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ABSTRACT 

Robust Concatenated Codes For The Slow Rayleigh Fading Channel. (May 2008) 

Teh-Hsuan Hsu, B. En, National Chiao Tung University, Hsinchu, Taiwan 

Chair of Advisory Committee: Dr. Krishna R. Narayanan 

 

In this thesis, we design a robust concatenated code for the Multiple-Input 

Multiple-Output (MIMO) system in the presence of slow Rayleigh fading with no 

channel side information at the transmitter (no CSIT) and perfect channel side 

information at the receiver (perfect CSIR).  Since we  are interested in the slow fading 

channel, outage capacity is used as the measure of performance. Good space-time codes 

can be designed so as to maximize the so-called rank and the determinant criteria. 

However, a practical system will concatenate a space-time code with an outer code at the 

transmitter and perform iterative decoding at the receiver. It is necessary to design the 

space-time code together with the outer code in practice. We will call this kind of code a 

concatenated space-time code. 

 At the transmitter, we will consider the bit-to-symbol mapping and space-time 

code together as a space-time modulator and thus, Bit Interleaved Coded Modulation 

(BICM) and Multilevel coding (ML) can be applied to design outer codes for the non-

binary constellation. However, the concatenated space-time codes designed by these two 

methods can only be decoded with arbitrarily small error probability for a fixed channel 

realization and such designs are not robust over the ensemble of fading channels. 

Our approach of designing concatenated space-time code is to design an outer 

code for a space-time modulator such that the concatenated space-time code can be 

decoded with arbitrarily small error probability in a set of fixed channels which have the 

same capacity. Through this approach, we discovered a new design criterion for space-

time codes: a good space-time code should stabilize its Extrinsic Information Transfer 

(EXIT) charts. In other words, the robustness of a space-time code in the slow fading 

channel and its performance in iterative decoding can be visualized by the EXIT charts. 
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The rank and the determinant criterion do not evaluate the performance of a space-time 

code in iterative decoding, but the new criterion does. Therefore, the new criterion is 

applicable to design concatenated space-time codes.  

Applying our approach and new criterion, a rate 7.2 bits/s/Hz concatenated 

space-time code is designed. The performance is close to the outage capacity, and the 

rate lost is 0.2 bits/s/Hz. 
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CHAPTER I 

 

INTRODUCTION 

In wireless communication, a transmitted signal will experience a multiplicative noise, 

or fading gain which is usually represented as a random variable in an equivalent 

baseband model. For example, the Rayleigh fading can be modeled as the fading gain 

being a complex Gaussian random variable with zero mean and unit variance. A 

common way of exploiting the randomness of the channel is to employ multiple 

antennas at the transmitter and the receiver, also called a multiple-input and multiple-

output (MIMO) system. A MIMO system can transmit a signal through multiple paths, 

which enables the receiver to average out a bad received signal. This phenomenon is 

called diversity gain, and can be quantified as the rate of decay of the probability of error 

at the receiver as a function of the signal-to-noise ratio (SNR). In the MIMO system, it is 

possible to obtain a maximum diversity gain equal to the number of transmit antennas 

multiplied by the number of receive antennas. 

For a communication system with no channel side information at the transmitter 

(CSIT) and full channel side information at the receiver (CSIR), in order to achieve the 

maximum or full diversity gain in a MIMO system, the transmitter needs to transmit the 

signal in a carefully designed way. This can be done by the space-time modulator of the 

transmitter. The space-time modulator maps the vector of binary data into the vector of 

complex numbers and then places the complex numbers into a series of matrices named 

codewords of the space-time code. For a space-time codeword, the number of row 

vectors represents the number of transmit antennas and the number of column vectors 

represent the number of time instances needed to transmit a codeword. Conventionally, 

the performance of a space-time modulator is evaluated by its diversity and coding gain:  

good space-time code not only provides both full diversity gain in a MIMO system and 

coding gain. These two quantities can be evaluated by the rank and determinant criteria. 

 
____________ 

This thesis follows the style of IEEE Transactions on Information Theory. 



 2 

At the transmitter in a practical communication system, a concatenated space-

time code which is a space-time modulator concatenated with a binary outer encoder is 

used to provide more protection to the data. At the receiver, the decoder is separated into 

two stages, space-time demodulator and outer decoder which are iteratively used. 

Therefore, designing a practical MIMO system must consider the space-time modulator 

together with the outer encoder. However, the rank and the determinant criteria do not 

evaluate the performance of a space-time code in iterative decoding and there is no 

criterion for designing concatenated space-time codes in previous studies. 

In this thesis, we are interested in designing a MIMO system in the slow 

Rayleigh fading channel with no CSIT and perfect CSIR.  We propose a new criterion 

for designing concatenated space-time codes. This new design criterion can be 

represented in terms of the Extrinsic Information Transfer (EXIT) chart, which is a tool 

for analyzing the behavior of a code with iterative decoding.  

Chapter II first establishes the discrete time model for a MIMO system in the 

slow Rayleigh fading channel. Based on this model, the outage capacity and the diversity 

gain are also introduced. Section 2.2 presents two conventional space-time code design 

criteria and three space-time codes represented by the discrete time model. 

In Chapter III, the concatenated coding scheme and iterative decoding of 

concatenated codes are introduced. The space-time modulator is taken as the inner code 

of a concatenated code; hence, we can use the concatenated code design tool to analyze 

the behavior of space-time modulator with iterative decoding. Section 3.3 presents the 

EXIT chart as a tool to study the behavior of inner and outer codes in iterative decoding. 

The method of designing a concatenated code by the EXIT chart is also presented in this 

section. 

Chapter IV first shows two coding methods, Bit Interleaved Coded Modulation 

and Multilevel Coding, for non-binary constellations. The concatenated space-time 

codes designed by these two methods are not robust in a slow fading channel. Then we 

introduce our design criterion represented by the EXIT chart. We further design a 

concatenated space-time code for the 2x2 MIMO system by applying this new criterion 
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with multilevel coding. The 2x2 MIMO system performs close to the outage capacity 

with a very small rate-loss. 
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CHAPTER II 

 

MIMO CHANNEL AND SPACE-TIME CODE 

In this chapter, we first introduce a discrete time model for the Multiple Input Multiple 

Output (MIMO) channel with slow Rayleigh fading, with channel state information 

unknown at the transmitter (no CSIT) and perfectly known at the receiver (perfect CSIR). 

Capacity and diversity gains are also presented in this section. These terms quantify the 

ability and the efficiency of a system to communicate through a MIMO channel with 

arbitrarily small error probability at the receiver. Following the MIMO channel section, 

space-time codes will be discussed. We first show the design criteria for space-time codes, 

and then the Vertical Bell-Labs Layered Space Time code (VBLAST) and space-time 

codes based on number theory are introduced. We will evaluate these space-time codes by 

applying the design criteria. Finally we show the performances of these space-time codes 

in the slow Rayleigh fading channel through simulation. 

 

2.1  MIMO Channel 

 

A point to point communication system with Mt transmit antennas and Mr receive 

antennas is shown in Figure 2.1. The received signal can also be represented using the 

following discrete time model: 

1,1 1,1,1 1, 1,1 1, 1,1 1,

,1 ,,1 , ,1 , ,1 ,

MtT T T

Mr Mr MtMt Mt T Mt Mt T Mt Mt T

y y h h x x n n

y y h h x x n n

      
             
            

   

           

   
 

(2.1) 

or simply as 

,
2k k kY HX N

 
, k = 1, 2 … L                   (2.2) 
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were Xk is the transmitted symbols (or a codeword) represented by a matrix with Mt rows 

and T columns, T is the number of time instances required to transmit Xk, hi,j is the 

channel gain from transmit antenna i to receive antenna j and is a complex zero-mean, 

unit variance Gaussian random variable, Nk is the Gaussian noise represented by a 

column matrix with Mr i.i.d. complex zero-mean unit variance Gaussian random 

variables as its elements and H is a Mr×Mt matrix whose entries are hi,j. Note that we call 

the channel a Rayleigh fading channel because of the statistical properties of hi,j. Since 

(2.2) is a discrete time model, k is the index for transmitted symbols and L is the number 

of transmitted codewords. The constant ρ is the received signal to noise ratio (SNR) at 

each receive antenna. H is kept constant for the entire L transmissions in our discussion; 

in addition, we assume H is not known at the transmitter and is fully known at the 

receiver. 

 
 
 

 
Fig.2.1: MIMO systems 
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2.1.1  Capacity of MIMO Channel 

 

Capacity is defined as the maximum rate at which the data can be transmitted through a 

channel with arbitrarily small error probability, assuming no constraints on delay or 

complexity of the encoder and decoder. It is the maximum mutual information between 

transmitted symbol X and received symbol Y: 

( ) ( )
max ( ; ) max[ ( ) ( | )]

p x p x
C I X Y H Y H Y X  

 bits/s/Hz               (2.3) 

where by definition, H(Y|X) is equal to the entropy of Gaussian noise H(N), therefore, 

maximizing mutual information is equivalent to maximizing H(Y). From [1] and [2], 

(2.3) is equal to the following mutual information: 

2
: ( )
max log det[I ]

x x

H
Mr x

R Tr R
C HR H


 

 bits/s/Hz                 (2.4) 

where Rx is the covariance matrix of X and the optimization relative to Rx will depend on 

whether or not H is known or not at the transmitter. 

If H is known at the transmitter, the water-filling method which allocates power 

across antennas ideally can be applied to maximize (2.4). However, since we consider a 

MIMO system with no CSIT and perfect CSIR, we will assume H is not known at the 

transmitter. Hence, the transmitter cannot change the data rate since it does not know the 

channel at all, thus the transmitter will transmit data at a fixed rate R (bits/s/Hz). We are 

interested in the slow fading channel where H is fixed over time but random. Therefore, 

we consider non-ergodic channels in this case and the appropriate definition of capacity 

is capacity with outage. The outage capacity associated with R is the probability that the 

channel H can only support a data rate less than R, so the received data can have 

arbitrarily small error probability. This probability is given by 

2
: ( )

( ) ( max log det[I ] )
x x

H
Mr xout R Tr R

P R p HR H R


  
                   (2.5) 

Outage is an important idea for understanding other properties of MIMO channels. This 

will be seen in the following sections. 
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With no CSIT, the transmitter cannot maximize (2.4) by optimizing its power 

allocation or input covariance structure across antennas. Intuitively, the best strategy 

should be transmitting signals with equal power in each antenna. It is shown in [3] that 

with no CSIT and perfect CSIR, uniform power allocation across antennas maximizes 

the mutual information of the i.i.d. Rayleigh slow fading MIMO channel. With uniform 

power allocation, the covariance matrix is an identity matrix times a constant: Rx = (ρ/ 

Mt)IMt. Thus, we can rewrite (2.5) as follows: 

2( ) (log det[ ] )r
H

Mout
t

P R p I HH R
M


  
                         (2.6) 

where ρ is the signal to noise ratio (SNR) at each antenna of the system. 

