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ABSTRACT

Delay-Sensitive Communication over Wireless Multihop Channels. (May 2008)

Omar Ahmed Ali, B.Tech, Indian Institute of Technology Madras

Chair of Advisory Committee: Dr. Jean-François Chamberland

Wireless systems of today face the dual challenge of both supporting large traffic flows

and providing reliable quality of service to different delay-sensitive applications. For

such applications, it is essential to derive meaningful performance measures such as

queue-length distribution and packet loss probability, while providing service guar-

antees. The concepts of effective bandwidth and effective capacity offer a powerful

cross-layer approach that provides suitable performance metrics for the bandwidth

and capacity of wireless channels supporting delay-sensitive traffic. Many wireless

systems rely on multihop forwarding to reach destinations outside the direct range

of the source. This work extends part of the methodology available for the design of

wireless systems to the multihop paradigm. It describes the analysis of a communica-

tion system with two hops using this cross-layer approach. A framework is developed

to study the interplay between the allocation of physical resources across the wireless

hops and overall service quality as defined by a queueing criterion based on large

deviations. Decoupling techniques introduce simple ways of analyzing the queues in-

dependently. Numerical analysis helps identify fundamental performance limits for

Rayleigh block fading wireless channel models with independent and identically dis-

tributed blocks. Simulation studies present comparable results akin to that obtained

using the analytical framework. These results suggest that it is imperative to account

for queueing aspects while analyzing delay-sensitive wireless communication systems.
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CHAPTER I

INTRODUCTION

In the recent past, there has been an increasing demand for wireless network access

throughout the world. This demand has paved the way for the vast ongoing research

in wireless technologies. Wireless networks face the dual challenge of supporting large

traffic volumes and providing reliable service for delay-sensitive applications such as

Voice over Internet Protocol (VoIP), wireless security systems, video conferencing,

electronic commerce, sensor networks and gaming. Most of the research on wireless

systems available in the literature today focuses on maximizing physical layer at-

tributes. For instance, several papers are concerned with computing the Shannon ca-

pacity [1] and spectral efficiency [2, 3] associated with specific wireless schemes. How-

ever, real-time applications typically have stringent service requirements for which a

classical capacity-based analysis does not offer a complete assessment of service qual-

ity. This is especially true for the communication infrastructures associated with

wireless networks, as they are subject to time-varying service. A study of queueing

dynamics is essential to relate the effects of decisions at the physical layer to the

service requirements of delay-sensitive networks [4]. Performance measures such as

queue length, packet loss probability, and delay influence the perceived quality of a

communication link. Requirements on these attributes may force a wireless system

to operate well below its theoretical Shannon limit. These measures should be taken

into account while designing wireless systems. Hence, to analyze such systems accu-

rately, we favor a framework that utilizes cross-layer design techniques by exchanging

information between the physical layer and the data-link layer.

The journal model is IEEE Transactions on Automatic Control.
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Quality of service (QoS) has been studied extensively in the context of wired

networks [5, 6, 7]. Due to the time-varying nature of real-time sources and wireless

channels, it is quite difficult to provide deterministic delay guarantees to mobile users.

Several models for communication over wireless channels have been proposed to study

the tradeoffs between average transmit power and average queueing delay [8]. These

models employ the concepts of outage probability [9] and delay-limited capacity [10]

to characterize these tradeoffs. The problem of minimizing queueing delay for a time-

varying channel with a single queue, subject to constraints on average and peak power

is studied in [11]. Recently, studies have been conducted to obtain throughput op-

timal control policies for cooperative relay networks that take queue dynamics into

account [12]. Hence the use of cross-layer techniques in analyzing wireless networks is

gaining momentum because of their significance to real-time applications. Delay vio-

lation probability is a better statistical performance measure than average queueing

delay in terms of service requirements for many real-time applications. For example,

consider a system with VoIP application having a maximum delay tolerance of 300

ms. There could be a case in which the average delay of all the voice-packets in the

system is well below 300 ms while most of the packets reach the destination after

the allowed delay tolerance. The average delay in this case would be a bad metric

for measuring performance of the system. The delay violation probability is defined

as the probability of a delay bound being transgressed. Early research on statistical

performance guarantees for time-varying traffic led to the unifying concept of effective

bandwidth [13]. Given a specific arrival process, the effective bandwidth characterizes

the minimum data-rate (bandwidth) required for the communication system to meet

a certain QoS requirement. The concept of effective bandwidth was later extended

to effective capacity for wireless systems [14, 15, 16]. Assuming a constant flow of

incoming data, the effective capacity characterizes the maximum arrival rate that a
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wireless system can support subject to a QoS requirement. Both these concepts are

useful tools to identify system limitations as a function of statistical queueing vio-

lation probabilities. In general, the delay violation probability of a queueing system

can be upper bounded in terms of the probability of buffer overflow [17]. A statistical

QoS metric that underlies the concept of effective bandwidth and which has been

adopted widely in literature is the asymptotic decay rate of buffer occupancy [13],

θ = − lim
x→∞

log Pr(L > x)

x
(1.1)

where L is the steady-state queue-length distribution of the buffer present at the

transmitter. Parameter θ captures the perceived quality of a communication link,

and partly reflects user satisfaction. A larger θ implies that the queue length ex-

ceeds the overflow threshold with a very low probability, hence representing a more

reliable connection or a tighter QoS constraint. There has been recent work done to

characterize the interplay between the physical layer infrastructure and the queueing

behavior of a single-hop wireless system using this evaluation framework [18].

Still, many wireless systems rely on multihop forwarding to reach destinations

outside the direct range of the source. Thus we need to characterize the overall

effective bandwidth and capacity of multihop systems to analyze their performance

under service constraints. In applications such as wireless sensor networks, there

are strict constraints on the amount of power that a sensor can use to transmit its

information and hence other sensors in the vicinity are used to relay or route this data

to the cluster heads. In addition, the end-to-end delay must be maintained as per user

service requirements. A detailed performance analysis based on QoS requirements is

yet to be completed for physical channels corresponding to networks consisting of

multihop connections. This has been the motivation behind the work described in

this thesis.
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Specifically, we use the cross-layer approach briefly described above to investi-

gate the queueing behavior of wireless communication systems with multihop links.

We employ the effective capacity to assess the overall performance of the system and

devise design guidelines for wireless communication systems. The analysis frame-

work developed herein is flexible enough to accommodate small hop-counts. We note

that classical network calculus [19, 20] cannot be applied to this scenario due to the

time-varying nature of wireless channels. Rather, the exposed research introduces

decoupling techniques that provide upper and lower bounds on overall performance.

