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CERTAIN CLASSES OF UNIVALENT

ANALITIC FUNCTIONS

My

§1. Introduction. In the present paper we

shall study the subclasses of starlike, convex,
meromorphically starlike, and meromorphically

vex functions. Our results extend, generalize

and unify the existing results. We base the deove:

opment of our paper on classical methods. In

some 1nstances our results are completely new.

§2. Some classes of univalent funption—

Let m and M be arbitrary fixzed real
satisfy the relation (m,M)c E where

1 .
( i) {((myM): m > 5, |m - 1] < Mg



functions of the form

(2.2) f(z) = z + a z

n

ne~ 8
=S

n=2

regular in the unit disc D = {z||zl < 1} and sat

isfying there the conditions

(2.3) ‘z-f-'—(-?—’_ <M
f(z)
and
(2.4) ‘1 + z fh(z) _ m‘ < M,
£1(z)

o

respectively, for (m,M)e E,"
Further let us denote by I'(m,M) and I(m,M) the
classes of functions of the form
1 [o0]
_ n
(2.5) g(z) = =+ ] b oz ,
n=0
regular in the disc Dy = {z|0 < |z| < 1}, having
a simple pole at the origin, and satisfying the

conditions

' |
(2.6) z E_iﬁl_+ m| < M
g(z)
and
"
(2.7) 1 + z g—ifl-f ml < M,
g'(z)

respectively, for (m,M)€ E. If we take

% For further references and other subsequent infor
mation we refer to f?].
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(2.8) a = . n
M
and
(2.9) p = 221
M

then the conditions (2.3), (2.4), (2.6) and (2.7)

are equivalent to

£f'(2z) 1 + a wq(z)

(2.10) z S VE) . ,
f(z) 1 - b wylz)
(2.11) 14 o £1(2) _ 1+ a wy(z)
£'(z) L - b w2(Z)
(2.12) , 8'(z) 1+ aws(z)
g(z) 1 - b wy(z)
and
(2.13) 4 28"z 1+ awy(z)
g'(z) 1 - b w,(z)

respectively, for some w.(z), j=1,2,3,4, regular
and satisfyingthe conditions |wj(0)|= 0, ]wj(z)l
<1 1in D. In particular, if we choose

o - 2Noo + N N -1

a = b =
N ’ N

and make N » © then (2.10), (2.11), (2.12) and
(2.13), respectively, imply that

{zf'(z)} S &

(2.1y4) Re
f(z)

b
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"
(2:15) Re {1 + 2£2(2) } 5 o

ES )

A}
(2.16) Re {281€2) } ¢ - a,
g(z)
and
"

(2.17) Re {1 + 281(2) 1 o -

g'(z)
where 0 £ o < 1.
B £ ons satisfving (2.14%) 2.15), (2.16) ar

o - ] 14 "

v s

T(myM) and

s¥(a) = s(m,M), K(a) = K(m,M), T*(a)
£¥(a) = Z(m,M), for 0 < a < 1 and M > o,

In 1964, M.S.Robertson [13] proposed the pro-
blem of proving that if f(z)¢€ s*(a) (or K(a))

then

¢ 11 e ydat)e s¥ (@) (or K(a))

O SN

_ z
for ¢ =1 and © = 0.
Subsequently, the problem was solved by Libera
[10], and generalized by Bernardi [u] and by Bajpai

nd Srivastava €2a}. The first author found that

F=)
the above result 1s true for all ¢ > -1 and
- PR | T r-’ = ] p . ~y1 1 ¢ o & 4+
£ a < 1. In |{1] , analogous results for the me-

N

romorphic classes L (a) and T'"(a) are also obtain-

ed. In the present paper, we shall extend the re-
to S{(m,M)}), K(my,M), Z(m,M) and '{m,M)

210



2.2. To prove our theorems we need the fol-

lowing lemma due to I.S. Jack [8].

LEMMA 2.2.1. Suppose that w(z) 44 analytic

fdon |z| € r < 1, w(0) = 0 and Iw(z1)| T max |w(z)!
z|=r

then =z w'(zl) = k W(Zl) whene k > 1.

1

2.3. In this section we shall prove

THEOREM 2.3.1. I{ fe S(m,M) and F(z) 44 de-
fined by

+ 1

C
Z

1-a

1+Db

o

(2.18) F(z) = £ 1ete)ae, o >-

O =N

where a,b are deisined by the formulas (2.8) and
(2,9), and (m,M) c E then FeS(m,M).

Proof. Let us choose a function w(z) regular
in D such that
LE'(z) _ 1ta w(z)
F(z) 1-b w(z)

w(0) = 0 and

From (2.18) we get

f'(z) v E (1-m) + (a+bm) w(z)

f(z) 1 - b w(z)

(2.19)

(a+b) z w'(z)
+ -

{1-bw(z)}{(1+c)+(a-bec)w(z)}

Now suppose that it were possible to have M(r,w)
= max |w(z)| = 1 for some r < 1. At the point

z|=r . =
z, where this occurs we would have Iw(zO)| =1
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(but clearly |w(z)| # 1). Then, by lemma 2.2.1,
there is a point z, such that

(2.20) zo w'(zp) = k wizy), k » 1.

