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CERTAIN CLASSES OF UNIVALENT

ANALITIC FUNCTIONS

by

S.K. BAJPAI and S.P. OW VEOI

§ 1. I ntroduct ion. In the present paper we
shall study the subclasses of starlike, convex,
meromorphically starlike, and meromorphically CO~

vex functionso Our results extend, generalize
and unify the existing results. He base the deve I
opment of our paper on classical methods. In
some instances our results are completely new.

§2. Some classes of univalent func i n~ .
Let m and r .l.. e arbitrary f i z e d real n um l ',;::' '.' ;0. ~.

\ , ~ • ~ l

satisfy the tat ion ( I) M C E It.1here

( . 1)
1

E ~ {{n,M): m > §- [m - 11 <

Let us den I t e by S (m # t~) and (m , 1) tee 1ass o :-
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functions of the form
00

( 2 • 2 ) fez) = z + L
n=2

regular in the unit disc D = {zllzl < 1} and sat
isfying there the conditions

( 2 .3) lz
f' (z )

- ml < M
fez)

and

( 2 .4 )
1
1 +

f"(z)
- r.ni < Mz ,

f' (z ) :-....

:':
respectively, for (m,M)~ E.

Further let us denote by f(m,M) and E(m,M) the
classes of functions of the form

00

1
g Iz ) = - +z L

n=O
b

n
nz

regular in the disc Do:: {zl 0 < I z I < 1}, having
a simple pole at the origin, and satisfying the
conditions

I g' ( z )

IZ g(z)
+ m < M

and

1 + g"(z) Iz + m,
g' ( z )

< M ,

respectively, for (m,M)c Eo If we take

* For further references and other subsequent infor
mation we refer to [7J.
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( 2 • 8 )

and

( 2 • 9 )

+ m
a =

M

b = m - 1

M

then the conditions (2.3), (2.4), (2.6) and (2.7)
are equivalent to

(2.10)

(2.11)

(2.12)

and

(2.13)

f'(z) 1 + a w1{z)z =
f( z ) 1 - b w1{z)

1 f"{z) 1 + a w2{z)
+ z =

f' (z) 1 - b w2{z)

s ' (z) 1 + a w3{z)z = -
g{z) 1 - b w3{z)

1 z g"{z) 1 + a w4{z)
+ = -

g' (z) 1 - b w4{z)

respectively, for some wj{z), j=1,2,3,4, regular
and satisfyingthe conditions Iwj{o)l= 0, Iwj{z)!
< 1 in D. In particular, if we choose

a - 2Na + N
a =

N

and make N ~ 00 then (2.10), (2.11), (2.12) and
(2.13), respectively, imply that

(2.14) Re {Zf' (z)} > a ,
f{z)
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( 2 ,15 ) J Zfll(Z)}Re II + > a ,
f' (z )

( 2 ,16 ) Re {zg'(z)} < - (I"

g(z)

and

(2.17)
zg"(Z)

Re {1 + } < - a
g' ( z )

where a ~ a < 1.
BJ'. flll'"~CLi is a ti s f y i r (2.16)

.11), Ie pertively, re call~d ste:like univa-
le~t functions) convex univa e t functions mer
morphic starlike functions, and rneromorphic ronvex
f u n c t Lo n s of order {1" and t h e z r r La s s e s are de no t ed

.... t

::: '/ -s " ((1 ), < ( '::t ), r l~ ( a) i'l n d 1: ( :~ ,) 1" e s pe c ';' i. v p !y, T h us

s*(a) = SCm,M), K(a) = K(m,M), r*(a) = f(rn,M) and

E*(a) = ECm,M), for 0 ~ a < 1 and M + 00

In 1964, M.S.Robertson [13J proposed the pro-
blem of proving that if f(z)~ s*(a) (or K(a»
then

c+1
cz

zJ tc-1f(t)dt)c Sl"(a)
o

(or K (a) )

for c = 1 a nd a. = o.
Subsequently, the problem was solved by Libera

[10J, and generalized by Bernardi [4J and by Bajpai
,

a l S ivast a 2aJ. The fir t a u t hc t' fo u t c that
the abo e result is true for all > -1 and
o ~ a < 1. T~n ] , a nar.ogo us rest! ts f x' the m -

romorphic classes E*(a and }': a) are also obtain-
ed. In t e present paper, we aha 1 extend th re-
sults to SCm M)~ (m,M), r m,M) and f(m,M).
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2.2. To prove our theorems we need the fol-
lowing lemma due to I.S. Jack [8J.

then Z WI (z ) =
, 1 1

that w(z) i~ analyti~
and Iw(zl)1 = max Iw(z)!

Izl=r
k w(zl) whe~e k ~ 1.

LEMMA 2.2.1. Surro~e
n0,lt Iz I~ r < 1, w ( a) = a

2.3. In this section we shall prove

THEOREH 2.3.1. 16 fe: S(m9M) and F(z) Ls de.-

6ined by

cz

i-ac >---
l+b

(2.18) F ( z ) = c +

whe~e a,b a~e denined by the 6o~mula~ (2.8) and
(2,9), and (m,H) C E .then FE:. S(m,M).

