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Resumen

La caracterización de propiedades ópticas no lineales, como lo son el ı́ndice de refracción

y el coeficiente de absorción no lineal, es uno de los temas más importantes en óptica no

lineal debido a su aplicación en muchos campos como la espectroscopia, procesamiento de

materiales, biof́ısica, sensado atmosférico, metroloǵıa, entre otros. Además de la posibilidad

de creación de nueva tecnoloǵıa. En esta tesis se implementó y calibró la técnica Z-Scan, una

de las técnicas más utilizadas para obtener tanto el ı́ndice de refracción no lineal como el co-

eficiente de absorción de un material. Asimismo, los fenómenos no lineales dentro de la fibra

óptica son bien conocidos debido a sus aplicaciones y ventajas tales como la baja enerǵıa

de entrada requerida para generar fenómenos de supercontinuo, mezclado de cuatro ondas y

ondas dispersivas. En este trabajo se realizaron varias simulaciones con nuevas geometŕıas

de fibras, respuestas de material y gases nobles dentro de la fibra. Se consideraron diferentes

reǵımenes de potencia de entrada, ancho de pulso y presión. Se reportaron los parámetros no

lineales para las sustancias orgánicas usadas, nanotubos de carbono de paredes múltiples y

CS2, indicando la razón principal detrás de cada resultado y abordando los posibles nuevos

fenómenos involucrados. La respuesta de salida no lineal tanto en el dominio del tiempo

como en el de frecuencia se reportó en varias simulaciones, obteniendo el pulso no lineal de

salida para la nueva función de respuesta del CS2, se propuso una nueva consideración donde

el pulso final depende de la distancia de propagación para materiales no instantáneos y la

constante no lineal (γ) se deben recalcular en cada paso. Se demostró cómo se puede contro-

lar el pulso de salida cambiando la longitud de la fibra; entre los resultados más importantes

se encontró la posibilidad de cambiar entre la inestabilidad de la modulación y el mezclado

de cuatro ondas solo variando la distancia de propagación. Finalmente, se encontró que un

tipo especial de fibra, a saber, la fibra de núcleo hueco de curvatura negativa, se puede usar

para obtener un amplio espectro de banda cuando se llena con gases nobles y se sintoniza

con la presión, desde el comportamiento lineal hasta la zona supercŕıtica.

Palabras clave: óptica no lineal, Z-scan, generación de supercontinuo, onda disper-

siva, mezclado de cuatro ondas, ı́ndice de refracción no lineal, fibra de cristal fotónico

de núcleo hueco, fenómenos no lineales.
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Abstract

The characterization of nonlinear optical material properties, such as nonlinear refractive

index and nonlinear absorption coefficient, is one of the most important subjects in nonlin-

ear optics due to its application in many fields such as spectroscopy, material processing,

biophysics, atmospheric sensing and metrology, among others. Besides the possibility of cre-

ating new technology. In this thesis, the Z-scan technique was implemented and calibrated.

It remains one of the most widely used techniques to obtain both nonlinear refractive index

and the absorption coefficient of a material. Moreover, nonlinear phenomena inside optical

fiber is well known due to their applications and advantages like the low input energy re-

quired to generate supercontinuum, four wave mixing, dispersive wave, among others. In

this work, several simulations were performed with new fiber geometries, material responses

and different noble gases infiltrated in fiber. Different simulation regimes were considered

as well by varying input power, pulse width and pressure. Nonlinear parameters for organic

dyes, multi-walled carbon nanotubes, and CS2 were reported, pointing out the main reasons

behind each result and addressing possible new phenomena involved. The nonlinear output

response in both time and frequency domains was reported for several simulations, obtaining

the nonlinear pulse output for the new CS2 response function. A novel consideration was

proposed in which the final pulse depends on the propagation distance for non-instantaneous

materials and the nonlinear constant (γ) must be recalculated at each step. It was demon-

strated how the output pulse can be controlled by changing the fiber length. Among the

most important results, it was found there exists a possibility to change between modulation

instability and four wave mixing by only varying the propagation distance. Finally, it was

also found that a special type of fiber, namely negative curvature hollow core fiber, can be

used to obtain a broad band spectrum when it is filled with noble gases and they can be

tuned with pressure from linear behavior up to a super critical zone.

Keywords: Non-linear optics, Z-scan, supercontinuum generation, dispersive wave,

four wave mixing, nonlinear refractive index, hollow core photonic crystal fiber, non-

linear phenomena.
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Hypothesis

Implementation of a temporal resolution nonlinear optical characterization technique Z-scan.

To achieve it, first a research about the theoretical bibliography involved in the technique is

going to be performed , then the set up implementation and finally the technique validation

through the measurement of different and known nonlinear substances as CS2. In the set up

implementation a code is going to be develop to have control about the variables involved

in the measurement where the all system is going to be integrated: physical and software

to finally obtain the nonlinear coefficients. This is to the aim of answer different questions

about substances such as: pulse width, power and concentration influence in the measure-

ment. On the other hand, how an optical pulse that travels inside fiber optic is affected in

its width and shape both in temporal and frequency domain under different circumstances:

fiber geometry, fiber material filled, input pulse parameters, among others will be addressed.

For this purpose simulations will be performed taking into account the theory known at the

moment and contrast it with the results.

General Objective

To Study theoretical and experimentally the nonlinear pulse propagation in fiber optics

infiltrated with inert gasses and liquids.

Specific Objectives

• To measure the nonlinear properties of some liquids and organic dyes by using the

Z-scan technique.

• To simulate the nonlinear pulse propagation in fibers filled with inert gases, liquids,

and organic dyes.
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1. List of symbols and abbreviations

Symbols

E — Electric field.

P — Polarization.

χ(i) — ith order susceptibility.

n2 — nonlinear refractive index.

n2,el — Nonlinear refractive index due to the electronic response.

n2,mol — nonlinear refractive index due to the molecular contribution.

ω0 — Central pump wavelength .

ε — dielectric constant with its nonlinear part.

ε0 — dielectric constant in vacuum.

k0 — Pump wave vector.

β — Propagation constant.

γ — Nonlinear coefficient.

γ(z) — Nonlinear coefficient propagation dependent.

R(t) — Raman response function.

fR — fractional contribution of the delayed Raman response to nonlinear

polarization.

LNL — Nonlinear length.

LD — Dispersive length.

P0 — Initial peak power.

Ps — Peak power of fundamental soliton.

T0 — Initial pulse width.

φNL — Nonlinear phase.

N — Soliton number.

β2 — Group velocity dispersion.

Is — Stoke intensity.

Ip — Pump intensity.

gR — Raman gain coefficient.

ωs — Soliton frequency.

ωd — Phase matching in Dispersive wave.



xxi

ρd — Normalized dispersive wave power.

δm — normalized dispersion parameter.

ωFWM — Four wave mixing frequency.

Ωs — Phase matching condition for four wave mixing.

α0 — Linear absorption.

z0 — Rayleigh distance.

Leff — Effective sample length.

T (z) — Normalized transmittance in Z-scan technique.

∆Tp−v — difference peak valley in the transmittance, Z-scan technique.

CS2 — Carbon disulfide.

µmn — dipole moment between m and n states.

Aeff — Effective area.

TFWHM— Pulse width at half maximum.

fm — Molar fraction.

h′(t) — Characteristic response time of the nuclear mechanisms.

rd(t) — Diffusive contribution.

rl(t) — Librational contribution.

rc(t) — Collision contribution.

Pcr — Critical power to achieve ionization .

Operators

D̂ — Differential operator.

N̂ — Nonlinear operator.

Abbreviations

GVD — group velocity dispersion.

SPM — self-phase modulation.

SRS — Spontaneous Raman scattering .

CW — Continuous wave.

TOD — Third order dispersion.

DW — Dispersive wave.

SCG — Supercontinuum generation .

ZDW — Zero dispersion wavelength .

SV EA — Slowly varying envelope approximation .

GD — Gaussian decomposition method.

PCF — Photonic crystal fiber.



xxii 1 List of symbols and abbreviations

HCPCF — Hollow core photonic crystal fiber.

LCPCF — Liquid core photonic crystal fiber.

NHCPCF— Negative hollow core photonic crystal fiber.

FEM — Finite element modeling.

NLSE — Nonlinear Schrödinger equation.

GNLSE — Generalized nonlinear Schrodinger equation.

FFT — Fast Fourier transform.

MWCNT — Multi walled carbon nanotubes.

TPA — Two photon absorption.

NSR — Non-solitonic radiation.

NT — Nonlinear terms.



2. Introduction

The study of nonlinear optic properties is of great importance due to its applications in

many fields as spectroscopy, frequency metrology, sensing, arbitrary waveform generation

[1], telecommunications, laser development, and fundamental science such as modelling of

relativistic systems or statistical rogue wave formation [68] among others. Nonlinear phe-

nomena occur at high power levels because the magnitude of the nonlinear properties are

very low, so it’s necessary a high interaction that these properties can be considered. There

are many factors that affect the nonlinear propagation through fiber optics which need to be

considered in order to study the mechanism of generation of different phenomena, some of

them are the optical pulse intensity, temporal width, material, and fiber structures. In the

interaction between light and material, there are different terms that account for different

properties, one approach to understand the influence of each term in the interaction is using

the nonlinear Schrodinger equation (NLSE) [2]. This equation allows us to make simulations

and compare with experimental studies in order to understand how the light interacts with

different materials. Some terms involved in the NLSE are: dispersion, random noise, kerr

effect, and Raman response. Mixing of these effects can turn out in amazing behaviors, like

optical solitons formation which is a result of the interplay between the dispersion and the

kerr effect [13], [14], [15]. It is very important to have a correct nonlinear characterization of

the material under study in order to be able of interpreting the results and make good calcu-

lations, with the goal of identifying each phenomenon and have a clear picture of the physics.

To do this, there are many techniques, one of them, that have attracted a lot of attention

because its velocity, and versatility, is the Z-scan technique, where is possible identifying

the nonlinear refractive index and the nonlinear absorption coefficient at the same time [22],

[23], [24]. This technique is implemented in chapter four, where was made a program to

obtain the nonlinear refractive index and absorption coefficient, where we have correctly

measured some materials such as CS2 , Organic dyes, ethanol and Multiwalled carbon nan-

otubes. The major attractive of some kind of liquids and organic dyes are the high nonlinear

refractive indexes, which permit to work with low power lasers. There are other ways to

obtain a considerable reaction between light and materials, one of these is by means of the

fiber infiltration with these liquids or even gases where light is confined with the objective of

getting more nonlinear interaction. On the other hand, the use of gases, which exhibit new

properties and applications like filamentation that works as wave guide through so many

kilometers without almost any losses, have received much attention due to its capability to
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measure atmospheric pollutants [7], [25], [26], [33]. Another interesting property of gases

is that they do not suffer easily damage due to the use of high energy lasers, facilitating

the appearance of new phenomena like ionization that generate a dispersive wave in the

ultra violet region, which is a good start to study new physics and applications, besides this

opens the door to enhance the spectral broadband in the supercontinuum generation. In this

work, we will focus on nonlinear calculations in fiber structures infiltrated with liquids and

gases, with different pump pulse parameters such as intensity, pulse width, and wavelength.

Where the principal objective of this thesis is the theoretical and experimental study of the

nonlinear pulse propagation in fiber optics infiltrated with inert gases and liquids, to achieve

it the work will focus in the nonlinear properties measurement of some liquids by the Z-

scan technique (chapter four) and the simulation of the nonlinear pulse propagation in fibers

filled with inert gases, liquids, and organic dyes (chapter five), besides a preliminary fiber

infiltration system is proposed and its fabrication is described to the experimental study of

nonlinear pulse propagation (appendix A).



3. Theoretical framework

3.1. Fundamentals of nonlinear optics

3.1.1. Chromatic Dispersion

The bound electrons’ response in a dielectric to an external electric field is known as chro-

matic dispersion, which is manifest trough the frequence dependency of the refractive index

n(ω). Far from a medium’s resonances, the refractive index can be approximated by the

Sellmeier equation [2] :

n2(ω) = 1 +
m∑
j=1

Bjω
2
j

ω2
j − ω2

(3-1)

Where ωj is the resonance frequency and Bj is the strength of jth resonance. Convention-

ally, these parameters are obtained by fitting the dispersion curves. For the case of gases,

the Sellmeier equation can be modified to take into account the pressure and temperature

dependencies [3] and thus can be written as [4].

n2(λ, ρ, T )− 1 =
ρ

ρ0

· T0

T
·
(

B1λ2

λ2 − C1

+
B2λ2

λ2 − C2

)
(3-2)

In the nonlinear regime, the combination of dispersion and nonlinearity create new phenom-

ena that will be discussed more thoroughly in the next chapters. In table3-1, it is presented

some gases used along this thesis and their Sellmeier coefficients, including one correction

from [4].
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Table 3-1.: Sellmeier coefficients for some gases at 1000mbar

and 0◦c take it from [4]

Gas B1× 10−8 C1× 10−6 B2× 10−8 C2× 10−3

Argon 20332.29 206.12 34458.31 8.066

Krypton 26102.88 2.01 56946.82 10.043

Xenon 103701.61 12.75 31228.61 0.561

The effects of fiber dispersion are included by expanding the propagation constant β in a

Taylor series around the frequency ω0 at which the pulse spectrum is centered:

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)2 + ... (3-3)

The envelope of an optical pulse travels at the group velocity, the parameter β2 represents

dispersion of the group velocity and is responsible for pulse broadening. This phenomenon

is known as group velocity dispersion (GVD). The dispersion parameter D is related to β2

and n as follows:

D =
dβ1

dλ
= −2πc

λ2
β2 = −λ

c

d2n

dλ2
(3-4)

From equations 3-3 and 3-4 it can be seen that the dispersion parameter depends on the

material and the structure of the waveguide. For the different fiber structures considered,

the GVD can be changed to reach a desire effect. Gases exhibit an interesting phenomenon,

the GVD can be tuned through pressure and temperature while keeping the same fiber

geometry. When β2 > 0, the fiber is said to exhibit normal dispersion while for β2 < 0 the

fiber exhibits anomalous dispersion. Thus, one can expected to see different GVD behaviour

under distinct conditions of fiber geometry, medium of propagation and pressure.

3.1.2. Maxwell equations

The propagation of an electric field is governed by Mawxell’s equations, which in differential

form are read as:

5× E = −∂B

∂t
(3-5)

5×H = J +
∂D

∂t
(3-6)
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5 ·D = ρf (3-7)

5 ·B = 0 (3-8)

where E and H are electric and magnetic fields, respectively, and D and B are electric and

magnetic flux densities. In the absence of free charges: J = 0 and ρf = 0. The flux densities

D and B arise in response to E and H propagating inside the medium and are related

through:

D = ε0E + P (3-9)

B = µ0H + M (3-10)

for a nonmagnetic medium M = 0. By taking the curl of eq.3-5 and using eq.3-6, eq.3-9 and

eq.3-9 one can obtain the wave equation that describes light propagation in optical fibers:

5×5× E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
(3-11)

where P is known as polarization and it is in this term that optical nonlinearity lies. Far

from medium resonances, P can be expressed as two parts: one accounts for linear response

and the other for the nonlinear response P (r, t) = PL(r, t) +PNL(r, t). Considering PNL(r, t)

as a small perturbation term and n(ω) independent of position one can turn eq.3-11 into the

Helmholtz equation, with the identity:

5×5× E ≡ 5(5 · E)−52E = −52 E (3-12)

and the Helmholtz equation with the electric field in the frequency domain

52Ẽ + n2(ω)
ω2

c
Ẽ = 0 (3-13)

3.1.3. Source of nonlinearities

When an external electric field’s magnitude is high enough for a certain dielectric medium,

its response starts to be significantly nonlinear, where the bound electrons exhibit an an-
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harmonic motion in response to the electric field. As result, the total polarization P can be

expressed as

P = ε0

(
χ(1) · E + χ(2) : EE + χ(3)...EEE + ...

)
(3-14)

where χ(i) is the ith susceptibility. χ(2) is zero for the case of centrosymmetric crystalline

media as is the case of fused silica, so χ(3) plays a dominant role in nonlinear fiber optical

propagation. In a simplified form, the refractive index with the intensity dependence can be

expressed as:

ñ(ω, I) = n(ω) + n2I = n+ n2|E|2 (3-15)

where I is the optical intensity and n2 is the nonlinear index coefficient related to χ(3) by

the relation n2 = 3
8n
Re(χ3).

The nonlinear refractive index n2 is a intrinsic property of the material, some relevant values

for this thesis are tabulated in table 3-2.

Table 3-2.: n2 for some relevant gases used in this

thesis [5], [6]

n2(×10−20m2/W )

material 1 bar 25 bar 90 bar 140 bar

Argon 0.001268 0.013 0.8 0.9

Krypton 0.003069 0.015 0.1 0.19

Xenon 0.09158 0.12 1.4 1.6

3.1.4. Pulse propagation

Assuming a quasi-monochromatic pulse spectrum, centered at ω0 and with spectral width

∆ω such that ∆ω/ω0 << 1 and under the slowly varying envelope approximation, the electric

field can be expressed as:

E(r, t) =
1

2
x̂[E(r, t)exp(−iω0t) + c.c] (3-16)

where E(r, t) is a slowly varying function of time. In a similar way, P and PNL can be

expressed. Substituting eq.3-16 and each corresponding P and PNL in the spectral domain
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into eq.3-11, the result is found to satisfy the Helmholtz equation:

52Ẽ + ε(ω)k2
0Ẽ = 0 (3-17)

where k0 is the wave vector and ε(ω) = 1 + χ̃(1)(ω) + εNL is the dielectric constant with its

nonlinear part. Equation 3-17 can be solved by using separation of variables. Assuming a

solution of the form Ẽ(r, ω − ω0) = F (x, y)Ã(z, ω − ω0)exp(iβ0z).

Using the Taylor series expansion presented before for β one can find:

∂A

∂z
+ β1

∂A

∂t
+ i

β2

2

∂2A

∂t2
+
α

2
A = iγ(ω0)|A|2A (3-18)

where the Taylor expansion was considered up to the second order nonlinear coefficient and

α accounts for losses. The nonlinear parameter γ is defined, under the condition that F (x, y)

varies slowly over the pulse bandwidth, as:

γ(ω0) =
ω0n2

∫∫∞
−∞ |F (x, y)|4dxdy

c
∫∫∞
−∞ |F (x, y)|2dxdy

(3-19)

This expression holds under the assumption of an instantaneous response i.e. involving only

electrons. Now, considering non-instantaneous response, electronic and nuclear, the PNL

takes the form:

PNL(r, t) =
3ε0

4
χ3
xxxxE(r, t)

∫ t

−∞
R(t− τ)|E(r, t)|2dτ (3-20)

After some straightforward manipulation one can obtain the generalized Nonlinear schrödinger

equation (GNLSE)

∂A

∂z
+

1

2
(α(ω0)+iα1

∂

∂t
)A−i

∞∑
n=1

inβn
n!

∂nA

∂tn
= i(γ(ω0)+iγ1

∂

∂t
)(A(z, t)

∫ ∞
0

R(t
′
)|A(z, t−t′)|2dt′

(3-21)

where R(t) is known as the Raman response function and includes both the electronic and

nuclear contributions, its functional form can be written as:

R(t) = (1− fR)δ(t) + fRhR(t) (3-22)

fR represents the fractional contribution of the delayed Raman response to nonlinear polar-

ization PNL. In the case of noble gases there is no Raman response, so only the electronic

response may be taken into account.
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Table 3-3.: some characteristics terms of GNLSE and its main contribu-

tion.

Dispersion contribution

Group velocity dispersion (GVD) 1
2
β2(∂2A/∂T 2)

Third order dispersion (TOD) 1
6
β3(∂3A/∂T 3)

Nonlinear contribution

Kerr effect iγA(1− fR)|A|2

Raman effect iγA
∫∞

0
fRhR(t

′
)|A(z, t− t′)|2dt′

self steepening − 1
ω0

∂
∂T
A(1− fR)|A|2

self frequency shift − 1
ω0

∂
∂T

∫∞
0
fRhR(t

′
)|A(z, t− t′)|2dt′

It is possible to define some useful variables that account for the physics of pulse propagation.

For example the scaling length can be defined as:

LNL =
1

γP0

(3-23)

and

LD =
T 2

0

|β2|
(3-24)

where P0 is the peak intensity and T0 is the initial pulse width. The dispersion must be

take it into account for pulses traveling over distance L > LD, and is the same for nonlinear

phenomena L > LNL. For a fiber such that L < LD and L < LNL neither the dispersive nor

nonlinear effects affect the propagating pulse. When LD ∼ L and L << LNL the dispersive

effects dominate over nonlinear effects and vice versa.

3.1.5. Self-phase modulation

Considering a pulse travelling a distance L, such that LNL < L << LD one can consider

only nonlinear effects and neglect dispersion effects. Without considering dispersive terms

and only electronic response the pulse propagation equation can be written, with zero losses,

as follows:
∂A

∂z
=

i

LNL
|A|2A (3-25)

equation 3-25 has a solution of type

A(L, T ) = A(0, T )exp(iφNL(L, T )) (3-26)

and

φNL(L, T ) = |A(0, T )|2(L/LNL) (3-27)
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The spectral changes induced by self-phase modulation (SPM) are a direct consequence of

the time dependence of φNL. A temporally varying phase implies that the instantaneous

optical frequency differs across the pulse from its central value. The difference is given by

δω(T ) as:

δω(T ) = −∂φNL
∂T

= −(
L

LNL
)
∂|A(0, T )|2

∂T
(3-28)

New frequencies are generated continuously as the pulse propagates down the fiber. The

SPM-induced chirp can produce spectral broadening or narrowing depending on the initial

chirp. For the case of unchirped pulses, the spectral always will be broader. Considering an

unchirped Gaussian pulse, the trailing part will shift towards higher frequencies (blue shift)

as ∂|A(0,T )|2
∂T

< 0, while the leading part will experience a frequency down shift (red shift),
∂|A(0,T )|2

∂T
> 0.

3.1.6. Self-focusing

When a Gaussian beam has a transverse intensity distribution, i.e., the intensity at the center

is much stronger than at the edges. Thus when a Gaussian beam propagates in a nonlinear

medium, the Kerr effect leads to a refractive index distribution inside the medium that is

non-uniform along the radial direction. In this scenario, the medium plays a role similar

to a lens, the profile size of the beam will continuously be changed between convergence or

divergence, as is shown in Fig.3-1.

Figure 3-1.: self-focusing effect inside a nonlinear medium: a. Self-focusing, n2 > 0. b.

Self-defocusing, n2 < 0.

In the self-focusing process, there is a competition between self-focusing and diffraction, in

this continuous shift between focus and defocus at some point the beam could achieve a
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balance and a self-trapping effect will take place. This process is the space optical soliton

effect. The laser intensity required to produce self-focusing will be [8]:

I ≥ n0

2n2k2a2
(3-29)

where a is the beam waist radius of the laser. It’s worthwhile to notice that this is the

fundamental principle of the Z-scan technique.

3.1.7. Self-steepening

The group velocity of a pulse propagating in a Kerr medium presents an intensity dependence

that results in pulse distortion. The peak of the pulse moves slower than its trailing edge.

Unlike the effect caused by SPM, the broadening due to Self-steepening is asymmetric. Since

the SPM causes the trailing edge (blue components) to become steep, the overall broadening

spectrum is significantly more blue shifted when compared to SPM. however, although the

pulse spectrum is more blue shifted, the red shifted peaks become more intense.

