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Representaciones Coordinadas

Pedro Sandino Atencio Ortiz

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de las Computación y de la Decisión

Medellin, Colombia

2020



Query-based Video Summarization
Using Machine Learning and
Coordinated Representations

Pedro Sandino Atencio Ortiz

A dissertation submitted in partial fulfillment of the requirements for the degree of:

Engineering PhD - Systems and Informatics

Director:

Ph.D. John Branch Bedoya

Co-director:

Ph.D. Germán Sánchez Torres

Co-director:

Ph.D. Claudio Delrieux

Research Groups:

GIDIA - Universidad Nacional de Colombia
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Abstract

Video constitutes the primary substrate of information of humanity, consider the video data

uploaded daily on platforms as YouTube: 300 hours of video per minute. Video analysis is

currently one of the most active areas in computer science and industry, which includes fields

such as video classification, video retrieval and video summarization (VSUMM).

VSUMM is a hot research field due to its importance in allowing human users to simplify

the information processing required to see and analyze sets of videos, for example, reducing

the number of hours of recorded videos to be analyzed by a security personnel. On the other

hand, many video analysis tasks and systems requires to reduce the computational load using

segmentation schemes, compression algorithms, and video summarization techniques.

Many approaches have been studied to solve VSUMM. However, it is not a single solution

problem due to its subjective and interpretative nature, in the sense that important parts

to be preserved from the input video requires a subjective estimation of an importance sco-

re. This score can be related to how interesting are some video segments, how close they

represent the complete video, and how segments are related to the task a human user is

performing in a given situation. For example, a movie trailer is, in part, a VSUMM task

but related to preserving promising and interesting parts from the movie but not to be able

to reconstruct the movie content from them, i.e., movie trailers contains interesting scenes

but not representative ones. On the contrary, in a surveillance situation, a summary from

the closed-circuit cameras needs to be representative and interesting, and in some situations

related with some objects of interest, for example, if it is needed to find a person or a car.

As written natural language is the main human-machine communication interface, recently

some works have made advances in allowing to include textual queries in the VSUMM process

which allows to guide the summarization process, in the sense that video segments related

with the query are considered important.

In this thesis, we present a computational framework to perform video summarization over

an input video, which allows the user to input free-form sentences and keywords queries to

guide the process by considering user intention or task intention, but also considering general

objectives such as representativeness and interestingness. Our framework relies on the use

of pre-trained deep visual and linguistic models, although we trained our visual-linguistic

coordination model. We expect this model will be of interest in cases where VSUMM tasks

requires a high degree of specification of user/task intentions with minimal training stages

and rapid deployment.
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Resumen

El video constituye el sustrato primario de información de la humanidad, por ejemplo, con-

sidere los datos de video subidos diariamente en plataformas como YouTube: 300 horas de

video por minuto. El análisis de video es actualmente una de las áreas más activas en la in-

formática y la industria, que incluye campos como la clasificación, recuperación y generación

de resúmenes de video (VSUMM).

VSUMM es un campo de investigación de alto dinamismo debido a su importancia al permi-

tir que los usuarios humanos simplifiquen el procesamiento de la información requerido para

ver y analizar conjuntos de videos, por ejemplo, reduciendo la cantidad de horas de videos

grabados para ser analizados por un personal de seguridad. Por otro lado, muchas tareas y

sistemas de análisis de video requieren reducir la carga computacional utilizando esquemas

de segmentación, algoritmos de compresión y técnicas de VSUMM.

Se han estudiado muchos enfoques para abordar VSUMM. Sin embargo, no es un problema

de solución única debido a su naturaleza subjetiva e interpretativa, en el sentido de que las

partes importantes que se deben preservar del video de entrada, requieren una estimación de

una puntuación de importancia. Esta puntuación puede estar relacionada con lo interesantes

que son algunos segmentos de video, lo cerca que representan el video completo y con cómo

los segmentos están relacionados con la tarea que un usuario humano está realizando en

una situación determinada. Por ejemplo, un avance de peĺıcula es, en parte, una tarea de

VSUMM, pero está relacionada con la preservación de partes prometedoras e interesantes

de la peĺıcula, pero no con la posibilidad de reconstruir el contenido de la peĺıcula a partir

de ellas, es decir, los avances de peĺıculas contienen escenas interesantes pero no representa-

tivas. Por el contrario, en una situación de vigilancia, un resumen de las cámaras de circuito

cerrado debe ser representativo e interesante, y en algunas situaciones relacionado con algu-

nos objetos de interés, por ejemplo, si se necesita para encontrar una persona o un automóvil.

Dado que el lenguaje natural escrito es la principal interfaz de comunicación hombre-máqui-

na, recientemente algunos trabajos han avanzado en permitir incluir consultas textuales en

el proceso VSUMM lo que permite orientar el proceso de resumen, en el sentido de que los

segmentos de video relacionados con la consulta se consideran importantes.

En esta tesis, presentamos un marco computacional para realizar un resumen de video sobre

un video de entrada, que permite al usuario ingresar oraciones de forma libre y consultas

de palabras clave para guiar el proceso considerando la intención del mismo o la intención

de la tarea, pero también considerando objetivos generales como representatividad e interés.

Nuestro marco se basa en el uso de modelos visuales y lingǘısticos profundos pre-entrenados,
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aunque también entrenamos un modelo propio de coordinación visual-lingǘıstica. Espera-

mos que este marco computacional sea de interés en los casos en que las tareas de VSUMM

requieran un alto grado de especificación de las intenciones del usuario o tarea, con pocas

etapas de entrenamiento y despliegue rápido.

Keywords: Generación de resúmenes de video basada en consulta, modelos de coordinación

de video a texto, análisis de video.
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1. Introduction

1.1. Context

Video summarization (VSUMM) aims to reduce the length of an input video V , while preser-

ving frames, segments or scenes that may be valuable, either visually when the purpose is to

retain visual information actually present in frames, or semantically because they represent

information about the meaning or the story present in V . VSUMM models are becoming

critical, given the current deluge of video creation and streaming in almost all aspects of our

culture.

Given the diversity of sources and purposes associated to VSUMM, there is a wide diversity

of methods, all of which share some common ideas. In general, a video segmentation stage

extracts segments or similar frame sequences which compose the complete video, i.e., given an

input video V a segmentation method returns a list of segments S = {s0, s1, s2, ..., sn} where

a segment si is a pair (a, b) of time stamps or video-frames. A common yet limited approach

consists of performing a uniform sampling over V , taking segments of user-defined length

and spacing. More complex approaches use dynamic video segmentation, where sequential

frames closed in feature space are taken as segments [1].

From a computational perspective, VSUMM consists on solving the knapsack problem, i.e.,

maximize a given score (e.g., value score), subject to a summary length constraint, usually,

15 % of video length ∣V ∣ [2]. The VSUMM knapsack problem is shown in equation 1-1, where

zi is a binary array with value 1 for segments to be maintained in summary and 0 otherwise,

R(si) is a function of predicted value for extracted video segment si and α ∈ (0,1) is an

arbitrary summary threshold.

m
z
ax

m

∑
i=1

ziR(si)

s.t.
m

∑
i=1

zi∣si∣ ≤ α∣V ∣

(1-1)

In terms of its output, VSUMM can produce three kinds of results (see Fig. 1-1) as follows:

Skim: An output video V ′ ⊂ V composed of the most valuable segments from V is

returned.
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Dynamic Fast-Forward: An output video V ′ with a variable playback speed is retur-

ned, where speed is the regular one for the most valuable segments and is accelerated

on the contrary.

Storyboard: A sequence of key-frames K ∈ V is returned.

Figure 1-1.: A general framework for VSUMM. Taken from [3].

As we later explore in Section 1.2.1, VSUMM is a multiobjective optimization task in the

sense that the value-score function R (see Equation 1-1) depends on multiple considerations

which can be extracted or not directly from V . For example, the value-score can be related to

what it can be considered important, interesting, or representative. In the literature, many

approaches have been proposed in order to solve VSUMM, considering one or many of these

objectives.

A new research trend arose recently in the VSUMM community, which is to include user

purposes in the process. Recent works (see for instance [4, 5]) have proposed the injection of

query-words, which allows specifying the result of the VSUMM task according to the task

or user objectives. The VSUMM community has named this approach query-based video

summarization (Q-VSUMM).
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General challenges

Summarizing a given video implies estimating which segments or frames are considered

most valuable for the user, concerning the task they is performing, while preserving the

completeness of the video story. The number of complex and non-deterministic cognitive

processes that need to be in consideration to achieve the latter can be considerable: Visual

recognition, scene understanding, detection of spatio-temporal interactions and relations

between objects, object-concept abstractions, attention, and semantics [6], among others,

each of which is an open problem by itself.

A direct approach to estimate the value of a video segment consists of measuring the variance

of visual-only features. In this way it is possible to suppose that consecutive segments with

low visual variance may be shortened or upright discarded from the final summary, i.e., only

segments with high visual variance can be considered unusual, and for that reason valuable.

Nonetheless, this approach can be naive in the sense that value must consider more elements,

for example, categorical variance and attention, among others.

Visual variance can also be modeled through time series analysis, either using classic met-

hods as conditional random fields (CRF) or deep learning approaches using recurrent neural

networks as long-short term memory networks (LSTM), just to mention the most popular

approaches in time series analysis. This kind of analyses constitutes a challenge due to the

impact in the result that has the kind of feature used, the architecture selected, and the high

computational cost that implies.

Recent approaches use object recognition [7, 5] which allows to estimate the value of a seg-

ment by considering objects with an score of importance for some task. An open challenge in

this topic consists on the limited number of categories that can be classified by a recognition

model (1000 for an image-net model) which constitutes a barrier to determine whether the

recognized object is related with the associated task. For example, in categories boat, sea

and fishing rod appears in a visual scene, implicitly we can assume that the latter is related

with the concepts fishing and fish. The latter is also related to a significant challenge for the

Q-VSUMM task, where it is required a shared latent space for visual and linguistic features

in order to perform textual queries in the video.

The increased use of linguistic information to solve semantic tasks in the analysis of images

and videos has led to the creation of various databases of videos with written annotations

in natural language made by humans [6, 7, 9, 8], which has enhanced the development of

video analysis applications with high-level semantics. Nonetheless, annotations in natural

language can contain actions and hierarchical relationships hardly recognizable by a tradi-

tional classification model. For example, the annotation: ”cheerleaders are getting thrown in

the air”(see Fig. 1-2) requires the detection of people in the scene, poses, spatial configu-

rations, and temporal behaviors, and some grasp of metaphorical language, among others.
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Figure 1-2.: An example from TRECVid video-to-text dataset [8].

Then, it is of current interest to develop strategies that can take advantage from this textual

annotations and enrich the estimation of the value of a video segment to be preserved on

the final summary.

Progress in the field

The state-of-the-art has shows advances in the development of VSUMM models based on

machine learning [1, 5, 10] and various deep learning architectures such as deep convolutio-

nal networks (DCN) [11], retrospective encoders [12], reinforcement learning [13], end-to-end

memory networks [14] and long-short term memory networks [15], which can learn auto-

matically intrinsic relations between input video, its human-made summary, and associated

metadata.

Other domains such as visual psychology [16, 17, 18], neuroscience [19], and computational

linguistics [20, 21, 6] have expanded the frontiers in image and video understanding, particu-

larly, in the inclusion of linguistic knowledge in different tasks of automatic visual analysis,

reinforced in turn by recent researches that support the power of human thought-language

relation.

Specific challenges

As far as we know from the reviewed literature, some challenges remain open, as follows:

Time series analysis of relationships between visual concepts to estimate the value-score

of segments or frames of the input video [22]. Visual action recognition [23, 24, 25] and
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visual question answering [26] are interesting frameworks to work on it.

Modern approaches to VSUMM, which incorporates human linguistic knowledge, and

use general context corpuses such as Wikipedia [27]. It is crucial to evaluate the impact

of the various linguistic corpus with different contexts (e.g., medical, news, security,

engineering, among others) in the quality of the VSUMM task.

The exploration of various deep learning architectures capable of representing the hie-

rarchical and structural nature of the human language syntax in order to obtain con-

ceptual relations of higher-order in the video. According to Zhang et. al. [15]: ”In par-

ticular, it would be very productive to explore new sequential models that can enhance

LSTM’s capacity in modeling video data, by learning to encode semantic understan-

ding of video contents and using them to guide summarization and other tasks in visual

analytics”.

To include in the VSUMM task, new elements from visual psychology and widely used

in image analysis such as emotions, context, attention, and importance, among others.

The exploration of different linguistic representations or embeddings [28, ?, 29] to

extract semantic relationships from human-made annotations in the VSUMM task.

The ability to generate video summaries dependant of the user intention or context

[5], in other words, the ability to personalize VSUMM [3].

1.2. Related work

1.2.1. VSUMM as a multi-optimization problem

The major challenge of VSUMM task consists of defining the criteria for constructing the

value-score function in order to select relevant segments to be preserved in the final summary.

Initial works in VSUMM considered a global score function generally related to what could

be considered “important” in the video. Nonetheless, gradually the VSUMM community

began to consider the task as a multi-objective optimization [3] in the sense that users do

not only consider what it is important, but what is general and what is interesting, among

other criteria. Recent works consider the following objectives for VSUMM:

Interestingness: Commonly accepted as the local importance of a video segment [2].

Diversity: This is related to a low redundancy in the video summary [30].

Representativeness: How much the summary represents the input video. The lat-

ter can be expressed in terms of the distance in some conceptual sense between the
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summary and the input video [3].

Uniformity: Generally accepted as temporal coherence [3].

Importance: Related to how much the summary contains relevant objects, actions,

or relations [31].

Generally, interestingness is approached as a regression or ranking task that depends on the

features extracted from the video segments. Traditional approaches focus on the use of exclu-

sively visual characteristics [32, 33], such as SIFT [34], HOG [35], optical flow [36], difference

of images [37] or combinations of characteristics, specially designed for some instances of the

application (hand-crafted features). For example, the importance of sport video segments is

related to the events and actions defined by the particular sport rule, as well as the appea-

rance of certain scenes or objects of interest[38]. A radically different approach is required to

generate summaries of films, for example, using actor recognition or subtitle analysis [39].

The increasingly use of video capture devices, such as sports cameras or mobile phones,

generated a new category of videos called by the scientific community as egocentric videos

[22], composed mainly of free content, without any edition and with high relationship with

the interest of the person who records the video. This category of videos led to addressing

the problem of VSUMM from a more general perspective and the use of multi-modal data.

Works like Lee et al. [7] propose the use of features such as fixation of the gaze, the frequency

of appearance of an object and interaction with it, in order to receive data from the user and

the environment in which the video is developing, which help to estimate the importance

of a visual scene. Some approaches, such as the one proposed by Sun et al. [40] assume the

importance of the segments of the video, depending on the topic contained in it. In that

work, the authors use a Ranking-SVM [41] to learn the importance of a video segment,

based on the weighted annotations made by groups of 5 users. The videos were categorized

by topic according to the search terms used on YouTube to obtain the videos. Attention

has been used as a relevance criterion in [42]. The authors propose a computational model

of attention that takes into account information from different domains, particularly visual

(faces, salience, and behavior of the camera) and the auditory case (salience, speech, and

music). Subsequently, the user attention curves are computed from the extracted models and

the summary videos made by users.

Representativeness and uniformity

Representativeness in VSUMM implies considering global metrics of mutual information, in

some cases performing a clustering process to determine the groups of events that make up

the story contained in the video or an optimization process that maximizes a metric of mutual

information between the summary and the video. In the method proposed in [22], the authors
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consider that the segments in the video summary should lead from one to another. For this,

the authors use camera-level features and visual features such as HOG. They were using a

random-walk search strategy to construct the possible sequences of segments that constitute

the final summary. Kim et al. [43] formulate the problem as the subset selection in a graph

of web images and video frames. Given this graph, the authors optimize an anisotropic

diffusion objective to select a set of densely connected but diverse nodes, which leads to

balanced summaries in interestingness and representativeness. Gygli et al. [10] estimate the

representativeness by using the k-medoids clustering algorithm to select the best k segments

that represent the video, using deep features trained in image-net [44]. Uniformity is related

to the segmentation stage. Recent works [10, 45, 5] argue that using a uniform segmentation

scheme generates better results than clustering-based approaches, in terms to maintain the

temporal coherence of the video and the common sense of the story.

1.2.2. Summary personalization

Main VSUMM methods aim to generate general summaries, that is, independent of the

content of the video, the method is capable of obtaining the segments that best represent

the entire video. Nonetheless, certain aspects of the video, such as the time of appearance

of certain elements, the camera speed, and proximity to specific objects, are related to the

interests of the person making the recording. On the other hand, it is desirable to be able to

generate different summaries according to user intentions (see Fig. 1-3). The customization

of the VSUMM process is of great interest and is a topic of considerable activity within the

community [46, 47, 5, 4].

Some approaches try to obtain personalization through the learning of patterns found by

analyzing summaries of videos classified at the user level, that is, for each video, there are

n summaries discriminated by users [48]. This approach has the limitation that it does not

take into account the initial interest of the individual at the time of performing the VSUMM

process, so the learning focuses on finding visual patterns of interest for each individual in

this task.

Other approaches propose the capture or extraction of information that allows customizing

videos according to the behavior of an observer. The relationship between certain brain

waves (α waves) and visual characteristics was studied by Ng et al. [50]. In this work, the

authors manage to capture alpha waves of a group of people while watching a video, and

with this information, group the visual characteristics of the video into two sets or classes.

Subsequently, using a support vector machine (SVM), the authors classify a segment of a

video as important or not. A similar approach is the one proposed by Xu et al. [51], in which

they use follow-up of the gaze of a set of human observers to determine which elements or

events are important in a visual scene. This type of approach finds its main limitation in
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Figure 1-3.: VSUMM personalization scheme example. Users with different interests or

needs, want to generate resumes of different videos from the same video. Taken

from [49]

.

the difficulty for data acquisition, for which external devices connected to observer users

are required, as well as for the generalization of training that would require repeating the

experiment on a considerable set of users.

A modern tendency to customize video summaries is to capture the specific intention of

the person making the summary. The most natural approach to achieve the above is to

inject a query vector into the VSUMM process that reflects the interest of the user who

wishes to generate the summary. This vector can be either a set of categories or a plain

natural language expression. Xiong [46] propose an approach to video consultation through

natural language consultations (see Fig. 1-4), using a combination of elements detected in

the scene (actors, events, locations, objects) and their temporary modeling using hidden

Markov models (HMM). The main limitation of this work is that the detection of these

elements is by exact coincidence, which implies that it can only be applied in conditions in

which the environment in which the video is developed (Disneyland for this work) is known.

On the other hand, the processing of the textual query that the user injects is based on the

detection of keywords that generate exact coincidence, leaving aside the semantic relations

that can happen with the elements of the scene.

