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Heat equation and stable minimal

Morse functions on real and complex

projective spaces

Ecuación del calor y funciones de Morse minimales y estables en
espacios proyectivos reales y complejos

Sebastián Muñoz Muñoz1,B,
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Abstract. Following similar results in [7] for flat tori and round spheres, in
this paper is presented a proof of the fact that, for “arbitrary” initial con-
ditions f0, the solution ft at time t of the heat equation on real or complex
projective spaces eventually becomes (and remains) a minimal Morse function.
Furthemore, it is shown that the solution becomes stable.
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Resumen. Siguiendo resultados similares en [7] para toros planos y esferas
redondas, en este art́ıculo se presenta una demostración del hecho de que,
para condiciones iniciales “arbitrarias” f0, la solución ft en el tiempo t de la
ecuación del calor en espacios proyectivos reales y complejos eventualmente se
convierte en (y permanece siendo) una función de Morse minimal con valores
cŕıticos distintos. Además, se muestra que la solución se vuelve una función
estable.
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1. Introduction

The heat equation, which is the mathematical model for heat flow, and in its
simplest form is written as

∂f

∂t
= ∆f,

where ∆ is the Laplace-Beltrami operator, is among the most relevant partial
differential equations in mathematics and physics, and it has truly remarkable
properties. For instance, if an “arbitrary” initial condition f0 is subjected to
this equation, then the solution ft, for any instant of time t > 0, will be a
C∞ function. In the light of such facts, the heat equation presents itself as a
fundamental smoothing process.

In a recent paper [7], a result in this direction was established, further
evidencing important smoothing properties of this equation. Given a smooth
function f defined on a manifold M , an indicator of regularity for f is whether
all of its critical points are non-degenerate, which is to say that f is a Morse
function. The authors showed (see Theorem 2.1 and Theorem 3.1 of that paper)
that, at least in the case of n-dimensional round spheres or flat tori, “arbitrary”
smooth initial conditions f0 are eventually transformed by the heat equation
into minimal Morse functions; Morse functions that have the smallest possible
number of critical points in the manifold.

Investigating the question of whether this is a more general phenomenon
presenting itself in other compact Riemannian manifolds, this paper presents
proof of the analogous result for real and complex projective spaces of arbitrary
dimension. We will further observe that in these spaces, the heat process endows
the solution ft with a fundamental property called stability, which roughly
speaking means that functions close to ft will be “identical” to ft modulo a
suitable change of coordinates.1 This is made precise by the following definition.

Definition 1.1. Let M be a compact smooth manifold, and let f ∈ C∞(M).
f is said to be stable if there exists a neighborhood Wf of f in the Whitney
C∞ topology such that for each f ′ ∈Wf there exist diffeomorphisms g, h such
that the following diagram commutes:

M R

M R

f

g h

f ′

The corollary to the following fundamental theorem (see [4, pp. 79-80]) gives a
simple characterization of stable functions which will be key to what follows.

1Close in the standard sense of the Whitney C∞ topology, which measures functions by
their size and that of their partial derivatives of all orders.
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Theorem 1.2 (Stability Theorem). Let M be a compact smooth manifold, and
f ∈ C∞(M). Then f is a Morse function with distinct critical values if and
only if it is stable.

Corollary 1.3. If M is a smooth compact manifold, and f is a Morse function
with distinct critical values, then there exists a neighborhood of f in the C∞

topology such that g is a Morse function with distinct critical values and the
same number of critical points as f for all g in said neighborhood. In particular,
since M is compact (so that the C∞ topology has the union of all Cr topologies
as a basis, each a Banach space [5]), there exist r and ε > 0 such that g is
a Morse function with distinct critical values and the same number of critical
points as f whenever ‖f − g‖r < ε , with ‖ · ‖r being a fixed norm for the Cr

topology.

Now, our precise formulation of an “arbitrary” smooth initial condition f0

will be that it belongs to a fixed open and dense set S in the C∞ topology. We
can now state the two main results.

Theorem 1.4. There exists a set S ⊂ C∞(RPn), that is dense and open in
the C∞ topology, such that for any initial condition f = f0 ∈ S, if ft is the
corresponding solution to the heat equation on RPn at time t, then there exists
T > 0 such that for t ≥ T , ft is a stable minimal Morse function on RPn.