A. Problem Statement

Consider a simple wireless communication system where data gets transmitted via

two hops before it reaches the destination, as shown in Figure 1. The overall system

is subject to a mean power constraint and a finite spectral bandwidth allocation.

Suppose that a large buffer is available at every transmitter where outgoing packets

are stored before being sent to their destination. We will consider a case in which

each queue in the system must satisfy a QoS constraint θ as defined in (1.1). Finally,

we also assume that channel state information is not available at the transmitters,

although the channel statistics are. Our goal is to study the relationship between the

allocation of physical resources across the different links and the performance of the

system in terms of its QoS constraint on queueing behavior.

B. Thesis Structure

Chapter II illustrates the challenges faced in the design and implementation of wire-

less networks with delay-sensitive applications. It also presents the mathematical

tools available in literature that will be used to develop an analysis framework for
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Fig. 1. Abstract model of a communication system with two hops.

the problem at hand. Decoupling techniques used to analyze multiple-queue systems

are then introduced. Chapter III describes the two-hop communication system model

we adopt. The Rayleigh block fading model used for representing the wireless chan-

nels and the discrete-time queueing models are explained elaborately. Chapter IV

analyzes the performance of the queueing system. An effective capacity based study

is conducted to relate effects of the QoS requirement on the optimal allocation of

physical resources. Chapter V presents the results obtained from the simulations of

the actual two-hop system, and elucidates how they relate to the analysis framework

developed. Conclusions and the scope of future work are presented finally.
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CHAPTER II

WIRELESS SENSOR NETWORK AND MULTIHOP

CHANNELS

A wireless sensor network is a data-acquisition system consisting of spatially dis-

tributed autonomous devices using sensors to cooperatively monitor physical or envi-

ronmental conditions, such as temperature, sound, vibration, pressure, motion or pol-

lutants, at different locations [21]. The development of wireless sensor networks was

originally motivated by military applications such as battlefield surveillance. However,

wireless sensor networks are now used in many civilian application areas including en-

vironment and habitat monitoring, pollution control, health-care applications, home

automation, and traffic control. In a typical wireless sensor network architecture,

packets reach cluster heads in a small number of hops as shown in Figure 2.

Wireless

Node

Cluster 

Head

Fig. 2. A generic wireless sensor network architecture.

In addition to having one or more sensors, each node in the system is typically
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equipped with shoe-box-sized a radio transceiver or another wireless communications

device, a small micro-controller, and a power source, usually a battery. The volume of

a sensor node can vary from shoe-box-sized nodes down to devices the size of a grain of

dust. The cost of individual sensor nodes is similarly variable, ranging from hundreds

of dollars to a few cents, depending on the purpose of the sensor network and the

complexity required of each node. Size and cost constraints on sensor nodes result in

corresponding constraints on resources such as power, memory, computational speed

and bandwidth.

Key to the success of wireless sensor technology is a communication strategy that

is tailored to distributed signal processing. The protocols used should enable efficient,

adaptive and robust data transfers within the network. Wireless sensor networks

cannot be viewed as extensions of ad-hoc wireless networks with stringent power and

energy constraints because the focus in conventional data networks is on connectivity

and improving throughput [22], independent of the applications. Whereas in sensor

networks, the optimization metrics are formulated primarily by the underlying sensing

objectives such as probability of detection error, detection delay or mean-square error

in estimation [23, 24, 25]. Hence the design process for a sensor network should be

closely knit to its application objective and associated performance metric.

The performance of a wireless sensor network is governed by its ability to gather,

carry and use relevant information in a timely fashion. Since wireless nodes are

typically subject to strict power constraints, it is essential to study and understand

the interplay between resource allocation and overall performance in such systems

[26, 27, 28]. A major challenge in the design and implementation of wireless sen-

sor network revolves around distributed inference problems and the transmission of

delay-sensitive traffic over the network. This challenge can be met by adopting a

cross-disciplinary approach incorporating ideas spanning communication at the phys-
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ical layer, statistical signal processing, queueing theory and networks. Research on

wireless sensor networks can be organized around three interdisciplinary areas. The

first area involves the detection of events at the sensor nodes and estimation of the

state of nature at the fusion center [29, 30, 31]. Proper placement of nodes, sensor

density and efficient quantization of the data locally play important roles in deter-

mining how this decentralized inference problems can be handled. Providing reliable

communication schemes for delay-sensitive data transfers is another crucial interdis-

ciplinary area for the design of sensor networks. This aspect is covered in detail in

Section B of the present chapter. The third field of research is the development of

distributed protocols for information-aware sensor networks. An information-aware

sensor network is a system that gives priority to packets that contain pertinent in-

formation. Knowledge of the quality of data contained in the packets can be used to

devise effective communication strategies, scheduling schemes and routing protocols.

Similarly sensor nodes can conserve energy by having a priori knowledge about the

process they are monitoring together with their current and past observations.

Techniques from large deviations [32, 33] can be employed for the design of

resource-constrained wireless sensor networks. In the past, large-deviation theory has

been used extensively in the context of inference problems [34, 35, 36] and network

analysis [7, 37, 38]. Techniques extracted from the literature on large deviations

are particularly meaningful in the context of sensor networks because they capture

the dominating behavior of large systems. These techniques can be leveraged to

derive meaningful performance metrics for the design of delay-sensitive wireless sensor

networks, analyze prominent interference patterns, compute optimal node density and

placement, and provide statistical delay guarantees for data transmissions.
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A. Large Deviation Principle

The large deviation principle (LDP) plays a fundamental role in both information

theory and queueing theory and, in many cases, it provides tight characterizations

of system performance. The LDP is closely related to the distinguished concept of

error exponent for random codes. For discrete memoryless channels, error exponent

is tight for rates sufficiently close to capacity [39]. The LDP captures the asymptotic

behavior, as ε → 0, of a collection of probability measures {µε} in terms of a rate

function. The set of measures {µε} satisfies the LDP with rate function I(·) if, for

every admissible set S,

− inf
s∈interior(S)

I(s) ≤ lim inf
ε→0

ε log µε(S) ≤ lim sup
ε→0

ε log µε(S) ≤ − inf
s∈closure(S)

I(s).