A first approach to the use of textual queries and semantic description of them is the one

proposed by Shargi [4]. In this work, the authors propose a general scheme for VSUMM in

which the segments are selected according to the relevance regarding the input queries (key-

words) and their importance for the video context, developing for this purpose a probabilistic

model which they call SH-DPP (Sequential and Hierarchical Determinantal Point Process).

An important contribution of this work lies in the use of the SentiBank database [52] to

build the lexicon of concepts that will later be used to relate the keywords that the user

enters, with the segments of video in which they happen. The main limitation of this work

is that the authors limit the query to the selection of two names (flowers, cars, etc.) from

a previously defined list since the solution lacks the ability to operate with more complex
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Figure 1-4.: Scheme of the method proposed in [46]. (a) Input video. (b) Story-based repre-

sentation with 4 elements (actors, events, locations and objects). (c) Linguistic

input represented as an and-or graph for a video retrieval task. Taken from [46].

signs.

As far as we know, the first semantic approach to the use of queries in a VSUMM task was

proposed by Oosterhuis et al. [5]. For this, the authors make use of linguistic representations,

particularly word2vec [28], trained on a corpus obtained from Wikipedia, to represent the

words of the query that the user enters. Due to the semantic nature of word2vec, it is possible

to obtain indirect relationships between the words of the query and the visual entities that

are detected by a classifier in the video frames. For example, a video summary for the query

turkey could contain scenes related to Christmas or cooking, even if the turkey animal does

not appear as a visual entity in the video. This method has the limitations that queries rely

completely on the quality of the categorical classifier (see Fig. 1-5).

A similar approach is proposed by Varini and her colleagues in [49]. In this case, the authors

use a VSUMM methodology composed of two stages. In the first stage, they characterize the

attention of a group of people who capture a video in a cultural context, using a manual

categorization of the video into behavioral states: paying attention, changing the focus of at-

tention, among others, and states of movement: running, standing, walking, and so on. Later

they use a HMM to predict an attention value according to the visual movement informa-

tion. The authors use this modeling of attention to identify groups of relevant pictures and
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Figure 1-5.: Graphical abstract of method proposed by Oosterhuis et al. Taken from [5]

.

eliminate irrelevant (visual diversity). In the second stage, the authors propose a semantic

classification that consists of generating a dataset of related visual concepts from the words

in the user-made query and the relationships found in the DBPedia semantic database. Sub-

sequently, this dataset is used to train a BOW classifier of the segments or tables related to

the query words. Finally, each segment is weighted according to a linear relationship bet-

ween word bag classification (BOW) and visual diversity. The main limitation of this work

is the need to train on each occasion a classifier according to the query made by the user,

which makes it impossible to generalize the VSUMM method and, therefore, its evaluation

with respect to other methods. On the other hand, the model of visual diversity evaluated

is dependent on the particular interest of the group of users who recorded the videos, so it

cannot be considered as a general model.

An extension of the previous work, proposed by the same authors in [53] consists in modifying

certain elements of the previously proposed scheme, particularly: 1) the use of word2vec for

the representation of the elements that make up the query entered by the user, trained on

the basis of DBPedia data, 2) the extraction of the visual diversity from the video by means

of visual flow characteristic (Farneback algorithm) and the classification by a 3D-CNN, 3)

the visual characterization of the video using the VGG-16 network (Simonyan Zisserman,

2014) pre-trained, 4) the generation of a semantic vector space using the product vectors of

the VGG-16 network and the word2vec representation of the query and 5) the use of spatial

information obtained by GPS tracking to limit the space of possibilities. It is important to

highlight the proposal of a semantic vector space, which allows unifying visual and linguistic

information. In the same way, as for the previous work, the authors limit the application of

the proposed method to cultural tourism tours.

According to the reviewed works regarding video customization, we found that current ap-

proaches try to include linguistic knowledge in the VSUMM process, using textual queries

with the aim of capturing the user interest and modifying the video summary according to

those interests. Among the most remarkable advantages of using this approach are: 1) the

ability to take advantage of the linguistic knowledge of the metadata associated with the

video summary, in order to obtain high-level semantic relations, 2) the ability to discern the
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context of application and therefore the video processing scheme, prior to its processing, 3)

the opportunity to generate different summaries of the same video from different linguistic

combinations in the input query, which constitute the interest or context of the observer,

and 4) the ability to generate summaries with dynamic context if the query changes over

time as the video is processed. Due to the novelty of this approach, it is still possible to

make contributions aimed at generating summaries with a higher level of personalization

and semantics.

1.2.3. Segmentation and Video Summarization

Many video analysis tasks such as video retrieval [32, 37, 54], video classification [55] and

video summarization [56], among others, require an automatic shot (or take) detection to

extract segments or sequences of related frames. Data augmentation by data-set unification

is another task that requires a shot extraction method. Grauman et al. [15, 12] use the

Kernel Temporal Segmentation (KTS ) method proposed by Potapov et al. [57], to unify

videos from different datasets: SumMe [2] and TVSum [31] for training/testing, and OVP

[58] and Youtube [58], for data augmentation. Basic approaches for shot extraction consists

on doing time-uniform sampling, for example, by considering 1-frame per second [5]. Also

it is possible to perform more sophisticated sampling schemata using sliding windows and

shifting [59].

Commonly, video shot detection methods are based on local differences between consecutive

frames relying on visual features and clustering [30], for example, using RGB and HSV color

descriptors as in [60], optical flow [49, 53] or bag of words [61]. Potapov et al. [57] proposed

a kernel segmentation method based on the statistical framework change point detection

which considers features differences between all pairs of video frames, allowing to detect not

only shots related with dramatic changes in video but also non-abrupt boundaries between

two consecutive frames with different semantic content. Similarly, Lee et al. [7] proposed a

segmentation method based on pairwise distance matrix between all frames, and hierarchical

clustering with minimum inter-frame distance. Nonetheless, visual features per-se are not

sufficient to measure the content of a video frame. It is possible but not necessary that

different video frames which have a high similarity in terms of visual features, have a high

similarity in terms of categorical features, i.e., that the theme of those video frames are

similar. Due to this, it is necessary to explore video representations that allow to consider a

more semantic approach that considers a variety of elements such as objects, people, actions,

etc.

Lu and Grauman proposed in [30] the use of semantic information in order to extract shots

from an egocentric video. In this work, authors classify the activity of the wearer of a head-

mounted camera in three categories: static, moving the head, in transit, then group together
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consecutive frames with same category.

1.2.4. Deep learning and deep features

Recent advances in deep convolutional neural networks (D-CNN) in conjunction with the

creation of datasets of massive images [44, 62], has led to the creation of powerful represen-

tations of images and video such as VGG-16 [63] and 3D convolutive networks (3D-CNN)

[24]. This concept is called representation learning by Goodfellow et al. in [64] and states

that unlike the traditional feature engineering approach that can take decades of work by the

scientific community, deep features can be built automatically in minutes, hours or months

depending on of the complexity of the problem. Modern neural network architectures have

shown high performance in many applications like object detection [65, 66], VSUMM [10]

and generation of linguistic descriptions of visual scenes [67, 68].

In computational linguistics and natural language processing, these network architectures

have also been used. A powerful application for linguistic analysis consists in obtaining

vector representations of words [20, ?] and sentences [29] known as embeddings, which have

the power to preserve the semantic relationships that exist in a linguistic corpus. An analysis

and discussion on the use of traditional features, for example, color histograms, GIST, HOG,

and dense SIFT, versus deep features in the context of VSUMM, is presented by Zhang et

al. [69], in which they demonstrate that the latter has advantages in both precision and

performance in the representation of the video.

Word embeddings

Vector representations or word embeddings constitute the main technique in modern natural

language processing (NLP) related tasks to represent words using linguistic corpus. This

representations allow words to be compared in such a manner that semantic relations can be

obtained from using algebraic operations [20]. For example, the distributed representations

of word high with respect to word tall is expected to be closer than from word small and

this can be expressed as:

Ehigh −Etall < Ehigh −Esmall,

where Ei is the distributed representation or activation of word i over embbedding matrix

E. Another important demonstration of the power of this representations is the capability

to perform analogy tasks. For example the analogy “king is to man as queen is to woman”

can be expressed as:
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Eking +Eman ∼ Equeen +Ewoman

then

Eking +Eman −Equeen ∼ Ewoman.

Two main word embeddings commonly used in NLP literature are skip-grams known as

word2vec [20] and GloVe [?], both with similar performance to capture semantic relations and

public pretrained embedding matrices, trained using large corpus as Wikipedia. The main

difference between GloVe and word2vec consists in that word2vec solves the representation

problem as a prediction and GloVe as a co-ocurrence count matrix. The statistical nature of

GloVe allows this model to be trained easily parallelized to train over more data, i.e., a large

corpus. Using distributed representations for categorical information of input video-frames Vi
allows the method to be sensitive to detect consecutive video-frames (Vi, Vi+1), with similar

information although detected words for both frames could be different, e.g., labels ball and

player in consecutive frames are similar as Eball −Eplayer is small.

1.2.5. Visual-Linguistic representation

Due to the multi-modal nature (linguistic, visual, and temporal) of the data required to per-

form VSUM based on queries, it is necessary to find representations that allow unifying in

some way such data, i.e., representations capable of dealing with information from different

sources in a common space. These representations are called joint/coordinated represen-

tations. An extensive review in the use of deep learning models for joint and coordinated

multi-modal representations is presented by Baltrusaitis and colleagues in [70] (see Fig. 1-6).

They state that joint representations are mainly used for information fusion where data from

various modalities are accessible at any moment, different from coordinated models where

the intention is to transfer aspects from one modality to another or to enrich each modality

with its counterpart. In the latter, only one modality or a subset of the original modalities

is accessible in execution time.

Figure 1-6.: Joint vs coordinated architectures for deep multi-modal representations. Taken

from [70].
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Many approaches have been addressed in the literature with the purpose of unifying lin-

guistic and visual data. Farhadi et al. [71] propose an intermediate space between the space

of images and the space of linguistic sentences, called meaning space, in which each ele-

ment has different projections in the image and the linguistic space. On the other hand,

this space is symmetrical, so given an image, the closest sentence to it can be found and

vice versa. The authors represent this space as a triplet (object, action, scene), for example,

(ship, sail, ocean), at which images with visual elements or linguistic sentences with syntac-

tic elements close to the triplet, will be projections on the visual and linguistic spaces (see

Fig. 1-7). The main limitation of this approach is that the representation of triplets could

be understood as a generic description of a visual or linguistic scene, and therefore can lose

interesting relationships that do not happen in that space. On the other hand, the specifi-

city of this representation required the construction of the dataset manually, thus making it

difficult to expand this space in future works.

Figure 1-7.: Meaning space example as presented by Farhadi. Taken from [71]

One of the first approaches towards the construction of a joint representation with semantic

value is the one proposed by Socher et al. [72]. The authors propose a computational model

to perform zero-shot learning through which it is possible to classify instances of previously

unobserved categories. For this, the model takes information from a linguistic corpus to

conclude the category. First, the model maps the images in a semantic space constructed

through the use of visual characteristics and linguistic embeddings and the co-training of

these characteristics using a shared-cost function based on the distance lost function L2

(see equation 1-2), in which vk refers to the visual characteristics of an image k and sk to

the linguistic embedding of a k statement. Once the semantic space has been trained, if the

model detects that an input image does not belong to a known visual category (outlier), then

it proceeds to assign its category according to the most probable category in the semantic

space constructed (see Fig. 8). The main concept behind this computational approach is

that it is possible to project phenomena that only happens in a domain A to a domain B,

through a shared-cost function L(A,B).
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L =
N

∑
k=1

(∣∣vk − sk∣∣
2
2) (1-2)

Frome et al. [21] proposed a classification model that uses a measure of similarity between

joint representations of images and linguistic labels. For this purpose, they use word embed-

dings, particularly word2vec, for the representation of linguistic labels and VGG-16 for the

representation of images. The authors propose a new loss function called rank loss, which

allows better results than the L2 standard used by Socher et al. [72]. Defining the shared

loss function according to the problem or application is a crucial point to obtain adequate

results.

The construction of joint representations in the case of the video requires processing se-

quences of frames, in which actions or interactions between the elements on the scene. Lin

et al. [54] use a linguistic approach to obtain videos from textual queries made by users.

In this case, the authors represent modalities as a semantic graph in which names, verbs,

adjectives, and adverbs are identified from the words of the textual query made by the user.

Subsequently, by analyzing certain visual elements in the video such as movement and appea-

rance of the objects, a representation of the visual information is obtained, which is finally

used to evaluate the correspondence between the user’s query and the objects detected in the

video. This type of approach has a major limitation in its low power to capture the semantic

information for the entire video, due to the location of the characteristics used to describe

it.

A computational model to relate the visual content of a video with the content of a book is

proposed by Zhu et al. [73], where the authors use joint representations based on skip-thought

[29] and deep features extracted from the GoogLeNet architecture [74], for the description

of video-frames. An important work on joint representations of video and text is done by Xu

et al. [75], in which the authors propose a general and unified framework (see Fig. 1-8) to

create joint representations of videos and linguistic models. This framework validates the use

of neural network architectures for this purpose, which outperform widely used methods such

as SVM, CRF, and canonical correlation analysis (CCA). The authors mention that, through

the representation obtained by this framework, it is possible to 1) generate descriptions in

natural language from a video, 2) select videos related to descriptions in natural language,

and 3) select descriptions in natural language from a video. Unlike the models of multi-modal

representations previously explored, the authors propose adding the temporal analysis of the

video through the use of a temporary pyramid pooling (temporal-pyramid pooling) inspired

by the work proposed by Wang [23].

Otani et al. [11] proposes an extension to Xu’s work [76] by including a recurring network

architecture (RNN) in the representation of the texts in natural language and use images
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Figure 1-8.: General framework for obtaining multi-modal representations between video

and text in natural language proposed by Xu and colleagues. Taken from[75].

related to the video, extracted from queries on the internet using the texts in natural langua-

ge. Using the previous framework, Otani and colleagues [59] build a VSUMM model which

uses a semantic space constructed and joint representations.

The most salient aspects that may be concluded from the review of the literature are des-

cribed above:

The concept of representation learning from neural network architectures has advanta-

ges in terms of performance, scalability, reuse, and further expansion to other domains.

The trend in the use of multi-modal representations between visual, temporal, and

linguistic information appears to be promising. From this perspective it is possible to

project semantic information extracted from the analysis of texts in natural language,

on the visual and temporal characteristics of a video.

In various applications, it is desirable to customize the summary of a video. One of the

most natural way for this is to enter a linguistic query that reflects the user’s interest

(Q-VSUMM).

Although some Q-VSUMM works have been proposed recently, the novelty of the topic

allows the exploration of new models for this purpose.
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1.3. The goals of this thesis

General objective

In this research we propose a computational framework for the automatic query-based vi-

deo summarization task, using a semantic space build by coordinated representations that

integrate data from different modalities associated with the video, such as visual features,

human-made annotations, and user-made queries.

Specific objectives

To elaborate a coordinated representation space, from video data and its human-made

textual annotations.

To develop a computational method to obtain representative video segments, using the

coordinated representation space.

To develop a computational method to obtain relevant segments, which allows textual

user-made queries.

To propose a computational framework to obtain interesting and representative seg-

ments.

1.4. Summary

In this chapter we have presented a literature review about general VSUMM and more recent

branches as Q-VSUMM, and deep learning approaches, which integrates information from

a diverse set of modalities and allow to generate a personalized video summary. From the

latter, we exposed some general and specific open challenges, and some topics that will be

the basis of this thesis, mainly the injection of queries in natural language on a VSUMM

scheme using for that purpose a coordinated architecture to transfer properties from the

textual to the visual domain and vice-versa.

1.5. Contributions and organization of this work

We proposed a computational VSUMM framework based on deep multi-modal coordination

models which rely on modern concepts such as transfer-learning, representation learning and

vector words/sentence representations that allows to simplify and unify various VSUMM
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objectives: representativeness and uniformity, interestingness by diversity, and importance by

query-based personalization for single-concepts and free-form textual inputs. This framework

is feasible today due to the advances made by the community, which delivers and shares

openly their computational implementations, allowing to collaborate and build knowledge

collectively. At the moment of this writing, we have made a publication at the journal IET-

Computer Vision (Q1) titled: Video Summarization by Deep Visual and Categorical Diversity

[77], and currently finishing a second journal paper about the general framework which we

have been proposed.

This dissertation is organized as follows: In Chapter 2 we present a general view of the

proposed framework in terms of the information flow to generate a video-summary, we discuss

how data pre-processing was made, and a briefly description of each stage is presented. In

Chapter 3 a coordinated model architecture is experimentally defined a tested over a video-

retrieval task, and a video vs textual-query similarity scheme is presented. Representative

and uniform VSUMM by hierarchical segmentation and k-medoids is explored in Chapter 4.

In Chapter 5 we propose a method to generate relevant video summaries by deep visual and

categorical diversity, and also a scheme for concept-query similarity is proposed. Finally, an

integrated framework is discussed in Chapter 6.



2. Framework for Query-based VSUMM

by Using Visual and Linguistic

Information

As previously explored in chapter 1, state of the art in VSUMM personalization, consists

in allowing the injection of textual queries from the user, and adjust the final summary

according to a hand-crafted measure of matching. Many approaches have been proposed for

achieving that purpose. Nonetheless, as far as we explored in literature, there is not a general

framework that attends to solve each VSUMM optimization objective and also allows the use

of textual queries from users to guide the VSUMM process. Also, most methods use a diverse

set of tools to process, describe, and optimize information inside the VSUMM process, which

results in complex processing schemes.

Based on the above, in this chapter we present our proposed framework for VSUMM which

allows to consider optimization objectives as representativeness, uniformity, diversity and

importance or user intention by categorical and free-form textual queries. Our framework is

simpler than methods in literature due to that it is mainly based on the use of pre-trained

models, which simplifies feature engineering, training complexity, and information flow using

a small set of models and methods.

In the next sections, we describe in general terms, each processing stage of the proposed

framework and the unification process to integrate them; also, we present some general pre-

processing steps for video and linguistic information.

2.1. Data-Preprocessing

Most video analysis tasks need to sample the input video according to criteria such as uniform

sampling or sampling by shots detection, in order o improve computational performance.

In this work, uniform sampling to 1-frame per second was used to pre-process the input

video, as this is the general approach in the VSUMM literature. Although a shot detection

method can be employed in this pre-processing stage, the input video can be arbitrary in
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content and length. Also, the desired summary length can be any percentage of the video

length, making it unfeasible to determine fixed criteria to guide a shots selection method.

Nonetheless, we use a hierarchical segmentation method in chapter 4 to determine how many

representative shots have the input video, but initially, the video was uniformly sampled.

Also, a linear resizing algorithm was employed in order to adjust video frames to the required

by the visual pre-trained models.

