a new layer. Therefore, the catalysts 

must react with the asphaltenes in the initial layer (i.e., asphaltenes with lower molecular weight) 

first before interacting with the asphaltenes in other layers. In general, the values of E were 

estimated to be in the range between 200 and 100°C for the minimum and maximum values of 

conversion, respectively. Figure 2.6b-d indicates that below certain value of conversion, the E  for 

n-C7 asphaltenes oxidation lowered dramatically in the presence of CS nanoparticles, favoring the 

                                                           
3 In this work all conversion curves showed the same trend as function of the employed heating rate and 
effective activation energies were calculated in the range of conversion were curves do not overlap in order 

to avoid overestimation of E . 
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catalytic activity. Values of E in presence of CS nanoparticles could indicate that due to addition 

reactions more refractory compounds that need more energy for being cracked could be formed over 

the catalyst surface, corroborating the influence of the asphaltene origin on the catalytic activity of 

the nanoparticles. In this sense, from Figure 2.6 it could be said that Capella n-C7 asphaltenes are the 

“hardest to crack” and would need a nanoparticle with higher catalytic activity. 

 

 
 

 

Figure 2.5. Conversion for oxidation of virgin n-C7 asphaltenes extracted from a) Capella, b) AK9 

and c) AK18 crude oils.  
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Figure 2.6. Effective activation energies by the Ozawa−Flynn−Wall (OFW) method as a function 

of the conversion for oxidation of a) virgin Capella, AK9 and AK18 n-C7 asphaltenes and b) Capella, 

c) AK9 and d) AK18 n-C7 asphaltenes in presence of CS nanoparticles.  

2.3.2 n-C7 asphaltenes adsorption and subsequent catalytic oxidation 

using SS nanoparticles and CNS. 

 Adsorption of n-C7 asphaltenes over SS nanoparticles and CNS 

Adsorption isotherms were constructed for a fixed asphaltene following the procedure described in 

Section 1.1.2. AK9 n-C7 asphaltenes were selected for adsorption experiments. Panels a,b from 

Figure 2.7 show the adsorption isotherms  of  AK9 n-C7 asphaltenes over a) SS nanoparticles and b) 

CNS at 25°C together with the SLE model fitting. Also, Table 2.4 resumes the estimated SLE model 

parameters. As observed in Figure 2.7a, all SS nanoparticles showed higher AK9 n-C7 asphaltenes 

uptake than CS nanoparticles. The trend of AK9 n-C7 asphaltenes uptake and the adsorption affinity 

is SSB6 > SSA6 > SSA3, indicating that the amount adsorbed increases and the interactions 

asphaltenes – nanoparticle become greater by increasing the amount of the silicate precursor (see 

Chapter 1 for full nanoparticles information). Also, it is worth to mention that a higher amount 
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adsorbed was obtained for smaller materials and could be due to a higher exposition of the functional 

groups over the adsorbent surface and an enhanced mobility in the bulk phase of the solution. The 

adsorption process of asphaltenes onto the silica surface occurs mainly due to the Si−OH functional 

group on the material surface. The theoretical value of the point of zero charge (pHpzc) for pure 

silica corresponds to a pH value of 2.0,53 and generally for commercial silica the pHpzc < 3.5.54 This 

indicates that the nature of the adsorbent surface is acidic and would be more prone to attract 

hydroxyl groups present on the asphaltene molecules.55  

Regarding to the CNS, it is observed that CNS300 presents a higher amount of adsorbed asphaltenes 

and higher affinity than CNS150 and could be directly influenced by the lower particle size and 

higher surface area of CNS300. However, it is observed that the amount adsorbed is an order of 

magnitude lower than for SS nanoparticles and could be due to the basic nature of the CNS surface.56 

Bailón-García et al.56 synthesized microspheres of carbon xerogel of 250 nm in diameter and found 

that the synthesized material had a basic surface with a pHpzc = 8.73. Xing et al.57 reported that the 

asphaltenes adsorbed onto basic surfaces present higher concentrations of sulfur; however, the total 

adsorbed amount of the asphaltenes was lower, compared with the adsorbed amount over acid 

surfaces, which bind more quickly or strongly to lower sulfur-containing species.57, 58 

 

 

  

Figure 2.7. Adsorption isotherms of AK9 n-C7 asphaltenes over a) SS nanoparticles and b) CNS at 

25°C. 

Table 2.4. Estimated SLE model parameters for AK9 n-C7 asphaltenes adsorption over SS 

nanoparticles and CNS at 25°C. 

Material  H  (mg/g) K  (g/g) × 10-4 mq  (mg/m2) 2R  %RSME  

SSA3 3.22 4.50 7.25 0.98 7.22 

SSA6 2.93 4.57 8.37 0.99 2.92 

SSB6 2.51 4.68 8.74 0.98 7.61 

CNS150 4.80 4.01 0.40 0.99 2.59 

CNS300 2.06 4.04 0.57 0.99 5.70 
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Table 2.5 lists the obtained thermodynamic parameters and the estimated values of the five-

parameter SLE model parameters for all synthesized nanoparticles. As observed, for SS 

nanoparticles and CNS, the negative values of 
0

adsG  also showed the spontaneity of the adsorption 

process of n-C7 asphaltenes over the selected materials, being “more spontaneous” for the CNS than 

for SS nanoparticles. Also, 
0

adsH and 
0

adsS followed the same behavior than that observed for CNS 

nanoparticles.  

 

Table 2.5. Estimated parameters of the five-parameter SLE model and thermodynamic properties 

for AK9 n-C7 asphaltenes over SS nanoparticles and CNS at 25°C. 

Material 
Temperature 

(°C) 0H  1H  0K  1K  mq  

(g/g) 

-
0

adsG

(kJ/mol) 

-
0

adsH

(kJ/mol) 

-
0

adsS

(J/mol∙K) 

2R  
%RSME

 

SSA3 

25 

8.48 

    80.20     

40 -2039.13 0.28 -9561.96 0.33 81.22 79.50 2.33 0.98 7.18 

55     82.24     

            

SSA6 

25 

8.69 

    67.77     

40 -2006.60 12.24 -4503.01 0.41 68.78 37.44 101.77 0.99 1.34 

55     69.80     

            

SSB6 

25 

4.77 

    42.34     

40 -868.29 9.49 -1046.53 0.42 43.41 86.86 78.90 0.99 0.99 

55     44.45     

            

CNS150 

25 

14.39 

    154.82     

40 -111.82 52.98 -2832.88 0.22 159.22 23.55 44.50 0.98 6.98 

55     163.33     

            

CNS300 

25 

1.08 

    108.28     

40 -590.02 11.68 -9542.5 0.85 109.25 79.34 97.11 0.98 6.75 

55     110.22     
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 n-C7 asphaltenes catalytic oxidation in presence of SS nanoparticles and CNS 

Figure 2.8 shows the rate of mass loss and E for oxidation of AK9 n-C7 asphaltenes in presence of 

a) and b) SS nanoparticles and c) and d) CNS, respectively.  As observed, for all synthesized 

materials the temperature of n-C7 asphaltenes decomposition shifted to lower temperatures (Figure 

2.8 a and c) in comparison with the virgin AK9 n-C7 asphaltenes. Regarding to the SS nanoparticles, 

a one main peak is observed in the rate of mass loss for the three evaluated materials at about 360 ± 

2°C, representing a 16% of reduction in the temperature of oxidation of selected asphaltenes. This 

result indicates that the chemical properties of silica nanoparticles such as particle size, surface area 

and chemical composition have a more important effect in the adsorption process than in the n-C7 

asphaltenes oxidation and is especially true for nanoparticles obtained from the same synthesis route 

as observed for SSA materials. Same observations can be made for CNS in Figure 2.8c, were it is 

observed that the shape of the rate of mass loss curve for CNS150 is similar than that of CNS300.  

 

  

  

 Figure 2.8.  Rate of mass loss and effective activation energies by the Ozawa−Flynn−Wall (OFW) 

method as a function of the conversion for oxidation of AK9 n-C7 asphaltenes in presence of a) and 

b) SS nanoparticles and c) and d) CNS, respectively.   
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However, the maximum of n-C7 asphaltenes oxidation appears 30°C earlier for CNS300 than for 

CNS150 and could be due to the presence of some Cs from the polymerization catalyst that affected 

the decomposition of asphaltenes. For all synthesized materials, the trend of E  for asphaltene 

gasification in the presence of nanoparticles is opposite of that of virgin n-C7 asphaltenes, showing 

a markedly lower effective activation energy compared with that of virgin n-C7 asphaltene oxidation. 

Thus, the trend of effective activation energy is affected by the nanoparticles present due to the 

occurrence of different reaction mechanisms. In general, the values of E for CNS were lower than 

those for SS nanoparticles. It is also observed that for the asphaltenes adsorbed over CNS, the 

pathway followed by E  is similar to an upward shift as the resorcinol:Cs2CO3 molar increases, 

suggesting that the mechanisms involved are similar for the both samples. 

 

2.3.3 SHS nanoparticles for n-C7 asphaltenes adsorption and subsequent 

catalytic cracking. 

Capella n-C7 asphaltenes were selected as adsorbate for the adsorption and oxidation tests in 

presence of SHS nanoparticles due to, when comparing asphaltenes from different sources, it was 

the sample with lower amount adsorbed and were “hardest to crack” (See Section 2.3.1). SHS 

nanoparticles are composed by a CS nanoparticulated support functionalized with NiO and/or PdO 

nanocrystals according to the protocol defined in Chapter 1, Section 1.1.2. Additionally, 

characterization of SHS nanoparticles can be found in Chapter 1. 

 Adsorption of n-C7 asphaltenes over SHS nanoparticles 

Figure 2.9 shows the experimental data of adsorption isotherms of Capella n-C7 asphaltenes onto 

selected SHS nanoparticles together with the SLE model fits. SHS’s clearly adsorbed more n-C7 

asphaltenes than CS across the entire range of asphaltene concentrations; the difference was more 

noticeable at higher concentrations (CE > 200 mg/L). The sorption isotherms for every sample 

revealed an increase in the adsorbed n-C7 asphaltene content as the n-C7 asphaltene concentration 

increased. In Figure 2.9, the CS and SHS samples evaluated in this study demonstrated a high affinity 

for asphaltene sorption. At the concentrations at which samples were compared (0−200 mg/L), the 

asphaltene uptake was higher for CSPd2 and CSNi2 than for CSPd1 and CSNi1; however, the 

amount adsorbed was the highest on CSNi1Pd1 due to the intermolecular forces between the most 

polar components of the asphaltenes (mainly functional groups and heteroatoms), the NiO and/or 

PdO particles present on the silica surface, the high concentration of the metal oxides, and the high 

dispersion of the NiO/PdO particles across the hybrid nanomaterial surface (Chapter 1, Table 1.2).. 

However, the synthesized SHS revealed a high affinity for asphaltene sorption. The adsorption 

capacities for the S and SHS samples were ranked as follows: CSNi1Pd1 > CSPd2 > CSNi2≈CSPd1 

> CSNi0.66Pd0.66 > CSNi1 > CS. Further, bimetallic SHS have higher uptake than monometallic 

SHS. This could be because of the synergistic effect of the compounds that enhances the adsorption 

due to the multiple selectivity of the adsorbent.59 In addition, bimetallic compounds have synergistic 

effects in avoiding sintering processes, which would lead to a less heterogeneous surface.60 Hence, 

a heterogeneous adsorbent with multiple selectivity towards n-C7 asphaltenes would be more 

efficient than that with single selectivity. Table 2.6 shows that the adsorption affinity (i.e., lower 

) is higher for the supported nanoparticles, where bimetallic supported on silica showed the highest 

affinity (lowest H value). As for the values of K parameter, it followed the order CS > CSNi2 > 

H
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CSPd2 > CSNi1Pd1. This suggests that silica supported metal oxide nanoparticles are more prone 

to inhibit the asphaltenes self-association over its surface than the virgin CS nanoparticles.  

 

Figure 2.9.  Asphaltene adsorption isotherms onto different surfaces of CS supported SHS 

nanoparticles at 25 °C.  

Table 2.6. SLE model parameters for Capella n-C7 asphaltenes adsorption over SHS nanoparticles. 

Material  H  (mg/g) K  (g/g) × 10-4 mq  (mg/m2) 2R  %RSME  

CSNi1 1.61 4.22 0.91 0.99 2.16 

CSNi2 1.31 3.57 1.12 0.99 3.65 

CSPd1 1.18 3.32 1.05 0.99 6.42 

CSPd2 0.68 2.82 1.07 0.99 2.93 

CSNi0.29Pd1.32 0.92 3.41 1.09 0.99 5.49 

CSNi0.66Pd0.66 2.03 3.12 1.19 0.99 6.75 

CSNi1Pd1 0.29 1.53 1.24 0.98 3.15 
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Materials on the extreme vertices of the SCMD and the bimetallic SCNi1Pd1 sample were selected 

for the thermodynamic studies. Again, there is good agreement between the model and the 

experimental results. The values of the obtained model parameters and their corresponding RSME% 

values are presented in Table 2.7. The estimated thermodynamic parameters are also listed in Table 

2.7. 
0

adsG ,
0

adsH and 
0

adsS followed the same behavior than for CNS, SS and CS nanoparticles as 

presented in previous sections. The trend followed by is CS > CSNi2 > CSPd2 > CSNi1Pd1, 

indicating that bimetallic SHS is more favorable for n-C7 asphaltene adsorption than the 

monometallic SHS. The values of 
0

adsS  followed the order CSNi1Pd1 > CSPd2 > CSNi2 > CS. 

This again supports that silica supported metal oxide nanoparticle pose lower degree of asphaltenes 

self-association onto their surfaces than those of virgin silica nanoparticles.33  

Table 2.7. Estimated parameters of the five parameters SLE model for adsorption of asphaltenes 

onto CSNi2, CSPd2 and CSNi1Pd1 nanoparticles. 

Material 
Temperature 

(°C) 0H  1H  0K  1K  mq  

(g/g) 

-
0

adsG

(kJ/mol) 

-
0

adsH

(kJ/mol) 

-
0

adsS

(J/mol∙K) 

2R  
%RSME

 

CSNi2 

25 

9.32 

    42.86     

40 -2642.94 7.82 -2825.72 0.22 43.71 23.49 64.98 0.98 2.48 

55     44.81     

            

CSPd2 

25 

11.89 

    44.24     

40 -3573.28 8.12 -2901.50 0.24 65.29 24.12 67.52 0.99 4.33 

55     46.27     

            

            

CSNi1Pd1 

25 

8.93 

    49.09     

40 -2956.41 8.93 -3244.74 0.25 50.22 26.98 74.21 0.98 5.97 

55     51.32     

 n-C7 asphaltenes catalytic oxidation in presence of SHS nanoparticles 

n-C7 asphaltenes catalytic oxidation in presence of monometallic SHS: For practical reasons, the 

full range of temperatures used for the thermogravimetric analysis will be divided into three regions 

for all SHSs. The first region corresponds to the low-temperature region (LTR) between 200°C and 

250°C. The second falls between 251°C and 450°C and is called the midtemperature region (MTR). 

The last region covers temperatures from 451°C to 800°C and is the high-temperature region (HTR). 

Because n-C7 asphaltenes are not pure compounds, they exhibit different behaviors during thermal 

decomposition and oxidation because compounds with lower molecular weight oxidize at lower 

o

adsG
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temperatures. Figure 2.10a and 2.10b reveals a) a plot of the rate of mass loss relative to temperature 

and b) the conversion for asphaltenes in the presence of monometallic SHS for a specific amount of 

adsorbed asphaltene (ca. 0.2 mg/m2). As observed, the samples containing palladium oxide exhibit 

a peak in the low temperature range (Figure 2.10a), suggesting that there is a significant change in 

the sample mass due to n-C7 asphaltene oxidation. n-C7  asphaltene oxidation begins at 244°C and 

215°C for CSPd1 and CSPd2, respectively. This temperature reduction reveals that increasing the 

Pd content on the silica surface enhances the catalytic activity. In the MTR region at approximately 

355°C, there is another significant mass loss caused by the oxidation of larger chains. Finally, in the 

HTR region, the heaviest compounds are oxidized. The functionalization of CS nanoparticles with 2 

wt% Pd leads to a higher mass loss in the LTR region, while materials with 1 wt% Pd exhibit the 

opposite effect. Figure 2.10b displays the conversions for CSPd1 and CSPd2. The asphaltene 

oxidation is initiated at essentially the same temperature for both samples (220°C), but when the 

temperature increases, the conversion is higher with CSPd2. For example, at 400°C, the conversions 

are 43 and 58 wt % for CSPd1 and CSPd2, respectively. Further, the presence of Ni on the silica 

surface does not generate a peak in the LTR, indicating that CSPd1 and CSPd2 are better catalysts 

than the nanoparticles functionalized with only nickel oxide. Only two peaks are observed for CSNi1 

and CSNi2. The peaks in the MTR region fall at 316°C and 347°C and are the largest mass losses 

for CSNi1 and CSNi2, respectively. In the HTR, the final asphaltene oxidation step occurs 

approximately at 480°C in both samples. According to Figure 2.10b, below 300°C (before oxidation 

begins), the conversions exhibited by both samples functionalized with Ni are quite similar. 

However, above 300°C, the conversion for CSNi2 is almost 5% higher than that for CSNi1, 

indicating that, similar to the Pd-loaded nanoparticles, increasing the metal oxide content on the 

silica surface enhances the catalytic activity. The conversion with CSNi2 is higher than the 

conversion with SPd2 above 300°C; this result might occur because, between 200°C and 300°C, the 

SPd2 oxidized fraction of the asphaltenes was adsorbed, while CSNi2 had not yet begin its oxidation 

process. 
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Figure 2.10.  a) Plot of rate of mass loss as a function of temperature and b) conversion for n-C7 

asphaltenes oxidation in the presence of monometallic SHS. 

 

n-C7 asphaltenes catalytic oxidation in presence of bimetallic SHS: Two bimetallic samples were 

used to evaluate the effects of using bimetallic catalysts during n-C7 asphaltene oxidation. Figures 

2.11a and 2.11b present a) a plot of the rate of mass loss versus temperature and b) the conversion 

for the n-C7 asphaltene oxidation in presence of bimetallic SHS materials for the same amount of 

asphaltenes used with the monometallic SHSs. Figure 2.11a reveals that both samples exhibited three 

peaks, similar to CSPd1 and CSPd2. The difference is that CSNi1Pd1 has one peak in the MTR (255 

°C) that is very close to the boundary for the LTR. In addition, the peak in the HTR does not represent 

as significant of a mass loss as the other two. A similar observation can be noted for the 

CSNi0.66Pd0.66 samples. Three peaks are observed, with one in each region. The more significant 

mass losses in this case are revealed at 219°C, 347°C, and 517°C for the LTR, MTR, and HTR, 

respectively, with the first being the largest. Clearly, the Pd and Ni exert a synergistic effect during 

n-C7 asphaltene oxidation because having both metals present enhanced the n-C7 asphaltene 

oxidation in the LTR at the expense of the MTR mass loss. Another indication of the synergistic 

effects exhibited by the bimetallic SHS is revealed by the conversion analysis. As observed in Figure 

2.11b, the conversion under these samples begins near 200°C and is higher with CSNi1Pd1. When 

making the same comparison as above, at 400°C, the conversion with CSNi0.66Pd0.66 is 4% higher 

than for CSPd2, while the conversion with CSNi1Pd1 is 94% and therefore 38% higher than for 

CSPd2. The n-C7 asphaltenes are nonpure components; therefore, NiO and PdO could have different 

selectivity for different compounds in the n-C7 asphaltenes. When the CS nanoparticles are 

functionalized with just NiO or just PdO, the catalytic reaction will be based on the compound of 

preference. However, when the CS nanoparticles are functionalized with both PdO and NiO, the 

combination of individual constituents enhances the catalytic activity. As reported by Wu et al.61 

hybrid structures with noble metals such as palladium and non-noble metals such as nickel allow 

better surface electronegativity, leading to more efficient conversion in catalytic processes. 
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Figure 2.11.  a) Plot of rate of mass loss as a function of temperature and b) conversion for n-C7 

asphaltenes oxidation in the presence of bimetallic SHS. 

Gaseous products from n-C7 asphaltenes oxidation in absence and presence of SC and SHS 

nanoparticles: The evolution of gases production was also evaluated using an FTIR device coupled 

to the TGA analyzer. Panels a-e from Figure 2.12 show the evolution of CO, CO2, CH4 and other 

light hydrocarbons production for oxidation of a) virgin n-C7 asphaltenes and n-C7 asphaltenes in 

presence of b) CS, c) CSNi2, d) CSPd2 and e) CSNi1Pd1 at a fixed heating rate of 10°C/min. It is 

worth to mention that the results are normalized based on the signal with highest intensity that 

corresponds to the CO2 production. In all cases, it is observed that the major production corresponds 

to the CO2. The general trend of effluent production increases in the order CO < CH4 < Hydrocarbons 

< CO2. This could be due to the oxygen chemisorption that occurs at low temperatures in the active 

sites of the stacked clusters. As the temperature is increased, light hydrocarbons are released and the 

exposure of the aliphatic moieties in the bulk of the cluster is enhanced, so the oxygen chemisorption 

is also enhanced.6 It is observed that in presence of nanoparticles, the gases production starts at 

earlier temperatures than for virgin n-C7 asphaltenes, corroborating the catalytic effect of the 

nanoparticulated catalysts. 

Minimization of oxidation temperature of n-C7 asphaltenes from SCMD: The temperature where 

the oxidation process begins for each sample was used as a reference when performing the 

minimization. The statistical analysis of the results is generated using the STATGRAPHICS 

Centurion XVI software. Table 2.8 lists the values of i  for the cubic special model of the oxidation 

temperature as a function of the pseudocomponents S′, Pd′, and Ni′. The special cubic model 

validates the experimental data; R2 = 1.0 and suitably predicts the temperature at which the 

asphaltene oxidation begins over any amount of S, Ni, and Pd. The optimal concentration of Ni and 

Pd on the CS surface needed to minimize the asphaltene oxidation temperature is 0.29% Ni and 

1.32% Pd (CSNi0.29Pd1.32). Figure 2.9 depicts the sorption isotherm obtained for CSNi0.29Pd1.32 

(blue line). Below 50 mg/L, the adsorption capacity of the material exceeds that of CSNi1, 

CSNi0.66Pd0.66, and CS. However, above 50 mg/L, only CSPd2 and CSNi1Pd1 perform better than 

the optimized sample. Figure 2.13 presents the conversion and a plot for the rate of mass loss versus 

temperature for SNi0.29Pd1.32 with an asphaltene loading of 0.2 mg/m2. Figure 2.13 reveals that 

the optimized sample also displays three peaks with one in each region, similar to the other bimetallic 

samples. However, the peak in the MTR falls between the peaks of the other bimetallic SHSs. With 

regard to conversion, the shape of the curve is similar to that for CSNi0.66Pd0.66. Therefore, when 
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there is a lower NiO and PdO content on the surface of CS, results can be obtained that are similar 

to those for CSNi1Pd1. 

 

  

  

Figure 2.12.  Evolution of CO, CO2, CH4 and other hydrocarbons production for oxidation of a) 

virgin n-C7 asphaltenes and n-C7 asphaltenes in presence of b) CS, c) CSNi2, d) CSPd2 and e) 

CSNi1Pd1. 
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Table 2.8. Calculated parameters of the special cubic model for the Capella n-C7 asphaltene 

temperature of oxidation in the presence of CS and SHS. 

1  2  3  12  13  23  123  2R  

354.91 213.73 308.37 -275.88 -60.28 -184.20 -423.41 1.0 

 

 

Figure 2.13.  Conversion and plot of rate of mass loss as a function of temperature (secondary axis) 

with an asphaltene loading of 0.2 mg/m2 onto CSNi0.29Pd1.32. 