3.1.8. Temporal soliton

Soliton refers to a kind of wave that can propagate undistorted over long distances. Optical

solitons occur when both dispersion parameters and nonlinear parameters have an impact

on the propagating pulse, giving as a result a balance between both effects. Introducing

three dimensionless variables:

U =
A√
P0

, ξ =
z

LD
, τ =

T

T0

(3-30)

Additionally, an important parameter is defined: the soliton number, N , which accounts

for the relationship between the dispersive length and nonlinear length, and it is a good

indicator in many dynamics and processes about the beam evolution. In this work we will

consider the following definition of N :

N2 =
LD
LNL

=
γP0T

2
0

|β2|
(3-31)

where N does not have to be an integer. Finally, defining u = NU and considering only

instantaneous process and GVD, the standard form of the NLS equation is obtain

i
∂u

∂ξ
+

1

2

∂2u

∂τ 2
+ |u|2u = 0 (3-32)



3.1 Fundamentals of nonlinear optics 11

In the equation 3-32, β2 is negative. This sign that accompanies the second derivative with

respect to time is convened to be negative when the pulse is propagating in anomalous

regime. The previous equation can be solved by the inverse scattering method, for the case

of fundamental soliton N = 1 it’s defined as:

u(ξ, τ) = sech(τ)exp(iξ/2) (3-33)

In absence of higher order nonlinear and dispersive effects, a higher solution of soliton N > 1,

changes its shape and returns to its original form periodically. These periods are known as

soliton periods: Lsol = (π/2)LLD. As the soliton propagates it splits in (N − 1) distinct

pulses around Lsol/2 only to rejoin to its original shape after a soliton period.

Figure 3-2.: Temporal evolution of higher soliton number N = 3 over one soliton period,

higher nonlinear and dispersive effects are ignored. [2]

In case the soliton number is not be an integer, the pulse will evolve behaving as if it were

an integer soliton, for example N = 1.3 behaves as N = 1. Part of this extra energy is shed

away in the form of dispersive waves. Under non-ideal conditions, solitons can be subjected

to many types of perturbations as they propagate, such as: fiber losses, noise, third order

dispersion and intra pulse Raman scattering. In the presence of these phenomena, higher

order solitons can split into fundamental solitons, this process is known as soliton fission,

the solitons are ejected one after the other with the earliest ejected having the highest peak

power, shortest duration and propagating with the fastest group velocity. This process is

fundamental to understanding some interplay effects like deep ultra violet vacuum dispersive

wave generation, that will be addressed in more detail later.



12 3 Theoretical framework

3.1.9. Stimulated Raman Scattering

In any molecular medium, spontaneous Raman scattering (SRS) can transfer part of the

energy from one optical field to another, whose frequency is downshifted. In noble gases,

SRS is not present, making them suitable to studies that imply spectral broadening without

this contribution [9], [10], [20]. In a simple approach, valid under continuous wave (CW)

and quasi continuous wave conditions, the initial grow in stokes waves can be described as

dIs
dz

= gRIpIs (3-34)

Where Is is the stoke intensity and Ip is the pump intensity, and the Raman gain coefficient,

gR, is related to the cross section of the stimulated Raman scattering, which is related to the

imaginary part of the third order susceptibility. The Raman gain depends on the composition

of the fiber core.

Assuming pulse widths larger than the Raman response time so that transient effects are

negligible. Wave lengths of the pulse Raman can lie in normal or anomalous GVD, when

it is localized in anomalous region soliton effect become important and Raman pulse can

propagate as a soliton. Numerical results have shown the formation of Raman soliton when

the pulse is formed at a distance at which the pump pulse, propagating as a higher-order

soliton, achieves its maximum width. So that the solitons are formed is necessary that

LD ∼ Lw, where Lw is known as the walk-off length and is defined as

Lw =
T0

|d|
(3-35)

and d is the walk-off parameter that accounts for the group velocity mismatch between the

pump and the Raman pulse, d = v−1
gp − v−1

gs . The Raman effect is a shift to red wavelengths

and in the time domain is seen as a pulse that lags behind the input pulse because the red

components travel slowly in the anomalous GVD regime.

3.1.10. Dispersive Wave

From eq.3-31, when N = 1.5 the optical pulse propagates as N = 2 and as N > 1, the soliton

undergoes fission process due to the perturbation by the third or higher order dispersion

terms. The importance of the parameter N is clear as any combination of γ, P0, T0 and β2

that give raise to the same number N will have the pulse experiment the same behavior and

effects. As the pulse propagates, it is perturbed by higher order dispersive and nonlinear

terms, eventually these perturbations break up the pulse into its constituent solitons, the

phenomenon called solition fission. The perturbation of the third order dispersion term

(TOD) to the travelling pulse gives as a result an energy transfer to a dispersive wave (DW)
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even if only the fundamental soliton is present. The frequency of this DW is determined by

a phase matching condition, this kind of radiation is also known as Cherenkov radiation [12].

The phase matching condition is that both dispersive wave and soliton must propagate at

the same phase velocity, fulfilling the following:

β(ω) = β(ωs) + β1(ω − ωs) +
1

2
γPs (3-36)

Expanding β(ω) in a Taylor series around the soliton frequency ωs, one obtains: [13]

∞∑
m=2

βm(ωs)

m!
(ωd − ωs)m =

1

2
γps (3-37)

where Ps is the peak power of the fundamental soliton. Taking terms up to third order the

phase matching is then given by:

Ωd ≈ −
3β2

β3

+
γP0β3

3β2
2

(3-38)

Based on the given phase matching, it is possible to obtain the radiation frequency and

relative power of the DW:

∆υdT0 ≈
1

4πδ3

[1 + 4δ2
3(2N − 1)2] (3-39)

ρd =
Pd
P0

≈ (
5πN

4δ3

)2[1− 2π

5
(2N − 1)δ3]2exp(− π

2(2N − 1)δ3

) (3-40)

where the normalized dispersion parameter is defined as:

δm =
βm

m!Tm−2
0 |β2|

(3-41)

In Fig.3-3 the spatial evolution of the spectrum is presented with N = 2 for two different

cases: when no higher order dispersion terms are considered δm = 0 and when the TOD is

considered δ3 = 0.03:
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Figure 3-3.: a.Spectrum soliton (N = 2) in the absence of dispersive terms at 10 m propa-

gation distance. b.Spectrum with δ3 = 0.03. [13]

3.1.11. Intrapulse Raman Scattering

The main influence of the Raman-induced frequency shift (RIFS) term can be seen over

the dispersive wave generation, where a DW is generated at the same frequency and spatial

propagation, nevertheless it presents a much lower amplitude. This is a good indicator that

the DW is generated before the Raman term starts to act, but its effects are observed over

the power distribution, where other waves are shifted towards red spectral components.

3.1.12. Four Wave Mixing

Four wave mixing is one of the most important third-order parametric processes in spectral

broadening phenomena. It is a process where three frequencies, under phase matching con-

dition, interact in a Kerr medium leading to the generation of a fourth frequency. In the

case where all frequencies are equal, then a third harmonic is generated with ωFWM = 3ω.

Parametric processes are those in which optical waveguides play a passive role, there is no

interaction with the propagating media that induces changes in its quantum states. The

medium only mediates interaction among optical waves, they require phase-matching before

they can build up along the waveguide. There are several techniques to achieve phase-

matching in optical fibers: either through the use of physical mechanisms, multimode fibers

or single mode fibers. The last method presents different regimes where the phase matching

can be achieved, in this thesis the phase matching due to self phase modulation will be
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considered: in this case the pump wavelength lies in the anomalous GVD regime and the

material contribution surpasses the wave contribution significantly, nevertheless as the ma-

terial and wave contribution are negative, it is possible to compensate this by the nonlinear

contribution. Under this view, the phase matching occurs when:

Ωs = (
2γP0

|β2|
)1/2 (3-42)

Thus, a pump wave would develop sidebands at ω1±Ωs, where the lower wavelength gener-

ated is known as anti-Stokes band and the higher as Stokes band. In the case of microstruc-

tured fibers, higher order dispersive effects become important and must be considered. It

has been found that even orders also affect the phase matching condition. Considering all

orders of dispersion, the phase matching condition can be written as:

∞∑
m=2,4,...

βm(ωp)

m!
Ωm
s + 2γP0 = 0 (3-43)

where Ωs = ωs − ωp is the shift of the signal frequency from the pump frequency ωp. in

anomalous dispersion regime, the m = 2 term dominates and the frequency shift is given by

equation 3-42.

3.1.13. Supercontinuum generation

When an optical pulse propagates inside a highly nonlinear fiber, its temporal as well as

its spectral evolution are affected by both nonlinear and dispersive effects. For intense

enough pulses the pulse spectrum becomes so broad that it may extend over a wide range of

frequencies due to both nonlinear effects seen before being able to take place. Such extreme

spectral broadening, it is referred to as Supercontinuum generation(SCG). The parameter

N defined in eq3-31 is a good indicator of the supercontinuum process, it has found out

that if N is relatively large (N > 10) the phenomenon of soliton fission can produce a

supercontinuum. One critical criterion to obtain SCG is the choice of pump wavelength, this

must be close to the Zero dispersion wavelength (ZDW), more precisely where β2 < 0. Much

research about SCG has been done with different pulse widths, pump wavelengths, fiber

geometries and infiltrated materials as organic liquids or noble gases that present different

dispersive properties [16][17] [18][19][20].
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3.2. Z-scan

The measurement of third order nonlinear susceptibility χ3, nonlinear refractive index n2

and nonlinear absorption coefficient β2 is an important matter for their use in different

fields. Different techniques have been developed to achieve this task, among them: nonlinear

elliptical polarization method, the interference method and the beam-deflection technique

[21]. Most of these methods require two light beams and can not directly measure the real

and imaginary part of the susceptibility. The Z-scan technique was invented at the end of

the eighties as an alternative as it is based on the self-focusing phenomenon. The real and

imaginary parts of χ3 can be obtained with only one light beam. Besides this, it is possible

to extract the nonlinear refractive index, its sign, and the nonlinear absorption coefficient

with a single optical set up.

3.2.1. The Z-scan technique

Figure 3-4.: Z-scan set-up, the light comes from left to right. D1: reference detector. BS:

beam splitter. L1: Lens to focus into sample. L2: Lens to focus into detector.

D2: transmittance detector.

Using a single-mode Gaussian beam, the transmittance is measured in the far field after

the light passes the sample, as shown in Fig3-4. The sample’s position is varied between
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an aperture and the detector. Assuming a thickness sample smaller than the diffraction

length of the focused beam, this setup can be seen as a thin lens of variable focal length.

The scan starts from negative Z, because of the low irradiance nonlinear phenomena are

excited negligibly and, as a consequence, D2/D1 remains relatively constant. As the sample

is moved towards positive Z, when it gets close to the focal point of the lens, the beam

irradiance increases giving as a result an excitation of nonlinear phenomena and leading to

self lensing in the sample. There are two possible material responses: one is where as the

sample is brought closer to the focus a negative self-lensing tends to collimate the beam

causing an increase in the transmittance and after the sample passes the focal plane to

the right, the same negative self-defocusing increases the beam divergence, leading to beam

broadening at the aperture and a decrease in transmittance. This case corresponds to a

negative n2. The second kind of response occurs when there is a self-defocusing prior to the

focus leading to a decrease in transmittance followed by an increase after the focal plane, this

indicates a positive n2. In the above case and in the Fig3-5 only refractive nonlinearity was

considered assuming that no absorptive nonlinearities are present. In case that multiphoton

absorption is present the response peak is suppressed and the valley is enhanced, while

saturation produces the opposite effect.

Figure 3-5.: Z-scan traces for negative and positive nonlinear refractive indexes
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In case of purely nonlinear absorption the experiment is performed in open aperture,

α(z, r) = α0 + βI(z, r) (3-44)

where α0 is the linear absorption and β is the nonlinear absorption coefficient. There are

two different cases for β. When β < 0, it is saturable absorption, the transmittance curve

is a symmetrical peak with center at the focal point. For β > 0, we have reverse saturable

absorption or two photon absorption, in this case the trace has a symmetrical valley centered

at the focal point position.

Figure 3-6.: Example of positive and negative β in a 2.7mm thick ZnSe sample. Taken

from [8]. (a) Saturable absorption β < 0. (b) Two photon absorption β > 0

3.2.2. Theory

Considering cubic nonlinearity, the total refractive index is given by:

n = n0 +
n2

2
|E|2 = n0 + γI (3-45)

where E is the peak electric field (cgs) and I is the irradiance (MKS) of the laser beam

within the sample. If E is a Gaussian beam with waist radius w0 propagating along the +Z

direction, the optical field amplitude can be expressed as:

E(z, r, t) = E0(t)
w0

w(z)
exp(− r2

w2(z)
− ikr2

2R(z)
)e−iφ(z,t) (3-46)
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where w(z) = w2
0(1 + (z/z0)2) is the beam radius at z position, R(z) = z(1 + (z/z0)2) is the

radius of curvature of the wavefront at z, z0 = kw2
0/2 is the diffraction length of the beam,

k = 2π/λ is the wave vector and λ is the laser wavelength, all in free space. E0(t) is the

light electric field at the focal plane and contains the temporal envelope of the light pulse.

e−iφ(z,t) contains all the radially uniform phase variations, obtained by making use of the

slowly varying envelope approximation (SVEA) where the main interest is the calculation of

the radial phase variation ∆φ(r). In a thin medium, where the sample length is small enough

that changes in the beam diameter within the sample can be neglected, the self-refraction

process is referred to as external self-action. This condition means L << z0, where L is the

sample length.

The amplitude and phase of the electric field are thus governed by the pair of equations:

d∆φ

dz′
= ∆n(I)k (3-47)

dI

dz′
= −α(I)I (3-48)

where z
′

is the propagation depth in the sample. Neglecting nonlinear absorption, equations

3-47 and 3-48 are solved to give the phase shift at the exit surface of the sample:

∆φ(z, r, t) = ∆φ0(z, t)exp(− 2r2

w2(z)
) (3-49)

With

∆φ0(z, t) =
∆Φ0(t)

1 + (z/z0)2
(3-50)

where ∆Φ0(t) is the wavefront change in the sample at the focal point and

∆Φ0(t) = k∆n0(t)Leff = kn2I0(t)Leff (3-51)

where Leff is the sample length, given by Leff = (1 − e−αL)/α. In case there is no linear

absorption present, we have Leff = L.

The complex electric field leaving the sample, Ee, now contains the nonlinear phase distor-

tions described as:

Ee(r, z, t) = E(r, z, t)e−αL/2ei∆φ(r,z,t) (3-52)

Using the Gaussian decomposition (GD) method [27], the electric field at the exit plane is

decomposed into a summation of Gaussian beams through a Taylor series expansion of the

ei∆φ(r,z,t) term. According to Huygens principle, each Gaussian beam can be propagated to
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the aperture plane where they will reconstruct the beam. The resultant electric field at the

aperture is:

Ea(z, r, t) = E(z, r = 0, t)e−αL/2
∞∑
m=0

[i∆φ0(z, t)]m

m!

wm0

wm
exp(− r2

w2
m

− ikr2

2Rm

+ iθm) (3-53)

Defining d as the propagating distance in free space from the sample to the aperture plane

and g = 1 + d/R(z), then each parameter in 3-53 becomes:

w2
m0 =

w2(z)

2m+ 1
(3-54)

w2
m = w2

m0[g2 + (
d

dm
)2] (3-55)

dm =
kw2

m0

2
(3-56)

Rm = d[1− g

g2 + (d/dm)2
]−1 (3-57)

θm = tan−1[
d/dm
g

] (3-58)

The transmitted power passing throw the aperture is obtained by spatially integrating

Ea(z, r, t) up to the cross section of the aperture radius ra:

PT (z,∆Φ0(t)) = cε0n0π

∫ ra

0

|Ea(z, r, t)|2rdr (3-59)

Taking into account the time variation of light pulse power, the normalized transmittance is

thus:

T (z) =

∫∞
−∞ PT (z,∆Φ(t))dt

S
∫∞
−∞ PI(t)dt

(3-60)

where PI(t) = πw2
0I0(t)/2 is the instantaneous input power (within the sample) and S =

1− exp(−2r2
a/w

2
a) is the aperture linear transmittance. With wa denoting the beam radius

at the aperture in the linear regime. For small |∆Φ0|, the peak and valley occur at the same

distance with respect to the focal point of the lens.

The transmittance can be expressed approximately by setting r = 0 and ∆Φ(t) << 1, where

the far field condition is fulfilled, in equation 3-53. Only two terms are retained, yielding

the expression:

T (z,∆Φ0) = 1− 4∆Φ0(t)x

(x2 + 9)(x2 + 1)
(3-61)
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where x = z/z0. Defining ∆Tp−v as the difference peak valley in the transmittance, it is

possible obtain the nonlinear refractive index from ∆Tp−v. When the aperture is almost

closed (S ≈ 0):

∆Tp−v ≈ 0.406|∆Φ0| (3-62)

obtaining an expression for the nonlinear refractive index:

∆n ≈ ∆Tp−v
0.406kLeff

(3-63)

if the aperture in opened, but the phase changes at focal point is |∆Φ0 ≤ π|:

∆Tp−v ≈ 0.406(1− S)0.25|∆Φ0| (3-64)

and the nonlinear refractive index

∆n ≈ ∆Tp−v
0.406(1− S)0.25kLeff

(3-65)

3.2.3. Nonlinear absorption in open aperture

The third order susceptibility is considered now to be a complex quantity, where the imag-

inary part is related to the nonlinear absorption coefficient β. We start by expressing the

total absorption as:

α(I) = α0 + ∆α = α0 + βI (3-66)

according to this, the light intensity distribution and phase shift at the output surface sample

would then be:

Ie =
I0(r, z, t)exp[−αL]

1 + q(z, r, t)
(3-67)

and

∆φ(z, r, t) =
kγ

β
ln[1 + q(z, r, t)] (3-68)

where q(z, r, t) = βI(z, r, t)Leff . The complex field amplitude at the surface of the sample

after propagation through it would be:

Ee = E(z, r, t)e−αL/2(1 + q)ikγ/β−1/2 (3-69)

Where ikγ/β is the ratio between the real and imaginary parts of the third order susceptibil-

ity, so the nonlinear absorption and nonlinear refractive index both make a contribution to

the far field wavefront variation and transmittance. For |q < 1|, following a binomial series
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expansion in powers of q, Eq.3-69 can be expressed as an infinite sum of Gaussian beams as

follows:

Ee = E(z, r, t)e−αL/2
∞∑
m=0

q(z, r, t)m

m!
[
∏
n=0

(ikγ/β − 1/2− n+ 1)] (3-70)

When the aperture is removed, the Z-scan becomes insensitive to beam distortions and is

only a function of the nonlinear absorption (i.e. S = 1). The transmitted power can be

obtained by a spatial integral of the beam cross section power:

P (z, t) = Pi(t)e
−αL ln[1 + q0(z, t)]

q0(z, t)
(3-71)

Where Pi(t) is the input power and q0(z, t) = βI0(t)Leff/(1 + (z/z0)2). For a temporal

Gaussian pulse, Eq3-71 can be time integrated to give the normalized energy transmittance:

T (z, S = 1) =
1√

πq0(z, 0)

∫ ∞
−∞

ln[1 + q0(z, 0)e−τ
2

]dτ (3-72)

When |q0 < 1|, the transmittance can be expressed in terms of the peak irradiance:

T (z, S = 1) =
∞∑
m=0

[−q0(z, 0)]m

(m+ 1)3/2
(3-73)

In open aperture (i.e. S = 1) the transmittance can be taken from the first order approxi-

mation of Eq3-73 and simplified to obtain:

T (z) = 1− q0(z, 0)

2
√

2
(3-74)

From Eq3-74 and making use of q0(z, 0), the nonlinear absorption coefficient approximation

expression is obtained:

β =
23/2[1− T (0)]

I(0)Leff
(3-75)

Where T (0) is the open aperture transmittance for S = 1 at z = 0:
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3.3. Photonic Crystal Fibers

Photonic crystal fibers (PCFs) are a class of optical fibers based on the properties of photonic

crystals. They employ a microstructured material arrangement of different refractive indexes

that has the ability to confine light. PCFs are divided in two categories: high index guiding

fibers and low index guiding fibers. The first type guide light in a solid core by the modified

total internal reflection (M-TIR) principle. Low index guiding fibers, also known as photonic-

bandgap fibers, instead guide light by the photonic bandgap (PBG) effect [28]. PCFs led

to increased versatility in nonlinear optical research as their dispersion and nonlinearity

properties are of special interest.

3.3.1. Hollow-Core Photonic Crystal Fibers

Hollow core fibers (HCPCF) are a special class of PBG guiding fibers, where the core is

created by introducing a defect in the PBG structure, thereby creating an area where the light

can propagate, in the case of HCPCF the field is confined to an air-filled core. Furthermore,

the fact that the core can be filled by gas or liquid opens the possibility to change its

waveguide properties on the fly, this cannot be made in TIR fibers because the refractive

index of gases is very close to that of air. Among the most notable properties found in

HCPCF we have: high power delivery, potential for gas sensing, low loss in vacuum, ultra

long single-mode interaction lengths (of 10 or even 1000 meters) and near insensitivity to

bending effects [2] [28] [30].
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Figure 3-7.: Photonic Band Gap HC-PCF geometry used in this thesis.

HCPCF have restricted transmission wavelength windows. Filling the fiber’s holes with gases

or liquids can shift these transmission windows. This kind of fiber enables for example the

creation of controlled plasma generation [29]. Between the major attractions of a gaseous

core, in contrast with solid core fiber, is that the nonlinearity and the group velocity dis-

persion (GVD) can be varied by changing the gas pressure, making it possible to shift the

ZDW ranging from UV to near IR.

The most common structure of HCPCF is formed by a hexagonal lattice of holes in the

center of the fiber, surrounding a central hollow core. This arrangement guides a tightly

confined single mode over a restricted spectral range (low loss propagation). The GVD of

HCPCF filled with air has a steep slope, passing through zero inside the transmission win-

dows, but this spectral shape can be changed when air is replaced by a gas or liquid. In this

thesis the core was filled with CS2, Xenon, Argon and Krypton. In Fig3-8 the results of

finite element modeling (FEM) calculation are presented for a structure designed to operate

around a wavelength of 800nm. The limited transmission windows and extreme dispersion

slope prevent application in extreme ultrafast experiments.

There is a second common type of HC-PCF, which has a Kagome-lattice cladding, char-

acterized by a star of David-shaped pattern of glass webs. This kind of fiber provides

ultrabroadband guidance at loss levels, of ∼ 1 dB/m, and anomalous GVD over the entire

transmission window with a low dispersion slope. For the reasons mentioned above, Kagome

fiber has been studied extensively, including the infiltration with gases and how it changes

the nonlinear and dispersion properties with pressure [9] [30] [10].
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Figure 3-8.: Example of a HC-PCF. (a) Scanning electron micrographs (SEMs). (b)

GVD and loss calculated using finite-element modeling (FEM) of an idealized

HCPCF structure. [30]

3.3.2. Negative Curvature Hollow Core Fiber

A hollow core fiber with negative curvature of its core boundary exhibits lower attenuation

than PBG HC-PCF. This was discovered first in 2010 by Y.Y.Wang et al. analyzing the

curvature of the core boundary in HC-PCF. After that, it was demonstrated that the cladding

structure had negligible effects on the losses of Kagome fiber. Negative curvature hollow

core fibers consist on an array of capillaries, which can be in contact or not, non-touching

capillaries can reduce the confinement loss compared to touching capillaries. The hollow

space formed by the capillaries creates the core of the fiber, where the light is confined.

Different parameters can affect the fiber properties: capillaries thickness, whether they are

in contact or now, outer fiber diameter and capillariy diameter, which also determines the

core diameter.Fig 3-9(a) shows the main characteristics of NHCPCF, where the number N

makes reference to the number of capillaries forming the structure. When gas infiltration

is performed, Dcore is the only part of the structure filled. In this thesis we considered 3

different gases: Krypton, Xenon and Argon all at 1 Bar, 25 Bar, 90 Bar and 140 Bar, using

different input powers, pulse widths and propagation lengths.

Different works have been developed to calculate the loss (dB/m), among them [31] [32]

where the range of analysis goes from 2µm up to 9µm, including the fundamental mode

as well as higher order ones. Furthermore, in [31] a loss analysis in function of capillary

thickness was made.
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(a) (b)

Figure 3-9.: (a)Cross section of NCHCPF, taked from [31]. (b) Fundamental mode of

NCHCPCF resolved by FEM, in Krypton at 1 bar.
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3.4. From analytical solution to numerical methods

NLS equation 3-21 is a nonlinear partial differential equation that generally cannot be solved

analytically, except for some specific cases in which the inverse scattering method can be

employed. In this way, a numerical approach is necessary to know its solution. Numerical

methods can be classified in two categories: finite-difference and pseudospectral methods.

