DERIVATION-BOUNDED GROUPS

K. Madlener ${ }^{\star}$ and F. Otto

Abstract

For some problems which are defined by combinatorial properties good complexity bounds cannot be found because the combinatorial point of view restricts the set of solution algorithms. In this paper we present a phenomenon of this type with the classical word problem for finitely presented groups. A presentation of a group is called E_{n}-derivation-bounded (E_{n}-d.b.), if a function $\mathrm{k} \in \mathrm{E}_{\mathrm{n}}$ exists which bounds the derivations of the words defining the unit element. For $E_{n}-$ d.b. presentations a pure combinatorial E_{n}-algorithm for solving the word problem exists. It is proved that the property of being $E_{n}-\mathrm{d} . \mathrm{b}$. is an invariant of finite presentations, but that the degree of complexity of the pure combinatorial algorithm may be as far as possible from the degree of complexity of the word problem itself.

The complexity of logical theories and of algorithmic problems in algebraic structures has been object of intensive studies during the last years ([Av], [Av-Madl], [Can], [Can-Gat], [Fer-Rac], [Gat], [Madl]). One interesting aspect in the proofs of good lower and upper bounds is the fact that some of these result were achieved not only by using combinatorial methods but also by using algebraic arguments. Even more, for some problems which are defined by combinator,ial properties good complexity bounds cannot be found because the combinatorial point of view restricts the set of solution algorithms.

In this paper we want to present a phenomenon of this type within the classical word problem for finitely presented groups ([M-K-S]).

Let $\Sigma=\left\{s_{1}, \ldots, s_{m}\right\}$ be a finite alphabet, $\bar{\Sigma}=\left\{\bar{s}_{1}, \ldots, \bar{s}_{m}\right\}$ a disjoint cony of $\Sigma\left(\bar{s}_{i}\right.$ is the formal inverse of $\left.s_{i}\right),{\underset{\sim}{L}}^{=} \sum U \bar{\Sigma}$, and $\underline{\Sigma}^{*}$ the set of words over
 the length of w, e the empty word, and $L \subset \Sigma^{*}$.

The group G given by the presentation $\langle\Sigma ; L>$ can be viewed as the set of equivalence classes of the Thue system

[^0]$$
T=\left(\Sigma ;\left\{w=e \mid w \in L U L^{-1} U(s \bar{s}, \bar{s} s: s \in \Sigma\}\right\}\right),
$$
where $u \sim v$ if there is a derivation from u to v in T. The set of equivalence classes forms a group with the operations $[u] \cdot[v]=[u v]$ and $[u]^{-1}=\left[u^{-1}\right],[e]$ being the unit element.
Σ is the set of generators, and L is the set of defining relators of this presentation. If Σ is finite, $\langle\Sigma ; L\rangle$ is a finitely generated ($\mathrm{f} . \mathrm{g}$) presentation of G, and G is called f.g.. If L is finite, too, then $\langle\Sigma ; L\rangle$ is a finite presentation of G, and G is finitely presented (f.p.).

The word problem for the presentation $\langle\Sigma ; \mathrm{L}\rangle$ of G is the problem of deciding for an arbitrary word $w \in \Sigma^{*}$ whether w defines the unit element of G or not, i.e. the membership to the set $\left\{w \in \Sigma^{*} \mid w \overline{\bar{G}} e\right\}=\left\{w \in \Sigma^{*} \mid\right.$ there is a derivation from w to e in T$\}$. It is well known that the complexity of the word problem for G is independent of the chosen f.g. presentation for G, and we can speak therefore about the complexity of the word problem for G.

We call an algorithm solving the word problem for $\langle\Sigma ; L\rangle$ a natural algorithm (n.a.) if for $w \overline{\bar{G}}^{e}$ it produces a derivation $w=w_{o} \rightarrow \ldots \rightarrow w_{m}=e$ in the Thue system T. Of course the length of a produced derivation is a lower bound for the complexity of a n.a..

From each solution of the word problem for $\langle\Sigma ; L\rangle$ we can define a n.a. simpiy by generating all derivation in T for the words w with $\mathrm{w} \overline{\overline{\mathrm{G}}} \mathrm{e}$, in some ordering.

Some questions concerning the n.a. arise. Does the complexity of any n.a. give information about the complexity of the word problem? of course, it gives an upper bound, but does it give a lower bound in any way, too? Starting with an algorithm which solves the word problem can we produce a n.a. of the same complexity? Given two presentations of the same group, what is the relation between the complexities of natural algorithms in both presentation?

We introduce the concept of derivation bounded presentations to formulate these questions more precisely and also to give the answers. Let K be any complexity class of word functions. We will restrict ourselves to the Grzegorczyk classes E_{n} which are well known ([Weih]). A finite presentation $\langle\Sigma ; \mathrm{L}\rangle$ is called K -derivation-bounded (K -d.b.) if there is a function $\mathrm{k}=\mathrm{K}$ such that every word $w \in \underline{\Sigma}^{*}$ which defines the unit element of $\langle\Sigma ; L\rangle$ can be derived to e in T, within no more than $|\mathrm{k}(\mathrm{w})|$ steps.