The capacity of the MIMO channel with no CSIT and perfect CSIR depends on the 

specific realization of the matrix H, in particular its singular values or eigenvalues. If the 

slow fading case is being considered, the channel gain matrix H in (2.2) is constant 

during the entire transmission (H is constant from k = 1 to k = L). Therefore, the left 

hand side of the inequality in (2.6) is the exact capacity for the MIMO channel H. 

Chapter IV will introduce an approach, where by the channel realizations of the i.i.d. 

slow Rayleigh fading channel can be drawn under a fixed channel capacity. In addition, 

the outage capacity is the measure of performance for the system we designed. 

 

2.1.2  Diversity Gain 

 

For a communication system, we can approximate its bit error rate (BER) of received 

signal as a function of the SNR of the channel 
DBER C                                               (2.7) 

where the diversity gain D is the negative exponent of SNR and C is the coding gain. We 

can say that diversity gain determines how fast the bit error rate of a communication 

system decreases with increase in SNR. 

Diversity gain comes from the fact that a symbol being transmitted between 

transmitter and receiver experiences multiple channel realizations. For example, in a 
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single-input single-output system (SISO), the diversity gain depends on the number of 

channel realizations that the transmitted symbol experiences during the transmission. In 

a MIMO system, diversity gain can be achieved by transmitting a symbol over multiple 

antennas through the channel. In the slow fading channel, the maximum diversity gain of 

a MIMO system, shown in Fig.2.1, is Mr×Mt. The easiest way to achieve maximum 

diversity gain is repetition coding where Xk in (2.2) is a diagonal matrix and x1,1 = x2,2 

=…= xMt,Mt = x. However, this is not an efficient way to transmit the data since only one 

symbol, x, is transmitted in Mt time instances. In order to gain efficiency (data rate) and 

reliability (diversity and coding gain) at the time, space-time codes can be applied. 

 

 

2.2 Space-time Codes 

 

For a MIMO system, the transmitted signal can be designed for both diversity and 

coding gains. When the signal design extends over both space (via antennas) and time 

(via multiple symbol time intervals), it is typically referred to as a space-time code. 

Most space-time codes, including the codes discussed in the following sections, are 

designed for quasi-static channels, where the channel is constant over a block of symbol 

time intervals and the channel is assumed to be unknown at the transmitter. Therefore, 

the discrete time MIMO channel model shown in (2.1) and (2.2) is a valid model so the 

transmitted signal encoded by a space-time code and the received signal can be written 

as matrices in (2.1). 

In the following sections, we first discuss the design criteria for space-time codes. 

Thus, we can have a standard to evaluate different space-time codes; then, the VBLAST, 

a space-time code based on number theory and the Golden Code for 2×2 MIMO channel 

will be discussed after the design criteria. 
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2.2.1 Design Criteria for Space-time Code 

 

The MIMO systems and space-time codes were invented in order to improve the data 

rate and/or the reliability of communication. The question now is how to design a space-

time code such that the MIMO system can have low bit error rate at the receiver. Tarokh 

et al’s  work [5] provides the answer for this question. In [5], there are two design 

criteria for space-time codes being designed for slow Rayleigh fading channel. The rank 

criterion quantifies the diversity gain and the determinant criterion quantifies the coding 

gain. 

 

1 The Rank Criterion: For a space-time code of m×n MIMO channel to achieve the 

maximum diversity gain m×n, it has to be designed such that the difference matrix 

B(X1, X2) between any two codewords X1, X2 from the space-time code has full rank 

equal to min(m,n). If the minimum rank is r (r < n), then a diversity gain r×m is 

achieved. 

 

2 The Determinant Criterion: A high coding gain is achieved by maximizing the 

minimum of the determinant of the matrix A(X1, X2) = B(X1, X2) B*(X1, X2) over all 

codewords. 

 

 

2.2.2 Space-time Code: VBLAST 

 

VBLAST is also known as spatial multiplexing. The received signal can be written as 

(2.2), where T = 2 and Xk is a 2×2 matrix whose entries x1, x2, x3 and x4 can be chosen 

from the same signal constellation (ex: M-QAM, M-PSK…). The structure of VBLAST 

for 2×2 MIMO channel is shown in Fig. 2.2.  
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Fig.2.2 VBLAST for 2×2 MIMO channel 

 

At the encoder, the binary data are mapped onto some constellation (ex: M-QAM, 

M-PSK…), and then multiplexed onto two transmit antennas. The overall rate is, 

therefore, 2log2M bits per channel used if M-QAM is used. A 2×2 MIMO system with 

VBLAST can achieve at most a diversity gain of two, because each symbol is 

transmitted by one transmit antenna and received by two receive antennas. 

At the receiver, if the successive cancellation algorithm is used, receiver 

complexity can be reduced significantly. However, receiver complexity is not addressed 

in this thesis; thus, the maximum likelihood decoder is used in the receiver, and the 

actual decoder algorithm will be discussed in detail in the next chapter.  

 

 

2.2.3 Space-time Code Based on Number Theory 

 

One way to design a space-time code is to apply number theory, as presented in [16]. 

Full data rate linear dispersion space-time block codes (LD-STBC) over two transmit 

antennas and two time instances are also presented in [16]. Unlike VBLAST, this space-

time code achieves a full transmit diversity of two over all constellations chosen from 

Z[i]. For a 2×2 MIMO wireless communication system, a space-time code so designed 

can achieve full diversity of four. 

Based on the MIMO channel model (2.1) and (2.2), the space-time code presented 

in [16] can be written as 
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1 2 3 4

3 4 1 2

( )1
( )2k

s s s s
X

s s s s
  

  
  

                                 (2.8) 

where θ2 =   and   = 
ie 

, such that λ is a real parameter to be optimized. The 

information symbols s1, s2, s3 and s4 are modulated from binary data using QAM or 

PAM. 

A space-time code, as in (2.8), can transmit four information symbols in two time 

intervals, which means two information symbols being transmitted in one time interval. 

The rate is 2log2M bits per channel used which is the same with VBLAST if M-QAM is 

used. In a 2×2 MIMO system, this is actually the best rate we can obtain if M-QAM is 

used; therefore, a space-time code like (2.8) is a full-rate code for 2×2 MIMO systems. 

In order to satisfy the design criteria mentioned in 2.2.1,   has to be chosen 

carefully to maximize transmit diversity and coding gains. It is shown in [16] that if   is 

an algebraic number of degree ≧ 4 over Q(i) then one guarantees the maximum transmit 

diversity over all constellations chosen from Z[i]. If the information symbols are 

modulated by 4-QAM, the maximum transmit and coding gain is attained for 
/ 2ie   

and the coding gain is 0.2369. For the 16-QAM case, the maximum transmit and coding 

gain is attained for 
0.521ie   and the coding gain is 0.0591. In the following contents, we 

are going to call the LD-STBC with optimized   as LD codes. Note that the coding gain 

decreases when the size of the constellation increases and the determinant will vanish 

when the size of the constellation goes to infinity. This property is also shown in [16]. 

The space-time codes introduced in this section are full rate and full diversity 

codes for a 2×2 MIMO system. They can be optimized to satisfy the design criteria 

mentioned in 2.2.1. However, the problem is that the vanishing determinant will 

decrease the coding gain when the size of the constellation increases. 

At the receiver, the maximum likelihood decoder is used and will be discussed in 

detail in the next chapter. 
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2.2.4 Space-time Code: Golden Code 

 

The Golden Code is a space-time block code for the 2×2 MIMO wireless communication 

system. It was presented by Belfiore [6] in 2005. The Golden Code is also a member of 

the LD-STBC family. The received signal can also be written as (2.1) and (2.2) except 

the codewords Xk of the Golden Code are 2×2 complex matrices of the following form: 

1 2 3 4

3 4 1 2

( ) ( )1
( )( ( )) ( )( ( ))5

k
s s s s

i s s s s
X    

       
  

                                (2.14) 

where s1, s2, s3 and s4 are information symbols which can be taken from any M-QAM 

constellation carved from Z[i]. θ = (1+ 5 )/2 is the “Golden number” which gives the 

name of this space-time code, σ(θ) = 1-θ, α = 1+iσ(θ) and σ(α) = 1+iθ. 

Same as the space-time code introduced in 2.2.3, the Golden Code can transmit 

four information symbols in two time intervals, which means two information symbols 

being transmitted in one time interval. The rate of the Golden Code is also 2log2M bits 

per channel used if M-QAM is used; therefore, the Golden Code is also a full-rate code 

for 2×2 MIMO systems. 

Besides full rate, the Golden Code has other properties which satisfy the design 

criteria for Rayleigh space-time code, as proposed by Tarokh [5]. First, the Golden Code 

is full-rank, which means that the determinant of the difference between two different 

codewords is always nonzero [5] [7]. This property can guarantee that the Golden Code 

will achieve a maximum diversity of four. 

Second, the Golden Code has a non-vanishing determinant for increasing rate 

(increasing M in M-QAM case). In fact, the minimum determinant is defined as  

2
m in

, 0

m in
( ) det( )

X C X
C X




 


                             (2.15) 

where C∞ is the set of codewords when rate goes to infinity and is equal to 1/5 from [6]. 

By [5], this property can guarantee that the Golden Code will have a nonzero coding 

gain as rate increases which means δmin of the Golden Code does not depend on the size 

of the signal constellation. 
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In contrast, other full rank and full-rate space-time codes, like the space-time code 

introduced in 2.2.3, have nonzero minimum determinants of C∞, but determinants vanish 

as the spectral efficiency of the signal constellation is increased. The non-vanishing 

determinant may pique our interest because in an actual communication system, one may 

employ different signal constellations in order to explore spectral efficiency. Therefore, 

space-time codes with a lower bounded non-vanishing determinant can always guarantee 

the system having coding gain no matter which signal constellation is employed. 