2.2. Pretrained-Deep Models

Many ImageNet pre-trained classification models can be accessed publicly and used as image

feature extractors, as explored previously in chapter 1. In table 2-1 it can be observed the

most popular DCN architectures for image-net classification challenge. In chapter 5 a detailed

evaluation and selection of DCN models using a VSUMM task will be presented, from which

we decided to use InceptionV3 [78] as the main pre-trained visual model of our framework.

For each video frame vi from the sampling pre-processing, we computed the penultimate

(fully connected) and last layer (softmax) activations, as deep visual and categorical features,

respectively. To reduce computational time for later stages, we pre-computed deep features

and softmax activations for all video datasets and store them.

Table 2-1.: Publicly available deep convolutional architectures for ImageNet [44] dataset.

Top-N accuracy refers to the mean number of classes (1000 for image-net) co-

rrectly classified in the first N model activations.
Model Size Top-1 Accuracy Top-5 Accuracy Parameters Depth

Xception [79] 88 MB 790 945 22,910,480 126

VGG16 [63] 528 MB 715 901 138,357,544 23

VGG19 [63] 549 MB 727 910 143,667,240 26

ResNet50 [80] 99 MB 759 929 25,636,712 168

InceptionV3 [78] 92 MB 788 944 23,851,784 159

InceptionResNetV2 [81] 215 MB 804 953 55,873,736 572

MobileNet 17 MB 665 871 4,253,864 88

DenseNet121 [82] 33 MB 745 918 8,062,504 121

DenseNet169 [82] 57 MB 759 928 14,307,880 169

DenseNet201 [82] 80 MB 770 933 20,242,984 201

In the case of textual data related to word queries and categorical information from softmax

activations (see figure 2-3), we used GloVe 100-dimensional model [27], pre-trained over

the Wikipedia dataset. It is important to mention that when working with word-vectors

embeddings, it is required first to validate that the word or category exists in the embedding

dictionary and perform hyphenation of compound words.

For free-form texts or sentences, we employed skip-thoughts [29] and bi-directional skip-
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thoughts models to represent video sentences from a video-to-text (VTT) dataset, and also

to measure a degree of similarity between an input sentence and a sequence of frames. This

model will be explored in chapter 3.

2.3. Visual-Linguistic Bridge Using Coordination Models

In chapter 3, we design and train a coordination model to construct a numeric space where

video and text data can be compared numerically. The basic idea behind this coordination

task is that a neural network model can be trained over a set of videos and its related senten-

ces, to map video and text data to a numeric space where, semantically related (video, text)

pairs are close, and far on the contrary.

Figure 2-1.: Visual-linguistic coordination model training scheme.

The benefits of using coordination models in image and video tasks are that knowledge and

semantics from linguistic data can be transferred to the visual features and vice versa, and

can be used later to perform numerous tasks such as video retrieval, video classification and

video description among others. In figure 2-1 it can be observed the general stages we used

to train the video and text coordination model using a publicly available video-to-text da-

taset. First, video frames and sentences are described using InceptionV3 and skip-thoughts

pre-trained models respectively and entered to the coordination model, which penultimate

layers are both the same size, and finally, a coordination loss function is employed to penalize

negative (video, text) pairs and rewards positive pairs.

It is important to mention that as a video-to-text dataset contains only positive pairs, i.e.,

videos and a set of sentences describing them, a negative pairs selection criteria are needed

to build the coordination dataset. This criteria is discussed in chapter 3.
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2.4. Representativeness and Uniformity by Hierarchical

Segmentation and k-medoids over Coordinated

Space

Figure 2-2.: Representative and uniform VSUMM scheme by hierachical segmentation and

k-medoids clustering over coordinated space.

Once the coordination model is trained, we use it as a feature extractor by removing its

coordination layer and computing the activations from its visual branch for each video frame

(see Fig. 2-2). These activations respond to visual but also to linguistic phenomena as it is

discussed in chapter 3 for which we expect to have significant general description power in

semantic tasks as VSUMM, compared with only-visual descriptors.

We then apply a clustering approach to extract the most representative frames or the subset

of video frames, which minimize the distance from the complete video. Commonly, clustering

techniques are parametric, which requires to set the number of clusters to be found. As the

input video can be of arbitrary length and content, a fixed number of clusters can not

be used. For this reason, we applied a hierarchical segmentation method (see Fig. 2-2) to

automatically estimate the number of segments to be considered by the clustering method.

Finally, a mass center approach is employed to achieve temporal uniformity over the extracted

representative segments.
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2.5. Interestingness by Visual and Categorical Diversity

As previously discussed in chapter 1, interestingness understood as the local importance of

a video is commonly approached as a regression or ranking task, which takes into account

exclusively visual features. In chapter 5 a method to estimate a score of interestingness given

an input video, not only visual but categorical diversity [77] will be presented.

Figure 2-3.: Interesting VSUMM by visual and categorical diversity using pre-trained vi-

sual models and word-embeddings.

In order to obtain the visual diversity of an input video, we used deep-features from the pre-

trained InceptionV3 model as a visual descriptor and a differential scheme to get a highly

diverse sequence of video frames. In the case of categorical features, we compute the softmax

activations from the pre-trained model for each video frame, to get the categories with higher

probabilities according to an user-defined threshold. Then, each category is mapped into a

numeric space using a pre-trained GloVe model and weighted-averaged to obtain a single

vector per frame. Finally, a differential scheme is applied to obtain the categorical diversity.

The main advantage of using a word-embedding model such as GloVe in this task is that

similarity/distance between frames does not only consider exact categorical matching but

semantics between categories.

The main idea behind our proposed method is that homogeneous sequences of frames in

terms of its visual features and also its content (categories) are considered not relevant, and

interesting on the contrary, but the content is not measurable by exact matching but by

linguistic similarity, which can be exploited using word-embeddings. A graphical depict of

chapter 5 can be observed in figure 2-3.
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Finally, the coordination model was not employed for the interestingness VSUMM objective,

because as coordination model maps linguistic and visual features in a common space, it is

expected to be used for high generalization tasks such as video retrieval and video description,

but not for high discriminatory tasks such as category detection, or in this case local visual

and categorical diversity.

2.6. Importance by Query Injection over Categorical and

Coordinated spaces

As discussed in chapter 1, importance objective can be approached by including the user

intentions to guide the VSUMM task. User intentions can be injected in the form of textual

queries, which will be used later to measure a degree of similarity between video segments

and user queries. For this purpose, we developed two strategies to represent the user-queries

and use them for importance scoring.

Figure 2-4.: Video and query sentence similarity using coordination spaces.

Employing a coordination model trained using a VTT dataset, given an input video and

a query in the form of a sentence, we first compute the coordinated activation from the

linguistic branch for the input sentence, then we use a fixed-width moving window on the

video to compute coordinated visual features, and finally compute a degree of similarity

between both features using a distance function. Then, using threshold criteria, we obtained

the more important segments concerning the input sentence. This process will be further

detailed in chapter 3. In figure 2-4, it is shown the similarity response between an input

video and two sentences using this approach.
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Figure 2-5.: Video and key-words similarity using pre-trained deep visual models and word-

embeddings.

User intentions can also be represented as a list of words in the form q = [word0,word1, ...,wordn]

generally containing categories, but can also contain verbs, nouns or adjectives. This situa-

tion makes difficult the representation of q, for which many approaches have been explored,

such as ontologies and semantic trees, among others, as it was discussed in chapter 1.

Our approach relies on the use of a pre-trained word-embedding that is used to transform

q in a matrix of word-vectors, which allows us to apply a distance function between the

categorical softmax activations from InceptionV3 model and q. In figure 2-5 it is shown the

described method. This approach is discussed and analyzed in chapter 5.

2.7. Integration

Once all VSUMM objectives are computed, we developed a knapsack problem optimization

approach to obtain a single summary that considers one or all objectives. This approach

allows us to generate multi-objective video summaries in a simple manner by using a set β

parameters to weight each objective and configure how each one impacts the final summary.

This integration scheme will be further explored in chapter 6. In figure 2-6, a graphical

depiction of this integration is shown.
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Figure 2-6.: Integration of multi-objectives VSUMM using a knapsack problem approach..

2.8. Chapter summary

In this chapter we have presented the global elements of our proposed computational fra-

mework to perform a query-based VSUMM task solving multiple VSUMM objectives such

as representativeness and uniformity by hierarchical clustering and k-medoids over a

visual-linguistic coordination space, interestingness by visual and categorical diversity

using pre-trained visual and linguistic models, and importance by video/query similarity

using free-form sentences and categorical keywords queries. All of the presented elements

will be further analyzed and discussed in the next chapters.



3. Visual-linguistic space construction

In this chapter, we explore and develop deep learning approaches to construct an n-dimensional

space where videos and text co-exist, in order to represent a video by what it contains in

visual terms, and what it means extracted from text descriptions. The main idea behind this

approach is to enrich visual information from the linguistic domain. Since summarization

is a semantic task, we exploit this fact to represent a video using a semantic space in which

co-exist visual, categorical, and linguistic information.

Video analysis and consequently, video summarization is a multi-modal task, in which we

have multiple sources of information of different nature. These sources can be images (video

frames), audio, text(captions, annotations), GPS data, etc., and constitute different moda-

lities from the same phenomena as defined by Lahat et. al. in [83]. These modalities can

be understood as complementary information, which, once fused, represents the whole. This

complementarity or added value is known as diversity, as explained in [83].

”Diversity allows to reduce the number of degrees of freedom in the system by providing

constraints that enhance uniqueness, interpretability, robustness, performance and other

desired properties...”[83].

In this chapter, we explore the use of deep multi-modal coordination models architectures

and its possibilities to enrich video descriptions knowledge transferring from textual to visual

domains and vice-versa.

3.1. Related work

Multi-modal fusion applied to video summarization

The main approach to VSUMM with multi-modal representation involves training a coor-

dinated space that can be used later to describe video frames. As explained before, this

approach is more convenient because all modalities may not be available in the production

stage; that is, not all videos contain descriptions to generate a video summary.
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Various approaches have been taken to use multi-modal representations for VSUMM. Plum-

mer et al. in [47] trained a coordinated representation between a pre-trained ResNet ar-

chitecture for video-frame representation and Hybrid Gaussian-Laplacian Mixture Model

(HGLMM) features for text representation. Nonetheless, authors use a text-to-image data-

set (Flickr30k), having the limitation that trained coordinated space lacks temporality of the

video. Otani et al. [59] use a pre-trained DCN model (VGG16) for video frame description

and skip-thoughts [29] sequence-to-vector model to represent text, and train a coordinated

semantic space. The main limitation of this work is the averaged nature of the video repre-

sentation, which does not take into account temporality. Yuan et al. proposed a coordinated

representation based on a pair of autoencoders. Video frames are represented using Alex-

Net pre-trained architecture, and text is represented using skip-thoughts. In this work, the

authors also processed video in a per-frame manner.

3.2. Model

In order to train a coordinated model that allows us to construct a latent space where video

and language co-exists, we assume we have a dataset composed of a set of videos V , each

annotated with a set of sentences S in natural language. Also, a set of architectures and an

experimental framework are necessary by which we can test them to select by some criteria

the best coordination model constrained to the dataset size and quality.

Generally, training an end-to-end model for a given task will lead to a better result than using

pre-trained models. We assume that powerful classification models and linguistic embeddings

will be useful for the general objective of this work, that is, be able to inject queries on a

VSUMM task. Also, in a real-world application, for example, for a small business to apply

this model, training stages should be on the low-cost side of technological possibilities.

In this section, we discuss, evaluate, and select a coordination model to obtain a video re-

presentation which also considers linguistic information. For this, we discuss: a) the input

representation or features extraction for both, video and text, b) the neural network-based

architectures for the coordination model, c) the alignment function used to train the ar-

chitectures, and d) a discussion about how to select negative pairs considering the dataset

nature.

3.2.1. Input representation

In this section, we discuss the strategies used to represent videos and sentences from a video-

to-text dataset using pre-trained models following a similar approach as one presented in

chapter 5.
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Video representation

As previously explained in chapter 2, we rely on pre-trained DCN models for visual feature

extraction, due to the following reasons:

Allows to accelerate the training process using the trained latent space from the image-

net classification challenge.

As image-net considers 1000 categories organized according to word-net hierarchies

[44], it has a linguistic nature that can be used in a query injection scheme.

Latent space from image-net DCN models condense visual and categorical information

which we can take advantage of for every video-to-text task

From the above, we treat a video vi ∈ V as a sequence of n frames vi = v0
i , v

1
i , v

2
i , ..., v

n
i and

extract the 2048-dimensional latent space from the fully connected layer at depth nl − 1 of

a deep model M .

Sentence representation

Similarly to video representation, we could consider a sentence as a sequence of words and

compute an encoded set of words using a pre-trained word-embedding as GloVe or word2vec,

as in chapter 5. Nonetheless, order plays an essential role in the significance of a word inside a

sentence, so it is necessary to encode sentences using recurrent models that treat sequences as

a series of words. Karpathy, in [84] used a bidirectional LSTM approach to encode sentences

for an image-to-text task. The main limitation of this approach is that due to the limited

vocabulary in the sentences from an x-to-text dataset, a sentence embedding trained over it,

would not be general enough to represent linguistic relations that can happen in arbitrary

videos or queries in a VSUMM task.

From the above we used an implementation of a pre-trained skip-thoughts model proposed

by Kiros et. al. in [29], which encodes sentences of a fixed max number of words into a 4800-

dimensional vector with an RNN inspired in the skip-gram model [28], and trained with the

BookCorpus Dataset [73], composed of 11,038 books from the web and about 74 millions of

sentences.

3.2.2. Architecture

We explore two architectures for video-to-text coordination, which mainly differ in how they

receive the deep video features, as text representation using skip-thoughts model is static,

i.e., a sentence is always represented as a vector. The first architecture treats video as the
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Figure 3-1.: Coordination architectures. Averaged (a) and recurrent (b) architectures

used for video-to-text coordination problem.

average of deep features from the pre-trained model, and the second architecture as a se-

quence of deep features using a recurrent approach.

As it can be seen in figure 3-1, both architectures are composed of two branches, one for the

video and one for the sentence. Each branch is a stack of two hidden layers for computing the

coordinated space, and both branches are coordinated by a lambda layer, which computes the

cosine distance between the second hidden layer from each branch. The first hidden layer

from both branches can have a different number of neurons; on the contrary, the second

hidden layers are required to have the same number of neurons as it is needed to compute a

distance metric between both.

Averaged model

Under some constraints, it is possible to assume that the averaged response V from a neural

network M for a set of video-frames V will be close to the set itself, i.e., V will have low

variance in the latent feature space. Some restrictions has to be considered in order to assume

the latter:
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The feature space used to represent the set of video frames can not be exclusively vi-

sual. In the case of images, the average response will correspond to blurred information

and will not represent the actual content of the video. On the contrary, a vector re-

presentation of the video frames extracted from a pre-trained DCN model M supports

arithmetic operations as they encode semantic structure from data that was used to

train the model, for example, word-net semantic structure [44] in the case of image-net

models.

The video length should be as short as possible in order to ensure the averaged response

to be homogeneous, that is, long videos will probably have a higher visual variance,

for which an averaged response from a DCN model will be close to any other video.

In figure 3-1(a) it is shown the averaged model architecture. Notice that the video branch

receives a single vector of dimension 2048, as all video frames features extracted from a

previous DCN model M are averaged.

Recurrent model

Generally, actions and interactions between categories occurring in a video frame sequence

can not be modeled using an averaged approach, as the order in which they appear is

essential for the video understanding. From the previous, it is possible to use a recurrent

layer to process the video frames as sequences of features before the coordination layer. In

this case, we replaced the first hidden layer from a fully-connected structure to a recurrent

one (see figure 3-1 (b)). Notice that the received sequence of video frames is not constrained

to a fixed length, but arbitrary and dependant of video length.

3.2.3. Coordination / Alignment function

Suppose we have a set of encoded videos V = {v0, v1, v2, ..., vn} annotated with a set of

encoded sentences S = {s0, s1, s2, ..., sn}, for which each pair (vi, si) can be positive if vi
corresponds with the description si, and negative on the contrary. In order to coordinate

V and S, we need to find a common space Υ where ∣Υ(vi) − Υ(ti)∣ ≃ 0. A basic approach

to solve this problem using a deep learning strategy, consists in using a L2 distance loss

function (equation 3-1) [84]:

L =
n

∑
k=1

∥ Υ(vi) −Υ(si) ∥
2
2 (3-1)

The main problem with this loss function is that a trivial solution exists where Υ(x) = 0,
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that is, coordinated space Υ converge to 0. Then, it is necessary to employ loss functions

that consider positive and negative pairs, i.e., margin-based loss functions, which enforce

positive pairs to be inside a margin α and negative pairs outside it.

L =
n

∑
i=1

[∥ Υ(xai ) −Υ(xpi ) ∥
2
2 − ∥ Υ(xai ) −Υ(xni ) ∥

2
2 +α] (3-2)

Triplet loss, proposed by Schroff et al. in [85], is an alignment function commonly used to

train Siamese networks for binary recognition problems, that is, problems where it is needed

to validate if two objects from the same modality are equal. A typical application for these

networks is face recognition.

In equation 3-2 it can be observed the triplet loss, where xai is an anchor or reference, xpi is

a positive example and xni is a negative example. Finally, α is an arbitrary margin value to

enforce positive examples to be inside it and negative examples to be outside it. As authors

mention, in order to ensure fast convergence and avoid bad local minima during the training

stage, it is needed the selection of special samples known as semi-hard positive and semi-hard

negative such that satisfy ∥ f(xai ) − f(x
p
i ) ∥

2
2<∥ f(x

a
i ) − f(x

n
i ) ∥

2
2, that is, positive examples

with distances from anchor are less than negative examples distances from the anchor, but

not too much.

Positive and negative examples are precisely defined for problems where a single modality

is used and where there are multiples samples per object, e.g., face recognition or voice

recognition. Nonetheless, this could be ambiguous in cases where the meaning of objects

is considered, as video and text relation. Although it is possible to consider xai = vi and

xpi = si, in the case of video-to-text a negative pair (vi, si) does not assure a semi-hard

negative case, i.e. although a video vi and a sentence si are not paired, they could have

a similar content. Plummer et. al. [47] used triplet loss for an image-to-text coordination

problem over Flickr30k dataset. Although authors do not explain how semi-hard positive

and semi-hard negative samples were selected, it is possible to assume that for the case of a

video-to-text problem, the complexity of the pairing task could be unfeasible.