Theorem 1.5. There exists a set S ⊂ C∞(CPn), that is dense and open
in the C∞ topology, such that for any initial condition f0 ∈ S, if ft is the
corresponding solution to the heat equation on CPn at time t, then there exists
T > 0 such that for t ≥ T , ft is a stable minimal Morse function on CPn.

The basic strategy for the proof on both spaces may be sketched as follows:
On compact Riemannian manifolds, as is well known, the solution has the form

ft = h0 + h1e
−λ1t + h2e

−λ2t + · · · ,

where 0 = λ0 < λ1 < λ2 < · · · are the eigenvalues for the Laplace-Beltrami op-
erator, and the hi are the projections of f0 onto the corresponding eigenspaces.
The overall idea is to exploit the exponentially decaying terms of the solution
to approximate ft by the first two terms of the sum for large times. Our set
S will then consist of those functions for which said first two terms add up
to a stable, minimal Morse function. Since stability is by definition a property
unchanged by small perturbations, it is apparent that the desired result follows
provided that

(i) S is dense and open, and

(ii) we successfully bound the remaining terms to make the approximation
work.

Revista Colombiana de Matemáticas
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In section 2, simple conditions for the main result to hold in a manifold
will be established, as well as a technical statement that will be needed later to
verify the above-stated conditions on the two spaces in question. On the other
hand, sections 3 and 4 are, respectively, dedicated to the proofs of Theorems
1.4 and 1.5.

2. Basic results

The following lemma gives two concrete sufficient conditions for items (i) and
(ii) of the introduction to be true, and thereafter makes rigorous the previously
sketched strategy to prove (using some simple estimates and the profound char-
acterization of stability given by Theorem 1.2) that the desired theorem will
follow on compact Riemannian manifolds in which the eigenvalues grow at least
linearly as soon as we have these two sufficient conditions.

Lemma 2.1. Let M be a compact, connected Riemannian manifold, let 0 =
λ0 < λ1 < λ2 < · · · be the distinct eigenvalues for the Laplace-Beltrami opera-
tor and let B = {ϕi | i = 1, . . . , d1} be any basis (not necessarily orthonormal)
for the λ1-eigenspace. Suppose the eigenvalues grow at least linearly,2 that the
0-eigenspace is trivial,3 and the following two conditions hold:

(C1) The set B of d1-tuples (c1, . . . , cd1) such that
∑
i ciϕi is a minimal Morse

function on M with distinct critical values is an open dense subset of Rd1 .

(C2) For each f ∈ C∞(M), there exist N , C such that the projection hj =
πj(f) of f onto the jth eigenspace satisfies

‖hj‖r ≤ C(1 + jN ).

Then there exists a set S ⊂ C∞(M), that is dense and open in the C∞ topology,
such that for any initial condition f0 ∈ S, if ft is the corresponding solution to
the heat equation on M at time t, then there exists T > 0 such that for t ≥ T ,
ft is a minimal Morse function with distinct critical values on M .

Proof. Let S be the set of functions f whose projection π1(f) onto the λ1-
eigenspace is a minimal Morse function with distinct critical values. Let f ∈ S.
By compactness, ‖·‖L2(M) = O(‖·‖0), so functions in a sufficiently small neigh-
borhood U of f in the C0 topology (which is contained in the C∞ topology)
will have its Fourier coefficients (with respect to any fixed orthonormal basis)
as close as desired to those of f . Observing that the coefficients with respect
to B are continuous functions of the Fourier coefficients for the λ1-eigenspace,
condition (C1) implies that if U is small enough, U ⊂ S, hence S is open. Now

2By this we mean that there exists r > 0 such that λj > rj.
3This means that it consists only of constant functions. This is known to hold on real

and complex projective spaces, basically because it holds on the sphere. This condition is not
essential at all; see the next footnote.
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let f ∈ C∞(M), and let g be obtained from f such that πi(g) = πi(f) (i 6= 1)
and π1(g) comes from slightly modifying the coefficients of π1(f) with respect
to B so that π1(g) is a minimal Morse function with distinct critical values (this
is again possible by condition (C1)). By compactness of M , if the modification
is slight enough, g will be as close as desired to f in any Cr (and so in the C∞)
topology. So S is dense. Now we check that if f ∈ S and f = h0 +h1 + · · · with
hi = πi(f), then ft = h0 +e−λ1th1 + · · · is Morse minimal with distinct critical
values for large enough t. Since h0 is constant it suffices to show the same for
(ft − h0)eλ1t = h1 + e(λ1−λ2)th2 + · · · , and by Corollary 1.3 it is enough to
prove that for each r, ‖(ft − h0)eλ1t − h1‖r → 0 as t→∞. One has