For a finite rate Golden Code, the minimum determinant is the following: 

1 2 1 2

2
min 1 2

, ,
min( ) det( )

X X C X X
C X X

 


                        (2.16) 

where C is the set of the codewords of the Golden Code. It can be shown that the 

minimum determinant has a lower bound: 

min min( ) 16 ( )C C   16
5


                                   (2.17) 

which satisfies the sufficient condition for achieving the optimal diversity-multiplexing 

tradeoff [8]. Therefore, the Golden Code provides optimal diversity-multiplexing 

tradeoff in a 2×2 MIMO system and satisfies the determinant criterion because of the 

non-vanishing determinant. 

As explained in [6], the performance improvement not only comes from the non-

vanishing δmin but also comes from the fact that the constellation of Golden Code is a 

rotated version of Z[i]2, As such, there is no shaping loss in the signal constellation 

emitted by the transmit antennas. 

At the receiver, the sphere decoder can be employed in order to reduce the decoder 

complexity. However, as the decoder of VBLAST, the maximum likelihood decoder is 

employed in this thesis and the decoder algorithm will be discussed in detail in the next 

chapter. 
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2.3 Comments 

 

Conventionally, space-time codes can be evaluated by the rank and determinant 

criteria. VBLAST is not full rank, the minimum rank of its difference matrices is one, 

and thus VBLAST does not achieve the maximum diversity of a MIMO system. In a 

2×2 MIMO system, VBLAST can achieve the diversity gain of two at most. On the 

other hand, the LD codes and the Golden Code are full rank which means that they can 

achieve a diversity gain of four in a 2×2 MIMO system. 

VBLAST does not have nonzero δmin and cannot guarantee the coding gain and the 

LD codes in 2.2.3 do not have a lower bound for its decreasing determinant. However, 

the Golden Code has the non-vanishing nonzero δmin, thus guaranteeing the coding gain 

with any signal constellation. 

Figure 2.3 shows the frame error rate of VBLAST, LD codes and Golden Code in 

2×2 slow Rayleigh fading channel with no CSIT and perfect CSIR. The maximum 

likelihood decoder is applied for all space-time codes. 
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Fig.2.3 Frame error rate for space-time codes in slow Rayleigh fading 

 

 

From the simulation, it can be seen that the performances of VBLAST are 

significantly different from the other two codes at high bit to noise ratio because it does 

not achieve full diversity. The performance difference at high signal to noise ratio 

between the Golden Code and the LD codes comes from the fact that the Golden Code 

has minimum determinant 16/5, as shown in (2.17) for any constellation size and is 

always larger than the minimum determinant of LD codes[6]. This results in the Golden 

Code always having better coding gain than the LD codes. 

Although we went through the properties and the actual performances of three 

particular space-time codes, there is still not much information about their robustness in 

a practical MIMO system. For a practical system, the space-time code will be 

concatenated with an outer code, while the method of designing a space-time code and 

an outer code together is unanswered in this chapter and proposed in Chapter IV. 
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CHAPTER III 

 

CONCATENATED CODES 

Concatenated codes are composed of two levels of codes: an outer code and an inner 

code, as shown in Fig.3.1. 

 
 
 

 
Fig.3.1 Concatenated coding 

 

 

Usually the inner code is designed to correct most of the errors caused by the channel, 

and the outer code further corrects the errors which cannot be corrected by the inner 

code. Concatenated codes have the following properties: first, they are particularly 

effective when the channel is in deep fades. Second, they typically achieve very low 

error probability with less complexity than a single code with the same error probability 

performance. 
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The optimal decoder for the concatenated code is the maximum likelihood decoder 

which performs joint decoding; however, this is a high complexity decoder and is not 

practical. A practical way to implement the decoder is to decode in two stages, as shown 

in Fig.3.1: first the received signal Y is decoded by the inner decoder, and then B  is 

decoded by the outer the decoder. This is a suboptimal decoder since the separated the 

inner and outer decoders can only use the information contained in the inner code and 

outer code, respectively. In the mid-90’s, the idea of iterative decoding was introduced 

and will be shown in the next section. 

In the following sections, we will introduce serial concatenated codes whose inner 

codes are the space-time modulators discussed in the previous chapter and outer codes 

are low-density parity-check (LDPC) codes. Once the iterative decoding is performed, 

we need a decoding model and a tool to analyze the behavior of each space-time code 

(inner code). 

 

 

3.1 Serial Concatenated Codes and Decoding Model 

 

The serial concatenated codes model for a 2×2 slow Rayleigh fading channel is shown in 

Fig.3.2 and can be represented by (2.2) where H is a 2×2 matrix whose entries are 

complex Gaussian random variables with zero mean and unit variance. Note that there is 

no interleaver and deinterleaver in Fig.3.2, since we utilize LDPC codes for the outer 

code. At the transmitter, the vector of binary data U will be encoded by the outer 

encoder. The vector of encoded binary data B will be mapped to QAM symbols and then 

mapped into matrices as codewords shown in (2.1) and (2.2). X is a vector whose 

elements are Xk in (2.2); similarly, Y is a vector whose elements are Yk in (2.2). The 

double-headed arrow between the space-time demodulator (decoder) and outer decoder 

represents the iterative decoding performed between these two decoders.  
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Fig.3.2 A serial concatenation model with 2 transmit antennas and 2 receive antennas 

 

3.1.1 Iterative Decoding 

 

Iterative decoding was first invented for decoding turbo codes which is a kind of parallel 

concatenated code [9], [10]. The idea of using log-likelihood algebra is that the two 

decoders are soft-in/soft-out decoders that accept and pass the log-likelihood ratios of 

the codewords iteratively as inputs and outputs [11]. Because log-likelihood ratios are 

passed, the term “soft” is used in order to contrast with hard decision decoding. 

First, the space-time decoder will process the received signal to generate a vector 

of “a posteriori” likelihood values (L-values) for each element in B, then the vector of “a 

posteriori” L-values is passed to the outer decoder as its “a priori” L-values Aout as 

shown in Fig.3.3. Next, the outer decoder processes Aout to generate a vector of 

“extrinsic” L-values Eout, then passes it back to the space-time decoder as “a priori” L-

values AST. Together with the received signal and AST, the space-time decoder  generates 

a vector of “extrinsic” L-values EST which is equal to the vector of “a posteriori” L-

values minus AST and is passed to the outer decoder as its new Aout. This iterative process 

which is shown (see Fig.3.3) continues until the L-values reach a point such that the 

“average extrinsic information” converges to a value. 

B U X Y 
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Fig.3.3 Iterative decoding 

 

From Fig.3.3, it can be seen that the space-time decoder has to process the received 

signal and AST together to generate EST. The optimum bit wise a posteriori probabilities 

(APP) decoder is used to process the received signal and AST together. In the next 

section, a decoding model for APP decoding will be presented. 

 

3.1.2 Decoding Model for Space-time Decoder 
 

In [12], a decoding model for parallel and serial concatenated codes is presented (see 

Fig.3.4). The source randomly produces a binary data vector U of k independent 

information bits each taking on values 0 and 1 with probability 1/2. Note that k is the 

number of information bits contained in one space-time code word; for example if the 

Golden Code with a 4QAM constellation is used for the space-time code, k is equal to 8 

(4 information symbols, each contains 2 information bits). In the model in Fig.3.2, the 

source can be the outer encoder, which is the LDPC encoder, as mentioned before. X is 

the codeword of the space-time code and is a 2×2 matrix. B is a vector of the modulated 

U, the elements are 1 or -1. The decoder receives two vectors: a noisy version Y of X and 

a noisy version B' of B.  

Y 
Space-time Decoder Outer Decoder 

Aout EST 

Eout AST 
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Fig.3.4. A decoding model for parallel and serial concatenated codes 

 

The communication channel is the 2×2 slow Rayleigh fading channel, therefore the 

relationship between X and Y can be modeled as in (2.2). On the other hand, the extrinsic 

channel is used to model the a priori L-values from the outer decoder. B' is used as if it 

was a priori information from the outer decoder. The extrinsic channel, which is 

assumed to be a memoryless channel, is used to observe the behavior of the space-time 

decoder in iterative decoding. Note that in actual concatenated codes, B' comes from the 

output of the outer decoder.  

At the space-time decoder, two inputs, Y and B', are used as two estimates of data 

source U: the a posteriori L-values D and the extrinsic L-values E. The output of the 

extrinsic channel B' gives a priori information about the data source U, with L-values 
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 , i = 1, 2 … k                      (3.1) 

where ai represents the elements of vector A, b'i the elements of vector B' and ui the 

elements of vector U. The a priori L-values ai can be thought of as the “extra” 

information which comes from an imaginary extrinsic channel about the information bit 

ui. In concatenated codes, this “extra” information is provided by the outer decoder and 
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will be processed together with the information coming from the actual communication 

channel. With the assumption that the extrinsic channel is an AWGN channel, equation 

(3.1) can be written as 
2
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, i = 1, 2 … k                   (3.2) 

or 
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, i = 1, 2 … k                  (3.3) 

where σ is the standard deviation of the AWGN channel. Similarly the output of the 

communication channel Y gives information about the data source U, with L-values 

( | 0)log
( | 1)

i
i

i

P Y uc
P Y u




 , i = 1, 2 … k                       (3.4) 

where ci represents the elements of vector C. Obviously, (3.4) is the information about 

the information bit ui given by the communication channel. 

The space-time decoder is an APP decoder that computes the a posteriori L-values 

D 
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( 0| , )log
( 1| , )

i
i

i

P u Y Bd
P u Y B




 , i = 1, 2 … k                     (3.5) 

where di is the element of vector D and P( ui=0 | Y, B' ) is the probability that the source 

data ui = 0 is conditioned on the received signal Y and the a priori information B'. From 

(3.5), the a posteriori L-value can be viewed as the information about the information bit 

ui given the information from the communication and extrinsic channels. For further 

analysis, we write Ui for the vector U with the ith entry removed, i.e., Ui = [u1 u2 … ui-1 

ui+1 … uk]. The numerator of equation (3.5) can be rewritten as 
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, i = 1, 2 … k            (3.6) 

Applying (3.6) to (3.5) and using the fact that Y and B' are conditional independent of Ui, 

the a posteriori L-values are 
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, i = 1, 2 … k             (3.7) 

where the conditional probabilities P(B`|Ui) and P(Y|Ui) are nothing but the probabilities 

of the a priori information B` and the received signal Y given a data source vector Ui. 