For instance, let Mn be the empirical average of n zero-mean independent and iden-

tically distributed (i.i.d.) random variables X1, X2, . . . , Xn, each with finite second

moment. The weak law of large numbers asserts that Mn converges to zero in prob-

ability. The LDP states that the tails of the distribution of Mn decay exponentially

fast, Pr(Mn > t) � exp (−nI(t)) and Pr(Mn < −t) � exp (−nI(−t)) for t > 0. In

this particular case, the rate function I(·) is the Fenchel-Legendre transform of the

cumulant generating function of X. The Fenchel-Legendre transform of a log moment

generating function Λ(θ) is defined by

Λ∗(t) = sup
θ∈R

{θt − Λ(θ)}.

The large deviations principle is closely related to the Chernoff bound. Suppose

φ(x) = eθx with θ > 0, and let S = {s : s ≥ t} where t > 0. Then, using Markov’s

inequality, we get

eθt Pr(X ≥ t) ≤ E
[

eθX
]

,



10

where E
[

eθX
]

is the moment generating function of random variable X. Taking

natural logarithms of both sides, we obtain

log Pr(X ≥ t) ≤ −θt + log E
[

eθX
]

.

The probability that the empirical mean of the first n variables exceeds t > 0 is

bounded by

Pr(Mn ≥ t) = Pr

(

n
∑

i=1

Xi ≥ tn

)

≤ e−θtnE
[

eθ
∑

n

i=1
Xi

]

=
(

e−θtE
[

eθX
])n

.

It follows that, for any θ ≥ 0, we have

−
1

n
log Pr(Mn ≥ t) ≥ θt − log E

[

eθX
]

= θt − Λ(θ).

Maximizing the right hand side over θ, we get

−
1

n
log Pr(Mn ≥ t) ≥ sup

θ≥0
{θt − Λ(θ)} = Λ∗(t).

A derivation showing that the Chernoff bound is asymptotically tight can be found

in [32]. The purpose of this brief discussion is to help the reader gain intuition about

good rate functions and LDPs. For an LDP to apply, sequences of random variables

need not be i.i.d. The Gärtner-Ellis theorem provides sufficient conditions for a rate

function to exist [32].

Sample path large deviations is a closely related concept on which many network

performance metrics are derived. In queueing systems, explicit expressions for error

probability, delay distribution, and queue length are difficult to get. The theory

of sample-path large deviations is therefore frequently employed to characterize the

dominating behaviors governing queue-length distributions. Consider a single-server

queue whose distribution obeys an LDP. Its rate function may be dominated by the

arrival process, the service process, or by joint deviations in both. When the service
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process of the queue is determined by a wireless channel, the LDP of the queue-length

depends on the statistics of the wireless channel, which are closely related to the error

exponent of the channel. Large deviations form a basis for the effective capacity and

effective bandwidth, two performance metrics introduced in Chapter I.

A systematic application of large deviations to various fields and an introduction

to the theory can be found in [40]. One may find in the literature results more precise

than the large deviation principle (LDP). Although it can be argued that the LDP

provides only some rough information on asymptotic probabilities, its scope and ease

of application have made it a popular tool [32]. The theory of large deviations has a

beautiful and powerful formulation due to Varadhan, along with Chernoff’s theorem,

making it very general [41]. More information about sample path large deviations

can be found in [32].

B. Delay-Sensitive Communication

To capture the overall performance of a delay-sensitive wireless network, an analytic

study of the queueing behavior is essential in addition to the physical layer concept

of Shannon capacity. Based on the concepts from large-deviation theory discussed

earlier, an evaluation methodology suitable to characterize system limitations under

queueing constraints can be constructed. Such a framework would lead to achiev-

ability results akin to Shannon capacity, albeit in a QoS framework. This section

motivates the problem addressed in this thesis by briefly describing different prob-

lems in wireless communication systems that have been studied using the concepts of

effective bandwidth and effective capacity.

A performance analysis of a single-hop Gilbert-Elliot wireless system was con-

ducted as a function of physical resources using the probability of buffer overflow as
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a QoS constraint in [18]. In their work, the authors show that the effective capacity

decays sharply as a function of the QoS constraint θ > 0 defined in (1.1). In ad-

dition, it is shown that the optimal code selection for a wireless system depends on

its QoS requirement. A more stringent constraint on θ lowers the optimal coderate.

Correlation of the underlying physical channel is also found to have a major impact

on performance. The effective capacity of a slowly varying channel can be very small.

It was shown that, even with unlimited amount of physical resources, the maximum

arrival rate supported under QoS constraint θ is bounded.

This cross-layer framework was also employed to analyze the benefits of user-

cooperation in delay-sensitive wireless systems; and the corresponding achievable rate-

region for a two-user scenario is characterized in [42]. Numerical results suggest that

cooperation yields a large gain over traditional paradigms. User-cooperation can

therefore provide wireless users with the flexibility to better share system resources.

Again, the overall performance seems to depend heavily on the time-correlation of

the physical channel. This emphasizes the fact that effective capacity is much more

sensitive to higher-order statistics than ergodic capacity or outage capacity.

System performance for a class of multiple-antenna wireless systems subject to

Rayleigh flat fading is studied [17]. The effective capacities of various vector Gaussian

channels are characterized, and overall performance is evaluated in the low signal-to-

noise ratio regime. Moreover, the dominating behaviors of MIMO systems are ana-

lyzed in the large antenna-array regime. Numerical results confirm that the potential

gains of multiple-antenna configurations over single-antenna systems are substantial.

When the number of transmit and/or receive antennas becomes large, the effective

capacity of the system is bounded away from zero even under very stringent service

constraints. This phenomena, which results from channel-hardening, suggests that a

multiple-antenna configuration is greatly beneficial to delay-sensitive traffic.
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Recent work has been done to compare the performance of a butterfly network

with and without network coding in the context of delay sensitive applications [43].

The butterfly network is a system in which the information from multiple sources can

be transmitted to multiple destinations, with each destination being able to recover

messages from all the sources. Information can be transmitted through intermediate

nodes which either route packets or perform algebraic manipulations on the locally

available packets. The achievable rate-region was computed for a butterfly network

with two sources and two destinations, when operating under strict QoS requirements

and in the context of both wired and wireless communication. For a wireless network,

combining packets at intermediate nodes doesn’t necessarily offer performance gains.

Rather, in some cases, it can be harmful. Hence in these instances, it is better to just

route the packets.

It is quite evident that using a cross-layer approach for the analysis of delay-

sensitive wireless communication systems may provide better insight into the actual

working and performance of such systems. A number of systems rely on multihop

transmissions to send data to remote destinations. As such, it is imperative that

multihop systems be analyzed using a similar framework. A QoS analysis of multihop

systems can provide us with an understanding of how nodes should be distributed in

a wireless sensor network in order to maximize performance.