The most used method to solve the GNLSE is the split-step Fourier method. In this thesis

two different codes have been implemented: the first was used the Split-step Fourier method

and the second one used the extended Crank-Nicolson method. The main difference between

the two is that in the former, the diffraction term is not included (transverse coordinates),

but in the latter diffraction is taken into account, making it more robust and computationally

expensive. The fast speed at which the split-step method works makes it ideal to use in many

propagation problems, mainly in fiber propagation where diffraction can be neglected. When

free space propagation is considered, diffraction plays a important role at the final output

pulse, in this case a complete scheme must be considered.

3.4.1. Split-Step Fourier Method

We start by approximating the Eq.3-21 to

∂A

∂z
+
α

2
+
iβ2

2

∂2A

∂T 2
− β3

6

∂3A

∂T 3
= iγ(|A|2A+

i

ω0

∂

∂T
(|A|2A)− TRA

∂|A|2

∂T
) (3-76)

where TR ≡
∫∞

0
tR(t)dt ≈ fR

∫∞
0
thR(t)dt.

To implement the Split-Step method. it is useful to write Eq3-76 in the form:

∂A

∂z
= (D̂ + N̂)A (3-77)

where D̂ is the differential operator which accounts for dispersion and losses within a linear

medium and N̂ is a nonlinear operator, that represents the nonlinear phenomena included

in the propagation. These operators are described as:

D̂ = −i
∞∑
n=1

inβn
n!

∂nA

∂tn
− α

2
(3-78)

N̂ = iγ(|A|2A+
i

ω0

∂

∂T
(|A|2A)− TRA

∂|A|2

∂T
) (3-79)

The split-Step method obtains an approximate solution by supposing that in a small prop-

agating distance h, the dispersive and nonlinear effects act independently. In this way, a
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propagation from z to z+h acts in two steps: first the nonlinearity acts alone (D̂ = 0),

in the second step only dispersion acts and nonlinearity is ignored (N̂ = 0). Expressed

mathematically:

A(z + h, T ) ≈ exp(hD̂)exp(hN̂)A(z, T ) (3-80)

The exponential operator exp(hD̂) can be evaluated in the Fourier domain as:

exp(hD̂)B(z, T ) = F−1
T exp[hD̂(−iω)]FTB(z, T ) (3-81)

where F−1
T denotes the inverse Fourier transform. The use of FFT algorithms makes the

Split-Step method faster by up two orders of magnitude compared with most finite-difference

schemes [2].

The Split-Step method ignores the non-commuting nature of the operator D̂ and N̂ . Thus,

it is accurate up to the second order of the step size h.

Figure 3-10.: Illustration of the Split-Step method used for numerical simulations. Fiber

length is subdivided into a number of segments of width h, where nonlinear-

ity acts at the middle, h/2 (dashed line), and dispersion at the boundaries

(continuous line). From [2]

The implementation of the Split-Step method consists in the division of the fiber length in

segments that need not be spaced equally. The optical field is propagated until a distance of

half of a given section length h with only dispersion terms taken into account, using Eq3-81.
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After that, the field is multiplied by a nonlinear term that represents the effect of nonlinearity

over the whole segment h. Finally, the field is propagated the remaining h/2 distance with

dispersion only to obtain A(z+h,T). This same procedure is repeated throughout the entire

propagation distance. Although its implementation is very straightforward, it requires a

careful selection of the step sizes in Z and T to maintain the required accuracy. The use of

FFT imposes periodic boundary conditions, which gives the requirement that the temporal

windows be much wider than the pulse width, typically 10 to 20 times wider. In [17] a

complete review of supercontinuum generation can be found, where they address numerical

calculation issues, such as temporal and spectral windows, number of discretization points

and their relationship with the pulse width.
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3.4.2. Envelope Propagation Model

This model considers the paraxial envelope equation, where the proposed method for this

kind of equations can be extended to paraxial carrier-resolving equation. First, the diffraction

term will be considered and then one by one all terms of GNLSE will be added, including

dispersive and nonlinear terms.

Working in cylindrical symmetry around the propagation axis, let E denote the envelope

E(r, z, t), where the laser field has a carrier frequency ω0 and wavenumber k0 = k(ω0). The

propagation equation reads then [33]:

κ
∂E

∂z
=
i

2
[∆⊥E +D(E)] + k0[(T 2Nkerr(E)) + TNNLL(E) +Nplasma(ρ, E)] (3-82)

Where ∆⊥ ≡ ∂2
r +(1/r)∂r is the transverse Laplacian, acting only on transverse coordinates.

D denotes the operator accounting for all dispersive terms, Nkerr and NNLL correspond

to kerr effect and nonlinear losses, Nplasma makes reference to plasma contributions. T =

1 + iω−1
0 ∂/∂t and κ ≡ k0 + ik

′
0∂/∂t

3.4.3. Diffraction

Using a monochromatic beam, i.e. laser pulse with central wave number k0 and a narrow

spectrum so that all frequency dependencies can be neglected, the paraxial equation from

Eq 3-82, neglecting all terms except diffraction, becomes:

∂E

∂z
=

i

2k0

∆⊥E (3-83)

We start by describing the beam propagation in terms of 1+1 dimensions, i.e. one transverse

dimension and one evolution or propagation variable z. To solve Eq.3-83 it is necessary to

define the boundary equations. As the highest order derivative in Eq.3-83 is of second order,

we need two boundary conditions at r = rmin and r = rmax. In cylindrical geometry,beams

have generally an intensity distribution with a peak (zero slope) at the origin which vanishes

far from the origin, giving the boundary conditions:

∂E(r, z)

∂r
|r=0 = 0 (3-84)

E(r = rmax, z) = 0 (3-85)
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Next, we discretize the transverse coordinate r to form a numerical grid of finite size with

N⊥+ 2 points, i.e. N⊥ inner points and two boundaries. Using the finite difference method,

we the discrete position r and the step size ∆r as:

rj = rmin + j∆r (3-86)

∆r = (rmax − rmin)/(N⊥ + 1) (3-87)

with j = 0, 1, 2, ..., N⊥+1. In the case of cylindrical geometry rmin = 0. A similar discretiza-

tion is performed in the propagation variable z:

zn = n∆z (3-88)

with n = 0, 1, 2, ..Nz of constant size ∆z. Defining En
j ≡ E(r = rj, z = zn) we discretize also

the evolution operator from 3-83 as:

∂E

∂z
(r = rj, z = zn) ≈

En+1
j − En

j

∆z
+O(∆z) (3-89)

Which is first-order accurate in ∆z. In the same way, a discretization of the second order

derivative appearing in the transverse Laplacian, this time second order accurate, yields:

∂2E

∂r2
(r = rj, z = zn) ≈

En
j+1 − 2En

j + En
j−1

∆r2
+O(∆r2) (3-90)

Numerical stability refers to the condition that a numerical calculation does not amplify

truncation or approximation errors. Depending on the calculation scheme, stability may

require restrictive conditions on the step sizes in order to be achieved [34].

To solve Eq3-83, there are two types of scheme: explicit and implicit. The explicit scheme

has the advantage of allowing the calculation of quantities at each position j on the grid,

i.e. En+1
j explicitly from the previous known quantity En

j . An implicit scheme requires the

resolution of implicit equations coupling En+1
j with several j positions each with already

known quantities, this scheme turns computationally more expensive. However, the explicit

scheme requires very restrictive conditions to ensure stability: ∆z << k0∆r2. The method

used in this thesis to solve Eq 3-83 and the following equations is the Crank-Nicolson method,

which corresponds to an explicit method with the advantage that is unconditionally stable

and allows to use a large implicit step to advance the solution instead of many small explicit

steps.

Crank-Nicolson method: This scheme is second-order accurate in both ∆r and ∆z.

Discretizing the diffraction operator as:

∆jE
n
j ≡ En

j−1 − 2En
j + En

j+1 +
ν

2j
(En

j+1 − En
j−1) (3-91)
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where ν = 1 for cylindrical geometry and ∆j can be represented as a tridiagonal matrix

acting on En
j .

Using the evolution operator Eq.3-89 and Eq.3-91 we obtain the electric field in the next z

point:

En+1
j = (1− iδ∆j)

−1(1 + iδ∆j)E
n
j (3-92)

or equivalently, En+1
j = L−1

− L+E
n
j , where δ = ∆z/4k0(∆r)2

3.4.4. Diffraction and Nonlinear terms

Consider now simple nonlinear terms such as instantaneous Kerr and nonlinear losses in-

cluded in:
∂E

∂z
=

i

2k
∆⊥E + i

ω0

cn2

|E|2E − βK
2
|E|2K−2E (3-93)

where βK ≡ K~ω0σKρnt denotes the cross section for multi-photon absorption. ρnt is the

density of neutral atoms. σK denotes cross section for multiphoton ionization and K is

the number of photons. In order to solve the new terms from Eq. 3-93, the Dufort-Frankel

scheme is used, which is an explicit scheme working generally for all types of nonlinear terms.

The use of this scheme presents the advantage of preserving the second order accuracy of

Crank-Nicolson scheme. It reads:

En+1
j − En

j = i
δ

2
(∆jE

n+1
j + ∆jE

n
j ) +

3

2
Nn
j −

1

2
Nn−1
j (3-94)

where

Nn
j ≡ N(En

j ) = ∆z[i
ω0

c
n2|En

j |2En
j −

βK
2
|En

j |2K−2En
j ] (3-95)

Finally, obtaining the electric field in the next propagation step:

En+1
j = (L−)−1[L+E

n
j +

3

2
N(En

j )− 1

2
N(En−1

j )] (3-96)

The overall stability of the scheme depends on the nonlinear terms, so that a careful control

of the step size ∆z may be necessary. However, the condition needed for stability associated

with the Kerr effect (∆z << c/ω0n2Imax) is not so drastic as that of diffraction with the

explicit scheme.

3.4.5. Diffraction, dispersion and nonlinear effects

Now we add one more dimension: time. The field can then be expressed as E(r, z, t). This

new coordinate is discretized as:

tl = tmin + l∆t (3-97)
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and in the spectral domain:

ωl = ω0 + l∆ω (3-98)

where the temporal coordinate is discretized with Nt equally spaced steps of size ∆t , for

l = 0, 1, 2, ..., Nt − 1.

The pulse propagation is described by including each propagation step from the previous

scheme in a loop of time for each index l. In this way, the discretized pulse envelope at a

given propagation distance zn must be defined over a two dimensional grid as:

En
j,l = E(r = rj, z = zn, t = tl) (3-99)

for j = 0, 1, 2, ..., N⊥ and l = 0, 1, 2, ..., Nt. As long as the propagation equation does not

involve differential operators with respect to time, these are the only additions necessary to

extend previous scheme from (1+1) to (2+1) dimensions.

The standard way to extend the Crank-Nicolson scheme to a (2+1)D simulation of paraxial

propagation equations is presented. Expressing Eq.3-82 in the spectral domain:

κ̂
∂Ê

∂z
=
i

2
[∆⊥Ê + D̂Ê] + k0[T̂ 2N̂kerr(E) + T̂ N̂NLL(E) + N̂plasma(ρ, E)] (3-100)

The numerical scheme reads as:

Ên+1
j,l − Ê

n
j,l = i

δj
2

(∆jÊ
n+1
j,l + ∆jÊ

n
j,l) + i

dl
2

(Ên+1
j,l + Ên

j,l) +
3

2
N̂n
j,l −

1

2
N̂n−1
j,l (3-101)

Whose solution, representing one step along the propagation direction, is:

Ên+1
j,l = (L−,l)

−1[L+,lÊ
n
j,l +

3

2
N̂n
j,l −

1

2
N̂n−1
j,l ] (3-102)

with:

L−,l ≡ 1− i(δj/2)∆j − i(dl/2) (3-103)

L+,l ≡ 1 + i(δj/2)∆j + i(dl/2) (3-104)

In table 3-4 one can find the parameters necessary to simulate the final pulse envelope

according to the extended Crank-Nicolson scheme.
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Table 3-4.: Parameters needed to simulate Eq. 3-

102

Parameter Expression

δl
δ
κ̂l

= ∆z
2(∆r)2κ̂l

dl
∆zD̂l
2κ̂l

κ̂ k0 + k
′
0(ωl − ω0)

D̂(E) (k2(ω)− κ̂2)Ê
(k2(ω)−κ̂2)

2κ̂
≈ k

′′
0 (ωl−ω0)2

2!
+

k
′′′
0 (ωl−ω0)3

3!
+ ...

N̂n
j,l

k0∆z
κ̂l

[T̂ 2
l N̂kerr + T̂lN̂NLL + N̂plasma]
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4.1. Z-Scan set up

The implementation of the set-up is shown in Fig3-4. A femtosecond Gaussian laser with

a wavelength of 780 nm, of variable pulse energy and width is used, as can be seen in table

4-1. The set-up implemented is very similar to the theoretical one, where a beam splitter

of 13-87 % was placed to divide the beam: 13 % goes to the reference detector, while the

remaining 87 % of energy goes trough a 17 cm focal length lens towards the sample, that is

inside a 1 mm thick quartz or glass cuvette, depending on the sample conditions required.

The sample is on a mobile computer controlled platform with step resolution of 0.001 µm. In

this way, the sample can be moved along the Z-axis, within our defined +z and -z positions.

Once the light goes leave the sample, it propagates a long enough distance to ensure the far

field condition, after which an aperture is placed to execute the n2 measurements. Following

the aperture there is a second lens of 3.5 cm focal length, it allows to collect all incoming

light into the second detector to obtain the final intensity.

Table 4-1.: Laser parameters used in the Z-scan set-up

CURRENT (A) OUTPUT POWER (mV)
PULSE

WIDTH (fs)

PULSE

ENERGY (nJ)

3 44 248 0.9

4 114 170 2.3

5 218 107 4.4

6 378 76 7.6

7.23 607 51 12.1
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(a) (b)

output laser

1
2

3

4 5

6 7 8
9

10

Figure 4-1.: Implemented Z-scan set up. (a) 3. Mirrors to change light direction. 4. Beam

splitter. 5. Focusing lens. 10. Reference power detector. (b) 1. Mirrors to

direct the light. 2. Beam collimator. 6. Cuvette with sample. 7. Aperture.

8. Second lens to focus light into the optical power detector. 9. Transmitted

power detector

4.2. Control Code

In order to obtain the nonlinear refractive index and the nonlinear absorption coefficient,

it is necessary to measure the reference power and final transmittance, as well as control

the sample position, plot the normalized transmittance (in real time would be ideal) and

calculate the different parameters related to equations 3-61, 3-64 and 3-74. For this purpose,

a control code has been developed, which achieves these tasks and is also able to set the step

size at which the platform performs its displacement (it may or may not be uniform), the

displacement speed and optical parameters such as mirror and lens losses can be tuned to

obtain the input energy at the sample.

Fig 4-2 presents the user interface of the developed code. In the left side there is a control

column where we have: 1. Transmittance powermeter, 2. Reference powermeter, 3. Op-

tical parameters, such as the initial laser energy and pulse width (according to table 4-1),

wavelength, initial Rayleigh distance (Z0), initial beam waist, focal length of the first lens

and propagation distance from the output laser to the first lens, 4. Variables related to

the relative position of the platform: home position makes reference to the initial position

(Z = 0) and path length relative to home position, 5. Command buttons: “Run Z-scan”

starts the measurement, “Save As” records the normalized Z-scan trace, “Trash Data” erases
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the Z-scan trace and “Fit Data” executes the theoretical fit from the measured data and the

available information, 6. Switches between nonlinear refractive index and nonlinear absorp-

tion calculation, 7. Indicates when the Z-scan measurement is being executed, 8. In this bar

we have the motor controllers and the exit button that ends program execution, 9. “N” is

the number of data points that will be measured corresponding to each different Z position,

10. This block controls N, setting the minimum and maximum distances between adjacent

points and “NearF” determines the distance around the focus, the number of final points is

determined by an equation in which the number of points in “NearF” is finer than the rest

of the displacement, 11. In this section there are the different tabs for navigation within the

software.

1

2

3

4

5

6 7

9

8

10

11

Figure 4-2.: Z-scan software implementation: general variables and initial tabs

Fig 4-3 presents the Optical Power Log tab, where the reference and final transmittance

powers are displayed, the normalization settings that can be changed are: number of loops

(2) and the different beam losses due to Lens transmittance, mirrors, beam splitter and

cuvette absorptions or reflections. Besides this, the presence or absence of an aperture (S)

is taken into account to obtain the final energy that enters the transmittance photodetector

(3). These features allow the normalization of the trace and calculation of the real energy

arriving at the sample.

The remaining tabs are shown in Fig 4-4, these are “Position Vs Transmittance” and “Data
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Analysis”. The former displays the recorded transmittance point by point at the different

Z-positions, where the ratio between reference and transmittance power is made. Once the

measurement is done, the Z-scan traces are saved in the file path shown in the lower part

of the tab. The filename includes the aperture (S) as well as other parameters relevant to

its study. In Fig4-4(b the “Data Analysis tab is presented, where the theoretical fit with

respect to the recollected data is shown. It is also where the nonlinear refractive index or

nonlinear absorption coefficients are calculated. (4) marks the data plot and its fit, the

“Divide” button (5) allows to made the division between closed and open aperture powers

to remove absorption phenomena. Some useful values are displayed below this columns such

as ∆Tp−v, ∆Φ, n2 and β. There is also a calibration button, where some laser parameters

can be tuned in order to obtain the n2 of a substance and compare it with a known value,

this process will be explained in the next section.

1
2

3

Figure 4-3.: Z-scan tab software implementation: Optical power Log and normalization

settings
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a.a.

b.

1

2

3

4

5

Figure 4-4.: Z-scan tab software implementation. (a) 1. Data plot in real time. 2. File

path. (b) Data analysis tab: extraction of n2 and β as well as laser variables

tuning
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4.3. Calibration

To ensure the correct system operation, it is necessary to know the different variables involved

in the calculation of nonlinear refractive index and nonlinear absorption coefficient. These

variables are: input Laser energy, pulse width, wavelength, beam waist (w0), lens focus,

rayleigh distance (z0). Wavelength and lens focus are relatively easy to obtain and have a

low uncertainty as they are supplied by the manufacturer and can be checked with precision.

Despite the remaining variables being also supplied by the manufacturer, this information

is valid only directly after the laser output, when the beam is propagated through the

different optical elements, these values change and at the sample vary from the initial ones.

Making it necessary to estimate the new values. The laser energy at the input can be

known by subtracting the loses after each optical element from the initial power as done in

software (Fig4-3). The pulse width is given by the manufacturer, assuming a short enough

propagation distance to neglect pulse broadening or narrowing and low impact from the

optical elements, we can use this value in our calculations. The last parameter to calculate is

w0, related to z0. Due to equipment constraints, this measurement is performed as follows:

knowing the nonlinear refractive index of some substance, in this case cs2, the Z-scan is

executed. The corresponding trace is shown in Fig4-5. After this, in the data analysis tab

of the software the w0 value can be changed until obtain the CS2 nonlinear index value.

Figure 4-5.: CS2 z-scan trace. Doted: experimental. Continuous: theoretical fit.

Its value must be consistent with that reported in literature [21]. Once the beam waist

value is obtained, the calibration is corroborated with other known substances as methanol
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and ethanol. In this way, the reported value uncertainty is based on a global uncertainty

calculated from the difference between the experimental data and the theoretical fit, which

is around 20 %.

4.4. Measurements

4.4.1. carbon disulfide ( CS2 )

Carbon disulfide is a colorless volatile liquid with chemical formula CS2 , with linear refrac-

tive index n = 1.6060 at 800 nm and a linear molecular shape, heat capacity C = 75.73

j/(mol K). CS2 is one of the most widely studied substances [22] [21] (references within) [35]

[36] and is commonly used as reference for many measurements and calibrations.

The work done in this thesis was about the study of the CS2 nonlinear refractive index

dependence with laser energy and pulse width at 50 MHz of repetition rate. Table4-1 shows

the energy and pulse widths considered. At each laser current four powers were used: 100 %,

69.11 %, 54.27 %, 22.79 %, of the maximum energy listed for their respective current. This

was done for keeping the pulse width constant and study the dependence on energy. The

only addition made to the set-up (3-4) was the insertion of a second beam splitter between

the incoming light and the first beam splitter (BS), in this way it was possible to control

laser energy.

The different z-scan traces are shown in Fig4-6. As the energy increases, so does ∆Tp−v. The

nonlinear refractive index obtained from the measurements is presented in Fig 4-7, where it

can be see that for the lowest energy, with widest pulse width (3 A), the nonlinear refractive

index is the highest and this goes down as the energy percentage decreases keeping the same

pulse width, the same behavior is found in the case where the energy is increased but the

pulse width is decreased. In this way it is possible to affirm that both energy and pulse

width are important variables involved in the total nonlinear refractive index.

The nonlinear optical response of carbon disulfide can be attributed to two main mecha-

nisms: electronic response and nuclear response, the first one is characterized by an almost

instantaneous response of the bound electrons and has no dependency on pulse width. The

nuclear response depends on the time duration of the excited beam and is characterized

by three different mechanism: diffusive reorientation, libration mechanism and intermolec-

ular collision-induced variations in the molecular polarizability [37]. Due to this nonlinear

response dependence with pulse duration, it is expected that a wider pulse widens the non-

linear refractive index increase in its value because more structures are aligned with the

electric field Fig 4-7.



42 4 Nonlinear parameters measurement

(a) (b) (c)

(d) (e)

Figure 4-6.: CS2 z-scan traces for different pulse widths and energies. (a)3 A, 248 fs pulse

width. (b)4 A, 170 fs pulse width. (c)5 A, 107 fs pulse width. (d)6 A, 76 fs

pulse width. (e)7.23 A, 51 fs pulse width

Figure 4-7.: CS2 nonlinear refractive index in function of energy for different pulse widths.
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Now, the remaining question is why at the same pulse width but lower energy there is

a decrease in the nonlinear refractive index. it is well known that the nonlinear optical

coefficient is independent from the intensity (Eq 3-45). This behavior is a good indicative of

the presence of other nonlinear phenomena, thermal effect or the Stark effect. Due to the 50

MHz repetition rate of the laser used, it is necessary to take into account the thermal effect.

Besides this, for the pump wavelength (800 nm) used there is probability of two-photon

absorption. At low intensities and with the lower energy percentages, nonlinear refraction

was not observed, it was until 5 A (4-6(c)) that a symmetric z-scan trace can be seen, which

means that only the nonlinear refractive index phenomenon is presented, after that at 6 A

and 7.23 A the trace corresponding to 22.79 % of energy exhibits a small peak just before

the valley, indicating the presence of two photon absorption. On the other hand, comparing

Fig 4-7 (b) to (e) the red trace with green one, there is other evidence of the presence of two

photon absorption, in (b) red is almost symmetric, but this symmetry is break in (c) where

the valley is enhanced, for (d) and (e) the valley continuous being increased, meanwhile the

valley of the green trace follows the same behavior of the red, but its peak is much taller, this

can be explained because the energy is high enough to excite other nonlinear phenomena

that contribute to this comportment. For the highest energies (6 A and 7.23 A) the blue

trace at its peak starts to distorts which means that nonlinear absorption and refraction

starts to saturate due to the addition of free carriers.

The above observations indicate that the nature of nonlinear absorption and refraction is

determined not only by third order nonlinear processes but also by higher-order ones as well

as the effect of free charge carriers. The change in the refractive index due to higher order

terms can be expressed as:

n = n0 + neffI = n0 + (n2 + ηI)I (4-1)

where neff is the effective value of the nonlinear refractive index and η determines the fifth-

order nonlinearity. In the case of generation of free carriers, the change in the refractive

index can be expressed as:

∆n = n2I + σrN (4-2)

the second term on the right hand side determines the contribution to the refractive index due

to free carriers. σr characterizes the change in refractive index due to a single charge carrier

as a result of photoexcitation and formation of a cloud of free carriers with density N(I).