 

Effect of asphaltene loading on n-C7 asphaltene oxidation: CSPd2 displays three peaks for 

asphaltene oxidation (Figure 2.10) when the n-C7 asphaltene loading is 0.2 mg/m2; this sample was 

used to study the effect of n-C7 asphaltene loading on the oxidation temperature. Figure 2.14a depicts 

a plot of the mass loss rate versus temperature for CSPd2 with n-C7 asphaltene loadings of 0.03, 

0.05, and 0.20 mg/m2 and a plot of the enthalpy changes for CSPd2 with 0.2 mg of n-C7 asphaltenes 

per m2. The three samples clearly exhibit three peaks, with one at each temperature range. However, 

as the n-C7 asphaltene loading decreases, the peak in the LTR grows larger while the other two tend 

to form plateaus, indicating that the oxidation process begins at the LTR and the mass loss remains 

constant until the oxidation is completed. The plots of the enthalpy changes confirm that, for the 0.2 

mg/m2 sample, there are three exothermic peaks associated with n-C7 asphaltene oxidation, while 

the 0.03 mg/m2 sample displays one defined peak in the LTR and a plateau associated with a constant 

exothermic character. Figure 2.14b displays conversion for n-C7 asphaltenes with CSPd2 at the three 

tested loadings. As expected, when the amount of n-C7 asphaltenes decreases, the conversion 

increases because a larger amount of active sites are available for the reaction.6 

 

Effective activation energy for the oxidation of n-C7 asphaltenes in the presence and absence of 

nanoparticles: The E  required to oxidize the n-C7 asphaltenes in the presence of the S and SHS 

nanoparticles, were calculated using the thermal analysis data with the OFW method; the results are 

presented in Figure 2.15. Figure 2.15 indicates that the E  is lower for the SHS samples than for the 
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CS nanoparticles. For conversion between 0% and 40%, the activation energy decreased in the 

following order, confirming the synergetic effect of the bimetallic SHS: CS > CSNi2 > CSPd1 > 

CSNi0.66Pd0.66 > CSPd2 > CSNi1Pd1. However, after α = 40%, the activation energy of CSNi2 

decreases below that for CSPd1 because, before 40% conversion is reached, CSPd1 could oxidize 

the smaller asphaltene aggregates but afterward required more energy to react with the larger 

aggregates, while CSNi2 required higher Eα values to start the process; this energy was employed 

to oxidize both small and medium aggregates. For the optimized sample (CSNi0.29Pd1.32), the 

activation energy exhibited a trend similar to that of CSPd1, indicating that the amount of PdO 

dominates the catalytic activity of the sample. However, after 55% conversion, the effective 

activation energy of the sample falls below that of CSPd1, indicating that the energy employed 

earlier cracked a greater number of large chains. 

 

 

 

Figure 2.14.  a) Plot enthalpy changes for an n-C7 asphaltene loading of 0.2 and 0.03 mg/m2 and 

plot of rate of mass loss as a function of temperature with an n-C7 asphaltene loading of 0.2, 0.05, 

and 0.03 mg/m2 (red secondary axis) as a function of temperature, and b) conversion for n-C7 

asphaltenes in the presence of SPd2 with an n-C7 asphaltene loading of 0.2, 0.05, and 0.03 mg/m2. 
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Figure 2.15.  Effective activation energies evaluated for oxidation of virgin Capella n-C7 asphaltenes 

and Capella n-C7 asphaltenes in the presence of CS and SHS by the OFW method. 

 

Clearly, the selected nanoparticles in this study have shown different adsorption affinity, degree of 

asphaltene self-association and catalytic activity. Accordingly, to have better understanding about 

the adsorption and catalytic steam gasification and to obtain a good adsorbent/catalyst a correlation 

between SLE model parameters and effective activation energy estimated by OFW method needs to 

be addressed. Figure 2.16a shows the effective activation energies as function of H parameter related 

to the adsorption affinity at different degrees of % conversion. As seen, for all % conversion, the 

 decreases as the adsorption affinity increases (represented by lower H values). This suggests 

that good interactions between the adsorbent and the asphaltenes would favor the catalytic steam 

gasification.8 These results are in excellent agreements with the findings reported by Nassar et al. 

for the catalytic steam gasification of Athabasca C7 asphaltenes onto different surfaces of metal oxide 

nanoparticles.8 Figure 2.16b shows the effective activation energy against K (refers to asphaltene 

association on the active primary site) at different degrees of % conversion. As expected, the 

effective activation energy increases as K value increases. This could be due the fact that, at fixed 

surface of nanoparticles, an increase in K value is translated into an increase of the degree of 

asphaltene aggregation at the primary active site. Hence, a higher K value indicates that less active 

sites are available for reaction and subsequently higher activated energy is expected.  
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Figure 2.16.  Relationship between effective activation energies calculated by the OFW model for 

catalytic oxidation of n-C7 asphaltenes and the a) H parameter and b) K constant estimated by the 

SLE model at different degrees of % conversion: 20% (■), 50% (●) and 80% (▲). 

 

Thermodynamic parameters of the transition state functions: The kinetic parameters and 

thermodynamic properties of the transition state functions for the oxidation of n-C7 asphaltenes in 

presence and absence of the selected nanoparticles were estimated following the procedure described 

in Section 2.2.2 and are presented in Table 2.9. As seen, the values of n  ranged from 3 to 12 with 

values of the slope between -1.07 and -0.97 for 
2R =0.99. However, it is worth to mention that values 

of n  > 4 lack of chemical significance and were only used as fitting parameters for the description 

of the kinetic equation and the estimation of the thermodynamic properties. This is due as the 

chemical composition and structure of n-C7 asphaltenes is very complex and could result in a series 

of unidentified simultaneous reactions. Also, different values of n  imply that the thermal oxidation 

of n-C7 asphaltenes in presence or absence of the selected nanoparticles is not a single-mechanism 

process and that it is highly dependent on the nanoparticles chemical nature. From Table 2.9 it can 

be also observed that the trend of the change of the enthalpy of activation follows the order of virgin 

n-C7 asphaltenes > CS > CSNi2 > CSP2 > CSNi1Pd1, indicating that the highest catalytic effect was 

obtained for the bimetallic SHS as the reduction in 
‡H was highest among the system evaluated; 

same observations can be made for
‡G . In addition, according to the negative values of 

‡S it can 

be inferred that the entropy of the activated stated is lower than that of the initial state.37  

 

 n-C7 asphaltenes pyrolysis in presence of SHS nanoparticles 

The bimetallic SCNi1Pd1 sample and materials on the extreme vertices of the SCMD were selected 

for the studies of n-C7 asphaltenes pyrolysis and gasification. Figure 2.17 shows the rate of mass loss 

of virgin n-C7 asphaltenes and n-C7 asphaltenes in presence of CS nanoparticles. As seen, virgin 

asphaltene decomposition starts around 310°C and finishes at about 660°C, with a maximum rate of 

mass loss at approximately 448°C. These findings are in very close agreement with those reported 

by Nassar et al.10 on the pyrolysis of asphaltenes extracted from a vacuum residue from Athabasca 

EHO and found that the thermal decomposition occurred between 300 and 700°C. The n-C7 

asphaltenes thermal decomposition could be fractionated in three steps, beginning with the break of 
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intermolecular associations, loss of short alkyl chains and weak chemical bonds such as sulfur 

bridges 62 for temperatures lower than 350°C, followed by the rupture of longer alkyl groups and the 

opening of the PAH’s between 350 and 500°C, and finishing with the coke formation for 

temperatures higher than 500°C. 10 The catalytic effect of the CS nanoparticles is observed in Figure 

2.17. The n-C7 asphaltenes catalytic thermal decomposition of asphaltenes in presence of CS 

nanoparticles can be divided in two main regions; the first one from 300°C to 500°C and the second 

one from 500 to 800°C. The first region corresponds to the breaking up of the alkyl sides and the 

PAH’s. In this region, the maximum peak of the rate of mass loss shifts to the left about 40°C, 

indicating that the reactions involved in this stage occur earlier than for the virgin n-C7 asphaltenes. 

However, according to the rate of mass loss after 500°C, it seems that some addition reactions 

happened in the first stage and the decomposition of the resultant compounds is occurring until 

800°C, indicating that S nanoparticles could lead to less coke formation in comparison to virgin n-

C7 asphaltenes.  

 

Table 2.9. Kinetic parameters and thermodynamic properties of the transition state functions for the 

oxidation of n-C7 asphaltenes in presence and absence of SHS for a fixed value of  =50%.  

Material n  slope 2R  
A         

(x103 s-1) 
Kinetic equation 

‡S

(J/mol∙K) 

‡H

(kJ/mol) 

‡G

(kJ/mol) 

Virgin n-C7 

asphaltenes 
3 -1.02 0.99 0.34  

4
exp 1

3

A Ed

dt RT

 


 
   

 
 -212.10 177.99 153.31 

S 12 -0.98 0.99 95.33  
13

exp 1
12

A Ed

dt RT

 


 
   

 
 -165.57 175.76 124.35 

SNi2 9 -1.07 0.99 33.14  
10

exp 1
9

A Ed

dt RT

 


 
   

 
 -173.46 143.39 117.06 

SPd2 11 -0.97 0.99 134.21  
12

exp 1
11

A Ed

dt RT

 


 
   

 
 -161.37 128.70 102.92 

SNi1Pd1 8 -1.06 0.99 22.27  
9

exp 1
8

A Ed

dt RT

 


 
   

 
 -174.55 100.71 90.17 
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Figure 2.17.  Rate of mass loss of n-C7 asphaltenes thermal cracking in presence and absence of 

fumed silica nanoparticles. 

As for the functionalized nanoparticles, Figure 2.18 shows the plot of rate of mass loss for 

monometallic SHS. As seen, two peaks are observed for CSNi2 and CSPd2 before 660°C. For 

CSNi2, the first peak is observed near to 300°C and the second one is shifted to the left about 30°C 

in comparison to the main peak for virgin n-C7 asphaltenes. These results indicated that CSNi2 

nanoparticles have a higher catalytic effect towards the n-C7 asphaltene thermal cracking than the 

support. For CSPd2 nanoparticles, the first peak appeared near to 210°C and the second one in the 

same position for CSNi2 nanoparticles. It is worth to mention here that the magnitude of the first 

peak is about one third higher than for the second peak, indicating that a larger amount of 

components are decomposed in this region. This is in agreement with results obtained for n-C7 

asphaltenes oxidation that showed asphaltenes decomposition in presence of CSPd2 at temperatures 

near to 220°C. For both monometallic SHS, at temperatures higher than 660°C, it is observed that 

some addition reactions could occur. However, with CSPd2 nanoparticles, just a small peak is 

observed at 720°C and then the rate of mass loss drop off to zero, indicating that monometallic SHS 

functionalized with PdO lead to the suppression of coke formation. 

 

Figure 2.18.  Rate of mass loss of virgin n-C7 asphaltenes thermal cracking in presence and absence 

of monometallic SHS. 
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Figure 2.19 shows the plot of rate of mass loss for n-C7 asphaltenes in presence of CSNi1Pd1 

nanoparticles. The synergistic effect of the NiO and the PdO is clearly observed. Two mean peaks 

are observed at 220°C and 300°C, showing that the selectivity of NiO and PdO for certain 

components enhances greatly the catalytic activity. In addition, a third small peak is observed at 

530°C that is associated to the decomposition of new compounds due to addition reaction. For 

temperatures beyond 660°C, no rate of mass loss was observed, indicating that bimetallic 

nanoparticles are useful for the suppression of coke formation with a better efficiency than CSPd2 

nanoparticles.  

Sub-products of n-C7 asphaltenes pyrolysis in presence and absence of nanoparticles: n-C7 

asphaltenes pyrolysis could lead to different solid and gaseous sub-products in different 

extent depending on the system evaluated. As temperature increases, radical species may be 

stabilized to form new lighter compounds such as hydrocarbons with lower molecular 

weight, CO and CO2, among others.27, 63, 64  However, the recombination of free radical 

species lead to addition reactions that result in changes in the chemical structure of the n-C7 

asphaltenes and hence, in heavier and more refractory compounds than the initial n-C7 

asphaltenes.65-67   

 

 

Figure 2.19.  Rate of mass loss of virgin n-C7 asphaltenes thermal cracking in presence and absence 

of bimetallic SHS. 

 

The coke yield after the pyrolysis process was evaluated for the virgin n-C7 asphaltenes and the n-

C7 asphaltenes in presence of the evaluated nanoparticles. Reactions such as addition of the free 

radicals of the olefins 68, cross-linking between aromatic clusters 66 and/or bridging of aromatics by 

alkyl chains 65 are likely to be responsible for the formation of more refractory compounds. Figure 

2.20 shows the results obtained for coke yield of the five samples evaluated. As seen, the presence 

of nanoparticles reduces significantly the coke formation regarding to the virgin n-C7 asphaltenes. 

In the presence of CS nanoparticles, the coke yield was reduced by approximately 47% from virgin 

asphaltenes. However, with the functionalized nanoparticles the inhibition of the coke formation was 
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greatly enhanced, with reductions higher than 99% for all SHS. It is worth to mention here that the 

synergistic effect of the bimetallic SHS was also observed, with the 100% inhibition of the coke 

formation with this material and could be due to the inhibition of n-C7 asphaltenes self-association 

over the nanoparticles surfaces.  

 

Figure 2.20.  Coke yield after the thermal cracking process of n-C7 asphaltenes in presence and 

absence of the selected nanoparticles. 

Virgin n-C7 asphaltenes and n-C7 asphaltenes in presence of CSNi1Pd1 nanoparticles were selected 

for gaseous products analysis. Figure 2.21 shows the evolution of CO2, light hydrocarbons and CH4 

during the thermal cracking of n-C7 asphaltenes in a) absence and b) presence of CSNi1Pd1 

nanoparticles at a fixed heating rate of 10°C/min. As observed, the gases profile obey in some extent 

to the shape of the respective rate of mass loss curves for virgin n-C7 asphaltenes and n-C7 

asphaltenes with CSNi1Pd1 nanoparticles, confirming the catalytic activity of the bimetallic SHS 

towards n-C7 asphaltenes thermal decomposition. It is also observed from Figure 2.21 that the 

amount of CO2 produced, in both cases, is higher than the production of LHC and CH4. Results 

obtained are in agreement with Hosseinpour et al. 27 who evaluated the pyrolysis of n-C7 asphaltenes 

in presence of NiO and found that the CO2 production was higher than that of hydrocarbons. The 

production of CO2 could be due to two main oxygen sources such as: i) lattice oxygen from the SHS 

and ii) oxygen content of asphaltenes.27 Hence, free carbon radicals may react with the oxygen 

released from O-containing functional groups in the n-C7 asphaltenes structure to form CO and then, 

CO is chemisorbed in the catalyst surface and after reaction with the surface oxygen is desorbed as 

CO2. The oxygen content in the n-C7 asphaltenes structure and the mobility of the lattice oxygen in 

the adsorbent structure have an important role in the stabilization of free radicals, formation of 

carbon oxides and hence, suppression of coke formation. Then, as the coke yield was minimized 

with SHS’s, one can infer that the oxygen lattice in the functionalized nanoparticles is more mobile 

and more prone to react than that of the support.  
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Figure 2.21.  Profiles of CO2, LHC and CH4 evolution during thermal cracking of a) virgin n-C7 

asphaltenes and b) n-C7 asphaltenes in presence of CSNi1Pd1 nanoparticles. 

 

Estimation of the Effective Activation Energies for n-C7 asphaltenes thermal cracking in absence 

and presence of CS and SHS nanoparticles: Figure 2.22 shows E  for the different nanoparticles 

and the virgin n-C7 asphaltenes as a function of the degree of conversion estimated by OFW. It is 

observed that E is not the same for all conversion degrees, indicating that the n-C7 asphaltenes 

pyrolysis is not a single-mechanism process,37 due to different reaction paths that can occur such as 

aromatization, dealkylation, fragmentation, isomerization and/or rupture of naphthene rings.69 For 

virgin n-C7 asphaltenes, the activation energy varied between 117 and 195 kJ/mol while for 

CSNi1Pd1 the E ranged between 55 and 170 kJ/mol. The general trend for the effective activation 

energy before a conversion percentage of 50% was CSNi1Pd1 ≈ CSPd2 < CSNi2 < CS < virgin n-

C7 asphaltenes. However, after 60% of conversion the trend for 60%E  shift to virgin asphaltenes < 

CSNi1Pd1 ≈ CSPd2 < CSNi2 ≈ CS. This could be due to the addition reactions mentioned before 

that lead to decomposition of the new compounds at temperatures higher than that for virgin n-C7 

asphaltenes. It is worth to mention that for nanoparticles functionalized with PdO, the values of E

never reach the highest value of E  for virgin n-C7 asphaltenes, confirming that with these materials, 

the addition reactions are suppressed and there is little formation of components of larger molecular 

weight than virgin n-C7 asphaltenes. For n-C7 asphaltene thermal decomposition in presence of SC 

and SHS nanoparticles a correlation between the SLE model and was also found. Details of the 

correlation and thermodynamic parameters of the transition state functions for asphaltenes thermal 

cracking and gasification can be found in Appendix B.  
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Figure 2.22.  Effective activation energies estimated by the OFW method as a function of the 

conversion for thermal cracking process of n-C7 asphaltenes in presence and absence of the selected 

nanoparticles. 

 n-C7 asphaltenes catalytic gasification in presence of SHS nanoparticles 

Catalysis to occur, first the asphaltenes have to migrate from the bulk phase to the nanoparticles. The 

velocity with asphaltenes get adsorbed on the active sites would depend on the adsorption potential 

of the selected nanoparticles and this is also dependent on their structure and chemical nature. While 

asphaltenes migrate to the adsorbent surface, a disaggregation of the asphaltenes aggregate could 

occur. Once asphaltenes get adsorbed, they could be present in the active sites as monomers, dimers, 

i-mers or aggregates depending on the uptake and the crowding of the available active sites. Then, 

as temperature increase, the adsorbed species would be cracked and free radicals will react with the 

H2 or O2 from the H2O(g) that was previously adsorbed and disseminated from the nanoparticle matrix 

to the active sites. It is expected that the catalytic activity of the nanoparticles would affect the way 

both asphaltenes and water adsorb on the active sites, leading to a less expensive process in energetic 

terms. Also, reaction of the asphaltenes with H2O(g) could occur due to the adsorption of the H2 or 

O2 on the asphaltenes previously adsorbed, reducing then the catalytic effect of the material. The 

degree asphaltenes self-associate would impact the catalytic activity as bigger aggregates could 

block some active sites (See Chapter 3). 

The virgin CS and SHS nanoparticles were tested in an atmosphere of Ar saturated with H2O(g) for 

asphaltenes catalytic steam gasification. Figure 2.23 shows the plot of mass loss rate of Capella n-

C7 asphaltenes in presence and absence of CS. As seen, for virgin n-C7 asphaltenes the reaction 

begins approximately at 300°C, with a maximum peak at 458°C and ceases at 544°C. It is worth 

noting here that, at the end of the test there was still some remaining hydrocarbons attributed to the 

coke formation. Figure 2.23 shows that the curve for asphaltenes rate of mass loss in presence of CS 

nanoparticle shifts to the left, confirming that gasification is occurring at lower temperature probably 

due to the catalytic activity of the nanoparticles. The maximum peak of mass rate loss was reduced 

from 458 to 409°C. The catalytic steam gasification of asphaltenes in presence of CS nanoparticles 

can be divided in two reaction regions, one before 500°C and the other between 500 and 800°C. The 

first region could correspond to the break-up of alkyl chains, dissociation of S-C and N-C bonds and 

opening of polycyclic aromatic hydrocarbons.10, 69, 70 In the second section is observed that there are 
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still some reactions attributed to the gasification of resultant compounds after addition reactions of 

free radicals that did not stabilized in the reactions of the first region.  

 

Figure 2.23.  Plot of rate of mass loss as a function of temperature for steam gasification of virgin 

n-C7 asphaltenes and n-C7 asphaltenes in presence of CS nanoparticles. 

 

Figure 2.24 shows the plots of mass loss rate of asphaltenes in presence of CSNi2 and CSPd2 

nanoparticles at a fixed amount of adsorbed asphaltenes, 0.2 mg/m2. It is clear that the inclusion of 

NiO or PdO reduces the temperature of asphaltene decomposition. For silica supported PdO 

nanoparticles, two main peaks are observed at 205 and 415°C. The first peak is due to the synergistic 

effect of PdO with the fumed silica support that allows an early breaking of weakest bonds of 

asphaltenes. Thus, it could be inferred that the second peak would be due to the decomposition of 

asphaltenes adsorbed in the fumed silica surface due to the proximity with the peak observed for the 

asphaltenes in presence of CS nanoparticles (Figure 2.23). Similar situation can be seen for CSNi2 

nanoparticles. In this case, two peaks are observed at 311 and 430°C. The first one corresponds to 

synergistic effect between NiO and CS, and the second one by the effect of CS nanoparticles. The 

main difference between the monometallic SHS lies in the position of the first peak and the 

magnitude of the second one. For CSPd2 nanoparticles the magnitude of the first peak is higher than 

for the second peak, indicating that most of the reactions occur near to that temperature. For CSNi2 

nanoparticles the opposite trend is observed. Figure 2.24 shows that for CSNi2 nanoparticles there 

are reactions corresponding to the decomposition of heavier compounds formed before 600°C, and 

same situation occurs for CSPd2 nanoparticle regarding to the small third peak observed around 

650°C.  

 

The synergistic effect of bimetallic nanoparticles is shown in Figure 2.25. As seen, a big peak is 

observed at 220°C and a shorter one at 370°C. Clearly, the peaks corresponds to the contributions of 

PdO and NiO on the support, showing the combined selectivity of the hybrid material. It is also 

observed that the reaction ceases at approximately 481°C, where not peak corresponding to the CS 

support could be observed. As it was mentioned before, bimetallic compounds avoid sintering effects 
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and lead to homogeneous distribution on the surface, resulting in asphaltenes adsorption mainly on 

the NiO and PdO sites.  

 

 

Figure 2.24.  Plot of rate of mass loss as a function of temperature for steam gasification of virgin 

n-C7 asphaltenes and n-C7 asphaltenes in presence of monometallic SHS nanoparticles. 

 

Figure 2.25.  Plot of rate of mass loss as a function of temperature for steam gasification of virgin 

n-C7 asphaltenes and n-C7 asphaltenes in presence of bimetallic SHS nanoparticles. 

Sub-products of n-C7 asphaltenes catalytic steam gasification  in presence and absence of 

nanoparticles: A number of gases could be released during the steam gasification process, namely 

H2, CO, CH4, O2, and CO2. However, in this study H2 and O2 gases were eliminated from analysis 

as result could be interfered by the water product. Further, CO2 composition was insignificant and 

was eliminated from the analysis as well. The product of n-C7 asphaltenes gasification in presence 

and absence of nanoparticles were evaluated using the FTIR. Figure 2.26a,b shows the evolution of 

CH4 and CO during asphaltenes gasification in the range of experimental temperatures. It is worth 
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noting here that the band intensity related to the CH4 in the FTIR spectra was always higher than for 

CO, and hence the results were normalized based on the CH4 signal. Figure 2.26a shows the 

evolution profile of CH4 for gasification of virgin n-C7 asphaltenes and n-C7 asphaltenes adsorbed 

onto nanoparticles of CS, CSNi2, CSPd2 and CSNi1Pd1. As seen, to some extent and for all cases, 

the evolution profile is similar to the mass loss curves presented early. Clearly, the starting and 

ending temperatures of CH4 production are strongly influenced by the type of nanoparticles. The 

starting temperature of CH4 production as well as the temperature at the maximum peak follows the 

order virgin asphaltenes > CS > CSNi2 > CSPd2 > CSNi1Pd1. This again, confirms the catalytic 

activity of the nanoparticles and goes inline with results obtained by the mass loss rate. Similar 

observations can be seen for the CO evolution profile, but to a less extent. However, worth noting, 

the ratio between the produced CO and CH4 is dependent on the type of nanoparticles. It is worth 

noting here that in steam gasification processes the main reactions for CO production are partial 

oxidation, water-gas and steam reforming; while for CH4 it is the methanation reaction.71 Hence, as 

seen in Figure 2.26b, the normalized area for the SHS nanoparticles is much higher than that of CS, 

indicating that the ratio CO/CH4 is higher. This could be due to that steam-reforming reactions are 

promoted by the supported nanoparticles, which enhanced the reaction of CH4 with H2O to form CO 

and H2. This again confirms the catalytic activity of silica-supported metal oxide nanoparticles. 