Proof. Let us choose a function w(z) regular
in D such that

w(a) = 0 and l+a ,,,(z)
=
l-b w(z)

From (2.18) we get

(2.19) z
f I ( Z )

f( z )
- m = (l-m) + (a+bm) w(z)

1 - b w(z)

+
(a+b) z wl(z)

{l-bw(z)}{(l+c)+(a-bc)w(z)}

Now suppose that it were possible to have M(r,w)
= max Iw(z)l = 1 for some r < 1. At the point
Izl=r I IZo where this occurs we would have w(zo) = 1
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(but clearly Iw(z)1 1- 1)0 Then, by lemma 20201,
there is a point Zo such that

k } 10

From (2.19) and (2020) we have
N(zo)
D(zo)

where
(2022) N(zo) = (l~m)(l+c) + [(l+c)(a+bm)+(a-bc)

-(a-bc)m+k(a±b)]w(zo)+(a-bc)(a+bm)
,w2(zo)

and

If we take
h ~ (1-m)(1+c)~ d = (1-m)(a-bc)+(1+c)(a+bm)+k(a+b)j

e = (a-bc)(a+bm), j ~ (a~bc)-b(1+c) and z = b(a-bc)

then

(2,.24)

and

(2025)

Now, using Iw(zo)1

(2.26) !N(zo)12 =
= 1, we have

222(h +d +e )+2(e+h)dRe{w(zo)}
2+ 2 eh Re{w (zo)}
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and
(2027) ID(Zo)12 = (1+C)2+j2+Z2+2(1+c-z)jRe{w(Zo)}

2+ 2 z(1+c) Re{w (zo)}o
Also

= A+2B Re{w(zo)}
2+ 2CRe{w (zo)}

where
A = (h2+d2+e2)_M2{(1+c)2+j2+z2}

= k(a+b)[k(a+b)+2M(1+c)-2Mb(a-bc)]

B = (e+h)d~M2j(1+c-z) = Mk(a+b){(a-bc)-b(1+c)}

and
2C = eh + M z(l+c)

= (1-m)(1+c)(a-bc)(a+bm)+M2b(a-bc)(1+C) = o.

Since C = O~ from (2028) it is clear that

provided A + 2B >" 00

Now
A + 2B = k(a+b)[k(a+b)+2M(1+c)

_ 2Mb(a-bc)+2M(a-bc)-2Mb(1+c)] ~ 00

A - 2B = k(a+b)[k(a+b)+2M(1+c)
_ 2Mb(a-bc)-2M(a-bc)+2Mb(1+c)] ~ 00

Thus we
gives

have proved (2029) which

I
zo f'(zo) ~ ml ~ Mo

f( zo)

along with (2021)
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But this is a contradiction to the fact that
f E"" S(m,I1), So we can not have M(r,w) = 1. Since
this is true for every r < 1 and since M(O,w)=O
it is clear that we must have l1(r,w) < 1 and so
Iw(z)1 < 1 for Izi < 10 Therefore, FE: S(m,N). -

COROLLARY 2.3.1. 16 fE:K(m,l1) and F -<"6de6-<..ned
by (2.18) then Fe::K(m,M), pJtov-<..ded c ~ (1-a)/(1+b).

Proof: We can write (2.18) In the form

z ['(z) = c+l JZtC-1o t f'(t)dt.
cz a

Since fE:K(m,M) it lS easy to see that zf l f z )
~ S(m,I1). Therefore, by Theorem 2.3.1 we get
zF'(z)e:: S(m,H), which implies F(z)€:.K(m,H). •

Remark 1. In theorem 2.3.1, if we put rn = M
and rn~ 00 then the results of Bernardi in [4J fol
low. If

N
N - 1M = N

and N ~ 00m = a-2aN+N

.then the results of Bajpai in [2] follow. Finally,
if m = M, c = 1 and m ~ 00 then the results of
Libera in [10J f o Ll ow ,

THEOREM 2.3.2. 16 fE: 51:(a), s c 5(m,M) and

F(z) -<..~ de6-<..ned by
c + 2 z c-l(2.22) F(z) = 1 f t f(t) get) dt, c ~ 0c+z a
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# /m-11 < M
4(c+1+a.)
4c+3+5a.

!m-11 < M.$. m-1 + 1 - a. }"

2(c+1+a.)

Remark 20 Let us take G(z) = fez) g(z) Then
z(2.22) reduces to

F(z) '" c + 2 zftC G(t)dt,c+1z 0
c ~ 0

Bernardi [4J proved that F(z)£ S1'(0) if G(z)E: S1:(0).

If we take fez) and g(z) such that

f'(z) 1-z
z =

fez) 1+z
and Z gl(Z) =

g(z)
1 -

z
2(c+1)

then f£ S"'(O), g(z)C S(1,1/2(c+1»

z
G' ( z)

G(z)
2(c+1) - (2c+3) z=

2(c+1)(1+z)

2- zand

If wet ak e z rea 1 bet wee n (14 c2 +20c+17' - (2c+ 3 ))12
and 1 then it is easily seen that Re{zG'(z)/G(z)}<O
and so G(z)~ S*(O). But by theorem 2.3.2 we have

I

F'f z ) E:: S~~(a.).
Following the lines of the proof of theorem

2.301 we also have:

THEOREM 2.3.3. Le.t fC r<m,M) a.nd F(z) be. de.-

6-ined by

(2.23)
z

F(z) - c f tC f(t) dt.- C+Tz 0
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Then F c r(m,M) {a+b }c ~ max ---, 1 •
1-b

COROLLARY 2.3.2. 16 f E: E (m , M )

de6-<.ned by (2.23) then FE: E(m,M),
{a+n }

c ~ max 1-b' 1 0

and F(z) -<'.6
pJLov-<'ded

Proofo We can write (2.23) as
z

z F'(z) = c J tCo t f'(t) d t ,
ZC+1 0

Since fe::E(m,M) we have zf' (z ) c E(m,M) and hence
from theorem 203.3 we get zF' (z)c E(m,!:!)0 So
F(z) E:.. (m,M). -

Remark 3. If we take m = M and m + 00 then
the results of Bajpai in [2J follow from theorem
2 .3 .3.

An analogue of Theorem 203.2 for meromorphic
functions is the followingo

.-.
THEOREM 2.3.4. Let f E: r " (a) , g c r (rn , M) and

let F(z) be de6-<.ned by
z

(2.24) F(z) = c_ f tc+1f(t) g(t) dt, c ~ 1,c+lz 0
s,

Then FE: r"(a), pJtov-<'ded m and M .6at-<..6oy

m ~ 4c+3(1-a) , ijm-l~ < M ~ (m-l) +
4(c+1-a)

1 - a

2(c+l-a)

Remark 4. Let us take G(z) = z f(z) g(z)o Then
(2.24) reduces to
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F(z) = c ~ 1.

Bajpai [lJ has proved that F<:r:':(O) if G(z)(.f':':(O).
If we take fez) and g(z) such that

f'(z) 1-z
z = - --

f(z) 1+z
and z g'(z) =

g(z)
- 1 + z

2(c+l)

then
and M

f(z)<: r*(o) and g(z)~ f(m,M) for m = 1

= 1 .. But zG'(z)_ 2(c+1)-(2c+3)z-z3
2(c+1) G(z)- 2(c+1)z

If we take z real and between (/4c2 ~ 20c + 17
- (2c+3»/2 and 1 then it is easily seen that
Re{z G'(z)} > 0 and so G(z)~ r*(o). But by the-G(z) ....
orem 2.3.4 we have FE:.r:':(aL

We have omitted the proofs of theorems 2.32,
2.33, and 2.34 since they all follow the same
lines of the proof. of Theorem 2.3.1.

§3c A subordination to a certain class of ana-
lytIc functlonsQ 301. IL is well known that con-
vex functions are starlike with respect to the or-
igin. In 1933 A. Marx [12J and E. 5trohacker [14]
proved that if f(z)~ K(O) then f(z)~ 5*(B) where
B ~ ~. This result is sharp as can be seen from
the function z/(1-z). In 1971, 1.5. Jack [8J g~

neralized this result and proved the following.

THEOREM A. (Jack) 16 fez)€:.K(a) then fez)
E:. 51:(S(a» wheJte

(2a-1)- /9-4a+4aT(3.1) B(a) ~ ~----'--4----- 217



But this bound for B(a) is not sharp. Jack [8]
conjectured that

(1-2a) if a # ~
( 3 .2) B(a) =

if a = ~
log 4

Recently T.H. MacGregor [111 has settled this con
jecture. MacGregor's proof is very nice and inde
pendent of any classical result. His result is as
follows.

THEOREM B (l1acGregor) In ,L& C'.ol1vex 06 oltdeJr..
a, ft:K(a), thel1 f' (z) «J(z), i 0 eol c e o z f(z)
f'(z ) if., f.,uboltdil1ate :to J(z), wheltez f(z)

(2a - l)z i6 1,-

(1_z)2(1-a){1_(1_z)20-1} a = '2

(3.3 ) J(z) =
z i6 ~a :::

(1-z)log(l-z)

In this section we have proved a similar re-
sult for the classes S(m,M) and K(m,M) defined in
section 2. In proving our results we follow pro-
cedures developed by MacGregor.

3.2. We need the following lemmas for the
proof of our theorem.

LEMMA 3.2.1 Supp0f.,e that the 6ul1C'.tiol1 T and
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S a~e analytic in D, T(O) = 0 = S(O), and S map~
D onto a (po~~ibly many ~heetedJ ~egion which i~
~ta~like with ~e~pect to the o~igin. In

Re {T'(z)} > 0
S' (z )

( 3 .4) for I z I < 1

then

for I z I < 1 ,

and i6

( 3 06) Re {T'(z)} < 0 for I z I < 1
S' ( z)

then

( 3 07) Re {T(zl} < 0 for I z I < 1
.l. 0

S ( z)

The first half of the lemma can be found in
[10J, and for 0 = 0 in [4J 0 It appears complete
in [11]0

LEMMA 3.2.2(**) 16 we de6ine G(z) in D a~
6ollow~, 6o~ a i- b

az(l_bz)-(a+b/b)
= (1_bz)-a/b_1

G ( z ) G(O) = 1

then G(z) i~ univalent in Do

Proof: If we write
O_bz)-a/b

F(z) = a( 3 .9 )

( .f•• f. )

\UU G(z) is defined by its limiting values a a = 0
and b = o.
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then, by logarithmic differentiation we get

F' (z )
z

az(l_bz)-(a+b)/b
::