Note that the space-time encoder and BPSK modulator both perform one-to-one 

mapping; therefore, equation (3.7) can also be written as 
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, i = 1, 2 … k             (3.8) 

where Bi is Ui modulated using BPSK and Xi is Ui encoded by the space-time encoder. 

This result shows that the a posteriori L-value di comes from marginalizing all 

combinations of extrinsic information B` and the information from the communication 

channel for a given information bit ui. With the assumption that the extrinsic channel is 

an AWGN channel and the receiver has perfect knowledge of the communication 

channel, (3.8) can be rewritten as 
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, i = 1, 2 … k (3.9) 

where σe and σc are the standard deviations for the extrinsic channel and the 

communication channel respectively. These two factors will determine the effects of 
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extrinsic information and channel information on the a posteriori value. The better the 

channel (extrinsic or communication) quality is, the bigger the effect of the channel on 

the a posteriori value. This will be the APP decoder for our space-time decoder and will 

be applied through all simulations in this thesis. Note that although we have thought of 

the extrinsic channel as being an AWGN channel, this is not required. We can directly 

use the LLR provided by the outer decoder. However, we use the AWGN channel here 

to make it consistent with the EXIT chart section discussed later, where we will assume 

that these LLR have a Gaussian distribution. 

We showed that the numerator of the a posteriori L-value di in (3.5) can be 

expanded to derive the mathematical expression for the APP decoder; however, it can 

also be expanded in a way to show the relationship between the incoming information (A 

and C) and outgoing information (D and E). Such expansion is shown below: 
'

'

: 0
' '

'
: 0

'

'
: 0

( 0 | , )
( | , )

( | , ) ( | ) ( )
( , )

( | ) ( | ) ( )
( , )

i i

i i

i i

i

i
U u

i ii

U u

i ii

U u

P u Y B
P U Y B

P Y U B P B U P U
P Y B

P Y X P B B P U
P Y B




















 

'
'

'
: 0

( | 0) ( ) ( | ) ( | )
( , )

i i

i i
i i i i

U u

P b u P U P B B P Y X
P Y B 
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where the last step follows if the extrinsic channel is memoryless. The denominator of 

(3.5) can also be expanded in the same way and inserting the results into (3.5), we have 

i i id a e  , i = 1, 2 … k                                 (3.11) 
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The value ei is called the extrinsic L-value about bi or ui. It can be viewed as the 

information about the ith information bit given by the communication channel, as well as 

the extrinsic information about all information bits except for the ith information bit. 

From (3.12), the extrinsic L-value can also be viewed as the increasing amount of 

information about the information bit ui that comes from the APP decoder. This extrinsic 

information will be sent to the outer decoder as a priori information. After the outer 

decoder processes this information, it will also generate the extrinsic information which 

will be sent to the APP decoder as a priori information. This process will continue 

iteratively until the average extrinsic information for both decoders converges. Note that 

it is the extrinsic L-values instead of the a posteriori L-values being passed between two 

decoders. This is because the extrinsic L-values are the result of the a priori L-values 

being subtracted from the a posteriori L-values. This avoids the propagation of the 

inputted a priori information which is the information already possessed by the decoder. 

The iterations proceed until a stopping critierion is satisfied when the iterations can be 

stopped. There are several stopping criteria that are commonly used and they are not 

discussed in this thesis. 

Although iterative decoding and its decoding model are presented, a tool to model 

the iterative behavior between the space-time decoder and the outer decoder is still 

necessary. In the next section, the EXIT functions and EXIT charts are introduced as 

tools to analyze and design the concatenated codes. 
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3.2 EXIT Functions and EXIT Charts 

 

In iterative decoding, as discussed in previous sections, the space-time decoder and 

the outer decoder perform an iterative process with a vector of soft information being 

passed between two decoders. At the beginning, Gallager [14] suggested evaluating the 

convergence behavior of iterative decoders for LDPC codes by tracking the probability 

distributions of extrinsic L-values. This is a simple procedure for erasure channels 

because only the fraction of erasures is passed between inner decoder and outer decoder. 

However, for other channels, the entire probability density function must be tracked. 

This procedure is called density evolution. For channels, which we are studying, it is 

difficult to analyze the vector of soft information being passed between two decoders 

using density evolution. 

However, tenBrink introduced a very useful tool in his work [13]: the Extrinsic 

Information Transfer (EXIT) chart. Rather than tracking the probability density function, 

another way to evaluate the convergence behavior of iterative decoders is to track only 

one number per iteration. For example, one might track a statistic of the extrinsic L-

values such as their mean, variance, an error probability or mutual information. In [12], 

the EXIT functions are defined to describe the relationship between the input and output 

average mutual information of a decoder and the EXIT charts illustrate the EXIT 

functions. Several reasons for using EXIT charts are listed in [12]. 

 

 Mutual information seems to be the most accurate statistic. 

 Mutual information is the most robust statistic, in the sense that it applies 

without change to the widest range of channel modulations and detectors. For 

instance, EXIT functions apply to ECs without change. 

 EXIT functions have analytic properties with useful implications for designing 

codes and iterative processors. 
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These are very useful properties of EXIT charts, especially the last claim. The area 

property introduced in [12] will be examined in this chapter and will be used to show 

that the design of concatenated codes is just a curve-fitting problem. 

 

3.2.1 Average a priori and extrinsic information 

 

In order to track the a priori and extrinsic L-values by using one statistic, [12] suggests 

using the average mutual information defined as the following: 
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where k is the length of information bits of the data source U, ui is an element of U and ei 

and ai are entries of E and A defined in (3.12) and (3.1) respectively. The value IA is 

called the average a priori information going into the decoder, and IE is called the 

average extrinsic information coming out of the decoder. An EXIT function is defined so 

that IE can be described as a function of IA and an EXIT chart will plot IE as a function of 

IA. Note that ui is chosen from 0 or 1 with equal probability 1/2 and IA and IE are 

averages of mutual information, thus 0 ≦IA, IE≦ 1. When IA or IE equals one, the 

decoder has full knowledge of data U and can decode it with arbitrarily small error 

probability. 

These two quantities are important measurements for inputs and outputs of a 

decoder. Notice that the output extrinsic information from a decoder is a function of the 

input a priori information. This relationship can be expressed in terms of a transfer 

function (EXIT function) for each decoder, namely Tin(IA) and Tout(IA). Note that Tin(IA) 

is usually a function of the channel fading gain and signal to noise ration also. Iterative 

decoding starts with the inner decoder receiving no a priori information and then sends 

the extrinsic information, whose average mutual information is Tin(0), to the outer 

decode. The outer decoder takes the extrinsic information of the inner decoder as its a 
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priori information and then generates the extrinsic information whose mutual 

information is Tout(Tin(0)). The extrinsic information generated by the outer decoder is 

sent to inner decoder as its a priori information. This process continues iteratively until 

the mutual information of the decoder’s output converges to a fixed point. 

The iterative decoding described above can be shown easily by an EXIT charts. 

With the help of the properties of EXIT charts, designing a concatenated code is 

simplified to fit the curves of two decoders’ EXIT functions [13, 15]. However, it is 

necessary to devise a way to measure the mutual information IA and IE of a decoder 

before we start to discuss the properties of EXIT charts. One way to measure the mutual 

information is presented by Hagenauer [15]. 

 

3.2.2 Properties of EXIT Charts  

 

As presented by Brink, the information transfer function for iterative decoding and the 

process of iterative decoding can be visualized by the EXIT chart. In the concatenated 

code modeled in Fig.3.2 and for the first half of the iteration, the EXIT chart plots the 

mutual information generated by an inner decoder (space-time decoder) versus the 

mutual information coming from the outer decoder, which is modeled by the extrinsic 

channel in Fig.3.4 and the AWGN channel in Fig.A.1. In other words, the output of the 

lower branch in Fig.A.1 (IA) determines the values of the horizontal axis of the EXIT 

chart and the output of the upper brunch in Fig.A.1 (IE) determines the values of the 

vertical axis. Note that because these two quantities comprise the mutual information 

between binary data and its L-value, both range between zero and one. For the next half 

of the iteration, two decoders exchange their roles and hence the output of the inner 

decoder (space-time decoder) becomes the a priori input to the outer decoder. Notably 

unlike the inner decoder whose output depends on the information from the 

communication channel and the extrinsic channel, the outer code only takes the 

information from the extrinsic channel, which means that only the a priori information 
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will affect the output of the outer decoder. The separating property of iterative decoding 

allows us to observe and optimize the inner and outer codes separately.  

Next we look at some examples in order to introduce how an EXIT chart works. 

Fig.3.5 is an EXIT chart for an inner decoder using a 16-QAM LD code as the inner 

code for a specific channel realization. As mentioned before, the inner decoder will 

receive information from the communication and extrinsic channels; therefore, even 

though there is no a priori information (IA = 0) from the extrinsic channel or outer 

decoder, the inner decoder can still generate nonzero extrinsic information (IE ≠ 0) as 

shown in the figure. Note that, in this case, the EXIT transfer function IE = Tin(IA) is an 

increasing function of IA. 

 

 

 
Fig.3.5 EXIT chart for a 16-QAM LD code at a channel realization H= 1.6820 0.6122

0.0306 0.0841
 
  

 

with SNR 19dB at each receive antenna 
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Fig.3.6 is an EXIT chart for a rate 0.9 LDPC code. This code will be concatenated 

with the 16-QAM LD code in Fig.3.5 as an outer code. Unlike the inner decoder, the 

EXIT function of the outer code only depends on the a priori information from the 

extrinsic channel or inner decoder and is not dependent on the channel parameters. 

Therefore, if the incoming a priori information IA is zero, the outgoing extrinsic 

information IE will be zero. Another observation form Fig.3.6 is that the extrinsic 

information generated by this decoder changes rapidly when the a priori information is 

greater than a threshold. This shows that this LDPC code will not be decoded with 

arbitrarily small error probability until the input a priori information is large enough. 
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Fig.3.6 EXIT chart for an outer decoder (LDPC code with rate 0.9) 

 

In a concatenated code, the iterative decoding process can be shown as Fig.3.3. 