13

From (2.19) and (2.20) we have

f'(z,) _ - N(z,)
f(z,) D{zgs)

(2.21)

where
(2.22) N(zg) = (1-m)(i+c) + [(1+c)(a+bm)+(a-bc)

—(awbc)m*k(a;b)]w(zo)%(a-bc)(a+bm)
-wz(zo)

and

(2.23) D(z,) = (1*0)*(aﬁ2bg~b)w(zo)’b(albc)WQ(zox

If we take

h = (1-m){1+c), & = (1-m)(a-bc)+(1+c)(a+rbm)+k(a+b),
e = (a-bc)(a+bm), j = (a-bc)-b(1l+c) and z = b(a-bc)
then

(2.24) N(zy,) = h+d w(z,) + e w2(z°)

and

(2.25) D(z,) = (1+c)+f wlzg)-z w (z,).

Now, using |w(z,)| = 1, we have

(h2+d2+e2)+2(e+h)dRe{w(zo)}

(2.26) IN(zo)|2

+ 2 eh Re{wz(zo)}

212



and
(2.27) |D(zo)|2 = (1+c)2+j2+z2+2(1+c—z)§Re{w(zo)}

+ 2 z(1+c) Re{w2(zo)}.

Also
2. .9 2
(2.28) |N(zo)|“-M7|D(z,)]" = A+2B Re{w(z,)}
+ 2CRe{w2(zo)}
where

A = (h2+d2+e2)—M2{(1+c)2+j2+z2}
= k(a+b)[k(a+b)+2M(1+c)-2Mbia-bc)]
B = (e+h)d-M2j(1+c-z) = Mk(a+b){(a-bc)-b(1+c)}
and
2
C = eh + M z(1+c)

= (1-m)(1+c)(a-bc)(a+bm)+M?b(a-be)(1+c) = 0.

Since C = 0, from (2.28) it 1is clear that

(2.29) |N(zg)]|? - M2|D(z)]% % o,

provided A + 2B > 0.

Now
k(a+b) [k(a+b)+2M(1+c)
- 2Mb(a-bc)+2M(a-bc)-2Mb(1+c)] 2 0.

A + 2B

A - 2B = k(a+b)[k(a+b)+2M(1+c)
- 2Mb(a-bc)-2M(a-bc)+2Mb(1+c)] > 0.

Thus we have proved (2.29) which along with (2.21)

gives zo £'(20) 1

£(zo) ’

M.
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But this is a contradiction to the fact that

fe S(my,M). So we can not have M(r,w) = 1. Since
this is true for every r < 1 and since M(0,w)=0
it is clear that we must have M(r,w) < 1 and so

[w(z)| < 1 for |z| < 1. Therefore, Fe S(m,M). ®

COROLLARY 2.3.1. T4 fe X(m,M) and F L4 defined
by (2.18) then Fe K(m,H), provided ¢ > (1-a)/(1+b).

Proof: We can write (2.18) in the form

Czl “t¢71 ¢ gr(t)ac.
VA

z F'(z) =

O =

Since f€ K(m,M) it is easy to see that zf'(z)
€ S(m,M). Therefore, by Theorem 2.3.1 we get

zF'(z)€ S(m,M), which implies F(z)€ K(m,M). ®

Remark 1. In theorem 2.3.1, if we put m = M

and m > © then the results of Bernardi in [u] fol

low. If s A
- o-2aN+N ) N = N - 1 and N B @
N N

then the results of Bajpai in [2] follow. Finally,

if m =M, ¢ =1 and m » ® then the results of

Libera in [10] follow.

THEOREM 2.3.2. I{ feS'(a), ge S(m,M) and

F(z) 44 degined by
VA

(2.22) F(z) = &2 [ +%71 (1) gle) at, e > 0
Z (o]

then Fes(a) 4§ 0< a<1andmand M satisfy



n > be+3+50 s lm"ll < M

b(c+l+a)

Im-1] < M ¢ m-1 + L =%}

2(c+1+a)

_ f(z) g(z).

Remark 2. Let us take G(z) Then
_— z
(2.22) reduces to
c+2rzc

F(z) t~ G(t)dt, c >0

T e+l !/
z o

Bernardi [4] proved that F(z)¢ s*(0) if G(z)¢ S*(G).
If we take f{(z) and g(z) such that

, £'(z) _ 1-z and 2 g'(z) _ 1 - z
f(z) 1+z g(z) 2(c+1)

then f£e€ S¥(0), g(z)e€ S(1,1/2(c+1))

And _G'(z) | 2(c+1) - (2¢+3) z - z°

G(z) 2(c+1)(1+2)

5 . : s
If we take z real between (/hc§+20c+17 - (2c+3))/2

and 1 then it is easily seen that Re{zG'(z)/G(z)}<0
and so G(z)¢ s*(0). But by theorem 2.3.2 we have
F(z) € $¥(a).

Following the lines of the procof of theorem

2.3.1 we also have:

THEOREM 2.3.3. Let fe I'(m,M) and F(z) be de-
f4ined by

¥4
(2.23) Flz) = ——— [ t°% £(t) dt.
o

c+1l
z
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Then FeT'(m,M) L4 c > max {a+b , 1}

COROLLARY 2.3.2. I§ feZI(m,M) and F(z) 44
defined by (2.23) then Fe I(m,M), provided
c » max {%;% , 1}

Proof. We can write (2.23) as

Z
z F'(z) = —— [ %, t £'(¢) dt.
Z +1 o

Since fe Z(m,M) we have zf'(z)e€ Z(m,M) and hence
from theorem 2.3.3 we get zF'(z)e L(m,M). So

F(z) ¢ (my,M). ®

Remark 3. If we take m = M and m * © then
the results of Bajpai in [2] follow from theorem

2.3.3.