(1_bz)-a/b - 1F(z)

From (3.8) we have

(3.11) G(z) = z F'(z)
F(z)

Let us rewrite G(z) as

(3.12)

where

(3.13)

G(z) =

(l_bz)(atb)/b -1
::

b z
Rewrite G1(z) in terms of G2(z) so that

a+bG2(z) = G1(z) t b(3.14)

where

( 3 • 15)

:: a(atb) fZ
bz o

l_(l_bz)«aTb)/b)-lG (z) :: •
3 a

Differentiating G
3
(z) and then differentiating lo-

garithmically and taking the real parts in both
sides, we have

(3.16)
G"3(z)Re {l+z } ::
G'3(z)

Since G3(0):: 0
lent and convex.

and G'3(0):: 1, G3(z) is univa-
Using Corollary 2.31 we observe

that G2(z) is convex univalent (of course not nor-
malized). This is turn implies that G(z) is uni-
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valent. As a remark we point out here that the
univalence of G2(z) and hence of G(z) can also
be established in the following way. As in (3016),
we find that

a-b

(3017)
1
1

+
Z G1I3(z) 1-ab <

1_b2-
1_b2G'3(z) b-a

1_b2

This implies that

(3.18) G 3(z ) E: K (1-ab , J a -bL)
1_b2 1_b2

if a > b

if a < b •

Then by theorem (2.3.1) it follows that

(3.19) () (.l-ab
G4 z E: K 1_b2'

where

( 3 .20 )

Since Gn(Z) _ (a+b)G4(z)

L 2b
G2(z) is univalent

and so G(z) is univalent. But (3.19) is a stroTIK
er conclusion than (3.16). •

a <

LE~m 3.2.3: 1~ fez) i~ denined by (3,9) and
b then

. -alb -albl-(l~br) __ ._ ~ Re{F(z'} _<; (i-br) -1
z a r3 .21 )

a r

p40vided b2 < a when a+b > 1.
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Proof: Let i8z = r e and i<p1-bz = Re ,Then

= R-a/br cos(s<p+8)-r cos 8
2a r

== P(r,8)

where R = (1 - 2brcos8+b2r2)~ and tan8 =
br sin 81-br cos 8 0 Therefore,

(3023) dR br sin8
d8 = R

and

(3024) d<P br(br-cos8)
de =

R2

Since (l-bz) Re i8 and Re(l-bz) > 0, then <P 0= =
if 8 :: 0 or 8 = 1To From (3022), we have

(3025) ap(r,8) = {-ar R-(at2b)/b cos(E-<P+S)
a8

R-a/bsin(~tS)X(ar(br;cosS)t 1 )
R

sinS} jar 2t 0

Define G1(r) by

2a p(r,S)1
as2 /S=O a r

Differentiating G1(r) we get

If a > 0 then G'1(r) < 00
decreasing function of r so

Hence G1(r) is a
G1(r) ~ G1(0) = 00
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In this case 2a p(r,8)1 ~ o.
a82 8=0

Similarly, if
function of r,
case we obtain
that Re{F(z)}

z

a < 0 then G1(r) is an increasing
so G1(r) ~ G1(0) = O. In this

the same inequality. This implies
is maximum if 8 = O. Define G2(r)

by

8=7T ar.

Differentiating G2(r) with respect to r we have

-(a+3b)/b f(3.29) G'2(r) = -a(a+b)r(l+br) {l-(a+b)rJo

Now two cases arise.

Case 1. a+b ~ 1. In this case {l-(a+b)r} > o.
So G'2(r) < 0 if a > 0, and
a < O. In the first case G2(r)
function or r so G2(r) < G2(0) = 0

a2P(r,8)
a82

G'2(r) > 0 if
is a decreasing

and so

> o.
e =Tr

If a < 0,
so G2(r) ~
obtanined.

G2(r) is an increasing function of r
G2(O) = 0 and the same inequality is
This implies that Re{F(z)}is minimum

z
for e = 7T •

Case 2. a+b > 1. In this case 0 < l/(a+b) < 1
and a and b are positive. So we have G2(r)
.~ max {G2(O), G2(1)}. Now

G2(1) = Q(a,b)=1_(1+b)-«a+2b)/b)«1+a+b)2_a)
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if

But the above inequality is satisfied if

(ltb)2(1+b)a/b ~ (1+b)2(lta) ~ (ltatb)2-a

"-toor J.., b2 ~ a since a > Oc

But is equivalent to the inequality

M3 _ m2 21'1 + ml'1 - m to 2m - 1 > o.
Th above .i nequa i 'y is always sa isfied if .1/2

~ b ~ «M -+4M)1/2_tO/2• He nce , we find that:
G?(r) ~ a and so a2p(r~e)/ae2Ie~~> 0 , implying
that the minimun of Re(f(z)/z) is attained at
e = n. This completes the proof of the lemma. •

LE~~ 3.2~4. 16 H(z)
~¢ de6~ned by (308) then

1+az,---,a~l-bz b, and G(z)

(3.30) H, (z) ':: k H(z) + (1- k ) G(z)
K

L~ 'LUt,{va! el1t ,,(11 6 Oil. k >" 1 , p/tovided b
2 < a

whel1eve.Jt atb > 10

Proof: He b eg in by s how in g

( 3 • 31 for

He see hat

( 3 • 32) G' (z )
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and

(3.33) H' Ca ) = a+b
2(l-bz)