‖(ft − h0)eλ1t − h1‖r =‖h2e
(λ1−λ2)t + · · · ‖r

=e(λ1−λ2)t

∥∥∥∥∥∥
∑
j≥2

e(λ2−λj)thj

∥∥∥∥∥∥
r

≤e(λ1−λ2)t
∑
j≥2

e(λ2−λj)t‖hj‖r

≤e(λ1−λ2)tC
∑
j≥2

(1 + jN )e(λ2−λj)t.

Because the λj grow at least linearly, the series on the right is clearly convergent
and a decreasing function of t, and the first factor tends to zero as t→∞, so
this completes the proof.4 �X

Since the real and complex projective spaces, besides conditions (C1) and
(C2), are easily seen to satisfy the hypotheses of the above lemma,5 the remain-
ing major part of this paper is dedicated to proving that the aforementioned
conditions do hold on these spaces, from which the theorems will follow. We
end this section with a technical statement that will be needed later for this
purpose.

Lemma 2.2. Let M be a smooth manifold and let G be a Lie group acting
smoothly, freely and properly on M . Let h ∈ C∞(M) be constant on each G-
orbit, so that it descends to h ∈ C∞(M/G). Then there exist smooth coordinates
(x1, . . . , xn, y1, . . . , yk) for M such that (y1, . . . , yk) are coordinates for M/G
and

∂i1+···+ish

∂yi1 · · · ∂yis
=

∂i1+···+ish

∂yi1 · · · ∂yis
for any indices i1, . . . , is.

4It is easily seen that with the same arguments one can prove completely analogous
conditions in which one approximates ft by (say) the first n eigenspaces instead of just the
first two.

5The growth property for the eigenvalues is obvious because they are integers; this fact
will be remarked later.
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Proof. In Theorem 21.10 of [6] one sees that there exist cubic coordinates
(x1, . . . , xn, y1, . . . , yk) for M that intersect each G-orbit in either the empty set
or a slice (y1, . . . , yk) = (c1, . . . , ck) and such that (y1, . . . , yk) are coordinates
for M/G. In these coordinates it is clear that

h(x1, . . . , xn, y1, . . . , yk) = h(y1, . . . , yk),

and the statement follows by differentiating both sides. �X

3. Real projective spaces

In this section we demonstrate our result for real projective spaces RPn. By
construction, the space of functions on RPn (realized as Sn/G, with G being the
two element group generated by the antipodal map) is identified (via pullback)
with the functions in Sn for which

f(x) = f(−x).

Therefore, one sees that the eigenfunctions for the Laplace-Beltrami operator
in this manifold are precisely the ones on Sn that satisfy f(x) = f(−x). That
is, the eigenvalues are λj = 2j(2j + n− 1), with the corresponding eigenspace
being the space of homogeneous harmonic polynomials of degree 2k in n + 1
variables [2]. The following proposition is then a detailed analysis of the first
non-trivial eigenspace, whose ultimate purpose is the verification of condition
(C1) of Lemma 2.1.

Proposition 3.1. Let f(x) =
∑
i,j aijxixj be a real quadratic form in n + 1

variables, with A = (aij) being a symmetric matrix.6 Then f is a minimal
Morse function on RPn with distinct critical points if and only if the matrix
A = (aij) has distinct eigenvalues.