 

After the asphaltenes gasification has been completed, the remaining coke was evaluated by heating 

the samples in an oxidative atmosphere at a fixed air flow of 100 cm3/min and a heating rate of 

20°C/min. Results showed that for virgin asphaltenes and asphaltenes in presence of CS the 43 wt% 

and 2.9 wt% was not gasified, respectively. However, for the three fumed silica supported 

nanoparticles no significant residue could be observed after gasification, suggesting that the presence 

of NiO and PdO greatly inhibit the coke formation and hence the catalyst poisoning.  

 

Estimation of the Effective Activation Energies for n-C7 asphaltenes catalytic steam gasification 

in absence and presence of CS and SHS nanoparticles: To further validate the catalytic activity of 

the nanoparticles, the isoconversional OFW method was used for estimating the effective activation 

energies using TGA mass loss rate measurements performed at heating rates of 5, 10 and 20 °C/min. 

As mentioned, the amount of coke formed after the gasification process is also dependent on the type 

of nanoparticles. Hence, the similar values of asphaltene conversion for CSNi2 and CS could be 

associated to different amounts of coke formed. Figure 2.27 shows the estimated effective activation 

energies as function of the degree of % conversion. For virgin n-C7 asphaltenes the value of  

decreases as the conversion increases. On the other hand, the opposite trend for  is observed for 

steam gasification of n-C7 asphaltenes in the presence of nanoparticles and is in agreement with that 

obtained for oxidation and thermal cracking. It should be noted here that, in all cases for < 60%, 

the effective activation energy is lower in presence of nanoparticles than virgin n-C7 asphaltenes. 

This again, confirms the catalytic activity of the nanoparticles. For > 60% silica-supported 

bimetallic nanoparticles showed lowest  values, confirming the synergistic effect. 
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Figure 2.26.  Evolution profile of a) CH4 and b) CO during steam gasification of virgin n-C7 

asphaltenes and n-C7 asphaltenes in presence of CS and SHS nanoparticles. 

 

Figure 2.27.  Effective activation energies calculated by OFW method as function of the % 

conversion for steam gasification of n-C7 asphaltenes in the presence and absence of CS and SHS 

nanoparticles. 
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 Effect of the ceramic support on the n-C7 asphaltenes catalytic gasification  

In the same line on using nanoparticles as adsorbents and catalysts for heavy polar hydrocarbons, 

novel nanomaterials to improve heavy oil quality by adsorptive removal of asphaltenes and 

subsequent catalytic steam gasification of the adsorbed asphaltenes need to be explored. CTi and 

CAl nanoparticles were employed as alternative ceramic supports for NiO and/or PdO nanocrystals. 

Detailed information of the supports can be found in Chapter 1. In addition, Appendix C resumes 

properties of the obtained SHS using CAl and CTi as supports, results of the obtained adsorption 

isotherms and the corresponding SLE model parameters. The functionalized nanoparticles have 

higher adsorptive capacities than the CAl or CTi supports. 

Hence, the catalytic activity of the selected nanoparticles was determined by TGA experiments in 

an Argon atmosphere saturated with H2O(g) . Figure 2.28a shows the rate of mass loss for Capella n-

C7 asphaltenes gasification in the presence and absence of CTi and CTi nanoparticles functionalized 

with 2 wt% of NiO and/or PdO for an asphaltene loading of 0.20 mg/m2. For simplicity and a 

practical perspective, the full range of evaluated temperatures for the TGA experiment is divided 

into three regions: low (LTR), medium (MTR) and high temperature (HTR). The LTR range begins 

at 200°C and ends at 250°C, the MTR is from 251 to 700°C, and the HTR is from 700 to 800°C. As 

shown for virgin n-C7 asphaltenes, the gasification reaction begins at approximately 300°C with a 

maximum loss at 458°C and ends at 544°C. However, in the HTR region, it can be observed that 

coke formation leads to residual hydrocarbons that react at high temperatures. The conversion of n-

C7 asphaltenes to gaseous products can also be associated with the partial oxidation and pyrolysis of 

n-C7 asphaltenes.8 At the beginning of the reaction, the mass loss of n-C7 asphaltenes can be 

associated with the break-up of alkyl chains and the dissociation of weak bonds of S-C and N-C.10, 

69, 70 By increasing the temperature, addition reactions can occur due to the availability of polycyclic 

aromatic hydrocarbons (PAH), leading to the formation of heavier compounds and coke. These 

compounds are larger from the starting species and could be asphaltenes their selves that as 

temperature increase could change their architecture from the simpler such island architecture, to 

more complex like continental, archipelago or rosary type until their chemical nature turns into coke. 

In the HTR region, coke decomposition occurs, and compounds are produced by addition reactions.  

For n-C7 asphaltenes in the presence of CTi nanoparticles, two peaks in the profile of the rate of 

mass loss can be observed in the MTR at 400 and 595°C, indicating that the decomposition of alkyl 

chains and break-up of N-C and S-C bonds occur at an earlier temperature than with virgin n-C7 

asphaltenes. The first peak could correspond to the opening of the PAH of n-C7 asphaltenes, while 

the second peak corresponds to the decomposition of the heavier products from the addition 

reactions. As the H2 and O2 from the H2O(g) stabilize radical species in the gasification process, there 

is also the formation of heavier compounds due to radical recombination in reaction mechanisms of 

free radical chains.66, 67 Reactions between aromatics attached by alkyl bridges,65 additions of the 

olefins free radicals68 and/or cross-linking reactions between aromatic clusters66 can be also 

explanations of the addition reactions. For n-C7 asphaltenes in the presence of CTiNi2 nanoparticles, 

a single peak is observed in the rate of mass loss profile at approximately 366°C; this represents a 

reduction of 6 and 13% in the temperature of n-C7 asphaltenes decomposition compared with the 

CTi nanoparticles and the virgin n-C7 asphaltenes, respectively. However, because no other peak was 

observed at higher temperatures, one would anticipate that the incorporation of NiO on the CTi 

nanoparticles surfaces could lead to the inhibition of addition reactions. For nanoparticles 

functionalized with PdO, it can be observed from the rate of mass loss profile that three peaks exist. 

In the LTR region for CTiPd2 and CTiNi1Pd1, the first peak is observed at approximately 207°C 

for both nanoparticles, indicating that the presence of the PdO reduces the temperature for catalytic 

gasification of n-C7 asphaltenes significantly. For the CTiPd2 nanoparticles, a second peak is 

observed at 360°C, which is a reduction of 6 and 14% compared with CTi nanoparticles and virgin 
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n-C7 asphaltenes. In addition, a third peak is observed at 643°C and could correspond to the reaction 

of the heavier compounds produced by the addition reactions or coke.  

The synergistic effect of the NiO and PdO is evidenced in the second and third peaks of the rate of 

mass loss at 321 and 569°C, respectively, which are approximately 39 and 74°C lower than the 

temperature found for the second and third peak for PdO.  The synergistic effect could be due to two 

principal factors: i) the combined selectivities of Pd and Ni towards different species in the 

asphaltenes molecule; and ii) avoiding metal sintering on the support surface may have led to 

increasing the amount of active sites available for the reaction and the enhancement of the resistance 

for coke formation.72 It is well known that the sintering of metals on the support surface could be 

alleviated in complex materials by the presence of noble metals 73 and is dependent on many factors 

in the synthesis step such as temperature, time, atmosphere and metal content.60 The effect of the 

aforementioned factors is beyond the scope of this study and should be addressed in future works.  

Figure 2.28b shows the rate of mass loss for the catalytic steam gasification of Capella n-C7 

asphaltenes in the presence of CAl, CAlNi2, CAlPd2 and CAlNi1Pd1 nanoparticles.  From Figure 

2.28b, it is shown that the rate of mass loss of n-C7 asphaltenes in the presence of CAl nanoparticles 

shows two peaks in the MTR region at 441 and 510°C, indicating that CAl nanoparticles are able to 

catalyze the steam gasification of n-C7 asphaltenes. However, the first peak is observed at a 

temperature 40°C higher than that for CTi, suggesting that the catalytic activity of the CTi 

nanoparticles on the steam gasification of n-C7 asphaltenes is higher than that for CAl. This could be 

explained by the fact that TiO2 has a higher selectivity for nitrogen in the aromatic species in 

hydrogen addition processes with higher catalytic activity and lower hydrogen consumption than 

alumina.74 Additionally, structural changes in the nanoparticles as a function of operating 

temperatures could lead to a reduction in the catalytic activity of the alumina nanoparticles; thus, 

nanoparticle sintering could occur, resulting in a decrease of active sites available for the catalytic 

process.75 As was observed for CTiNi2 nanoparticles, CAlNi2 nanoparticles showed a peak in the 

MTR at 427°C. Although for CAlNi2 nanoparticles, the reaction temperature was considerably lower 

due to the CAl support; the CTiNi2 nanoparticles also showed higher activity, which could be due 

to the intrinsic activity of the CTi support. In the case of the CAlPd2 nanoparticle, three primary 

peaks were obtained at 202, 391 and 643°C, indicating that the inclusion of the Pd lead to early 

reactions on the LTR region. For the bimetallic nanoparticles, a similar behavior to CTiNi1Pd1 is 

observed. Three peaks are observed in the rate of mass loss at 201, 373 and 615°C, suggesting that 

the synergistic effect of the PdO and NiO can be obtained with different supports (i.e., silica, alumina 

and titania). In addition, the first peak is observed at a lower temperature with CAlNi1Pd1 than for 

CTiN1Pd1; for the other two peaks, the Ti-supported bimetallic nanoparticles showed higher 

catalytic activity than Al-supported bimetallic nanoparticles. These results could be related to the 

good dispersion and better homogeneity in the coordination of the Pd and Ni over the Ti surface.75 

Regarding to the effective activation energy is affected by the nanoparticles present due to the 

occurrence of different reaction mechanisms. In brief, CTiNi1Pd1 displayed the lowest activation 

energy throughout the process, suggesting that CTiNi1Pd1 is more catalytically active towards n-C7 

asphaltene steam gasification, confirming their synergistic effect. This synergistic effect could be 

explained by the combination of individual selectivities and the hybrid structures of Pd and Ni that 

lead to better surface electronegativity and hence a more efficient catalytic activity.61 Similar 

observations were seen for the effective activation energy trends with CAl support and the 

functionalized nanoparticles. Details of the estimated effective activation energies can be found in 

Appendix C.  
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Figure 2.28.  Rate of mass loss for n-C7 asphaltenes catalytic steam gasification in the absence and 

presence of a) CTi supported and b) CAl supported nanoparticles. 

 

Produced gases and estimation of coke formation during steam gasification of Capella n-C7 

asphaltenes using Ti- and Al-supported nanoparticles: Panels a) and b) in Figure 2.29 show the 

evolution profiles of CH4 for Capella n-C7 asphaltenes catalytic steam gasification in the presence of 

a) CTi-supported and b) CAl-supported nanoparticles. It is observed from Figure 2.29 that for both 

CTi and CAl supports, the gaseous evolution profiles match the rate of mass loss obtained previously, 
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further indicating that the mass loss observed in Figure 2.28 is associated with asphaltene catalytic 

steam gasification. In all cases, CH4 production begins at earlier temperatures in the order of 

bimetallic < Pd-monometallic < Ni-monometallic < support. This suggests that higher catalytic 

activities are obtained with bimetallic nanoparticles. Additionally, from Figure 2.29, it is observed 

that despite the fact that both bimetallic and monometallic nanoparticles functionalized with Pd 

showed similar profiles, the first peak observed near 200°C is wider and higher for bimetallic 

nanoparticles than for monometallic nanoparticles; this indicates that by including Ni in the 

materials, a higher amount of asphaltenes can be catalytically gasified. Similar observations can be 

seen in the CO evolution.  

 

 

  

Figure 2.29.  Profiles of CH4 evolution during steam gasification of Capella n-C7 asphaltenes in 

presence of a) CTi-supported and b) CAl-supported nanoparticles. 

 

Panels a) and b) in Figure 2.30 show the evolution profiles of CO during catalytic steam gasification 

of Capella n-C7 asphaltenes adsorbed on a) CTi-supported and b) CAl-supported nanoparticles. It 

was also observed that the profile of the produced CO using both supports was similar to the rate of 

mass loss and that gas production began in the same order of that found for CH4. Additionally, the 

amount of CO produced from the catalytic steam gasification of the adsorbed asphaltenes was higher 

than that for virgin asphaltenes and could be primarily caused by steam reforming reactions that are 

enhanced by nanoparticles. Results indicate that gas production is highly dependent on the 

decomposition of the HC precursor and hence, on the type and chemical nature of the nanoparticle. 

 

The coke yield over the nanoparticles was also estimated by heating the samples in an air atmosphere 

after gasification. Figure 2.31 shows the coke yield after gasification for virgin Capella n-C7 

asphaltenes and the n-C7 asphaltenes adsorbed onto the CTi- and CAl-supported nanoparticles. For 

virgin Capella n-C7 asphaltenes, the coke yield was 43 ± 2 wt%; for n-C7 asphaltenes in the presence 

of CTi and Al nanoparticles, the coke yield obtained was 2.3 ± 0.3 and 3.6 ± 0.4 wt%, respectively, 

indicating that CTi nanoparticles more successfully inhibited coke formation than Al nanoparticles. 

In addition, for CTiNi2 and CAlNi2 nanoparticles, it was found that coke yields were approximately 

0.17 and 0.13 ± 0.02 wt%, indicating that functionalizing the supports with NiO inhibited coke 

formation more effectively. However, the highest enhancement in coke inhibition was obtained with 
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the PdO-functionalized nanoparticles, with which no significant residue could be observed after 

gasification; this could be related to the inhibition of asphaltene self-association on the nanoparticles 

surface. Results indicate that functionalized nanoparticles were able to inhibit coke formation to 

different extents and hence prevent catalyst poisoning.  In the case of the bimetallic nanoparticles 

used in this work, the dose of Pd affects Ni regeneration, preventing coke formation over the catalyst. 

 

  

Figure 2.30.  Profiles of CO evolution during steam gasification of Capella n-C7 asphaltenes in 

presence of a) CTi-supported and b) CAl-supported nanoparticles. 

 

 

Figure 2.31.  Coke yield after the steam gasification of virgin Capella n-C7 asphaltenes and 

asphaltenes in the presence of the CTi- and CAl-supported nanoparticles. 

2.4 Partial conclusions 

The advantages of nanotechnology as complementary solution for heavy oils upgrading is clear in 

this work. Adsorption isotherms of three n-C7 asphaltenes isolated from different crude oils over CS 
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nanoparticles were determined. Also, n-C7 asphaltenes adsorption isotherms were obtained for the 

CNS, SS and SHS nanoparticles. In all cases a Type I behavior according to the IUPAC was observed 

and the SLE model showed good agreement towards the experimental results. Also, the catalytic 

activity of nanoparticles was studied in presence of different atmospheres. As result, it was found 

that different pyshicochemical properties of nanoparticles of the same chemical nature play a more 

important role in the n-C7 asphaltenes adsorption than in the catalytic cracking. In addition, it was 

observed that asphaltenes form the same reservoir may behave similar in oxidation processes in 

absence and presence of nanoparticles. In the adsorption process functionalized nanoparticles are 

prone to reduce the degree of asphaltene self-association and increase the adsorption affinity as 

observed by the K and H parameters of the SLE model. Also, the five-parameters SLE model was 

successfully employed for estimating the thermodynamic properties of adsorption. Nanoparticles 

also are able to enhance the asphaltene oxidation, thermal cracking and gasification processes by 

reducing the degree of asphaltene self-association over the catalyst surface, decreasing the 

temperature of asphaltenes decomposition and by the inhibition of the coke formation and the 

catalyst poisoning. The temperature of asphaltene decomposition in presence of nanoparticles was 

greatly reduced with the bimetallic SHS independently of the employed support (CS, CTi or CAl), 

indicating that the material has a synergistic effect by combining the selectivity of both PdO and 

NiO. Also, it was observed that in the gasification case, the functionalized nanoparticles are able to 

reduce the production of CH4 in the process and increase the CO, indicating that steam reforming 

reactions are occurring and hence the production of H2 will increase. In addition, a trend between 

the effective activation energy and the degree of asphaltenes self-association and the adsorption 

affinity was found. The catalytic effect of the bimetallic SHS was corroborated by the estimated 

thermodynamic properties of the transition state functions. The kinetic equations for the catalytic 

decomposition of asphaltenes in presence and absence of the selected nanoparticles were obtained. 

This works should provide a new insight of the use of nanoparticles for in-situ heavy and extra-heavy 

oil upgrading and the effect of the adsorption process on the efficiency of the catalytic activity of the 

nanoparticles. 
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3. Influence of n-C7 asphaltene aggregation on their 

adsorption and catalytic behavior of nanoparticles 

Most of the reported nanoparticles used for adsorption of asphaltenes and subsequent decomposition 

of the adsorbed asphaltenes were believed to be effective adsorbents and catalysts. However, it is 

very well accepted that asphaltenes have the ability to self-assemble onto various aggregates and 

colloids.1-3 Therefore, the changes in the colloidal state of asphaltenes can impact the catalytic 

activity of the nanoparticle surfaces after adsorption. However, until now there are no studies in 

specialized literature that correlates the self-association of asphaltenes with the adsorption affinity 

or catalytic activity of the nanoparticle surfaces. Although adsorption isotherms for “effective” 

multilayers of asphaltene have been reported in the literature, there was no evidence about the effect 

of the size of the adsorbed asphaltene monomers, dimers, i-mers or nanoaggregates on the catalytic 

activity of the nanoparticle surface. 

Hence, a study of the impact of asphaltene aggregates on the nanoparticle surface adsorption affinity 

and catalytic activity is of paramount importance. To this end, Montoya et al.4 has recently developed 

a novel three-parameters solid-liquid equilibrium (SLE) model for describing the behavior of the 

adsorption of self-associating asphaltene molecules onto solid surfaces based on the self-association 

theory.4 In addition to predicting the affinity and ability of asphaltenes to be adsorbed onto the 

nanoparticles surface, this novel SLE model provides, at the macro level, an insight on the extent of 

the asphaltene aggregates on the nanoparticle surface. Hence, this study continues the line of Chapter 

2, aiming to investigate the impact of asphaltenes monomers, dimers, i-mers or nanoaggregates on 

the catalytic activity of the nanoparticles.  

Accordingly, CS and nanoparticles of NiO and PdO supported on CS were employed for the 

adsorption and post-adsorption oxidation of n-C7 asphaltenes using different ratios of heptol (n-

heptane and toluene). A correlation between the adsorption affinity, the extent of asphaltene 

aggregation and catalytic activity is developed using the parameters of SLE model, and the values 

of effective activation energies are estimated by the isoconversional method.  

3.1 Materials, methods and modeling  

3.1.1 Materials 

Virgin solid n-C7 asphaltenes were extracted from the AK18 crude oil. Crude oil properties and 

isolation method are described in Chapter 2. n-Heptane (99%, Sigma-Aldrich, St. Louis, MO) was 

used as a precipitant for asphaltene extraction, and in the preparation of the heavy oil model solution 

with toluene  (99.5%, MerkK GaG, Germany). The ratio of n-heptane to toluene (heptol) was varied 

from 0 to 40 %v/v to obtain different sizes of asphaltene nanoaggregates. CS and CSNi1Pd1 
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nanoparticles were used as adsorbents and catalysts. Nanoparticles properties can be found in 

Chapter 1.   

3.1.2 Preparation of model solutions 

Heavy oil model solutions were prepared by exposing n-C7 asphaltenes to a mixture of different 

ratios of n-heptane and toluene (heptol) at 25°C. Three different ratios of n-heptane to toluene were 

considered in this study, namely, 0, 20 and 40 %v/v of n-heptane. Before adding the n-C7 asphaltenes, 

the heptol mixtures were mixed at 300 rpm for 2 h. Then, a specified mass of n-C7 asphaltenes was 

added to the corresponding solution to obtain a stock solution of 6000 mg/L. The mixture was stirred 

for 6 h at 300 rpm to ensure that the system was homogenous and the size of the asphaltene aggregate 

remained constant.5 As asphaltenes precipitation is time-dependent process,6 the stability of 

asphaltene in solution was monitored through the Oliensis Spot Test Number7, 8 and Polarized Light 

Microscopy9 for 72 h and it confirms that no significant precipitation of asphaltenes could be 

observed for the selected heptol ratios during the time of adsorption experiment.  

 

3.1.3 Evaluation of nanoparticles as adsorbents and catalysts 

Batch adsorption experiments were conducted at room temperature 25°C for different initial 

concentrations of n-C7 asphaltenes from 100 to 6000 mg/L following the procedure described in 

Section 2.1.2. Nanoparticles containing adsorbed n-C7 asphaltenes were dried overnight in a vacuum 

oven at 65oC. Approximately 5 mg of dried nanoparticles with adsorbed asphaltenes was taken for 

thermogravimetric analysis. Thermogravimetric analyses were performed according to Section 2.1.2 

in presence of air.  

3.1.4 Modeling 

The obtained experimental data of adsorption isotherms were described by the solid-liquid 

equilibrium model (SLE).4 The catalytic behavior of the nanoparticles towards n-C7 asphaltenes was 

described by the isoconversional method of Ozawa−Flyn−Wall (OFW).10-12 Details of the SLE 

model and OFW method can be found in Section 2.2. 

3.2 Results and discussions 

3.2.1 n-C7 asphaltenes adsorption isotherms from toluene and Heptol 

solutions 

Figure 3.1 shows the experimental isotherm data obtained together with the fit of the SLE model for 

n-C7 asphaltene adsorption from different heptol solutions onto nanoparticles of CS and CSNi1Pd1 

at a temperature of 25°C. The estimated SLE model parameters are listed in Table 3.1.  

As anticipated, for both cases, the n-C7 asphaltene adsorption increases with an increase in the n-

heptane to toluene volume ratio. These results are in excellent agreement with previous studies 

reported in the literature for asphaltene adsorption from oil solutions with different precipitants onto 

different solid surfaces, such as hydrophilic and hydrophobic silica particles,13  clay minerals (like 

kaolinite, illite, montmorillonite and mineral oil reservoir rocks),14 coated quartz crystals15 and 
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metals.4, 16 It is well known that by adding an asphaltene precipitant to a heavy oil solution, the 

solubility of asphaltenes will decrease and hence asphaltene aggregation and self-association will be 

enhanced.17 Accordingly, asphaltenes will be adsorbed on solid surface as large aggregates. 18, 19 

Furthermore, Figure 3.1 also shows that CSNi1Pd1 nanoparticles clearly adsorbed more n-C7 

asphaltenes than CS nanoparticles across the entire range of n-C7 asphaltene concentrations; the 

difference was more significant at higher concentrations (200 mg/L). This indicates that asphaltene 

adsorption is surface specific and that the induced selectivity of the included metal oxides apparently 

enhances the adsorption capacity of the nanoparticles. These results are also in agreement with the 

previous results observed in Chapter 2 on the adsorption of n-C7 asphaltenes onto CS nanoparticles 

functionalized with NiO and/or PdO.  

 

 

Figure 3.1. Adsorption isotherms of n-C7 asphaltenes onto CS and CSNi1Pd1 nanoparticles at 25°C 

and different heptol ratios. The symbols are experimental data and the solid lines are from the SLE 

model. 