From (3.32) and (3.33) we get

where

( 3 • 35)

and

(3.36)

with
(3.37)

G'(z) _
H'(z) - -

s(z)

s (z) = (1_bz)-a/b_1 0

1

Itis eas y t 0 see t hat S1(z ) I a C K (m ,M) and hen ce
belongs to S(m,M), so S(z) is bivalent and sat
isfies the condition

I
, s' (z )

(3038) z S(z) - 2m

We have
T' ( z ) =S' ( z )

(a-b)z
LF(z) - a

where F(z) is given by (3.9).
Now by using the result (3.21) in Lemma 3.2.3, we
get in D
(3040) R {,~(z)}:>.a-b a,_' __ ~

e S,"r:::Tz '" "L • Ib\Z) l_(l+b)-a
if a < b.- a,

From Lemma 3.2.1 and (3.40) we get
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(3.41) R {T ( z ) } >. ~ - b . a__ ~ • f < be ~S z) ~ 2 I - a, ~ a 0

;)\Z) l_(l+b)-a b

From (3.34) and (3.41) we have

{G' (z)}< 1 {~-b a _ a}
Re H'(zf"- a+b 20 l_(l+b)-a/b

a a(a - b)= __ _ , if a < b 0

a+b 2(a+b){1_(1+b)-a/b}

(3043)

(3031) it is sufficient to prove that

a (a - .~_)__ ~ b c

2{1_(1+b)-a/b}

To prove

Since we are considering the case b > a and we
know that (a+b) ~ 0, b is always positive but a
may be either positive or negativeo If a ~ 0 ,
{l_(l+b)-a/b} ~ 00 If a < 0, then {l_(l+b)-a/b}
< 0 ; therefore, (3.43) is equivalent to

and

(3045) 2 -alba -ab+2b-2b(1+b) < 0, if a < band
a < 0"

Let us write

Differentiating A(a,b) with respect to a, we have,

aA(a,b) = 2a_b+2(1+b)-a/blog(1+b)---aa--
and

(3.48)
2a A(a,b) =

a2
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� ~ {b-log(l+b)} 2b ur s », if a > O.

Also we have

(3049) U' (b) = 1 - 2log(1+b) V(b)
-

l+b l+b
and

(3 050 ) V' (b) 1 2 1-b o .= - = - -- <
l+b l+b

Thus it follows that V(b) is a decreasing function
of b and

V(b) ~ V(1) = 2(1-log 2 ) > O.

Thus U' (b) ;> O. Hence U(b) is an increasin func-
tion of a or all fixed b 0 But

dA(a,b) >JldA(a,b)la=o __., - b+2log(1+b) -
da da

T (b),

Clearly T I (b) > 0 and so T(b) ~ T(O) = o • Thus
aA(a,b) > o 0 Hence A(a,b) is an increasing func-da
tion of a and A(a,b) ~ A(O,b) = o 0 Thus (3.44)
is proved.

The situation in case a < 0 and a < b is
1· h dO f So 0 h dA(a,b)S 19 tly If erento lnce nelt er da nor
dA(a,b)db is a purely increasingor decreasing func-
tion, we shall determine the sign f the second de
rivativeo From (3048) we have

( 3 • 52)

Now,

B'(b) = -~ Lo g t t eb ) {2b-log(1+b)}
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= 2 10g(1+b) U1(b).b2

This implies that U1(b) is an increasing function
of band U1(b) ? U1(0) = O. Hence B'(b) < O.
Thus B(b)? B(l) = 2(1-2)10g22) ? O. Therefore,
the second derivative of A(a,b) is positive. Now
a+b ? 0 and we are considering a < b, a < 0, so
o ? a ? -b and A(O,b) = 0 = A(-b,b). Hence, by
Roll's theorem, it follows that A(a,b) is posi-
tive in -b < a < o. This completes the proof of
the fact that

Re {G' ( z )} . < 1 in D.
H' ( z )

Now we show that Hk is univalent. Clearly the
facts that H(z) = l+(a+b)N{z) and N(z) is convex,
imply that H is convex in D. Since H is convex
and (3.31) is satisfied in the case a < b, it fol-
lows from the argument of Pommerenke that

(3 .53)

Let us assume Hk(z) is not univalent. Then, we
must have Hk(zl) = Hk(z2) for some distinct zl and
z2 in D. This i~plies that

(3.54)
k

k-1
> 1.

Bu (3.54) contradicts (3.53). Hence, Hk(z) must
be univalent. This completes the proof of the lem
rna.
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LEMMA 3.2.5. H(z)«Hk(z) ~n D, unde~ the eon-
d~t~on 06 lemma 3.2.4.

Proof. Since Hk is univalent by lemma 3.2.4
and H(O) = Hk(O), the subordination follows if
H(D)CHk(D). Clearly, H maps D onto the circle

i8Iw-ml < M. Also if z = e we obtain

(3.55) I w-m I =
i8

l+a e I
e
i8 - m = M.

1-b
Hence, H maps the boundary of D onto the boundary
of the circle /w-ml < M. Thus, the lemma will be
proved if we show that points in the boundary of Hk.
satisfy

(3.56) /w-m I ~ M.