Although, σr is negative for most media, in this case its contribution is positive because of

the n2 increase with intensity an alternative explanation is that its negative contribution

would be compensated and surpassed by other nonlinear phenomena [36].

Nonlinear refraction can be influenced by thermal lensing effects, which can be caused by

two processes: Propagation of an acoustic wave or a change in the medium density caused

by the accumulation of thermal energy in the absorbing region as occurs in the case of low

thermal conductivity of the medium and/or a high repetition rate of the laser pulses.
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The time necessary for the occurrence of the first case, τ , can be determined as the ratio

of the beam waist radius to the speed of sound in the medium: τ = ω0/Vs, that in the

experimental conditions considered here: ω0 = 0.3 mm and Vs ∼ 1500 m/s, the resultant

response time of the process is: τ ∼ 200 ns, although the pulse widths used were lower

than 300 fs, the repetition rate of 50 MHz means that the time interval between pulses is

∆t = 20 ns, which is in the same scale of time as the acoustic wave. It has been found that

the necessary time to form the acoustic wave can be two to three times shorter than this

[36], although the ratio is close to ten times lower, this effect can not be neglected because

in previous works thermal lensing acts to change the sign in the nonlinear refractive index

coefficient, but in this occasion its effect increases its value, which means that the change in

the molecular density acts in such a way that allows this behavior. However, further studies

about the acoustic wave at this specific features must be perform to bring a clear answer,

but it could not be performed due to the laboratory limitations.

The second process is the heat accumulation due to the nonlinear absorption and low thermal

conductivity of the medium. The time necessary for the heat dissipation is determined by

the relation [36]: τ = ω2
0ρcp/4κ. Where cp is the specific heat capacity, ρ is the density and

κ is the thermal conductivity of the medium. Giving τ ∼ 589 ms and hence it is necessary

to take into account the heat accumulation. One confirmation in the role of the nonlinear

absorption in the n2 value is the dependence of ∆Tp−v with intensity. Even though similar

experiments and studies have been done at 10 Hz and 80 MHz, the novel behavior exhibited

at these laser parameters opens the possibility to know new features about how the different

nonlinear phenomena interplay giving as a result an increase in the nonlinear refractive index

with the increase of intensity.
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4.4.2. Multi-Walled Carbon Nanotubes

Materials with high nonlinearities have found numerous applications in areas related to

nanoscience, nanotechnology, metrology, spectroscopy and communications since they ex-

hibit greatly properties such as nonlinear absorption, optical limiting, and Kerr effect.

Among these materials, multi-walled carbon nanotubes (MWCNTs) are found, due to its

significant delocalized π-electrons cloud along the tube axis as it was shown previously. [38]

[39] [40] [41] The carbon nanotubes (CNTs) have been a cornerstone in several scientific

disciplines, from Physics to Chemistry, going through Medicine and Biology, since their

discovery by Ijiima[42] in the 1990s. Carbon nanotubes can be manufacturing by three dif-

ferent processes such as: arc discharge method that is appropriated for producing single

or multi-walled CNTs with excellent quality[43], laser ablation method in order to obtain

single-walled carbon nanotubes[44] and Chemical vapor deposition technique that is based

on the hydrocarbons decomposition at high temperatures, This method allows the control

of CNTs diameters[45] and the number of CNTs concentric tubes during the manufacture

process.[46][47] In materials science, technology and applied engineering, a large number

of studies has been conducted on carbon nanotubes, due to their extraordinary mechani-

cal, thermal, physical and optical properties.[48][49][50][51][52][53] Its exceptional properties

have allowed it to be used for various applications such as: quantum communication, optical

switches and optical limiting devices[47]. CNTs are made up of hexagonal ring structures of

carbon where each carbon atom undergoes sp2 hybridization and thus having one free pure

pz electron which can undergoes deslocalization. It has been found that materials with this

characteristics exhibit high nonlinear optical properties, [49][50][51] so according to this it

can be expected that MWCNTs as well.

Previously measurements of nonlinear optical properties of CNTs have been carried out,

where the major investigation was done about single walled carbon nanotubes,[54] [55] [56]

[57] nonetheless Zhaoxia Jin et al[58] reported both nonlinear refractive index and nonlinear

absorption coefficient in MWCNTs through Z-scan technique.

To measure the nonlinear properties of MWCNT, the Z-scan technique was used.

Nevertheless in presence of high nonlinear refractive index the nonlinear phase shift is higher

(| ∆Φ |> π) and the trace becomes asymmetric with respect to the focus, even under these

conditions GD method is still valid and is better than some others[59], i.e., Fresnel–Kirchhoff

diffraction and the aberration-free approximation model[60] due to its accuracy when the

coefficients are extracted (n2 and β).

Other phenomena rather than nonlinear refractive index and absorption can be presented

such as thermal optical nonlinearities which take into account absorption process involving an

arbitrary number of photons as the source of nonlinearity[61]. In addition, closed aperture is

sensitive to this kind of effect,i.e, thermal lens which comes into play if the long time behavior

is investigated. The presence of such effect occurs when the train of pulse spacing that inside
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in the sample are shorter than the thermal characteristic time tc = ω2/4D where D(cm2s−1)

is the thermal diffusion coefficient of the material, for typical samples the condition is met

when the laser repetition rates is greater than kHz, this gives as result large Z-scan signals.

In this work, is reported the influence of MWCNTs concentration, pulse width, and energy on

MWCNTs nonlinear optical parameters, as well as the possible appearance of other nonlinear

effects that make bigger the Z-scan trace.

MWCNTs preparation

In this study, MWCNTs with outer diameters of 10−40 nm and inner diameters of 10−20 nm

and a length of 30− 50nm were used (Fig4-8). Although inner diameters of the MWCNTs

have no direct influence on the dispersion of the CNTs in a solution, outer diameters of the

MWCNTs used in this work are small, which could increase the risk of re-agglomeration. Due

to this, a polyvinyl alcohol (PVA) solution was used for dispersing, and the dispersing effect

of the polymer (PVA) was maintained for a long time, whereby the CNTs re-agglomeration

was avoided, and this effect was reported by Olayo et al[62]. The dispersion of the MWCNTs

in the PVA was quantified in a previous work[48] and well behavior was found (for details

see Ref. [48]). For the samples preparation, pellets of fully hydrolyzed PVA were diluted in

hot distilled water to produce a solution of 1wt. % of PVA. MWCNTs were introduced into

the PVA solution in percentages of 0.212, 0.235, 0.675 and 0.75wt. %, where the MWCNTs

were dispersed by magnetic stirring during 30 min at an average speed of 600 − 900 rpm

followed by a sonication during one hour in a Vibra Cell series CLC equipment, which was

set to a power of 100 W and an amplitude of the probe of 20 %; the dispersion parameters

were selected in order to prevent damage of the CNTs.[63][64]

Figure 4-8.: a) Scanning electron microscope (SEM) image of MWCNTs and b) Trans-

mission electron microscope (TEM) image detail of a multi-walled carbon

nanotube
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Z-scan measurement

Different Gaussian pulse width were considered: 248 fs, 170 fs, 107 fs, and 76 fs, with a

repetition rate of 50 MHz at 780 nm wavelength, the samples were deposited in a quartz

cell of 1mm-thickness which was moved along the Z-axis. After light passed through the

sample, it encounters an aperture that allows to make the measurements in open and closed

aperture (S = 0.5). From closed aperture measurements, according to eq.3-61, we can

obtain the nonlinear refractive index. The dependence between nonlinear refractive index

and MWCNTs concentration was investigated, in this case, the same pulse width and energy

were used. In Fig.4-9 is shown how the nonlinear refractive index value increases with

MWCNTs concentration, nonetheless at higher input energies and shorter pulse widths the

nonlinear values decrease. The growth in MWCNTs’ n2 because of concentration can be

attributed to the number of structures that can be aligned with the electric field, that is,

the number of dipole moments.

Figure 4-9.: Nonlinear refractive index and β values for different MWCNTs concentrations

at different pulse widths and energies

On the other hand, n2 decreases with shorter pulse widths and higher energy. In Fig4-10 is

shown how these effects affect the nonlinear refractive index when the concentration is fixed,

for longer pulse widths we have a slow increase in n2 from the lowest concentrations while

higher ones show faster changes in their values. Fig4-10(b) shows how at high intensities

the nonlinear refractive index decreases which is slower for lower concentrations and more

pronounced for the highest ones. This can be explained according to: an enhancement in n2

with long pulses indicate the presence of non-instantaneous nonlinearity (nuclear response),

this can be checked in Fig.4-11 where the nonlinear dependence of ∆Tp−v vs intensity is
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shown [22]; in case of pure electronic contribution this dependence scales linearly, the reason

of this behavior change with respect to the concentration can be attributed to the number

of dipole moments that contribute to the hyperpolarizability. At short pulses it can be seen

that n2 undergoes a relatively low change, at this point the nuclear contribution starts to

disappear and the electronic response is the only one present. The second reason is that the

difference in transmittance between peak and valley begins to reduce at certain intensity

level, with higher intensities come into play other nonlinear phenomena such higher absorp-

tion orders and thermal effects, where the nonlinear refractive index is directly proportional

to ∆Tp−v.

(a) (b)

Figure 4-10.: Nonlinear refractive index behavior as function of (a) pulse width and (b)

intensity, with fixed concentration.

Figure 4-11.: Variation of ∆Tp−v vs intensity at different concentrations where it can be

seen the non instantaneous behavior and the presence of other nonlinear

phenomena.
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Nonlinear absorption

Other important parameter that can be measured from Z-scan trace in open aperture (S = 1)

is the nonlinear absorption coefficient (β). First, it was investigated the influence by the

incident intensity when the concentration is kept constant, Fig.4-12(a), as can be ob-

served for lower concentrations (0.212 and 0.235 wt.%) the behavior is almost constant until

1 × 1013(W/m2). This is the limit for the two photon absorption (TPA) process, however

at higher peak powers β starts increasing what indicates the presence of higher nonlinear

process. These terms are present from the beginning of the highest concentration (0.75

wt.%), in the same way 0.675 wt.% does it, but with a more smooth slope. In Fig.4-12(b)

the β relationship with pulse width is displayed. Although, for our experimental conditions,

broader pulse widths imply lower intensities which make it impossible to study the pulse

width influence separately but it is interesting to observe that when the pulse width is wider

and the intensity lower, β reaches its minimum value for each concentration. This could

mean that other phenomena like thermal effects and higher absorption terms are more af-

fected by intensity than by the pulse width, this relation must be investigated more carefully

taking into account the laser repetition rate, but it is beyond the scope of this work.

Defining η = β/2kn2 as the ratio between the imaginary and the real part of the complex

nonlinear phase shift [60] one can investigate the nonlinear absorption contribution from the

closed aperture Z-scan transmittance. This parameter is presented in Fig.4-13, it is worthy

to note that for every concentration this contribution increases, except for 0.675 wt.%. The

reason for this behavior is not clear yet.

(a)
(b)

Figure 4-12.: Variation of β with (a) Intensity and (b) pulse width for different

concentrations.
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Figure 4-13.: Ratio of the imaginary to the real part of the complex nonlinear phase shift

as intensity function

Higher nonlinear effects and thermal contribution

In Fig. 4-14 is shown different Z-scan traces varying the concentration and keeping the

energy constant (a and b), and variation in energy at fixed concentrations (c and d), from

the figures one can observe a large nonlinear phase shift and the usual level increment be-

fore the valley followed by a post focal peak[60]. According to Fig. 4-14a the variation of

concentration at low energy does not affect significantly the Z-scan trace and it can be seen

like a normal Z-scan transmittance where there is symmetry around z = 0. But we have

a different picture when the energy is increased, as it is seen in Fig. 4-14b. In this case,

the ∆Tp−v is almost the same than 4-14a, but its peak and prefocal valley starts to look

asymmetric, which is a good indicator of higher nonlinear terms and contributions.

Figs. 4-14c and 4-14d show that the main parameter responsible for large nonlinear shifts

and the asymmetric shape is the pulse energy, as different concentrations all exhibit a sym-

metric behavior with the lowest energy values.

A good way to see if thermal effects are present, is to relate the normalized peak valley

distance[61], these effects can be generated for multi-photon absorption, as a higher number

of photons are involved the normalized peak valley distance is lower. In Fig. 4-14 is noted

that there is not presence of nonlinear higher effects, only TPA.

Due to repetition rate used (50 MHz) and different pulse widths considered, it is possible

to have a thermal effect where it can be proved by the use of different substances instead of
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water that posses distinct diffusive thermal coefficient, nonetheless this study can be taken

into account in the future. To summarize, the most important measurements are displayed

in table4-2.

(a) (b)

(c) (d)

Figure 4-14.: Z-scan traces at different MWCNTs concentrations and Intensities. (a) In-

tensity 2.5×1012 W/m2, (b) Intensity 3×1013 W/m2, (c) concentration 0.235

wt.%, (d) concentration 0.75 wt.%

Table 4-2.: Nonlinear parameter measurements for different intensities and concentrations

wt.%

wt.% I= 2.54× 1012 W/m2 I= 9.47× 1012 W/m2 I= 3.09× 1013 W/m2

n2(m2/W ) , β(m/GW ) n2(m2/W ) , β(m/GW ) n2(m2/W ) , β(m/GW )

0.212 2.53434× 10−16,2.3071 7.9175× 10−17, 2.9867 3.1862× 10−17,9.6983

0.235 2.6281× 10−16, 2.3071 8.6836× 10−17,3.3617 3.0380× 10−17,9.2779

0.675 1.2845× 10−15,2.9551 3.9708× 10−16,15.917 3.2006× 10−16,13.160

0.75 1.7607× 10−15,3.5529 3.9742× 10−16,23.880 1.5943× 10−16,63.762
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4.4.3. Non-linear refractive index in Hydrocarbons

We present the theoretical background and the experimental characterization of the non-

linear refractive index in a set of hydrocarbon dyes. The analytical approach is based on the

free electron model and the measurements of the non-linear refractive index were performed

by using the z-scan technique[22]. As it is discussed below, the third order non-linear suscep-

tibility depends directly on the double conjugated π bonds and the molecular concentration

of the organic compounds, this dependence was empirically evidenced by a linear relationship

between the experimental non-linear refractive index and the linear refractive index.

Non-Linear Refractive index and Polarizability

In organic materials the polarization vector ~P , related to first and higher order of suscep-

tibility, is governed by their corresponding molecular polarizability. For the third order

polarizability, this relation can be written as P
(3)
i = ε0χ

(3)E3 = Np
(3)
i = ε0Nγ

(3)E3, where

γ(3) is the third-order polarizability, χ(3) the third-order susceptibility, ε0 the vacuum per-

mittivity and N the number of molecules per unit volume. Considering the Free electron

model (FE) for describing the organic molecule, where σ-bounds acts as a potential well

and π-conjugated bounds as free-electrons, the length L of the potential well is given by

L = d(j + σ), where d is the distance between conjugated atoms, j the quantity of conju-

gated bonds and σ is a correction parameter[65]. In the same model, the transition dipole

moment between m and n states at their corresponding transition frequencies is given by

[65]:

µmn =
4eL

π2
[

1
(m−n)2

− 1
(m+n)2

]−1 (4-3)

where e is the electron charge. Once the parameters of the molecule structure are known,

the nonlinear susceptibility can be estimated according to [66]:

χ
(3)
kjih(ωσ, ωr, ωq, ωp) =

N

ε0~3
Pf[∑

lmn

µgnµnmµmlµlg
(ωng − ωσ)(ωmg − ωq − ωp)(ωlg − ωp)

−
∑
ln

µgnµngµglµlh
(ωng − ωσ)(ωq+ωp)(ωlg − ωp)

]
(4-4)

where Pf denotes the full permutation operator and ωmn = (m2 − n2)(~π2/8m0L
2) is the

transition frequency with m0 the electron mass. Finally, the nonlinear refractive index due

to the Kerr-effect can be expressed as n2 = (3/4n0)χ(3)(−ω, ω,−ω, ω), n0 being the linear
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refractive index. It is worth noting that this latter expression relates the non-linear and linear

refractive indexes through an inverse relationship for a determined molecular concentration.

However, as it is stated in Eq. (4-4), the non-linear susceptibility depends proportionally

on the molecular density as well as the electronic transitions between energy states so it

involves a more complex relationship based on molecular structure.

The Z-scan technique was implemented to measure n2. To accomplish the experimental

set-up a lens of 17.5 mm focal distance was utilized, the sample was poured inside a 1 mm

cuvette, located on a motorized station controlled by computer for its displacement along the

sample-path. Non-linear Kerr phenomenon was excited by using a laser with a total power

of 237 kW, a pulse-width of 50 fs, and a wavelength of λ0 = 780 nm. The maximum intensity

obtained at the waist was of I = 10.3 TW/m2. Hydrocarbon samples were obtained from

Cargille laboratories, inc., serie AA. A total number of fifteen hydrocarbon samples were

used for measuring n2 and determine its relation to the linear refractive index. Fig.4-15(a)

plots some of the experimental results of the Z-scan technique and the numerical fitting

curves used for the computations.
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Figure 4-15.: Experimental results for non-linear refractive index measurements. (a) Nor-

malized transmittance for Z-Scan on organic dyes (b) Relation between es-

timated non-linear refractive index and linear refractive index of the tested

organic dyes

Once the nonlinear refractive indexes were obtained for each sample, they were related to

its linear refractive index resulting in a linear dependence as shown in Fig. 4-15(b). This

behavior is directly connected with the molecular hydrocarbons structure and the per-volume

concentration in the sample as described in Eq. (4-4). This must be not confused with the

local inverse relationship between n2 and n0 for a particular concentration. The experimental

results show explicitly that even if the samples contain the same components, the proportion

of each ones could lead to important variations on both linear and nonlinear refractive

indexes. Based on these preliminary results, the molecular density could be estimated once

n2 and n0 are known, by means of Eq. (4-4) under the assumption of a pure sample.
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4.4.4. Conclusion

In this chapter we discussed how the Z-scan technique was implemented, and how a code

was developed to perform the control, acquisition data and analysis of the Z-scan process.

This code was developed from scratch in our laboratory to fulfill measurement requirements

and the user has different options to control the process: step size, number of points, nor-

malization variables, power displayed from each power meter, fitting, among others. Many

obstacles were overcome, mainly in the initial data gathering for parameters such as beam

waist, power at the focal point and Rayleigh distance. The method used to obtain the non-

linear refractive index and nonlinear absorption coefficient was shown to be inside the error

margin found in the literature, this was corroborated by making measurements of known sub-

stances and comparing them with literature reported values. The implemented technique

allowed us to perform different substances measurement, among them: Cs2 was studied and

its dependence with energy and pulse width, where it was found that the nature of nonlinear

absorption and refractive index is not only determined by third order process but also by

higher order processes and thermal effects as well as the repetition rate used. Multi-walled

carbon nanotubes were investigated, where they were prepared for different concentrations.

A study of the nonlinear parameter dependence with concentration, pulse width and energy

were performed. It was found that at higher concentration the nonlinear refractive index

increases with the pulse width and the nonlinear absorption coefficient increases with the

intensity, it was concluded that this contribution is due to electronic and nuclear responses.

Besides, due to the traces a new phenomenon is proposed: the influence of thermal effects,

nevertheless a complete analysis is necessary. Finally, some hydrocarbons’ nonlinear param-

eters were measured and reported these substances are of interest as they are widely used in

fiber optics applications.



5. Nonlinear Pulse Propagation

Simulation

5.1. Liquid-Core Photonic Crystal Fiber for

Supercontinuum Generation Based on Hybrid Soliton

Dynamics

The generation of new optical frequencies has attracted attention ever since the laser’s inven-

tion in the 1960s. Supercontinuum generation covers a broadband spectrum [1] and has been

widely studied due to its importance in applications such as spectroscopy, where typically

tunable pulsed laser sources are used for material characterization, and telecommunications,

where the multiple wavelengths can be beneficial for multiplexing purposes. Current re-

search focuses in the enhancement of SCG by means of increasing nonlinear parameters of

the generation medium. Thus, the use of PCF as medium is a good choice due to its high

refractive index contrast and small core diameter which allows to obtain higher nonlinear

parameters in comparison with standard fibers. Although it is possible to excite nonlinear

effects and obtain higher responses with less input power, silica waveguides pose their own

limits. On the other hand, using a hollow-core PCF infiltrated with a different material of

higher nonlinear properties like carbon disulfide (CS2) can improve the nonlinear effects for

SCG, referring to this kind of fiber as liquid-core photonic crystal fiber (LCPCF). The sol-

vent CS2 has a nonlinear refractive index two orders of magnitude higher than silica [68] and

it is known that the nonlinear susceptibility coefficients in liquids are 10 to 103 times higher

than in solids [67]. The main mechanisms involved in SCG using CS2-LCPCF are: self-phase

modulation (which is responsible for phase distortion), soliton fission, dispersive wave gen-

eration, four wave mixing, Raman scattering [69] and self-steepening, which is responsible

for the distortion in envelope shape. In the case of SCG based on soliton propagation, the

anomalous dispersion regime for the geometry used in this work has been found to be of

around 1.95 µm. It was also found that soliton fission is one of the main mechanisms that

generate a broadband super continuum. A soliton can be seen as a phase compensation

between the group velocity dispertion (GVD) and the phase accumulation due to the Kerr
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effect. The soliton number is given by: N =
√
γ0P0τ 2

0 | β2
−1 |; where γ0 is the nonlinear

coefficient, P0 is the input peak power, T0 is the input pulse width and β2 is the second

derivative of the propagation constant. As a result of the perturbation a soliton experiences

as it propagates in a kerr medium due to third order dispertion or Raman scattering, the

higher order soliton (N>1) breaks into a series of fundamentals solitons (N=1), each at dif-

ferent optical frequency and followed by a dispersive wave in the normal propagation side.

In case of liquid media, within the Born-Oppenheimer approximation, the nonlinear re-

sponses consist of a combination of two responses: an instantaneous response or bound-

electron contribution and a non-instantaneous response due to nuclear effects; this nuclei

response can also be understood as three independent responses: diffusive reorientation, li-

brational response and collision-induced contribution [70], where each contribution has its

own response time [37]. In this work, we present a detailed study, through the simulation

of generalized nonlinear Schrödinger equation, of the nonlinear pulse propagation in a com-

mercial hollow-core photonic crystal fiber (PCF), whose core was infiltrated with carbon

disulfide (CS2), as shown schematically in the inset of Fig 5-1. This fiber was reported

previously using a similar geometry presented in [69]. However, the response function for

the CS2 measured recently by Reichert et al. [70], which gives rise to a new so-called hybrid

soliton behavior due to a slow response of the material [37],[71], was not included. Here,

it is not only take into account this new response function but also study the dependence

on several input parameters such as pulse width, energy, and length of the liquid-core PCF

(LCPCF). For this particular case (CS2-LCPCF), the zero dispersion wavelength was found

around 1.86 µm Fig5-1. Thus, the pump wavelength is chosen to be around 1.95 µm in

order to ensure anomalous dispersion regime propagation.

Linear parameters

We used the finite elements method to obtain the zero dispersion wavelength according with

the geometry and the effective mode area, where it was calculated according to [2] using the

Sellmeir equation:

nCS2(λ) = 1.580826 + 1.52389 · 10−2/λ2 + 4.8578 · 10−4/λ4 − 8.2863 · 10−5/λ6+

1.4619 · 10−5/λ8 (5-1)

The effective area was calculated according with the relation

Aeff =
(
∫∫∞
−∞ |F (x, y)|2 dxdy)2∫∫∞
−∞ |F (x, y)|4 dxdy

(5-2)
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Figure 5-1.: Dispersion as wavelength function. Photonic crystal fiber with CS2 in its center

Nonlinear parameters

To obtain the nonlinear coefficient (γ0) the instantaneous and non-instantaneous responses

of the change in the refractive index were considered, where the electronic component was

set to 1.6 × 10−19 [37] and the molecular response varied according to the pulse width at

half maximum (TFWHM) [37]. The total nonlinear refractive index is defined as n2,cs2 =

n2,el + n2,mol, where n2,el is the nonlinear refractive index due to the electronic response of

the solvent and n2,mol is the nonlinear refractive index due to the molecular contribution.