In reality, it is difficult to analyze a complete multihop system because departure

processes of queues are hard to characterize. Thus, we approximate their behaviors

using the service processes. Decoupling buffers from one another provides a simple

way to analyze the queues independently.
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1. Decoupling Techniques

We first state the buffer decoupling argument for a single queue system [18], and

then extend it to a multihop scenario. The argument compares a single-queue system

to two other systems, each with two queues. This natural progression appears in

Figure 3. We begin with a comparison of the first two systems. The arrival process

of the second system is assumed to be identical to the arrival process of the first

system. Similarly, the service process of the second queue is made equal to the service

process of the first system. In addition, the first queue in System 2 is serviced at a

constant rate whenever it is non-empty. The packets departing from the first queue

are immediately placed in the following queue. The additional constraint present in

the latter scenario causes the queue-length in the single-queue system to be always

less than or equal to the sum of the queues in the second system.

Fig. 3. Illustration of the three systems used in buffer decoupling argument.

Next, we compare the second system with a network composed of two indepen-

dent queues. The arrival process in the first queue is the same as before, and this

queue is served at a constant rate when it is nonempty. Packets arrive in the second

queue at the same constant rate they leave the first queue. However, the arrival in
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the second buffer is independent of the first buffer and it never goes idle. Packets in

the second queue are served at a rate equal to the service rate of the second queue in

System 2. Note that the length of the first queue in the third system is always equal

to the length of the first queue in the second system. Furthermore, the length of the

second queue in the second system is less than or equal to the length of the second

queue in the third system. It follows that the large deviation principle governing the

queue length in the first system is always less than or equal to the large deviation

principle governing the sum of the queues in the third system.

Now, we consider a more elaborate system composed of two queues in tandem.

Let the arrival and service processes of the first queue be denoted by a1(t) and s1(t),

respectively. The departure process of the first queue is fed directly into the second

queue, which is served at rate s2(t). First, we apply the decoupling technique de-

scribed above to the two queues individually, as shown in Figure 4. The resulting

system then features two queues in place of the original ones. The arrival process for

the first queue is a1(t) and this queue is served at a constant rate ν1. Packets arrive in

the second queue at a constant rate ν1, and they are served at a rate s1(t). Appropri-

ate choice of ν1 will eventually determine how close this approximation is compared

to the original system. If ν1 is equal to the effective bandwidth of a1(t) and effective

capacity of s1(t), then the queue-lengths of the two-queue approximation and that of

its original counterpart will possess the same LDP. Departed packets from the second

queue are transmitted through the wireless channel before being placed in the third

queue, which is served at constant rate ν2. Packets arrive in the fourth queue at a

constant rate ν2, and they are serviced at rate s2(t). An argument similar to that of

ν1 can be stated for ν2 as well. Based on the additional constraints present in this

new scenario, it follows that the sum of the queues in the original system is always

less than or equal to the sum of the queues in the latter network.
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ν1
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ν2

ν2

ν2

ν2

Fig. 4. Decoupling technique applied to a system with two queues in tandem.

Next, we link the second system to a third one where the arrival in the third queue

is a stochastic process whose arrival rate is matched to s1(t), the service process of

the second queue. The main difference between the two systems is that the arrival

process in the third queue is the departure process of the second queue in one case,

whereas it is a process equivalent to the offered service by the second queue in the

other one. This approximation again gives an upper bound on the total queue-length

of the system. This system can be used to derive performance bounds on the actual

system behavior based on appropriate assumptions. Upper bound on the delay can

be calculated based on the assumption that the arrival rate is constant and equal to

the expected value of the traffic generated by the transmitting queue. But this is a

loose bound as in the case when there is no instantaneous traffic being transmitted

by the first queue, assuming constant arrival rate at the second queue would be far

from accurate. Hence, these bounds become tighter under heavy traffic limits.

This analysis framework can only provide loose bounds in the wired world since

in this situation the stochastic nature of the service process is due to priority users

rather than the channel variations. However, based on the stochastic nature of wire-
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less channels, tighter bounds can be obtained by using appropriate resource allocation

policies to smooth out the variance in the channel, possibly at the expense of through-

put. The independence structure introduced by the decoupling techniques enables us

to analyze the overall two-hop system by studying the two queues independently

under proper assumptions.



18

CHAPTER III

SYSTEM MODEL

The system model consists of wireless links which connect the mobile device and the

base station. Each link has three major components: the data stream arriving in the

buffer, the length of the buffer, and the service offered to the user. This is shown

in Figure 5. The buffer stores the data before being transmitted to ensure that each

user receives its intended packets. Yet, the introduction of a buffer adds delay to the

transmission procedure, and hence creates a disparity between throughput optimality

and delay optimality. We will use the asymptotic decay rate of buffer occupancy

introduced in (1.1) as our measure of service quality and delay-sensitiveness.

Collision

Power

Data Stream

Queue length

Service offered to the user

Fig. 5. System model.

To characterize the overall performance of a multihop system in terms of effec-

tive capacity, we need to formulate the problem in a queueing theory framework by

developing accurate models for the components described above. For wireless applica-

tions, the offered service depends on the instantaneous transmission rates supported
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by the wireless link. Accurately modeling the behavior of the wireless channels and

specifying its evolution in terms of physical layer parameters is essential. This is

accomplished in the sections that follow.

A. Multipath Fading

In wireless environments, RF signals from the transmitters may be reflected from

objects such as hills, buildings, or vehicles before reaching their destinations. The

superposition of these multiple transmission paths at the receiver gives rise to a

phenomenon known as multipath fading. Figure 6 shows some of the possible ways in

which multipath fading can occur. The relative phase of multiple reflected signals can

Reflected Paths

Direct Path Transmitter

Fig. 6. Multipath signals.

cause constructive or destructive interference at the receiver, depending on the nature

of the wireless environment and the mobility of the terminals. Detailed information

about channel modeling for wireless communication can be obtained from [44, 45, 46].

For the sake of our discussion, we only briefly describe the pertinent models for fading

channels that are often used in the analysis of wireless systems [47].
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A simple, yet powerful abstraction for a wireless environment consists of repre-

senting the channel as a linear time-varying system. Let x(t) be the signal transmitted

over the channel and let X(f) denote its frequency content. Then, the corresponding

channel output can be modeled as

y(t) =

∫ ∞

−∞

h(t; τ)x(t − τ)dτ

=

∫ ∞

−∞

H(t; f)X(f)ej2πftdf,

(3.1)

where H(t; f) is the Fourier transform of the channel response at time t. Further

consider that the spectral bandwidth W of the signal X(f) is much smaller than the

coherence bandwidth of the channel. In this case, the fading profile is known as flat

fading. The coherence bandwidth is a statistical measure of the range of frequencies

over which the channel response H(t; f) remains approximately flat as a function of

f . In other words, the coherence bandwidth is the range of frequencies over which

two frequency components have a strong potential for amplitude correlation [48].