An analogue of Theorem 2.3.2 for meromorphic

functions is the following.

THEOREM 2.3.4. Let fel (o), geTl(m,M) and
Let F(z) be defined by

Z
(2.24) F(z) = cil J t°*le(e) g(e) at, c % 1,
o

Then TFe F*(a), provided m and M satisfy

y 8er30158) | fpg) < w g (mo1) + 220
4(c+l-a) 2l edhens)

Remark 4. Let us take G(z) = z £(z) g(z). Then
(2.24) reduces to
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Z
F(z) = —= [ t%(t)at, c
Z (o]

"4

1.

Bajpai [1] has proved that Fe I'*(0) if G(z)(F'*(o).
If we take f(z) and g(z) such that

1
£102) o 1-z o, 8@ . .z
f(z) 1+z g(z) 2(e%1 )

then f£(z)e I' (0) and g(z)e T(m,M) for m = 1

5 g c 20" (z)_ 2(c+1)-(2 23
and M = . But z z)_  2(ct c+3)z-2
2(C+1; G(Z) 2(c+1)z

If we take 2z real and between (Vuc? + 20c + 17

- (2¢+3))/2 and 1 then it is easily seen that
G'(z) ;% .
> - , -
Re{z —ETET} 0 and so %G(z)¢ I'"(0). But by the
orem 2.3.4 we have Fel"(a).
We have omitted the proofs of theorems 2.32,
2.33, and 2.34 since they all follow the same

lines of the proof. of Theorem 2.3.1.

§3 A subordination to a certain class of ana-

lytic functions. 3.1. It is well known that con-

vex functions are starlike with respect to the or-
igin. In 1933 A. Marx [12] and E. Strohacker [1&?
proved that 1f f(z)e K(0) then f(z)e S*(B) where
B > %. This result is sharp as can be seen from

the function =z/(1-z). In 1971, I.S. Jack [8] ge

neralized this result and proved the following

THEOREM A. (Jack) 14 f(z)e X(a) then f(z)
€ s*(B(a)) whene

(20-1)- Yo -ta+ta’

m

(3.1) B(a) >

N
=
~3



But this bound for B(a) is not sharp. Jack [8]

conjectured that

(1—20.) v 1
Ji-a, ,20-1, if o ? %
(3.2) B(a) =
. if a = %
log U4

Recently T.H. MacGregor [11] has settled this con

jecture. MacGregor's proof is very nice and inde
pendent of any classical result. His result is as
follows.

THEOREM B (MacGregor) I§ {8 convex o4 ornden
£* (=)

a, i.e. fekK(a), then =z TN <<J(z), - P
z 5—;—% is subondinate to J(z), whenre
(1—z);f?-a)zif(1—z)2a-1} ik
(3.3) J(z) =
- = ifa=5%

(1-z)log(1-2)

In this section we have proved a similar re-
sult for the classes S(m,M) and K(m,M) defined in
section 2. In proving our results we follow pro-

cedures developed by MacGregor.

3.2. We need the following lemmas for the

proof of our theorem.

LEMMA 3.2.1 Suppose that the function T and
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S are analytic 4n D, T(O0) = 0 = S(0), and S maps
D onto a (possibly many sheeted) negion which 4
stanlike with nrespect to the orndigin. 14§

(3.4) Re {ZLLEL} > 6 for |z| < 1
S'(z)

then

(8.5) ﬁe{T(Z)} > 6 for |z| < 1,
S(z)

and 44

(3.6) Re {I42)} ¢ 5 for |z] < 1
S'(z)

then

(Bid) Re {2LE1} < 6 for |z| < 1.
s(z)

The first half of the lemma can be found in
[10], and for § = 0 1in [4] . It appears complete
in [11].

(=

LEMMA 3.2.2°%%) 14 we define G(z) in D as

pollows, fon a # b
az(l-bz)-(a+b/b)

(3.8) G(z) = , G6(0) =1
(1-bz)~3/P_4

then 6(z) 44 unsvalent 4in D.

Proof: 1f we write

(1-bz) 2
a

/b

(3.9) F(z) =

(%)

G(z) is defined by its limiting values a a =
and b = 0.

0

219



then, by logarithmic differentiation we get

; -(a+b)/b
(3.10) , F'(z) _ az(1-bz) -
F(z) (1-bz) "2 1
From (3.8) we have
(3.11) G(z) = z F'(z)
F(z)
Let us rewrite G(z) as
(3.12) 6(z) = —=a/b |
1+G, (z)
1
where
(a+b)/b
(3.13) G,(z) = (3=bz) =

b z

Rewrite Gl(Z) in terms of G2(z) so that

_ atb _ a(a+b) (2
(3.18)  6,(z) = Gy(z) + == = =—— £ Gy(t)dt

where

1_(l_bz)((a+b)/b)—1

(3.15) G3(z)
a

Differentiating G3(z) and then differentiating lo-

garithmically and taking the real parts in both

sides, we have

G"3(z) }oe (l—alzl);l—blzl) s 0.
G'a(Z) ll-bZI

(3.16) Re {1+z

Since GB(O) = 0 and G'3(O) =1, G3(z) is univa-
lent and convex. Using Corollary 2.31 we observe
that G2(z) is convex univalent (of course not nor-

malized). This is turn implies that G(z) is uni-
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valent.

univalence of GQ(z)

be established in the following

we find that

and hence of

As a remark we point out here that the

G(z)
As in (3.16),

can alsco

way .