During the first half of the iteration, the inner decoder will take the information from the 

channel and the outer decoder to generate extrinsic information which will be taken as a 
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priori information by the inner decoder at the next half of the iteration. This process can 

be visualized by an EXIT chart as shown in Fig.3.7. 

 

 

 
Fig.3.7 EXIT chart and the iterative decoding for a serial concatenated code with a 16-

QAM LD code as the inner code and a rate 0.9 LDPC code as the outer code at a channel 

realization H = 1.6820 0.6122
0.0306 0.0841

 
  

 with SNR 19dB at each receive antenna 

 
Note that in Fig.3.7 the horizontal axis represents IA for the inner decoder and IE for 

the outer decoder while the vertical axis represents IE for the inner decoder and IA for the 

outer decoder. The mutual information being exchanged between inner and outer 

decoder can be tracked easily on an EXIT chart. The black line in Fig.3.7 shows how 

this mutual information evolves with the iteration. Eventually the mutual information 

passes the threshold of the outer code (LDPC code) and the serial concatenated code can 
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be decoded with arbitrarily small error probability at channel realization H= [1.6820 

0.6122;-0.0306 0.0841] with SNR 19dB at each receive antenna. 

However, the average mutual information in iterative decoding does not always 

converge to (1,1) in the EXIT chart. For example, Fig.3.8 is the EXIT chart for the serial 

concatenated code mentioned above at another channel realization. As shown in Fig.3.8, 

two EXIT function curves intersect at a point not equal to (1,1); thus this serial 

concatenated code cannot successfully be decoded at the channel realization H'= 
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Fig.3.8 EXIT chart and the iterative decoding for a serial concatenated code with a 16-

QAM LD code as the inner code and a rate 0.9 LDPC code as the outer code at a channel 

realization H' = 0.55 0
0 0.55

 
 
 

 with SNR 19dB at each receive antenna 
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One important property of EXIT charts is called the area property which is proved 

in [12] when the extrinsic channel in Fig.3.4 is modeled as a binary erasure channel 

(BEC). For a serial concatenated coding scheme and channel state having the EXIT chart 

shown in Fig.3.7, the area property shows that 

 

 For a rate R inner code, the area under the EXIT function curve is approximately 

equal to the capacity of the communication channel divided by the inner code rate 

R, that is  
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 For a rate Rout outer code, the area on the left of the EXIT function curve is 

approximately equal to Rout, that is  

 

1
1
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where Cbit is the communication channel capacity evaluated at the bit level. For the case 

in Fig.3.6, the channel capacity Ccomm. of H is approximately 7.8 bits/s/Hz and the inner 

code rate R is 8 bits per channel use, thus the capacity at the bit level Cbit is 0.97 which is 

the area under the EXIT curve of the inner code as shown in Fig.3.5. For the outer code 

case shown in Fig.3.6, the area on the left hand side of the EXIT curve is equal to the 

rate of the outer code. On the other hand, Fig.3.8 shows a channel realization H' with 

capacity 7.2 bits/s/Hz and the area under the EXIT curve of the inner code is 0.9, which 

is equal to the rate of the outer code. However, the iterative decoding cannot decode with 

arbitrarily small error probability because of the intersection of the two EXIT curves.  

One can say that for a serial concatenated code if Rout < Cbit and the two EXIT 

function curves do not intersect, the serial concatenated code can be decoded with 

arbitrarily small error probability by iterative decoding as shown in Fig.3.7. The area of 

the gap between two EXIT function curves can be viewed as the rate loss or sub-

optimality of the coding scheme when used with an iterative decoder (see Fig.3.9). 
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Fig.3.9 Rate lost of the serial concatenated code mentioned in Fig.3.7 

 

 

where the green area between EXIT curves of the inner code and outer code represents 

the total rate loss of this serial concatenated code for the channel realization H. For most 

communication systems, transmitting at a high data rate is desired. From information 

theory, we know that the limit of data rate for successful transmission is the channel 

capacity. Therefore, we also want to design a serial concatenated code, such that the 

EXIT curves of the inner and outer codes are as close as possible in order to reduce the 

rate loss. 

With the help of EXIT charts, designing a serial concatenated code involves fitting 

the EXIT curves of the inner and outer codes in a way such that the two curves are close 

but do not intersect. Therefore, we can design the LDPC code (outer code) to make the 

EXIT function of the iterative decoder fit the EXIT function curves of the space-time 

modulator (inner code). However, the EXIT function of the inner code is a function of a 
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priori information and the channel realization and signal-to-noise ratio, and the EXIT 

curves may change for different channel realizations. In order to design a robust serial 

concatenated code, it is necessary to study the EXIT functions of a space-time code for 

different channel realizations. In the next chapter, EXIT charts of VBLAST, LD codes 

and the Golden Code at different channel realizations with the same capacity are 

presented and a robust serial concatenated code is designed based on these results. 
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CHAPTER IV 

 

DESIGN OF A CONCATENATED CODE FOR THE SLOW RAYLEIGH FADING 

CHANNEL 

In this chapter, a robust serial concatenated code for the 2×2 slow Rayleigh fading 

channel will be designed. Our approach is to take the space-time code as a modulator 

and design an outer code such that the EXIT chart of the outer decoder does not intersect 

with the EXIT chart of the inner decoder for a set of channel realizations. We show how 

to choose this set of realizations and show that such a strategy results in good 

concatenated coding schemes. 

Conventionally, there are two ways to design codes for non-binary modulation: 

multilevel coding and bit interleaved coded modulation. Both methods together with the 

technique of EXIT chart matching can produce an optimal concatenated space-time code 

that can have arbitrarily small error probability at the receiver for a fixed channel 

realization. However, for other channel realizations, such a code may fail to achieve 

arbitrarily small error probability at the receiver. It is difficult for us to design a fixed 

rate code by these two methods such that the system can still have arbitrarily small error 

probability for many different channel realizations. Therefore, to design a practical 

concatenated space-time code, we need an appropriate approach and criterion to evaluate 

the performance of the concatenated space-time code. 

In this thesis, our approach to design a practical concatenated space-time code is 

designing a code that can achieve arbitrarily small error probability in a set of channels. 

This can be done by first drawing all EXIT curves of the space-time modulator in all 

channels in the set, and then designing an outer code whose EXIT curve matches the 

lower hull of all EXIT curves of the space-time modulator. In a slow fading channel, one 

can achieve arbitrarily small error probability at the receiver if the channel is not in 

outage; therefore, it is our goal to design a concatenated space-time code for a MIMO 

system that achieves arbitrarily small error probability when the channel is not in outage.  
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The outer code designed by this approach is suboptimal because its EXIT curve 

can not be matched to the EXIT curves of the space-time modulator for all the channel 

realizations which are not in outage. Thus, there will be rate-loss for this concatenated 

space-time code. The amount of rate loss depends on the “variation” of the EXIT charts 

of the space-time demodulator for this set of channels. Hence, we propose a design 

criterion: a good space-time code should stabilize its EXIT chart over different channel 

realizations, i.e., given a set of channel realizations, all of which have a capacity of R, 

the EXIT charts for the space-time demodulator for all the channels in this set should 

show very little variation. We refer to this as the space-time code stabilizing the channel 

and essentially presenting a single channel realization to the outer code. Note however, 

that we do not require for this equivalent channel to be memoryless. 

In this chapter, we show that EXIT charts of the Golden Code have lesser variation 

over different channel realizations among all three space-time codes introduced in 

chapter II, and Golden Code can be used as the space-time modulator of a concatenated 

space-time code. We now discuss the design of concatenated code based on BICM as 

well as Multi-level coding. 

 

 

4.1 Bit Interleaved Coded Modulation 

 

For a system as shown in Fig.3.2, the space-time modulator and the outer code can be 

designed by matching their EXIT charts drawn at the demodulator and the decoder. For a 

fixed channel, to design a Concatenated space-time code by bit interleaved coded 

modulation (BICM), one can either choose a space-time modulator and design a outer 

code whose its EXIT chart matches the EXIT chart of the space-time demodulator, or 

choose an outer code and design a space-time modulator whose EXIT chart matches the 

EXIT chart of the outer code. 
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A concatenated space-time code design by BICM can be decoded with arbitrarily 

small error probability in a fixed channel, however, it may fail to be decoded with 

arbitrarily small error probability in another fixed channel. For example,  
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Fig.4.1 EXIT charts of 4QAM Golden Code with gray mapping in two different 

channels, H1 = [0.55 0; 0 0.55] and H2 = [1.17 0; 0 0.039], CH1 = CH2 = 3.6 bits/s/Hz 

 

 

Fig.4.1 shows two EXIT charts of a space-time demodulator received signal (we will call 

it ST EXIT charts in following contents) for two different channels. Clearly, these two 

charts are different even though the capacity of H1 and H2 are the same. Note that the 

area under the blue line and the red line in the figure are the same, but  the shapes of the 

two curves are different. The optimal outer code for the space-time modulator in H1 
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should have an EXIT chart matching the red line, but this optimal outer code for H1 can 

not be decoded if the channel changes from H1 to H2. 

 

 

4.2 Multilevel Coding 

 

Another way to design a system shown in Fig.3.2 is to use multilevel coding (ML). It is 

an approach for constructing a high bandwidth efficiency coded modulation scheme. 

[19] considered multilevel codes as inner codes for a serial concatenation with an outer 

convolutional code. We can use this idea to design a multilevel LDPC code as the outer 

code for a serial concatenation with a space-time modulator as the inner code. First we 

take a look at the multilevel LDPC encoder. 

 
 
 

 
Fig.4.2 Multilevel LDPC encoder 

 

where U is the binary information data string, ui, i = 1…m is the demultiplexed data 

string and bi, i = 1…m is the binary output of LDPC encoder i. m is the number of bits 

contained in a mapped symbol, for example, m = 2 if mapping is 4-QAM, and m = 4 if 
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mapping is 16-QAM. S is a one dimensional vector whose jth entry is a symbol mapped 

from binary vector [b1(j) b2(j)… bm(j)], and S will be encoded by the inner space-time 

code. With this technique, the ith bit in a mapped symbol can be encoded with the ith 

bits in other symbols. Therefore, we can design a specific LDPC code for all ith bits in 

mapped symbols. In order to do so, it is necessary to observe the EXIT chart of the ith 

bits in mapped symbols. 

Since the elements of S are mapped from bi, the length of bi, i = 1…m must be the 

same. On the other hand, LDPC encoder for ith level with rate Ri can be designed 

specifically for ith level and the length of ui, i = 1…m may be different from each other. 