Mathematically, |H(t; f1)| ≈ |H(t; f2)| whenever |f1 − f2| is less than the coherence

bandwidth of the channel. Under the flat fading assumption, all the frequency compo-

nents of X(f) undergo the same attenuation and phase shift in transmission through

the channel. This implies that, within the frequency band W occupied by X(f), the

time-varying transfer function H(t; f) of the channel is essentially constant in the

frequency variable. For such environments, the channel expression of (3.1) simplifies

to

y(t) =

∫ ∞

−∞

h(t; τ)x(t − τ)dτ

≈

∫ ∞

−∞

h(t)ejθ(t)δ(τ)x(t − τ)dτ

= h(t)ejθ(t)x(t).

(3.2)
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By construction, H(t; f) = h(t)ejθ(t) over the frequency range of interest, h(t) denotes

the envelope attenuation and θ(t) represents the phase equivalent channel response.

Thus, our frequency-nonselective (time selective) fading channel has a time-varying

multiplicative effect on the transmitted signal. It is this latter model that we employ

as a starting point for our analysis.

B. Wireless Channel

In addition to mean path attenuation and additive noise, which both affect data

transmission over wireless channels, the channel model may include the time-varying

filter of Section A. Before we present our mathematical model, we define the block

fading channel introduced in [9], which will be used throughout our analysis. A block

fading model represents a channel in which the connection statistics are fixed over

constant-sized blocks. Such models are used to characterize slowly varying fading

channel, which generally arise when the coherence time of the channel is relatively

large compared to the delay constraint of the channel. The coherence time is a

measure of the minimum period required for the magnitude change of the channel to

become uncorrelated in time. We use block fading channels to model both channels in

the tandem network. Unless otherwise specified, the block durations corresponding

to both links is assumed to be identical, say Tblock. The discrete-time channel is

illustrated in Figure 7.

The transmitted signal x(n) is subject to mean path attenuation g(d), where

d represents the distance between the mobile and its destination, multipath fading

h(n) and additive noise corruption w(n). The signal at the destination for a coherent

receiver can be represented by

y(n) = g(d)h(n)x(n) + w(n). (3.3)
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x(n)

g(d) h(n)ejθ(n) w(n)

y(n)

Fig. 7. Block diagram of a wireless channel.

The additive noise component w(n) is often modeled as a proper complex white Gaus-

sian process. Typically, the mean path attenuation g(d) remains fixed over the time-

span of interest. Therefore, the effect of g(d) can be absorbed in the noise variance.

Furthermore, h(n) is normalized so that the expected power gain introduced by h(n)

is 1. In a heavily scattered environment, the fading process h(n) is well-modeled as

a zero-mean, proper complex Gaussian process. The envelope process |h(n)| and the

phase process ∠h(n) form independent and stationary random processes, with |h(n)|

having a Rayleigh probability distribution function and the phase being uniform in

[0, 2π) [47]. Based on the normalization assumption, |h(n)| has distribution

f(ξ) = 2ξe−ξ2

.

In general, a complete characterization of this random process requires that the

higher-order statistics be specified in addition to the first-order statistics specified

by the Rayleigh fading channel profile. For a wireless channel, the autocorrelation

function of the fading envelope can be modeled using the zeroth order Bessel func-

tion of the first kind [49]. This function is derived under the assumption that the

mobile terminal is moving in an isotropic environment at a constant velocity and is

reasonable for short time intervals corresponding to movements of the order of few

wavelengths. In the work described in this thesis, we model only the first-order statis-
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tics of fading on encoded transmissions over both channels rather than specifying the

higher-order statistics of h(n). We model the wireless channels as discrete-time block

fading process with i.i.d. Rayleigh distribution. Over block duration Tblock, chan-

nel realizations remain the same; however, across blocks, they are independent and

identically distributed. The reason for using this model is two-fold. First, we use

block fading for the sake of mathematical tractability in solving the problem at hand.

Second, we wish to take advantage of the independence structure introduced by the

decoupling techniques described in Section B of Chapter II. We assume that the data

is transmitted at a coderate Ri when |hi(n)| falls above a fixed threshold ηi, where

the subscript i = 1, 2 represent the two hops. Otherwise, the data is lost and a new

transmission is required for the packet to reach its destination. In reality, data is

always transmitted at fixed rate Ri but success is achieved only when |hi(n)| > ηi.

Success/failure is determined by the ack/nack received at the transmitter from the

receiver. Note that n = 1, 2, . . . represents the different blocks. The probability of

|hi(n)| being above ηi can be obtained from the marginal Rayleigh distribution as

pi = Pr{|hi(n)| ≥ ηi} =

∫ ∞

ηi

2ξe−ξ2

dξ = e−η2

i . (3.4)

It follows that the transmission rate will be zero with probability 1 − pi.

C. Coding and Information Theory

Communication at the physical layer can be represented by parameters such as noise

spectral density, bandwidth and transmit power. For additive white Gaussian noise

(AWGN), the maximum rate at which error-free data transfers are possible is given

by the Shannon capacity [1],

C = W log2

(

1 +
P

N0W

)

bits per second, (3.5)
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where P is the power of the received signal, N0/2 is the power spectral density of the

noise process, and W is the spectral bandwidth. Recent developments in error-control

coding allow operation close to channel capacity with minimal error-rates and small

delays. The capacity expression of (3.5) can therefore be employed as an optimistic

approximation of code performance. If a code is designed to operate at a rate R, the

sent information can be decoded reliably if R < C, else it is lost.

A similar expression can be obtained for fading channels where the gain and

hence the received power are time-varying in nature. Assuming the channel varies

slowly over time, the instantaneous capacity of the wireless link is equal to

Ci(n) = Wi log2

(

1 +
|hi(n)|2Pi

N0Wi

)

bits per second, i = 1, 2. (3.6)

If the transmitted information is encoded at a rate Ri, it is assumed to reach its

destination error-free provided that Ri < Ci(n). On the other hand, if Ri ≥ Ci(n)

then the information is lost as depicted in Figure 8 . This simplified characterization,

which we use throughout for mathematical convenience, is valid provided that there

are enough degrees of freedom available to allow the use of sophisticated codes during

each data transfer. This model can be altered to accommodate practical codes and

probabilities of link failures.