; a-b2 if a > b
A1 !
(3.17) |1+z E_éiil o 1—ag < f 1-b
'I G'4(z) 1-b \ -
5 if a < b
. 1~-b
This implies that
(3.18) 6,(2) € k (22b | lazel,
1-b i-b

Then by theorem (2.3.1) it

follows that

(3.19) G,(z) € X (1-ag , Ia’b%)
1-b 1-b
where
5 z
(3.20) G, (z) = = [ 6,(t) dt.
y z 3
(a+b)Gy(2z) ) ‘
Since G,(z) = , G.(z) is univalent
2 2b 2

and so G(z) is univalent. But (3.19) is a strong

er conclusion than (3.16).

LEMMA 3.2.3: 14 F(z) 44 def<ined by (3.9) and

a < b then
-a/b r \ -a/b
= E 1~-b -1
(3.21) 1-(1+br) < Rl (z‘} < ( r)
ar z a r
provided b2 < a when a+b > 1.
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Proof: Let 1z = r ele and 1-bz = Relcb° Then

R'a/br cos(%¢*6)—v cos
a r2

i

(3.22) Re {Eﬁil}
Z

P(r,0)

11

where R = (1 - 2brcosefb2r2)% and tanf =

br sin 6

b eos D Therefore,

dR _ br sinb
(3.23) 30 " R
and
(3.24) dé _ br(br-cosH)
de 2
R
Since (1-bz) = Rele and Re(1-bz) > 0, then ¢ = O

m. From (3.22), we have

if 8 =0 or ©

(3.25) 3(r,8) . {-ar r-(at+2b)/b cos(%¢+6)
26
_ R-a/bsin(%d”e)x(ar(br;cose)+ 1)
R
. 2
+ sinB} /ar
Define Gl(r) by
(3.26) 82P(r,6)l _ 64(0)
962 =0 ar
Differentiating Gl(r) we get
-(a+3b)/2

(3.27) 6'y(r) = -~a(a+b)r(1-br) {1+(a+b)r}.

If a > 0 then G'l(r) < 0. Hence Gl(r) is a

decreasing function of r so Gl(r) < G1(0) =" 4f,
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In this case BQP(P,B)
562 8=0

Similarly, 1f a < 0 then Gl(r) is an increasing
function of r, so Gl(r) > Gl(O) = 0. In this
case we obtain the same inequality. This implies

that Re{EéEl} is maximum if O = 0., Define G2(r)

by
2 Go(r)
(3.28) 3_21%&22_ =227 .
96 6=m ar

Differentiating G2(r) with respect to r we have
(3.29) G',(r) = ~aa+b)r(14br) " 33PN /Pry (aupyr)

Now two cases arise.

Case 1. a+b ¢« 1. In this case {1-(a+b)r} > 0.

So G'2(r) <0 if a > 0, and G'Q(r) > 0 if

a < 0, In the first case Gz(r) is a decreasing
function or r so G2(r) < GQ(O) = 0 and so
82P(r,6) > 0
362  |e=m

If a < 0, G2(r) is an increasing function of r

so G2(r) > GQ(O) = 0 and the same inequality is
F(z)
z

}is minimum

obtanined. This implies that Ref{
for 6 = m .

Case 2. a+b > 1. In this case 0 < 1/(a+b) (1
and a and b are positive. So we have G2(r)

< max {6,(0), G2(1)}0 Now

6,(1) = Qa,b)=1-(1+5) " (ATZPI/BD)((4404p)2 4
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A

G,(0) =0

if

(14)2(14b)2/P ¢ (1+a+p)? - a .

But the above inequality is satisfied if

a/b

(14b)2(14D) < (1+b)2(1¢a) € (1+ath)*-a

or if b® £ a since a > 0.

But b° < a 1is equivalent to the inequality

2
M - m™" M+ mM - m + 2m - 1 > 0O,
The above inequality is always satisfied if 1/2

< b & ((MZ+UM)1/2—M)/2, Hence, we find that
G,(r) € 0 and so 3°P(r,8)/38°|,_ > 0 , implying

that the minimun of Re(F(z)/z) 1is attained at

@ = v . This completes the proof of the lemma. ®
LEMMA 3.2.4. 1§ H(z) = ;oo , a < b, and G(z)

448 degined by (3.8) Zhen

(3.30) Hy(z) = k H(z) + (1-k) G(z)

. . ; . 2
{4 undivalent 4Ln fon k > 1, provided Db < a

whenevern a+b > 1.