The overall code rate of multilevel LDPC code shown in Fig.4.2 is the sum of [R1 R2 … 

Rm]. The outer code rate for each level can also be obtained by the chain rule of 

information according to: 

1 2 1 2 1 1 2 1( , ... ; ) ( | ) ( | , ) ... ( | ... , )m m mI b b b Y I b Y I b b Y I b b b b Y                (4.1) 

where the left hand side is the capacity of the channel, the first term of the right hand 

side is the outer code rate of the first level, the second term is the outer code rate of the 

second level and the mth term is the outer code rate of the mth level. 

For decoding multilevel codes, the multistage decoder shown in Fig.4.3 can be 

used to decode each level code separately. 
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Fig.4.3 Multistage decoder 

 
 
 

At stage i, the APP space-time decoder will receive signal Y from communication 

channel and [b'1 b'2 ... b'i-1] from previous i-1 stages as perfect a priori information. 

Iterative decoding is performed between APP decoder and LDPC decoder to generate 

the log likelihood ratio for bi, and b'i is its hard decision. 

From the description of the multistage decoder, at each stage the space-time 

decoder only has partial information of the binary data. For instance, stage i only has 

information of [b1 b2 … bi], whereas the space-time decoder in Fig.3.2 has information 

of [b1 b2 … bm]. Although the space-time decoders do not have full information except 

the decoder in last stage, the fact that the LDPC code is designed specifically for each 

stage allows each stage to have perfect knowledge of the data from previous stages, thus 

high rate LDPC codes can be used for higher stages. This may further reduce the rate 

loss of a serial concatenated code. On the other hand, if one of the stages provides 

incorrect information, the multistage decoder will fail to decode with arbitrarily small 

error probability. 
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The main problem in the design of multilevel codes for the slow Rayleigh fading 

channel is that the optimal rate of the LDPC codes to be used in the ith level depends on 

the channel realization, i.e. two different channel realizations can have the same 

I(X;b1b2..bm) whereas I(X;bi|b1,b2,..bi) can be different for the two realizations. Hence, 

it is not possible to pick the rates optimally for both realizations. Again, a good space-

time code should stabilize the rates I(X;bi|b1,b2,..bi-1) for different channel realizations 

which have the same overall capacity. 

 

 

4.3 An Appropriate Approach to Design a Practical Concatenated Space-time Code 

 

From previous sections, we know that both BICM and ML can design a concatenated 

space-time code that only works in a specific fixed channel and is not practical. In order 

to design a practical concatenated space-time code that achieves arbitrarily small error 

probability in different channels, we need an appropriate design approach and criterion. 

We can design an outer code that works in different channels with a given space-

time modulator. For instance, an outer code can be designed for H1 and H2 in Fig.4.1, 

such an outer code has EXIT curve that matches the blue curve in Fig.4.1 when 0≦Ia≦

0.6 and matches the red curve when 0.6≦Ia≦1. Together with the given space-time 

modulator, the system can have arbitrarily small error probability in H1 and H2. Notice 

that this is a suboptimal design approach because the system will always have a rate loss. 

The amount of the rate lost will depends on the “variation” of ST EXIT charts; therefore, 

our design criterion for Concatenated space-time code is that “a good space-time 

modulator should have less EXIT chart variation in different channels.” 

Now the problem is how to pick the set of channels so that we can draw EXIT 

functions of the space-time demodulator for these realizations. In next section, we will 

chose a transmission rate and draw a set of channel samples that can support this rate. 
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4.4 Channel Samples 

 

In order to observe the variation of EXIT charts for space-time modulators, first we need 

to fix the transmission rate of the system and then draw channel samples that can support 

this rate, in other words, the system has to decode with arbitrarily small error probability 

in channels with a given channel capacity. Therefore, an approach to draw channel 

realizations from a given capacity is necessary. This can be done by using the 2×2 

channel of the form in [17] 
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where r ≧ 1 is the ratio between two eigenvalues of H, λ≧ 0 is the smaller eigenvalue 

of H, and [0,2 )  , [0,2 )  . 

Insert (4.2) into (2.5), for a given capacity, the values of   and θ do not change the 

given capacity since the second matrix in (4.2) is an unitary matrix, therefore the 

capacity of (4.2) can be written as 
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where ρ is the received SNR at each receive antenna. From (4.3), a channel with given 

capacity can be sampled either by the variable r or λ. 

Before the range of r being defined, we should first set a given capacity C and the 

received SNR ρ at each antenna. As mentioned before, we would like to design a high 

rate code which can decode successfully in every channel whose capacity is lager than 

the rate of the code. Recall that the rate of the three space-time codes introduced in 

chapter II is 2log2M if M-QAM is used. For the case of a space-time code with 4-QAM 

constellation being used as an inner code, the best rate can be achieved is 4 bits/s/Hz, 

thus by information theory, an ideal space-time code with 4-QAM constellation should 
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be able to communicate successfully at channel realizations with capacity C>4 bits/s/Hz. 

Therefore, for space-time codes with 4-QAM constellation, we fix the channel capacity 

at 3.6 bit/s/Hz and obtain a set of channels by changing r,   and θ. EXIT charts for 

space-time codes at this set of channel samples can be drawn so that we can observe the 

EXIT charts variation of space-time codes. For the case of space-time codes with 16-

QAM constellation, we fix the capacity at 7.4 bits/s/Hz. 

Now we fix the capacity for a given space-time code, thus channel samples of this 

capacity can be drawn with different values of r,   and θ. However, only the lower 

bound of r is defined (r ≧ 1) and the upper bound is needed to be set so that we can 

draw the channel samples by sampling r between the lower bound and the upper bound. 

We can apply the typical outage cases mentioned in [18] to set the upper bound of r for 

both 4-QAM and 16-QAM cases. 

At high SNR ρ, it is shown in [18] that the typical way for outage to occur is when 

the largest k eigenvalues of a channel realization H are of order 1, while the rest are of 

the order 1/ρ or smaller; geometrically, H is close to a rank k matrix. For a channel 

model like (3.1), the outage occurs when r ≧ ρ and H will close to a rank one matrix. 

With this result, the upper bound of r can be set as ρ and the range of channel 

eigenvalues ratio is 1≦ r ≦ρ. 

For space-time codes with 4-QAM constellation, we set the received SNR ρ 

equivalent to 12 dB and the range of channel eigenvalues ratio r will be 1≦ r ≦ 20. 

Similarly, the received SNR ρ is 19dB and the range of channel eigenvalues ratio r will 

be 1≦ r ≦ 80 
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4.5 EXIT Charts of Space-time Codes 

 

In this section, we will present EXIT charts of space-time codes (VBLAST, LD-STBC 

and Golden Code) for different channel realizations with the same capacity obtaining as 

explained in the previous section. We will first look at the case of VBLAST with 4-

QAM constellation at capacity equal to 3.6 bits/s/Hz and discover some properties of 

this case. 

 

4.5.1 EXIT Charts of Space-time Codes with 4-QAM Constellation 

 

First, we discovered that for a fixed channel eigenvalue ratio r and received SNR ρ, 

the EXIT charts will depends on   and θ in (3.1) but the area between the highest curve 

and the lowest curve will only depend on [0, / 2)  . An example for this property can 

be shown in the following figures where the variable for both cases is [0, / 2)  . 

 
 
 

 
Fig.4.4 EXIT chart of 4-QAM VBLAST, C=3.6 bits/s/Hz, ρ=12dB, r =20, θ= 0 
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Fig.4.5 EXIT chart of 4-QAM VBLAST, C=3.6 bits/s/Hz, ρ=12dB, r =20, θ= 4


 

 

 

As shown in the figures, although the EXIT curves of these two charts are not 

exactly the same, the lowest curves of both EXIT charts are drawn when   = 0 and are 

identical, also, the area between the highest curves and the lowest curves in these two 

charts are approximately the same. The reason that the area between the highest curves 

and the lowest curves mentioned here is because this area will determine the rate loss of 

a concatenated space-time code over a set of channel realizations with fixed capacity. 

For convenience, we call this area “the variation of EXIT curves”. 

For the cases of Fig.4.4 and Fig.4.5, if we want to design a concatenated space-

time code with VBLAST as the space-time modulator, an outer code has to be designed 

in a way such that its EXIT curve matches the lowest EXIT curves in both figures. Such 

design will cost huge rate loss (approximately 0.4) for both cases. Hence, for VBLAST 

cases, it is enough to ignore the EXIT curves drawn with different θ since the rate lost is 

determined by the variation of EXIT curves. 
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Another factor to determine the variation of EXIT curves is the eigenvalue ratio of 

the channel. It will be shown that the variation will increase as the eigenvalue ratio 

increases until it reaches some threshold. 
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Fig.4.6 EXIT charts of 4-QAM VBLAST, C=3.6 bits/s/Hz, ρ=12dB, r = [1, 2, 5, 10, 20, 

30], θ= 0 

 

 

Fig.4.6 shows EXIT charts of 4-QAM VBLAST at channel capacity C=3.6 

bits/s/Hz, received SNR ρ=12dB and eigenvalue ratio r = [1, 2, 5, 10, 20, 30]. Note that 

the EXIT chart for r = 20 is approximately identical to the EXIT chart for r = 30 because 
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both are typical outage cases as mentioned in the previous section. The variable for each 

chart in Fig.4.4 is   and we found that the lowest curve for each chart is drawn when 

 = [0,  /2,  , 3 /2], whereas EXIT curves for [0,2 )   and ≠[0,  /2,  , 3 /2] 

will be placed between the lowest curve and Ie = 1. Hence, It is sufficient to sample   

between 0 and  /2. 