 

To further understand this adsorption behavior, the experimental isotherm data are fitted to the SLE 

model. As seen in Figure 3.1 and indicated by the values of the regression coefficient and RSME% 

in Table 3.1, the SLE model fits the experimental data well. The results in Table 3.1 also show that 

the adsorption capacity of both nanoparticles, represented by qm, followed the order heptol 40 > 

heptol 20 > toluene. A similar trend is obtained for the adsorption affinity, represented by the 

reciprocal of the H parameter of the SLE model. In addition, based on the values of qm and the 

reciprocal of H, it is very clear that the CSNi1Pd1 nanoparticles have a higher adsorption affinity 

and capacity than the CS nanoparticles for all Heptol solutions employed. On the other hand, lower 

K values were observed for the CSNi1Pd1 nanoparticles than for CS, indicating that the inclusion of 

NiO and PdO on the CS surface allows the inhibition of the self-association of the asphaltenes. The 

differences in ranking the SLE model parameters (i.e., qm, H, and K) between the two types of 

nanoparticles with different volume ratios of n-heptane to toluene can be attributed to the different 

degree of interactions between the nanoparticle surface and the n-C7 asphaltenes molecules or 

aggregates.  
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It is noteworthy that the SLE model is based on the assumptions that the adsorption process is mainly 

divided into three regions, namely:4 the first region, which corresponds to low uptake, here the 

adsorption will likely occur in the high-energy sites and asphaltenes molecules would be possibly 

adsorbed as monomers; the second region is at medium uptake and here the asphaltene will form 

aggregates around the high-energy sites; and the last region is at high uptake, in this region it is 

assumed that the finite volume available for adsorption will become crowded with asphaltene 

molecules, which are expected to be in the form of i-mers, nanoaggregates, etc. These findings are 

interesting, as asphaltene self-association and aggregation can cause formation damage and 

consequently impact the oil recovery efficiency.20 In addition, large n-C7 asphaltene aggregates 

might block some of the active sites of the nanoparticles, and hence they, could impact the catalytic 

activity in the case of the catalytic decomposition of the adsorbed asphaltenes.4
  

 

Table 3.1. SLE model parameters of Colombian n-C7 asphaltenes adsorption from different heptol 

mixtures onto CS and CSNi1Pd1 nanoparticles at 25°C. 

Material Solvent  (mg/g) (g/g) x 10-4 (mg/m2)  RSME%
 

CS 

Toluene 2.02 4.51 2.89 0.99 8.72 

Heptol 20 1.59 4.96  2.97 0.99 8.56 

Heptol 40 1.12 5.47  3.15 0.99 9.13 

       

CSNi1Pd1 

Toluene 1.77 2.16  6.36 0.99 3.36 

Heptol 20 1.18 2.74  6.40 0.99 5.26 

Heptol 40 1.07 3.29  6.58 0.99 5.21 

 

3.2.2 Effect of n-C7 asphaltenes aggregation and nanoparticle type on 

the catalytic oxidation  

Panels a-c in Figure 3.1 show a) the plot of rate of mass loss, b) the evolution profiles of the 

production of CO and CO2 and c) the degree of conversion for asphaltene oxidation from toluene, 

heptol 20 and heptol 40 in the presence of CS nanoparticles for a fixed amount of asphaltenes 

adsorbed at 0.67 ± 0.03 mg/m2. As is shown in Table 3.1, according to the K parameter, the degree 

of asphaltene self-association increases as the amount of n-heptane in the solvent increases, 

indicating that large aggregates can be found over the adsorbent surface.  

 

Figure 3.2a shows two peaks for the three asphaltenes adsorbed onto CS nanoparticles from different 

solvents. The first peak is found at approximately 359°C for the three systems, and no significant 

shift was observed. On the other hand, the second peak is observed at 509, 519 and 536°C for toluene, 

heptol 20 and heptol 40, respectively, confirming a delay in the oxidation of asphaltenes due to an 

increase in the size of the aggregate. In any case, the first peak for asphaltene oxidation in the 

presence of CS nanoparticles is lower than for virgin n-C7 asphaltenes (see Chapter 2). However, the 

second peak is found at a higher temperature than for the virgin asphaltenes. This could be due to 

the high asphaltene loading that leads to early addition reactions, which probably occur due to the 

reaction mechanism of free radical chains.21 After the O2 stabilizes the radical species, heavier 

compounds that are more difficult to decompose are expected to be produced by the radial 

recombination at termination step of the chain reactions.22 Also, heavier compounds than the starting 

specie can be produced from addition reactions that occur by the addition of free radicals to olefins,23 

H K mq 2R
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cross-linking reactions between aromatic clusters21 or reactions between aromatics joined by alkyl 

bridges.24  

As was observed for the virgin asphaltenes, the profile of production of CO2 is similar to the rate of 

mass loss plot. Although in the rate of mass loss there was no clear evidence of the temperature 

shifting for the first peak, for the gas analyses in Panel c in Figure 3.2, it can be observed that there 

is a delay in the CO2 peaks as the heptol ratio increases. In the second peak of Figure 3.2b it is 

observed that the production of CO2 is shifted to a lower temperature in the order toluene < heptol 

20 < heptol 40. In addition, it is observed that the ratio CO/CO2 increases as the degree of the self-

association of asphaltenes decreases. This could be attributed to the fact that the higher asphaltene 

aggregates tend to hinder some active sites that are then released as asphaltenes are oxidized. 

Therefore, the CO could be chemisorbed onto the liberated active sites of the nanoparticles to form 

CO2; as oxides (like SiO2) are active catalysts for the oxidation of the CO by its reaction with the 

subsurface oxygen.25 Figure 3.2c shows that the conversion of asphaltenes occurs at a lower 

temperature in the order of toluene < heptol 20 < heptol 40, indicating that as the asphaltene 

aggregate increases, the temperature needed for the oxidation of asphaltenes increases. For instance, 

the temperatures at a fixed degree of 50% conversion are 447, 456 and 485°C for toluene, heptol 20 

and heptol 40, respectively. 

 

According to the values observed for the K parameter of the SLE model (Table 3.1), the degree of 

asphaltene self-association is lower for the supported nanoparticles than for the CS support; hence, 

it is expected that the catalytic activity towards asphaltene oxidation will be enhanced by the 

CSNi1Pd1 nanoparticles. Panels a-c of Figure 3.3 show a) the plot of rate of mass, b) the evolution 

profiles of production of CO and CO2 and c) the degree of conversion for asphaltene oxidation from 

different solvents in presence of CSNi1Pd1 nanoparticles at an amount of adsorbed asphaltenes of 

0.67 mg/m2.  

Panels a and b in Figure 3.3 show two peaks for the three samples from different solvents, but at a 

much lower temperature than for CS nanoparticles (Figure 3.2b-c), confirming the higher catalytic 

activity of the CSNi1Pd1 nanoparticles. It can be noticed that for the CS support, the second peak 

for toluene, heptol 20 and heptol 40 were about 27, 29 and 31 % higher than the first peak of each 

sample, respectively. In the case of CSNi1Pd1 nanoparticles, the second peaks are about 13, 20 and 

26% higher than the first peak for toluene, heptol 20 and heptol 40, respectively. These results 

indicate that for CSNi1Pd1 nanoparticles higher amount of asphaltenes are decomposed in the region 

where the first peak appears in comparison to the CS support, confirming their higher catalytic 

activity. In the first peak observed in Figure 3.3a, a small shift can be noticed due to the solvent 

evaluated at temperatures 332, 341 and 394°C. This could be due to higher adsorbed aggregates of 

asphaltenes that lead to higher temperatures of oxidation. However, in the second peak, there is no 

clear shift regarding the heptol ratio, and this could be due to the catalytic effect of the nanoparticles, 

leading to additional reactions occurring to the same degree for toluene and both systems with heptol. 

In addition, it is observed that the production of both CO and CO2 starts earlier with the supported 

nanoparticles and that the first peak of CO2 production is found at 344, 367 and 399°C for toluene, 

heptol 20 and heptol 40, respectively. This again proves that the size of the asphaltene aggregate 

influences the catalytic activity of the nanoparticles.  
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Figure 3.2. a) Plot of rate of mass loss, b) the evolution profiles of the production of CO and 

CO2 and c) conversion for oxidation of virgin asphaltenes from different solvents in presence 

of CS nanoparticles; asphaltenes adsorbed = 0.67 ± 0.03 mg/m2. 
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As was seen for the CS nanoparticles, for CSNi1Pd1, higher degrees of conversion are obtained in 

the order of toluene > heptol 20 > heptol 40. However, for the CSNi1Pd1 samples the asphaltene 

oxidation occurred much earlier than for the CS support. Figure 3.3c shows that for toluene, heptol 

20 and heptol 40 a 50% degree of conversion is reached at 397, 422 and 429 °C, respectively. These 

temperatures are approximately 50, 34 and 56°C lower than for the CS nanoparticles, indicating that 

the CSN1Pd1 nanoparticles are able to inhibit the self-association of the asphaltenes on the active 

sites and hence have better catalytic activity than the CS support.  

 

3.2.3 Effect of n-C7 asphaltenes loading 

The effect of the asphaltene loading was also evaluated using CSNi1Pd1 nanoparticles. Panels a-c 

in Figure 3.4 show a) the plot of the rate of mass loss, b) the evolution profiles of production of CO 

and CO2 and c) the degree of conversion for asphaltene oxidation from different solvents in presence 

of CSNi1Pd1 nanoparticles at a fixed amount of adsorbed asphaltenes of 0.17 ± 0.02 mg/m2. In 

contrast to what was observed for a higher amount of adsorbed asphaltenes, in the plot of rate of 

mass loss in Figure 3.4a, three peaks are observed for the three asphaltenes from different solvents. 

These were observed over three different temperature ranges, namely, a low-temperature range 

(LTR) between 200 and 270°C, a mid-temperature (MTR) between 271 and 460°C and a 

high-temperature range (HTR) between 461 and 800°C. In this case, none of the peaks showed a 

clear shifting for different heptol ratios, and this observation could be due to both low asphaltenes 

loading and the catalytic effect of the nanoparticles that would have a higher amount of active sites 

for the reaction. 26 These facts make the nanoparticles able to oxidize asphaltenes of different sizes 

at approximately the same temperature. The first peak in Figure 3.4a appeared in the LTR at 

approximately 240°C for toluene and both systems with heptol and was due to a lower asphaltene 

loading. This results in less hindering of active sites and a subsequent enhancement of the catalytic 

activity of the catalyst. 

 

Asphaltenes are adsorbed on the nanoparticle surface via diffusive processes in which smaller 

asphaltene aggregates or monomers at low concentrations, are adsorbed first, followed by larger 

asphaltenes. In this order, finding that the first peak in the LTR means that for a lower asphaltene 

loading the first-adsorbed asphaltenes in the first layer retained a lower degree of self-association 

and are more easily cracked than those for a larger amount adsorbed. On the other hand, the MTR 

peak appears at approximately 375°C for the three solvents evaluated, approximately 15°C greater 

than the peak observed for the CSNi1Pd1 nanoparticles in the same region for an amount adsorbed 

of 0.67 mg/m2. This increase in the temperature can be explained because the oxidation of the 

asphaltenes in the LTR led to the formation of heavier compounds. The same situation is observed 

for the peak in the HTR, where the peak of asphaltene oxidation is found at a temperature 35°C 

greater than for the sample with more adsorbed asphaltene.  
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Figure 3.3. a) Plot of rate of mass loss, b) the evolution profiles of the production of CO and CO2 

and c) conversion for oxidation of virgin asphaltenes from different solvents in presence of 

CSNi1Pd1 nanoparticles; asphaltenes adsorbed = 0.67 ± 0.03 mg/m2. 
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Figure 3.4. a) Plot of rate of mass loss, b) the evolution profiles of the production of CO and CO2 

and c) conversion for oxidation of virgin asphaltenes from different solvents in presence of 

CSNi1Pd1 nanoparticles; asphaltenes adsorbed = 0.17 ± 0.02 mg/m2. 

The CO and CO2 evolution in Figure 3.4b confirms that a higher degree of asphaltene self-

association leads to lower catalytic activity of the nanoparticles. It is observed that the production of 

CO2 starts at lower temperatures as the heptol ratio decreases. A wide first peak is observed for the 

CO2 for toluene, heptol 20 and heptol 40 and is due to the oxidation of asphaltenes in the LTR and 

MTR. In addition, a shift of the peak to the right in the MTR is observed in the order of toluene < 

heptol 20 < heptol 40, indicating that the catalytic oxidation of asphaltenes occurs earlier for the 

systems with a lower degree of self-association. Additionally, as seen in Figure 3.4c, higher degrees 

of conversion are obtained as the amount of n-heptane in the solvent decreases. 

3.2.4 Estimation of the effective activation energies for the different 

toluene and heptol systems 

Figure 3.5 shows the estimated Eα for virgin asphaltenes and asphaltenes from different solvents in 

the presence of CS nanoparticles. It is observed that for virgin asphaltenes the effective activation 

energy ranged between 200 and 125 kJ/mol and decreased as the percentage of conversion increases.  

For asphaltenes adsorbed on CS nanoparticles, the Eα trend was the opposite of that for virgin 

asphaltenes; as the percentage of conversion increases, the Eα increased, indicating that the oxidation 

mechanism is different than for virgin asphaltenes and that different factors, such as addition 

reactions, steps involved and reaction order.   

 

Figure 3.5.  Effective activation energies by the OFW method as function of the conversion for CS 

nanoparticles. 

For the three asphaltenes from different solvents, the trend followed by Eα was heptol 40 > heptol 

20 > toluene, indicating that for larger asphaltene aggregates, more energy is needed to oxidize the 

adsorbed asphaltenes. It is also observed that for the three asphaltenes adsorbed, the pathway 

followed by the Eα is similar with an upward shift as the amount of n-heptane increases, suggesting 

that the mechanisms involved are similar for the three samples.  
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Figure 3.6 shows the estimated Eα for asphaltenes adsorbed onto CSNi1Pd1 nanoparticles at 

adsorbed amounts of 0.17 and 0.67 mg/m2. In the evaluation of these two amounts adsorbed, the 

trend followed by Eα was also heptol 40 > heptol 20 > toluene, and for the asphaltenes adsorbed at a 

concentration of 0.67 mg/m2 from the same solvent, the Eα was always higher than for those at a 

concentration of 0.17  mg/m2. These results indicate that the larger asphaltene aggregates can block 

the active sites and strongly affect the catalytic activity of the nanoparticles. It is worth mentioning 

that the pathway followed by the Eα for both amounts of asphaltenes adsorbed on CSNi1Pd1 is 

similar. However, when a comparison is made for different nanoparticles, it is seen that the trend is 

different and the oxidation mechanism and reaction order is specific to the type of nanoparticle.  

 

 

Figure 3.6. Effective activation energies by the OFW method as function of the conversion for 

CSNi1Pd1 nanoparticles at two different amounts of asphaltenes adsorbed. 

The mechanism for the asphaltenes oxidation is highly dependent on the way asphaltenes are 

adsorbed on the nanoparticles surface. In fact, depending on the nanoparticles chemical nature, 

selectivity towards asphaltenes adsorption could change from one type of nanoparticle to another. In 

this order, asphaltenes can be adsorbed in perpendicular or parallel ways depending on the 

nanoparticles selectivity towards different functional groups in the asphaltenes structure, affecting 

the degree of asphaltenes self-association.  Thus, the synergistic effect of NiO and PdO on the CS 

surface alters the selectivity towards different species present in the asphaltenes structure and hence, 

the way asphaltenes are adsorbed. Then, the disposition of asphaltenes over the nanoparticle surface 

is different and is in agreement with the values of the K parameter of the SLE model (Table 3.1). 

Also, the activated state will be different for the oxidation of asphaltenes in presence of both CS and 

CSNi1Pd1 nanoparticles, being less disordered for the one presenting lower effective activation 

energies.27  

As the application of nanoparticles for asphaltene adsorption and catalytic decomposition has gained 

interest in the oil industry, a better understanding of the relation of the adsorption behavior and the 

catalytic activity of the nanoparticles is needed. In this regard, it is proposed a correlation between 

the SLE model parameters (i.e., H and K) that give information about the adsorptive behavior of the 

nanoparticle surface and the Eα  estimated by the OFW model that provides the catalytic behavior of 

the nanoparticle surface. It is worth remembering that the SLE parameters and Eα are obtained for 

the adsorption isotherms of asphaltenes from different solvents as shown in the previous sections.  
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Panels a and b in Figure 3.7 show the relation between the  parameter and the effective activation 

energy for a) CS and b) CSNi1Pd1 nanoparticles at the three different degrees of asphaltene 

conversion of 20, 50 and 80%. As seen in Figure 3.7 for both nanoparticles, Eα decreases as the H 

value increases, i.e., as the adsorption affinity decreases. This observed trend is different from the 

trend obtained in Chapter 2 for asphaltene oxidation, pyrolysis and gasification, where the activation 

energy decreased as the adsorption affinity increased. Nevertheless, Chapter 2 focused on changing 

the type of adsorbents for the same asphaltene molecular/aggregate feature, which is different from 

the current study, where the asphaltene aggregate feature is changing as the heptol ratio changes.  

The difference between the correlations can be explained because the different adsorbent surfaces 

would inhibit the asphaltene self-association over the surface of the nanoparticles, directly affecting 

the catalytic activity.4 In addition, one has to keep in mind that the increase in the adsorption affinity 

as the amount of n-heptane increase, is due to the increasing aggregate size and that it could lead to 

a greater attachment of the asphaltene aggregates that will affect the catalytic activity of the 

nanoparticles. This finding is in good agreement with the behavior observed in Figure 3.6, where Eα 

increased with an increase in the heptol ratio, with larger asphaltene aggregates. On the other hand, 

Figure 3.8a and b show the relation between the constant  from SLE model and the estimated 

activation energy from the OFW model for asphaltene oxidation in the presence of a) CS and b) 

CSNi1Pd1 nanoparticles. Clearly, for both CS and CSNi1Pd1 nanoparticles, there is a linear trend 

between the K parameter and the Eα whereby increasing the degree of asphaltene self-association, 

the activation energy needed for the asphaltene oxidation increases because the higher aggregates 

are more prone to have buried or hidden functional groups that could interact with the catalyst 

surface.28 Additionally, when different adsorbents are compared using the same asphaltenes from 

the same solvent, it is observed that Eα decreases as the adsorption affinity increases and as the degree 

of self-association of the asphaltenes decreases. For example, in the case of asphaltenes adsorbed 

from toluene onto CSNi1Pd1 nanoparticles the H parameter takes value of 2.02 mg/g and Eα=50% of 

42.17 kJ/mol; while for the CS nanoparticles the values of H and Eα=50% are 1.77 mg/g and 86.21 

kJ/mol, respectively, indicating that for higher affinities the effective activation energy will decrease. 

Same observations can be seen for both heptol 20 and heptol 40 mixtures, and effective activation 

energies at values of α of 20 and 80%. However, the higher affinity of the CSNi1Pd1 nanoparticles 

towards asphaltenes adsorption from same solvent is related to the synergistic effect of NiO and 

PdO. That synergistic effect enables different unified selectivities, changing intermolecular forces 

between heteroatoms and functional groups of asphaltenes, and enhancing the surface 

electronegativity for a more efficient catalytic process. This trend of the effective activation energies 

as function of adsorption affinity does agree with results reported in Chapter 2. 

 For the CS nanoparticles, it is observed that the slope of the trend line is similar for conversions of 

20 and 50%, but for 80%, the slope is lower, indicating that at this value of conversion there is 

probably a switch in the oxidation mechanism. Additionally, when different adsorbents are compared 

using the same asphaltenes from the same solvent, it is observed that Eα decreases as the adsorption 

affinity increases and as the degree of self-association of the asphaltenes increases. 

H

K
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Figure 3.7. Relation between the Henry’s law constant from SLE model and the estimated 

activation energy from the OFW model for asphaltenes thermo oxidation in presence of a) CS 

and b) CSNi1Pd1 nanoparticles. Degrees of conversion of the activation energy of 20 (■), 50 

(●) and 80% (▲). 

 

  

Figure 3.8. Relation between the constant  from SLE model and the estimated activation 

energy from the OFW model for asphaltenes thermo oxidation in presence of a) CS and b) 

CSNi1Pd1 nanoparticles.  Degrees of conversion of the activation energy of 20 (■), 50 (●) and 

80% (▲). 

3.3 Partial conclusions 

The impact of asphaltene self-association on the adsorption affinity and catalytic activity of CS and 

CSNi1Pd1 towards the adsorption of n-C7 asphaltenes and their subsequent thermo-oxidative 

decomposition was investigated. The SLE model was used to fit the adsorption isotherms of 
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asphaltene from different solvents with different volume ratios of n-heptane/toluene. The results 

showed that the H parameter followed the trend of toluene > heptol 20 > heptol 40, indicating that 

the adsorption affinity increased as the amount of precipitant increased. It was also observed, 

according to the K parameter, that the asphaltene self-association over the adsorbent surface 

increased in the order heptol 40 > heptol 20 > toluene. In addition, TGA/FTIR tests were performed 

to investigate the effect of the asphaltene aggregate on the catalytic oxidation and the outcome of 

CO and CO2 gases. These TGA/FTIR tests provided useful information and revealed that as the 

extent of asphaltene aggregation increased, the temperature of asphaltene oxidation increased. The 

results showed that nanoparticles portray different reaction mechanisms in the catalytic oxidation of 

asphaltenes and that the pathway followed is specific to the type of nanoparticle. It was observed 

that the temperature of asphaltene oxidation decreased in the order heptol 40 > heptol 20 > toluene, 

indicating that for larger aggregates, the catalytic activity of nanoparticles is reduced The OFW 

model was used to estimate the effective activation energies in the asphaltene oxidation process, and 

it was found that as the extent of asphaltene aggregate increased, higher Eα are needed. Finally, a 

correlation between the SLE parameters and the Eα from the OFW model was found. As the 

parameter H decreased, i.e., the affinity increases, the Eα increased. However, it was shown that the 

Eα greatly decreased as the degree of asphaltene self-association decreased.  
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4. Effect of Resin I on n-C7 asphaltene adsorption 

onto nanoparticles  

Asphaltenes are typically considered a menace in the oil and gas industry for both down- and 

upstream processes.1, 2 Because of the chemical nature and complex structure, asphaltenes can self-

associate and form aggregates that lead to their precipitation/deposition on porous media and 

consequently lead to formation damage in the downstream process. Asphaltenes are also a concern 

for refiners because asphaltenes are significant constituents of the heavy oils that can impact a 

number of refinery processing streams.3 Additionally, as asphaltenes are the most polar and surface-

active fraction of crude oil,4 they tend to adsorb over the reservoir formation surface,5-7 and they may 

be deposited and accumulated at many places along the production system,3, 8-10 leading to an 

increase in production costs and the need for additional treatments to mitigate or remediate these 

asphaltene-related problems. 

It is well documented in the scientific literature4, 11-13 that resins from crude oil play a significant role 

in the stability of asphaltenes as the resins can act as peptizing agents that prevent asphaltene-

asphaltene interactions and hence the self-association and subsequent aggregation.11, 13 Resins have 

intermediate polarity in comparison to asphaltenes, and the chemical structure of resins differs from 

the chemical structure of the asphaltenes mainly in the reduced aromatic species and the number or 

length of the alkyl chains, resulting in a higher H/C ratio.4, 11 According to León et al.,14 the 

stabilization of asphaltenes in the presence of resins is due to the help that resins give asphaltenes to 

diffuse in the oil matrix following four main steps, as follows: i) resins form a layer over the 

asphaltene aggregate surface, ii) resins penetrate the asphaltenes aggregate microporous structure, 

iii) resins break the asphaltene aggregate microporous structure and iv) the asphaltene-resin complex 

diffuses in the oil matrix. Pereira et al.15 reported that the stability/instability of asphaltenes is directly 

related to the adsorption capacity of resins over the asphaltene surface. Poor resin-resin interactions 

with low adsorption on the asphaltene surface favor the asphaltene stabilization with resins acting as 

peptizing agents. However, higher resin-resin interactions lead to the formation of a “thick and 

sticky” layer over the asphaltene surface that promotes flocculation.15 Several studies have focused 

on the effect of resins on the asphaltene adsorption over large-grain solid surfaces.16-20 However, 

none of these studies reported on the adsorption isotherms by family (i.e., asphaltenes and resins). 