L =
n

∑
i=1

tiD(Υ(vi),Υ(si)) + (1 − ti)max(0, α −D(Υ(vi),Υ(si))) (3-3)

L =
n

∑
i=1

1

2
(ti){D(Υ(vi),Υ(si))}

2 +
1

2
(1 − ti){max(0, α −D(Υ(vi),Υ(si)))}

2 (3-4)

Hadsell et. al. [86] proposed the contrastive loss in its general and exact forms (see equations

3-3 and 3-4), for a dimensionality reduction problem, learning an invariant mapping function
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can transform data into a low-dimensional manifold through a neural network, using prior

knowledge. This problem is similar to the Siamese neural network training for face recognition

but applied to coordinate a common space where similar objects (from the same modality)

are close, and far on the contrary. This loss function has the advantage over the triplet-loss in

the use of the label ti, which simplifies the pair selection task in the dataset generation stage.

Also, it allows us to train the model using a binary classification scheme and generalizes the

use of a distance function D, which makes it possible to test different measures of distance if

it is necessary. In equations 3-3 and 3-4 it can be observed the general and exact contrastive

losses, where ti = 1 if (vi, si) is a positive pair, and ti = 0 on the contrary, D is a measure

of distance, e.g., Euclidean or cosine distance, and α is an arbitrary margin value. A better

understanding of the behavior of general and exact contrastive loss can be observed in figure

3-2. Notice how loss for negative pairs is zero in the range [α,max(distance)], and on the

contrary, tends to zero in the range [α,0] for positive pairs.

Figure 3-2.: Contrastive Loss. General (a) and exact form (b).

Otani et. al. [59] used general contrastive loss for coordinating video and text in a latent

semantic space, assigning α the max Euclidean distance between positive examples before

training to force negative pairs to be outside the worst positive scenario. Every video and its

user-generated descriptions from a VTT dataset was taken as positive pairs, and 20 random

descriptions were used as negative pairs for each video. Although authors assumed a random

selection could be used to generate negative pairs, we consider this approach could generate

a high number of soft-negative pairs, since a video vi and a sentence sj although not paired,

could be close, which eventually could lead the training to converge to a bad local minimum.

From the above, we consider it is necessary to complement the random selection of negative

pairs using distance criteria.
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Negative pairs selection

It is possible to assume that for a given set S of sentences paired with a video vi, the

distances between them (positive pairs) should be closer than distances computed between

S and sentences from random videos. From the above, we can find a threshold of distance τ

for which a random sentence pair (si, sj) could be considered at least, a semi-soft negative

pair if D(si, sj) ≥ τ . In the case of positive pairs, the same approach could be used in order

to find a threshold that helps to select semi-soft positive pairs. Nonetheless, we consider that

as humans annotators performed the sentence generation task, it is essential to include any

possible deviation coming from positive pairs.

Using a statistic approach, percentiles 0 and 100 of distances between positive and negative

sentence pairs, are equivalent to a minimum and maximum distances for both cases. In other

words, positive and negative percentile 0 can be considered as soft positive cases and hard

negative cases; on the contrary, positive and negative percentile 100 can be considered as

hard positive cases and soft negative cases, respectively. From the above, in order to gene-

rate negative samples that can be differentiated from positive pairs allowing to diminishing

intersection between classes, but not so separated that do not represent general cases, we

need a semi-soft negative, determining a threshold τ such that P neg
0 ≫ τ < P neg

100 .

3.3. Dataset

Table 3-1.: Public datasets for video-to-text task.
Features

Dataset Number of videos Annotations per video Video length (approx.)

MSR-VTT [9] 10K 20 5 minutes

TRECVID-VTT [8] 1.9K 2 5 seconds

Once modalities A and B to be coordinated are identified, it is selected a dataset that

contains those, commonly an A → B dataset, for example, for image → text coordination

task, it can be used an image-to-text dataset [9, 87, 67]. In this case, we selected a public

video-to-text dataset generally used for video-retrieval and video-captioning tasks. MSR-

VTT dataset [9] and TRECVID-VTT [8] are well known public video-to-text datasets. Both

contain videos associated with sentences written by human annotators. In table 3-1, it can

be observed the main features of each dataset, that is, the number of videos they contain, the

number of sentence descriptions made by human annotators, and the approximated video

length.

As discussed previously in section 3.2.2, for this work, it is desired videos of short length,
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Figure 3-3.: Pairs generation scheme. Example of videos and their sentences from da-

taset TRECVID-VTT. Each video vj and its paired sentence sj are considered

a positive pair for which y = 1. On the contrary, any video vj and a random

sentence sk are considered a negative pair if D(sj, sk) > τ for which y = 0.

whose sentences describe them concisely to use the coordinated space subsequently as a

linguistic-enriched video descriptor. From the latter, it was used the TRECVID-VTT dataset

to train and validate the coordination models in the experimental framework.

In order to use the contrastive loss alignment function discussed in section 3.2.3, the dataset

needs to be expressed in the form {x ∶ (vi, si), y ∶ 1} for positive pairs and {x ∶ (vi, sk), y ∶ 0}

on the contrary (see figure 3-3). For this purpose, two positive pairs per video were obtained

as each one is annotated with two sentences (see table 3-1). For the negative pairs, first it

was computed the percentiles of cosine distances between random sentences (see table 3-2)

following the selection criteria discussed in section 3.2.3 in order to compute τ , which we

determined experimentally as percentile 75 of negative pairs distances, i.e., τ = 0.5477, and

finally, random pairs (vi, sk) such that D(si, sk) > τ were used as negative samples.

Table 3-2.: Percentiles for Cosine distances between positive and negative (random) sen-

tence pairs from dataset TRECVID 2017.
Percentile

0 25 50 75 100

Positive 0.0000 0.3327 0.4011 0.4610 0.6867

Negative 0.1686 0.4381 0.4934 0.5477 0.7545
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3.4. Experiments

As coordination models are used mainly for retrieval tasks, quantitative evaluation is per-

formed using retrieval-based metrics such as Recall@k or median rank [84, 54, 88, 89]. On

the other hand, works that use coordination models for video analysis, generally report only

qualitative metrics to evaluate the quality of coordination architectures [11, 47, 90] and not

much information about data processing and quantitative analysis is presented by authors.

Although Recall@k and median metrics rank are not entirely suitable for the coordination

problem in this work, we consider using a quantitative evaluation in order to have selection

criteria to choose the best model.

In the following experiments, we perform a grid search over a set of meta-parameters asso-

ciated with the architectures and the loss function. Next, we select the best two models from

each general architecture (see section 3.2.2) using classification-based criteria. Finally, we

evaluate both models using retrieval-based metrics as well as their qualitative performance

over the test set.

Data preprocessing

We sample each video from the TRECVID-VTT dataset to 1-frame per second and compute

its vector representation from InceptionV3 DCN-model and the vectors for the associated

sentence pairs using the skip-thoughts model (see section 3.2.1). For the averaged architec-

ture, we transform the video into a single 2048-dimensional vector by averaging. For the

recurrent architecture, we use the complete sequence of vectors with dimensions 2048 × n

where n is the video length in seconds. Each input (video and sentence) is standardized

using general formula x =
x−µ
σ in order to have mean zero and unit variance in the data.

Finally, to each video and sentence pair (vi, si) is assigned a label y = 1 if is a positive pair

and y = 0 on the contrary.

Grid search

Table 3-3.: Fixed and iterable parameters for grid search.
Parameter Value

fixed

η 1e-6

epochs 1000

batch size 256

iterable

activation function [tanh, relu,mish]

units [512,1024]

α [0.8,0.9,1.0]

drop rate [0.2,0.3]
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In order to perform an exhaustive grid search over coordination models, we fixed some meta-

parameters, as it is shown in table 3-3. The learning rate(η) was fixed to a low value to avoid

fast convergence on local-minima, but that did not require too many epochs. The number

of epochs was fixed to a high value with early-stopping to avoid over-fitting. The batch

size was fixed to an intermediate value between 64 and 512, which balances between high

generalization and computing time. Iterable parameters (see table 3-3) can be described as

follows:

activation function: This parameter corresponds to the non-linear function used in

the first hidden-layer of each branch (see figure 3-1. The second hidden-layer is linear

for both branches, as non-linear mapping between modalities it is performed in pre-

vious layers. We used the most commonly used activations functions, as reported in

coordination models works.

units : The number of neurons of the first hidden layer. The second hidden-layer is

always 512 in order to compute a distance between both branches, as explained in

section 3.2.2.

α: Separation margin from exact contrastive loss function explained in section 3.2.3 -

equation 3-4.

drop rate: Probability of dropping neurons in first hidden layers from both branches of

coordination models using a dropout regularization.

Quantitative evaluation

Figure 3-4.: Example of a coordination model. Retrieved distances for positive and

negative pairs from a trained coordination model. Left) Discrete histogram of

distances between pairs. Right) Positive and negative samples vs distance.

It is possible to consider a coordination model as a classifier, where distance D in coordinated

space between a given video and a sentence pair is related to the probability the pair is
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considered a negative case. Figure 3-4 shows the distances from positive and negative pairs

for a coordination model from grid search exploration. Notice that the intersection between

histograms of distances is related to the discrimination power of the model, in the sense that

a good model is expected to have zero intersection in the distance domain but also a high

inter-class separability, i.e., the histograms cover a wide distance range. From the latter, we

can evaluate our model’s discrimination power using a classification approach, e.g., using a

ROC curve analysis.

Table 3-4.: Grid search for averaged and recurrent coordination models. Best area under

the curve (auc) from averaged and recurrent architectures are shown in bold.
activation units alpha drop rate auc (averaged model) auc (recurrent model)

relu 1024 0.8 0.3 0.930429 0.647643

mish 1024 0.9 0.2 0.918503 0.915619

In table 3-4, the models with the highest auc for averaged and recurrent architectures can

be observed. Complete evaluation by grid search appears in table A-1. In general terms,

recurrent architecture reached overfitting in fewer epochs than the averaged, which led to

values auc < 0.6 in some cases due to a low number of training epochs. A visual evaluation

of the discriminatory power of best models can be made from figure 3-5. Notice that the

averaged model gets a lower intersection and higher AUC v1alues than the recurrent model

(bottom).

Figure 3-5.: Intersection and auc. Retrieved distances for validation test from last trai-

ning epoch. Top) Averaged model. Bottom) Recurrent model.

Ranking metrics. Since coordinated models are commonly used for retrieval tasks, such

as image/video annotation and image/video search, we expect that for a given object xi, its
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Table 3-5.: Ranking metrics. Recall@K (high is good) and medr (low is good) metrics for

the video annotation task using averaged and recurrent models.
Model R@1 R@5 R@10 Medr

Averaged 5.95 17.28 28.61 29

Recurrent 2.55 11.33 23.51 33

associated pair yi appears in the first position using a score. In other words, we expect its

positive pair yi ∈ Y gives the best possible score.

Recall at K (R@k) and median rank (meanr) are metrics used in most multimodal retrieval

works [84, 91, 92, 21] based on the latter. R@K measures the percentage of times the ground-

truth pair of a given object appears in the first K elements in a previously ordered array of

distances. Similarly, meanr measures the median position at which the positive pair appears

for all objects in a dataset. For meanr best and worse cases are 1 (first position) and the

length of the dataset (last position), respectively. In table 3-5 it is shown the Recall@K

and medr for averaged and recurrent models in the sentence retrieval task. Averaged model

obtains a better Recall@k and medr metrics than the recurrent model.

Table 3-6.: Distance at K (D@K) metrics (low is good) for video to sentence(s) (vi → sk)

and sentence to sentence(s) si → sk approaches.
vi → sk si → sk

Model D@1 D@5 D@10 D@1 D@5 D@10

Averaged 0.3172 0.3356 0.3455 0.7195 0.7626 0.7626

Recurrent 0.4581 0.4802 0.4962 0.6856 0.7354 0.7592

Distance metrics. As we need and enriched video latent space that can be used in a video

summarization task, we expect the video and a set of retrieved sentences to be close, and

the same for the ground-truth sentence of the video and the set of retrieved sentences. The

latter can be expressed as two main questions:

How close is a video to a set of k-nearest sentences in coordinated space?

How close is the ground-truth sentence of a video to a set of k-nearest sentences in

coordinated space, measured over a linguistic space?

The first question considers the discrimination power of the coordination model, and the

second the semantic stability of it.

We then, inspired in the Recall@K and medr metrics, measured the mean distance from

the video vi to the k−nearest sentences (D@k), in the cases of coordinated space (vi → sk)

and linguistic space (si → sk). In table 3-6, it can be observed the distances for the video

to sentence(s) and sentence to sentence(s), as explained before. Notice that although the
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averaged model obtains a better performance for video and text matching, the recurrent

model tends to match sentences that are more similar to the ground-truth sentence of the

input video.

Qualitative evaluation

In this section, we present some application examples of the trained model, particularly the

averaged model, due to its quantitative performance presented in the previous section.

Figure 3-6.: Video retrieval. Examples of retrieved videos from TRECVID dataset using

an input query using averaged coordination model. Videos are ordered by dis-

tance from left to right.

Video retrieval from sentence. A common application for coordination models is the

retrieval from one modality to another. For example, retrieve similar videos to an input

query in natural language, that is, given a set of videos V , a query sentence s and a trained

coordination model M , we can retrieve the k − nearest videos from V with indexes equal

to argsortk0(M(v, s))∀v ∈ V , as the last layer in M is a distance metric (see section 3.2.2).

In figure 3-6, it can be observed the best 4 − nearest videos for some query examples,

ordered from left to right according to query similarity. Notice that the trained model is
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sensitive to word context. For example, the query football field retrieved football soccer and

American football videos as both are related to word football in user sentences and in the

pre-trained skip-thoughts model. Although our model does not consider object interactions

and actions, semantic relations in linguistic space are transferred to the visual domain. For

example, the query jumping from height retrieved videos related to skydiving and bungee

jumping situations, but notice the last video which associated description is: a dog jumps into

water at a lake. Also, the model is able to align some salient visual features related to word

concepts, although they are not explicitly related in user descriptions. For example, videos

retrieved from query forest relate mainly with visual features of plant cover and animals,

although explicit linguistic relation does not exist in its descriptions. Finally, notice that

retrieval quality is related to the diversity of the videos in the training dataset. For example,

for the query visiting the zoo, although videos are related in linguistic space with plant cover

and natural landscapes, retrieval quality has low specificity due to the fact that TRECVID

dataset does not contain a significant number of videos related with zoos.

Figure 3-7.: Sentence retrieval. Examples of retrieved sentences from an input video

from the SumMe dataset, using averaged coordination model. Each keyframe

is titled with the original videoname from SumMe dataset and subtitled with

the retrieved description from dataset TRECVID.

Video retrieval from sentence. A common application for coordination models is the

retrieval from one modality to another. For example, retrieve similar videos to an input

query in natural language, that is, given a set of videos V , a query sentence s and a trained

coordination model M , we can retrieve the k − nearest videos from V with indexes equal

to argsortk0(M(v, s))∀v ∈ V , as the last layer in M is a distance metric (see section 3.2.2).

In figure 3-6, it can be observed the best 4 − nearest videos for some query examples,

ordered from left to right according to query similarity. Notice that the trained model is

sensitive to word context. For example, the query football field retrieved football soccer and

American football videos as both are related to word football in user sentences and in the

pre-trained skip-thoughts model. Although our model does not consider object interactions

and actions, semantic relations in linguistic space are transferred to the visual domain. For

example, the query jumping from height retrieved videos related to skydiving and bungee
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jumping situations, but notice the last video which associated description is: a dog jumps into

water at a lake. Also, the model is able to align some salient visual features related to word

concepts, although they are not explicitly related in user descriptions. For example, videos

retrieved from query forest relate mainly with visual features of plant cover and animals,

although explicit linguistic relation does not exist in its descriptions. Finally, notice that

retrieval quality is related to the diversity of the videos in the training dataset. For example,

for the query visiting the zoo, although videos are related in linguistic space with plant cover

and natural landscapes, retrieval quality has low specificity due to the fact that TRECVID

dataset does not contain a significant number of videos related with zoos.

Sentence retrieval from video. In a similar fashion to the video retrieval from sentence

task previously addressed, we can retrieve the closest description sentence to a video v from

a set of sentences S using argmin(M(v, s))∀s ∈ S. Three examples of sentence retrieval

can be seen in figure 3-7. It is important to mention that we are retrieving sentences from

the TRECVID dataset using as input videos from dataset SumMe, that is, v and S come

from different datasets. Also, this description is extracted for a segment of 5 seconds from

the original SumMe video. Finally, sentence extraction is also sensitive to word context, for

instance, in the Bike Polo video although bicycle is a frequent object, in conjunction with

night and street contexts, is near sentence on TRECVID dataset is related with the object

motorbike.

Figure 3-8.: Video retrieval from coordinated bridge. Examples of video retrieval

from an input video and sentence matching.

Video retrieval from multi-modal bridge. It is possible to search inside a set of videos V

using an input video v as a reference, by a multi-modal bridge as v → S → V . In other words,

to retrieve videos by using the distance from v to the set of descriptions associated with

a set of videos. In practical applications, videos may not have associated descriptions but
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text metadata such as titles, comments, or tags that could be used instead. It is important

to notice that this kind of retrieval is not exclusively visual but semantic, as the similarity

between video v and video dataset V is not being measured between visual features, but

between visual and linguistic features. In figure 3-8 we show two examples of video retrieval

using this approach. Notice that in both cases, visual similarity between the input video

and retrieved ones is not exactly high, but it does exist a semantic relation in terms of their

content.

Query similarity

Using a similar approach to the sentence retrieval by video task (see section 3.4), it is

possible to compute a degree of similarity between the segments of a video v and a query

q in natural language. The previous allows us to consult which frames or segments from v

are related or have significance concerning the user’s interest. Given a coordination model

M then, a query similarity scheme between a video v and an input query q will be given by

M(vi+wi , q)∀i ∈ {0,1,2, ..., n − 1} where n is the video length, and w is a window or segment

size to take a set of frames on each iteration.

Figure 3-9.: Query example using three free-form texts over video Cooking from

dataset SumMe.

Figures 3-9 and 3-10 show examples of query similarity for videos Cooking and St Maarten

Landing from the dataset SumMe, and a set of predefined queries: an airplane landing, fire,

fruits and vegetables, cars on street. In all cases, similarities are normalized between 0 and 1

to be able to use a fixed threshold τ by which a segment or sequences of frames are considered

relevant if superior to it. Queries fruits and vegetables and fire give a high similarity for video

Cooking on frames where visual content its related. Notice that although vegetables appear
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in most of the video content, a high similarity is obtained where no other entity or category

is present, for instance, where chief is not present on the scene.

Figure 3-10.: Query example using three free-form texts over video St Maarten

Landing from dataset SumMe.

In the case of video St Maarten Landing, queries an airplane landing and cars on street

give the highest similarity. Notice that query St Maarten Landing gives a dominant response

where airplane appears isolated on the scene, and on the contrary query cars on street gives

a higher response when airplane appears over a street.