Proof. We may diagonalize this quadratic form through an orthogonal change
of coordinates y = Bx, and write f(y) = λ1y

2
1 + · · ·+ λn+1y

2
n+1, where λi are

the eigenvalues of A. Write D = diag(λ1, . . . , λn+1). The gradient of f in these
coordinates (seen as a function in Rn+1) is then ∇f(y) = 2Dy. The proof will
be done once we show that f has exactly n+1 critical points in RPn, all of them
being non-degenerate, if and only if A has distinct eigenvalues.7 Since RPn is
the quotient of Sn by a properly discontinuous action, it suffices to count the
number η of critical points for f on the sphere, and then counting the resulting
equivalence classes. Since every point on the sphere has orbit two under the
antipodal map, the answer will be η/2, thus we need to show that η = 2(n+1).
Now, the critical points of f on the sphere will be those y that satisfy

∇f(y) · v = 0 for all v ∈ Ty(Sn) = 〈y〉⊥,
6It is easily seen that any quadratic form may be expressed in this symmetric fashion.
7Since the Morse-Smale Characteristic of RPn, the minimum number of critical points a

Morse function can have in this space, is n+ 1 [1].
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which means
2Dy · v = 0 for all v ∈ Ty(Sn) = 〈y〉⊥,

or equivalently 〈y〉⊥ ⊂ 〈Dy〉⊥, and this just says that Dy is a scalar multiple
of y. Since D is just the matrix of A in the y coordinates, the desired critical
points are precisely the eigenvectors of the transformation A that lie on the
sphere.

If A had a repeated eigenvalue, then by intersecting a two-dimensional
eigenspace with the sphere we see that there would be an entire circumfer-
ence of critical points, implying that f is not a Morse function on the sphere
(since a Morse function has only isolated critical points), so this proves the
“only if” part of the statement.

Now suppose the eigenvalues are all distinct, so all eigenspaces are straight
lines. Then the desired critical points are precisely the 2(n+ 1) intersections of
these lines with the sphere (two per line), which in our choice of coordinates
are just the canonical basis vectors {±e1, . . . ,±en+1}, so we get η = 2(n+ 1),
as wanted. The critical values are distinct because they are precisely the λi.
Now, it remains to see that these critical points ±ei are all non-degenerate. To
prove this, we compute the Hessian in local coordinates and verify that it is
invertible. Fix i, and write f in the local coordinates for Sn around ±ei defined
by (u1, . . . , un) = (y1, . . . , yi−1, yi+1, . . . , yn+1). One gets:

f(u1, . . . , un) = λi +
∑
j 6=i

(λj − λi)u2
j

Therefore the gradient is given by

∇f(u) = 2diag(λ1 − λi, . . . , λi−1 − λi, λi+1 − λi, . . . , λn+1 − λi)u

and so the Hessian of f at ei in these coordinates is the matrix

2diag(λ1 − λi, . . . , λi−1 − λi, λi+1 − λi, . . . , λn+1 − λi),

which is invertible because the λi are distinct. �X

This section now ends with the proof of the first of the two main results.

Proof of Theorem 1.4. To prove this theorem we demonstrate that con-
ditions (C1) and (C2) of Lemma 2.1 are satisfied. By the remarks at the
beginning of the section, the generic function in the λ1-eigenspace has the
form of f in Proposition 3.1, with the additional condition that tr(A) = 0, or
an+1,n+1 = −(a11 + · · ·+ ann). Therefore a basis for this eigenspace is

B =
{

1
2xixj

∣∣ 1 ≤ i < j ≤ n+ 1
}
∪
{
x2
ii − x2

n+1,n+1 | 1 ≤ i < n+ 1
}
.

The coefficients of f for this basis (of size (n2 + 3n)/2) are the aij for i < j
or i = j < n + 1. Diagonalizing A = QTdiag(λ1, . . . , λn+1)Q one sees that
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by leaving Q fixed and slightly varying the λi (while keeping the tracelessness
condition), one can make the eigenvalues distinct, so by continuity (given by the
matrix equation) and Proposition 3.1, the set B of condition (C1) in Lemma

2.1 corresponding to our B is dense in R(n2+3n)/2.

To show that B is open, we note first that the coefficients of the character-
istic polynomial p of A are continuous functions of the aij (in the usual sense),
and the λi depend continuously on the coefficients of p in the following sense:
if we consider disjoint ε-neighborhoods of the λi, then the zeroes of pt will, in
some order (say β1, . . . , βn+1), satisfy |λi − βi| < ε, whenever pt is obtained
through small enough variations of the coefficients of p. This is readily seen to
be a corollary to Rouche’s Theorem,8 and it (together with the fact that A is
symmetric which forces all roots to be real) implies that if p has distinct real
roots, small variations of the aij will not affect this property, as desired.