The authors simply reported the interactions of asphaltenes and resins on surfaces like bulk 

isotherms, but not specifically for resins I and asphaltenes.21-23 In the adsorbed phase, the asphaltene-

asphaltene interactions have been reported to be more important than the interactions of asphaltenes 

and resins, and resins have been reported to have a “less facile” adsorption than asphaltenes.4, 16, 19  

Recently, nanoparticles have become of especial interest in the oil industry due to their capacity to 

adsorb asphaltenes and enhance their stability for the inhibition of formation damage24-27 and 

enhanced oil upgrading and recovery applications.28-36 However, to date, there are no adsorption 

studies reported in the literature that account for the competitive adsorption of resins and asphaltenes 

over nanoparticles. Only Nassar et al.21, 37 indirectly studied the effect of resins on the adsorption of 
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asphaltenes by evaluating the effect of the maltene fraction of crude oil on the asphaltene adsorption 

onto γ-alumina nanoparticles21 and by comparing the adsorption of more resinous asphaltenes such 

as n-C5 asphaltenes with the adsorption of n-C7 asphaltenes over NiO nanoparticles.41 Nassar21 found 

that the amount adsorbed decreased in the order asphaltenes > bitumen > maltenes, indicating that 

the coexisting molecules impact the adsorption process of asphaltenes due to changes in the 

asphaltene arrangement in the adsorbed and bulk phases. In addition, Nassar et al. 41 found that n-C5 

asphaltenes were less prone to adsorb over the NiO nanoparticle surface than n-C7 asphaltenes 

because resins affect the colloidal behavior of asphaltenes and hence, the adsorbate-adsorbent 

interactions.  

Therefore, this chapter aims at explore the respective adsorption isotherms of n-C7 asphaltenes and 

resins I to provide a better understanding of the effect of the resins on the adsorption of asphaltenes. 

The adsorption experiments were conducted in the batch mode at different n-C7 asphaltene to resin 

I ratios (A:R) of 7:3, 1:1 and 3:7 and different concentrations of the asphaltene-resin mixture from 

500 to 5000 mg/L. The comparative adsorption studies outlined here were validated and supported 

by the solid-liquid equilibrium (SLE)38 isotherm model. Results and discussion are divided into two 

sections, namely: i) adsorption isotherms of n-C7 asphaltenes and resins I over nanoparticles 

constructed separately for each compound, and ii) the evaluation of the competitive adsorption 

between n-C7 asphaltenes and resins I for different mixtures of A:R ratios. 

4.1 Experimental  

4.1.1  Nanoparticles, asphaltenes and resins 

CS nanoparticles were used as adsorbents for this study. Full nanoparticles characterization can be 

found in Chapter 1.  AK9 EHO (See Chapter 2) was used as a source of n-C7 asphaltenes and resins 

I. The EHO was mixed with n-heptane (99%, Sigma-Aldrich) in a ratio of 1 g per each 40 mL of 

precipitant,28 sonicated for 2 h and then magnetically stirred for 20 h at 200 rpm. Further, the mixture 

was centrifuged for 45 min at 4500 rpm using a Z 306 Hermle Universal Centrifuge (Labnet, NJ). 

Petroleum resins can be divided into resins I and II, the former being more prone to interact with the 

asphaltenes.39 In this order, resins II were discarded with the supernatant or deasphalted oil while the 

precipitate was placed in the chamber of a Soxhlet setup and washed with n-heptane for 72 h. Solid 

n-C7 asphaltenes were obtained from the Soxhlet chamber, and resins I were extracted by distillation 

from the Soxhlet liquid.40 

4.1.2 Adsorption experiments 

Batch-mode adsorption experiments were conducted at a temperature of 25°C. Adsorption isotherms 

were constructed for n-C7 asphaltenes (A) and resins I (R) individually and collectively at different 

A:R weight ratios of 7:3, 1:1 and 3:7. The n-C7 asphaltenes in toluene, resins I in toluene and 

mixtures of n-C7 asphaltenes + resins I in toluene solutions were prepared at different concentrations 

from 100 to 5000 mg/L. In the adsorption process, a fixed amount of 100 mg of nanoparticles per 

each 10 mL of solution was added to the oil model solutions and magnetically stirred for 24 h to 

ensure the maximum adsorption of n-C7 asphaltenes and/or resins I over the nanoparticle surface. 

Further, nanoparticles with adsorbed n-C7 asphaltenes and/or resin I were separated from the solution 

by centrifugation at 4000 rpm for 30 min to guarantee the maximum recovery of nanoparticles.  

The competitive adsorption of n species over a solid surface is expected to be addressed by n degrees 

of freedom, i.e., following n or more measurements.41 Hence, in this work, n = 2 regarding the n-C7 
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asphaltenes and resins I and the degrees of freedom were satisfied through thermogravimetric 

analyses (TGA) and softening point (SP) measurements. The amount of n-C7 asphaltenes and/or resin 

I adsorbed was determined using combined information from the adsorbates in the bulk and the 

adsorbed phases after adsorption. The amount of n-C7 asphaltenes and/or resin I in the adsorbed 

phase was measured by TGA using a Q50 thermogravimetric analyzer (TA Instruments, Inc., New 

Castle, DE). For this purpose, 10.0 ± 0.5 mg of sample (virgin nanoparticles and nanoparticles with 

n-C7 asphaltenes and/or resin I adsorbed) were placed in a platinum pan and heated in an air 

atmosphere from 100 to 800°C at a heating rate of 10°C/min. The air flow was fixed at 100 mL/min. 

The amount of adsorbate on the nanoparticles surface was determined by differences in the mass 

loss between the virgin nanoparticles and nanoparticles with the adsorbed species. TGA experiments 

were performed in duplicate. 

The n-C7 asphaltenes and/or resins I in the bulk phase were determined by SP measurements that 

allow the estimation of the wt% of n-C7 asphaltenes and/or resins I in the sample. SP experiments 

were developed following the ASTM E28-14 method.42 A calibration curve of laboratory-made 

mixtures of n-C7 asphaltenes + resins I against SP was constructed for this purpose. Figure 4.1 shows 

the calibration curve obtained. Hence, after separating the nanoparticles from the solution, the 

supernatant was recovered, the solvent was evaporated and the SP of the solid obtained was 

determined. 

Finally, knowing the wt% of adsorbate in the adsorbed phase and the respective wt% of n-C7 

asphaltenes and resins I in the bulk phase, a mass balance is applied and the amount of n-C7 

asphaltenes and resins I adsorbed can be determined. For the individual adsorption of n-C7 

asphaltenes and resins I on nanoparticles, the amount adsorbed was determined using TGA only, and 

results were consistent with the results obtained with the commonly used UV-vis technique.21, 28   

Valuable information about adsorbate-adsorbate and adsorbate-adsorbent interactions can be 

obtained from the SLE model.38 Hence, the SLE model was used for describing the adsorption 

isotherms of n-C7 asphaltenes and resins I .SLE model equation and details can be found in Chapter 

2. 

  

Figure 4.1. Softening point calibration curve. 
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4.2 Results and discussions 

4.2.1 Individual adsorption of n-C7 asphaltenes and resins I 

Figure 4.2 shows the individual experimental adsorption isotherms data together with the fit of the 

SLE model for n-C7 asphaltenes and resins I over CS nanoparticles at 25°C. However, the adsorption 

isotherms for resins I over CS nanoparticles followed a Type III behavior according to the IUPAC,43 

indicative of a low affinity between the adsorbent–adsorbate leading to multilayer adsorption.41, 44, 45 

This multilayer adsorption is confirmed by the values of the SLE parameters presented in Table 4.1. 

There is good agreement between the SLE model and the experimental results according to the R2 

and RSME% values. Table 4.1 shows that the H parameter is higher for the adsorption of resins I 

than for n-C7 asphaltenes, indicating that the interaction between n-C7 asphaltenes–CS nanoparticles 

is higher than resins I–CS nanoparticles and that n-C7 asphaltenes are more prone to be in the 

adsorbed phase than in the bulk phase.38 Hence, we can infer that the CS nanoparticles are more 

selective for adsorption of n-C7 asphaltenes than resins I. The K parameter is several orders of 

magnitude greater for resins I than for n-C7 asphaltenes. Although the resin–resin interaction in the 

bulk phase is low (almost inconsequential),11, 12 once adsorbed the polar character of the resins may 

lead to their self-association around the active sites of the adsorbent surface, suggesting that the 

resin– resin interaction over the solid surface is not negligible and leads to the formation of 

multilayers.  

 

 

Figure 4.2. Adsorption isotherms of n-C7 asphaltenes and resins I over CS nanoparticles at 25°C 

constructed separately for each component. 
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Table 4.1. SLE model estimated parameters for the adsorption of n-C7 asphaltenes and resins I 

from different A:R ratios.  

A:R ratio 

n-C7 asphaltenes 

 

Resins I 

H 

(mg/g) 

K 

(g/g) 

qm 

(mg/m2) 

R2 RSME% 

H 

(mg/g) 

K 

(g/g) 

qm 

(mg/m2) 

R2 RSME% 

Individual 

components 
0.99 4.46 x 10-4 0.47 0.99 6.69 

 

126.70 637.77 2.01 0.99 2.13 

7:3 2.48 4.78 x 10-4 2.55 0.99 6.42 2.90 4.02 x 10-5 0.13 0.97 7.14 

1:1 10.24 9.98 x 10-4 392.18 0.99 5.30 21.94 0.10 0.21 0.98 8.82 

3:1 18.18 9.29 x 10-4 378.78 0.99 3.41 41.82 11.31 0.81 0.99 4.13 

4.2.2 Competitive adsorption between n-C7 asphaltenes and resins I 

asphaltenes and resins I 

Adsorption isotherms of n-C7 asphaltenes and resins I were constructed simultaneously at different 

A:R values of 7:3, 1:1 and 3:7 at 25°C. Panels a and b of Figure 4.3 show the experimental adsorption 

isotherms obtained together with the fit of the SLE model for the competitive adsorption of a) n-C7 

asphaltenes and b) resins I over the CS nanoparticles surface. Figure 4.3a shows that the amount of 

n-C7 asphaltenes adsorbed over the nanoparticle surface decreased as the amount of resins I in the 

bulk phase increased. For comparison, at  = 160 mg/L, the amount of asphaltenes adsorbed 

decreased from 0.25 mg/m2 for the n-C7 asphaltenes in absence of resins I to 0.18, 0.08 and 0.03 

mg/m2 for the A:R ratios of 7:3, 1:1 and 3:7, respectively. This decrease could be explained by two 

main reasons: i) resins I affect the colloidal state of the n-C7 asphaltenes in the bulk phase,14, 37, 46, 47 

resulting in an interrupted colloidal structure of the n-C7 asphaltene molecules and their subsequent 

adsorption behavior to the adsorbent surface; and ii) the reduction of the number of surface active 

sites available for adsorption due to the resins I adsorption. For the adsorption of n-C7 asphaltenes 

for an A:R ratio of 7:3, the shape of the adsorption isotherms follows a clear Type I behavior similar 

to n-C7 asphaltenes in the absence of resins I, indicating that at a higher amount of n-C7 asphaltenes 

than resins I in the system, the diminution in the amount adsorbed could be more closely associated 

with the restrictions in the diffusion from the bulk phase to the S nanoparticles surface. The colloidal 

state of asphaltenes in the presence of resins changes due to a micelle-type formation of a polar 

asphaltene core surrounded by resins,46 peptization14 or the termination of the asphaltene self-

association due to the presence of resins that may act as terminator molecules.47 When asphaltenes 

and resins coexist, the interaction asphaltene–resins is more likely to occur than asphaltene–

asphaltene or resins–resin interactions.12 Results are in agreement with those reported by Nassar et 

al.37 on the adsorption of n-C5 and n-C7 asphaltenes over NiO nanoparticles. The authors found that 

although both adsorption isotherms followed a Type I behavior, the adsorption capacity was lower 

for the more resinous n-C5 asphaltenes than for n-C7 asphaltenes. However, Figure 4.3a shows that 

for A:R ratios of 1:1 and 3:7, the shape of the adsorption isotherms has a somewhat linear trend, 

suggesting that the adsorption of n-C7 asphaltenes can be restricted due to the resins I occupation of 

the active sites and also that the adsorption may occur in a multilayer form. Experimental results 

were also supported by the SLE parameters obtained (Table 4.1). As Table 4.1 shows, the H 

parameter increased as the amount of resins I in the system increased, i.e., the preference of the 

asphaltenes for being in the adsorbed phase becomes reduced. With regard to the degree of n-C7 

EC
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asphaltene self-association over the nanoparticle surface, the K parameter is higher for the individual 

adsorption of n-C7 asphaltenes than for the adsorption of n-C7 asphaltenes with an A:R ratio of 7:3, 

indicating that the asphaltene-asphaltene interactions become reduced by the presence of resins I on 

the CS nanoparticle surface. However, a critical ratio of A:R seems to exist, where the asphaltene-

asphaltene and/or asphaltene-resin interactions become important to form multilayer adsorption as 

observed with the increased values of the K parameter after the A:R ratio of 1:1. Asphaltene-resin 

interactions over the adsorbent surface could be a key parameter for the formation of multilayers as 

long as the asphaltene-resin interactions are supposed to be greater than resins-resin interactions. 

Figure 4.3b shows the adsorption isotherms of resins I onto CS nanoparticles for different A:R ratios 

at 25°C. The shape of the adsorption isotherms is observed to change drastically from a Type III 

behavior for the system without n-C7 asphaltenes to Type I and Type II isotherms for A:R ratios of 

7:3 and 1:1, respectively, possibly because the affinity of the resins I for being in the adsorbed phase 

is also influenced by the presence of asphaltenes and is supported by the H values of the SLE model 

that decreased drastically for the adsorption of resins I in presence of n-C7 asphaltenes in comparison 

to the adsorption of the resins I in the absence of n-C7 asphaltenes. However, as the amount of resins 

I in the system increased, the adsorption affinity decreased, and the trend to form multilayers was 

favored. This trend to form multilayers is also supported by the K parameter that increased for the 

systems in the presence of n-C7 asphaltenes in the order 7:3 > 1:1 > 3:7. 

Nevertheless, when comparing adsorption isotherms from Figure 4.3a with those of Figure 4.3b for 

the systems with the presence of both n-C7 asphaltenes and resins I at the different A:R ratios 

evaluated, the amount adsorbed is always higher for n-C7 asphaltenes than for resins I, indicating 

that the CS nanoparticles can be used effectively in the design of special treatments that aim to select 

n-C7 asphaltenes instead of resins I.  

4.2.3 Prediction of the amount of n-C7 asphaltenes adsorbed  

For a better understanding of the role of resins I in the adsorption of n-C7 asphaltenes over CS 

nanoparticles, the adsorbed amount of individual n-C7 asphaltenes and n-C7 asphaltenes in the 

presence of resins I for A:R ratios of 7:3 and 1:1 was predicted from the amount of n-C7 asphaltenes 

adsorbed at an A:R ratio of 3:7. If resins I affect the colloidal state of n-C7 asphaltenes in the bulk 

solution at different degrees according to the amount of resins I in the system, the adsorption of n-

C7 asphaltenes would be affected in different degrees accordingly to the A:R ratio evaluated. 

Nevertheless, if resins I similarly affect the colloidal state of n-C7 asphaltenes, independent of the 

amount of resins in the system, the adsorption of n-C7 asphaltenes would be similar for all of the A:R 

ratios evaluated and controlled by the n-C7 asphaltene concentration and the occupation of the 

respective nanoparticle active sites by resins I.  

Prediction of the amount of n-C7 asphaltenes adsorbed was performed, assuming that at a fixed A:R 

ratio, the amount of n-C7 asphaltenes adsorbed would correspond to a fraction of the amount of 

individual n-C7 asphaltenes adsorbed and vice versa. For instance, the amount of n-C7 asphaltenes 

adsorbed at an A:R ratio of 3:7 would correspond to 30% of the amount adsorbed of individual n-C7 

asphaltenes. A good prediction is expected to result in a linear plot of the amount adsorbed predicted 

( ) against the experimentally observed amount adsorbed ( ). If the agrees 

with , it would imply that the slope ( ) and the intercept ( ) of the equation of a straight 

line (Eq. 4.1) should be equal to 1.0 and 0.0, respectively, with a linear correlation coefficient R2 = 

1.0. 

predictedq experimentalq predictedq

experimentalq m b
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 (4.1) 

 

 

 

Figure 4.3. Adsorption isotherms of a) n-C7 asphaltenes and b) resins I over CS nanoparticles at 

25°C constructed simultaneously for different n-C7 asphaltenes to resins I ratios of 7:3, 1:1 and 3:7.  

 

Figure 4.4 shows the  against  linear plots for the prediction of the amount of n-

C7 asphaltenes adsorbed over CS nanoparticles in absence of resins I and for the different A:R ratios. 

Additionally, Table 4.2 shows the estimated slope and intercept of the straight-line equation 

associated with the respective equation of a straight line together with the corresponding values of 

R2 and RSME%. As Figure 4.4 shows, there is an excellent prediction of the amount adsorbed for the 
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systems with A:R ratios of 7:3 and 1:1. Additionally, Table 4.2 shows that the values for m and b 

are less than the 6% expected for a perfect prediction. Results suggest that the colloidal state of the 

n-C7 asphaltenes is affected to similar degrees independent of the amount of resins I in the system. 

Hence, the reduction of the amount of n-C7 asphaltenes in the presence of resins I would be more 

controlled by the concentration of n-C7 asphaltenes in the system and the ability of resins I to occupy 

the active sites on the adsorbent surface.  

Figure 4.4 and Table 4.2 show that prediction of the amount of individual n-C7 asphaltenes adsorbed 

over CS nanoparticles was not successful over the whole range of  evaluated. In this order, 

the plot of  versus was divided in two sections, namely: i) < 3000 mg/L, and 

ii) ≥ 3000 mg/L. For the section with < 3000 mg/L, the amount adsorbed was successfully 

predicted with values of m and b close to the expected values for a perfect prediction and with R2 

and RSME% value of 0.98, respectively. However, for the section with  ≥ 3000 mg/L, the values 

of  differ from those of  by more than 25%, corroborated by the large values m 

and b. 

For the case of 1:1 over CS nanoparticles at 25°C, prediction was made from adsorption at an A:R 

ratio of 3:7.  The results indicate that for  ≥ 3000 mg/L, the colloidal state of the n-C7 asphaltenes 

in the absence of resins I varies significantly from the colloidal state in the presence of resins I and 

implies that the way n-C7 asphaltenes diffuse from the bulk phase to the adsorbent surface indeed 

changes due to the presence of resins I in the system. However, for < 3000 mg/L, the colloidal 

state of the n-C7 asphaltenes does not change drastically and hence, resins I will not considerably 

affect the way the n-C7 asphaltenes diffuse through the oil matrix. According to Mullins,48, 49 as of 

2010, it was well accepted that the concentration of asphaltene cluster formation is between 2000 

and 5000 mg/L, suggesting that in the case of close to 3000 mg/L, the cluster formation would 

occur to different degrees in the presence and the absence of resins I, which would directly affect the 

adsorption over the CS nanoparticles.  

 

Figure 4.  against  linear plots for the individual adsorption of n-C7 asphaltenes 

and n-C7 asphaltenes in presence of resins I and for different A:R ratios. 
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Table 2. Estimated slope and intercept of the  against  linear plots for the 

prediction of the amount of n-C7 asphaltenes adsorbed in the absence and the presence of resins I 

Material  
A:R ratio   R2 

RSME% 

S 

Individual n-C7 

asphaltenes 

< 3000 mg/L 0.94 0.0238 0.99 0.98 

≥ 3000 mg/L 1.61 -0.1728 0.97 11.24 

      

7:3 1.05 -0.0006 0.99 4.11 

     

1:1 0.94 0.0084 0.99 2.88 

4.3 Partial conclusions 

The competitive adsorption of n-C7 asphaltenes and resins I on CS nanoparticles was described 

successfully through the simultaneous construction of the respective adsorption isotherms at 25°C. 

The amounts of n-C7 asphaltenes and resins I adsorbed were obtained through a novel method based 

on TGA and SP measurements. Results showed that although the amount of n-C7 asphaltenes 

adsorbed becomes reduced as the amount of resins I in the system increase, the adsorption is always 

higher for n-C7 asphaltenes than for resins I for the different asphaltene to resin ratios evaluated. 

Adsorption isotherms were successfully described by the SLE model.  

In addition, following a simple rule of three, the amount of n-C7 asphaltenes adsorbed in presence 

of resins I was predicted successfully from the known amount of n-C7 asphaltenes adsorbed at a 

defined A:R ratio, which discard any specific interactions between asphaltenes and resins either in 

the bulk at the surface.  Results also suggest that CS nanoparticles are promising for the treatment 

of asphaltene-related problems. For the different n-C7 asphaltene to resins I ratios employed, the 

nanoparticles were always more selective to adsorb asphaltenes than resins I. However, for high 

amounts of resins in the system, it is recommended the design of a more n-C7 asphaltene-selective 

nanoparticle that enhances the n-C7 asphaltene adsorption.   
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5. Influence of shear and nanoparticles on the 

aggregation and fragmentation of asphaltene 

aggregates  

The production of conventional and unconventional crude oil can be affected by several sources of 

damage under subsurface and surface conditions that can affect oil production.1 Formation damage 

may occur during different stages of oil and/or gas production such as production, drilling, hydraulic 

fracturing, and workover operations.2 According to Bennion,1 formation damage is technically 

defined as “any process that causes a reduction in the natural inherent productivity of an oil or gas 

producing formation, or a reduction in the injectivity of a water or gas injection well”. Heavy 

compounds in crude oil, such as asphaltenes, are a source of damage in light,3 medium and heavy 

oils.4 Although the source of the damage is the same, the type of damage is dependent on the crude 

oil quality and origin. In light crude oils with low contents of asphaltenes, the damage is induced by 

the precipitation, deposition and adsorption of asphaltenes on the porous media and the entire 

production system.3 On the other hand, in crude oils with high asphaltene content, the damage is 

associated with high viscosities that reduce the oil mobility and lead to fingering problems, 5, 6 

resulting in the production of large amounts of water that negatively affect the environment. In 

addition, nanoaggregates, formed at low concentrations tend to self-assemble at higher 

concentrations leading to large aggregates that subsequently increase the heavy oil (HO) viscosity.4, 

7 The asphaltene self-association occurs as their concentration in the system increases, hence 

promoting the formation of nanoaggregates (2 nm) and clusters (5 nm) with aggregation numbers 

lower than 10.8, 9 Due to these characteristics of asphaltenes and the consequent problems in the 

production and transportation of crude oil, several mathematical models have been developed and 

reported in the literature to understand the phenomena associated with the aggregation of 

asphaltenes. 10-22 

Boek et.al. 16 used a slot capillary experiment and the dynamics of stochastic rotation (SRD) to study 

the potential interaction of asphaltenes under flow conditions and its effect on the asphaltene 

deposition process. The authors indicated that at a certain flow rate (5 μL/min), the pressure drop 

across the capillary increased slowly. However, by increasing the flow rate (10 μL/min) the 

aggregation and subsequent precipitation/deposition occurred earlier; however, the asphaltene 

deposits were later dragged by the flow. The simulation showed that for slow and fast flow rates, 

permanent and transient blocking occurred, respectively. The colloidal interaction potential was 

identified as a key parameter in the flocculation and deposition of asphaltenes under flow conditions 

and could be modified by including co-precipitated elements.16  

In this regards, a number of population balance equations have been proposed for describing the 

asphaltenes growth.13, 14, 19-23 Khoshandam and Alamdari19 used mass and population balance 

equations for modeling the growth of asphaltenes particles in Heptol solutions. The proposed model 

employed four fitting parameters including the coefficient of growth rate and the agglomeration 

coefficient; supersaturation as driving force was quantitatively related to the agglomeration and 
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growth mechanisms. These authors reported a good fitting of the model towards the experimental 

observations made by dynamic light scattering with a relative deviation of 10%.19 Maqbool et al.21 

developed a geometric population balance model that includes the Smoluchowski kernel for the 

simulation of the asphaltenes aggregates growth in presence of a precipitant such as n-heptane. The 

model fitted well the experimental observations regarding the asphaltenes aggregates size 

distribution and is useful in the prediction of the precipitation onset time of asphaltenes at low 

precipitant concentrations. Additionally, the authors found that the velocity at which asphaltenes 

aggregate in larger particles increase as the concentration of precipitant increases due to higher 

driving forces for asphaltenes aggregation. Rahimi and Solaimany-Nazar20, 22 build up a fractal 

population balance model for the prediction of fractal aggregates size distribution of Iranian crude 

oil asphaltene solutions in Heptol mixtures in presence of shear. They reported that the fractal 

dimension of the aggregates is dependent on the shear and a time-dependent function can be used 

for it’s description. Additionally, the number average diameter curves showed a maximum and 

further decreases until a steady state was reached. That trend was attributed to that after the maximum 

average size time, the breakage rate overcome that of aggregation, resulting in smaller aggregates.20 

Eskin et al.23 simulated the particle size evolution of asphaltenes in pipeline under turbulent flows 

employing a population balance method. They estimated the collision efficiency, particle critical size 

and particle-wall sticking by fitting with the experimental observations obtained with a Couette 

device.  Rahmani et al.13, 14 studied asphaltene size distribution in organic solvents under a shear rate. 