3.5. Conclusions

In this chapter, we have discussed the design, construction, training, and evaluation of a

visual-linguistic coordination model that can capture and transfer phenomena from the visual

to the linguistic domain and vice versa. This model can be used to estimate a degree of

similarity between a video and a query in the form of a sentence, which allows injecting user

intentions in a VSUMM task.

Although quantitative and qualitative evaluations bring evidence about the advantages in

using a coordination model to extract video features with semantic relations, we are aware

that the performance of a coordination model is directly related to the diversity and com-

pleteness of the dataset employed to train the model. We also consider that, because the

TRECVID-VTT dataset, employed to train our model, is mainly composed of funny and

casual videos extracted from Vine, our model lacks generalization power. Future work can

explore the integration of different VTT datasets, which allows improving this situation.
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Another future work we consider is the evaluation of different losses functions, for example,

the family of triplet losses, which requires complex criteria to build the (positive, negative, anchor)

triplets from a VTT dataset.

Finally, although we evaluated recurrent schemes for video-frames processing, the best re-

sults were achieved by employing averaging windows. We believe that further exploration

of recurrent layers can be made in future works, considering that these layers require more

data to obtain better performance.



4. Representativeness and uniformity

4.1. Related work

The representativeness of a video summary can be understood as the property of a video

summary to contain the set of segments or frames which returns the minimum distance to

the original video. Del molino et. al. define representativeness in [3] as: ((the most similar

instances to the rest of the video)), that is, the subset S ⊂ V such that min∥S − V ∥2
2, where

S is the summary and V the original video. On the other hand, a temporal coherence or

uniformity is desired for the final summary [3, 2, 10, 47], in order to avoid frantic video sum-

maries which could confuse observers. Both objectives (representativeness and uniformity)

are closely related in the sense that a combination of a segmentation method apply over the

input video and a selection of the most representative segments by a clustering technique

will force a temporal coherence in the final summary.

F (S) = ∑
x∈X

mins∈S∥x − S∥2
2 (4-1)

From a computational approach, representativeness is commonly addressed as a k-medoids

clustering over video segments [59, 2, 47, 10, 13] (see figure 4-1). In equation 4-1 it is shown

the k-medoids formulation minimization objective, where X is the set of feature vector from

video V , and S is the set of features from a set of segments.

Recent approaches use the determinantal point process (DPP) in order to obtain a repre-

sentative video summary. Gong et. al. in [33] developed a sequential DPP (seqDPP), which

demonstrates good performance for VSUMM task. Nonetheless, in this work, we do not follow

a DPP strategy since it requires a training stage, making the evaluation dependant of the

(X,Y ) set, and dependant of the dataset splitting method, for example, (train, test), k-fold

and leave-one-out. In order to test the coordinated-space performance for the VSUMM task,

we decided to isolate the representation power from a trainable model, and use a general

approach, i.e., a clustering method.

((In the k-medoids problem, we find a subset S = Sk∣k = 1, ...,K of video segments, which are

cluster centers that minimize the sum of the Euclidean distance of all video segments to their
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Figure 4-1.: k-medoids example with k = 3 in a R2 space.

nearest cluster centers Sk ∈ S and K is a given parameter to determine the length of the

video summary.))[59].

In other words, the k-medoids algorithm take segments X and generate a subset S with mini-

mal distance toX. Generally, segments are generated using uniform sampling. We generateX

using a hierarchical clustering algorithm and a correlation matrix from coordinated-features

in order to obtain non-uniform sampling segments which will be used to unify semantically

related sequences of frames.

4.2. Model

Overview. In figure 4-2, a graphical depiction of the developed model for representati-

ve and uniform video summary generation using coordinated models is shown. Our model

first computes the coordinated visual features given an input video V , using a pre-trained

video-language coordination model, as explained in chapter 3. Then, we apply a hierarchical

segmentation algorithm to detect the main segments of V in the coordinated space, and

the number of them, which we use later as an estimation of the parameter k for k -medoids.

Next, the k -medoids algorithm is employed over the coordinated visual features in order to

obtain a set of medoids, which are filtered by removing meaningless and redundant medoids,

to obtain a representative video summary R. Finally, a representative and uniform summary

U is obtained using the set of segments previously detected by hierarchical segmentation,

and the filtered set of medoids, applying a mass-center unification strategy. In the case of

VSUMM tasks where it is required that the length of the output summary is a percentage

α of the input video V , we change the parameter k estimation as a relation expressed in
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Figure 4-2.: General stages for the k-medoids approach for representative video summari-

zation over coordinated space given an input video V .

equation 4-2.

4.2.1. k-medoids clustering over coordinated space

Figure 4-3.: Example of representative summary by k-medoids over coordinated space,

with k = 4. Video: Jumps, from dataset SumMe. a) V input video, b) Medoids

selected using coordinated space, c) Key-frames from select segments.

Using the coordinated model previously trained and shown in chapter 3, we take an input

video V and use the visual branch of the model for computing its coordinated activation,

which we demonstrated also contains linguistic relations. Then, computing the k-medoids
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algorithm over coordinated activations, we obtain the more representative k segments from

the input video. An example of this model is shown in figure 4-3. Notice that medoids do

not correspond with a uniform segments selection, that is, long shots with low variance can

be clustered in a single center by the k-medoids algorithm.

As the k-means clustering technique, k-medoids require the selection of a parameter k, which

defines the number of clusters centers that will be found. In order to generate a video

summary using k-medoids it is then required to define k by two approaches:

k as a percentage of the video length: For which it is needed a uniform segmenta-

tion stage in order to compute the number of clusters in relation to the segment size.

In equation 4-2 it is shown the relation between k, the percentage α of the input video

length ∣V ∣ and the uniform segment size ∣S∣.

k = ⌊
α∣V ∣

∣S∣
⌋ (4-2)

k as a measure of the change in the video content: For which it is needed, a

dynamic segmentation/shot detection method and k can be defined as the number of

video shots detected (1 cluster per shot). This approach will be further explained in

section 4.2.2.

4.2.2. Hierarchical segmentation and k estimation

As previously mentioned in section 4.2.1, in order to perform the k-medoids algorithm, it

is necessary to select or estimate the parameter k. Although it is possible to estimate this

parameter by using a user-criteria or a percentage α of the original input video length

∣V ∣ ([59, 2, 10, 47, 13]), as we later explore in section 4.3.1, the evaluation of representative

summaries by user-selected keyframes requires the estimation of k by a diversity-like feature,

as many users can select summaries with different lengths given an input video V .

De Avila et al. in [93] estimate k using a differential approach, for which they compute pair-

wise distances between consecutive frames and increment k as this distance is higher than

a threshold τ . This approach has some limitations, such that the use of a fixed threshold

τ = 0.5 and the consecutive difference calculations consider only abrupt changes in the video

content, such as video transitions or scene changes. Iparraguirre and Delrieux propose a

similar approach in [94], where the authors use an estimated amount of noise and a sensitivity

threshold to select keyframes from an input video.

We used a segmentation method, which allowed considering a temporal window and hierar-

chical relations between video features, in order to estimate k as the number of shots or
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sequences of frames with similar features. As segments must be consecutive, we computed

distances as pair-wise cosine between coordinated activations Ci,Cj for frames i and j, and

cutting values at a temporal threshold τ , as proposed in [7], in order to prevent disjoint

long-term relations between frames.

wti,j =
1

t
max(0, t − ∣i − j∣)

Dcoordinated
i,j (Ci,Cj) = 1 −wti,je

− 1
Ω
cos(Ci,Cj)

(4-3)

This procedure is shown in equation 4-3, where t is an arbitrary threshold expressed in

number of frames, Ci is the coordinated activation of frame i, and Ω is the mean of distances

among all frames. Cosine distance between vectors A and B is expressed as: cos(A,B) =

1 − A⋅B
∣A∣∣B∣ .

Figure 4-4.: Dendogram that represents an example of clusters obtained from hierarchical

clustering over coordinated space. In this case, using σ = 0.56, seven clusters

are finally selected.

Next, we use the agglomerative z-linkage algorithm to obtain hierarchical clusters of video-

frames with low distance over coordinated features. An example of hierarchical clusters

detected by the z-linkage algorithm can be observed in figure 4-4.

Then, hierarchical clusters are flattened according to the arbitrary threshold σ that controls

the sensitivity of the cluster agglomeration, i.e., a low value of σ returns a high number of

clusters, and the contrary for a high value of σ. For automation purposes, σ can be estimated

using a measure like the mean of the distances of the clusters, or a weighted approach such

as βµ(Z) where β is an arbitrary weighting parameter, and µ(Z) is the mean of the clusters

distances Z. In figure figure 4-4 it can be observed that a σ = 0.56 flattened hierarchical

clusters to seven ones.
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In figure 4-5, it can be observed the dissimilarity matrix over coordinated features Dcoordinated

obtained using equation 4-3 and the detected shots using the hierarchical clustering algo-

rithm.

Finally, the parameter k for the k -medoids algorithm (see section 4.2.1) can be automatically

estimated as the number of segments obtained from the hierarchical clustering process, as

the segments have relations with the set of unique scenes in a video over a feature space.

Figure 4-5.: a) Dissimilarity matrix and b) extracted shots using linkage algorithm. In this

case a temporal window t = 15 was used. Video: Jumps, from the SumMe

dataset.

In figure 4-6 it can be observed the retrieved keyframes from representative segments obtai-

ned by the method previously presented. Notice that the segments in figure 4-6(b) correspond

with the hierarchical clustering from figure 4-5(b), and the number k of medoids is equal

to the number of shots extracted from hierarchical clustering. Also, notice that there is no

1:1 correspondence between shots and medoids. The latter, because the segmentation sche-

me considers sequentiality, differs from the k-medoids clustering, which is not, i.e., similar

non-sequential video sections produce one medoid, but at least two shots.

4.2.3. Redundant and meaningless medoids removal

Transitions between video scenes can contain black or white frames (fade-in / fade-out),

which can be detected as medoids due to the high variance of its features concerning previous

and next video frames. Moreover, when k from k-medoids is higher than the number of

segments in the video, redundant medoids could be selected. Due to this, it is necessary to

perform a redundant and meaningless medoid removal strategy.
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Figure 4-6.: Example of a representative summary by hierarchical segmentation and k-

medoids. a) Input video, b) extracted segments / shots, c) k-medoids k = 5

and d) keyframes from medoids. Video: Jumps, from the SumMe dataset.

Algorithm 1: Redundant and meaningless medoids removal over coordinated spa-

ce.
Input : Set of medoids in the coordinated space S, Set of frame sequences F for

each medoid, Similarity threshold τ1, Contrast threshold τ2

Output: A subset of medoids R

1 begin

2 for s ∈ S, f ∈ F do

3 R = []; // empty list

4 for r ∈ R do

5 l = True;

6 if D(s, r) < τ1 then

7 l = False;

8 break;

9 end

10 if l & (σ(f) < τ2) then

11 R.add(r);

12 end

13 end

14 return R;

15 end

16 end
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Inspired by the strategy proposed by De Avila et. al. in [95], we followed the next stages in

order to remove the latter:

Redundant medoids: Given a set of medoids S over a coordinated space, we

remove redundant medoids by sequentially measuring the distances Di = (Si, S) for

each medoid Si with respect all set S, and removing those medoids for which Di < τ ,

where τ is a threshold of similarity experimentally defined. An algorithm for this stage

can be studied in Algorithm 1.

Meaningless medoids: Given a set of frame sequences F for each medoid in S,

we remove meaningless medoids measuring its contrast using standard deviation, and

comparing it with a threshold τ2, for which those medoids where Fi < τ2 are removed.

An algorithm for this stage can be studied in Algorithm 1.

In figure 4-7 it can be observed an example of the removal stages applied to video v25 from

the SumMe dataset. Notice that from 12 initial medoids, 6 medoids were preserved, 1 was

removed for low contrast (a4) and 5 were removed for redundancy: a2 → a1, (b2, b3) → b1,

c1→ b4 and c3→ c2.

Figure 4-7.: Example of the redundant and meaningless removal stages over video v25 from

dataset OVP [95]. In high contrast, the segments that were preserved.

4.2.4. Uniformity

Generally, representativeness is complemented with uniformity, which can be understood

as temporal coherence [3], in the sense that significant gaps between scenes in the video
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summary can affect the flow of the story [47] and therefore the user interpretation of the

video summary. Nonetheless, a complete unification of the video summary is contrary to

the representativeness objective, so a balance criterion is needed to consider both VSUMM

objectives.

Considering a segment/shot as a sequence of frames close in a feature space, we can assume

that segments are independent of each other and can be unified locally in terms of its

indexes. From the previous, we propose a mass-center based uniformity method which works

as follows: using the hierarchical segmentation (see section 4.2.2), we obtain a set of segments

over coordinated space, by which it is possible to consider that sets of medoids inside each

segment can be unified due to is closeness in the coordinated space. Finally, inside each

segment, a contiguous sequence of frames are obtained by computing the mass-center of the

medoids inside it and taking using a centered window of size equal to the number of medoids

inside the segment.

Figure 4-8.: Example of the uniformity process by merging medoids inside each video shot

using its centroid. a) Video shots by hierarchical segmentation, b) k-medoids

and c) unified medoids. In red, unified video shots by the centroid of its me-

doids.

In figure 4-8 it is shown an example of this method. In a), it can be observed the set

of segments obtained by hierarchical segmentation, b) the set of medoids using k-medoids

clustering over coordinated space, where k is equal to the number of segments detected, and

c) the uniform summary by the unification of medoids inside segments.

An advantage of this approach is that it allows the control of the uniformity strength by

using the σ parameter, which controls the hierarchical segmentation sensitivity, i.e., the

higher the σ parameter, the higher the uniformity strength. This is explained in section
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Figure 4-9.: Example of the sensitivity of hierarchical segmentation process and uniformity.

a) k-medoids, b) medoids unification for σ = 0.58, and c) medoids unification

for σ = 0.67. In the background of a) and b) it can be observed the segments

from the hierarchical clustering algorithm.

4.2.2. A graphical depiction of segmentation sensitivity and uniformity can be observed in

figure 4-9, where two different values of threshold σ bring different uniformity results.

4.3. Experiments

We performed both quantitative and qualitative evaluation of our method. For quantitative

evaluation we used publicly available datasets (OVP+Youtube) and compared it with baseli-

nes and state-of-art methods. For qualitative evaluation, we analyzed examples of generated

summaries over SumMe and TVSum datasets.

4.3.1. Evaluation of a representative video summary method

Since a complete VSUMM method needs to consider multiple optimization objectives (see

chapter 1), its evaluation is a non-trivial task, which requires user-annotated datasets that

isolate specific VSUMM objectives. For example, datasets such as SumMe [2], TVSum [31]

and UTE [7], are intended to be used for evaluate importance and interestingness objectives

under a fixed VSUMM length α (see chapter 5), considering the experiments by which those

datasets were build, which required users to assign an importance score to video frames from
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Figure 4-10.: User annotated importance score (red) for video ”St Maarten Landing”from

the SumMe dataset vs representative summary by k-medoids (green). Notice

the low agreement between importance and representativeness.

different videos.

Although a clear taxonomy of VSUMM datasets by VSUMM objectives does not exist in

the literature, it is essential to consider its intention by analyzing how they were built and

what does it mean the (X,Y ) pairs. It is common to find examples on the literature were

proposed method was intended to work with a particular objective, but used dataset had

another, for example, Otani et al. in [59] used SumMe dataset (importance score) to evaluate

a representative VSUMM method. Plummer et al. [47], who used UTE and TVSum datasets,

to evaluate a VSUMM method, which also considers representativeness and uniformity. An

example of this situation can be observed in figure 4-10. Notice that there is a low agreement

between detected medoids (green) and the importance score (red) annotated by five users at

α = 0.15.

Keyframe based F-Score

For the general nature of a representative VSUMM, which does not take into account im-

portance but the closest set of segments to the original video, the primary approach for

evaluation is to measure a degree of agreement concerning a set of reference keyframes se-

lected by a group of users, given the task of selecting the set of frames which contains the

general content of an arbitrary video V . In general, given a set of segments/shots/medoids

S selected by a computational method, and a set of keyframes K selected by a group of n

users, we need to measure how many times elements in S corresponds with elements in K.

A precision/recall F-Score approach is the standard measure in the VSUMM literature.

Nonetheless, in order to use F-Score between S and K it is needed a matching function
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between elements in both sets, and considering that perfect matches are unlikely, a threshold-

based matching function is required.

Following [95, 33] we evaluate distances in coordinated space between elements in S and K

and count the number of unique matches when D(Si,Ki) < τ , where τ is an user-defined

similarity threshold. It is important to ensure that matching pairs are counted only once,

similarly to the redundant segments removal scheme explained in section 4.2.3.

Finally, F-Score is computed using the number of matches as positive predictions over the

number of elements in S and K as can be observed in equations 4-4.

PS,K =
matches(S,K)

∣S∣
, RS,K =

matches(S,K)

∣K ∣
, FS,K = 2 ⋅

PS,K ⋅RS,K

(PS,K +RS,K)
(4-4)

4.3.2. Quantitative evaluation

Data

We evaluated our method over the open video project (OVP) dataset developed at the

Interaction Design Laboratory at the School of Information and Library Science, University

of North Carolina Chapel Hill 1, and an extension (Youtube), proposed by De Avila et al.

in [95] 2. Both datasets contain 50 videos and reference keyframes by five users each.

Metrics

We employed precision, recall, and F-score (see section 4.3.1) metrics to compare the agree-

ment between video summaries generated by our method, and keyframes selected by a group

of users. For each video in both datasets (OVP+Youtube), we averaged the F-Score for the

five users and also averaged F-Score per dataset.

Reference methods

We compared our method with the pre-computed summaries available in the OVP+Youtube

datasets, i.e., we did not make implementations of state-of-the-art methods but compute F-

score with the already computed keyframes for each one. Each method is described as follows:

1https://open-video.org/project info.php
2https://sites.google.com/site/vsummsite/
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Delaunay Triangulation (DT): Mundur et al. in [96] proposed a VSUMM method

based in which performs clustering using Delaunay Triangulation. Authors expose this

method does not require user-defined parameters and performs better than k-means

clustering methods.

STIll and MOving video storyboard (STIMO): An on-the-fly method for VSUMM was

proposed by Furini et al. in [97]. Authors use HSV frame color distribution and fast

clustering algorithm for this purpose. An interesting property of this method is that it

considers aural information (audio) to detect video shots.

Static video summaries (VSUMM1, VSUMM2): Proposed by De Avila et al. in [95], this

methodology uses color features extraction, k-means clustering and shots detection by

frame difference thresholding. The main difference between VSUMM1 and VSUMM2

is that the latter uses key cluster selection as in [98].