Now to check condition (C2), let h2j = πj(f) be the projection of f onto
the jth eigenspace, with h2j being the pulled back homogeneous harmonic
polynomial of degree 2j. By Lemma 2.2, ‖hj‖r = O(1)‖hj‖r. From Section 10
in [3], we then obtain

‖h2j‖r = O(1)

(
n+ 2j

n

)1/2 (
1 + λ

1/2
j

)r
‖h2j‖L2(Sn).

Since both λj = 2j(2j + n − 1) and
(
n+2j
n

)
are polynomials in j (of degrees 2

and n respectively), and ‖h2j‖L2(Sn) ≤ ‖f‖L2(Sn), the desired inequality then

follows immediately, completing the proof. �X

4. Complex projective spaces

This section is dedicated to proving the desired Theorem 1.5 for the complex
projective space CPn. We henceforth identify Cn with R2n as real vector spaces
and manifolds by the correspondence

(z1, . . . , zn) = (x1 +
√
−1y1, . . . , xn +

√
−1yn) ≡ (x1, y1, . . . , xn, yn).

The Riemannian manifold CPn with the Fubini-Study metric may then be
realized as the quotient S2n+1/U(1), and the (complex-valued) eigenfunctions
for the Laplacian are the eigenfunctions on the sphere that are invariant under
multiplication by elements of U(1). The most convenient way to characterize
them for the matter at hand is as the bi-homogeneous harmonic polynomials
in (z, z) of bi-degree (k, k) (k = 0, 1, 2, . . .), with corresponding eigenvalues
4k(n+k) (cf. [2]). Now, this implies that the real-valued eigenfunctions for the
first eigenvalue 4(n+1) are precisely the functions f described in the proposition

8Rouche’s Theorem is a standard complex-analytic result that, in rough terms, states that
the number of zeroes of two analytic functions inside a bounded region is invariant if these
functions are close enough in the boundary of the region.
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below when A is traceless, since the condition of being real-valued forces the
matrix of coefficients to be Hermitian. This result then plays a role analogous
to that of Proposition 3.1 in the previous section.

Proposition 4.1. Let f : Cn+1\{0} → R be defined by

f(z) =

∑
i,j aijzizj

|z|2
,

with A = (aij) being a Hermitian matrix. Then f descends to a minimal Morse
function with distinct critical values on CPn (realized as the quotient of Cn\{0}
obtained by identifying points on the same line) if and only if the matrix A =
(aij) has distinct eigenvalues.

Proof. It is clear that f is 0-homogeneous, so we may consider it as a function
on CPn. Similarly to the proof of Proposition 3.1, the fact that A is Hermitian
allows us to use the Spectral Theorem to diagonalize A through a unitary
change of coordinates w = Bz. In these coordinates f takes the form

f(w) =

∑n+1
i=1 λi|wi|2

|w|2
,

where λi are the eigenvalues of A. Replacing B with a permutation of its
columns allows us to assume λ1 ≤ . . . ≤ λn+1. The sum of the Betti numbers for
CPn is n+1, so the minimality condition for f amounts to it having n+1 critical
points. The sets Ui = {[w] ∈ CPn | wi 6= 0} together with the inhomogeneous
coordinate functions w = (w1, . . . , wi−1, wi+1, . . . , wn) are a family of smooth
charts covering CPn, hence we may proceed by computing the critical points
in each Ui through the use of the corresponding local coordinates. In these
inhomogeneous coordinates, f then takes the form

f(w1, . . . , wi−1, wi+1, . . . , wn) =
λi +

∑
j 6=i λj |wj |2

1 +
∑
j 6=i |wj |2

=
λi +

∑
j 6=i λjx

2
j + λjy

2
j

1 +
∑
j 6=i x

2
j + y2

j

,

This gives

df =−
∑
j 6=i 2xjdxj + 2yjdyj

(1 +
∑
j 6=i x

2
j + y2

j )2

λi +
∑
j 6=i

λjx
2
j + λjy

2
j


+

∑
j 6=i 2λjxjdxj + λj2yjdyj

1 +
∑
j 6=i x

2
j + y2

j

=

∑
j 6=s 2xj

(
λj − λi +

∑
s6=i(λj − λs)(x2

s + y2
s)
)

dxj

(1 +
∑
j 6=i x

2
j + y2

j )2

+

∑
j 6=s 2yj

(
λj − λi +

∑
s6=i(λj − λs)(x2

s + y2
s)
)

dyj

(1 +
∑
j 6=i x

2
j + y2

j )2
.
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So df = 0 means that for each j 6= i,

xj

λj − λi +
∑
s6=i

(λj − λs)(x2
s + y2

s)