When channel state information is not known at the transmitter, a wireless

node must transmit its data at a pre-selected coderate Ri to its destination. The

threshold on the channel envelope can be derived based on the coderate used and on

the condition that data is decoded only if Ri < Ci(n) as in (3.6). This yields

|hi(n)| > ηi =

√

N0Wi

Pi

(

2
Ri

Wi − 1
)

i = 1, 2. (3.7)
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Fig. 8. Condition for information to be reliably decoded.

Once Ri is fixed, the average throughput of this channel is given by

Ri Pr{|hi(n)| > ηi} = Rie
−η2

i .

The maximum average throughput can be obtained by maximizing this expression

over all admissible values of Ri. An immediate tradeoff can be observed between the

likelihood of the channel being in good state and the rate at which data is transferred

from the source to the destination. If we choose a large coderate Ri, the instantaneous

throughput is high whenever the channel is in its good state. This indicates that we

should choose a large threshold ηi. Yet, as ηi becomes larger, the probability that the

channel remains in its good state decreases. Thus, the amount of time spent in the

good channel state is less, and the average throughput suffers. On the other hand, if

the coderate is decreased, the probability of being in the good state increases but the

rate at which data is transmitted decreases.

We assume that a simple Automatic Repeat-reQuest (ARQ) scheme is in place

at the physical layer, which informs the transmitter if the data has been decoded

successfully or not. This behavior will affect the queue length distribution at the
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terminal and, consequently, it will have a significant impact on performance. If the

acknowledgments are received fast enough, the service offered to the user will be the

same as the transmission rates supported by the wireless link. Hence, in our model,

the corresponding service rate is Ri when the channel envelope exceeds the threshold

and it is zero otherwise.

D. Queuing Model

It can be inferred from the decoupling techniques introduced in Section B of Chapter II

that the upper bound on the overall performance of the two-hop system can be

approximated by studying the two queues independently. The effective capacities

of each queue will be calculated separately and conditions will be derived for the

appropriate allocation of system resource. The underlying goal is to maximize the

throughput of the system subject to the desired QoS constraint. Before we proceed

with the performance analysis of the queues, we describe the actual discrete-time

queue models used.

1. First Queue

Consider the first queue to be a simple discrete-time queue with a single server. We

assume the data arrives at this buffer at a constant arrival rate a and gets served at

a rate dependent on the realization of the wireless channel. Let a1(n) be a random

variable denoting the number of bit arrivals in the nth block and s1(n) be another

random variable denoting the number of bits served during that block. Thus, a1(n) =

aTblock for all n; and s1(n) can be either zero or R1Tblock with probability 1 − p1 and

p1, as defined in (3.4). Let q1(n) be the length of the queue at time nTblock. Starting

with an empty buffer being served under a work-conserving policy, we can write the
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dynamic evolution of buffer as the Lindley’s equation,

q1(n + 1) = (q1(n) + aTblock − s1(n))+ (3.8)

where (x)+ , max(0, x). The amount of service offered in the interval [n1Tblock, n2Tblock)

is given by

S1(n1, n2) =

n2−1
∑

m=n1

s1(m). (3.9)

For this queue to be stable, the expected arrival should be less than the expected

service, i.e., a < R1p1.

2. Second Queue

Let the second user also be represented by a simple discrete-time queue with one

server. The arrival rate at this queue is the same as the service rate of the first

channel, and the bits in this queue get served at a rate that depends on the realization

of the second channel. In other words, the number of bit arrivals at discrete time n,

a2(n) is considered to be the same as the service of the first queue s1(n) based on the

decoupling principle. That is, a2(n) can be either zero or R1Tblock with probability

1 − p1 and p1, respectively; it can be modeled as an on-off source. The amount of

data served by the second queue at block n, s2(n) can be either zero or R2Tblock with

probability 1− p2 and p2, as defined in (3.4). Let q2(n) be the length of the queue at

time nTblock. Under assumptions similar to those made on the first queue, growth of

the second queue is governed by the equation,

q2(n + 1) = (q2(n) + a2(n) − s2(n))+. (3.10)
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The cumulative arrival function over interval [n1Tblock, n2Tblock) is given by

A2(n1, n2) =

n2−1
∑

m=n1

a2(m). (3.11)

The amount of service offered in the interval [n1Tblock, n2Tblock) is equal to

S2(n1, n2) =

n2−1
∑

m=n1

s2(m). (3.12)

For this queue to be stable, we need R1p1 < R2p2.
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CHAPTER IV

PERFORMANCE ANALYSES

To capture the impact of the physical layer parameters on the delay requirements of

the system, we need to formulate an expression that will account for both aspects.

Since we have already established that the effective capacity is the maximum input

rate at which a system can operate subject to a given QoS constraint, we will use

this concept to develop design criteria for the overall system. Using the channel

and queueing models described in Section III, we will derive expressions for effective

capacity and effective bandwidth and use them for further analysis to understand the

allocation of resources as a function of the QoS parameter θ.

A. Queueing Performance Analysis

1. Effective Capacity of Outflow of First Queue

Based on the asymptotic probability of buffer overflow [5], the effective capacity of

the first queue can be written as

α1(θ) = sup

{

a : lim
x→∞

log Pr{L1 > x}

x
≤ −θ

}

(4.1)

where L1 is the steady state queue length. The effective capacity can also be written

as

α1(θ) = −
Λ1(−θ)

θ
(4.2)

provided Λ1(−θ) satisfies the conditons of Gärtner-Ellis theorem [32], i.e., Λ1(−θ)

exists and is differentiable for all θ > 0. Λ1(−θ) is known as the asymptotic log-
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moment generating function of the accumulated service and is defined as

Λ1(−θ) = lim
t→∞

1

t
log M(−θ) (4.3)

where M(−θ) is the moment generating function of S1(n1, n2) defined in (3.9),

M(−θ) = E
[

e−θS1(n1,n2)
]

. (4.4)

For a stationary ergodic sequence {s1(n), n > 0},

M(−θ) = E[e−θS1(1,n+1)] (4.5)

where n = n2 − n1. Substituting (4.5) in (4.3), we get

Λ1(−θ) = lim
n→∞

1

nTblock
log E

[

e−θS1(1,n+1)
]

.