Thus, γ0 will be function of pulse width according the relation

γ(ω0, T0) =
ω0n2(T0)

cAeff
(5-3)

Generalized nonlinear Schrödinger equation

The pulse evolution through the CS2-LCPCF was simulated by the nonlinear schrödinger

equation 3-21 [2]. where the second term of the left hand side of the equation (3-21) stands

for the losses in the material (not simulated here), the third term involves the medium

dispersion. The right hand side of the same equation shows the nonlinear terms inside

the material as a result of the high intensity pulse propagation. The nonlinear response
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function R(t) includes both the electronic and nuclear contributions. Assuming that the

electronic contribution is nearly instantaneous, the functional form of R(t) can be written

as R(t) = (1 − fm)δ(t) + fmhR(t). Here, the molar fraction fm is calculated as fm =

n2,mol/(n2,el + n2,mol). Equation (3-21) was solved by the split step method [2] where we

considered up to 10 dispersive orders (see table 5-1). The TFWHM considered were 0.1 ps,

0.2 ps, 0.3 ps, 0.4 ps, 0.5 ps to each pulse width corresponds to a different molar fraction.
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(a)

(b)

Figure 5-2.: simulation at different temporal pulse widths. (a)output spectrum considering

T0 between 0.1 ps and 0.5 ps. (b) output shape for the same range of temporal

pulse width.

5.1.1. Results

Supercontinuum as pulse width function

The molecular non-linear refractive index has a pulse width dependence, which implies that

the nonlinear parameter (γ0) have this dependence, according to this it was performed differ-

ent simulations for distinct pulse widths to examine the bandwidth behavior. Fig.5-2 shows

the temporal and spectral behavior, where it can be seen that for a longer pulse width, a

wider bandwidth is obtained. Here with T0 = 0.1 ps the spectral broadening was close to 100

nm while with T0 = 0.5 ps was close to 1800 nm. At the same time, the output power was

higher. This is in agreement with what was expected because in the presence of a prolonged

pulse the nonlinear molecular refractive index has a higher contribution and this is reflected

in the spectral broadening.



60 5 Nonlinear Pulse Propagation Simulation

Figure 5-3.: spectrum at different input peak powers with pulse width 0.1 ps and propaga-

tion distance 0.1 m, the higher spectrum broadening correspond to the higher

number of solitons.

Supercontinuum as a funtion of peak power input

The next parameter to study in order to find the correct response function was the influence

of the peak power on supercontinum generation. It is known that one of the main mecha-

nisms through which supercontinuum is generated is soliton fission, the number of solitons

is function of the peak power, it was simulated at T0 = 0.1 ps, for four different peak powers

P0 = 23.20 W, P0 = 100 W, P0 = 10e3 W, P0 = 100e3 W which correspond to N=1, N=3,

N=21, N= 66 respectively, all the simulations were set to the same propagation distance

d=0.1 m. It can be see how the peak powers corresponding to N=1 and N=3 are almost the

same and do not suffer a notable change on their spectra (Fig.5-3), the shape is similar to

the initial pulse’s. However, the pulses with peak power corresponding to N=21 and N=66

suffer spectrum broadening, where the main difference between them is the bandwidth and

shape and not the output power, this can be understood as at higher powers ther will be

more solitons present that will fission causing that each of them contribute to the creation

of new frequencies, and the excess in energy will be distributed to the new frequencies. This

result is in accordance with previous reports of soliton fission’s influence on supercontinuum

generation.

supercontinuum as propagation distance function

The final parameter to consider in supercontinuum generation is how the propagation dis-

tance influences the bandwidth, a set of simulations were performed for different temporal

pulse widths (T0) and number of solitons as well as different peak powers. In Fig.5-4(a) the

initial pulse width was 0.45 ps, with which it we obtained fm = 0.85. With a peak power

of 103 W corresponding to N=170, it can be see how the spectral broadening starts early
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on and at a distance of 0.1 m the bandwidth is close to 40 kHz; here, 0.1 m corresponds to

0.0053LD, LD = T 2
0 | β2

−1 |. This fast spectral broadening can be obtained due to the high

number of solitons. Afterwards, the simulation was done with N=1 soliton, with a tempo-

ral pulse width of 0.1 ps and a peak power of 23.207 W, Fig.5-4(b) shows how the pulse

shape remains unchanged, even though the total propagation distance under consideration

was about 161.29LD. Finally, another simulation studied the behavior with N=2 solitons

at the same propagation distance than for the case N=1, the pulse shape suffers spectral

broadening thanks to the propagation of both solitons which contribute to the creation of

new frequencies, however the spectral broadening compared to N=170 is much lower. Even

if it we change the peak power to generate a single soliton and keep the temporal pulse

width at 0.45 ps, no spectral broadening is seen even at a distance of 5 m, which points out

that the main mechanism to generate supercontinuum is soliton fission, in contrast to the

molecular fraction involved in the process.

Table 5-1.: Dispersive terms used in the simulations

Dispersive parameter

β(2)(ps
2/m) −0.010381820088725

β(3)(ps
3/m) 3.947834808010180 ∗ 10−04

β(4)(ps
4/m) −1.185333558903076 ∗ 10−06

β(5)(ps
5/m) 4.818734892992571 ∗ 10−09

β(6)(ps
6/m) −1.663101220262766 ∗ 10−11

β(7)(ps
7/m) 4.382086148498273 ∗ 10−14

β(8)(ps
8/m) −7.581647531149060 ∗ 10−17

β(9)(ps
9/m) 6.391966459637023 ∗ 10−20

β(10)(ps
10/m) 8.101162901563616 ∗ 10−31

5.1.2. Conclusions

The temporal and spectral behavior for a hollow-core photonic crystal fiber infiltrated with

carbon disulfide was presented, with a more complete model of response function, with which

the behavior and dynamics were studied under different circumstances for supercontinuum

generation. it was found that is important to take into account the carbon disulfide response

functions because it can change the times and distances at which different phenomena occur.

In this part of the thesis we also presented how the peak power influenced the spectral

broadening, which is closely related to the number of solitons, identifying soliton fission as

the main mechanism behind SCG when using this new response function. The propagation
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(a)

(b)

(c)

Figure 5-4.: Propagation distance dependence for different number of solitons. (a) 170

solitons, with a temporal pulse width of 0.45 ps, fm = 0.85 and 0.0053LD. (b)

1 soliton with a temporal pulse width of 0.1 ps, fm = 0.5073. (c) 2 solitons

with temporal pulse width of 0.1 ps and fm = 0.5073
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distance is another variable under consideration, where it was established that in the distance

under consideration with one soliton the spectral broadening was negligible but with two

solitons the spectral broadening increased with the propagation distance. Concluding so the

main mechanism behind SCG, taking into account the new response function, was soliton

fission, where the non-instantaneous response acts by increasing the effective non-linear

refractive index and the non-linear parameters.
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5.2. Dispersive Wave and Four-Wave Mixing Generation in

Non-instantaneous Nonlinear Fiber Solitons

This section presents a detailed analysis regarding the generation of a dispersive wave (DW)

and four-wave mixing (FWM) in the non-instantaneous, nonlinear response of solvents using

a commercial photonic crystal fiber (PCF) filled with carbon disulfide (CS2) where the beam

is pumped in the anomalous dispersion domain. The main finding is the fact that the output

spectrum changes from coherent DW to incoherent modulation instabilities just by changing

from a constant to variable nonlinear parameters. This study can be extended to others

solvents including ethanol, methanol, and butanol.

5.2.1. Introduction

Nonlinear phenomena occurring in different fiber optic structures have been extensively stud-

ied both theoretically and experimentally by both the scientific and engineering communities

because they offer the possibility to control and guide light in many ways that differ from

conventional approaches [2]. One such structure is a photonic crystal fiber (PCF), which

has shown interesting applications in the areas of optical communications, metrology, spec-

troscopy, microscopy, astronomy, micromachining, biology, and sensing [72, 73]. One effect

efficiently produced in PCF is the generation of a supercontinuum (SC), which has allowed

the design of broadband and coherent light sources. The SC generation involves various

well-known processes, such as self and cross-phase modulation, four-wave mixing, modu-

lation instability, soliton fission, dispersive wave (DW) generation, and Raman scattering.

Solitons and DWs are some of the phenomena that have helped contribute to the generation

of new wavelengths toward the red and blue sides, respectively. A soliton is a pulse that ei-

ther does not change its shape along the fiber length or follows a periodic evolution pattern,

whereas DW is a type of radiation emitted by solitons, which is also called non-solitonic

radiation (NSR)[74]. These effects can be modeled using the scalar nonlinear Schrodinger

equation (NLSE)[2], which has been widely applied in numerical simulations.

New types of fiber optic structures have emerged as means to take advantage of the high

nonlinear refractive index of some liquids [68]. These include filled liquid-core optical fibers

and hollow core PCF (HCPCF), that can be filled with different types of liquids, including

organic dyes, as a means to studying the nonlinear optical pulse propagating through them.

One liquid used is carbon disulfide (CS2), which has shown a significant improvement in

Super continuum generation (SCG); this type of fiber is referred to as liquid-core photonic

crystal fiber (LCPCF).
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In the case of liquids, within the Born–Oppenheimer approximation, the nonlinear responses

have two components: an instantaneous response or bound-electron contribution, and a

non-instantaneous response owing to the nuclei response. The latter of which can be un-

derstood as three independent responses, namely, a diffusive reorientation, vibrational re-

sponse, and collision-induced contribution [70], in which each contribution has its own time

response [37]. The theoretical prediction of existence of noninstantaneous soliton-like states

in non-instantaneous nonlinear materials, where the molecular response is considered, shows

that they are very robust to noise and point out the importance in the output when non-

instantaneous response is considered [76]. Besides, it was found in C2Cl4 that the non-

instantaneous effects can significantly reduce the modulation instability limit. i.e., noise

driven FWM [77].

Other numerical studies of CS2 filled fiber have not include the correct handling of the non-

instantaneous response [78], [79]. In other hand, the pulse shape and pulse width dependence

as the beam is propagated inside the medium is taken into account by Chemnitz et al, where

they successfully use a propagation variant nonlinear parameter to match the measured DW

with the simulation [80].

It is present a detailed theoretical study on dispersive wave and four-wave mixing generation

during non-instantaneous nonlinear pulse propagation through a commercial HCPCF, the

core of which is infiltrated with carbon disulfide (CS2) and the pump wavelength is in the

anomalous dispersion domain. It was demonstrated that there are differences in the nonlinear

propagation model when taking into account the fact that the nonlinear refractive index

changes as the pulse shape varies during its propagation. This can significantly affect the

calculation of the DW and FWM, as demonstrated in the following section.

5.2.2. Ultrafast Non-instantaneous Propagation Model

Nonlinear Propagation

In elongated liquid molecules, such as CS2, the pulse propagation is dominated by non-

instantaneous nonlinearities (molecular contributions) when ultrashort pulses are signifi-

cantly shorter than the nonlinear response time of the liquid [68], and the total nonlinear

refractive index can then be expressed as n2,CS2 = nel,CS2 + nmol,CS2 , which contains the

contributions, owing to the electronic (nel,CS2 = 2.0 ± 0.4 × 10−19m2/W ) and molecular

responses [37].

The pulse evolution through the CS2-LCPCF is simulated using the nonlinear schrödinger

equation (NLSE) [2], given by Eq3-21 The second term on the left hand side of equation (3-
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21) indicates the material losses, where α and α1 are the coefficients of the Taylor expansion

of the total loss α(ω). Nevertheless, the material losses are not of interest for the scope

of this work. The third term of the left side of the equation involves the pulse dispersion

in the medium, with βn being the nth dispersion term. The right-hand side shows the

nonlinear terms inside the material as a result of the high-intensity pulse propagation, where

γ1 ≈ 1/ωo (ωo is the pump frequency). The nonlinear response function R(t) includes both

the electronic and nuclear contributions. Assuming that the electronic contribution is nearly

instantaneous, the functional form of R(t) can be written as R(t) = (1− fm)δ(t) + fmhR(t).

The molar fraction fm is calculated as fm = n2,mol/(n2,el + n2,mol). In addition,

h(t) =
h′(t)∫ +∞

−∞ h′(t)dt
. (5-4)

h′(t) = n2,drd(t) +n2,lrl(t) +n2,crc(t) is the characteristic response time of the nuclear mech-

anisms [37], given by the diffusive (rd(t)), librational (rl(t)), and collision (rc(t)) contribu-

tions. Here, n2,m is the magnitude of the mth mechanism, where n2,d = 18±3×10−19m2/W ,

n2,l = 7.6 ± 1.5 × 10−19m2/W , and n2,c = 1.0 ± 0.2 × 10−19m2/W [37]. In addition, rm(t)

is the temporal response function normalized such that
∫ +∞
−∞ rm(t)dt = 1, as given by the

following:

rd(t) = Cd

(
1− e−

t
τr,d

)
e
− t
τf,d Θ(t) (5-5)

rl(t) = Cle
− t
τf,l Θ(t)

∫ ∞
0

sin(ωt)

ω
g(ω)dω (5-6)

rc(t) = Cc

(
1− e−

t
τr,c

)
e
− t
τf,c Θ(t) (5-7)

where g(ω) = e−
(ω−ωos)2

2σ2 − e−
(ω+ωos)

2

2σ2 , with ωos = 8.5 ± 1 ps−1 and σ = 5 ± 1ps−1 for CS2.

The remaining parameters in Eqs. 5-5, 5-6, and 5-7 are as follows: τr,d = 150 ± 50 ps−1,

τr,c = 150 ± 50 ps−1, τf,d = 1610 ± 50 ps−1, τf,l = 450 ± 100 ps−1, and τf,c = 140 ± 50 ps−1

[37].

The molecular nonlinear refractive index is computed according to

n2,mol =

∫ +∞
−∞ P (t, z)

∫ +∞
−∞ h′(t− t′)P (t′)dt′dt∫ +∞
−∞ P 2(t, z)dt

, (5-8)
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where P (t, z) = |A(t, z)|2 is the pulse power. Equation (3-21) was solved using a split-step

Fourier method in which the nonlinear step was solved based on the fourth-order Runge–

Kutta method. Finally, the nonlinear coefficient is calculated as follows:

γ = γ(ω0, T0, z) =
ω0n2,cs2(T0, z)

cAeff
, (5-9)

where ω0 is the central pump frequency, T0 is the pulse width, c is the speed of light and Aeff
is the effective mode area of the fiber. From Eq. 5-9, it can be seen that γ generally depends

on the Z-propagation distance according to Eq. 5-8, a fact that has yet to be previously

considered.

5.2.3. Dispersive Wave Generation

It is known that a dispersive wave is created by solitons in fiber optics [73], the frequency of

which is calculated according the phase matching condition:

∞∑
m=2

βm(ωs)

m!
(ωd − ωs)m =

1

2
γPs, (5-10)

where βm(ωs) is the mth-order dispersion parameter at the soliton frequency ωs, ωd is the

DW frequency, and Ps the soliton peak power. Considering the second- and third-order

dispersion parameters, for the most energetic soliton, Eq. 5-10 can be rewritten as follows:

∆νdTo =
1

4πδ3

[
1 + 4δ2

3(2N − 1)2
]
, (5-11)

where ∆νd = νd − νs, N = N =
√
LD/LNL is the soliton order, and To is the initial pulse

width. In addition, LD = T 2
o /|β2| represents the dispersive length, and LNL = 1/γPo is the

nonlinear length. Here, Po is the initial peak power of the pump, and δ3 = β3/6|β2|To is the

normalized third-order dispersion. Eq. 5-10 is the most generalized case for calculating the

DW frequency in CS2 because γ depends on z as a consequence of the nonlinear molecular

response. To the best of my knowledge, this situation has previously not been taken into

account, and is described in the present study. In addition to Eq. 5-11, the DW peak power
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can be calculated according to

pd ≈
(

5πN

4δ3

)2 [
1− 2π

5
(2N − 1) δ3

]2

exp

[
− π

2 (2N − 1) δ3

]
(5-12)

Next, we compare the analytical results given by Eqs. 5-11 and 5-12, and the numerical

results given based on the simplified and normalized NLSE:

∂U

∂ζ
+

1

2

∂2U

∂τ 2
+N2|U |2U = iδ3

∂3U

∂τ 3
. (5-13)

Here, U(ζ, τ) is normalized such that U(0, 0) = 1, and the other variables are ζ = z/LD and

τ = T/To. In Eq. 5-13, β2 is negative. In Eq. 5-13, we include γ1 and R(T ) from Eq. 3-21

in order to study the higher-order nonlinearities and analyze the influence of the molecular

response.

5.2.4. Four-Wave Mixing

In single-mode fiber optics, FWM can be initiated using a single pump beam, which is the

case of a degenerated FWM. A pump beam with a frequency of ω1 can create two sideband

frequencies located symmetrically at ω3 and ω4 through the following shift [2]:

Ωs = ω1 − ω3 = ω4 − ω1, (5-14)

where ω3 < ω4 is assumed. Here, ω3 is called the Stokes band, and ω4 the anti-Stokes band.

To efficiently create the FWM, the following phase matching condition needs to be achieved

[2]:

κ = ∆kM + ∆kW + ∆kNL = 0, (5-15)

where ∆kM , ∆kW , and ∆kNL are mismatches as a consequence of a material dispersion,

waveguide dispersion, and the nonlinear effects, respectively.

When the pump wavelength is within the anomalous GVD regime, the frequency shift Ωs
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depends on the input power and is given as

Ωs = (2γP0/|β2|) (5-16)

5.2.5. Geometry and Optical Parameters

For the simulations, we used the commercial HCPCF HC-800B, sold by Thorlabs, with

the following parameters: core diameter of 7.5 µm, cladding pitch of 2.3 µm, PCF region

diameter of 45 µm, and cladding diameter of 130 µm. It was assumed that the core is filled

with carbon disulfide (CS2), and finite element software was used to obtain the dispersion

behavior (see Fig. 5-1) and the effective area; the Sellmeir equation for CS2 is required for

these calculations, which is given by [81]

nCS2(λ) = 1.580826 + 1.52389× 10−2/λ2+

4.8578× 10−4/λ4 − 8.2863× 10−5/λ6+

1.4619× 10−5/λ8. (5-17)

The effective area was calculated according to the relation [2]:

Aeff =
(
∫∫∞
−∞ |F (x, y)|2 dxdy)2∫∫∞
−∞ |F (x, y)|4 dxdy

, (5-18)

where F (x, y) is in general the modal distribution function of the beam. After calculating the

effective area, Eq. 5-9 is used to compute γ. We found that the zero-dispersion wavelength

of the CS2 filled fiber is 1.86 µm (see Fig. 5-1). The pump wavelength was set to 1.95 µm in

order to ensure anomalous dispersion regime propagation with the aim of generating optical

solitons.

5.2.6. Numerical Simulations

For the present study, it was solved the nonlinear Schrödinger equation 3-21 by implementing

the typical split-step Fourier method (SSFM) [2]. For a case in which γ is considered to be

dependent on the shape and width of the pulse, we recalculated the nonlinear refractive
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index n2,cs2 = nel,CS2 + nmol,CS2 at each step in the SSFM using Eq. 5-8. In Fig. 5-5, the

difference in the nonlinear temporal evolution vs. distance with γ both as a constant and as

a variable using Eq. 5-13 is shown as an example. In this figure, the power is represented

by a color scale between orange and black, the brighter the color the higher the power. It

can be clearly observed that, when γ is considered a variable, the DW travels slower with

respect to when it is considered a constant. This makes sense because the non-instantaneous

response of CS2 molecules increases as the pulse width widens and the pulse shape changes,

which verifies the assumption that γ should be considered a variable for materials with a

non-instantaneous response.
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(a)

(b)

DW

DW

Figure 5-5.: Nonlinear time evolution considering γ as (a) a constant and (b) a variable,

and is set to T0 = 0.17 ps, with a propagation length of 0.5LD, δ3 = 0.08, and

N = 3

For the following simulations, it was considered different pulse widths: TFWHM = 107 fs,

200 fs, 300 fs, and 500 fs, as well as variations of δ3 from 0.01 to 0.1. Here, TFWHM is the

full width at half maximum of the pulse, which relates to T0 according to the expression

TFWHM = 1.763T0 for the “sech” pulses.
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5.2.7. Dispersive Wave Calculations

Using Eq. 5-12, it was investigated the DW power behavior as a function of δ3 and N when

γ is either a constant or a variable for different pulse widths. For the figures where the power

is expressed in dB, 0 dB is reached when the output power is equal to the input power. Fig.

5-6 shows the power behavior for different pulse widths, where (a) and (c) correspond to

TFWHM = 107 fs, (b) and (d) correspond to 200 fs, and the theoretical prediction is given in

Eq. 5-12 with γ as a constant. It is worth noting that the theoretical prediction does not fit

well with the simulations in which, at higher pulse widths, Eq. 5-12 fails more significantly.

Another important point is the fact that an appreciable DW is generated when the output

power is higher than -80 dB, which varies according to pulse width, soliton number, whether

γ is considered a constant or variable and the presence of nonlinear terms (NT) such as a

shock wave and Raman response. Here, the absence of Raman response could be interpreted

as a system in the likes of a glass core fiber or noble gas-filled fiber, whereas a system

which presents a Raman response at the output corresponds to a realistic liquid-core fiber.

The pulse width has an important role in the DW generation, as indicated based on the

comparison between Fig. 5-6(a) and Fig. 5-6(b), and Fig. 5-6(c) and Fig. 5-6(d), where,

at lower pulse widths, a stronger DW with a lower δ3 can be obtained for the same soliton

number. In the presence of NT, the DW power decreases, as expected, because the Raman

effect shifts the solitons toward longer wavelengths. The match between the theoretically

calculated DW power and the simulations (either with γ as constant or variable as well as

with or without NT) can be seen as a balance between energy (N) and pulse width, for

example Fig. 5-6 (a) and Fig. 5-6 (d) are different from the theoretical prediction but (b)

and (c) differ only slightly. In addition, between cases (a) and (d) and cases (b) and (c)

there are similarities in behavior: in (b) the pulse width is increased in comparison with (a),

in the same way in (c) the pulse width is decreased in comparison with (d).
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(a) (b)

(c) (d)

Figure 5-6.: DW Power (dB) as a function of δ3 for different N and TFWHM : (a) N = 2,

TFWHM = 107 fs, (b) N = 2, TFWHM = 200 fs, (c) N = 3, TFWHM = 107 fs,

and (d) N = 3, TFWHM = 200 fs

(a) (b)

(c) (d)

Figure 5-7.: DW frequency as function of δ3 for (a) N = 2 and TFWHM = 107 fs, (b)

N = 2 and TFWHM = 200 fs, (c) N = 3 and TFWHM = 107 fs, (d) N = 3 and

TFWHM = 200 fs

Next, it was examined what will happen if the pulse width is wider compared with the

previous cases and if the soliton number is increased. Fig. 5-8 shows how the DW power
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is affected by the soliton number as a function of δ3. Two scenarios are taken into account,

namely, N = 3 and N = 9, and the pulse width is set to 300 fs. The major difference

between Fig. 5-8(a) and Fig. 5-8(b) is the fact that for N = 9, there is more discrepancy

with the theoretical results. As mentioned, in Fig. 5-6 it can be seen that, at higher pulse

widths, the DW powers are almost the same for γ and γ(z), which does not exactly occur

in Fig. 5-8, only after the values of δ3 are higher than 0.03.

(a)

(b)

Figure 5-8.: DW Power (dB) as a function of δ3 for (a) N = 3 and (b) N = 9 at TFWHM =

300 fs

Continuing the study with the wavelength at which the DW is generated; according to Eq.

5-11, this value depends on γ and δ3. The Z-dependence of γ opens the possibility to inves-

tigate how this parameter affects the DW behavior. Fig. 5-7 shows how the DW frequency

varies as a function of δ3 for different pulse widths and numbers of solitons when the non-

linear terms are, or are not, included.