Suppose Iz11 = 1, wi = lim H(z),
z~zl

Now we want to prove that

w2 = lim G(z).
z~z2

(3.57)

which will be satisfied if

(3.58)

Using (3.55) in (3.58), we see that (3.57) is sa-
tisfied if

Thus the inequality follows if Iw2-ml ~ M. Howev-
er, this is obviously true from Corollary 2.3.1.
Hence, the lemma is proved. -

3.3 In this section we shall prove the fo1-
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lowing theorem.

THEOREM 303.1.16 fE:K(m,M) and G Ls de6i..nedbtj

(308) .:then z ~~~~)«G(z) i..n D 60IL b » a, osov cded

b2 < a i..6 a+b > 10

Proof. We shall follow the lines of the proof
developed by ToH.MacGregor [llJ 0 If we write

00 00n nfez) = z + L a z and F(z)::: z + r A zn=2 n n=2 n
where F(z) is define by (309) and fE:.K(m,M), then
A2 :::a+b, and la21 ~ A2. Further, la21 ::: A2
if and only if

(3.59) f( z ) iT'))-a/b 1}e z -, T')real.

This result is
g Iz ) = z f'(z)

f( z )
further, if we write

due to Z.J .Jakubowski [7J" Now if
and G(z) is defined by (309), and

00

(3.60) g(z) 1 L b n
= + z

n=l n

and
00

(3061) G(z) 1 l B
n

= + z ,
n=l n

then Ibil ~ B1 is equivalent to la21 ~ A2" Since
b1 = a2 and B1 ::: A2 , it follows that Ib11 < B1
is equivalent to Ia2' < A2" Also Ib11 ::: Bl only
if g (z ) ::: G(eiT')i), where T')is real. As

for n real, we continue the argument by assuming
Ib11 < B10 If we set -:> {z: Izi < r} (obvious-
ly /).1 = D) then Ib11 < B1 implies that g(/).r)
C G(/).r) for sufficiently small values of r.
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This subordination implies that there exists

(3.63) w{z) = G -1 (g{z» ,
analytic for I z I < r, satisfying w{o) = 0 and

(3.64) Iw{ z ) I < r

for sufficiently small values of r.
Let p = Sup{r: 0 < r < 1, w is analytic for

Izi < r, and satisfies (3.64) for Izi < rL We
need only to show that p = 1. On contrary let us
assume 0 < p < 10
I z I < p a nd Iw ( z ) I
show that w{z) is
that g«G in 6p

Then w{z) is analytic for
< p for Izi < p. We first
analytic for Izi ~ p . We know
and thus

Since G{K"p)CG{61) it follows that g{6 )CG{61)ptE
for all sufficiently small values of E > o. There
fore, because G is univalent in 61, equation
(3063) defines w as an analytic function on 6P+E.
Since w is analytic for lzl ~ p, the definition
of p implies that there is a number zl such that
Iz11 = p and Iw{zl)1 = p. Then by Jack's lemma
2.2.1 there exists a real number k such that

zlw'{zl) = k w{zl) for some zl and k ~ 1.

) = l+az dSince h«H, where H is defined by H(z ~bz an

(3.66)

(3067) f"(z)
h Iz ) = 1 t Z f'(z)

in D, we may write h{z) =
analytic in D, !q,(z)1 < 1

H(~(z» where q,(z) is
and q,(O) = o. Writing
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in terms of g~ we may express h(z) = H(~(z» In
the form
(3.68) g'(z) + g Iz ) =

Z g(z) H(~(z»

Equation (3063) implies that g(z) = G(w(z» and
g'(z) = G'(w(z» w'(z)o If we use these relations
at z = zl~ then~ we have

kw(zl) G'(w(zl» + G(w(zl» = H(~(zl»o
G(w(zl»

G' ( z )z G(z) + G(z)~ equation (3069) isSince H(z) =
the same as

(3.70)

where Hk(z) is defined in (3034)0 Because of lemma
30204~ ~ = H~l(H(~» is analytic in D~ 1~(z)l< 1
and ~(O) = 0 0 Equation (3070) implies that

Since Hk is univalent in D~ w(zl) and ~(zl) are
equalo In particular it follows that 1~(zl)1 =
Iw(zl)! - p = Iz110 Equality in Schwarz's lemma

iois possible only if ~(z) = z e 0 realo Thus
we have Hk(~) = k H(~)+(l-k) G(~) = k H(z eio)

io+ (l-k) G(z e -)0

Also io l+a io ioH(e z ) z e 1 (a+b)z= io = + e + 000
l-b z e

and
G(e io z ) 1 (b-l)z io

= + e .+ 0 0 0
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Hence, ioHk(\jJ)= 1+{k(a+b)+(1-k) (b-1)}z e + 0 0 0

Now, if <jl(z) 2 then comparing= c1z + c2z + 0 <) 0 by
coefficients in \jJ= Hk1(H(<jl» we obtain

. 0
(a+b)c1 = [(b-1) + (1-an] e1 c

-io
This equation gives k = (a+b)c1 e +(1-b)

1 + a
-ioBut k ~ 1, therefore, we must have c1e ~. i.