Since s1(n) is a sequence of i.i.d. random variables,

Λ1(−θ) =
1

Tblock
log E

[

e−θs1(1)
]

. (4.6)

As observed, Λ1(−θ) exists and is bounded for bounded s1(1). It also differentiable

for θ > 0, therefore, the effective capacity of the queue can be written using (4.2),

α1(θ) = −
1

θTblock
log E

[

e−θs1(1)
]

. (4.7)

Based on (3.4) and the definition of s1(n) in Section D of Chapter III, it follows that

α1(θ) = −
1

θTblock
log
((

1 − e−η2

1

)

+ e−η2

1e−θR1Tblock

)

. (4.8)

The queue length q1(n) will be bounded exponentially with decay rate θ, if a < α1(θ).

This will be explained in detail in Subsection 4.
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2. Effective Bandwidth of Inflow of First Queue

Since a2(n) is a sequence of i.i.d. random variables, it is known from [6, 50] that the

minimum envelope rate of {a2(n), n > 0} is the same as its effective bandwidth β2(θ).

Minimum envelope rate is the average rate of the minimum envelope process of the

arrival process {a2(n), n > 0} as defined in [6]. Therefore, we can write

β2(θ) =
1

θ
log E

[

eθa2(1)
]

. (4.9)

or, equivalently,

β2(θ) =
1

θTblock
log
((

1 − e−η2

1

)

+ e−η2

1eθR1Tblock

)

. (4.10)

3. Effective Capacity of Outflow of Second Queue

The effective capacity of the service at the second queue can be obtained in a manner

similar to the derivation of the effective capacity of the first queue,

α2(θ) = −
1

θTblock

log
((

1 − e−η2

2

)

+ e−η2

2e−θR2Tblock

)

. (4.11)

Even here the queue length q2(n) will be bounded exponentially with θ, if β2(θ) <

α2(θ).

4. Probability of Buffer Overflow

As mentioned earlier, the probability of buffer overflow is an important performance

metric that characterizes the behavior of a queue. Consider the first queue in the

system. We will show that the tail of the steady state queue length distribution is

bounded exponentially if the arrival rate is less than the effective capacity.
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Expanding (3.8) recursively yields

q1(n) = max[0, aTblock − s1(n − 1), . . . ,

(n − 1)aTblock − s1(n − 1) − s1(n − 2) − . . . − s1(1)].

(4.12)

Using the fact that max(x1, x2) ≤ x1 + x2 for x1, x2 ≥ 0, we get

E
[

eθq1(n)
]

≤

n−1
∑

m=0

E
[

eθ(maTblock−S1(n−m,n))
]

(4.13)

The probability of buffer overflow is related to the moment generating function

E
[

eθq1(n)
]

through the Chernoff bound, as described in Section A of Chapter II,

by

Pr(q1(n) ≥ x) ≤ e−θxE
[

eθq1(n)
]

. (4.14)

We can then write

Pr(q1(n) ≥ x) ≤ e−θx

n−1
∑

m=0

E
[

eθ(maTblock−S1(n−m,n))
]

≤ e−θx

n−1
∑

m=0

eθmaTblockE
[

e−θS1(n−m,n)
]

.

Since s1(n) is a sequence of i.i.d. random variables,

Pr(q1(n) ≥ x) ≤ e−θx

n−1
∑

m=0

eθmaTblock

(

E
[

e−θs1(1)
])m

≤ e−θx

n−1
∑

m=0

(

E
[

eθ(aTblock−s1(1))
])m

.

As n approaches infinity, we have

Pr(q1(∞) ≥ x) ≤
e−θx

1 − E [eθ(aTblock−s1(1))]
, (4.15)

provided E
[

eθ(aTblock−s1(1))
]

< 1, which we know from (4.7) means a < α1(θ). A simi-

lar derivation for the second queue can show that the steady-state queue distribution
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will be bounded exponentially with parameter θ provided that its effective bandwidth

is less than its effective capacity.

B. Effective Capacity Analysis

The effective capacity quantifies the maximum supported arrival rate for a set of

system parameters and a QoS constraint θ > 0. It is an appropriate tool to quantify

the optimal operating point of a delay-sensitive wireless system. This maximum rate

can either be the true rate of a constant source or the effective bandwidth of a time-

varying source. Our main objective is to find a, R1 and R2 for this optimal operating

point. The effective capacity of a system with multiple queues in tandem is less than

or equal to the effective capacity of the weakest link [51]. This fact can be confirmed

from the large deviations principle as well. Observing expressions (4.8) and (4.11)

and knowing that R1 < R2 insures stability, it is obvious that α1(θ) < α2(θ). The

objective is therefore to maximize the effective capacity of the first queue.

Table I. System Parameters.

N0 = 10−7 W/Hz Noise power spectral density

W1 = W2 = 10 MHz Bandwidth

P1 = P2 = 100 mW Received power

Tblock1
= Tblock2

= 2 ms Duration of block fade

Due to the complexity of the equations derived in Section A, it is hard to solve

them manually. Hence, we will computationally solve for the arrival and service

rates with the parameters of the wireless channel that appear in Table I as input.

Mathematically, the objective function can be written as max α1(θ) subject to the
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condition β2(θ) ≤ α2(θ) for a fixed θ.

The algorithm used to achieve this objective is as follows:

1. Choose R2 = arg max α2(θ).

2. Find range of R1 such that β2(θ) ≤ α2(θ).

3. From this range, choose R1 = arg maxα1(θ).

4. Set a = maxα1(θ) because a is the maximum arrival rate that can be supported

for a given θ.

Figure 9 shows the maximum supported arrival rate α1(θ) as a function of the

QoS constraint θ for the system parameters in Table I. The figure also includes

the optimal coderates R1 and R2 as a function of θ. The effective capacity at zero

R
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s)

Exponential Rate θ

Fig. 9. Optimal coderates and effective capacity as a function of decay rate θ.

corresponds to the maximum throughput of the system. As the constraint value θ

increases, the effective capacity decreases rapidly for fixed system parameters. This is

intuitive since a lower arrival rate reduces the expected queue length. We also observe
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that the optimal coderates R1 and R2 are functions of the QoS requirements. This

is an important result which tells us that under strict QoS constraints, error control

codes with lower rates perform better as they reduce the probability of the channel

being OFF. This analysis offers a systematic way to select coderates as a function of

channel profile and the QoS requirement of the system.

Another analysis can be performed to identify the dependence of the maximum

arrival rate on the different bandwidth allocation among the channels. The bandwidth

of the entire system is assumed to be 10 MHz. A fraction of the bandwidth γ is

allocated to the first wireless channel, while the remaining 1−γ to the second channel.