Proof: We begin by showing

Gt (z)
(3.31) Re {“I_'{’T"(";‘)'} < 1 for z€ D.
We see that
, . ) a(1~bz)_(a+2b)/b{(1-bz)_a/b~(1+az)}
(3.32) G'(z) = 2 s
-a/b v 2

{(1-bz) - 11!
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and
(3.33) H'(z) = -—523L75 .
(1-bz)

From (3.32) and (3.33) we get

A G'(z) _ 1 T(z)
(3-3) F@y T - 3 sy

where
(3.35)  T(z) = a(1-bz) 2/P{14az-(1-bz)~2/D}
and
2
(3.36) S(z) = SI(Z)
with

(3.37) s,(z) = (1-bz) 2/P_4

It is easy to see that Sl(z)/a(K(m,M) and hence
belongs to S(m,M), so S(z) 1is bivalent and sat

isfies the condition

S'(z)
(3c38) Z-S—(;-')——— 2m < 2M.
We have
T'(z) _ (a-b)z
(3.39) S'(z) ~ 2F(z)

where F(z) 1is given by (3.9).
Now by using the result (3.21) in Lemma 3.2.3, we

get in D

T'(z)y.a-b a : A
(3.40) Ref } 3o, - a; 4if a < b,
S'(z) 2 1_(1+b)-a/b

From Lemma 3.2.1 and (3.40) we get
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T(z) a s
(3.41) Re{_T-T >2 1-(1+b)"a/b - a, if a<b.

From (3.34) and (3.41) we have

(3.42) Re {G (z)y¢- §-b. 2 - a}
H (2) a+b 2 1_(1+b)—a/b
a_ a(a - b) , if a<b.
atb 5 (a4+p){1-(14b)"2/P}

To prove (3.31) it is sufficient to prove that

(3.43) _ a(a - b) < b
2{1-(1+b)~2/P}

Since we are considering the case b > a and we
know that (a+b) > 0, b is always positive but a

may be either positive or negative. If a > 0o,

{1—(1+b)-a/b} > 0. If a < 0, then {1—(1+b)-a/b}

< 0 ; therefore, (3.43) is equivalent to

(3.44) ’a2-ab+2b-2b(1+b)3/P5>0 , if 0 <a < b

and
(3.45) a2-ab+213—2b(1+b)_a/b < 0, 1if a < b and
a < 0
Let us write
-a/b

(3.46) A(a,b) = a2—ab+2b—2b(1+b)

Differentiating A(a,b) with respect to a, we have,

-a/b

(3.47) BA(a;Ql = 2a-b+2(1+b) log(1i+b)
and

2 ,
(3.48) §~££%L£l = % {b—(1+b)-a/blog2(1+b)}

(=]
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> {b-1og(1+b)}

"

(o IN)

2 :

Also we have

2log(1+b) _ V(b)

(3.49) Uu'(b) = 1 - =
1+b 1+b
and
(3.50) ‘'V'(b) = 1 - -2—.= _1-b < 0
1+b 1+b

Thus it follows that V(b) is a decreasing function
of b and
V(b) > V(1) = 2(1-1lo0g 2) > 0.

Thus U'(b) > 0. Hence U(b) is an increasin func-
tion of a for all fixed b. But
(3.51) 2Ala,b) ¢ BA(a’b)l _ = - b+2log(1+b) = T(b).
a=o
da da
Clearly T'(b) > 0 and so T(b) > T(0) = 0. Thus
3&&%;21 > 0. Hence A(a,b) is an increasing func-

tion of a and A(a,b) » A(O0O,b) = 0. Thus (3.u44)
is proved.

The situation in case a < 0 and a < b 1is
dA(a,b)

slightly different. Since neither —3%— nor
ééi%igl is a purely increasingor decreasing func-
tion, we shall determine the sign »>f the second de
rivative. From (3.48) we have

BQA(a b) 2 Do ~
(3.52) ——=—— % 5 {b-(1+b) log (1+b)} = B(b).

3 a

Now,

B'(b) = —% log(1+b) {2b-log(1+b)}
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= - 2_10g(1+4b) U, (b).
b2 1

This implies that Ul(b) is an increasing function
of b and U,(b) > U,(0) = 0. Hence B'(b) < 0.
Thus B(b) » B(1) = 2(1-2)log?2) » 0. Therefore,
the second derivative of A(a,b) is positive. Now
a+b > 0 and we are considering a < b, a < 0, so
0 >a » -b and A(O0,b) = 0 = A(-b,b). Hence, by
Roll's theorem, it follows that A(a,b) 1is posi-
tive in -b < a < 0. This completes the proof of
the fact that

Re {Eliil} < 1 in D.
H'(z)

New we show that Hk is univalent. Clearly the

facts that H(z) = 1+(a+b)N(z) and N(z) is convex,
imply that H is convex in D. Since H is convex
and (3.31) is satisfied in the case a < b, 1t fol-

lows from the argument of Pommerenke that

G(zp)-G(zq)
1 for z ¢'D.
H(ZQ)—H(Zl) 1’

(8:53) Re { z

2

Let us assume Hk(Z) is not univalent. Then, we
must have Hk(zl) = Hk(ZQ) for some distinct z4 and

z, in D. This implies that

G(z,) - 6(z,)
2 2 ’
(3.54) (7, = H(z,) } o= — 1.

But (3.54) contradicts (3.53). Hence, Hk(z) must
be univalent. This completes the proof of the lem

ma - 4

[ R e
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LEMMA 3.2.5. H(z)<<Hk(z) in D, undern the con-
dition of Lemma 3.2.u4.

Proof. Since Hk is univalent by lemma 3.2.u4
and H(0) = Hk(O), the subordination follows if
H(D) < H, (D). Clearly, H maps D onto the circle

|w-m| < M. Also if =z = ele, we obtain
i@
(3.55) jwem| = | 12 n| = om.
1-b e

Hence, H maps the boundary of D onto the boundary
of the circle |w-m| < M. Thus, the lemma will be

proved if we show that points in the boundary of Ek.

satisfy

(3.56) |w-m| > M.