Additionally, Rahmani et al. employed a mathematical model based on a population balance to 

analyze the experimental data pertaining to the aggregate size distribution of asphaltenes under 

certain shear rates, solvents and asphaltene loadings. The model and experimental data described the 

asphaltene aggregation as two-process phenomena involving the aggregation and fragmentation of 

asphaltenes induced by the presence of a shear rate until reaching a steady-state aggregate size. 13, 14 

Generally, by increasing the shear rate, the rate of breakage of the asphaltene aggregates increases, 

leading to the formation of smaller aggregate sizes. In addition, as the asphaltene loading or the 

amount of precipitant increases, the rate of asphaltene aggregation growth is increased. 13, 14 

Montoya et al. 17, 18 developed two models to describe adsorption isotherms that accounts for the 

asphaltene self-association on the solid surface at reservoir18 and surface17 conditions. These 

solid−liquid equilibrium (SLE) and solid−liquid equilibrium at reservoir conditions (SLE−RC) 

models were based on the chemical theory and provide valuable information about the adsorption 

affinity of certain adsorbents towards asphaltenes and the method by which the asphaltenes self-

associate over the solid surface at equilibrium conditions.17, 18 The effects of the types of adsorbent, 

asphaltene chemical nature and the temperature were successfully described by the SLE and SLE-

RC models. In addition, the SLE model provides accurate information about the thermodynamic 

properties of adsorption.17  

Nanoparticles have become an interesting field of study regarding the inhibition or prevention of 

asphaltene damage at the laboratory24-27 and oil field scales.28 Although it is well known that the 

adsorption of asphaltenes on the nanoparticle surface would reduce the capacity of these asphaltic 

compounds to interact with each other, limited studies have been performed regarding the processes 

and the mechanisms associated with the effect of nanoparticles on the inhibition of the formation 

damage due to asphaltenes. To better understand this phenomenon from a mathematical approach, a 

population balance model (PBM) is proposed to describe the kinetics of asphaltene flocculation-

fragmentation in the presence of nanoparticles. The model assumes that asphaltenes in the presence 

of a shear rate are related to the aggregation and fragmentation phenomena and includes a term 

related to the asphaltene adsorption on nanoparticles. An adsorption kinetic term was introduced into 

the model using the double exponential model. Experimental data of the kinetics of asphaltene 

aggregation were obtained by Dynamic Light Scattering (DLS) measurements at a fixed initial 

asphaltene concentration of 1000 mg/L and with different Heptol mixtures. In this study, CS, CM 
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and CAl nanoparticles were used as adsorbents to study the effect of the chemical nature of the 

nanoparticles on the inhibition of the asphaltene growth and for model validation. Additionally, to 

demonstrate the versatility of the proposed model, the effect of asphaltene was also evaluated. The 

obtained results from the proposed population balance model agree well with the experimental data, 

within an %RSME < 9%. The mathematics and other details of the model are described below.  

5.1 Experimental  

5.1.1  Materials  

CS, CAl and CM nanoparticles were used as adsorbents for this study. Physicochemical properties 

of the selected nanoparticles can be found in Chapter 1.  AK18 n-C7 asphaltenes were also employed 

for the study. Some properties of the EHO and procedure for n-C7 asphaltenes isolation are presented 

in Chapter 2. n-Heptane (99%, Sigma-Aldrich, St. Louis, MO) was used as received for asphaltene 

isolation and for the preparation of heavy oil model solutions. Toluene (99.5%, Merck KGaA, 

Germany) was also used for heavy oil solutions preparation. 

5.1.2 Methods 

 Asphaltene aggregation kinetics 

It is well known that when a flocculation solvent, such as n-heptane, is added to an asphaltene 

solution under shearing, a steady state will be reached after the particle aggregation and 

fragmentation processes are equilibrated.14 Therefore, a desired amount of n-C7 asphaltenes is added 

to toluene and magnetically stirred for 1 h at 300 rpm. Then, n-heptane in the proportions of 20 v/v% 

(Heptol 20) and 40 v/v% (Heptol 40) is added to the heavy oil model solutions to complete a fixed 

concentration of 1000 mg/L n-C7 asphaltenes. It is expected that the asphaltene size will increase as 

the amount of n-heptane increases.29 Immediately, the solutions are magnetically stirred at a fixed 

shear rate of 300 rpm, and aliquots are taken to obtain the mean asphaltene aggregate size at a desired 

time. DLS measurements for the experiments on asphaltene aggregation kinetics were performed 

using a nanoplus-3 from Micromeritics (Norcross, ATL) set at a desired temperature and equipped 

with a 0.9 mL glass cell. 29-31 It is noteworthy that no asphaltene precipitation was observed for the 

employed Heptol solutions, as verified by the Oliensis Spot Test Number 32, 33 and Polarized Light 

Microscopy.25 The asphaltene mean particle size was measured until a steady state was reached. The 

scattering angle varies according to the solvent used to optimize the intensity of the flocculation of 

scattering light. The mean aggregate diameter of asphaltenes aspd  (hydrodynamic diameter) is 

obtained from the Stokes-Einstein equation, as follows: 34 

3

B
asp

a

k T
d

D
  (5.1) 

where Bk  (1.38 x 10-23 m2kg∙s-2K-1) is the Boltzmann constant , T (K) is temperature,   35 is the 

viscosity of the medium, and aD  (m2∙s-1) is the diffusion coefficient of the particles.  In addition, to 

evaluate the inhibition of the asphaltene aggregation using nanoparticles, the procedure was repeated 

in the presence of the selected nanomaterials with dose of 10 g/L of solution. The nanoparticle dose 
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was selected to allow the supernatant decantation for accurate measurements of asphaltene 

aggregation by minimizing the risk of noise due to suspended nanoparticles.  

 Adsorption kinetics experiments 

Batch-mode adsorption experiments were performed at a ratio of 1:10 (L:g) model heavy oil 

solution/mass of the nanoparticles following a procedure described in previous works.36, 37 In brief, 

the adsorption of asphaltene in the experiments was monitored for 100 min at a fixed asphaltene 

initial concentration of 1000 mg/L, similar to the concentration used for the aggregation kinetics 

tests, and the solution temperature was 20°C. Samples were selected at predetermined time intervals 

and analyzed for asphaltene concentration using a Genesys 10S UV-vis spectrophotometer (Thermo 

Scientific, Waltham, MA). The adsorbed amount of n-C7 asphaltenes relative to the mass of 

nanoparticles, q  (mg/g), was estimated following the mass balance ( ) /t i tq C C M  , where tq

(mg/g) and tC (mg/L) are the concentration of asphaltenes in the solution at a desired time t  (min), 

and M (g/L) is the ratio of dry mass nanoparticles to solution volume. 

 

5.2 Aggregation and inhibition model of asphaltene growth 

5.2.1 General population balance equation  

To model the kinetics of aggregation and inhibition, a PBM that accounts for the adsorption of 

asphaltene moieties onto nanoparticles is proposed. The model assumes that asphaltene aggregation 

in the presence of a shear rate is related to the aggregation and fragmentation phenomena. Rahmani 

et al.14 proposed a PBM that describes the kinetics of aggregation and fragmentation of asphaltene 

particles following the expression developed by Austin 197138 and Friedlander 197739 for the change 

rate of the particle size of a given size due to the processes of aggregation and fragmentation. This 

model is based on the theory that at the initial stages of the aggregation/fragmentation process, the 

asphaltene aggregate size grows rapidly, i.e., aggregation is promoted. The fragmentation 

phenomena gains importance as the aggregation increases and as the hydrodynamic stresses equalize 

to cause stress of the aggregates.38, 40 Therefore, the asphaltene aggregate size is dependent on the 

dominant phenomena in a specific moment. In this study, a modification of the model employed by 

Rahmani et al. 14 is proposed to account for the effect of nanoparticles in solution. It could be said 

that the presence of nanoparticles will affect the kinetics of asphaltene aggregation/fragmentation; 

hence, a new term representing aggregate inhibition provided by nanoparticles through the 

adsorption process is included in the new version of the PBM model, as described in equation 5.2: 

idn dq
B D

dt dt
    (5.2) 

where, 

 
idn

dt
is the rate number concentration (asphaltene particles per volume  with size i, 



Chapter 5 131 

 

 B  and D  are general terms regarding the appearance and disappearance of asphaltene particles 

of size i, respectively, and 

 
dq

dt
 is the term related to the rate of adsorption of asphaltene particles on nanoparticles. 

A detailed expression of the inhibition model of asphaltene aggregations is shown in equation 5.3,14, 

39, 41 after considering the adsorption on nanoparticles  

max max
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        (5.3) 

where, in is the number concentration of aggregates with size i that contains i primary particles, and 

maxn  is the maximum size of the particles that will form fragments of size i  before fragmentation. 

In equation 5.3 from right to left, the first term defines the adsorption kinetic on nanoparticle, the 

second and fifth terms define the formation of i-sized particles, and the third and fourth terms account 

for the disappearance of particles of size i. 
jk is the collision frequency between particles of volume

Vj
 and Vk due to Brownian motion and fluid shear, as expressed in equation 5.4: 14, 42, 43 
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where,   (Pa∙s) is the solution viscosity, and G  (1/s) is the shear rate. The volume of a particle of 

size i is expressed as a function of the volume in the previous step, as follows: 
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where, f is the sectional spacing, which is equal to 2, 14, 40, 44, 45 and   is the aggregate porosity that 

is assumed constant for aggregate formation from primary particles and is used as a fitting parameter. 

The collision efficiency,  , i.e., the fraction of collisions that results in aggregations, is assumed 

equal to 1.0 because large aggregates have fractal and porous structures.44-46 Nevertheless, the 

collision efficiency is a function of the surface properties of the particles, the structure of the 

aggregates, the diameter of the aggregates,14 the prevailing colloidal force and hydrodynamic 

effects.47, 48 Additionally, 
,i j represents the volume fraction of aggregates of size i originating from 

aggregates of size j expressed as ,i j j iV V  , and iB  is the fragmentation or breakup rate of 

aggregates of size i , given as a function of particle volume, as follows: 49-51  

0.33

i iB bV  (5.6) 

where, b  is the breakup rate coefficient for shear-induced fragmentation.14 In this work, b  is 

assumed as a fitting parameter to correlate the experimental and simulation results.  
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5.2.2 Accounting for the kinetics of asphaltene adsorption onto 

nanoparticles  

The inhibition term of asphaltene aggregation was introduced into the model using adsorption 

kinetics of asphaltenes onto the nanoparticles. Asphaltenes are first found in the bulk solution as 

large aggregates, and as nanoparticles gradually interact with the medium, the adsorption forces 

become greater than the aggregation forces, and disaggregation of asphaltene begins. Then, 

asphaltenes migrate from the bulk solution to the nanoparticle surface depending on the adsorption 

potential induced by the adsorbent. In a determined time, the nanoparticles adsorb a certain mass of 

asphaltenes that would not be able to interact in the process of asphaltene aggregation; therefore, the 

volume of asphaltenes available for growth decreases.  

The double exponential model52, 53 is used to determine the adsorption rate. Equation 5.7 describes 

the double exponential model used to fit the kinetic adsorption experimental data, respectively: 52, 53 

exp( ) exp( )
f s

t m f s

D D
q q k t k t

M M
      (5.7) 

The double exponential model describes in two steps the kinetics of adsorption, namely, a fast and a 

slow step.54 Therefore, fk  (min-1) and sk  (min-1), as well as fD  (mg/L) and sD  (mg/L) are the rate 

constants and adsorption coefficients of the fast and slow steps of the double exponential model, 

respectively, and mq  (mg/g) is the maximum amount of adsorbed asphaltenes. 

Thus, the formation of large asphaltene aggregates in solution is inhibited in the presence of 

nanoparticles, as the adsorption on the nanoparticle hinders or changes the growth of asphaltene 

aggregate. Therefore, considering the adsorption kinetics of the nanoparticles, the free asphaltene 

primary particles are re-calculated each time, and this population is used in the model to find the 

aggregate size at a determined time. As described earlier, the free asphaltene primary particle is 

defined as the smallest particle distribution detected by means of the observation method employed 

(see next section). Eq. 5.8 describes the final form for calculating tC  as function of the parameters 

of the double exponential model: 

exp( ) exp( )m
t i f f s s

q
C C D k t D k t

M

 
      

 
 (5.8) 

Hence,  the size and number concentration of asphaltene particles is re-calculated according to the 

value of tC obtained by following the procedure described in Section 5.2.3.  

5.2.3 Simulation characteristics 

 Size and number concentration of primary asphaltene particles  

The initial size distribution and the initial number concentration of the asphaltene particles were 

determined using experimental data. The volume of the primary particles was calculated according 

to the particle diameter obtained from DLS experiments assuming asphaltenes aggregates as 

spherical particles.14 Then, at the initial state, the suspension is assumed homogeneous, and the 
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distribution of the primary particles is calculated using the mass and density of asphaltenes assumed 

as 1200 kg/m3, as reported in the literature.13, 14, 55 

 Simulation conditions   

The developed model of aggregation and inhibition of asphaltenes considered in this study has the 

following characteristics and restrictions:  

i. It is a grey-box model in which the structure is given by the equation of the population 

balance of asphaltenes, and the parameters were determined by constitutive equations. 

ii. It is on the macroscopic scale and discrete because the growth of aggregates occurs over a 

wide size range; thus, a continuous model of flocculation may require excessive 

computation time.  

iii. Although the asphaltene aggregation is typically described by probability distributions, the 

developed model has deterministic characteristics to obtain a practical model for the 

inhibition process in the presence of nanoparticles. 

iv. It has dynamic characteristics because the size of the asphaltene aggregates change over 

time. 

v. It has distributed parameters because each “family” of asphaltenes has their own values.  

vi. Considering these characteristics, the model was solved numerically by a finite difference 

scheme using the Quasi-Newton Method.56, 57 

The model parameters are obtained by minimizing the root mean square error (RMSE%,) between 

the theoretical and experimental data points using an implemented routine in the program code.  

5.3 Results and discussions 

The PBM proposed in this work describes the kinetics of asphaltene aggregation-fragmentation in 

systems with different conditions in the absence and presence of nanoparticles. The results and 

analyses are divided into two main sections: (i) kinetics of asphaltene adsorption on the selected 

nanoparticles and (ii) kinetics of asphaltene aggregation-fragmentation in the absence and presence 

of nanoparticles. The effects of the amount of precipitant in the solution, the system temperature and 

the nanoparticles’ chemical nature and dosage were evaluated to demonstrate the PBM versatility.  

5.3.1 Kinetics of n-C7 asphaltene adsorption on the selected 

nanoparticles  

 Effect of the nanoparticles’ chemical nature  

Panels a and b from Figure 5.1 show the adsorption kinetics of asphaltenes on the selected 

nanoparticles together with the double exponential adsorption kinetic model fit at different n-heptane 

concentrations of a) Heptol 20 and b) Heptol 40 at a fixed temperature of 20°C and a particles dosage 

of 10 g/L. For all of the cases, it was observed that asphaltene adsorption onto nanoparticles is a fast 

process requiring times less than 70 min to reach saturation. Note that at the beginning of the 
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adsorption process in the CM nanoparticles case and for Heptol 40, 93% of the total amount adsorbed 

is reached in 10 min and is likely to be due to the non-porous characteristics of the nanoparticles that 

favor a rapid first step of asphaltene adsorption just over the nanoparticles surface.36, 37 From Figure 

5.1, it is also observed that for the three nanoparticles evaluated, the amount adsorbed increases as 

the amount of n-heptane in the solutions increases. This reflects the increase of asphaltene aggregates 

in solution and the subsequent decrease in asphaltene solubility. The results are in good agreement 

with the trend observed in Chapter 3 for the adsorption of n-C7 asphaltenes from different Heptol 

solutions over CS and functionalized CS nanoparticles where it was obtained higher asphaltene 

uptake as the amount of n-heptane increased.  

 
 

Figure 5.1. Adsorption kinetics for AK18 n-C7 asphaltenes onto the selected nanoparticles from 

solutions of a) Heptol 20 and b) Heptol 40.  

The double exponential model was used to describe the adsorption kinetics of AK18 n-C7 

asphaltenes onto the three employed nanoparticles. Table 5.1 shows the estimated parameters for the 

model used, the respective correlation coefficient and the root square mean error. As shown in Table 

5.1, the double exponential model showed an excellent correlation towards the experimental data 

with %RSME < 4.10%. This means that due to van der Waals and electrostatic attraction forces, a 

first and rapid initial kinetic mechanism occurred where the adsorbate diffuses toward the 

adsorbent.54, 58, 59 Values higher than 0.0 for the parameters sk and sD  indicate that the fast step is 

followed by a gradual or slow adsorption of the asphaltenes over the nanoparticle surface by 

complexation.58-60 These findings are in good agreement with the studies reported by Nassar 36 and 

Franco et al.37 Regarding the adsorption efficiency in the fast step ( fk ), for the Heptol 20 solutions, 

it can be observed that they tend to decrease in the order of CM > CAl > CS, indicating that as the 

surface area increases, longer times are required to reach the maximum capacity of adsorption. 

However, the results of the double exponential model indicate that there is not a second step for CM 

nanoparticles, and the rate of adsorption is higher for CAl than for CS nanoparticles. On the other 

hand, for Heptol 40, the trend followed by both fk  and sk  is CAl > CS > CM. In the case of CM 

nanoparticles in Heptol 40, the dosage of nanoparticles was duplicated to 20 g/L, resulting in a 

decreasing in the amount adsorbed in units of mg/g. However, when amount adsorbed is not 

normalized by dry mass of nanoparticles, an increase in the n-C7 asphaltenes is observed when 

comparing with the results at 10 g/L and could be due to a larger amount of active sites available for 

adsorption. More details of the effect of the nanoparticles dosage can be found in the Appendix D.  

0

20

40

60

80

100

0 20 40 60 80 100

q
 (

m
g

/g
)

Time (min)

a

CS
CAl
CM
Double exponential model 0

20

40

60

80

100

0 20 40 60 80 100
q

 (
m

g
/g

)
Time (min)

b

CS
CAl
CM
Double exponential model



Chapter 5 135 

 

 Effect of the system temperature on the n-C7 asphaltenes adsorption  

Figure 5.2 shows the comparison of AK18 n-C7 asphaltenes adsorption kinetics onto CM 

nanoparticles at the two temperatures of 20 and 30°C. It can be observed from Figure 5.2 that the 

amount adsorbed decreases as the system temperature increases. This behavior is because the 

colloidal state of asphaltenes is affected by temperature, and their adsorption over the nanoparticle 

surfaces is an exothermic process. The results are in excellent agreement with those observed by 

Nassar 36 who evaluated the temperature effect on the Athabasca and with results obtained in Chapter 

2 for n-C7 asphaltenes adsorption over different type of nanoparticles. 

In this case, the double exponential model also had excellent fitting towards the experimental results 
2R  and %RSME of 0.99 and 5.82, respectively. Values of sk and sD  of the double exponential 

model were equal to 0.00. This indicates that the adsorption mechanisms change from a two-step 

process to a one-step process by altering the system temperature. The mq  of the double exponential 

model was estimated as 88.95 mg/g. Values of fk  and fD  were estimated as 0.65 (min-1) and 440.42 

mg/L, respectively. 

 

Table 5.1. Estimated parameters for the double exponential model for n-C7 asphaltene obtained 

from Ak18 

Heptol 

Ratio 
Sample 

,expmq  

(mg/g) 

mq  

(mg/g) 

fD  

(mg/L) 

fk

(min-1) 

sD

(mg/L) 

sk    

10-3 

(min-1) 

2R  %RSME  

20 

CM 70.46 106.60 420.30 0.09 194.14 1.29 0.99 3.39 

CAl 77.80 104.58 325.04 0.12 323.70 2.09 0.98 4.10 

CS 88.49 70.17 401.18 0.20 0.00 0.00 0.99 1.30 

          

40 

CM 78.73 119.69 211.95 0.14 287.66 1.97 0.99 1.59 

CAl 85.93 113.71 194.78 0.16 350.32 2.32 0.99 0.91 

CS 95.14 93.72 235.76 0.12 168.59 1.19 0.99 1.32 
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Figure 5.2. Adsorption kinetics for AK18 n-C7 asphaltenes from Heptol 40 onto CM nanoparticles 

at temperatures of 20 and 30°C. 

5.3.2 Asphaltene aggregation-fragmentation kinetics  

The proposed PBM model was validated through series of DLS measurements for the mean 

aggregate particle size of asphaltenes under different conditions of temperature, Heptol solution 

and nanoparticle chemical nature. Different adsorption kinetic models were used to account for the 

asphaltene adsorption on the selected nanoparticles and their effect on the inhibition of the 

asphaltene growth. For each system, the kinetic adsorption double exponential model was used for 

describing the n-C7 asphaltenes adsorption over the nanoparticles.  

 Effect of the nanoparticles’ chemical nature on n-C7 asphaltene aggregation-

fragmentation 

It is expected that the presence of nanoparticles in a solution of asphaltene aggregates would create 

an adsorption potential that would promote the n-C7 asphaltenes adsorption over the nanoparticles. 

Once the potential is induced, the interaction nanoparticle-n-C7 asphaltenes overcome that of n-C7 

asphaltene- n-C7 asphaltenes and hence, the asphaltene aggregate tends to disaggregate itself to 

migrate as molecules or smaller aggregates from the bulk solution to the adsorbent surface. This 

means that as n-C7 asphaltenes adsorb on the nanoparticles surface, the asphaltene particles available 

in the aggregation system decrease. As the amount of asphaltenes adsorbed increases, the adsorption 

potential decreases, and gradually, the nanoparticle- n-C7 asphaltenes interactions decrease until the 

maximum amount adsorbed is reached. Then, the asphaltene aggregates are re-organized but with a 

smaller aggregate size than prior to introducing the nanoparticles.  