Table 4-1.: f-score, precision and recall (higher is good) in OVP and Youtube datasets for

different representative VSUMM methods. In each case, in bold it is shown the

best result and the second best in underline.
OVP Youtube

DT STIMO VSUMM1 VSUMM2 Ours VSUMM1 Ours

F 0.6163 0.6516 0.8142 0.7467 0.7611 0.7771 0.6712

P 0.7318 0.6217 0.7818 0.8111 0.7111 0.7860 0.6366

R 0.5707 0.7396 0.8844 0.7272 0.8644 0.8088 0.8061

In table 4-1 it is shown F-score, precision, and recall results for OVP and Youtube dataset

between the state of the art methods and ours. It is essential to mention that we did not

re-implemented or executed the baselines methods but used the keyframes dataset given by

authors for each method. Although our method does not achieve the best results, for the

representativeness objective, the obtained results show that the coordinated visual space

computed from the coordination model trained in chapter 3, is useful as a general visual

descriptor for computer vision tasks, but also will allow to perform more complex tasks such

as linguistic comparison as will be detailed in chapter 6.

4.3.3. Qualitative evaluation: Keyframes over OVP dataset

Below, we present some visual examples selected keyframes from our method and VSUMM1

method proposed by Avila et al. in [95], for three videos in the OVP dataset. In each case,

the reference keyframes for the video (1-user), the keyframes selected from both methods,

and its F-score, precision, and recall are presented.

In figure 4-11 it is shown the results for video 27 from OVP dataset. Notice that our method

obtained a higher f-score due to higher recall, i.e., more frames from the reference keyframes,
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Figure 4-11.: Example of keyframes generated by our method and VSUMM1 method for

video 27 from the OVP dataset. f-score (F), precision (P) and recall (R) using

a matching approach, are presented.

are contained in the keyframes generated by our method than the keyframes generated by

VSUMM1.

An opposite case can be observed in figure 4-12. A higher f-score is achieved by VSUMM1

method, due to higher recall, even when both methods obtained a precision equal to one.

Figure 4-12.: Example of keyframes generated by our method and VSUMM1 method for

video 47 from the OVP dataset. f-score (F), precision (P) and recall (R) using

a matching approach, are presented.

Finally, a case where higher precision is achieved by our method can be observed in figure 4-
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13. Notice that all of the keyframes obtained by our method are inside the keyframes obtained

by VSUMM1, and both methods have a recall equal to one. However, while VSUMM1 selected

extra frames not included in the reference, its f-score was penalized by its precision.

Figure 4-13.: Example of keyframes generated by our method and VSUMM1 method for

video 66 from the OVP dataset. F-score (F), precision (P) and recall (R)

using a matching approach, are presented.

4.3.4. Qualitative evaluation: Video summary

In order to visually evaluate the performance of the developed method in non-keyframes

datasets, as SumMe or TVSum, we modified the k estimation (see section 4.2.2) to work

traditionally, considering the length of the summary as a ratio of the length of the input

video, as previously explained in equation 4-2. This scheme will also be used later in chapter

6 in order to allow multiple VSUMM objectives integration. In all cases an α = 0.15 was

employed, that is, a summary equals to the 15 % of the original video length, and a) the

sampled input video, b) the unified medoids and segments, and c) the central frames from

each unified set of medoids are shown.

In figure 4-14 it is shown a 15 % representative and uniform summary generated by our

method for the video:St Maarten Landing from dataset SumMe. Notice that, although the

original video is mainly composed by a scene where the beach and the sea are shown, airplane

landing is also selected by our method as a representative set of medoids (b,c), which differs

from a uniform approach (a). Also, notice that at the beginning of the input video, it can

be observed a scene where there is a group of people and an umbrella (a). However, as in

the middle of the video, a longer scene where a group of people and an umbrella appears

again, both scenes are considered a single medoid (third medoid in (b)) by our method.

An example where scenes with high visual variance are considered more representative,
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Figure 4-14.: Example of representative and uniform summary U for video:St Maarten

Landing from dataset SumMe, generated by our method, using an α = 0.15.

a) Input video sampled to 1 frame each 10 seconds, b) extracted segments

by hierarchical segmentation with σ = 0.6 and unified medoids (blue), and c)

central frames from each unified medoids sets obtained by our method.

Figure 4-15.: Example of representative and uniform summary U for video:Cooking from

the SumMe dataset, generated by our method, using an α = 0.15. a) Input

video sampled to 1 frame each 10 seconds, b) extracted segments by hierar-

chical segmentation with σ = 0.6 and unified medoids (blue), and c) central

frames from each unified medoids sets obtained by our method.

can be observed in figure 4-15. This video (Cooking) from the SumMe dataset, shows a

chef cooking oriental food (almost 4
5 of the video), and finally, he makes a flame in the

preparation. Notice that, as the input video is highly static, the final scene (fire) is selected

as the longest unified medoids set by our method, as it contains great visual dynamics, and
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therefore a high number of medoids.

Figure 4-16.: Example of representative and uniform summary U for video:-esJrBWj2d8

from TVSum50 dataset, generated by our method, using an α = 0.15. a)

Input video sampled to 1 frame every 30 seconds, b) extracted segments by

hierarchical segmentation with σ = 0.6 and unified medoids (blue), and c)

central frames from each unified medoids sets obtained by our method.

Finally, an example for a video (-esJrBWj2d8 ) from dataset TVSum50 it is shown in figure

4-16. This video is mostly composed of scenes of a cat eating. Even when different angles,

views, and positions are taken, the main element is a cat eating. It is important to notice

that the hierarchical segmentation process over the coordinated features (video-language)

was capable of capturing this relation, which can be observed in the large pink segment in

(b), which was finally unified in a single set of medoids.

4.4. Conclusions

In this chapter, we have developed a computational method to obtain representative and

uniform video summaries using visual-linguistic coordination models. Main advantages of

our method are a) generated summaries considers semantically related scenes, useful in

VSUMM of highly dynamical egocentric videos, b) automatically estimates parameter k

from k-medoids, using hierarchical clustering segmentation, useful for long videos, and c)

textual queries can be performed directly over coordinated features as discussed in chapter

3, which simplifies the complexity of implementation.

As future work, we consider it is crucial to perform a more rigorous parameter optimization

using, for example, an exhaustive grid-search strategy. Also, it is crucial to building a more

diverse evaluation dataset that is not limited to news like the Youtube dataset or historical
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videos such as OVP, which brings more information about the performance of representative

VSUMM schemes.



5. Interestingness: Visual and

Categorical Diversity

Video summarization is a semantic task, and it can be observed that semantics is mainly

expressed in words [6], for which it is necessary to represent video content in terms of visual

and linguistic information. For query-based VSUMM, it is necessary to work with linguistic

information, i.e., we need to represent query inputs made by a user and combine them with

visual information from the input video. The main problem with this approximation lies in

the combined representation of this multi-modal information (images and words). We expect

to construct a joint-representation architecture that uses pre-trained deep neural networks

architectures.

In this chapter, we propose an experimental design to select best pre-trained deep neural

network architectures and word-embeddings for visual representation and categorical repre-

sentation, respectively, for a generic task of video summarization. Concretely we are given a

set of DCN architectures pre-trained on the image-net dataset and a set of word-embeddings

pre-trained on Wikipedia+Gigaword datasets. Then, we want to select the combination of

DCN architectures and word-embeddings that have the best response concerning a task of

video summarization.

For this purpose, we use a data-driven approach. We designed and developed a greedy model

(see Figure 5-1) that takes as input a video and generate a summary using a hybrid repre-

sentation of visual and categorical models, and measure its response for a human predicted

score of importance from the SumMe dataset. Finally, we select the best model using the

F-Score measure.

5.1. Related work

VSUMM can be treated as a regression or ranking problem where some features are ex-

tracted from video-frames and used as inputs, and a set of key-frames or user-annotated

scores [2, 53, 69, 59, 33, 10] as outputs. Earlier approaches focused exclusively on supervi-

sed visual features extracted from video [32, 33, 94] as SIFT, HoG or optical flow, among
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others. Lee et al., in [7], used features as eye fixation, object frequency, and interaction to

predict scene importance. Depending on the nature of the video or the search task, domain-

specific features may be an aid in VSUMM. For example, game-specific rules for sport video

analysis was proposed by Shih et al., in [99], actor recognition [100], and subtitle analysis

[39] for movie summarization. Egocentric video analysis lately emerged as another signifi-

cant VSUMM context, because of its characteristic high volume and diversity, which has

motivated researchers to propose general VSUMM methods that could complement visual

information with associated annotations and meta-data. Recently, deep learning has been

applied to VSUM from multiple approaches. Otani et al. [59] proposed a method to train a

coordinated representation space from a video-to-text dataset and after that, they used it to

generate a regression model for VSUMM. Temporal analysis using long-short term memory

networks (LSTM) and transfer learning from DCN (Deep Convolutional Network) was used

in [15]. Generative adversarial networks (GANs) were used in [101] to formulate the VSUMM

problem as a generator/discriminator challenge, where the generator selects the best frames

(summary) from the input video and reconstruct it from these video frames. Then the dis-

criminator compares the input video and the reconstructed video regarding this comparison

as a classification problem. For this purpose, an architecture based on DCN and LSTM was

constructed.

It is possible to approximate a frame importance parameter by its uniqueness or diversity for

a group of frames. Uniqueness is related to the dissimilarity or difference of descriptors (e.g.,

color histogram) in consecutive frames [3]. Classical approaches consider a processing pipeline

where video frames are first pre-processed to improve quality, after which they are represented

using a static set of descriptors [52]. These descriptors are mainly low-level visual features,

i.e., color, textures, or histograms. Finally, a supervised criterion is designed using specific

descriptors to estimate an importance score that allows selecting frames for the resulting

summarized video. This approximation has some limitations that impair the possibility of

using multi-modal information. In particular, the use of hand-crafted descriptors, and also

the criterion of importance, have a high impact on the resulting summary, due to their ad-hoc

nature.

Human attention is another information source closely related to diversity and commonly

used for video summarization. Visual-auditive saliency and attention have been explored for

the VSUMM task in [42, 102]. Varini et al., in [49], used a combination of HMM and diver-

sity from Bag of Words difference between consecutive segments to create a video summary.

Gygli et al. [2] represented attention for video summarization as a nonlinear combination of

spatial features and temporal salience expressed as temporal differences.

Nevertheless, many claim that frame importance cannot be done entirely without previously

known context information, including recording purpose, user preferences, and overall history
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contained in the video, among other things [2]. Personalizing is one of the most recent topics

of interest in video summarization because different users will summarize a video differently

based on their specific interests. Initial approximations explored this venue by capturing

more inputs from the user while doing this task, for example, gaze-tracking [51], BCI devices

[50, 48], or states of attention [49]. These works have the limitation that user intention is

not known previous to the video summarization task, and also require extra equipment.

Recent work focused on introducing queries in natural languages during the VSUMM pro-

cess, as a means to specify a specific purpose. These queries may be expressed either as a

vector of words of interest, which can be a sentence in natural language [46] or as a set

of categorical terms (objects of interest) [14, 4, 5]. The first approximation requires NLP

techniques to transform an arbitrary sentence into a manageable structure. The second ap-

proximation represents queries as a vector of words related to the objects of interest for the

user. However, as far as a through exploration of recent advances in VSUMM may reveal,

diversity from combined deep visual and categorical features has not been previously used.

Also, the possibility to deliver personalized video summaries guided by a user query is an

important feature that is certainly sought for in popular video repositories like YouTube

and others. For these reasons, we propose a novel VSUMM method based on a categorical

diversity estimation found combining both visual features and semantic categories inferred

by user queries. The direct nature of our method without the requirement of a training stage

allows rapid adoption and implementation for industrial and commercial applications.

5.2. Model

Figure 5-1.: Graphical scheme of proposed greedy model.
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Overview. We are given a set of videos paired with human-made importance score annota-

tions ([2]). Then, we need to use a ranking measure that allows us to compare how close is

a machine-generated video summary scores and human-based scores for a given video Vi.

Classical approaches consider a processing pipeline where video frames are first pre-processed

to improve quality and posteriorly described using a set of hand-crafted descriptors [52],

mainly composed of low-level visual features, i.e., color, textures, histograms, features among

others. Finally, a hand-crafted criterion is designed with selected descriptors to estimate

an importance score that allows selecting frames for video-summary. This approximation

has some limitations in terms of description and importance criteria stages and scaling

using multi-modal information. For example, the selection and extraction of hand-crafted

descriptors have a high impact on the performance of the VSUMM method due to the non-

general purpose nature of these kinds of descriptors. The same problem is commonly found

in the importance criteria stage.

Our method simplifies this pipeline using a pre-trained DCN architecture as a general visual

descriptor of Vi extracting deep-features [64] from internal layers. Then, using the last layer

of DCN we can obtain words related to detected categories that appear in Vi, which we

represent semantically using a pre-trained word-embedding. Finally, a simple criterion of

mutual penalization of visual and categorical representation is constructed. A graphical

depiction of the proposed method is shown in Figure 5-1.

We show that 1) our method can combine information from visual and categorical nature for

video summarization task, 2) visual and categorical information extracted from Vi using a

DCN architecture are not necessarily correlated and 3) different combinations of DCN archi-

tectures and word-embeddings generates different scores with respect to human-annotated

scores for Vi.

5.2.1. Visual representation

As mentioned in [64], using the right set of features, almost any AI problem can be sol-

ved. Notably, visual data representation is a complex problem due to the non-structured

high-dimensional nature of images. Deep learning allowed not only to map from an input

(stimulus) to output (response) and discover the best representation of the input. Literature

named this approach as representation learning [64] or deep features, which consists of using

a hidden layer of a pre-trained network model M as a general representation or descriptor

of an input data.

For visual data representation, it is common to use DCN architectures previously trained

for a classification task. The main idea behind this approach is that it is possible to transfer

learned knowledge from a previous task to accelerate training for a new task.
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Figure 5-2.: VGG16 architecture. We compute M [nl−1] activation as a descriptor of input

frame Vi.

We use a pre-trained DCN model M using image-net dataset [44], a as feature extractor

for a video-frame Vi. For example, VGG-16 [63] model, has 16 layers and approximately 130

millions of parameters. Penultimate layer M [nl−1], i.e., layer before softmax 1000-dimensional

probabilities of image-net categories, is 4096-dimensional. Then, we describe every frame Vi
of input video V as follows:

V ′
i =M

[nl−1](Vi)

We compute penultimate layer activation for a DCN model M with nl number of layers, given

a video-frame Vi. For this, we remove the layer of DCN model and compute a feed-forward

propagation through the network. A graphical depiction of this representation scheme is

shown in 5-2.

5.2.2. Categorical representation

The complete forward propagation of a pre-trained DCN model generates an activation from

the last layer M [nl](Vi) given an input video frame Vi. This activation consists of a 1000-

dimensional vector with the probabilities (softmax output) for every ImageNet category to

appear in Vi.

Using this vector, we select first k categories indexes, i.e., the indexes of the categories

with the highest probability to appear in Vi. Let define these indexes as an array of values

γ. Then, each index in γ is transformed to a one-hot encoding representation t of size

[nd,1] using word-embedding matrix vocabulary, where nd is the dimension of the embedding

representation.

Finally a dot product between word-embedding matrix B and one-hot vector t is computed

to obtain an embedded representation Ej for a visual category j from image-net (see Figure

5-3).
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Figure 5-3.: Example of word embedding representation for word dog using one-hot enco-

ding vector.

Using word-embeddings Ej for each category j, we compute distributed representation Gi

for input video-frame Vi as the mean distributed representation of E in order to obtain a

unidimensional vector that best describes the input video-frame Vi, i.e., that maintains the

main direction of labels in Vi.

Since each category j in video frame Vi is associated with a probability from the softmax

layer M [nl], we compute a weighted average representation as similar as Oosterhuis et al. in

[5].

Gi =
1

k

k

∑
j

ψjEj

where

ψj =M
[nl]
j (Vi)

(5-1)

In Equation 5-1 it can be observed the weighted average word embedding representation Gi

for video-frame Vi. Notice that categories probabilities ψ are obtained from last layer from

DCN model M .

A complete sequence to obtain categorical representation Gi is presented in Algorithm 2.

5.2.3. Visual and categorical diversity

Estimation of importance for a frame or a group of frames inside a video is a task that

can not be done entirely without previously known context information (intention of the

recording, context, and user preferences) and overall history contained in video [2]. This task

is commonly formulated as a regression or ranking problem, where some features extracted

from each video-frame are used as inputs, and human-made scores of importance are used
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Algorithm 2: Categorical representation of Vi using embedding matrix.

Input : video frame Vi, embedding-matrix B, DCN model M , k first visual

categories

Output: weighted average word-embedding activation Gi

1 begin

2 γ = argsort(M [nl](Vi))[0 ∶ k];
3 E = zeros([nd,1]);

4 for j ← 0 to k − 1 do

5 t = zeros([nd,1]);

6 t[γ[j]] = 1; // one-hot encoding

7 Ej = B ⋅ t; // embedding representation

8 ψj =M
[nl]
j (Vi); // weight from softmax layer

9 Gi = Gi + ψjEj; // weighted sum

10 end

11 Gi =
1
kGi; // weighted average

12 return Gi;

13 end

as outputs [10]. However, it is possible to approximate importance by the uniqueness or

diversity of a frame or group of frames. Uniqueness is related to the dissimilarity or difference

of features, e.g., color histogram, for consecutive frames [3].

Attention is another information closely related to diversity and commonly used for video

summarization. Varini et al., in [49, 53], used a combination of HMM and diversity from Bag

of Words difference between consecutive segments to create a video summary. Gygli et al.,

in [2] represented attention for video summarization as a nonlinear combination of spatial

features and temporal saliency expressed as temporal differences. We use diversity as an

indirect approach from which we can obtain an interestingness score from which to obtain

a summary given an input video Vi. Using the concept of diversity expressed as temporal

differences, we obtain visual diversity Di for an input video-frame Vi as follows:

Di = ∥
dV ′

i

dt ∥ = ∥
V ′

i+∆t−V ′

i

∆t ∥

Where V ′
i is the deep-features vector extracted from the penultimate layer of DCN model, as

explained previously. ∆t is 1 because the input layer is previously sampled to 1frame
second . Notice

that we compute the L2-norm of the derivative in order to obtain a scalar-valued visual

diversity. Using the same approach as visual diversity Di we compute categorical diversity

Ki as temporal differences from categorical representations Gi.
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Ki = ∥dGi

dt
∥ = ∥

Gi+∆t−Gi

∆t
∥

Finally, we scale Di and Ki in the range [0,1] in order to avoid magnitudes differences from

visual and categorical representations Vi and Gi.

Figure 5-4.: Normalized responses of visual diversity Di and categorical diversity Ki for

video St. Marteen Landing from the SumMe dataset [2].

In Figure 5-4 it can be observed the visual diversity Di and categorical diversity Ki for video

St. Marteen Landing from dataset SumMe, using DenseNet as DCN model and GloVe-100

as a word-embedding. In seconds 39 and 52, there exists a negative correlation between both

diversities, indicating that a sequence of frames can have inverse proportions for Di and Ki.