Suppose |z1| =1, wy = lim H(z), w, = lim G(z).
z>2, 2>z,

Now we want to prove that

(3.57) |k w, + (1-K)w, - m| > ¥

1
which will be satisfied if

(3.58) |x|[wy-m]| - |1-k||w,-m| > M.

Using (3.55) in (3.58), we see that (3.57) is sa-
tisfied if
kM - |1-k||w,-m| > M.

Thus the inequality follows if le-ml < M. Howev-

er, this is obviously true from Corollary 2.3.1.

Hence, the lemma is proved. ®

3.3 1In this section we shall prove the fol-
229



lowing theorem.

THEOREM 3.3.1. I§ fekK(m,M) and G 44 definedby

§E;§)<<G(z) in D fon b - a, provided

b2 < a 4f a+b > 1.

(3.8) Zzhen

Proof. We shall follow the lines of the proof
developed by T.H.MacGregor [11]° If we write
[e] e o] n

f(z) = z + a z% and F(z) = z + L A_ z
n§2 n n=2 D ?

where F(z) is define by (3.9) and fe K(m,M), then
A2 = atb, and [a2| < A2c Further, |a2| = A2
if and only if

(3.59) f(z) = ; i1y eiM2)"2/P4} |, n real.

This result is due to Z.J.Jakubowski [7]0 Now if

]
g(z) = z 5?%2% and G(z) is defined by (3.9), and

further, if we write

e o]
(3.60) g(z) = 1 + z b z"
n
n=1
and
(e}
(3.61) G(z) =1+ )| B_z",
n
n=1
then |b1| < By is equivalent to |a2| < Ay Since
b1 = a, and B, = A2 » 1t follows that |b1| < B1
is equivalent to |a2| < A2a Also |b1| = B4 only
if g(z) = G(elnz), where n is real. As
(3.62) G(e*"z)<< G(2)

for n real, we continue the argument by assuming
|bll < B,. If we set A, = {z: |z| < r} (obvious-

ly Al = D) then |b1| < B implies that g(AP)

1
o G(Ar) for sufficiently small values of r.
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This subordination implies that there exists

(3.63) w(z) = 671 (g(z)) ,
analytic for |z| < r, satisfying w(0) = 0 and
(3.64) lw(z)| < r

for sufficiently small values of r.

Let 5 = Sup{r: 0 < r < 1, w is analytic for
|z] < r, and satisfies (3.64) for |z| < r}. Ve
need only to show that p = 1. On contrary let us
assume O < p < 1. Then w(z) is analytic for
lzl < p and |w(z)| < p for |z|] < p . We first
show that w(z) is analytic for |z| € p . We know

that g<<G in Ap and thus

(3.65) g(Ap)C;G(Ap),

Since G(Kp)C:G(Al) it follows that g(Ap+€)CG(A1)
for all sufficiently small values of € > 0. There
fore, because G 1is univalent in Al’ equation

(3.63) defines w as an analytic function on Ap+€.
Since w is analytic for |z| < p, the definition
of p implies that there is a number z4 such that
|21| = p and |w(zl)| = p . Then by Jack's lemma

2.2.1 there exists a real number k such that

(3.66) z w'(zl) = k W(Zl) for some z, and k > 1.

1

. -
Since h<<H, where H is defined by H(z) = 5o and

(3.67) h(z) = 1 + z 27%5%

in D, we may write h(z) = H(#(z)) where d(z) 1is
analytic in D, !¢(z)| <1 and ¢(0) = 0. Writing
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in terms of g, we may express h(z) = H(¢(z)) in
the form

(3.68) 2 %%%;l £'g(z) = H($CZ))

Equation (3.63) implies that g(z) = G(w(z)) and

g'(z) = G'(w(z)) w'(z). If we use these relations
at z = Zys then, we have
(3.68) kw(z1) 6'(w(z3)) | gu(z,)) = H(d(z ).

G(W(Zi))

|
Since H(z) = z GGE:; + G(z), equation (3.69) is

the same as

(3.70) Hk(W(zl)) = H(¢(zl)),

where Hk(z) is defined in (3.34). Because of lemma

3.2.4, Y = H;l(H(¢)) is analytic in D, |v(z)]|< 1
and Y(0) = 0 . Equation (3.70) implies that
(3.71) Hk(W(zl)) = Hk(w(zl))a

Since H is univalent in D, W(Zi) and ¢(21) are

equal. In particular it follows that Iw(zl)l =
Iw(zl)l = p = Izilo Equality in Schwarz's lemma

is possible only if yY(z) = z ela, § real. Thus
we have H_(§) = k H(P+(1-k) G(¥) = k H(z e*®)
+ (1-k) G(z elé)c

; id ;

Also i8_ =1+ (atb)z &0 + ...

and

G(e' z) =1 + (b-1)z ei‘S oo
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Hence,

§
H (9)

1+{k(a+b)+(1-k) (b-1)}z ei oo o

. 2
Now, if ¢(z) cqz + Coz ... then by comparing

coefficients in V¥ = Hii(H(¢)) we obtain

(atb)e, = [(b-1) + (1-a)k] eid.
h . ' (a+b)c e'i6+(1-b)
This equation gives k = 1 .
1 + a
But k > 1, therefore, we must have cle_i6 > 1.
For the bounded function ¢(z) we know |cq| € 1.
Hence |c1| =1 or c¢ = eis, h(z) = H(eiaz)° This
yields for all real §, |b| = B,. This is a contra
diction. Hence, we must have p = 1, which proves

the theorem. ®

If f(z) is in K(m,M) then from theorem 3.3.1
we have f(D)C G(D). Hence we get the following

results as corollaries.