Figure 5.3 shows the evolution of the virgin n-C7 asphaltene aggregate size as a function of time for 

asphaltenes in Heptol 20 and Heptol 40 along with the PBM fit. As observed, when the amount of 

n-heptane increases, the average size of the asphaltene aggregates at any time also increases. For 

example, in the Heptol 40 system, the asphaltene aggregates reach a maximum size of 1086 nm, 

while in the Heptol 20 system, the maximum size observed was 842 nm, which are found at 190 and 

236 min, respectively. This is in agreement with the results reported by Maqbool et al.,21 who 

reported that as the amount of n-heptane increased, the speed at which asphaltenes self-associate to 
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form larger aggregates increased due to  the to higher driving forces. This, of course, is expected in 

view of the much lower solubility parameter of n-heptane when compared to toluene.61, 62 In addition, 

the ratio of polar/nonpolar moieties in the asphaltene structure defines the polarity 62, 63 and leads to 

either a less or more favorable self-association phenomena.17  

It is also observed that for both of the cases, the asphaltene size increases until a maximum and then 

decreases. This is due to the kinetics of asphaltene growth in the presence of a shear that involves 

both aggregation and fragmentation due to the asphaltene aggregates collision.14 Table 5.2 shows the 

obtained parameters for the PBM fitting for kinetic aggregation-fragmentation of asphaltenes in the 

absence and presence of nanoparticles. As shown in Figure 5.3 and according to the obtained values 

of 2R and %RSME  of 0.97 and 5.47, respectively, the model has a good fit to the experimental 

results. The parameters  and b varied depending on the system evaluated. For virgin asphaltenes, 

 has values of 0.31 and 0.46 for Heptol 20 and Heptol 40 solutions, respectively, indicating a 

dependence on solvent composition (Heptol). This is because by increasing the amount of n-heptane 

in the Heptol solutions, the solubility of the asphaltenes decreases, leading to the formation of larger 

aggregates, hence increasing the porosity. The values of the porosity of the aggregates are in 

agreement with the findings by Rahmani and Masliyah.14 For the breakup coefficient, b, the values 

had a weak dependence on the solvent composition for experiments with virgin AK18 n-C7 

asphaltenes with a value of 4.26 ± 0.01 for the Heptol 20 and Heptol 40 systems. 

 

Figure 5.3. Kinetics of virgin  n-C7 asphaltenes aggregation-fragmentation at a temperature of 20°C 

in Heptol 20 and Heptol 40 solutions.  

Figure 5.4 a and b shows the n-C7 asphaltene growth kinetics in the presence of the selected 

nanoparticles for solutions of a) Heptol 20 and b) Heptol 40. Using DLS experiments, the kinetic of 

asphaltene aggregation-fragmentation in the presence of CS nanoparticles in Heptol 20 solutions 

could not be determined due to the low signal/noise ratio. Probably this is due to the size of particles 

being lower that the detection limit of the DLS technique used.64 This is coherent with the results 

observed in Figure 5.4b for n-C7 asphaltenes growth in the presence of CS nanoparticles in Heptol 

40 that showed the lowest asphaltene aggregates among the evaluated nanoparticles. For the other 

materials, smaller aggregates were found in the order of CAL < CM < virgin n-C7 asphaltenes, which 

was true for both Heptol 20 and Heptol 40 solutions. Although the effect of nanoparticles in terms 
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of affinity cannot be compared due to the differences in the chemical nature of the materials, the 

adsorption process can be a key factor in understanding the effect of the nanoparticles in the 

inhibition of the asphaltene self-association in the oil matrix. The observed trend corresponds to the 

results obtained for the adsorption kinetics that revealed a higher adsorption capacity for CAl than 

for CM nanoparticles. Due to the magnetic characteristics of CM nanoparticles, they tend to 

aggregate due to anisotropic dipolar attraction and form clusters,65 hence reducing the surface area 

available for asphaltene adsorption. Thus, higher adsorption capacities will result in higher 

asphaltene adsorption and then will result in a reduction of the asphaltenes available in the solution 

for the aggregation-fragmentation process. The size of nanoparticles is another factor to be 

considered (see Chapter 1); in fact, nanoparticles size and capacity to reduced aggregate size are in 

line with each other. It can be suggested that this is related to the easy diffusion of the nanoparticles 

into the solution. This allows for a more effective scavenging of the dissolved n-C7 asphaltene 

material. 

The proposed PBM also showed a good fit to the experimental results for n-C7 asphaltenes in the 

presence of nanoparticles and was confirmed by values of 2R > 0.94 and RMSE% < 8.7. The   

parameter decreased in the order of virgin n-C7 asphaltenes > CM > CAl > CS, indicating that smaller 

aggregates result from the addition of nanoparticles to the system, which is in agreement with the 

experimental results in Figure 5.4. On the other hand, the b  parameter did not follow a clear trend, 

according to the kinetics of asphaltenes aggregation-fragmentation; this may be because the breakup 

coefficient would change as a function of the resultant asphaltene concentration and could also be 

affected by the presence of nanoparticles, their particle size and morphology. For example, CM 

nanoparticles that have a more squared shape than CAl nanoparticles would generate a different field 

of adsorption, thus directly affecting the rate of breakup of asphaltene aggregates. In addition, this 

may be because the breakup rate coefficient depends on not only the flocculants type and 

concentration but also the properties that are strongly influenced by the presence of the nanoparticles, 

such as the primary particles, flock structure and suspension of the medium. Also, when applying a 

higher dosage of CM nanoparticles of 20 g/L in Heptol 40 solutions, it was found that the asphaltene 

aggregates show a greater decrease as the amount of nanoparticles may significantly alter the 

asphaltene aggregate size in solution because more active sites will be available for adsorption. More 

information of nanoparticles dosage can be found in the Appendix D. 

 

Table 5.2. Estimated parameters of the population balance model (PBM). 

Heptol Ratio Sample   b  105  2R  RMSE% 

20 

Virgin n-C7 asphaltenes 0.31 4.27 0.97 5.47 

CM 0.24 3.59 0.94 8.43 

CAl 0.20 5.57 0.94 8.68 

 CS - - - - 

      

40 

Virgin n-C7 asphaltenes 0.46 4.25 0.98 4.73 

CM 0.41 6.03 0.98 4.28 

CAl 0.37 4.69 0.95 4.58 

CS 0.22 3.96 0.97 8.40 
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Figure 5.4. Kinetics of asphaltenes aggregation-fragmentation in the presence of nanoparticles for 

a) Heptol 20 and b) Heptol 40 at 20°C. 

 Effect of the system temperature on n-C7 asphaltene aggregation-fragmentation 

Fragmentation of large aggregates by shear means that corresponding fragmentation energy is small 

and comparable to the available thermal energy; thus, relative small changes in temperature leads to 

significant changes in the aggregate size distribution. 

It is expected that as the temperature increases, the asphaltene aggregate size decreases.15, 66, 67 In this 

set of experiments, the effect of the system temperature in the aggregation-fragmentation of 

asphaltenes in the presence and absence of nanoparticles was evaluated at 20 and 30°C for a fixed 

Heptol solution (Heptol 40) with CM nanoparticles. Figure 5.5 shows the kinetics of virgin n-C7 

asphaltenes at the temperatures of 20 and 30°C. It is observed that at the equilibrium between the 

aggregation and fragmentation processes, the asphaltene aggregate is approximately 59% lower at 

30°C. In addition, it is observed that the fragmentation processes overcomes that of aggregation 

earlier at 30°C than at 20°C. The PBM showed a good fit with 2R = 0.98 and RMSE% = 3.18. The 

values of 0.35 and 7.93  10-5 were obtained for the parameters   and b . This confirms the 

formation of smaller aggregates and an increase in the breakup rate as the temperature increases 

compared with the values at 20°C (Table 5.2). The phenomenon can be explained because as forces 
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between molecules change with an increase in temperature due to the increased collision frequency, 

the asphaltene molecules will be more excited. Thus, intermolecular interactions, induction forces 

and electrostatic forces, will decrease, leading to a reduction in the degree of asphaltene self-

association. In addition, according to Rassamdana and Sahimi,67 the temperature increases the 

rotational motion of the aggregates, resulting in smaller sizes. Therefore, according to Pacheco-

Sánchez et al.,15 the concentration of asphaltene n-mers (i.e., asphaltene aggregates formed by “n" 

asphaltene molecules) decreases as the temperature increases, leading to an augmentation of 

aggregates composed of less than n asphaltene molecules.  

Figure 5.5 shows the kinetics of asphaltene aggregation-fragmentation of n-C7 asphaltenes in the 

absence and presence of CM nanoparticles at 30°C. It is observed that the fragmentation process in 

the presence of nanoparticles overcomes the aggregation in the first 50 min, which is earlier than at 

20°C and is in agreement with the observed values for virgin asphaltenes. Additionally, the PBM fit 

with 
2R = 0.99 and RMSE% = 1.95 revealed values of   and b of 0.27 and 5.29  10-5, respectively, 

that when compared with the values for the same system at 20°C (Table 5.2), indicated that the 

asphaltene aggregates are smaller, and the breakup rate of asphaltenes is higher. However, as from 

the adsorption kinetics at both temperatures, the amount adsorbed decreased as the temperature 

increased; hence, one can anticipate that the effect of temperature is higher in the inhibition of the 

asphaltene growth than the effect of nanoparticles. Nevertheless, both the temperature effect and the 

nanoparticles’ adsorptive capacity have a synergistic effect in the reduction of the asphaltene 

aggregate size.  

 

 Figure 5.5. Kinetics for virgin n-C7 asphaltene aggregation-fragmentation at the temperatures of 20 

and 30°C in a Heptol 40 solution.  
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Figure 5.6. Kinetics for n-C7 asphaltene aggregation-fragmentation in the presence of CM 

nanoparticles at a temperature of 30°C in a Heptol 40 solution.  

5.4 Partial conclusions 

A model to describe the asphaltene aggregation-fragmentation in the absence and presence of 

different metal oxide nanoparticles that accounts for the adsorption process was successfully 

developed. The model validity was sustained in population balance equations, and the adsorption 

term was introduced by employing the double kinetic exponential model. Under the different 

conditions examined all nanoparticles in different degrees reduce the hydrodynamic radii of large 

aggregates in solution as a result of adsorption. The effect of the nanoparticles’ chemical nature, 

Heptol solution and temperature was successfully evaluated through DLS measurements. In general, 

the population balance model had a good fit towards the experimental results with %RSME < 9. 

For all of the systems evaluated, the double exponential model showed a high affinity; therefore, it 

was incorporated into the PBM. In addition, the estimated PBM parameters  and b  were in 

agreement with the behavior of the experimental curves of asphaltene aggregation-fragmentation.  
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6. Heavy oil upgrading and enhance recovery in a 

continuous steam injection process assisted by 

nanoparticulated catalysts  

The production of heavy and extra–heavy oil in Colombia is adverse due the rheological properties 

that the crude oil present because its high asphaltene content. Also, the upgrading of these 

unconventional oils needs large amounts of energy that lead to low cost-effective processes either at 

surface or sub-surface conditions. As of today fossil fuels supply about 82% of the world's energy 

demand.1 Hence, the growing demand for crude oil worldwide has led to the need to exploit deposits 

of heavy and extra heavy crude oils, which are approximately of the same order to those of 

conventional crude oil according to the International Energy Agency.2, 3 In fact, in the scenario 2014-

2035 about the 9% of the cumulative investment upstream is necessary for developing heavy and 

extra heavy oil resources.4 For the case of Colombia for instance, heavy and extra-heavy crude oils 

represent about the 45% of the total local oil production and it is expected to increase up to 60% by 

2018.5 

Accordingly, several in-situ techniques have been employed for enhancing HO and EHO recovery 

with objective of upgrading the oil and improving its viscosity and mobility. These techniques 

include thermal process, like steam assisted gravity drainage (SAGD) 6-14 and cold techniques, like 

treatments using diluents such as natural gas condensate.15-19 The latter (i.e., cold process) is used to 

improve the crude oil by dilution or destabilization and deposition of asphaltene components in the 

reservoir by injecting solvents that have a direct impact on viscosity reduction.18, 19 The more 

frequently employed thermal techniques for heavy oil upgrading deal with breaking the heavier 

compounds of oil using combustion process,6, 7 low-temperature oxidation,20, 21 aquathermolysis,12-

14 and pyrolysis, also called thermal cracking or thermolysis.9, 11, 22, 23 However, most of these 

techniques do not exceed the 20-25% of oil recovery and the 50% in the case of the steam assisted 

gravity drainage (SAGD) process.24-26 According to the Agencia Nacional de Hidrocarburos 

(National Hydrocarbons Agency), by the end of 2014 there were approved 25 enhanced oil recovery 

projects, from which 14 correspond to water injection and the others to vapor and gas injection.27 

Nevertheless, due the need of increase the efficiency in recovery of the aforementioned techniques, 

new technologies need to be developed. In this order, nanoparticle technology has emerged as an 

alternative with a great potential to enhance the aforementioned techniques and increase the oil 

recovery.28 Catalyst nanoparticles may be used for in-situ heavy oil upgrading, leading to an 

economic expense by reducing negative environmental impact and increasing the oil recovery.29-31 

Galarraga and Pereira-Almao30 studied the effect of NiWMo submicronic ultradispersed catalysts 

for Athabasca bitumen upgrading simulating near in-reservoir conditions. The authors reported that 

the catalyst enhanced the bitumen upgrading by increasing the H/C ratio, reducing both oil viscosity 

and coke formation.  A more recent study, Hashemi et al.29 used in-situ prepared ultra-dispersed 

multi-metallic nano-catalysts of Ni-W-Mo within a vacuum gas oil matrix for enhancing Athabasca 

bitumen upgrading and recovery at a typical SAGD temperature and pressure conditions. The authors 
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found that nanoparticles enhanced bitumen upgrading and recovery by increasing the API gravity 

and reducing the oil viscosity by hydrogenation reactions. Also, the microcarbon residue, the sulfur 

and nitrogen content were reduced.  

Hamedi et al.31 compared the effect of nickel nanoparticles against an industrial micro-sized Raney 

nickel catalyst during steam-injection for heavy oil upgrading. Tests were carried out in presence 

and absence of a porous media. The authors reported that in mass base, the catalytic activity of nickel 

nanoparticles was greater than that for Raney nickel catalyst. Further, the authors found that the 

catalytic process was enhanced in the presence of the porous media due to the fact that the sand 

grains behave as support for the nickel nanoparticles. In addition, the authors found that the reactivity 

and particle distribution are greatly influenced by the viscosity of the nanoparticle suspension, the 

injection rate and direction.  

However, until now there are not studies that report the evaluation of nanoparticled catalysts in 

stemaflooding processes. Hence, this chapter aims at investigate the effect of catalytic active 

nanoparticles in the improvement of the efficiency in recovery of a continuous steam injection 

process. Oil recovery was evaluated using a slim tube filled with a non-confined sand pack in steam 

injection scenarios in absence and presence of a water-based nanofluid. Changes in physicochemical 

properties of crude oil were evaluated trough n-C7 asphaltene content and simulated distillation 

(SimDis) measurements.  

6.1 Experimental  

6.1.1  Materials  

Bimetallic nanoparticles were used as catalyst in the steam flooding process. Deionized water 

(conductivity of 3 μS/cm) was used for steam generation and for brine and nanofluid preparation. A 

synthetic brine as 2000 mg/L of NaCl (≥99.5%, Merck KGaA, Germany) was also used for injection 

into the porous media and for nanofluid preparation. Commercial surfactant Tween 80 (Panreac, 

Spain) was employed for nanoparticles dispersion. AK9 EHO with a viscosity of 1385 cP at 85°C 

was used for the displacement test. Additional properties of the employed crude oil can be found in 

Table 2.1 of Chapter 2. Clean silica sand (Ottawa sand, US sieves 30−40 mesh) was purchased from 

Minercol S.A., Colombia and was used as porous media. In addition, toluene, methanol (99.8%, 

Panreac, Spain) and HCl (37%, Panreac, Spain) were used for porous media cleaning.  

Porous media: Before use, the prepared porous bed was initially cleaned with a solution 1:1 of 

toluene and methanol at 10 mL per 5 g of sand. The sand then was washed with excess deionized 

water and HCl at 10% v/wt to remove any dust or surface impurities. Further, the sand was placed 

in a vacuum oven at 120°C for 12 h to evaporate any remaining solvent. Then, approximately 100 g 

of the sand was transferred to a stainless steel slim tube. The porous medial has an absolute 

permeability of 8.3 Darcy and porosity of 38%. It is worth to mention that high value of absolute 

permeability is due to there was no any confining step in the porous media preparation and that all 

test were conducted without overburden pressure. The slim tube has an inside diameter of 1.12 cm 

and length of 100 cm. The absolute permeability of the porous media was measured by injecting 

brine after sand packing. Brine was injected inside the porous media at a defined rate (0.5 mL/min), 

and two pressure transducers were used to record the pressure values at the injection and production 

points. Accordingly, the porous media permeability was estimated following Darcy’s law. 

Preparation of Nanofluid: The nanofluid was prepared by mixing 1 wt% of tween 80 with distilled 

water and dispersing 500 mg/L of bimetallic nanoparticles. The nanofluid was magnetically stirred 
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at 300 rpm at room temperature for 6 h and then sonicated for 24 h at the same temperature before 

injection into the porous media.32 The size of bimetallic nanoparticles in the aqueous solution was 

about 61 nm, as measured by DLS technique as explained in Chapter 1.  

6.1.2 Methods 

 Fluid injection test 

Figure 1 shows a schematic representation of the experimental setup. The setup consists mainly of a 

tank containing the nanofluid, a cylinder containing water for steam generation, an oil-containing 

cylinder, a positive displacement pump (DB Robinson Group, Canada), a tubular furnance (Thermo 

scientific, USA), manometers, a thermocouple, valves, fraction collectors and a stainless steel slim 

tube. Nanofluid mixtures were injected into the porous media from the production point by positive 

displacement pump. The surrounding slim tube environment was maintained at a constant 

temperature of 85°C for all steps of the displacement test using an oven. A leak test was performed 

by pressurizing the packed bed reactor with pure nitrogen up to 1000 psi. A 1% change in pressure 

per hour was considered to be the maximum allowable pressure reduction during the leak test. The 

main objective of this displacement test was to evaluate the effectiveness of the nanoparticles in 

changing the physicochemical properties of the employed EHO and in enhancing a process of oil 

recovery with continuous vapor injection. The displacement test was carried out by (1) constructing 

the base curves, (2) estimating the oil recovery by the continuous injection of vapor in absence of 

nanofluid and (3) identifying the influence of the nanoparticles in the enhanced recovery of oil. For 

construction of the base curves, 10 pore volumes (PV) of water were injected to measure the absolute 

permeability at 85°C. Then, at the same temperature, and under the saturation condition of residual 

water (Swr), the crude oil was injected until the pressure no longer changed. Finally, 20 PV of water 

were injected for estimating the water effective permeability (Kw) at Sor conditions. Before step (2), 

system was saturated with oil until similar state of Swr than that before Kw determination. For step 

(2), the steam was introduced into the porous media by passing the water through the coil line from 

the water cylinder and monitoring the pressure and temperature in the injection point. The water was 

displaced at a flow ranging between 3.0 and 8.0 mL/min in order to avoid condensation after the coil 

line and for maintaining the injection pressure and temperature at 200 psi and 300°C. Injection 

temperature was stablished according to the results obtained in previous Chapters. As observed in 

Chapter 2, it is expected that for a temperature of 300°C in presence of nanoparticles a high n-C7 

asphaltene conversion would be achieved. At stablished injection conditions it is ensured a vapor 

quality of 100%. Vapor was introduced to the system until no oil production was observed. Then, 

the system was saturated with oil until same conditions of Swr than before vapor injection were 

obtained. In step (3), 0.5 pore volumes (PV) of nanofluid were injected at 0.5 mL/min by the 

production inlet. Increases in the system ∆P were recorded with the transducer in order to determine 

if the additional recovery of oil was induced to the energy won after the nanofluid injection. It is 

worth to mention that in step (2) as blank 0.5 PV of a mixture of water + 1 wt% tween 80 + 2000 

mg/L NaCl was injected in the same conditions than the nanofluid. Porous media was soaked with 

the nanofluid for 24 h. Finally, vapor was injected at the same conditions than that of step (2) until 

there was not oil production.   
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Figure 6.1. Schematic representation of the experimental setup. Legend: 1) the displacement 

positive pump the core holder, 2) the oil-containing displacement cylinder, 3) the water-containing 

displacement cylinder, 4) the nanofluid-containing displacement cylinder, 5) the tubular furnace 6) 

the coil line 7) the manometers, 8) the thermocouple, 9) the pressure transducer, 10) the slim tube,  

11) the sand packed bed and 12) sample output. 

 Analytical methods 

n-C7 asphaltene and residue content were determined in order to determine the effect of the 

nanoparticles in the EHO upgrading before and after recovery with vapor injection. Oil sample for 

analytical test was the one taken before each step of the displacement test ended. n-C7 asphaltene 

content was estimated according to the procedure explained in Chapter 2. Residue content (620°C+) 

was estimated using high-temperature simulated distillation (HTSD) following ASTM D-7169 

procedure using an Agilent 7890 chromatographer.  Results are presented as residue conversion 

(R%) as follows:29 

% 100
virginEHO treatment

virginEHO

R R
R

R


   (6.1) 

where 
virginEHOR and 

treatmentR represent the residue of the virgin EHO and the oil after production in 

presence of nanoparticles, respectively.  

6.2 Results and discussions 

Displacement testes were carried out in three steps namely (1) construction of base curves, (2) oil 

recovery with vapor continuous injection and (3) oil recovery with vapor continuous injection 

assisted by catalytic nanoparticles. After step (1) the measured absolute permeability, Ko and Kw 

values were estimated as 8.3, 92.0 and 9.4 Darcy, respectively. High Ko value could be due to two 
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the high viscosity of the EHO employed that increase the permeability value according to the Darcy’s 

equation. After step (1) system was saturated with the employed EHO and then 0.5 PV of a brine + 

Tween 80 mixture was injected and left to soaking for 24 h and a ∆P of 0.23 psi was observed. Figure 

6.2 shows the oil recovery curves with continuous vapor injection with and without the nanoparticles 

assistance. As observed in Figure 6.2, the oil recovery with the injection of vapor without 

nanoparticles stopped after approximately 12000 pore volumes injected of vapor (Vapor PVI), 

reaching a recovery of 34% and after 43000 PVI the recovery was 36%. Oil recovery is enhanced 

by vapor injection due to volatilization of light hydrocarbons, viscosity reduction, thermal 

expansion, variation of the relative permeability and capillary pressure and gravitational 

segregation.33 An increase in the oil recovery due to the inclusion of nanoparticles is clearly seen in 

Figure 6.2. Similar percentages of recovery than that in absence of nanoparticles are achieved with 

less vapor PVI. As comparison, after 4100 vapor PVI a recovery of 34% was obtained. However, at 

43000 vapor PVI the 82% of the oil in the slim tube was recovered, representing a 46% more that in 

absence of nanoparticles. It is worth to mention that ∆P at the nanofluid soaking stage the ∆P was 

0.19 psi and as this value is lower than the soaking stage in step (2), it can be said that additional oil 

production was not due to additional energy obtained in the nanofluid injection.  

 

 

Figure 6.2. Oil recovery curves for vapor injection with and without nanoparticles.  

 

Table 6.1. Estimated values for saturation of water residual (Swr) and saturation of oil residual (Sor) 

at different stages. 

Stage Swr 
Sor 

Initial Final 

(1) 20% 80%  48% 

(2) 22% 78%  43% 

(3) 25% 75%  24%  
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Three main reasons are responsible for the enhanced recovery of oil using vapor assisted with 

nanoparticles in comparison with the system without nanoparticles. As nanoparticles entry the 

porous media, they may alter the system wettability to a strong water-wet condition generating a sort 

of decoration of the rock that enhance its preference for water.34 Giraldo et al.34 shown trough Contact 

angle measurements, imbibition tests and core displacement test at reservoir conditions that alumina-

based nanofluids are able to change the system wettability from strongly oil-wet to strongly water-

wet condition. In this case, wettability changes are corroborated by the states of saturations at each 

stage as listed in Table 6.1.  