 = 0

and

yj

λj − λi +
∑
s 6=i

(λj − λs)(x2
s + y2

s)

 = 0

If λi was a repeated eigenvalue, say λi = λi+1, then letting x1 = . . . = xi−1 =
xi+2 = . . . = xn = 0 and y1 = . . . = yi−1 = yi+2 = . . . = yn+1 = 0 it follows
that the equations above hold for any choice of xi+1, yi+1, so the critical points
of f are not isolated and therefore it is not a Morse function; the “only if” part
of the proposition is thus proved.

Conversely, suppose λ1 < . . . < λn+1. Setting j = 1 in the previous two
equations and using the fact that the λs are in increasing order, it follows that
x1 = y1 = 0. Inductively one gets x2, y2, . . . , xi−1, yi−1 = 0. Similarly starting
with j = n+1 and inducting backwards one concludes xj = yj = 0 for each j 6=
i. Hence the unique critical point of f in Ui is the point [0, . . . , 1, . . . , 0], where
the 1 is in the ith position. So there are n+ 1 critical points in total, and their
corresponding values are distinct (they are the λi). To check non-degeneracy,
it follows easily from the previous computation that the determinant of the
Hessian at [0, . . . , 1, . . . , 0] in the ith inhomogeneous coordinates is just

22n(λ1 − λi)2 · · · (λi−1 − λi)2(λi+1 − λi)2 · · · (λn+1 − λi)2,

which is non-zero because the λi are distinct. �X

The previous analysis now allows us to prove the second and final theorem.

Proof of Theorem 1.5. As in the proof of Theorem 1.4, we must verify con-
ditions (C1) and (C2) of Lemma 2.1. This time the generic function in the
λ1-eigenspace has the form of f in Proposition 4.1, with the condition tr(A) = 0,
or an+1,n+1 = −(a11 + · · · + ann). Write aij = bij +

√
−1cij . Since aji = aij ,

writing

aijzizj + ajizjzi = bij(zizj + zjzi) +
√
−1cij(zizj − zjzi),

one sees that the dimension in this case is n(n + 2) and the following set is a
basis:

{zizj + zjzi | 1 ≤ i < j ≤ n+ 1} ∪
{√
−1(zizj − zjzi) | 1 ≤ i < j ≤ n+ 1

}
∪
{
z2
ii − z2

n+1,n+1 | 1 ≤ i < n+ 1
}
.
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The coefficients of f for this basis are the bij and the cij for i < j, and the bii
for i < n+1 (since cii = 0). Noticing that the bij , cij and the aij are bijectively
and bicontinuously related, we may diagonalize A = Q∗diag(λ1, . . . , λn+1)Q
and finish verifying the same condition (C1) with the same argument as that
of Theorem 1.4. Now, for condition (C2), the argument in Theorem 1.4 (again
appealing to Lemma 2.1) gives the estimate

‖h2j‖r = O(1)

(
2n+ 1 + 2j

2n+ 1

)1/2 (
1 + λ

1/2
j

)r
‖h2j‖L2(S2n+1)

for the projection of f onto the jth eigenspace, and the result follows in the
same way since λj = 4j(n+j) and

(
2n+1+2j

2n+1

)
are polynomials (of degrees 2 and

2n+ 1) in j. �X
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nienne, Springer-Verlag, 1971.

[3] P. Garret, Harmonic analysis on spheres, II, http://www-users.math.

umn.edu/~garrett/m/mfms/notes_c/spheres_II.pdf.

[4] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities,
Springer-Verlag, 1973.

[5] M. W. Hirsch, Differential Topology, Springer-Verlag, 1976.

[6] J. Lee, Introduction to Smooth Manifolds, Springer, 2013.

[7] C. Cadavid Moreno and J. D. Vélez, A remark on the Heat Equation
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