Although the theoretical expression cannot exactly predict the values obtained in the sim-

ulations, it does work better with lower values of δ3. No particular differences are shown

in the DW frequencies when γ is considered a variable or constant, although differences do

occur when the nonlinear terms are considered, mostly for values of approximately 0.02 and

0.06; different situations were reported in ref. [74], which uses a constant γ and silica fiber,

although the geometry and response function of the material are different. The previous
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analysis suggests that the dispersive wave depends not only on the energy of the soliton, but

also on the shape of the propagating pulse.

Although the DW phase matching condition (∆νdTo) is almost the same in Fig. 5-7 for γ

and γ(z), it is interesting to see how γ(z) influences the DW frequency. To study this, fig.

5-9 illustrates this dependence. One important feature regarding how γ as a constant or

variable affects the spectrum can be seen in figs. 5-9(a) and 5-9(c), respectively, where the

difference in the DW generation is clear: whereas in (a), where γ is a constant, and the DW

starts to appear, in (b) no DW generation has yet occurred, and the coherent DW change

to incoherent modulation instability. Another important aspect regarding these two spectra

is related to the fission process. In fig. 5-9(a), the spectrum exhibits little fission, and there

are two main peaks, whereas in fig. 5-9(c), the spectrum has two lateral frequencies with

respect to the central one, and the fission process is clearly more important when γ is a

variable. A similar behavior is demonstrated when β3 = 0 and only β4 are considered in Eq.

5-13. If higher-order nonlinear terms are taken into account in Eq. 5-13, the fission process

disappears in both cases, as shown in figs. 5-9(b) and 5-9(d) for γ as both a constant and

a variable, respectively; additionally, it can be seen that the spectral responses are similar.

However, we found that, at narrower pulse widths (To), the differences between the spec-

tra are smaller, and the influence on the variation of γ based on the position is negligible;

however, for wider pulse widths, the differences are more remarkable and the symmetrical

behavior found in fig. 5-9 is no longer present. Similarly, the DW disappears when higher-

order nonlinear terms are considered. Another notable finding was the influence of the δ3

parameter. As it is increased, the output spectra become the same regardless of the pulse

width or higher-order nonlinear terms.
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Figure 5-9.: Output spectrum at TFWHM = 200 fs, δ3 = 0.01, and N = 3 for (a) γ as a

constant without higher-order nonlinear terms, (b) γ as a constant with higher-

order nonlinear terms, (c) γ as a variable without higher-order nonlinear terms,

and (d) γ as a variable with higher-order nonlinear terms.

When the pulse width remains constant at TFWHM = 300fs and the soliton order is increased

up to N = 9, an interesting behavior appears, that is, the differences in the spectra between

γ and γ(z) are presented again, even for the largest values of δ3, and when considering

higher-order nonlinear terms.

In summary, there are different parameters that affect the dispersive wave generation under

the assumption of a constant or variable γ. Increasing both the pulse width and N , the

spectra present differences, whereas increasing δ3 makes both spectra the same.
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Figure 5-10.: Output spectrum at TFWHM = 300 fs, δ3 = 0.01, and N = 3 for (a) γ

as a constant without additional nonlinear terms, (b) γ as a constant with

additional nonlinear terms, (c) γ as a variable without additional nonlinear

terms, and (d) γ as a variable with additional nonlinear terms

The variation in the dispersive wave can be explained as a consequence of the dependence of

γ as a function of the shape of the pulse when propagating, and therefore the soliton order

changes as well. Fig. 5-11 shows the behavior of γ(z) and N(z) for the initial values of

N = 3 and N = 9 at TFWHM = 300 fs, where we can observe that initially γ(z) decreases

dramatically to a certain distance, and after reaching a minimum value, increases rapidly.

This is due to n2 depends on the shape of the pulse and that before the fission of the solitons,

the pulse is compressed and then widened.
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Figure 5-11.: γ(z) and N(z) evolution as a function of propagation distance at TFWHM =

300 fs with initial soliton order of (a) N = 3 and (b) N = 9. The blue curve

corresponds to gamma whereas the red one corresponds to soliton number N
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According to Eq. 5-11, the DW frequency can be controlled using δ3, T0, β2, γ, and the

initial power Po. Typically, the only way to change the frequency externally to the fiber

optic structure is to manipulate the initial power of the pulse. Thus, if a solvent material,

such as CS2, is used, where γ depends on the propagation distance, we can also manipulate

the length of the fiber structure infiltrated with CS2 and thereby select the DW frequency.

Fig. 5-12 shows ∆νd as a function of distance for different cases of γ as a variable. It is

worth noting in Fig. 5-12(c) that the DW frequency was unaltered; however, the situation is

different in Fig. 5-12(a), where the only change made was in the pulse width TFWHM = 107

fs. This indicates the possibility of finding balance among the different parameters so as to

create the desired spectrum. A second notable finding on the influence of the δ3 parameter is

that for the highest value of δ3 considered (δ3 = 0.1), the mismatch between the theoretical

and simulated values of ∆νd was also the highest. Similarly, at δ3 = 0.1 for a propagation

distance lower than 3 meters the DW power was the lowest. This can be considered the initial

point when designing a tunable DW frequency device, where we can control the wavelength

and power, and when experimenting with both the parameters mentioned above and the

propagation distance.

(a) (b)

(c) (d)

Figure 5-12.: Variation of ∆νd with distance for (a) N = 2, TFWHM = 107fs, and δ3 =

0, 03, (b) N = 2, TFWHM = 107 fs, and δ3 = 0, 09, (c) N = 2, TFWHM = 300

fs, and δ3 = 0, 03, and (d) N = 9, TFWHM = 107 fs, and δ3 = 0, 03.
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5.2.8. Four-Wave Mixing

An interesting fact occurs when the pulse width is set to 500 fs, namely, the output spectrum

is very broad, making it very difficult to identify the DW, soliton fission, or other phenomena.

For this reason, it was followed the pulse evolution for different propagation distances to see

how it behaves and to determine the main differences with its counterparts, γ and γ(z). In

this case, we neglected higher-order nonlinear terms. In Fig.5-13, at a propagation length

of 0.02LD the output spectral shape was almost the same for each case under consideration.

It is until a propagation distance of 0.067LD that significant differences occur with δ3 = 0.1,

where stoke and anti-stoke waves start to appear, the difference can be appreciated between

Fig.5-13 (c.4) and Fig.5-13(d.4). For the remaining figures, it can be seen that the frequency

of the stoke and anti-stoke waves are at the same position, independent of whether γ is a

constant or variable, and these frequencies agree with Eq. 5-14 and Eq. 5-16. However, the

form of the spectral responses are dependent on whether γ is a variable or constant, even

for certain situations in which one or both of the waves disappear.
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Figure 5-13.: Output spectrum shape for different propagation distances: (a) δ3 = 0, 01,

and γ as a constant, (b) δ3 = 0, 01, and γ as a variable, (c) δ3 = 0, 1, and

γ as a constant, and (d) δ3 = 0, 1, and γ as a variable. Where the first row

until the last go as: 0.02LD, 0.05LD, 0.067LD, 0.069LD, 0.07LD, 0.08LD
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5.3. Hollow Core Photonic Crystal Fiber Simulation

Hollow-core photonic crystal fibers infiltrated with Argon, Krypton and Xenon were simu-

lated, for this purpose the GNLSE (Eq 3-21) was numerically solved. We considered different

pulse widths: 50fs and 500fs as well as peak power as a function of critical power: 1
8
Pcr,

1
50
Pcr,

1
100
Pcr and 1

100
Pcr, where:

Pcr =
λ2

2πn0n2

(5-19)

λ, n0 and n2 are input wavelength, linear and non-linear refractive index, respectively. The

Critical power is defined as the threshold necessary to start the ionization of the gas, in this

way, ensuring a lower power than the critical, it is not necessary to include a new nonlinear

term in Eq 3-21 to take into account this new phenomenon, where new effects are generated.

The pressure under consideration was varied: 1 bar, 25 bar, 90 bar, 140 bar. The input

wavelength was set to 800 nm, with a unchirped Gaussian profile. The HCPCF geometry

considered is shown in Fig 5-1 and the beam inside power distribution was solved by a finite

element modeling.

Argon

The dispersion profile of Argon for each pressure level is shown in Fig 5-14 where it can

appreciated how it varies according to pressure, an interesting fact is the presence of multiple

zeros at different wavelengths. These zeros are shifted with the change in pressure. Due to

the method used to calculate the dispersion profile, the values close to the boundaries are

not trustworthy.

Although in some cases the pump wavelength was not in the anomalous dispersion regime,

the dispersion shape was of special interest as in some cases a spectral broadening can

be achieved, this is when the pulse width is broad enough to reach wavelengths were the

dispersion is negative and a soliton can be generated. Fig 5-15 presents how the nonlinear

parameter γ and β2 varies according to pressure level. The behavior presented by γ is

expected due to the increase in nonlinear refractive index (n2) and density of the gas with

pressure [3], besides the shape of the graph coincides at the pressure at which the gas

changes to supercritical state. However, in Fig 5-15(b) the β2 parameter calculated at 800

nm has not a clear dependence with pressure, but it is demonstrated how this value can be

shifted through positive and negative values (normal and anomalous dispersion). It opens

the possibility to generate optical solitons with the same fiber structure and laser, only with

the change of pressure, a relatively simple and low cost implementation.
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(a) (b)

(c) (d)

Figure 5-14.: Argon dispersion profile. (a) 1 bar, (b) 25 bar, (c) 90 bar, (d) 140 bar

For 140 bar there was no confinement inside the fiber at 800 nm, for this reason simulations

were perform until 90 bar. For 50 fs pulse width the output spectrum was nearly the same

that the input for every pressure and input power, this situation is presented in Fig 5-16(b).

At the same pulse width the temporal output get distorted, where it lost its initial profile

and it extends for more than 80 ps without principal shape. A total different picture occurs

when the pulse width is change to 500 fs, an interesting pulse shift and compress take place

at 90 bar, where the pulse breaks into two main pulse: one travel at almost the same velocity

that the input pulse and the other traveling slower, but with a temporal compression, where

its Gaussian shape is conserved 5-16 (a). At 25 bar and 1 bar the temporal output is broader

and no specific pulse or shape is formed. In other hand, at 90 bar occurs the most significant

spectrum change, where it can be observed two main peaks, at 775 nm and 835 nm. The first

one can be attributed to DW generation(Eq 3-39) , whereas the second (835 nm) can not be

due to Raman effect because in noble gases this effect is not present, so the most probably

reason is dispersive terms that act to form this new wave, as was reported in previous works

[13],[74]. The reason why in (c) the output spectrum at 1 bar suffers such deformation with

different peaks along different wavelengths whereas at 25 bar the pulse remains almost the

same is due to the value of β2 and γ. For both pressures β2 is positive, but for 1 bar the

value is lower than for 25 bar (table 5-2), whereas the opposite situation occurs for γ, where

the value corresponding to 25 bar exceeds to 1 bar. In this way, for 1 bar LNL is lower than

for 25 bar making the nonlinear phenomena the main effects over the pulse propagation.

For 25 bar LD is shorter than LNL and the interplay between these two effects enable the

compensation to keep the pulse narrowed.
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Argon

Pressure
β2

ps2/m

β3

ps3/m

β4

ps4/m

β5

ps5/m

β6

ps6/m

β7

ps7/m

β8

ps8/m

β9

ps9/m

β10

ps10/m

1 bar 1.548 0.038
−4.435·
10−04

−4.773·
10−06

9.849·
10−08

1.407·
10−10

−1.260·
10−11

7.510·
10−14

−1.537·
10−22

25 bar 21, 528 −0.264 −0.060 0.001
1.328·
10−04

−5.303·
10−06

−1.537·
10−07

8.692·
10−09

−1.046·
10−12

90 bar −1, 096 0.045
2.137·
10−04

−8.182·
10−06

−7.276·
10−08

8.703·
10−10

1.645·
10−11

7.477·
10−14

−1.481·
10−23

Table 5-2.: Dispersion parameters used to simulated Argon filled HCPCF

(a)

(b)

Pressure (bar)
0           20            40            60            80           100          120         140

Figure 5-15.: (a)γ, (b) β2 in function on pressure for Argon in HCPCF

It is interesting to see that the most important effects on the pulse occur at 90 bar, where

γ reaches its maximum value and β2 is negative, enabling the soliton formation and a

subsequent DW formation. It is at this pressure that the gas changes its linear behavior

to enter in the supercritical zone. Despite that the temporal width was increased, this was

not enough to excite other wavelengths in which a wave could be propagated in anomalous

dispersion for the pressures where β2 was positive at 800 nm. Nevertheless, the dispersion

profile associated to this fiber geometry could be further explorer with the intention of

spectral broadening at normal dispersion wavelength.
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(a)

(b)

(c)

Figure 5-16.: output response in Argon filled HCPCF for different pressures and pulse

widths after 1 m of propagation distance and 1/50 Pcr. (a) Output time

response at 500 fs pulse width. (b) output spectrum at 50 fs pulse width. (c)

output spectrum at 500 fs pulse width
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Xenon and Krypton

The Xenon and Krypton dispersion profile was investigated, where it was found that both

gases are not confined by the HCPCF geometry considered for pressures higher than 40 bar.

In the same way, the profile exhibited by both gases was similar to Argon where multiple

ZDW were found. According to this, a study in function of power, pulse width and pressure

was done.

At 50 fs neither Xenon and Krypton exhibited a significant change in their output spectrum

or temporal response, despite the fact that β2 < 0 and optical soliton could be formed,

but the dispersive terms turn out to exceed the nonlinear ones, making a low nonlinear

interaction. It was only when the pulse width was change to 500 fs that changes in the

output pulse occurs. In Fig 5-19 (a) and (c) is shown the output spectrum for Xenon and

Krypton respectively, where a similar behavior was found: at 1 bar occurs broader spectral

broadening that at 25 bar, nevertheless the pulse shape presents a lot of picks around the

initial pulse shape. The reason for this behavior is found when the γ and βm dependence

with pressure is considered. In the case of Xenon at 1bar, N = 4 and LNL is ten times

lower than LD, which implies the nonlinear phenomena preponderance over dispersive ones,

nevertheless in the propagation distance considered (1 m), both effects have impact on the

final shape.

(a) (b)

(c) (d)

Figure 5-17.: Xenon Dispersion profile in HCPCF. (a) 1 bar. (b) 25 bar. (c)90 bar. (d)140

bar

So, first the pulse undergoes nonlinear effects, such as soliton fission, modulation instability,

among others, and then the higher dispersive terms acts in each pulse produced by the first

action. Explaining the number of peaks around a central shape, where the soliton fission

can be appreciated. In the same way for Krypton, at 1 bar LNL is shorter than LD, but
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this difference is lower than Xenon, which it explains the lower number of peaks around the

main shape, with the addition of a small soliton order, N = 2.

(a) (b)

(c)

Figure 5-18.: Krypton dispersion profile in HCPCF. (a) 1 bar. (b) 25 bar. (c)90 bar.

The influence of soliton number in the final pulse shape can be evidenced in Fig 5-19(a)

at 25 bar, where N = 1, under this situation soliton fission does not happen and a DW is

generated at 795 nm. For this parameters, LNL and LD has the same value, which it means

that dispersive and nonlinear terms act at the same time, where one of them overcomes the

other, according to the pulse shape, nonlinear effects exceed the dispersion. In the case of

Krypton at 25 bar, Fig 5-19(b), LNL turns out to be smaller than LD and with a low soliton

number, N = 2, the pulse shape presents an expected behavior.

In other way, the temporal response presents shifting, where the pulse propagates slower or

faster than the input, in Fig 5-19(d) at 25 bar, there is a temporal compression, with almost

none of energy lost.

In summary, the spectrum and temporal output response can be tunned according to pres-

sure, where the dispersion profile presented multiple ZDW, which can be used to lunch an

optical pulse at normal dispersion and if it travels some wavelengths reaches anomalous

dispersion for the optical soliton formation. The HCPCF geometry considered presented

several limitations, where one of the most important was the no pulse confinement at higher

pressures for Xenon and Krypton. Xenon is one of the most promising gases due to high

nonlinear refractive index at high pressures, which results in a high γ, how can be seen in

table 5-3, but this property could not be exploited. In this way, the HCPCF presented here

is not recommended to be used for spectral broadening as supercontinuum generation, but it

presented a novel and, according to my knowledge, unknown property to compress the intial

pulse width with low energy lost and the control over the propagation speed, more studies

in this filed are necessary to know the exact dependence with pressure.
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(a)

(b)

(c)

(d)

Figure 5-19.: output response for Xenon and Krypton filled HCPCF at 800 nm, 1/50 Pcr
and 500 fs pulse width for 1 and 25 bar after 1 m propagation distance. (a)

Xenon output spectrum. (b) Xenon output temporal response. (c) Krypton

output spectrum. (d) Krypton output temporal response

Table 5-3.: γ value for Xenon and Krypton at

different pressures

γ(W−1m−1)

Pressure (bar) Xenon Krypton

1 2, 83 · 10−04 1, 03 · 10−05

25 3, 29 · 10−04 4, 43 · 10−05

Xenon

Pressure

(bar)

β2

ps2/m

β3

ps3/m

β4

ps4/m

β5

ps5/m

β6

ps6/m

β7

ps7/m

β8

ps8/m

β9

ps9/m

β10

ps10/m

1 −3.168 0.834 0.676 −0.147 −0.040 0.005
4.887·
10−6

−2.654·
10−8

−9.751·
10−11

25 −44.347 17.681 0.756 −0.383 −0.021 0.003
2.484·
10−4

5.185·
10−7

5.267·
10−10

Krypton

1 −12.082 −0.745 0.023
7.768·
10−4

−2.788·
10−5

−7.511·
10−7

1.853·
10−8

5.208·
10−10

−1.182·
10−15

25 −17.163 −1.529 0.072 0.003
−1.599·
10−4

−5.969·
10−6

1.845·
10−7

7.789·
10−9

8.076·
10−14

Table 5-4.: Xenon and krypton dispersive terms at 1 bar and 25 bar in HCPCF
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5.4. Negative Curvature Hollow Core Fiber Simulation

Argon

The first parameter under study was the Argon dispersion profile, in Fig 5-20 are presented

the different traces at 1 bar, 25 bar, 90 bar and 140 bar, where the ZDW is within the

wavelength window under study for 25 bar and 90 bar. An interesting property was the

possibility to shift the dispersion trace with pressure, where each wavelength is shifted to-

wards lower values of D, making possible the control of normal and anomalous dispersion.

Despite there is no a clear dependence of dispersion with pressure due each wavelength is

moved a different quantity, it is possible a characterization of the fiber to know the ZDW in

function of pressure. A complete different picture is displayed for NHCPCF in comparison

with HCPCF where there are multiple ZDW. The optical pulse confinement was reached for

every pressure considered. Anomalous dispersion was achieved at pressures of 1 bar and 25

bar.

Fig 5-21(a) presents the output spectrum for two different levels of energy and propagation

distance. With 1/8 Pcr and z = 1 m the final pulse results in a spectrum broadening from

400 nm up to 1900 nm with a flat shape, where the energy is almost evenly distributed. Nev-

ertheless, in Fig 5-21(b) its temporal shape is presented, where it can be see how the initial

pulse suffers compression and presents a number of different peak, indicating the presence

of soliton fission, where each one moves at distinct velocities. Besides, it was found a DW

generated at 400 nm.

Figure 5-20.: Profile dispersion for Argon filled NHCPCF at different pressures.
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Once the power stars to decrease: 1/50 Pcr, 1/100 pcr and 1/1000 Pcr the output pulse

remains unaltered over 1 m of propagation distance. But even with the lowest power is

possible to obtain a change in the output when the propagation distance is increased, in this

case it was set to 100 m, a lower spectal broadening can be observed with the formation of

a DW around 500 m (Fig 5-21(a)), in the other hand its temporal output presents several

differences with the case at 1 bar, where the pulse is divide in two, both get narrowed and

one travels more fast that the input, whereas the other travels slower. The difference at

change the power was in the soliton number, for the higher level of energy N corresponds to

30 and for the lower one N = 3. The spectrum achieved with the change of the propagation

distance was due to that the nonlinear terms could have more interaction and they were

preponderant over the dispersion, thanks to LNL < LD.

In Fig 5-21(c) and (d) are presented the spectral and temporal output at 25 bar, where

for 1/8 Pcr and z = 1 m the spectral broadening and shape were very similar to 1 bar

at the same conditions, despite the fact that at 25 bar N was equal to 41. The principal

difference with respect to Fig 5-21(a) was about LNL andLD, where for (a) the dispersive

and nonlinear distance were close to each other, but in (c) only nonlinear terms interact,

pointing out soliton fission and modulation instability like the principal reason behind the

spectral broadening.

(a)

(b)

(c)

(d)

Figure 5-21.: temporal and spectral output response for Argon NHCPCF filled. (a) Spec-

trum output at 1 bar. (b)Temporal output at 1 bar. (c)Spectrum output at

25 bar. (d)Temporal output at 25 bar.
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This assumption is confirmed by extending the propagation distance up to z = 50 m keeping

the same power, making the dispersive terms have influence in the propagated pulse, it can

be seen like the pulse extension is conserved, but the shape is degraded with the appearance

of many peaks. The time response (5-21(d)) is consistent with the results and the influence

of nonlinear and dispersive terms, where nonlinear terms have the action of pulse compres-

sion, whereas the dispersive terms break this shape into multiple sub-pulses traveling at

different velocities. Once the nonlinear interaction is reduced by lowering the power, 1/50

Pcr, the pulse remains almost the same as the input for 1 m propagation distance.

In Fig 5-22 is found the simulation performed at 90 bar and 140 bar. Despite γ increases

with pressure, Fig 5-23, the output spectrum at 90 bar and 1/8 Pcr propagated 1 m is

shorter in comparison with the same parameters but at 1 bar or 25 bar, even though at 90

bar the soliton number is higher than at 1 bar. The reason of this behavior is attributed

to β2, where for higher pressures than 25 bar it reaches positive values, table 5-6. Another

remarkable characteristic is the similitude in the temporal and spectral output shape at 90

bar and 140 bar, a similar situation happens with 1 bar and 25 bar, this can be explained

due to LNL, where this pressures share similar values, table 5-6. In this way, soliton fission

is one of the most important effects to reach a wide spectral broadening, but it is not the

only phenomenon contributing to this purpose, where others like modulation stability can

broad the spectrum, another feature about the pulse response is the broad tendency towards

higher wavelengths. An interesting characteristic due to the nonexistence of Raman effect.

A disadvantage is the low power at the output, less than −30 dB, nonetheless the spectral

broadening and temporal compression could be promising to be used in many applications.

(a)

(b)

Figure 5-22.: output response for Argon NHCPCF filled at 90 bar and 140 bar.

(a)Spectrum output. (b)Temporal output
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Figure 5-23.: γ in function of pressure for: Argon, Xenon and Krypton

Table 5-5.: LD and LNL for

Argon at different

pressures, for 1/8

Pcr at 50 fs

Argon

Pressure

(bar)
LD(m) LNL(m)

1 54, 612 0, 0592

25 100 0, 0596

90 81, 148 0.061

140 34, 135 0.061
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Argon

Pressure

(bar)

β2

ps2/m

β3

ps3/m

β4

ps4/m

β5

ps5/m

β6

ps6/m

β7

ps7/m

β8

ps8/m

β9

ps9/m

β10

ps10/m

1
−1.473

10−5

5.341

10−8

−7.718

10−11

1.768

10−13

−5.022

10−16

1.848

10−18

−9.546

10−21

4.956

10−23

−5.696

10−29

25
−8.042

10−6

5.612

10−8

−7.703

10−11

1.767

10−13

−5.027

10−16

1.847

10−18

−9.662

10−21

5.407

10−23

5.338

10−28

90
9.915

10−6

6.341

10−8

−7.665

10−11

1.762

10−13

−5.039

10−16

1.875

10−18

−1.000

10−20

5.571

10−23

−8.566

10−28

140
2.357

10−5

6.896

10−8

−7.637

10−11

1.759

10−13

−5.055

10−16

1.895

10−18

−1.015

10−20

5.809

10−23

−1.404

10−27

Table 5-6.: Dispersive terms for Argon at 1 bar,25 bar, 90 bar, 140 bar

Xenon

Fig 5-24 presents the dispersion parameter in function of pressure, it is worth noting that at

1 bar all the wavelengths considered present β2 < 0, once the pressure starts to increase the

dispersion profile undergoes a down shift, where at pressures higher than 40 bar, β2 > 0. This

means that at lower pressures it is possible obtain anomalous dispersion for a wide spectral

windows, with increasing pressure more wavelengths go into normal dispersion, making it

necessary to increase the wavelength to reach optical soliton.