5.2.4. Combined visual and categorical diversities

Visual and categorical diversity, Di and Ki, respectively, for a video frame Vi are related but

measure different domains from video, that is, for a given video frame Vi we can obtain a

high visual diversity and low categorical diversity or the contrary. Then, we can assume that

we need to have both high visual diversity Di and high categorical diversity Ki in order to

consider a frame to have a high diversity ϑ.

In other words, if a video frame is visually diverse but not categorically, then it is penalized

and the same for the contrary. From this analysis we balance visual and categorical diversity

by a linear relation using coefficients c0 and c1. In equation 5-2, it is shown visual diversity

ϑi expressed in terms of Di and Ki. Notice that if c0 = c1 = 0.5 then we represent ϑ as the

mean of visual and categorical diversity.

ϑi = c0Di + c1Ki (5-2)
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Figure 5-5.: Gaussian smoothed (σ =1.5) and normalized combined diversity ϑi with respect

to Di and Ki for video St. Marteen Landing from database SumMe [2].

Finally, we apply a Gaussian smooth to ϑ in order to generate a more continuous diversity

along video seconds. The latter will allow us to generate video summaries with soft transitions

between segments. In Figure 5-5 it is shown the combined diversity ϑ with respect to Di and

Ki for video St. Marteen Landing from database SumMe. As explained previously, inverse

activations from Di and Ki mutually penalize each other, for example, in seconds 44 and

52. On the contrary, both diversities enhance ϑ as in seconds 25 and 56. It is important to

highlight that single magnitudes ϑi are not important by itself but as concerning each other,

i.e., scaling ϑ does not change the summary result.

5.2.5. Summary generation

We generate a summary S of duration α∣V ∣ seconds, where α is user-defined parameter

usually equal to 0.15 or 15 % of input video (V ) length in seconds. For that purpose, we

apply thresholding to ϑ, as described in Equation 5-3.

S(α) = Vj ∣ ϑj > τ

restricted to:

(∣S∣ − α ∣V ∣)→ 0

(5-3)

Where ∣S∣ and ∣V ∣ are the lengths of S and V respectively. Then, we need to find a value τ

such that the number of all frames with diversity ϑj greater than τ , is closely to α∣V ∣. We

use a loop from τ = 1→ 0 using a small step ∆τ until we accomplish previous restriction.

In Figure 5-6 it is illustrated the summary generation process. Notice that the dashed red line

illustrates the value of τ , which was found using an iterative process, as explained previously.

Blue shaded region illustrates the subset of frames with higher ϑ, which constitute a summary
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Figure 5-6.: Summary generation from ϑi for video St. Marteen Landing from database

SumMe [2], using the proposed method. Frames Vi under shadowed (blue)

region will be used as a summary of input video.

of 15 % of input video length ∣V ∣.

5.2.6. Query injection

Figure 5-7.: Video diversity biased by query similarity for q = {airship, aircraft} over video

St. Maarten Landing from dataset SumMe. Query similarity in black, visual

diversity in red and categorical diversity in green.

We represent an user query as a vector q = {w0,w1,w2, ...,wn} of words w. In order to avoid

direct-match between q and visual categories j detected by DCN model M , each word of

the query is mapped to a vector space using a word-embedding matrix E as explained in

previous sections, in a similar manner as in [5]. But, as opposed to that proposal, we assume

that all words in the query have the same importance for the user, and for this reason, we

do not weight words w in the query q. Then, we calculate the average of word-vectors for k

words in query as follows:
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Gquery =
1

k

k

∑
j

Ej (5-4)

The categorical representation Gi (section 5.2.2) extracted from video-frame Vi, allows us to

compare categorical similarity Hi of q and Vi in a direct manner using the cosine similarity

as follows:

cos(wi,wj) =
wi ⋅wj

∥wi∥ ∥wj∥

Hi = cos(Gi,Gquery)

(5-5)

Finally, we can represent query-combined diversity ϕ as a linear relation between combined

diversity ϑi and query similarity Si as follows:

ϕi = c0ϑi + c1Hi =

ϕi = c0Di + c1Ki + c2Hi

(5-6)

In Fig. 5-7 it is shown an example of query injection to find combined diversity ϑ using Eqs.

5-4, 5-5, and 5-6.

5.3. Experiments

In the following experiments, we first compare visual and categorical diversity from different

combinations of DCN models to determine if there are significant differences between them.

Then, each combination is evaluated using SumMe dataset and a performance criterion

defined later in this chapter, and we select the model with the best performance. Finally,

we compare the best model with respect to state-of-the-art works to give an idea of future

performance using a joint representation architecture.

5.3.1. Data

SumMe: Video to user-importance dataset. Proposed and published by Gygli et. al.

in [2], this dataset contains 25 videos, organized by three categories: egocentric, moving and

static. For each video, scores per segment were manually annotated by different individuals.
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This score is related to a scale of importance in the range [0,1] (see Figure 5-8), for minimum

and maximum degree of importance for the user, respectively. The authors report that this

was the first dataset with segment annotations rather than key-frames. This dataset has

been widely used for different video summarization approaches on literature, allowing us to

compare with respect to other authors.

Figure 5-8.: Averaged user-importance score for video St. Marteen Landing from database

SumMe [2].

Video Preprocessing. Input video V is uniformly sampled to one frame per second as

similar to related works [59, 15, 6]. We use this approach in order to reduce computational

processing and due to the need that our greedy model must as simple as possible, avoiding

alternatives like clustering or super-frame segmentation [2].

Figure 5-9.: Input video V is sampled to one frame per second.

Videos from the SumMe dataset mostly have a 30 fps rate. We consider that at this frame
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rate will not occur a significant visual and categorical diversity in less than a second. Then,

we take 1-frame per second in order to reduce processing time, that is, ∣Vsampled∣ =
∣V ∣
fps . In

Figure 5-9 it is shown a graphical depiction of this process.

5.3.2. Performance criteria

Evaluation of a generated summary using the SumMe dataset consists of performing a mea-

sure of test’s accuracy between video summaries extracted from estimated diversity ϑ and

video summaries extracted from estimated importance given by N human users. For this

purpose, Gygli et. al. [2] proposed the use of pair-wise f-measure evaluation metric between

a generated summary S(α) and human-made scores U(α) as expressed in Equation 5-7.

F (S,U,α) =
1

N − 1

N

∑
j=1

2
p(S(α),Uj(α))r(S(α),Uj(α))
p(S(α),Uj(α)) + r(S(α),Uj(α))

(5-7)

Where p(S(α),Uj(α)) and r(S(α),Uj(α) are precision and recall between generated summary and

interestingness score made by user j. Notice that the final score is the averaged result of the

summary S with respect to each user annotation Uj at α∣V ∣ length of the original video. This

performance criterion has been adopted as the evaluation standard in video summarization

as a prediction problem [59, 15, 103], allowing us to compare with respect to state-of-art

methods without the need of replicating third-party works.

Figure 5-10.: F-measure for St. Marteen Landing from database SumMe [2] using our met-

hod and VGG19 as DCN model.

Figure 5-10 shows the evaluation of our method for a particular video from the SumMe

dataset using VGG19 as DCN model. Notice that between 12 % and 15 % of the original

video’s length, our method reaches a performance similar to the average of human-users.
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5.3.3. Baselines

We evaluate our method with respect to the following approximations:

● Random sampling: Video summarization by taking random frames is commonly used

as a base comparison on literature because any proposed video summarization method

must be superior to this approach.

● Interestingness-based [2]: Original work by Gygli et al., where it is proposed SumMe

dataset and a video summarization method based on a regression model that uses a

combination of features related with frame-interestingness: attention, aesthetics, pre-

sence of landmarks, faces, and object tracking, to predict per-frame importance.

● Deep semantic features [59]: As proposed by Otani et al., this method uses coordinated

representations which authors refer as semantic features, trained over a video-to-text

dataset. These representations are then used in a regression model to predict per-frame

importance.

5.3.4. Results

Visual and categorical diversity relationship

As explained in previous sections, our method lies in the use of a pre-trained DCN and

word-embedding models for extracting visual and categorical diversity, respectively. Visual

diversity D depends exclusively on activations from DCN model. Categorical diversity K

depends on DCN model and word-embedding activations. In this order of ideas, it is possible

to ask the following questions:

● Will different DCN models generate different/similar visual diversity D?

● Will Different DCN models generate different/similar categorical diversity K?

● Will visual and categorical diversity D and K, be related for each DCN model?

To answer these questions, we measured correlation coefficients for visual and categorical

diversity through each video in dataset SumMe, using different DCN models. In tables 5-1

and 5-2 it can be observed the mean correlation for D and K respectively.

Notice in table 5-1 that, in general, correlation coefficients for D are higher than 0.7, which

can be interpreted as that visual diversity is strongly related across different DCN models.

In other words, a similar visual diversity is expected to be obtained when using any of the

evaluated DCN models.
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Table 5-1.: Correlation coefficients for visual diversity D using different DCN models.
Model (Visual Diversity) VGG16 VGG19 Xception InceptionV3 ResNet50 InceptionResNetV2 DenseNet

VGG16 1.0 0.931 0.802 0.756 0.871 0.706 0.859

VGG19 0.931 1.0 0.797 0.754 0.864 0.705 0.862

Xception 0.802 0.797 1.0 0.776 0.811 0.753 0.816

InceptionV3 0.756 0.754 0.776 1.0 0.782 0.749 0.783

ResNet50 0.871 0.864 0.811 0.782 1.0 0.728 0.882

InceptionResNetV2 0.706 0.705 0.753 0.749 0.728 1.0 0.748

DenseNet 0.859 0.862 0.816 0.783 0.882 0.748 1.0

It is also possible to observe that models of the same family such as VGG16/VGG19 and

DenseNet/ResNet50 will have a much stronger correlation for visual diversity.

Table 5-2.: Correlation coefficients for categorical diversity K using different DCN models.
Model (Categorical Diversity) VGG16 VGG19 Xception InceptionV3 ResNet50 InceptionResNetV2 DenseNet

VGG16 1.0 0.527 0.295 0.225 0.332 0.246 0.301

VGG19 0.527 1.0 0.289 0.262 0.351 0.280 0.342

Xception 0.295 0.289 1.0 0.280 0.284 0.266 0.327

InceptionV3 0.225 0.262 0.280 1.0 0.238 0.300 0.276

ResNet50 0.332 0.351 0.284 0.238 1.0 0.234 0.369

InceptionResNetV2 0.246 0.280 0.266 0.300 0.234 1.0 0.293

DenseNet 0.301 0.342 0.327 0.276 0.369 0.293 1.0

Correlation coefficients for categorical diversity K can be observed in 5-2. Notice that, in

general, categorical diversity correlation across DCN models is below 0.4, which can be in-

terpreted as a weak relation between models. In other words, the selection of a particular

DCN model will result in a different categorical diversity.

Similarly to visual diversity, models of the same family such as VGG16/VGG19 and Dense-

Net/ResNet50 will have the strongest correlations for categorical diversity.

Table 5-3.: Correlation coefficients between visual diversity D and categorical diversity K

using different DCN models.
DCN Model

VGG16 VGG19 Xception InceptionV3 ResNet50 InceptionResNetV2 DenseNet

0.554 0.555 0.512 0.504 0.471 0.587 0.506

Finally, we obtained correlation coefficients between D and K for each evaluated DCN model,

as can be observed in table 5-3. For any DCN model, Visual and categorical diversity have a

low relationship, as correlation coefficients are 0.5 approximately. In other words, as explained

in previous sections, although D and K are related and depends of a DCN model, we can

expect that for a given input video-frame Vi we can obtain a high value of Di and low Ki or

the contrary. Thus, we can expect the use of combined diversity ϑ in a video summarization

task, will generate a similar response to human users.
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Evaluation between DCN models

We evaluated the performance of our model using different pre-trained DCN models over

SumMe dataset videos. Evaluation was made using f-score as presented in equation 5-7.

Table 5-4.: F-measures for each DCN model using combined diversity ϑ (higher is better).

For each video in SumMe dataset, we show best result (bold). Finally we show

the mean of the f-measures obtained by each DCN model.
Computational Method (ϑi =

1
2(Di +Ki)): Evaluation of DCN models

Category Videoname VGG16[63] VGG19[63] Xception [79] InceptionV3 [78] ResNet50 [80] InceptionResNetV2 DenseNet [82]

Egocentric Base jumping 0.182 0.114 0.187 0.200 0.175 0.174 0.166

Scuba 0.142 0.230 0.300 0.112 0.126 0.170 0.182

Bike Polo 0.100 0.193 0.225 0.290 0.076 0.153 0.219

Valparaiso Downhill 0.306 0.283 0.216 0.260 0.235 0.203 0.233

Moving Bearpark climbing 0.088 0.107 0.173 0.195 0.133 0.229 0.147

Bus in Rock Tunnel 0.081 0.083 0.109 0.101 0.089 0.091 0.117

Car railcrossing 0.117 0.130 0.037 0.123 0.066 0.080 0.058

Cockpit Landing 0.140 0.139 0.124 0.126 0.189 0.190 0.147

Cooking 0.075 0.128 0.132 0.204 0.266 0.207 0.265

Eiffel Tower 0.219 0.152 0.147 0.101 0.144 0.135 0.129

Excavators river crossing 0.092 0.118 0.086 0.081 0.056 0.098 0.089

Jumps 0.063 0.049 0.051 0.175 0.040 0.044 0.387

Kids playing in leaves 0.339 0.263 0.415 0.319 0.390 0.221 0.196

Playing on water slide 0.040 0.046 0.048 0.074 0.055 0.115 0.047

Saving dolphines 0.116 0.113 0.066 0.114 0.126 0.120 0.165

St Maarten Landing 0.581 0.563 0.557 0.469 0.610 0.504 0.552

Statue of Liberty 0.082 0.103 0.116 0.114 0.093 0.152 0.123

Uncut Evening Flight 0.216 0.178 0.269 0.300 0.116 0.248 0.153

paluma jump 0.114 0.100 0.104 0.259 0.255 0.120 0.106

playing ball 0.142 0.092 0.152 0.097 0.053 0.190 0.154

Notre Dame 0.105 0.103 0.128 0.137 0.144 0.113 0.139

Static Air Force One 0.375 0.385 0.263 0.348 0.356 0.145 0.222

Fire Domino 0.094 0.231 0.155 0.103 0.215 0.121 0.099

car over camera 0.426 0.414 0.436 0.436 0.435 0.413 0.414

Paintball 0.485 0.471 0.478 0.480 0.378 0.423 0.432

mean score 0.189 0.192 0.199 0.209 0.193 0.186 0.198

In table 5-4, it can be observed the score by video in the SumMe dataset, using our method

with different popular DCN pre-trained models. InceptionV3 and InceptionResNetV2 models

obtains the highest f-score (bold) for most videos (6 videos each model). In terms of mean

or averaged score, InceptionV3 is the model with the highest f-score and will be used as a

base DCN for comparison with state-of-art works. It is important to mention that although

InceptionV3 is the best DCN model in general terms, the mean f-score for each evaluated

DCN model is similar to the others, with 0.186 as the lowest f-score and 0.209 as highest

f-score.

State-of-art comparison

In table 5-5 it is shown the results of quantitative evaluation for our method and different

computational methods as explained in section 5.3.3. We showed scores for human annotators

as reported by the author in [2] as follows:

● Minimum score (Min.): The lowest score of all human annotators with respect to mean
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score.

● Mean score (Mean): Average of scores made by each human annotators with respect to

others. For example, if a video is annotated by 20 users, then the f-score is computed

for each annotator with respect to the others (19). Finally, all previous are averaged.

● Maximum score (Max.): Highest score by human annotators with respect to mean

score.

Table 5-5.: F-measures for different computational methods (higher is better). For each

video in SumMe dataset, best results are shown in bold. Finally we show the

mean of the f-measures obtained by each computational method.
Human Annotators Computational Method

Category Videoname Min Mean Max Random Gygli (2014) Otani (2016) Ours (DCN: Inception V3)

Egocentric Base Jumping 0.113 0.257 0.396 0.144 0.121 0.077 0.200

Bike Polo 0.190 0.322 0.436 0.134 0.356 0.235 0.290

Scuba 0.109 0.217 0.302 0.138 0.184 0.154 0.112

Valparaiso Downhill 0.148 0.272 0.400 0.142 0.242 0.258 0.260

Moving Bearpark climbing 0.129 0.208 0.267 0.147 0.118 0.178 0.195

Bus in Rock Tunnel 0.126 0.198 0.270 0.135 0.135 0.151 0.101

Car Rail Crossing 0.245 0.357 0.454 0.140 0.362 0.328 0.123

Cockpit Landing 0.110 0.279 0.366 0.136 0.172 0.165 0.126

Cooking 0.273 0.379 0.496 0.145 0.321 0.329 0.204

Eiffel Tower 0.233 0.312 0.426 0.130 0.295 0.174 0.101

Excavators River Crossing 0.108 0.303 0.397 0.144 0.189 0.134 0.081

Jumps 0.214 0.483 0.569 0.149 0.427 0.015 0.175

Kids Playing in Leaves 0.141 0.289 0.416 0.139 0.089 0.278 0.319

Playing on Water Slide 0.139 0.195 0.284 0.134 0.200 0.183 0.074

Saving dolphines 0.095 0.188 0.242 0.144 0.145 0.121 0.114

St Maarten Landing 0.365 0.496 0.606 0.143 0.313 0.015 0.469

Statue of Liberty 0.096 0.184 0.280 0.122 0.192 0.143 0.114

Uncut Evening Flight 0.206 0.350 0.421 0.131 0.271 0.168 0.300

Paluma Jump 0.346 0.509 0.642 0.139 0.181 0.428 0.259

Playing Ball 0.190 0.271 0.364 0.145 0.174 0.194 0.097

Notre Dame 0.179 0.231 0.287 0.137 0.235 0.093 0.137

Static Air Force One 0.185 0.332 0.457 0.144 0.318 0.316 0.348

Fire Domino 0.170 0.394 0.517 0.145 0.130 0.022 0.103

Car Over Camera 0.214 0.346 0.418 0.134 0.372 0.132 0.436

Paintball 0.145 0.399 0.503 0.127 0.320 0.274 0.480

Mean 0.179 0.311 0.409 0.139 0.234 0.183 0.209

Relative to human avg. 58 % 100 % 131 % 45 % 75% 59 % 67 %

Relative to human max. 44 % 76 % 100 % 34 % 57% 45 % 51 %

For computational methods, we report the best scores per video in bold and performance

relative to human annotators.

Our method obtains higher performance than the method proposed by Otani et al., with

67 % and 59 %, respectively, relative to average human performance.