COROLLARY 3.3.1 I4§ f£(z) belongs to K(m,M) and

b > a zthen
a < If'(z)

(1*br){(1+br)a/b—1} N f(z)

a
(1-br){1-(1-br)

<

a/b}
provided b2 < a when atb > 1.

COROLLARY 3.3.2 I§ f(z) befongs to K(m,M) and
b > a then £(z) befongs to S(m',M') whenre

= a
+
[(1-b){1-(1-b)a/b} (1+5){(1+)3/P-1}

N =

m' =

and
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a _ a ]’
(1-b){1-(1-b)2"P} (1+b){ (1+b)3/P-1}

M' = % [

provided b2 < a i§ a+b > 1.

§4, On radius gi starlikeness gi some classes

of functions. 4.1. We need the following lemma.

LEMMA 4.1.1. 1If§ g(z)ecK(a) Zzhen

(4.1) |E§LL51|$ B(q, r), where
g(z)
: 2(a-1)r 1
, a7 L
; (1'”)2(1-a){1'(1'le)za-l} 2
B(a,r) =i , .
| » a = 5

1(1-r) log (1-r)

Proof. We have stated a result of T.H. MacGre-
; . . . zg'(z)
gor in Section 3 as theorem D, which gives 2z
<<J(z) where J(z) is given by (3.3). Hence
zg'(z)
(4.2) |==—==Z| < |J(z)| € B(a,r). W
g(z)

4.2. In this section we prove the following

theorem.

THEOREM 4.2.1 Let Fe€S(m,M) and F(z) be de-
gined by (2.18) and r(a,b) be the unique positive
necot of the equation

(4.3) (a+2b+d)—2(ad+bd+b+d)r—{2(b2—d2)+(a+d)

234



2
+2b(1-a%)-d(ad+b?)}r2-2d{(a+b)+b(b+d)r°}
—d(ad+2bd+b2) ru = 0.

Then, f(z) {4 starlike of ornder B forn |z| < r,,
whene r, 48 the smallest pcsitive root o4 the equa
tion

(4.4) (1-B)-{B(b+d)+a+b+2d}r + d(a+b8)r2 = 0

Lf ro < r(a-b), otherwise r, 44 the smallest posi-
tive noot of the equation

fu.5) (E-1+bd)-(1+bd)x + V(1-d){(1-d)+(1+dx}

. /T21+2a+ub-b2)+(1+b2)x}

= 0
whene
1+r2
(4.6) x = 5> E = -3(b+d)+2d-(a+b),
l1-r
and .
g4 = a-be
c+l

This nesult is shanp.

Proof. Since Fe S(m,M) there exists a regular

0, |w(z)| <1 and

function w(z) with w(0)

(4.7) zF'(z) _ 1 + a w(z)

F(z) 1 - b w(z)

From (4.7) and (2.18) we get

-b
(4.8) £(z) _ 1t oo v(2) 1+ du(z)
F(z) 1 - bw(z) 1 - bw(z)
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Differentiating (4.8) logarithmically with respect

to z and using (4.7), we get,

(u.9)  re(Z{E) - B} >- 8 + Re(FIENED

w(z)
+ (b+d) Re {(1_bw(z))(1+dw(z))}

(b+d) (r2-]w(z)]|?)
(1-r2)\1-bw(z)||1+dw(zﬂ

Here we have used the well know inequality

r2-|w(z)[2 .

1 - r2

[zw'(z) - w(z)]| <

If we take

(4.10) p(z) = %’:—gﬁ(—?y

it is easy to see that

(4.11) [p(z) - A| ¢ B
where

1+dbr2
(4.12) h & ==y

1-br
and

_ (b+d)r

(4.13) B = e i}

1-br

Substituting value of w(z) from (4.10) in (4.9)
we get

zf'(z) 1 1
(4.14) Re {-'i?z—z—)'— - B} > 5% [E-d Re {I)—(—i—)—}

+ (a+2b) Re {p(z)}
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_ r2]bp(z)+d[2 - |p(z) - 1[2 ].
(1-r°) |p(2)]

If we take p(z) = A + u + iv, |p(z)|] = R, and use
(4.12) and (4.13) in (4.14), we get

(4.15) R {5£T£§) R}

2
1 d(A+u) B -u -v
)m[f.‘-— —?——+(a+2b)(A+u)— X

1-b%r2, _ 1 Bl )
2 4 % bra -4V
1-r

Differentiating P(u,v) partially with respect to v

we get
2 2 2 2.2
BP(s,v) - %[d2(A+u)+{2+ B -u"-v }(1-b r )].

R3 R 1-p?

(4.16)

If d >0, the uantity in the square bracket is posi-
tive. If d < 0 we see that

2

2 2
1-b ; + d(A;u) 51+ d(1+br) 5

1-r R (1-dr)2

\
o

and therefore the quantity in the square bracket
9P(u,v)

in (4.16) is positive. So —J— >0 if v > 0,
and éf%%;ll < 0 if v < 0. Therefore,
d
(4.17) min P(u,v) = P(u,0) = E~§+(a+2b)R -
v
2 2 . 2.2
_ B2-(R-A)° (1-b ) = B(R)
R 1-r

where R = A + u.