Figure 5-24.: Profile dispersion for Xenon filled NHCPCF at different pressures.
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The spectrum output behavior with the change of pressure, peak power, propagation distance

and pulse width are presented in Fig 5-25, where the most remarkable results are shown.

Starting at 1 bar the most broadest spectrum is reached at 1/8 Pcr which corresponds to the

higher energy considered, with 1 m propagation distance. This is expected due to the higher

soliton number, N = 20, and the short nonlinear distance, LNL = 0.059 m. So, the pulse

has broadening nearly to 800 nm, but with low power. As the peak power is decreased the

spectral broadening too, but it is possible to extend this widening if the propagation distance

is increased Fig 5-25(a), but at cost of the pulse detriment. A very similar behavior is found

at 25 bar, Fig 5-25(b): same spectral broadening. the reason for this is due to LD, LNL does

not change so much (table 5-7), despite the fact that at 25 bar N increases to 68. When

the linear gas region is exceeds, the output spectrum starts to change, as can be seen at 90

bar and 140 bar, 5-25(c) and (d). At 25 bar the spectrum broadening is much lower than

at 1 bar with the same peak power, it is necessary to increase the propagation distance to

increase the broadening, reaching more than 1600 nm, where a possible DW is generated at

490 nm, nevertheless this DW wavelength does not match with the theory, Eq 3-39. In this

way, the pressure increment give place to a higher γ, enabling more spectral broadening, but

making necessary a longer propagation distance, which causes the appearance of multiple

peaks.

(a) (b)

(c) (d)

Figure 5-25.: Spectrum output for Xenon filled NHCPCF at (a)1 bar, (b) 25 bar, (c) 90

bar and (d) 140 bar, with different peak power and propagation distance at

50 fs pulse width.

A relative flat and broad spectrum is achieved with lower pressure, where although gamma is

lower, the soliton number is higher, this is thanks to Pcr, where its value is higher enabling
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the use of most powerful laser without enter in ionization region. This is not a advantage

or disadvantage because the ionization term has been proved to contribute with numerous

new phenomena [10] [19] [75], so the situation and use must been considered. The power

necessary to reach a similar spectral broadening at 1 bar with 140 bar is two orders of

magnitude lower.

(a)

(b)

(c)

Figure 5-26.: Spectrum evolution in Xenon filled NHCPCF at 1 bar and 50 fs. (a) z = 1

m, 1/8 Pcr. (b) z = 1 m, 1/50 Pcr. (c) z = 100 m, 1/50 Pcr
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Fig 5-26 presents how the spectrum pulse evolves as it propagates, in (a) and (b) can be

appreciated the velocity at which the spectral broads, in (c) the conditions are the same

than in (b), but the propagation distance was increasing. Here a periodic evolution of the

spectrum broadening is presented, where the more probably reason is the balance between

nonlinear and dispersion terms. Indicating the possibility of the spectral broadening control

with propagation distance.

Observing the temporal output at each pressure, Fig 5-27, it can be noted that at the

higher peak power the pulse is compressed when the pressure is set to 1 bar, as the pressure

is increased the compression starts to disappears and this behavior is no longer present

for any combination of power, pulse width or propagation distance ,Fig 5-27 (c) and (d).

The reason for this can be found in table 5-7 and table 5-8, where LD is more shorter at

higher pressures, making that the dispersive terms have more impact over the pulse, with

the addition that at this pressures no soliton formation is achieved.

(a)

(b)

(c) (d)

Figure 5-27.: Temporal output for Xenon filled NHCPCF at (a)1 bar, (b) 25 bar, (c) 90

bar and (d) 140 bar, with different peak power and propagation distance at

50 fs pulse width.
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Table 5-7.: LD and LNL for

Xenon at different

pressures, for 1/8

Pcr at 50 fs pulse

width

Xenon

Pressure

(bar)
LD(m) LNL(m)

1 24.4050 0.0592

25 27.7047 0.0601

90 10.8700 0.0626

145 6.2250 0.0644

Table 5-8.: Xenon filled NHCPCF dispersion parameters at 1 bar, 25 bar, 90 bar and 140 bar

Xenon

Pressure

(bar)

β2

ps2/m

β3

ps3/m

β4

ps4/m

β5

ps5/m

β6

ps6/m

β7

ps7/m

β8

ps8/m

β9

ps9/m

β10

ps10/m

1
−3.297

10−5

4.496

10−8

−7.807

10−11

1.763

10−13

−5.025

10−16

1.850

10−18

−9.556

10−21

5.050

10−23

′ − 4.257

10−28

25
−2.904

10−6

5.696

10−8

−7.710

10−11

1.754

10−13

−5.060

10−16

1.909

10−18

−1.039

10−20

5.812

10−23

2.736

10−28

90
7.402

10−5

8.778

10−8

−7.502

10−11

1.752

10−13

−5.300

10−16

2.198

10−18

−1.426

10−20

9.479

10−23

5.795

10−30

140
1.292

10−4

1.101

10−7

−7.406

10−11

1.784

10−13

−5.718

10−16

2.646

10−18

−2.075

10−20

1.604

10−22

−8.375

10−29
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Krypton

The dispersion profile for Krypton in function of pressure can be found in Fig 5-28, where at

800 nm β2 was always greater than zero, making the soliton formation no possible. Likewise,

dispersion shift goes towards lower values with the increase of pressure. An interesting fact

was the high β2 value for 90 bar and 140 bar, table 5-10.

At the lower pressure, which correspond to the highest nonlinear parameter value, was

reached the wider spectral broadening, where a similar behavior with respect to before gases:

Argon and Xenon was found, for 1/8 Pcr and z = 1 m there is output spectrum relatively flat,

but once the propagation distance is increased there are a lot of peaks due to the dispersive

parameters action, Fig 5-29(a). in the time domain can be seen how propagation makes the

pulse travels at different speeds, and only at 1 bar and 1/8 Pcr,z = 1 m the pulse undergoes

temporal compression due to LNL overcomes dispersion.

Once the pressure starts to be increased, the spectral broadening is lower and dispersion

effects are less significant is its shape, this behavior is due to the balance between LNL and

LD reached, as can be seen in table 5-9 and the absence of soliton formation. So, as the

kerr effect acts the dispersion effects act in the opposite manner, making little spectrum

broadening as can be corroborated in Fig 5-29 (b) and (c). The high β2 value implies a

wider temporal output, where temporal compression is no longer present Fig 5-30. At 140

bar the temporal and spectral response was nearly the same as at 90 bar, where no significant

effects could be appreciated.

Figure 5-28.: Profile dispersion for Krypton filled NHCPCF at different pressures.
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(a) (b)

(c)

Figure 5-29.: Spectrum output for Krypton filled NHCPCF at (a)1 bar, (b) 25 bar, (c) 90

bar, with different peak power and propagation distance at 50 fs pulse width.

(a) (b)

(c)

Figure 5-30.: Temporal output for Krypton filled NHCPCF at (a)1 bar, (b) 25 bar, (c) 90

bar , with different peak power and propagation distance at 50 fs pulse width.
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Table 5-9.: LD and LNL for

Krypton at differ-

ent pressures, for

1/8 Pcr at 50 fs

pulse width

Krypton

Pressure

(bar)
LD(m) LNL(m)

1 1.4025 0.0592

25 0.8422 0.0597

90 0.2341 0.0613

145 0.1529 0.0673

Krypton

Pressure

(bar)

β2

ps2/m

β3

ps3/m

β4

ps4/m

β5

ps5/m

β6

ps6/m

β7

ps7/m

β8

ps8/m

β9

ps9/m

β10

ps10/m

1
5.736

10−6

6.319

10−8

−7.569

10−11

1.776

10−13

−5.019

10−16

1.834

10−18

−9.619

10−21

5.619

10−23

−6.133

10−28

25
9.552

10−4

5.082

10−7

−1.854

10−11

2.063

10−13

−4.968

10−16

1.887

10−18

−1.002

10−20

5.467

10−23

−1.181

10−27

90 0.003
1.669

10−6

1.288

10−10

2.808

10−13

−4.886

10−16

2.032

10−18

−1.176

10−20

7.062

10−23

−1.454

10−28

140 0.005
2.523

10−6

2.354

10−10

3.356

10−13

−4.888

10−16

2.197

10−18

−1.405

10−20

9.293

10−23

−3.957

10−28

Table 5-10.: Krypton filled NHCPCF dispersion parameters at 1 bar, 25 bar, 90 bar and

140 bar

5.4.1. Conclusions

Using the GNLSE code were numerically simulated different substances under different geo-

metrical parameters and input conditions. The first geometrical fiber studied was the Hollow

core photonic crystal fiber filled with CS2 known as liquid core crystal fiber. Where it was

presented the temporal and spectral behavior for a hollow-core photonic crystal fiber infil-

trated with carbon disulfide with its correct response function, where it was studied this new

behavior and dynamics under different circumstances. It was also presented how the peak

power influences the spectral broadening which is closely related to the number of solitons,

identifying soliton fission as main mechanism in this new response function. The propagation
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distance is another variable under consideration, where it was established that in the distance

under consideration with one soliton the spectral broadening was negligibly, but with two

solitons the spectral broadening increase with more propagation distance. Concluding so the

main mechanism, taking into account the new response function, was soliton fission, where

the non-instantaneous response acts increasing the effective non-linear refractive index and

the non-linear parameter. In other way, by studying the influence of γ as a constant and

γ as a variable in the time and frequency domains outputs when different parameters are

tweaked such as: pulse width, input power, third-order dispersion, higher-order nonlinear

terms and propagation distance it was possible to observe the effect of considering γ as a

variable on the pulse and how its inclusion allowed to reach more accurate results.

For instance, when the pulse width widens, the DW responses are similar, whereas for a

narrower pulse width, the DW power becomes stronger at a lower δ3. Another interesting

result was the appearance of a DW at an early propagation distance when γ was considered

a constant, which does not occur when γ is Z-dependent, but modulation instabilities start

showing up under this condition what represents a great difference between constant and

variable nonlinear parameters. Through the study of number of solitons and pulse width a

balance can be observed, when this balance is reached the γ variation with position has low

impact on the final results, but when this balance is broken the output is very different from

when γ is set constant. Similarly, it can be seen that not all parameters (DW wavelength

and DW power) are affected equally, DW power turned out to be especially more sensitive

to the variation of δ and the consideration of γ as either a constant or z-function, whereas

DW wavelength is especially less sensitive to the dependence on propagation of the pulse.

Another fact worth pointing out is the need of a new DW power expression that can better fit

with the simulation results and in which the influence of propagation is taken into account.

Because the output has a dependence on the observed balance, the influence of parameters

like δ, N and pulse width in the final result either of DW generation or of FWM is difficult to

determine. Nevertheless we can conclude that γ must be necessarily considered as function

of the position.

In general, γ must be considered a variable despite the fact that, under certain circumstances,

the results are similar to when γ is considered a constant, which may explain why the

experimental and simulation results showed some discrepancies in some previous studies,

such as in [68].

Finally, the HCPCF and NHCPCF geometries presents different characteristics when they

are filled with the same gases: Argon, Xenon and Krypton. In HCPCF the shifted dispersion

with pressure gave a trace that always have ZDW in the window frequency considered. One

of the most notorious difference between HCPCF and NHCPCF, were the temporal and

spectral output change with pulse width, where in HCPCF this change has significance

in the temporal and spectral response, but in NHCPCF does not represent a significant
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change, The main reason is due to the dispersion profile: multiple ZDW. It was found that

HCPCF is good for temporal compression, whereas in NHCPCF the major characteristic

was spectral broadening towards longer wavelengths. The most promising gas (Xenon),

could not be exploited due to the β2 behavior, where the anomalous dispersion goes to

longer wavelengths at high pressures, and it is in this region where Xenon reaches its higher

values on n2, comparable with fused silica. In this way, it is conclude that for NHCPCF

it is necessary the use of laser beyond 1000 nm as input wavelength in order to reach wide

spectral broadening at low peak powers.



6. Conclusions

The scope of this work covered an experimental, a theoretical and a numerical approach to

the modeling of nonlinear pulse propagation in optical fibers and characterization of nonlin-

ear optical material parameters.

For the experimental approach, the Z-scan was implemented. This technique implementa-

tion was a new step for the optics laboratory in which this work was developed and now

our campus has joined a group of only few others worldwide that use the technique. It is

a powerful, fast and reliable tool for material nonlinear parameter characterization. Many

substances were characterized in the scope of this work, both nonlinear refractive index and

nonlinear absorption coefficient were reported and presented in different international con-

gresses. The Z-scan system implemented paves the way for future works in nonlinear optics

for the laboratory and the university, where future students and faculty can make use of it,

helping position the laboratory as a reference in nonlinear characterization.

The numerical and theoretical approach were cover more significantly in chapter 3, where

different simulations were performed with the new results found in the literature, to make

a more precise description of the nonlinear pulse propagation inside fiber optics. New ge-

ometries and material response functions were considered. Moreover, an exhaustive analysis

was executed in different regimes: pulse width, input power, nonlinear parameters involved.

The exploration of such geometries and materials is crucial for the development of new tools

for sensing and applications in many fields, as it was demonstrated along this thesis. The

contributions made to the field of nonlinear optics were reflected in different works: inter-

national congresses and papers. Among the most significant results were the study of the

new CS2 response function and the proposal about the nonlinear response dependence with

distance in non-instantaneous materials, which gives rise to new behaviors and unexpected

results, besides the control of dispersive wave generation and four wave mixing by changing

the propagation length. The exploration of new geometries such as negative hollow core

photonic crystal fibers filled with noble gases and tuning its properties by pressure have

demonstrated be a promissory way to generate a broad band flat spectrum.



A. Nonlinear optical fiber infiltration

implementation

This section is dedicated to the develop of the technique to obtain a successful infiltration

of liquids into fiber. The objective is to implement a system in which hollow core photonic

crystal fiber (HCPCF) is infiltrated in its core and the remaining holes remain the same.

For this purpose a system as is shown in FigA-1 was created. From left to right, the light

encounters with a 20X objective which focus the light into a single mode fiber which has

been cut diagonally in the other border and spliced with a capillary. The HCPCF is spliced

between two capillaries, the right border of the HCPCF is spliced to other capillary which is

joined to a single mode, (diagonally cut as the previous one) and finally the light comes out

towards a detector. The purpose of the gap between the single mode fiber and the capillary

is opening a way of entrance for the liquid. The capillary is used to guide the liquid into the

core hole of the HCPCF and the cladding holes remain untouched, this is possible because

the capillary size and the HCPCF core are selected in such a way that their dimensions

matched. The single mode fiber enables the coupling between light and capillary, where it

follows its way into the HCPCF core where the nonlinear interaction occurs. The reason for

two angled single mode fibers is because in this way a more homogeneous filled is guaranteed

and avoid other problems such as materials with high volatility.

Figure A-1.: Light coming from left to right (red arrow), in its path it encounters a lens:

20X Olympus Plan Fluorite objective. Single mode. Capillary with 10µm

inner diameter . Hollow core photonic crystal fiber (HCPCF). capillary. single

mode and detector.
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At first it was thought the possibility of a more elemental system in which only the HCPCF

was necessary. This implementation required the collapsing of the cladding holes, while the

central core hole remains open [82]. To do this, it was necessary to apply an electric arc

with the right parameters, after many different attempts and approaches [83] this option

was discarded because its complexity and difficult parameters control. The best approach

to solve the problem about fiber infiltration was found as is proposed in Fig A-1, where a

similar set up was implemented in [84]. To achieve the single mode fiber cutting at a certain

angle, it was considered and explored the acid burning in which the fiber is placed in a pool

of acid and after a time of exposure the fiber is reduced by the action of the acid. Several

difficulties were found with this approach, among them: no time repeatability: the time

necessary to obtain certain angle varies, hard control of the desire angle and poor finished

in the fiber. For this reason another option was used, where the fiber is cleaved with the

angle of choice, due to the limitations in the laboratory equipment, a variable angle cleaved

station was developed, where the angle can be varied between 0 and 90 degrees. For the fiber

infiltration the optimal angle goes between 10 and 20 degrees (small angles), this is due that

it is necessary enough surface that guarantees a stable spliced but at the same time enables

the infiltration of the liquid. In Fig A-2 can be seen how it is possible controlling the angle

at which the fiber is cleaved and perform a satisfactory splicing.

Figure A-2.: Fiber cleaved at two different angles: (a) and (b) and spliced successfully

Once the fiber is spliced, it is crucial be able to extract the fiber from the splicer machine

without damage, due to its small area the fiber is very fragile and can be broken easily, to

avoid this a piece was designed and made in a 3D printer which ensures the robustness of
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the splicing.

Both the HCPCF and capillary infiltration was corroborated. In Fig A-3 is shown the

HCPCF before and after the liquid infiltration where it can be seen how the core is only

filled and the cladding holes remain untouched.

Figure A-3.: a and b: HCPCF before and after infiltration respectively. C and d capillary

fiber before and after infiltration. Where the arrows indicate the core.

In this way, a successfully station of liquid infiltration into fiber was developed and imple-

mented where the angle of splicing can be controlled. Enabling the versatility in its use

with other fiber geometries and sizes, as well different liquids with distinct viscosities and

characteristics.



B. Numerical implementation of the

nonlinear envelope equation

This chapter is dedicated to the explanation and implementation of the nonlinear envelope

equation code presented before. For this purpose a code written on Octave or MatLab is

presented. The technique and methods used here are shown in more details in ref: [33] and

[34].

B.1. Diffraction

The first thing to do is the input data definition, in Fig B-1 is presented the data definition

for a Gaussian beam of λ = 800nm, in a medium with refractive index of 3. Propagation

distance of 0.0001m
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Figure B-1.: Definition of initial data

After the initial parameters definition it is necessary the grids definition, where the radial

axis and the propagation axis are discretized. It is defined the radial axis windows and the

number of steps in this axis.

Figure B-2.: Grid definition

Once the grids are defined, the matrices L+ and L− are created. in line 39 is created ∆j,

then from line 43 to 52 is created L+. Lines 50 and 51 presented the option to make the code

second order accurate, in which case these lines must be uncomment. The only difference

between L+ and L− is a minus sign, the implementation of L− is shown in Fig B-4. In these
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two matrices are consigned the boundary conditions, for this case: ∂E
∂r

= 0 at r = 0 and

E = 0 at rmax. In line 66 is calculated the product: L−− · L+, necessary to obtain the final

pulse.

Figure B-3.: L+ implementation

Figure B-4.: L− implementation

Finally, it is necessary to define the discretized input field, line 70. In lines 71 and 72 the

input field is plotted. The for loop, Lines 76 to 85 solve the equation. where the values of

the outer loop and the inner loop must match with the propagation distance z. The inner

loop is thinking to make low cost diagnostics, whereas the outer loop is for making more

consuming diagnostics. The variable c1 and c are auxiliary variables for seen in which loop

the code is. n is the discretized propagation.
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Figure B-5.: Input pulse and loop to solve the equation
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Diffraction and nonlinear terms

Considering now the equation presented in section 1.4.4., the code implementation requires

the addition of new variables to the diffraction code as follows. The speed of light, the

pulse chirp, nonlinear coefficient and nonlinear refractive index, absorption coefficient, multi-

photon absorption, group velocity, pulse width and molar contribution are some of the new

variables required to simulated nonlinear terms with a new discretized dimension: time, as

can be seen in Fig B-6.

The next step is the grid definition, for z and r axis.

In Fig B-8 are presented two different ways to discretized the radial axis, rj, in line 50 and

51. In the following lines are the temporal and frequency discretization, where 2 different

approach are considered. It is recommended read the section dedicated to this discretization

or the references mentioned before for a good understanding. The nonlinear tables are

presented in Fig B-9, where dispersive terms were considered only up to second order. In

this case the pulse is moving in the laboratory framework, but a change of variable of the

kind presented in [2] can be done in order to change it. For the creation of L+ and L− there

are two alternatives: to minimize simulation time, but at cost of memory the matrices can

be precomputed or recomputed at each step, to minimize memory usage. The first approach

was chosen and in Fig B-10 are νj and µj, and the initializing vectors to form L+ and L−.

The creation of L+ and L− were made inside a for loop where, they were created for each

discretized frequency and the new operators were added, Fig B-10. After this a definition

of the initial field is necessary, where now it is discretized in the radial and time coordinate.

Finally the solution of the GNLSE is presented in Fig B-12, where in the lines from 170

to 172 is account the dispersion parameters, in 173 the Raman contribution. Through the

lines 178 to 192 some useful vectors are initialized and at the line 195 starts the nonlinear

and propagation solution. To solve the differential equations the Runge Kutta fourth order

was used, lines 205 to 216, after that the kerr term is introduced and in the next lines the

Fourier transform of the before tables and the incident field are taken to solve the problem

in frequency domain. Once the respective matrices are created, ref [34], the inverse Fourier

transform is taken to obtain the final solution at that propagation step, and the loop is

repeated until z reaches its final value.
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Figure B-6.: Initial variables to perform simulation in diffraction and nonlinear code

Figure B-7.: Diffraction and nonlinear terms grid definition
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Figure B-8.: Frequency and time discretization.

Figure B-9.: Time operator and nonlinear operators discretization
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Figure B-10.: νj and µj creation and L+ and L− vectors initialization

Figure B-11.: L+ and L− matrices for each frequency creation
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Figure B-12.: Solution of the GNLSE with diffraction, dispersion and nonlinear terms.
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This paper presents a detailed analysis regarding the generation of a dispersive wave (DW) and four-wave mixing
in the noninstantaneous, nonlinear response of solvents using a commercial photonic crystal fiber filled with
carbon disulfide (CS2) where the beam is pumped in the anomalous dispersion domain. The main finding is
the fact that the output spectrum changes from coherent DW to incoherent modulation instabilities just by
changing from constant to variable nonlinear parameters. This study can be extended to other solvents including
ethanol, methanol, and butanol. © 2019 Optical Society of America


https://doi.org/10.1364/AO.58.002736


1. INTRODUCTION


Nonlinear phenomena occurring in different fiber optic struc-
tures have been extensively studied both theoretically and ex-
perimentally by the scientific and engineering communities
because they offer the possibility to control and guide light in
many ways that differ from conventional approaches [1]. One
such structure is a photonic crystal fiber (PCF), which has
shown interesting applications in the areas of optical commu-
nications, metrology, spectroscopy, microscopy, astronomy, mi-
cromachining, biology, and sensing [2,3]. One effect efficiently
produced in PCF is the generation of a supercontinuum (SC),
which has allowed the design of broadband and coherent light
sources. The SC generation (SCG) involves various well-known
processes, such as self- and cross-phase modulation, four-wave
mixing, modulation instability, soliton fission, dispersive wave
(DW) generation, and Raman scattering. Solitons and DWs
are some of the phenomena that have helped contribute to
the generation of new wavelengths toward the red and blue
sides, respectively. A soliton is a pulse that either does not
change its shape along the fiber length or follows a periodic
evolution pattern, whereas DW is a type of radiation emitted
by solitons, which is also called nonsolitonic radiation [4].
These effects can be modeled using the scalar nonlinear
Schrödinger equation (NLSE) [1], which has been widely ap-
plied in numerical simulations.


New types of fiber optic structures have emerged as means
to take advantage of the high nonlinear refractive index of some
liquids [5]. These include filled liquid-core optical fibers and
hollow core PCF (HCPCF), that can be filled with different
types of liquids, including organic dyes, as a means to studying
the nonlinear optical pulse propagating through them.


One liquid used is carbon disulfide (CS2), which has shown
a significant improvement in SCG; this type of fiber is referred
to as liquid-core PCF (LCPCF). The solvent CS2 has a non-
linear refractive index two orders of magnitude higher than
silica in the solid state [5] it is also known that the nonlinear
coefficients of CS2 in the liquid state are 10 to 103 times higher
than in the solid state [6].