The method proposed by Gygli et al. still obtains the highest mean f-score with performance

with respect to the human average of 75 %. Also we obtained bests scores in 9
25 videos, Gygli

in 12
25 videos, and Otani in 4

25 videos.

Performance by video category is presented in table 5-6. Notice that our method obtains the

highest score for Static category with a remarkable difference concerning the other compu-

tational approaches. Moving category represents the lowest score for our method and the

higher difference in performance with respect to the method proposed by Gygli. Finally, in
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Table 5-6.: Mean f-measure per video category for different computational methods (higher

is better). For each video category, best result is shown in bold.
Computational Method

Category Gygli [2] Otani [59] Ours (DCN: InceptionV3)

Egocentric 0.226 0.181 0.216

Moving 0.225 0.182 0.176

Static 0.285 0.186 0.342

Egocentric category, we obtain similar performance to the last model.

We consider it essential to mention that our method is more straightforward than compu-

tational methods proposed by Gygli and Otani in terms that relies on using a single DCN

pre-trained model and word-embeddings, which do not require a training stage. Also, compu-

tes information in a feed-forward direction using deep features as transfer learning, allowing

us to not depend on a set of hand-crafted features that can vary for different future appli-

cations.

Error analysis

Our method got low scores when videos contain complex stories in terms of actions and

interactions where there is not high diversity in visual properties of Vi or objects on the

scene. In other words, when video importance is not related to diversity but story. Examples

of this kind of videos are playing ball, Excavators River Crossing, and Playing on Water

Slide, where our method obtains its lowest scores.

In figure 5-11, we show examples of videos from dataset SumMe, with associated human

scores of importance (red) and summary made by our method (blue). In video playing ball

main visual objects or categories are ball, dog, and bird. These objects are always present

in video-frames, so it is expected a low categorical diversity. Moreover, although the video

is moving, there are not important transitions or scene changes that generate high visual

diversity. In this case, importance as annotated by users, is related with interactions between

bird, dog and ball.

It is also important to consider that since our method relies on a pre-trained DCN model,

the performance of summarization is related to the performance of our DCN model. In other

words, if a DCN model does not correctly detect visual categories on a video frame, diversity

will be affected. Possible approximations to solve this limitation consist in the using of action

recognition approaches that helps mapping time-related phenomena like interactions.

On the contrary, in videos like car over camera and St. Maarten Landing (see figure 5-11),

importance is highly related to visual differences and changes of objects in scenes, which our

method is able to capture as visual and categorical diversity. In these cases, we obtained
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Figure 5-11.: Example summaries. Three video examples from dataset SumMe. For each

video it is presented the mean user score in red, generated summary (at

15 %) by our method in blue, and intersection of generated summary and

user scores in green. It is also shown, video frames with high importance to

human annotators.
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higher performance than other computational methods.

Table 5-7.: Query-injection examples for three videos on dataset SumMe. For each video it

is shown score using combined diversity ϑ, query vector q and score using query

combined diversity ϕ.
Videoname Query q Global VSUM ϑ Query-based VSUM ϕ

Playing Ball {german, shepperd, ball} 0.097 0.281

Playing on Water Slide {water, kids} 0.074 0.183

St. Maarten Landing {airship, aircraft} 0.469 0.553

Query as keywords can be included in the visual and categorical diversity to improve the

performance of VSUMM task. In table 5-7, it can be shown three examples of f-score im-

provement using a list of keywords to guide the diversity scheme, as previously discussed in

section 5.2.6. Notice that in all cases, f-score improve over the general approach when used

keywords injection.

5.4. Conclusions

We have developed an interestingness model based on a combined architecture of a pre-

trained DCN model to represent visual information as visual diversity and word-embeddings

to represent categorical information as categorical diversity, for the following purposes:

● Evaluate and select a pre-trained DCN model for the visual representation of video-frames.

● Evaluate the performance of a combination of visual and categorical (linguistic) represen-

tation for a video summarization task.

● Identify limitations and future work from an evaluation of a simple model based on visual

and categorical representation for a video summarization task.

Experiments show that it is possible to use both visual and categorical representation in a

combined fashion for a video summarization task. Although the simplicity of the constructed

model in terms of its architecture and the linear relation of visual and categorical diversity,

performance (f-score) is close to or superior to state-of-art works. This motivates us to

continue exploring in this direction of research. Some conclusions we can make based on

experiments and results are:

● Visual representation, in this case, visual diversity D, obtained from different DCN models

is highly correlated, i.e., we can obtain a similar visual representation using any pre-

trained DCN model.
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● Categorical representation, in this case, categorical diversity K, obtained from different

DCN models and GloVe word-embedding [27] presents a low correlation, i.e., categorical

representation vary significantly for different DCN models.

● Although K depends on D, both representations are not highly related, i.e., a video frame

can be highly visually diverse but not categorically, or the contrary.

● We obtained the best mean performance (f-score: 0.209) using InceptionV3 as a pre-trained

DCN model.

● It should be possible to improve results of this combined approximation using a sophis-

ticated extension of this approach in terms of a) represent temporal nature of video

to improve performance in videos where importance is related with actions and inter-

actions between elements on scene, b) use a multi-modal representation to combine

visual and categorical representation, and c) allow the model to be trained in order to

predict video importance as a regression model.



6. Framework Integration and

Conclusions

6.1. Introduction

Sub-modular optimization is commonly used to optimize a multi-objective VSUMM [10],

which requires defining each VSUMM objective as a sub-modular function. We also consider

that a limitation of the sub-modular optimization approach is that it requires a training

stage, making the final summary dependant of the data used and the separation strategy to

obtain the set (x, y) in each case.

From the previous, we decided to use a more straightforward computational approach based

on the knapsack optimization problem, which allows us to easily separate summaries from

each objective (representativeness, interestingness, and importance), and also allows us to

integrate them in a single summary.

In this chapter, we show the complete framework for video-summarization using video and

language relations, combining what has been shown in previous chapters and integrating it

in a single computational scheme.

6.2. Framework

In figure 6-1 it can be observed the integration framework developed. Our framework receives

an input video V , and computes each VSUMM objective, as follows: a) Representative-

ness and Uniformity, as the k-medoids over coordinated visual-language features, unified

by hierarchical clustering and a mass-center strategy, b) Interestingness by computing the

visual diversity over a deep-feature space using InceptionV3, and the categorical diversity

over a linguistic space using GloVe word-embedding, c) Importance (categorical), com-

puting the similarity between video frames and a query vector q = [word1,word2, ...,wordn]

of words over the GloVe space, and returning the most similar frames with respect to an arbi-

trary threshold, and d) Importance (text), computing the similarity between video frames

and a query vector q = [sentence1, sentence2, ..., sentencen] of free-form sentences, using an
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Figure 6-1.: Complete VSUMM framework. Integration scheme for multi-objective

query-based VSUMM. In this example, all VSUMM objectives where opti-

mized, i.e., all βi = 1.

ad-hoc coordination model and Skip-thought unidirectional and bidirectional models.

From each VSUMM objective i, a binary array Si can be computed, where 1 indicates that

the video segment/frame/second must be included in the summary and 0 on the contrary.

Depending on the task or user intention, each VSUMM objective can be arbitrarily weighted

using a scalar βi, which in the binary case, can be 1 if the objective i will be considered in

the final summary or 0 on the contrary.

Due to the binary nature of the final summary (select which frames will be preserved),

and the intention to obtain the best possible summary which considers one or all VSUMM

objectives, constrained to a length α∣V ∣, where α is a user-defined parameter, the integration

can be treated as a knapsack problem optimization.

6.2.1. Knapsack problem optimization

The knapsack problem requires to define three inputs: A vector weights, which contains the

associated cost of each element, a vector values, which contains an associated quality or
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importance of each element, and a scalar capacity related with the problem constraint.

weights = ω = 1∀Vi ∈ ∣V ∣

values = υ =∑
i

βiSi

capacity = τ = α∣V ∣

(6-1)

In terms of a VSUMM problem, we defined each input according to equation 6-1. As we

employed a 1/frame per second sampling during all of the videos pre-processing, the vector

weights is equal to one for all seconds in V . The vector values is the sum of all the VSUMM

objectives; that is, the value of a video second is proportional to the total frequency of

appearance in the summaries S. The use of the weight βi also affects the value of the video

seconds with respect to the objective i. Finally, the constraint τ is equal to a user-defined

ratio α of the length ∣V ∣ of the original video.

Figure 6-2.: Multi-objective VSUMM integration example, where only Representati-

ve+Uniform (S1) and Interestingness (S2) objectives are considered for the

final summary.

Once defined all of the elements of the knapsack problem, the optimization can be expressed

as in equation 6-2, where z is the final summary to be optimized, which is a binary array

with value 1 for segments to be preserved and 0 otherwise. Notice that, although in our case,
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ziωi is equal to zi, it is essential to include ω in the optimization, as another implementation

can consider a non-uniform sampling of V .

m
z
ax

∣V ∣
∑
i=1

υi

s.t.
∣V ∣
∑
i=1

ziωi ≤ τ

(6-2)

In figures(6-3,6-3) it can be observed two examples of the knapsack problem optimization

considering different combination of VSUMM objectives: representative+uniform+interesting

and interesting+important(categorical), respectively.

Figure 6-3.: Multi-objective VSUMM integration example, where only Interestingness (S2)

and Importance: categorical query (S3) objectives are considered for the final

summary.

6.3. Examples

In this section, we present some examples of input videos and summary results using our

integration framework and selecting different combinations of VSUMM objectives.
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Figure 6-4.: Example of the multi-objective VSUMM integration scheme for video: Base

jumping from dataset SumMe. a) Input video V (sampled to 1 frame each 20

seconds), b) representative and uniform summary, c) similarity with respect

to the sentence query q =[people in parachutes], d) integration by knapsack

problem optimization, and e) central frames from each video segment from

final summary.

In figure 6-4 it is shown an example of integration of multi-objective VSUMM. The use

of the weight factors β allows to decide which VSUMM objective will be preserved in the

final summary, but also which one will be more important than others. In this case notice

that β4 = 2 and β1 = 1, that is, importance from text query similarity is considered twice

as important as the representativeness+uniformity. From the previous, scenes related with

people in parachutes, are more frequent in the final summary (see figure 6-4-(e)), nonetheless,

scenes from objective representativeness+uniformity are also included in the final summary.

In the example in figure 6-5, interestingness and importance from categorical query similarity

were optimized in the final summary. Notice that query similarity for q =[fish, animal] is

almost the same for both categories in two scenes where sea urchin, lion fish and fish were

found by InceptionV3 model. This, illustrates the semantic relations captured by the GloVe

word-embedding between both words. Finally, the optimized summary preserve scenes from

both VSUMM objectives, equally weighted in this case.

A final example can be observed in figure 6-6 where representativeness and interestingness
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Figure 6-5.: Example of the multi-objective VSUMM integration scheme for video: Scuba

from dataset SumMe. a) Input video V (sampled to 1 frame each 10 seconds),

b) summary for the interestingness objective, c) similarity with respect to the

categorical query q =[fish, animal], d) integration by knapsack problem opti-

mization, and e) central frames from each video segment from final summary.

VSUMM objectives were optimized.

6.4. Conclusions and Future Work

In this thesis, we have presented a query-based video summarization framework which uses

information from visual and linguistic domains, particularly visual deep features from In-

ceptionV3 model, linguistic features from GloVe and skip-thoughts models, and coordinated

features from an ad-hoc coordination model which can be used as a numeric space where

visual and linguistic semantics coexist.

The achievements of this thesis regarding the specific objectives, and future work is presented

in the following:

(Objective 1) - To elaborate a coordinated representation space, from video

data and its human-made textual annotations: We have built and trained an

ad-hoc deep model which coordinates visual and linguistic in chapter 3. To train this



92 6 Framework Integration and Conclusions

Figure 6-6.: Example of the multi-objective VSUMM integration scheme for video: EE-

bNr36nyA from dataset TVSum50. a) Input video V (sampled to 1 frame

each 10 seconds), b) representative and uniform summary, c) summary for

interestingness objective, d) integration by knapsack problem optimization,

and e) central frames from each video segment from final summary.

model, we used the TRECVID dataset, which contains short videos and sets of textual

descriptions for each one. A series of evaluations were made to test the quality of

the model, particularly, AUC analysis, retrieval metrics, and qualitative evaluations.

Further exploration of recurrent layers can be made in future works. Considering that

these layers require more data to obtain better performance, it is important to explore

or construct massive VTT datasets that allow training these types of models.

(Objective 2) - To develop a computational method to obtain representa-

tive video segments, using the coordinated representation space: We have

developed a computational model to obtain representative and uniform summaries,

which uses k-medoids and hierarchical clustering over coordinated features of an input

video. Our method allows us to automatically select the k parameter from k-medoids

using the number of segments from hierarchical clustering. Nonetheless, an α-based

summary can also be generated. A keyframes-based quantitative evaluation with res-

pect to state-of-the-art methods was performed, and also qualitative evaluations over

OVP, SumMe, and TVSum datasets.
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(Objective 3) - To develop a computational method to obtain relevant seg-

ments, which allows textual user-made queries: Relevance was worked from two

VSUMM objectives: interestingness and importance. In the case of interestingness, in

chapter 5, we have proposed a visual and categorical diversity method that estimates

a score of change in the video in terms of its visual content and its categorical content.

This method was compared against state-of-the-art works over the SumMe dataset.

In the case of importance, treated in this work as user-personalization, we developed

two approaches: (1) Word query similarity (see chapter 5), for which GloVe word-

embedding was used in order to obtain a numeric vector for an input query q and a

similarity score is computed between the query and the categories found in each video

frame, also mapped with GloVe, and (2) A free-form text similarity (see chapter 3), for

which we used the coordinated model built-in chapter 3, to compare sequences of video

frames against a text query q mapped to a numeric vector using Skip-thoughts uni-

directional and bidirectional models. In both cases, we present visual comparison and

retrieval examples to validate the power of each approach. Although interestingness

developed in this work considers visual and categorical diversities, future research can

be made by considering Region-based CNN and action recognition models to measure

a degree of action and interaction diversities.

(Objective 4) - To propose a computational framework to obtain interes-

ting and representative segments: In this chapter (chapter 6), we have developed

an optimization approach to integrate one or all VSUMM objectives, which allows

weighting the relevance of each objective in the final summary. We consider future

research to focus on the use of fuzzy logic in the video summary integration process.

For example, if the β parameters associated with each objective of the summary are

considered probabilities, it would be possible to construct more versatile combinations

of objectives using fuzzy inference.

It is important to mention some advantages and limitations of the framework proposed in

this thesis, which can be used later as future work for further research:

Advantages

Our framework does not require feature engineering as it relies on pre-trained image

classification models (InceptionV3) and pre-trained linguistic models (GloVe, Skip-

thoughts), except the case of the ad-hoc coordination model. This allows for rapid

deployment and adjustment for industrial applications.

Our framework is mainly unsupervised, in the sense that it does not rely on a supervised

training approach (V → S), which makes its result independent of the nature of the

input video.
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The final summary can be personalized by both words and text queries which allows

us to express the user intentions in the VSUMM task.

The final summary can be single-objective, multi-objective, or weighted using β para-

meters and a knapsack problem optimization approach.

Our framework allows us to specify each VSUMM objective separately, by using its

related parameters, such as hierarchical clustering sensitivity σ (see chapter 4) or si-

milarity thresholds τ for query-based importance.

Limitations

Rely on pre-trained image classification models has the disadvantage of a high compu-

tational cost due to the size of the model, which makes mandatory GPU-computing

use in order to process input video in a reasonable time. As future work, it is important

to explore the performance of our framework using image classification models trained

specifically for a limited set of image categories for a given task, which we believe will:

1) improve the quality of the summary for task-related videos, and 2) decrease the

computational cost of computing deep features.

The ad-hoc coordination model’s retrieval performance will depend on the quality of

the VTT dataset employed to train it. In our case, the dataset TRECVID is mainly

composed of short videos commonly related to funny situations, which penalizes the

model’s generalization power. As future work, we propose the use of general VTT

datasets and task-related VTT datasets, which allows to improve the generalization

performance of the coordination model, or improve the specificity of the model in a

given task, respectively.

Finally, our intention from this result is to apply our framework in specific projects useful in

local problems, which can be benefited from video analysis, such as surveillance and security

video analysis, traffic video analysis, and sports video analysis.



A. Annex: Grid-search for coordination

model architecture

In table A-1 it is presented the grid search performed to optimize parameters from coordi-

nation model.
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Table A-1.: Grid search for averaged and recurrent coordination models. Best area under

the curve (auc) from averaged and recurrent architectures are shown in bold.
index activation units alpha drop rate auc avg auc rnn

0 tanh 512 0.8 0.2 0.924942 0.904378

1 tanh 512 0.8 0.3 0.922835 0.900993

2 tanh 512 0.9 0.2 0.927860 0.908676

3 tanh 512 0.9 0.3 0.926024 0.905796

4 tanh 512 1.0 0.2 0.926421 0.909608

5 tanh 512 1.0 0.3 0.926172 0.908004

6 tanh 1024 0.8 0.2 0.917809 0.914399

7 tanh 1024 0.8 0.3 0.916686 0.912122

8 tanh 1024 0.9 0.2 0.923608 0.914632

9 tanh 1024 0.9 0.3 0.922577 0.911936

10 tanh 1024 1.0 0.2 0.924254 0.914348

11 tanh 1024 1.0 0.3 0.923791 0.912855

12 relu 512 0.8 0.2 0.928338 0.602629

13 relu 512 0.8 0.3 0.926376 0.596629

14 relu 512 0.9 0.2 0.926718 0.603571

15 relu 512 0.9 0.3 0.925429 0.596465

16 relu 512 1.0 0.2 0.924304 0.898307

17 relu 512 1.0 0.3 0.923535 0.895910

18 relu 1024 0.8 0.2 0.929189 0.652779

19 relu 1024 0.8 0.3 0.930429 0.647643

20 relu 1024 0.9 0.2 0.927276 0.909161

21 relu 1024 0.9 0.3 0.928020 0.833548

22 relu 1024 1.0 0.2 0.924323 0.912850

23 relu 1024 1.0 0.3 0.925683 0.910773

24 mish 512 0.8 0.2 0.911142 0.613876

25 mish 512 0.8 0.3 0.907558 0.607409

26 mish 512 0.9 0.2 0.914496 0.911838

27 mish 512 0.9 0.3 0.912623 0.607397

28 mish 512 1.0 0.2 0.914715 0.910061

29 mish 512 1.0 0.3 0.913756 0.908454

30 mish 1024 0.8 0.2 0.913968 0.605957

31 mish 1024 0.8 0.3 0.909277 0.597742

32 mish 1024 0.9 0.2 0.918503 0.915619

33 mish 1024 0.9 0.3 0.916725 0.597599

34 mish 1024 1.0 0.2 0.918153 0.913205

35 mish 1024 1.0 0.3 0.917491 0.912279
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