For the bounded function $(z) we know ICil ~ 1.
08 ·0

Hence Icil = 1 or c = eJ. , h Cz ) = H(e1 z ) , This
yields for all real 8, Ibl = B10 This is a contra
diction. Hence, we must have p = 1, which proves
the theorem. -

If f(Z) is in K(m,M) then from theorem 3.3.1
we have f(D) C G(D). Hence we get the following
results as corollaries.

COROLLARY 3.3.1 16 f(z) belong4 to K(m,M) and
b ~ a then

If' ( z ) I~---a------:-/"....b-
f Iz ) (1-br){1-(1-br)a}

a--------~--~(1+br){(1+br)a/b_1}

p~ov~ded b2 < a when a+b > 1.

COROLLARY 3.3.2 16 f(z) belong4 to K(m,M) and
b > a then f(z) belong4 to S(mi,Mi

) whe~e

and
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M' = ~ [ a alb
(l-b){l-(l-b) }

p~avided b2 < a i6 a+b > 1.

a ]

§4. On radfus of starl ikeness ~ ~ classes
of functions. 4.1. We need the following lemma.

(4 .1 ) Izg'(z)I~B(a, r), where
g(z)

2(a-1)r 1 1a "2

1a = "2
B(rL,r) =

r

(1-r) log (1-r)

Proof. We have stated a result of T.H. MacG~e-
zg' (z)gor in Section 3 as theorem D, which gives g(z)

«J(z) where J(z) is given by (3.3). Hence

(4 .2 ~ I zg'~·1 < I I' J(z) ,~B(a,r).g(z) •
4.2. In this section we prove the following

theorem.

THEOREM 4.2.1 Let Fe S(m,M) and F(z) be de-

6ined by (2.18) and r(a,b) be the unique pa~itive
~oot 06 the equation

(4.3) (a+2b+d)-2(ad+bd+b+d)r-{2(b2-d2)+(a+d)
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2 2 2 3t2b(1-d }-d(adtb }}~ -2d{(atb}tb(btd}r }
2 4-d(adt2bdtb } r= D.

Then, fez} i~ ~ta~tike 06 o~de~ S 60~ Izi < ro~
whe~e ro i~ the ~matte~t pc~itive ~oot 06 the equ~
tion

(404) (1-B}-{S(btd}tatbt2d}r t d(atbS}r2 = 0

i6 ro ~ r(a-b)~ othe~wi~e ro i~ the ~matte~t po~i-
tive ~oot 06 the equation

(4.5) (E-ltbd}-(ltbd}x t 1(1-d){(1-d}t(1+dx}

= 0
l'Jhe~e

(4 06 ) x =
2l+r

--2~
l-r

E = -B(b+d}+2d-(atb}~

and a-bed = -- •
c+l

Proof 0 Since f E:. S(m~!>1} there exists a regular

function w(z} with w(D} = O~ Iw(z}1 < 1 and

( 4 .7 )
z L' f z ) 1 t a w(z}---- =

fez} 1 - b w(z}

From (407) and (2.18) we get

( 4 08 )
f( z )

fez}

la-be ( )t -w zc+l = 1 + dw(z}
1 - bw(z)1 bw(z)
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Differentiating (408) logarithmically with respect
to z and using (407), we get,

(409)

( { w(z) }
+ b+d) Re (l-bw(z»(l+dw(z»

2 I 2(b+d) (r -w(z)Ll- •
O-r2)\1-bw(z)111+dw(z)1

Here we have used the well know inequality

If we take

(4.10) l+dw(z)
p(z) = 1-bw(z)

it is easy to see that

(4011) Ip(z) - AI ~ B

where
l+dbr 2(4.12) A =
1_b2r2

and

(4,13) B =
(b+d)r
1-b 2r2

Substituting value of w(z) from (4010) in (409)
we get
(4,14) {zf'(z)Re f(z) - B} ~

1
b+d [E-d Re {_1_}p(z)

+ (a+2b) Re {p(z)}
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~2 I 12 2_ ~ b P ( z ) + d - Ip ( z) - 1 I~ ] o

(1_r2)lp{z)I

If we take p Cz ) = A + u + iv, \p{z)! = R, and use
(4012) and (4013) in (4014), we get

(4015)

222
~b~d(E- d{A;U)l(a+2b){A+u)_B -u -v x

R R
2 2

,1-b ~ J _ 1b+d P{u,v) 0

1-r

Differentiating P{u,v) partially with respect to v
we get

2 2 2 2 2
(4.16) dP{U,V) = ![d2(A+U)+{2+ B -u -v }(1-b r )] 0

dV R R3 R 1_r2

If d ~ 0, the quantity in the square bracket is posi-
tive. If d < 0 we see that

d{A+u)
+

R3

2
~ 1 + d{1+br) ~ 0

{1_dr)2

and therefore the quantity in the square bracket
• ( ) 0 0 0 s dP{U,V) >. 0 of '0In 4016 lS posltlve. 0 dV ~ l V ~ ,

and dP{U,V) < 0 if v < 00 Therefore,av
min

v
P{u,V) d= P{u,O) = E-~{a+2b)R

B2_{R_A)2 (1_b2r2) _
R 1_r2

peR)

where R = A + uO
PI{R) is an increasing function of Rand
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where

(4.18) = I (l-d)(ltdr2) I~
Ro 2 2 •(at2bt1)-(at2btb )r

Again we see that pI (AtB) >,. 0, therefore Ro~ AtBo
Since pI (R) is an increasing function of R and
A-B ~ R ~ AtB we have

(
I P(A-B) if 0 ~ Ro~ A-B
I

(4 .19) min P(R) = /
)

R I P,(a , ) if A-B ~ Ro~ AtBI
!