For the sake of convenience, all EXIT curves of the six charts in Fig.4.6 will be 

drawn in one chart as shown in Fig.4.7, so it will be easier to observe the variation of 

EXIT curves and we will continue to do so for other space-time codes. 
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Fig.4.7 EXIT charts of 4-QAM VBLAST, C=3.6 bits/s/Hz, ρ=12dB, r = [1, 2, 5, 10, 20, 

30], [ 0 , , , , , , , , ]
1 0 9 8 7 6 5 4 3
         , θ= 0 
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From Fig.4.7, if 4-QAM VBLAST is used as the space-time modulator of a system 

shown as Fig.3.2 which small error probability when the channel capacity C ≧ 3.6 

bits/s/Hz, the outer code must be designed in a way such that its EXIT curve fits the 

lowest curve in Fig.4.7 and will have a rate lost about 0.4 bits/s/Hz at the bit level. This 

rate lost comes from the huge variation of the EXIT curves, especially when   is zero or 

close to  /2 (ex: 0.45 , shown in Fig.4.4). The intuitive explanation for this result is 

the fact that the VBLAST does not code over time. A channel realization as (4.2) times a 

4-QAM VBLAST codeword is the following: 
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                                   (4.4) 

where a and b can be any symbol chosen from 4-QAM constellation. In (4.4), if   is 

zero or close to  /2, the signal strength of a and b at the receiver will depend on r or λ. 

For a fixed capacity channel and   is zero or close to  /2, if r≠1, the signal strength of 

a and b at the receiver will be different, and if r is large, one of the signal strength will 

become too small to be decoded. This property may cause VBLAST in outage at some 

channel samples and result in the large variation of EXIT charts for 4-QAM VBLAST 

and the requirement for a low rate outer code. This will lead to a rate loss of about 0.4 

bits/s/Hz at the bit level if 4-QAM VBLAST is used as the space-time modulator of a 

system shown in Fig.3.2. According to this result, we can say that the 4-QAM VBLAST 

is not robust in 2×2 slow Rayleigh fading channel and is not a good space-time 

modulator for a robust concatenated space-time code. 

It is shown in [15] that if the mapping of the QAM is selected in a proper way the a 

priori information of the other bits can improve the detection of the current bit even if 

the information from communication channel is remained the same. The previous EXIT 

charts are drawn from 4-QAM VBLAST with gray mapping and do not have any gain 

with increasing a priori information at some channel samples. EXIT curves drawn at 
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these channel samples are parallel to Ia axis and the iterative decoding will not improve 

the extrinsic information at these channel samples. Now we change the constellation 

from gray mapping to natural mapping as shown in Fig.4.8 and can see the variation of 

EXIT curves as shown in Fig.4.9. 

 

 

 
Fig.4.8 Gray mapping (left) and natural mapping (right) for 4-QAM 
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Fig.4.9 EXIT charts of VBLAST with natural mapping 4-QAM, C=3.6 bits/s/Hz, 

ρ=12dB, r = [1, 2, 5, 10, 20, 30], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
 
 
 

As shown in the Fig.4.9, most EXIT curves of VBLAST with natural mapping 4-

QAM are not parallel to Ia axis and therefore the extrinsic information will increase with 

increase in the a priori information. Although the iterative decoding becomes helpful 

with natural mapping, the large variation of EXIT curves still brings large rate loss 

which is about 0.4 and does not change the fact that VBLAST is not robust in 2×2 slow 

Rayleigh fading channel. 

Unlike VBLAST, the LD codes and Golden Code are space-time codes which 

encode information symbols over both antennas and time. For these two space-time 

codes, every information symbol is transmitted by two transmit antennas to receiver and 

is not lost if the eigenvalue λ in (4.2) is small. We can expect that the variation of EXIT 
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curves for these two space-time codes to be not as large as VBLAST. The followings are 

EXIT charts of 4-QAM LD code and 4-QAM Golden Code with different mappings. 

The channel capacity is 3.6 bits/s/Hz and the received SNR at each antenna is 12dB. 
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Fig.4.10 EXIT charts of LD code with gray mapping 4-QAM, C=3.6 bits/s/Hz, ρ=12dB, 

r = [1, 2, 5, 10, 20], [ 0 , , , , , , , , ]
1 0 9 8 7 6 5 4 3
         , θ= 0 
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Fig.4.11 EXIT charts of Golden Code with gray mapping 4-QAM, C=3.6 bits/s/Hz, 

ρ=12dB, r = [1, 2, 5, 10, 20], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
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Fig.4.12 EXIT charts of LD code with natural mapping 4-QAM, C=3.6 bits/s/Hz, 

ρ=12dB, r = [1, 2, 5, 10, 20], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
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Fig.4.13 EXIT charts of Golden Code with natural mapping 4-QAM, C=3.6 bits/s/Hz, 

ρ=12dB, r = [1, 2, 5, 10, 20], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
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Fig.4.14 EXIT charts of LD code with random mapping 4-QAM, C=3.6 bits/s/Hz, 

ρ=12dB, r = [1, 2, 5, 10, 20], 
[0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
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Fig.4.15 EXIT charts of Golden Code with random mapping 4-QAM, C=3.6 bits/s/Hz, 

ρ=12dB, r = [1, 2, 5, 10, 20], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
 

 

We can observe that for a specific space-time modulation, its EXIT charts are 

varying between different channel samples. We can also observe that all EXIT charts of 

Golden Code and LD code (Fig.4.10~Fig.4.15) show less variation compared with 

VBLAST. However, for some channel realizations, the EXIT curves of LD code have 

low extrinsic information at zero a priori information, for instance when r = [10, 20] and 

/ 4  . The bad performance at these channel samples causes EXIT charts of LD code 

to have larger variation than Golden Code. For Golden Code, the area under the EXIT 

curves is about 0.86 regardless the mapping and therefore, an LDPC code can be used as 

the outer code with rate 0.86 at most. Similarly, the LD code can only be concatenated 

with an LDPC code with rate 0.8 at most and will cost more rate loss than Golden Code. 

An explanation is stated in [6] that, for the 4-QAM Golden Code, the constellation 

of its codewords is almost a rotated regularly spaced QAM constellation with 16 distinct 
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points with same average energy as 4-QAM, whereas it is the union of PSK 

constellations for the 4-QAM LD code. The property of the codewords constellation 

along with the minimum value of δmin are the key facto to explain why the performance 

of Golden Code is superior to LD code when a priori information is zero. 
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Fig.4.16 Transmitted constellation for 4-QAM Golden Code and LD code 

 

 

4.5.2 EXIT Charts of Space-time Codes with 16-QAM Constellation 

 

In this section, EXIT charts are drawn from 16-QAM space-time codes at 2×2 slow 

Rayleigh fading channel where capacity C is 7.4 bits/s/Hz and received SNR ρ is 19dB. 

The channel samples are obtained from (4.1) with 1≦  r ≦  80, [0,2 )   and 

[0,2 )  . Again, the value of θ does not change the variation of EXIT curves and can 

be fixed at zero for convenience. Another observation is that the variation of a ST EXIT 

chart remains the same from 1≦ r ≦ 30 to 1≦ r ≦ 80, and therefore, it is enough to set 



 56 

the upper bound of r at 30. We will also use three different mappings for 16-QAM and 

observe the variation of EXIT curves for different mapping. 
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Fig.4.17 EXIT charts of VBLAST with gray mapping 16-QAM, C = 7.4 bits/s/Hz, 

ρ=19dB, r = [1, 2, 5, 10, 20, 30], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
       

 
, θ= 0 
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Fig.4.18 EXIT charts of VBLAST with natural mapping 16-QAM, C = 7.4 bits/s/Hz, 

ρ=19dB, r = [1, 2, 5, 10, 20, 30], 
[ 0 , , , , , , , , ]

1 0 9 8 7 6 5 4 3
        

, θ= 0 
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Fig.4.19 EXIT charts of LD code with gray mapping 16-QAM, C = 7.4 bits/s/Hz, 

ρ=19dB, r = [1, 2, 5, 10, 20, 30], 
[ 0 , , , ]

9 6 3
   

, θ= 0 
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Fig.4.20 EXIT charts of Golden Code with gray mapping 16-QAM, C = 7.4 bits/s/Hz, 

ρ=19dB, r = [1, 2, 5, 10, 20, 30], 
[0, , , ]

9 6 3
   

, θ= 0 
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Fig.4.21 EXIT charts of LD code with natural mapping 16-QAM, C = 7.4 bits/s/Hz, 

ρ=19dB, r = [1, 2, 5, 10, 20, 30], 
[0 , , , ]

9 6 3
   

, θ= 0 
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Fig.4.22 EXIT charts of Golden Code with natural mapping 16-QAM, C = 7.4 bits/s/Hz, 

ρ=19dB, r = [1, 2, 5, 10, 20, 30], 
[ 0 , , , ]

9 6 3
   

, θ= 0 
 
 
 

It is clear that Golden Code results in the least variation in the EXIT curves among 

three space-time codes with 16-QAM constellation. The Golden Code can be 

concatenated with an LDPC code with rate 0.91 whereas the LD-STBC can only be 

concatenated with an LDPC code with rate 0.88. This will cost more rate loss than the 4-

QAM LD-STBC. 
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4.6 The Design of Concatenated Space-time Codes with Multilevel Coding 

 

Now we apply the multilevel coding technique to the system shown in Fig.3.2 

where the Golden Code is used as space-time modulator to modulate S. First we take a 

look at the case when the bits to 4-QAM mapping is random and the space-time code is a 

Golden Code which makes m=2 in Fig.4.2 and Fig.4.3. The EXIT charts are shown as 

the following: 
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Fig.4.23 EXIT charts for first level bit (m=1) of random mapping 4-QAM Golden Code, 

C=3.6 bits/s/Hz, ρ=12dB, r = [1, 2, 5, 10, 20], [0 , , , , , , , , ]
1 0 9 8 7 6 5 4 3
         , θ=0 
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Fig.4.24 EXIT charts for second level bit (m=2) of random mapping 4-QAM Golden Code, 

C=3.6 bits/s/Hz, ρ=12dB, r = [1, 2, 5, 10, 20],
[0, , , , , , , , ]

10 9 8 7 6 5 4 3
        

, θ= 0 
 

 

According to the EXIT charts, the area under the EXIT curves of the first level bit 

(m=1) is about 0.85 and therefore, the LDPC code 1 can have rate 0.85. Similarly, the 

LDPC code 2 can have a rate 0.88. The total rate of this multilevel LDPC encoder is 

0.865 which is not a significant improvement from the concatenated code schemes 

without multilevel coding. 