The other system parameters are selected according to Table I. The same algorithm

as described earlier is applied to obtain different values of a for each γ by fixing

θ. Figure 10 illustrates the results obtained from this analysis. For higher QoS

θ = 0.1θ = 0.05 θ = 0.01

θ = 0.001

θ = 0.0001θ = 0.00005 θ = 0.00001

Bandwidth allocation fraction γ

R
at
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p
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Fig. 10. Maximum arrival rate as a function of γ for various values of θ (symmetric

links).

constraints, the maximum arrival rate remains almost constant for a wide range of γ



36

values. This suggests that the system hits the wide-band regime quickly under higher

QoS constraints. Whereas for lower θ values, there is a significant difference in the

maximum arrival rates as γ varies in [0 − 1]. When the system operates under such

QoS constraints, the optimal operating point is observed to occur when γ lies in the

interval [0.4−0.5]. This analysis provides a good point of operation for systems where

delay limitation is less of an issue. Nevertheless, it reiterates the fact that allocation

of fraction of bandwidth is not a predominant issue in delay-sensitive networks as

long as the bandwidth for the entire system falls within the wide-band regime.

We also consider the cases in which there is a power imbalance between the two

links. For the first case, we assumed P1 = 100 mW and P2 = 25 mW; for the second

case, P1 = 25 mW and P2 = 100 mW. Analytical performance results were obtained

by varying the bandwidth allocation fraction for different values of θ. Figures 11 & 12

display the results for both cases. As observed in the symmetric channel case, the
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Fig. 11. Maximum arrival rate as a function of γ for different values of θ (P1 > P2).

effective capacity remains invariant to changes in the bandwidth allocation fraction

for tighter QoS constraints. For lower values of θ, significant drop in the effective
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capacity of the system is observed when a majority of the bandwidth is allocated to

the stronger link. Apart from that, it is still almost constant for different bandwidth

allocation policies.
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Fig. 12. Maximum arrival rate as a function of γ for different values of θ (P1 < P2).

Comparing the results from the three different cases, it can be inferred that spec-

tral allocation doesn’t really affect the performance of the system, provided the entire

bandwidth is not allocated to either of the two channels. It should be noted that the

effective capacity for the symmetric links with a particular service requirement is

quite high compared to the links with power imbalances for the same service require-

ment. This is an expected result as the throughput of the entire system depends on

the effective capacity of the weakest channel, which acts as a bottleneck.
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CHAPTER V

SIMULATION RESULTS AND CONCLUSIONS

In addition to the numerical analysis carried in Chapter IV, we performed a simulation

study for the two-hop system to support the analysis framework developed earlier.

Let us consider a VoIP application where the maximum delay that can be tolerated is

300 ms. We simulate the probability of buffer overflow of the system for multiple QoS

constraint values by specifying different arrival and service rates obtained from the

analytical study as shown in Figure 9. To make a fair comparison, we use the system

parameters of Table I to simulate the buffer overflow probability by allocating fraction

of the bandwidth for both the wireless channels. The results are depicted in Figure 13.

As expected the probability of overflow is almost zero for higher QoS constraints. This
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Fig. 13. Probability of buffer overflow as a function of bandwidth allocation fraction

γ for different values of a, R1 and R2 (symmetric links).

is due to the fact that the buffer never gets filled up given the low rates supported by

the system. For lower constraint values, the simulated system performs better within

the γ-range [0.4 − 0.5], which substantiates the results displayed in Figure 10.
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Simulation scenarios that match the analysis scheme for wireless channels with

imbalanced power constraints are also examined. The results of which are depicted

in Figures 14 & 15. As seen earlier, the system is somewhat robust against spectral
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Fig. 14. Probability of buffer overflow as a function of bandwidth allocation fraction

γ for different values of a, R1 and R2 (P1 > P2).

allocation for all values of θ. When θ has a high value, the rates supported by

the system are so low that the buffers never exceed the threshold that satisfy the

maximum delay allowed. The queues appear to be congested for the maximum time

only when most of the bandwidth is allocated to the channel with higher power.

These simulation results confirm the findings obtained via analytical methods and,

thereby, justifying the cross-layer framework used for analyzing the two-hop system.

A. Conclusions

We investigated the performance of multihop wireless communication systems for

delay-sensitive applications. We introduced decoupling techniques which provide us

simpler ways to handle the tandem queues by studying them independently and yet
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Fig. 15. Probability of buffer overflow as a function of bandwidth allocation fraction

γ for different values of a, R1 and R2 (P1 < P2).

enable us to analyze the overall system performance. The wireless channel was mod-

eled using i.i.d. Rayleigh block fading model to maintain the tractability in analyzing

the system as well as to take advantage of the independence structure of the channel.

The system performance was evaluated using the large deviation principle gov-

erning the probability of buffer overflow, which is given by

− lim
x→∞

log Pr(L > x)

x
= θ.

This QoS metric is related to the concept of effective capacity which is defined as

the maximum constant arrival rate that can be supported under a specific QoS con-

straint. The overall effective capacity for a system with multiple queues in tandem is

dominated by the queue having the least effective capacity. When θ = 0, the effective

capacity approaches the maximum throughput. When the service constraints become

more and more stringent, the effective capacity decays rapidly as a function of θ. Op-

timal code rates also depend heavily on the service requirement of the underlying

application.
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In this work, we studied the behavior of the effective capacity as a function of the

fraction of total spectral bandwidth for a two-hop system with different power con-

straints for various service requirements. Overall performance of the tandem networks

with balanced and imbalanced power requirements on each link were investigated. In

the wideband regime, the effective capacity remains constant for wide range of band-

width allocation fractions under strict QoS constraints. But for lower constraint

values, there is significant difference in the effective capacity as the majority of the

bandwidth is distributed to either of the two links. Overall, the system appears to be

quite robust against spectral allocation schemes. Simulation results for the probabil-

ity of buffer overflow also provide similar inferences and hence substantiate the fact

that an analytic framework rooted in queueing theory may provide good insight for

system design in the context of delay-sensitive communication systems.

Another important result to note is that the effective capacity decays rapidly

as θ becomes large, which suggests that it is very difficult to support delay sensitive

communication over wireless channel in the absence of channel state information.

When channel knowledge is available, sophisticated power allocation schemes can be

employed to dampen the rate of decay of the effective capacity. Our model did not

incorporate these techniques to reduce its complexity in analyzing the performance

of the system.

B. Scope of Future Work

This work can be extended to system with hop-counts greater than two. Different

channel models can also be incorporated to study the effects of queueing behavior on

the allocation of physical resources.
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