In the case of liquids, within the Born–Oppenheimer
approximation, the nonlinear responses have two components:
an instantaneous response or bound-electron contribution, and
a noninstantaneous response owing to the nuclei response. The
latter of which can be understood as three independent re-
sponses, namely, a diffusive reorientation, vibrational response,
and collision-induced contribution [7], in which each contri-
bution has its own time response [8]. The theoretical prediction
of the existence of noninstantaneous soliton-like states in non-
instantaneous nonlinear materials, where the molecular re-
sponse is considered, shows that these objects are very robust
to noise and points out the importance in the output when
noninstantaneous response is considered [9]. Besides, it was
found in C2Cl4 that the noninstantaneous effects can signifi-
cantly reduce the modulation instability limit, that is, noise
driven four-wave mixing (FWM) [10].


HCPCF infiltrated with CS2 was previously studied [11];
however, the response function for the CS2, as measured re-
cently by Zhao et al. [12], which has given rise to a new so-
called hybrid soliton behavior owing to a slow response of
the material [5,8,12], was not included. Other numerical stud-
ies of CS2 filled fiber have forgotten to include the correct han-
dling of the noninstantaneous response [13,14]. In other hand,
the pulse shape and pulse width dependence as the beam is
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propagated inside the medium are taken into account by
Chemnitz et al., where they successfully use a propagation vari-
ant nonlinear parameter to match the measured DW with the
simulation [15].


In this work, we present a detailed theoretical study on dis-
persive wave and FWM generation during noninstantaneous
nonlinear pulse propagation through a commercial HCPCF,
the core of which is infiltrated with carbon disulfide (CS2),
and the pump wavelength is in the anomalous dispersion do-
main. We demonstrate that there are differences in the nonlin-
ear propagation model when taking into account the fact that
the nonlinear refractive index changes as the pulse shape varies
during its propagation. This can significantly affect the calcu-
lation of the DW and FWM, as demonstrated herein.


2. ULTRAFAST NONINSTANTANEOUS
PROPAGATION MODEL


A. Nonlinear Propagation
In elongated liquid molecules, such as CS2, the pulse propaga-
tion is dominated by noninstantaneous nonlinearities (molecu-
lar contributions) when ultrashort pulses are significantly
shorter than the nonlinear response time of the liquid [5], and
the total nonlinear refractive index can then be expressed as
n2,CS2 � nel,CS2 � nmol,CS2 , which contains the contributions
owing to the electronic (nel,CS2 � 2.0� 0.4 × 10−19 m2∕W)
and molecular responses [8].


The pulse evolution through the CS2-LCPCF is simulated
using the NLSE [1], given by
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(1)


where A is the slowly varying amplitude function and z is the
propagation direction. In addition, T � t − z∕vg is the relative
time and t the absolute time. The second term on the left-hand
side of Eq. (1) indicates the material losses, where α and α1 are
the coefficients of the Taylor expansion of the total loss α�ω�.
Nevertheless, the material losses are not of interest for the scope
of this work. The third term of the left side of the equation in-
volves the pulse dispersion in the medium, with βn being the nth
dispersion term. The right-hand side shows the nonlinear terms
inside the material as a result of the high-intensity pulse propa-
gation, where γ1 ≈ 1∕ωo (ωo is the pump frequency). The non-
linear response function R�t� includes both the electronic and
nuclear contributions. Assuming that the electronic contribution
is nearly instantaneous, the functional form of R�t� can be writ-
ten as R�t� � �1 − f m�δ�t� � f mhR�t�. The molar fraction f m
is calculated as f m � n2,mol∕�n2,el � n2,mol�. In addition,


h�t� � h 0�t�R�∞
−∞ h 0�t�dt : (2)


h 0�t� � n2,d rd �t� � n2,l r l �t� � n2,c rc�t� is the characteristic
response time of the nuclear mechanisms [8], given by the
diffusive (rd �t�), librational (rl �t�), and collision (rc�t�) contri-
butions. Here, n2,m is the magnitude of the mth mechanism,


where n2,d � 18� 3 × 10−19 m2∕W, n2,l � 7.6� 1.5 ×
10−19 m2∕W, and n2,c � 1.0� 0.2 × 10−19 m2∕W [8]. In
addition, rm�t� is the temporal response function normalized
such that


R�∞
−∞ rm�t�dt � 1, as given by the following:
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where g�ω� � e−
�ω−ωos �2


2σ2 − e−
�ω�ωos �2


2σ2 , with ωos � 8.5� 1 ps−1


and σ � 5� 1 ps−1 for CS2. The remaining parameters
in Eqs. (3)–(5) are as follows: τr,d � 150� 50 ps−1, τr,c �
150� 50 ps−1, τf ,d �1610�50 ps−1, τf ,l �450�100 ps−1,
and τf ,c � 140� 50 ps−1 [8].


The molecular nonlinear refractive index is computed
according to


n2,mol �
R�∞
−∞ P�t, z� R�∞


−∞ h 0�t − t 0�P�t 0�dt 0dtR�∞
−∞ P2�t , z�dt , (6)


where P�t , z� � jA�t, z�j2 is the pulse power. Equation (1) was
solved using a split-step Fourier method (SSFM) in which the
nonlinear step was solved based on the fourth-order Runge–
Kutta method. Finally, the nonlinear coefficient is calculated
as follows:


γ � γ�ω0,T 0, z� �
ω0n2,cs2�T 0, z�


cAeff


, (7)


where ω0 is the central pump frequency, T 0 is the pulse width,
c is the speed of light, and Aeff is the effective mode area of the
fiber. From Eq. (7), it can be seen that γ generally depends on
the z-propagation distance according to Eq. (6), a fact that has
yet to be previously considered.


B. Dispersive Wave Generation
It is known that a dispersive wave is created by solitons in fiber
optics [3], the frequency of which is calculated according the
phase matching condition:


X∞
m�2


βm�ωs�
m!


�ωd − ωs�m � 1


2
γPs, (8)


where βm�ωs� is the mth-order dispersion parameter at the sol-
iton frequency ωs, ωd is the DW frequency, and Ps the soliton
peak power. If only the second- and third-order dispersion
parameters are considered, for the most energetic soliton,
Eq. (8) can be rewritten as follows:


ΔνdT o �
1


4πδ3
�1� 4δ23�2N − 1�2�, (9)


where Δνd � νd − νs, N � N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LD∕LNL


p
is the soliton or-


der, and T o is the initial pulse width. In addition, LD �
T 2


o∕jβ2j represents the dispersive length, and LNL � 1∕γPo
is the nonlinear length. Here, Po is the initial peak power of
the pump, and δ3 � β3∕6jβ2jT o is the normalized third-order
dispersion. Equation (8) is the most generalized case for calcu-
lating the DW frequency in CS2 because γ depends on z as a
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consequence of the nonlinear molecular response. To the
best of our knowledge, this situation has previously not been
taken into account and is described in the present study.
In addition to Eq. (9), the DW peak power can be calculated
according to


pd ≈
�
5πN
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�
2
�
1 −
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5
�2N − 1�δ3


�
2


exp


�
−


π
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�
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(10)


Next, we compare the analytical results given by Eqs. (9)
and (10), and the numerical results given based on the simpli-
fied and normalized NLSE:
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� 1


2


∂2U
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� N 2jU j2U � iδ3
∂3U
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: (11)


Here, U �ζ, τ� is normalized such that U �0, 0� � 1, and the
other variables are ζ � z∕LD and τ � T∕T o. In Eq. (11),
β2 is negative. In Eq. (11), we include γ1 and R�T � from
Eq. (1) in order to study the higher-order nonlinearities and
analyze the influence of the molecular response.


C. Four-Wave Mixing
In single-mode fiber optics, FWM can be initiated using a sin-
gle pump beam, which is the case of a degenerated FWM.
A pump beam with a frequency of ω1 can create two sideband
frequencies located symmetrically at ω3 and ω4 through the
following shift [1]:


Ωs � ω1 − ω3 � ω4 − ω1, (12)


where ω3 < ω4 is assumed. Here, ω3 is called the Stokes
band, and ω4 the anti-Stokes band. To efficiently create the
FWM, the following phase matching condition needs to be
achieved [1]:


κ � ΔkM � ΔkW � ΔkNL � 0, (13)


where ΔkM , ΔkW , and ΔkNL are mismatches as a consequence
of material dispersion, waveguide dispersion, and the nonlinear
effects, respectively.


When the pump wavelength is within the anomalous group
velocity dispersion (GVD) regime, the frequency shift Ωs de-
pends on the input power and is given as


Ωs � �2γP0∕jβ2j�: (14)


3. GEOMETRY AND OPTICAL PARAMETERS


For the simulations, we used the commercial HCPCF HC-
800B, sold by Thorlabs, with the following parameters: core
diameter of 7.5 μm, cladding pitch of 2.3 μm, PCF region
diameter of 45 μm, and cladding diameter of 130 μm. It was
assumed that the core is filled with carbon disulfide (CS2), and
finite element software was used to obtain the dispersion behav-
ior (see Fig. 1) and the effective area; the Sellmeir equation for
CS2 is required for these calculations, which is given by [16]


nCS2�λ� � 1.580826� 1.52389 × 10−2∕λ2� 4.8578 × 10−4∕λ4


− 8.2863 × 10−5∕λ6� 1.4619 × 10−5∕λ8: (15)


The effective area was calculated according to the following
relation [1]:


Aeff �


�RR∞
−∞ jF �x, y�j2dxdy


�
2


RR∞
−∞ jF�x, y�j4dxdy , (16)


where F �x, y� is in general the modal distribution function of
the beam. After calculating the effective area, Eq. (7) is used
to compute γ. We found that the zero-dispersion wavelength
of the CS2 filled fiber is 1.86 μm (see Fig. 1). The pump wave-
length was set to 1.95 μm in order to ensure anomalous
dispersion regime propagation with the aim of generating
optical solitons.


4. NUMERICAL SIMULATIONS


Although similar studies have been previously reported [11],
the CS2 response function measured by [8], which has given
rise to a new so-called hybrid soliton behavior owing to the
slow response of the material [8,12], was not included.
Herein, we take into account this new behavior so as to
study the dependence of the pulse width on the DW
and FWM.


For the present study, we solved the NLSE (1) by imple-
menting the typical SSFM [1]. For a case in which γ is con-
sidered to be dependent on the shape and width of the
pulse, we recalculated the nonlinear refractive index n2,cs2 �
nel,CS2 � nmol,CS2 at each step in the SSFM using Eq. (6).
In Fig. 2, the difference in the nonlinear temporal evolution
versus distance with γ both as a constant and as a variable using
Eq. (11) is shown as an example. In this figure, the power is
represented by a color scale between orange and black; the
brighter the color the higher the power. It can be clearly ob-
served that when γ is considered a variable, the DW travels
slower with respect to when it is considered a constant. This
makes sense because the noninstantaneous response of CS2
molecules increases as the pulse width widens and the pulse
shape changes, which verifies our assumption that γ should
be considered a variable for materials with a noninstantaneous
response.


For the following simulations, we consider different pulse
widths: T FWHM � 107, 200, 300, and 500 fs, as well as


Fig. 1. CS2 LCPCF dispersion curve. The inset shows the geomet-
rical scheme used in this work and a zoomed-in image of the dispersion
curve around the zero dispersion wavelength.
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variations of δ3 from 0.01 to 0.1. Here, T FWHM is the full
width at half maximum of the pulse, which relates to T 0 ac-
cording to the expression T FWHM � 1.763T 0 for the “sech”
pulses.


A. Dispersive Wave Calculations
Using Eq. (10), we investigate the DW power behavior as a
function of δ3 and N when γ is either a constant or a variable
for different pulse widths. For the figures where the power
is expressed in dB, 0 dB is reached when the output power is
equal to the input power. Figure 3 shows the power behavior
for different pulse widths, where (a) and (c) correspond to
T FWHM � 107 fs, (b) and (d) correspond to 200 fs, and the
theoretical prediction is given in Eq. (10) with γ as a constant.


It is worth noting that the theoretical prediction does not fit
well with the simulations in which, at higher pulse widths,
Eq. (10) fails more significantly. Another important point is
the fact that an appreciable DW is generated when the output
power is higher than −80 dB, which varies according to pulse
width, soliton number, whether γ is considered a constant or
variable, and the presence of nonlinear terms (NT) such as a
shock wave and Raman response. Here, the absence of Raman
response could be interpreted as a system such as a glass core
fiber or noble gas–filled fiber, whereas a system which presents a
Raman response at the output corresponds to a realistic liquid-
core fiber. The pulse width has an important role in the DW
generation, as indicated by the comparison between Figs. 3(a)
and 3(b), and Figs. 3(c) and 3(d), where, at lower pulse widths,
a stronger DW with a lower δ3 can be obtained for the same
soliton number. In the presence of NT, the DW power de-
creases, as expected, because the Raman effect shifts the solitons
toward longer wavelengths. The match between the theoreti-
cally calculated DW power and the simulations (either with
γ as constant or variable as well as with or without NT) can be
seen as a balance between energy (N ) and pulse width; for ex-
ample, Figs. 3(a) and 3(d) are different from the theoretical
prediction but (b) and (c) differ only slightly. In addition, be-
tween cases (a) and (d) and cases (b) and (c) there are similar-
ities in behavior: in (b) the pulse width is increased in
comparison with (a), and in the same way in (c) the pulse width
is decreased in comparison with (d).


Next, we examine what will happen if the pulse width is
wider compared with the previous cases and if the soliton num-
ber is increased. Figure 4 shows how the DW power is affected
by the soliton number as a function of δ3. Two scenarios are
taken into account, namely, N � 3 and N � 9, and the pulse
width is set to 300 fs.


The major difference between Figs. 4(a) and 4(b) is the fact
that for N � 9, there is more discrepancy with the theoretical
results. As mentioned, in Fig. 3 it can be seen that, at higher
pulse widths, the DW powers are almost the same for γ and
γ�z�, which does not exactly occur in Fig. 4, but only after
the values of δ3 are higher than 0.03.


Fig. 2. Nonlinear time evolution considering γ as (a) a constant and
(b) a variable, and set to T 0 � 0.17 ps, with a propagation length
of 0.5LD, δ3 � 0.08, and N � 3.


Fig. 3. DW power (dB) as a function of δ3 for different N and T FWHM: (a) N � 2, T FWHM � 107 fs; (b) N � 2, T FWHM � 200 fs;
(c) N � 3, T FWHM � 107 fs; and (d) N � 3, T FWHM � 200 fs.


Research Article Vol. 58, No. 10 / 1 April 2019 / Applied Optics 2739







The next parameter under study was the wavelength
at which the DW is generated; according to Eq. (9), this
value depends on γ and δ3. The z-dependence of γ opens
the possibility to investigate how this parameter affects the
DW behavior. Figure 5 shows how the DW frequency varies
as a function of δ3 for different pulse widths and numbers of
solitons when the nonlinear terms are, or are not, included.


Although the theoretical expression cannot exactly predict
the values obtained in the simulations, it does work better with
lower values of δ3. No particular differences are shown in the
DW frequencies when γ is considered a variable or constant,
although differences do occur when the nonlinear terms are
considered, mostly for values of approximately 0.02 and 0.06;
different situations were reported in [4], which uses a constant
γ and silica fiber, although the geometry and response function
of the material are different. The previous analysis suggests that
the DW depends not only on the energy of the soliton but also
on the shape of the propagating pulse.


Although the DW phase matching condition (ΔνdT o) is
almost the same in Fig. 5 for γ and γ�z�, it is interesting
to see how γ�z� influences the DW frequency. To study this,
Fig. 6 illustrates this dependence. One important feature re-
garding how γ as a constant or variable affects the spectrum
can be seen in Figs. 6(a) and 6(c), respectively, where the differ-
ence in the DW generation is clear: whereas in (a), where γ is
a constant, the DW starts to appear, in (b) no DW generation
has yet occurred, and the coherent DW changes to incoherent
modulation instability. Another important aspect regarding
these two spectra is related to the fission process. In Fig. 6(a),
the spectrum exhibits little fission, and there are two main
peaks, whereas in Fig. 6(c), the spectrum has two lateral
frequencies with respect to the central one, and the fission pro-
cess is clearly more important when γ is a variable. A similar
behavior is demonstrated when β3 � 0 and only β4 is consid-
ered in Eq. (11). If higher-order nonlinear terms are taken into
account in Eq. (11), the fission process disappears in both cases,
as shown in Figs. 6(b) and 6(d) for γ as both a constant and
a variable, respectively; additionally, it can be seen that the
spectral responses are similar.


However, we found that, at narrower pulse widths (T o), the
differences between the spectra are smaller, and the influence
on the variation of γ based on the position is negligible; how-
ever, for wider pulse widths, the differences are more remark-
able and the symmetrical behavior found in Fig. 7 is no longer
present. Similarly, the DW disappears when higher-order non-
linear terms are considered. Another notable finding was the


Fig. 4. DW power (dB) as a function of δ3 for (a) N � 3 and
(b) N � 9 at T FWHM � 300 fs.


Fig. 5. DW frequency as a function of δ3 for (a) N � 2 and T FWHM � 107 fs, (b) N � 2 and T FWHM � 200 fs, (c) N � 3 and
T FWHM � 107 fs, (d) N � 3 and T FWHM � 200 fs.
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influence of the δ3 parameter. As it is increased, the output
spectra become the same regardless of the pulse width or
higher-order nonlinear terms.


When the pulse width remains constant at T FWHM �
300 fs and the soliton order is increased up to N � 9, an
interesting behavior appears, that is, the differences in the
spectra between γ and γ�z� are presented again, even for the
largest values of δ3, and when considering higher-order nonlin-
ear terms.


In summary, there are different parameters that affect the
dispersive wave generation under the assumption of a constant
or variable γ. Increasing both the pulse width and N , the spec-
tra present differences, whereas increasing δ3 makes both
spectra the same.


The variation in the DW can be explained as a consequence
of the dependence of γ as a function of the shape of the pulse
when propagating, and therefore the soliton order changes as
well. Figure 8 shows the behavior of γ�z� and N �z� for the
initial values ofN � 3 andN � 9 at T FWHM � 300 fs, where
we can observe that initially γ�z� decreases dramatically to a
certain distance, and after reaching a minimum value, increases
rapidly. This is due to the fact that n2 depends on the shape of
the pulse and that before the fission of the solitons, the pulse is
compressed and then widened.


According to Eq. (9), the DW frequency can be controlled
using δ3, T o, β2, γ, and the initial power Po. Typically, the only
way to change the frequency externally to the fiber optic struc-
ture is to manipulate the initial power of the pulse. Thus, if a


Fig. 6. Output spectrum at T FWHM � 200 fs, δ3 � 0.01, and N � 3 for (a) γ as a constant without higher-order nonlinear terms, (b) γ as a
constant with higher-order nonlinear terms, (c) γ as a variable without higher-order nonlinear terms, and (d) γ as a variable with higher-order
nonlinear terms.


Fig. 7. Output spectrum at T FWHM � 300 fs, δ3 � 0.01, and N � 3 for (a) γ as a constant without additional nonlinear terms, (b) γ as a
constant with additional nonlinear terms, (c) γ as a variable without additional nonlinear terms, and (d) γ as a variable with additional
nonlinear terms.
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solvent material, such as CS2, is used, where γ depends on the
propagation distance, we can also manipulate the length of the
fiber structure infiltrated with CS2 and thereby select the DW
frequency.


Figure 9 shows Δνd as a function of distance for differ-
ent cases of γ as a variable. It is worth noting in Fig. 9(c) that
the DW frequency was unaltered; however, the situation is
different in Fig. 9(a), where the only change made was in the
pulse width T FWHM � 107 fs. This indicates the possibility of
finding balance among the different parameters so as to create
the desired spectrum. A second notable finding on the influ-
ence of the δ3 parameter is that for the highest value of δ3
considered (δ3 � 0.1), the mismatch between the theoretical
and simulated values of Δνd was also the highest. Similarly,
at δ3 � 0.1 for a propagation distance lower than 3 m the
DW power was the lowest. This can be considered the initial
point when designing a tunable DW frequency device, where
we can control the wavelength and power, and when experi-
menting with both the parameters mentioned above and the
propagation distance.


B. Four-Wave Mixing
An interesting fact occurs when the pulse width is set to 500 fs,
namely, the output spectrum is very broad, making it very dif-
ficult to identify the DW, soliton fission, or other phenomena.
For this reason, we followed the pulse evolution for different
propagation distances to see how it behaves and to determine the
main differences with its counterparts, γ and γ�z�. In this case,
we neglected higher-order nonlinear terms. In Fig. 10, at a
propagation length of 0.02LD the output spectral shape was
almost the same for each case under consideration. It is not until
a propagation distance of 0.067LD that significant differences
occur with δ3 � 0.1, where Stoke and anti-Stoke waves start to
appear; the difference can be appreciated between Figs. 10(c.4)
and 10(d.4). For the remaining figures, it can be seen that the
frequencies of the Stoke and anti-Stoke waves are at the same
position, independent of whether γ is a constant or variable,
and these frequencies agree with Eqs. (12) and (14). However,
the form of the spectral responses is dependent on whether γ is
a variable or constant, even for certain situations in which one
or both of the waves disappear.


Fig. 9. Variation of Δνd with distance for (a) N � 2, T FWHM � 107 fs, and δ3 � 0, 03; (b) N � 2, T FWHM � 107 fs, and δ3 � 0, 09;
(c) N � 2, T FWHM � 300 fs, and δ3 � 0, 03; and (d) N � 9, T FWHM � 107 fs, and δ3 � 0, 03.


Fig. 8. γ�z� andN �z� evolution as a function of propagation distance at T FWHM � 300 fs with initial soliton order of (a)N � 3 and (b)N � 9.
The blue curve corresponds to gamma whereas the red one corresponds to soliton number N .


2742 Vol. 58, No. 10 / 1 April 2019 / Applied Optics Research Article







5. CONCLUSION


By studying the influence of γ as a constant and γ as a variable
in the time and frequency domains on outputs when differ-
ent parameters are tweaked. such as pulse width, input power,
third-order dispersion, higher-order nonlinear terms, and
propagation distance, we were able to observe the effect of


considering γ as a variable on the pulse and how its inclusion
allows more accurate results.


For instance, when the pulse width widens, the DW re-
sponses are similar, whereas for a narrower pulse width, the
DW power becomes stronger at a lower δ3. Another interest-
ing result was the appearance of a DW at an early propagation


Fig. 10. Output spectrum shape for different propagation distances: (a) δ3 � 0, 01, and γ as a constant; (b) δ3 � 0, 01, and γ as a variable,
(c) δ3 � 0, 1, and γ as a constant; and (d) δ3 � 0, 1, and γ as a variable.
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distance when γ was considered a constant, which does not
occur when γ is z-dependent, but modulation instabilities start
showing up under this condition that represents a great differ-
ence between constant and variable nonlinear parameters.
Through the study of number of solitons and pulse width a
balance can be observed; when this balance is reached, the γ
variation with position has low impact on the final results,
but when this balance is broken the output is very different
from when γ is set constant. Similarly, it can be seen that not
all parameters (DW wavelength and DW power) are affected
equally; DW power turned out to be especially more sensitive
to the variation of δ and the consideration of γ as either a
constant or z-function, whereas DW wavelength is especially
less sensitive to the dependency on propagation of the pulse.
Another fact worth pointing out is the need of a new DW
power expression that can better fit with the simulation results
and in which the influence of propagation is taken into ac-
count. Because the output has a dependency on the observed
balance, the influence of parameters like δ, N , and pulse width
in the final result either of DW generation or of FWM is dif-
ficult to determine. Nevertheless we can conclude that γ must
be necessarily considered as a function of the position.


In general, γ must be considered a variable despite the fact
that, under certain circumstances, the results are similar to
when γ is considered a constant, which may explain why the
experimental and simulation results showed some discrepancies
in some previous studies, such as in [5].


Funding. Departamento Administrativo de Ciencia, Tecno-
logía e Innovación (COLCIENCIAS) (FP44842-107-2016).
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