 

In addition to wettability changes, asphaltene adsorption over the injected nanoparticles also lead to 

increase in oil recovery. Once nanoparticles interact with crude oil asphaltenes feel more attracted 

for being adsorbed than in the oil matrix. As the asphaltene-asphaltene interactions are lower than 

those of asphaltene-nanoparticle, asphaltenes would be removed from the aggregation system in the 

oil matrix and diffuse trough the bulk phase to the nanoparticles surface until maximum adsorption 

capacity is reached; asphaltenes remaining in the bulk phase would “reorganize” and form smaller 

aggregates (please refer to Chapter 5 of this document). Reduction in the asphaltene aggregate 

directly leads to diminution of the crude oil viscosity. Although resins may also be adsorbed over 

the nanoparticles surface, it was demonstrated in Chapter 4 that it does not have significant 

interference in the adsorption process of asphaltenes. 

 

Once asphaltenes are adsorbed over the nanoparticles surface, they can be converted in lighter 

products at determined conditions of temperature, asphaltene loading, degree of self-association 

around nanoparticles active sites, chemical nature of the nanoparticulated catalyst, chemical nature 

of the asphaltene molecule, etc.  (please see Chapters 2 and 3 for further information). The formation 

of lighter products will change the chemical composition of crude oil and enhance the 

aforementioned processes that affect the oil recovery with vapor such as volatilization of light 

hydrocarbons, viscosity reduction, thermal expansion, variation of the relative permeability and 

capillary pressure and gravitational segregation. In this order, Table 6.2 shows the values of n-C7 

asphaltene content and R% for virgin crude oil, crude oil obtained after vapor injection and crude oil 

produced after vapor injection assisted by nanoparticles. As observed, physicochemical properties 

of crude oil changed in both scenarios with and without nanoparticles. However, a higher upgrading 

was obtained in presence of nanoparticles as revealed by the n-C7 asphaltene content and the values 

of R%.  This is not surprising as the presence of nanoparticles reduce the temperature of asphaltene 

decomposition, lead to a decrease in the effective activation energy and generate different reaction 

pathways in the asphaltene decomposition in agreement with results obtained in Chapters 2 and 3.  

 

 Table 6.2. Estimated values for R% and n-C7 asphaltene content for virgin crude oil, crude oil 

obtained after vapor injection and crude oil produced after vapor injection assisted by nanoparticles. 

Property 

Sample 

Virgin EHO 
Crude oil after 

vapor injection 

Crude oil after vapor 

injection assisted by 

nanoparticles 

n-C7 asphaltene (wt%) 13.1 11.8 7.9 

R% 0 13 47 
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6.3 Partial conclusions 

Successfully a methodology for evaluating the effect of nanoparticulated catalyst in processes of 

continuous vapor injection was developed. Displacement test were carried out by injecting vapor in 

presence and absence of the selected nanoparticles. It was observed that the oil recovery increased 

up to 46% for the system assisted by nanoparticles in comparison with the vapor injection without 

the nanocatalyst. Additionally, trough n-C7 asphaltene and residue content it was demonstrated that 

nanoparticles are an excellent alternative for HO and EHO upgrading in processes involving vapor 

injection. n-C7 asphaltene content decreased a 5.2% after vapor injection in presence of nanoparticles 

in comparison with the virgin EHO. Also, the residue content (620°C+) decreased a 47%. Enhanced 

oil recovery due to nanoparticles injection could be attributed to three main reasons: i) wettability 

alteration of the porous media, ii) viscosity reduction due to reduction of the asphaltene aggregate 

and iii) crude oil upgrading. This study should generate a better landscape about the use of catalytic 

nanoparticles in the improvement of enhanced oil recovery processes and its application in local and 

international scenarios.  
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7. Conclusions y recommendations 

7.1 Conclusions 

This study provides an important insight about nano-sized catalysts in the n-C7 asphaltenes 

decomposition. Different supports such silica, alumina and titania were employed for the synthesis 

of SHS nanoparticles by the inclusion of NiO and/or PdO nanocrystals on its surface. Additionaly, 

synthesized silica nanoparticles and carbon nanospheres were employed for the adsorption ad 

subsequent catalytic oxidation of n-C7 asphaltenes from different sources. Trough thermogravimetric 

experiments the catalytic activity of the selected nanoparticles was proved. All nanoparticles resulted 

in the lowering of effective activation energies, mainly at degrees of conversion lower than 50%; all 

functionalized materials behaved better than the support. The monometallic SHS with PdO showed 

better results than the nanoparticles functionalized with NiO. Bimetallic SHS showed highest 

catalytic activity for asphaltene adsorption and post catalytic thermal decomposition by reducing the 

cracking temperature, inhibiting the degree of asphaltenes self-association and suppressing addition 

reactions and coke formation. The great behavior of the bimetallic SHS is linked to the synergistic 

effect of NiO and PdO on the silica surface that leads to higher selectivity than the independent effect 

for the monometallic SHS. In addition, the catalytic effect of the bimetallic SHS was corroborated 

by the estimated thermodynamic properties of the transition state functions. The kinetic equations 

for the thermal decomposition of asphaltenes in presence and absence of the selected nanoparticles 

were obtained. Also, it was demonstrated that the asphaltene aggregate size over the nanoparticles 

surface has impact on the catalytic activity of the nanoparticles and a correlation between the 

adsorption affinity and the degree of asphaltenes-self association with the effective activation 

energies estimated trough the OFW method was encountered. Also, it was observed that resins 

adsorption do not affect significantly the adsorption process of asphaltenes. Additionally, a 

population balance model was proposed to describe the kinetics of asphaltene flocculation-

fragmentation in the presence of nanoparticles. The model assumes that asphaltenes in the presence 

of a shear rate are related to the aggregation and fragmentation phenomena and includes a term 

related to the asphaltene adsorption on nanoparticles. An adsorption kinetic term was introduced into 

the model using the double exponential model. Finally, using an in-house designed setup it was 

proved that nanoparticles are able to enhance the oil recovery in vapor injection processes and 

upgrade the oil recovered. This works should provide a new insight of the use of nanoparticles for 

inhibition of formation damage and in-situ heavy and extra-heavy oil upgrading and the effect of the 

adsorption process on the efficiency of the catalytic activity of the nanoparticles. 

 

7.2 Recommendations and future works 

According to the results obtained, the following recommendations are proposed:  



156 Nanoparticles for in-situ upgrading and inhibition of formation damage 

 

 To explore other supports such as ceria, zirconia, etc. and functionalizing materials such as 

Mo, Fe, Pt, etc. for the adsorption and subsequent catalytic decomposition of asphaltenes.  

 To evaluate the effect of resins in the catalytic activity of nanoparticles. 

 To develop optimization of the synthesized materials using another response variables such 

as maximum adsorption capacity, effective activation energy, etc. 

 To include high catalytic agents to carbon nanospheres for the adsorption and subsequent 

catalytic decomposition of asphaltenes. 

 To study the effect of resins in the aggregation/fragmentation of asphaltenes in presence of 

nanoparticles for inhibition of formation damage. 

 To evaluate the effect of catalytic nanoparticles in different enhanced oil recovery processes 

such as cyclic steam stimulation, in-situ combustion, etc.  

 To develop a more extensive study about the influence of temperature in the 

aggregation/fragmentation of asphaltenes. 

 To determine the selectivity of nanoparticles towards different chemical characteristics of 

asphaltenes such as chemical architecture, heteroatoms content, aromaticity, etc.  

 To evaluate the effect of other co-existing molecules in crude oil in the adsorption and 

decomposition of asphaltenes in presence of nanoparticles.  

 To corroborate the effect of resins I in the adsorption of n-C7 asphaltenes using nanoparticles 

with different chemical nature.  

 To determine the desorption capacity of asphaltenes from the adsorbed phase.  

 To evaluate the effect of particle size in the inhibition of the asphaltene aggregation. 
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A. Appendix: Simplex−Centroid 

Mixture Design  

Simplex−centroid mixture design (SCMD), performed with the STATGRAPHICS Centurion XVI 

software (StatPoint Technologies Inc.), was used to determine the optimal mixture of palladium, 

nickel, and CS nanoparticles to minimize the oxidation temperature of the asphaltenes. Normally, 

SCMD is used to study the relationships between the proportions of different variables and 

responses.1 The fractions of each component must meet the following constraints:2  

1 2

1

... 1,i

i

x x x x





        0ix   (A.1) 

where ix  and   are the proportions of each component and the number of components in the 

mixture, respectively. In this study,   was 3 when 1x  = CS, 2x  = Pd, and 3x  = Ni. The amount of 

Pd and/or Ni oxides was restricted up to 2% in the design. Consequently, the limits of each compound 

are the following: 

0.98 1.00CS   (A.2) 

0 0.02Pd   (A.3) 

0 0.02Ni   (A.4) 

 

Using a three-component SCMD evaluates seven points at different concentrations of each 

component to adjust the response variable for the design and the desired model. In this case, each 

component was evaluated at the maximum allowable fraction at an intermediate and the centroid 

points of the mixture, as displayed in Figure 1.2 (see Chapter 1). The regression model for the 

oxidation temperature was established using a special cubic regression fitting. The regression model 

equations were as follows: 

' ' ' ' ' '

1

j i i ij i j ijk i j k

i i j i j k

N x x x x x x


  
   

      (A.5) 

'

1

i i
i

x L
x

L





 (A.6) 

where 
jN  is the oxidation temperature for a desired amount of asphaltenes adsorbed onto the 

adsorbent surface, i  are the coefficients of the linear terms of the components, 
ij  are the 

components of the binary mixtures of the nonadditive components, and 
ijk is the component of the 

nonadditive ternary mixture. Equation A.6 is a pseudocomponent of ix  (fraction) and is used 

because of the restrictions mentioned in eqs A2-A4. In these equations, iL is the lower limit of each 

component, and L  is the sum of the lower boundaries. 
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B. Appendix: Thermodynamic 

parameters of the transition state 

functions for n-C7 asphaltenes catalytic 

thermal cracking and steam gasification 

The kinetic parameters and thermodynamic properties of the transition state functions for the 

oxidation of n-C7 asphaltenes in presence and absence of the selected nanoparticles were estimated 

following the procedure described in Section 2.2.2 and are presented in Tables B1 and B2 for 

catalytic thermal cracking and steam gasification, respectively.  As seen, the values of n  ranged 

from 1.5 to 10 with values of the slope between -1.07 and -0.97 for 
2R =0.99 in the case of thermal 

cracking. For steam gasification, n  ranged from 3 to 16 with values of the slope between -1.04 and 

-0.99 for 
2R =0.99  However, it is worth to mention that values of n  > 4 lack of chemical 

significance and were only used as fitting parameters for the description of the kinetic equation and 

the estimation of the thermodynamic properties. This is due as the chemical composition and 

structure of n-C7 asphaltenes is very complex and could result in a series of unidentified simultaneous 

reactions. Also, different values of n  imply that the thermal cracking or steam gasification of n-C7 

asphaltenes in presence or absence of the selected nanoparticles is not a single-mechanism process 

and that it is highly dependent on the nanoparticles chemical nature. From Tables B1 and B2 it can 

be also observed that the trend of the change of the enthalpy of activation follows the order of virgin 

n-C7 asphaltenes > CS > CSNi2 > CSP2 > CSNi1Pd1, indicating that the highest catalytic effect was 

obtained for the bimetallic SHS as the reduction in 
‡H was highest among the system evaluated; 

same observations can be made for
‡G . In addition, according to the negative values of 

‡S it can 

be inferred that the entropy of the activated stated is lower than that of the initial state.  
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Table B.1. Kinetic parameters and thermodynamic properties of the transition state functions for 

the catalytic thermal cracking of n-C7 asphaltenes in presence and absence of SHS for a fixed value 

of  =50%.  

Material n  slope 2R  
A         

(x105 s-1) 
Kinetic equation 

‡S

(J/mol∙K) 

‡H

(kJ/mol) 

‡G

(kJ/mol) 

Virgin n-C7 

asphaltenes 
1.5 -1.00 0.99 1.76  

3/2
2 exp 1

Ed
A

dt RT







 
   

 
 -160.22 179.99 115.86 

CS 5 -1.07 0.99 28.05  
6

exp 1
5

A Ed

dt RT

 


 
   

 
 -137.00 176.09 97.45 

CSNi2 7 -1.01 0.99 39.84  
8

exp 1
7

A Ed

dt RT

 


 
   

 
 -133.65 143.39 90.22 

CSPd2 9 -1.02 0.99 26.47  
10

exp 1
9

A Ed

dt RT

 


 
   

 
 -136.05 129.03 81.49 

CSNi1Pd1 10 -0.97 0.99 5.91  
11

exp 1
10

A Ed

dt RT

 


 
   

 
 -147.91 130.59 78.31 
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Table B.2. Kinetic parameters and thermodynamic properties of the transition state functions for 

the catalytic steam gasification of n-C7 asphaltenes in presence and absence of SHS for a fixed 

value of  =50%.  

Material n  slope 2R  
A         

(x103 s-1) 
Kinetic equation 

‡S

(J/mol∙K) 

‡H

(kJ/mol) 

‡G

(kJ/mol) 

Virgin n-C7 

asphaltenes 
4 -1.04 0.99 0.79  

5
exp 1

4

A Ed

dt RT

 


 
   

 
 -160.22 179.99 115.86 

CS 3 -1.08 0.99 1.08  
4

exp 1
3

A Ed

dt RT

 


 
   

 
 -137.00 176.09 97.45 

CSNi2 9 -1.00 0.99 29.49  
10

exp 1
9

A Ed

dt RT

 


 
   

 
 -133.65 143.39 90.22 

CSPd2 14 -1.02 0.99 968.05  
15

exp 1
14

A Ed

dt RT

 


 
   

 
 -136.05 129.03 81.49 

CSNi1Pd1 16 -0.99 0.99 5558.32  
17

exp 1
16

A Ed

dt RT

 


 
   

 
 -147.91 130.59 78.31 

 

 
 

 

 

 

 





 

C. Appendix: n-C7 asphaltenes 

adsorption over CTi- and CAl- supported 

nanoparticles   

According to surface area values for the CTi support and the functionalized CTi nanoparticles, it can 

be inferred that the inclusion of the PdO and/or NiO on the particle surface does not affect strongly 

the available area for asphaltenes adsorption. However, in the case of CAl support and CAl- 

functionalized nanoparticles the values of the measured SBET follow the trend CAl > CAlNi2 > 

CAlPd2 > CAlNi1Pd1, indicating that some of the small pores of the support could be blocked by 

the NiO and/or PdO nano-crystals on their surface. The obtained values of SBET of the nanoparticles 

are listed in Table C.1. 

 

Table C.1. Estimated surface area and particle size of the CTi- and CAl-supported 

nanoparticles. 

Material 
SBET 

 m2/g 

CTi 54 

CTiNi2 50 

CTiPd2 50 

CTiNi1Pd1 48 

  

CAl 223 

CAlNi2 176 

CAlPd2 143 

CAlNi1Pd1 133 

 

Figure C.1 shows the experimental adsorption isotherms of n-C7 asphaltenes onto nanoparticles of 

TiO2 and TiO2 with the corresponding mono and bimetallic loading at 25°C along with the solid-

liquid-equilibrium (SLE) model. As shown in Figure C.1, the functionalized nanoparticles have 

higher adsorptive capacities than the TiO2 support; this is expected because NiO and/or PdO showed 

higher affinities than TiO2 towards compounds such as pyridine, benzoic acid, phenol and pyrrole.1 

This suggests that the observed increase in asphaltene uptake for the functionalized nanoparticles 

could be associated with the presence of nitrogen and oxygen in the asphaltene molecules, which 

favored the interaction with the nanoparticle surface.1 NiO and PdO supported on the TiO2 

nanoparticles alone showed similar adsorption behavior. Metal coverage on the Ti surface could be 

highly influenced by the oxidation temperature used in the material synthesis and could influence 
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the amount of active sites available for asphaltene adsorption. This suggests that in addition to 

individual selectivities of Pd and Ni towards different functional groups of the asphaltene molecule, 

the type and strength of the bond between Ni and Pd with the Ti support produces different 

orientations of the asphaltene molecules after adsorption on the nanoparticle surface. Hence, similar 

degrees of selectivity are found to be independent of the preferred species; however, bimetallic 

nanoparticles showed higher uptakes than monometallic nanoparticles, particularly for equilibrium 

concentrations above 80 mg/L. This could be due to the high dispersion of metal oxide on the support 

and the subsequent synergistic effect of PdO and NiO that lead to different unified selectivities, 

intermolecular forces between the functional groups and heteroatoms of asphaltenes. These findings 

are in excellent agreement with studies on Capella n-C7 asphaltenes adsorption onto CS nanoparticles 

functionalized with NiO and PdO presented in Chapter 2, where it was observed that higher uptake 

was obtained for bimetallic nanoparticles than for monometallic nanoparticles. 

  

Figure C.1. n-C7 Asphaltene adsorption isotherms onto CTi, CTiNi2, CTiPd2 and CTiNi1Pd1 

nanoparticles at 25°C.  

 

Figure C2 shows the adsorption isotherms of n-C7 asphaltenes onto CAl, CAlNi2, CAlPd2 and 

CAlNi1Pd1 nanoparticles at 25°C with the SLE model. Again, the adsorption capacity is shown to 

be enhanced after functionalizing the support nanoparticles with higher uptakes obtained in the order 

CAlNi1Pd1 > CAlPd2 > CAlNi2 > CAl. However, the amount adsorbed of asphaltenes on Al 

nanoparticles is lower than for CTi nanoparticles; also, Ni-Pd/γ-Al2O3 nanoparticles showed a lower 

adsorption capacity than Ni-Pd/TiO2. This could be attributed to different metal-support interactions 

and the geometric and electronic effects on the adsorbent surface that influence the selectivity for 

different functional groups or heteroatoms in n-C7 asphaltene molecules. 
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Figure C.2. n-C7 Asphaltene adsorption isotherms onto CAl, CAlNi2, CAlPd2 and CAlNi1Pd1 

nanoparticles at 25°C.  

 

Table C.2 lists the estimated values of the SLE model parameters. As shown for all cases, the SLE 

model produces an excellent fit to the experimental data, which is indicated by the low values of 

RSME%. Additionally, the adsorption affinity, represented by the reciprocal of H value, increases in 

the order bimetallic > monometallic > support. Similar trends can be observed for the  parameter. 

Conversely, the degree of asphaltene self-association on active sites, which is represented by K, is 

higher for the support than for the functionalized nanoparticles. Owing to their complex structure, 

the asphaltenes can self-associate and form aggregates on the nanoparticles surface. It is expected 

that at low uptake the asphaltenes will be adsorbed in the high energy sites of the adsorbent as 

monomers. However, by increasing the concentration at medium and high uptake, asphaltenes 

molecules will form aggregates around the high-energy sites until the volume available for 

adsorption is crowded. In this order, and depending on the adsorbent chemical structure, asphaltenes 

may be adsorbed in perpendicular, parallel or flat ways subject to the selectivity of the surface 

towards the aromatic part of the asphaltenes or heteroatoms present in their structure. Due to by 

functionalizing the nanoparticles different selectivities are induced, this led the asphaltenes being in 

different degrees of self-association around the high-energy sites available for adsorption. The trends 

of the SLE parameters agree well with the experimental adsorption isotherms as could be seeing 

as a control parameter for the model fitting and follows the same trend than the observed 

experimental results. 
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Table C.2. Estimated parameters of the SLE model 

Material ± 0.02 

(mg/g) 

± 0.08 

(g/g) x 10-4 

± 0.01 

(mg/m2) 
 RSME% 

CTi 0.69 4.67 2.78 0.99 0.77 

CTiNi2 0.37 4.11 3.01 0.98 2.96 

CTiPd2 0.33 3.48 3.02 0.99 2.02 

CTiNi1Pd1 0.30 2.98 3.11 0.99 1.55 

      

CAl 1.89 3.82 1.30 0.99 1.84 

CAlNi2 1.62 3.56 1.51 0.99 2.13 

CAlPd2 0.73 2.58 1.55 0.99 0.70 

CAlNi1Pd1 0.25 2.38 1.67 0.99 1.13 
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D. Appendix: Effect of nanoparticle 

dosage and system temperature on n-C7 

asphaltene aggregation-fragmentation  

Two different nanoparticle dosages of 10 and 20 g/L were selected to evaluate its effect on the n-C7 

asphaltenes uptake. Figure D.1 shows the adsorption kinetics of AK18 n-C7 asphaltenes onto CM 

nanoparticles for the selected dosages. The amount of asphaltenes adsorbed decreased by increasing 

the amount of nanoparticles. Following the mass balance ( ) /t i tq C C M   employed for the 

calculation of the amount adsorbed, it can be seen that as increasing the dosage of nanoparticles M  

in the denominator will result in an intrinsic decrease of the value of tq . This behavior can be 

explained by the reduction of the surface area caused by interactions between the nanoparticles 

caused by their aggregation at higher concentrations,1-3 which reduces the surface area available for 

adsorption. Therefore, this change in the surface area reduces the probability of the asphaltene 

aggregates contacting the available nanoparticle surfaces. 

In this case, the double exponential model also had a good fit with values of 0.99 and 0.74 for the 
2R and %RSME , respectively. Accordingly, the results of the double exponential model fitting 

also showed that the adsorption process is governed by one fast step with values of sk and sD  of 

0.00. The obtained values of the mq , fk  and fD  parameters were 44.5 mg/g, 0.09 min-1 and 177.3  

mg/L, respectively.  

 

However, if a control volume of 10 mL is assumed and the amount adsorbed is not normalized by 

the dry mass of nanoparticles, the mass balance changes as shown in Eq. D.1: 

( )t i tq C C V    (D.1) 

where V (L) is the solution volume. 

Hence, the trend of the amount adsorbed would be the opposite as shown in Figure D.1. This is 

expected as by increasing the number of nanoparticles in the system, there would be a larger amount 

of active sites available for adsorption. Although one could also expect that the amount adsorbed 

without mass normalization would be higher by a factor of 2 in presence of 20 g/L than that of 10 

g/L, this does not occur due to the inherent aggregation behavior of the nanoparticles and limitations 

in the asphaltene diffusion trough the bulk of the solution. 
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Figure D.1. Amount of asphaltenes adsorbed from Heptol 40 onto CM nanoparticles at dosages of 

10 g/L and 20 g/L in units of mg/g.  

 

Figure D.2. Mass of AK18 asphaltenes adsorbed from Heptol 40 onto magnetite nanoparticles 

at dosages of 10 g/L and 20 g/L.  

The amount of nanoparticles may significantly alter the asphaltene aggregate size in solution because 

more active sites will be available for adsorption. Heptol 40 solutions of AK18 n-C7 asphaltenes at 

20°C and CM nanoparticles at two different dosages of 10 and 20 g/L were used to study the effect 

of nanoparticles dose. Figure D.3 shows the results obtained from DLS measurements for the kinetics 

of asphaltene growth in the absence and presence of CM nanoparticles at both of the dosages used. 
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As expected, the asphaltene aggregates show a greater decrease in the presence of 20 g/L of 

magnetite nanoparticles. In this case, the PBM also adjusted well towards the experimental results 

with 
2R = 0.94 and RMSE% = 6.27. A value of 0.29 was obtained for the  parameter, indicating 

that lower porosities are obtained as the nanoparticle dosage increases. On the other hand, the b  

parameter has a value of 6.09  10-5, indicating that there is no significant difference in the breakup 

rate by changing the amount of nanoparticles and that the inhibition of the asphaltene growth is more 

dependent on the adsorption process. Note that at the equilibrium of the fragmentation and 

aggregation processes, the aggregate is 29.1 and a 61.1 % lower than for the virgin AK18 n-C7 

asphaltenes for nanoparticle dosages of 10 and 20 g/L, respectively.  

 

Figure D.3. Kinetics for AK18 asphaltenes aggregation-fragmentation in the presence of 10 g/L and 

20 g/L of magnetite nanoparticles at 25°C in Heptol 40 solutions.  
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