Now we look at the case when the mapping is random and the space-time code  is a 

16-QAM Golden Code which makes m=4 in Fig.4.2 and Fig.4.3. The EXIT charts are 

shown as the following: 
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Fig.4.25 EXIT charts for first level bit (m=1) of random mapping 16-QAM Golden Code, 

C=7.4 bits/s/Hz, ρ=19dB, r = [1, 2, 5, 10, 20],
[0, , , , , , , , ]

10 9 8 7 6 5 4 3
        

, θ=0 
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Fig.4.26 EXIT charts for second level bit (m=2) of random mapping 16-QAM Golden Code, 

C=7.4 bits/s/Hz, ρ=19dB, r = [1, 2, 5, 10, 20],
[0, , , , , , , , ]

10 9 8 7 6 5 4 3
        

, θ=0 
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Fig.4.27 EXIT charts for third level bit (m=3) of random mapping 16-QAM Golden Code, 

C=7.4 bits/s/Hz, ρ=19dB, r = [1, 2, 5, 10, 20],
[0, , , , , , , , ]
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, θ=0 
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Fig.4.28 EXIT charts for fourth level bit (m=4) of random mapping 16-QAM Golden Code, 

C=7.4 bits/s/Hz, ρ=19dB, r = [1, 2, 5, 10, 20],
[0, , , , , , , , ]

10 9 8 7 6 5 4 3
        

, θ=0 
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From these EXIT charts, the rates of LDPC codes can be concatenated with the 

four bits of 16-QAM Golden Code are 0.87, 0.92, 0.96 and 0.97. The total rate of the 

multilevel LDPC code is 0.9225 which is very close to channel capacity (0.925 bit/s/Hz 

at bit level). The rates of the last two bits improved significantly because of the perfect a 

priori information from the previous stages.  

We further designed LDPC codes for each level with random mapping 16-QAM 

Golden Code as inner code. Notice that when gray mapping is applied, the EXIT charts 

for some channels are parallel to Ia axis, and the extrinsic information will not increase 

during the iterative process. On the other hand, when natural mapping is applied, the 

EXIT charts are not parallel to Ia axis, and the extrinsic information will increase during 

the iterative process. However, the fact that these charts have larger variation at Ia = 0 

will cost some rate loss. Therefore, we apply random mapping so that the EXIT charts 

are not parallel to Ia axis, and the rate lost at small Ia can be alleviated. The EXIT charts, 

code rate and degree profiles of the outer codes are shown in the following: 
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Fig.4.29 EXIT charts of rate 0.8 LDPC code (
2 3 11( ) 0.2 0.7 0.1x x x x    , 

18( )P x x ) 
and EXIT charts for first level bit (m=1) with random mapping 16-QAM Golden Code 
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Fig.4.30 EXIT charts of rate 0.9 LDPC code (

2 3 4( ) 0.1 0.8 0.1x x x x    , 
30( )P x x ) 

and EXIT charts for the second level bit (m=2) with random mapping 16-QAM Golden 
Code 
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Fig.4.31 EXIT charts of rate 0.94 LDPC code (
2 3 9( ) 0.06 0.9 0.04x x x x    , 

53( )P x x ) and EXIT charts for the third level bit (m=3) with random mapping 16-
QAM Golden Code 
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Fig.4.32 EXIT charts of rate 0.96 LDPC code (
2 3 4( ) 0.04 0.92 0.04x x x x    , 

75( )P x x ) and EXIT charts for the fourth level bit (m=4) of random mapping 16-QAM 
Golden Code 
 

 

4.7  Comments 

Combining the results shown previously, we can design a robust serial concatenated 

code by using the Golden Code as the space-time modulator and an appropriate LDPC 

codes as the outer code. The reason is that the EXIT functions for the Golden Code show 

least variation over the set of  channels realizations with the same capacity. Remember 

that our design criterion of MIMO coding is that the space-time modulator should have 

less variation in the EXIT functions. In other words, a good space-time code should 

stabilize its EXIT chart against channels. This is the most important result of this thesis. 

Although the rank and determinant criteria mentioned in chapter III can also be used to 

design a space-time code, it is the EXIT chart that provides the whole knowledge of 

designing a space-time code. The rank and determinant criteria only work when Ia = 0, 

therefore, cannot be directly used to understand the behavior of a space-time modulator 
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with iterative decoding. Nevertheless, it appears that diversity and coding are important 

measures of performance as the space-time codes that are optimal under these measures 

also seem to stabilize the EXIT functions. However, it is fully possible that space-time 

codes exist with better diversity and coding gains which do not stabilize the EXIT charts 

as well as other codes with worse coding gain or diversity, particularly for moderate to 

low SNRs, where the diversity and coding gain criteria may not be an accurate indicator 

of performance. 

Applying the multilevel coding technique with Golden Code, a rate 7.2 bits/s/Hz 

system is designed. According to the simulation, the system has frame error rate 0.01 at 

ρ= 19dB in slow Rayleigh fading channel. The outage capacity Pr(C<7.4) at ρ= 19dB is 

0.007. The channels that give frame error to the designed system are capacity smaller 

than 7.4 bits/s/Hz. Hence, the rate lost of the designed system is 0.2 bits/s/Hz. 
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CHAPTER V 

 

CONCLUSIONS 

The target of our work was to design a concatenated space-time code for the slow 

Rayleigh fading channel with no CSIT and perfect CSIR. In practice, this is usually done 

by concatenating an outer encoder with a space-time demodulator at the transmitter and 

performing iterative decoding at the receiver. The problem that we try to solve is the 

approach of designing the space-time code together with the outer code. Prior to this 

work, BICM and ML were conventional approaches to design a code for non-binary 

constellation. But the concatenated space-time codes designed by both approaches are 

not robust in slow fading channel. 

In order to design a robust MIMO system, we introduce a new design approach. 

Based on this approach, we propose a new criterion for designing the space-time 

modulator and the outer code together – a good space-time code should stabilize the 

EXIT functions over a set of channel realizations. This new criterion considers the 

behavior of a space-time code with iterative decoding. The conventional design criteria 

of space-time code, the rank and the determinant criterion, only consider the situation 

when the a priori information goes into the space-time demodulator equal to zero, and do 

not consider the situation when a priori information is nonzero, which is important in 

iterative decoding. 

Applying our design approach and criterion, we design a 2x2 system whose 

performance is close to outage capacity in slow Rayleigh fading channel and the rate lost 

is 0.2 bits/s/Hz. Our design approach and criterion can also apply to other MIMO 

systems using concatenated codes, as long as maximum likelihood decoding and the 

iterative decoding are performed at the receiver. 

 

 
 
 
 
 



 69 

REFERENCES 

 

[1] G. J. Foschini and M. Gans, “On limits of wireless communications in a fading 

environment when using multiple antennas,” Wireless Pers. Commun., Vol. 6, pp. 

311-35, March 1998. 

 
[2] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Euro. Trans. 

Telecommun., Vol. 10, pp. 585-96, November 1999. 

 
[3] E. Telatar, Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecom ETT, 

vol.10, no.6, pp.585–596, Nov. 1998. 

 
[4] L. Zheng, D. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-

antenna channels,” IEEE Transactions on Information Theory, Vol. 49, no. 5, pp. 

1073–1096, May 2003. 

 
[5] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate 

wireless communication: performance criterion and code construction,” IEEE 

Trans. Inf. Theory, vol. 44, no. 2, pp.744-765 , March 1998. 

 
[6] J.-C. Belfiore, G. Rekaya, and E. Viterbo, “The Golden Code: A 2×2 full-rate 

space-time code with nonvanishing determinants,” IEEE Trans. Inf. Theory, vol.51, 

no. 4, pp. 1432-1436, April 2005. 

 
[7] J. –C. Guey, M. P. Fitz, M. R. Bell, and W. –Y. Kuo, “Signal design for transmitter 

diversity wireless communication systems over Rayleigh fading channels,” IEEE 

Trans Commun., vol. 47, no. 4, pp. 527-537, April 1999. 

 
[8] H. Yao, and G. W. Wornell: “Achieving the full MIMO diversity-multiplexing 

frontier with rotation-based space-time codes,” Proc. of Allerton Conf. on 

Communication, Control and Computing , October 2003. 



 70 

[9] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting 

coding and decoding: turbo codes (1),” Proc. IEEE International Conference on 

Communication (ICC), Geneva, Switzerland, May 1993, pp. 1064-1070. 

 
[10] J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Separable MAP ‘filters’ for the 

decoding of product and concatenated codes,” Proc. IEEE International Conference 

on Communication (ICC), Geneva, Switzerland, May 1993, pp. 1740-1745. 

 
[11] J. Hagenauer, Fellow, IEEE, Elke Offer and L. Papke, “Iterative decoding of binary 

block and convolutional codes,” IEEE Trans. Inf. Theory, vol.42, no. 2, pp. 429-445, 

March 1996 

 
[12] A. Ahikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer 

functions: Model and erasure channel properties,” IEEE Transactions of 

Information Theory, vol. 50, no. 11, pp. 2657–2673, November 2004. 

 
[13] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated 

codes,” IEEE Trans. On Comm., vol. 49, Oct 2001. 

 
[14] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 

1963 

 
[15] J. Hagenauer, “The EXIT Chart – Introduction to Extrinsic Information Transfer in 

Iterative Processing,” 12th European Signal Processing Conference (EUSIPCO), 

pp. 1541-1548, September 2004 

 
[16] M. O. Damen, A. Tewfik, and J.-C. Belfiore, “A construction of a space-time code 

based on number theory,” IEEE Transactions of Information Theory, vol. 48, no. 3, 

pp. 753-760, March 2002. 

 
[17] C. Kose, and R. D. Wesel, “Universal space-time trellis codes,” IEEE Transactions 

of Information Theory, vol. 49, no. 10, pp. 2717-2727, October 2003. 



 71 

 
[18] D. Tse, and P. Viswanath, Fundamentals of Wireless Communication, Cambridge 

University Press, New York, 2005 

 
[19] A. Hof, B. Baumgartner, M. Bossert and M. Weckerle, “Serially concatenated 

multilevel coding,” International Symposium on Information and its Applications, 

ISITA2004, Parma, Italy, October 2004. 

 
[20] S. Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product 

decoding of low-density parity-check codes using a Gaussian approximation,” 

IEEE Transactions of Information Theory, vol. 47, no. 2, pp. 657-670, February 

2001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 72 

VITA 

 
Teh-Hsuan Hsu obtained a B. En. degree in electronics engineering from National 

Chiao Tung University, Hsinchu, Taiwan in May 2003. 

He may be reached at 1F., No.50, Cuiyi Rd., Beitou District, Taipei City 112, 

Taiwan. His email is hsutehhsuan@gmail.com. 