P'(R) is an increasing function of R and
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P'(R,) = 0 where

(1-d)(1+dr?) |%
(a+2b+1)-(a+2b+b2)p>

(4.18) R, =

Again we see that P'(A+B) > 0, therefore R,< A+B.
Since P'(R) is an increasing function of R and

A-B £ R £ A+B we have

(4.19) min P(R) = ¢
R i

(b+d) | (1-8)-{B(b-d)+a+b+2d}r+d(a+bB)r’|
(1 - dr) (1 + br)

if R, € A-B

" (E-1+bd)-(1+bd)x
+ J(1-d){(1-d)+(1+d)x}{(1+2a+u4b+b?)+(1-b?)x}

if R, > A-B
where x = (1+r2)/(1-r2)°
Let us take
§ 2 2 _ ,1-dr,2
(4.20) Q(r) = (A-B)" - Ry = (1+br)

(1-4) (1+dr2)
(a+2b+1)-(a+2b+b2)r2

Then Q(r) is a decreasingfunction of r and

(a+b)+(b+d) _ 2(1-d)(b+d)
A o) 135)2% UV - mmaaen Y v

Q(o)

Therefore Q(r) has unique root in (0,1), call it
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r(a,b). Hence if < r(a,b), Q(r) > 0, i.e.
A-B > R,, and if > r(a,b), Q(r) < 0, i.e
A-B £ R,. So from (4.19) and (4.20) the result

follows. ®

r
r

The equatily in (4.4) is attained for the func

)'(a+b)/b, and that in (4.5)

z2)-(a+b)/21:

tion F(z) = z(1-bz
for the function F(z) = z(1-2k bz+b2
where k 1is given by

1+k(a-b)r-br® _  (1-d) (1+dr®) %

1—2kbr+b2r2 (a+2b+1)—(a+2b+b2)r2

Similarly, by using the method of Theorem 4.2.1,

the following theorems follow.

THEOREM 4.2.2. 14 f(z) 44 regular 4in D and sail
isfies (2.22) where Fe S (8) and ge S(m,M) then
f(z) 44 univalent and starlike of ornder B 4n
|z| < ry , where 1r, 44 the smallest positive
noot o4 the equation.

(1-B)(c+2)-{(c+2)(a+2b-bB)+2(1-B)(2-B)}r
+ {2b(1-B)(2-B)-(1-B)(c+2B)
~2(c+1+8) (a+b)} r2-(c+28)(a+bf)r’
= 0,

This nesult +4 shanp.

THEOREM 4.2.3. 14 f(z) 44 negufar «n D and
satisfies (2.22) where Fe S (B) and gekK(a) ,
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then £(z) 44 stanlike of onder B for |z]| < r4
whene r, 44 the smallest positive hool the equa-

tion
(c+2)(2-8)+2{ (c+B+1)-(1-8) (2-B) }r+B(c+2B)r>

-(14r){(c+2)+(c+2B)r}B(a,r) = O

whene
(20-1)r 1
a # =
| (1-r)201-%) (4 _(1-p)2%-1 2
B(a,r) = <.
| r Y
. (1-r) log(il-r) 2 o 2

This nesult s shanp.

THEOREM 4.2.4. 14 f(z) 44 negulan 4in D and
satisfies (2.22) whenre F€;S*(B) and g(z)/z € P(a)
then £(z) 44 univalent and starlike of order B 4n
|z| < r,, where r, 44 the smallest positive root

0of the equation
(c+2)(1-B)-2{(c+2)(1-aB)+(1-B)(2-B)}r
—2{c(3-4a-8+a8)+(3+28—8a+6a8-82-2a82)}r2
+2{(c+28) (2a-aB-1)-(2a-1) (1-B)(2-8)}r°

- (20-1)(1-8)(c+2B)r" = O.

The nesult 44 shanrp.

THEOREM 4.2.5. Let FeT(m,M) and £(z) be de-
g4ined by (2.23) and r(a,b) be the unique positfive
root of the equation
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(a+d)+2{d(a+b)-(d-b)}r+{2(b2-d%)=(a+d)
+ d(ad+b2)}r2_2d{(a+b)+b(d—b)}r3
- d(ad+b2)r4 = 0

and d < 0. Then £(z) 44 meromorphic starlike o4
onder B for |z| < r,, where r, 48 the smallest pos
itive noot of the equation

(1-B)+{(a+b+2d)-(b+d)B}r+(ab+bd+d’-bdB)r’ = 0

L4 0 < r, < r(a,b), and that of the equation

(E-1+bd)-(1+bd)x

+ Y(1+d){(1+d)+(1-d)x}{(1-2a+b2)+{1-b2)x} = 0

if r(a,b) € vy where x = (1+r2)/(1-v2) , E = (a-b)
-(d-b)B and d = (at+b+c)/c.

Equality is attained for the functions

(1+bz)(a*b)/b

Z

F(z)

1+k 1-k1{a+b)/2b

(1+bz)
z

[(1-b2)

F(z)

where k 1is determined from

1-k(a+b)z+abz2 _ (1+4d) (1—dr2) 5

1-b222 (1—a)+(a-b2)r2

The above sequence ©of theorems contains the

results of [2(b)], [3], [5], [9] and makes use

of a result given in [6]0
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