'(btd)I(l-S)-{S(b-d)tatbt2d}rtd(atbB)r2L
(1 - dr) (1 t br)

if Ro ~ A-B

(E-ltbd)-(ltbd)x
't l(l-d){(l-d)t(ltd)x}{(lt2at4btb2)t{1-b2)x}

,Let us take

(4.20)

(i-d) (ltdr2)
2 2·(a+2btl)-(at2btb )r

Then Q(r) is a decreasing function of rand
(0) = (atb)t(btd)>.o

(atb)t(ltb)' ,

Therefore Q(r) has unique root in (0,1), call it
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r(a,b). Hence if r ~ r(a,b), Q(r) ~ 0, i. e.
A-B ~ Ro, and if r ~ r(a,b), Q(r) ~ 0, Le
A-B ~ Ro • So from (4.19) and (4.20 ) the result
follows. •

The equatily in (4.4) is attained for the func
tion F(z)' = z(l_bz.)-(a+b)/b, and that in (4.5)
for the function F(z) = z(1-2k bZ+b2 z2)-(a+b)/2b
where k is given by

1+k(a-b)r-br2 = { (i-d) (1+dr2) }!,2

1-2kbr+b2r2 (a+2b+l)-(a+2b+b2)r2

Similarly, by using the method of Theorem 4.2.1,
the following theorems follow.

THEOREM 4.2.2. 16 f(z) i~ ~egula~ in D and ~at
i~6ie.6 (2.22) whe~e Fe::S~':(B)and g E: S(m,M) then
f(z) i.6 univalent and .6ta~like 06 o~de~ B in
Izi < ro , whe~e ro i.6 the .6malle.6t pO.6itive
~oot 06 the equation.

(1-B)(c+2)-{(c+2)(a+2b-bB)+2(1-B)(2-B)}r

+ {2b(1-B)(2-B)-(1-B)(c+2B)

-2(c+l+B)(a+b)} r2-(c+2B)(a+bB)r3

= o.

THEOREM 4.2.3. 16 f(z) i.6 ~egula~ in D and
.6at-£.66ie.6(2.22) whe~e FE: s1:(B) and g E K(a) ,
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then f(z) ~4 4ta4l~ke 06 o~de~ S 604 Izi < ro
whe4e ro ~4 the 4malle4t P04~t~ve 400t the equa-
t~on

2(c+2)(2-S)+2{(c+S+l)-(1-S)(2-S)}r+S(c+2S)r

-(1+r){(c+2)+(c+2S)r}B(a,r) = 0
whe4e

B(a,r)
f
' (2a-l)r

= 1 (1_r)~(1-n){1_(1_r)2n-l) •

i (1-r) log(l-r)
\

1
a ¥ '2

, 1
a = '2

THEOREM 4.2.4. 16 f(z) ~4 4egula4 ~n D and
4at~46~e.6 (2022) whe4e FE. s:':(S)and g(z)/z E:P(a)
then f(z) ~.6 un~valent and 4ta4l~ke 06 o4de4 S ~n
Izi < ro, whe4e ro ~4 the 4malle.6t P04~t~ve 400t
06 the equat~on

(ct2)(1-S)-2{(c+2)(1-aS)+(1-S)(2-S)}r

_2{c(3-4a-S+aS)+(3+2S-8a+6aB-S2-2aS2)}r2

t2{(c+2S)(2a-aS-l)-(2a-l) (1-S)(2-S)}r3

- (2a-l)(1-S)(c+2S)r4 = 00

THEOREM 4.205. Let FE: f(m,M) and f Iz ) be de-
6~ned by (2.23) and r(a,b) be the un~que P04~t~ve
400t 06 the equat~on
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{ 2 2(atd)T2 d(atb)~(d-b)}rt{2(b -d )-(atd)
223t d(adtb )}r -2d{(atb)tb(d-b)}r
2 4- d(adtb)r '"0

and d ~ 00 Then fez) ~~ me~omo~ph~e ~ta~iiRe 06
o~de~ B nO~ Izi < reI whe~e ro ~~ the ~maiie~t po~
it~ve ~oot On the equation

(1-B)t{(atbt2d)-(btd)B}rt(abtbdtd2~bdB)r2 = 0

i6 0 < re ~ r(a,b), and that 06 the equation

(E-1tbd)-(ltbd)x

i6 r(a,b) ~ ro

-(d-b)B and

2 2whe~e x::: (1tr )!(1-r )
d :::(atbtc)/co

, E :: (a-b)

Equality is attained for the functions
(1tbz)(atb)/b

F(z) :::
z

F(z)
= I(1_bz)ltk(1tbz)1-k](atb)/2b

z

where k is determined from
2l-k(atb)ztabz

l_b2z2
=

2(1td) (1-dr )
2 2(1-a)t(a-b )r

k2 "

The above sequence 0 'heorems contains the
results of [2(b)], [3J, [5J, [9J and makes use
of a result given in [6J 0
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