For a K-d.b. presentation there is always a standard n.a. for solving the word problem. In order to decide for a word $w \in \sum^{*}$ whether $w \bar{G}$ e, just produce all possible derivation in T which start with w, of lengtl bounded by $|\mathrm{k}(\mathrm{w})|$, and test whether e has been derived. If $\mathrm{K}=\mathrm{E}_{\mathrm{n}}(\mathrm{n} \geqslant 3)$ this is an E_{n}-algorithm. In particular the word problem for an E_{n}-d.b. finite presentation is decidable.

On the other hand if there is a natural E_{n}-algorithm solving the word problem for $\langle\Sigma ; L\rangle$ then $\langle\Sigma ; L\rangle$ is $E_{n}-d . b$..

We will prove the following results.
(a) If a f.g. group has an $E_{n}-$ d.b. finite presentation for some $n \geqslant 1$ then every finite presentation of this group is $E_{n}-$ d.b.. So the standard $n . a$. is an E_{n}-algorithm for all finite presentations of this group, for $\mathrm{n} \geqslant 3$.
(b) Every f.g. group G with E_{n}-decidable word problem ($\mathrm{n} \geqslant 3$), and hence any countable group with E_{n}-decidable word problem ([0tt]), can be embedded into a f.p. group having an $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. presentation. This means that a n.a. of the same complexity can effectively be constructed from an algorithm solving the word problem for G, but in general for a larger group only. The restriction of this n.a. solves the word problem for G, but is general it is not a n.a. for G.
-These two facts give the hope that at least for f.p. E_{n}-d.b. groups with $\mathrm{n} \geqslant 3$ an optimal n.a. exists. But this hope is disappointed by the following fact.
(c) For every $n \geqslant 4$ there is a f.p. E_{n}-but not E_{n-1}-d.b. group G having an E_{3}-decidable wurd problem. So G has no natural $\mathrm{E}_{\mathrm{n}-1}$-algorithm for solving the word problem although there is an E_{3}-algorithm for solving it. Thus the complexity of any n.a. may be as far as possible from the complexity of the word problem. These results show that combinatorial properties of a Thue system are not sufficient to prove good complexity bounds for the word problem. Similar results can be proved for semigroups.

Since there is a f.p. group with E_{3}-decidable word problem such that none of its finite presentations allows a natural E_{3}-algorithm, the following question seems to be natural: is there an infinite "easy" presentation of this group for which a natural E_{3}-algorithm exists?

Of course one could take all relators of the group as defining relators of a presentation, which then trivially is $E_{0}-$ d.b., since each derivation is of "length 1 . But such a presentation is not "easy" because the full complexity of the word problem is contained in the defining relators and so in the presentation. Let an easy presentation of a group be one for which the set of defining relators is E_{1}-decidable. Then we have:
(d) Every f.g. group G with E_{n}-decidable word problem ($n \geqslant 3$) has a f.g. presentation with an E_{1}-decidable set of defining relators which allows a natural E_{n}-algorithm for solving the word problem.

Similar questions may be posed for finitely axiomatized (f.a.) theories. Are natural decision algorithus for f.a. theories optimal, or are there easily decidable theories for which the optimal proofs in any finite axiomatization are too long?

1. E_{n}-DERIVATION-BOUNDED GROUPS.

1.1. DEFINITION. Let $G=\langle\Sigma ; L\rangle$ be a group, and let $w \in \Sigma^{*}$ be such that ${ }^{w} \overline{\bar{G}}$ e.
a) A derivation from w is a sequence of words $w=w_{o}, w_{1}, \ldots, w_{k} \equiv e$ from Σ^{*} such that w_{i+1} is formed by insertion of a word u between any consecutive symbols of w_{i}, or before w_{i}, or after w_{i}, or by deletion of a word u if it forms a block of consecutive symbols of w_{i}. In both cases u must be a member of $L \cup L^{-1} \cup\{s \bar{s}, \bar{s} s: s \in \Sigma\}$. Here L^{-1} is defined as $\left\{w^{-1} \mid w \in L\right\}$, where $e^{-1} \equiv e$, $(w s)^{-1} \equiv \bar{s}^{-1}$, $(w \bar{s})^{-1} \equiv \mathrm{sw}^{-1}$, and \equiv denotes the identity of the free monoid $\underline{\Sigma}^{*}$. k is the length of this derivation.
b) Let be $\mathrm{n} \geqslant 1,\langle\Sigma ; \mathrm{L}\rangle$ is E_{n}-derivation-bounded (E_{n}-d.b.) if there is a function $k \in E_{n}(\Sigma)$ satisfying for all $w \in \Sigma^{*}: w \overline{\bar{G}}$ e inplies that there is a derivation from w of length $\leqslant|k(w)|$, where $|\mid$ denotes the length of a word, i.e. the number of letters. Then k is called an E_{n}-bound for $\langle\Sigma ; L\rangle$.

Of course a natural algorithm for solving the word problem exists for a finite $E_{n}-$ d.b. presentation.
1.2. LEMMA. Let $\mathrm{n} \geqslant 1$, and $\mathrm{k} \in \mathrm{E}_{\mathrm{n}}(\mathrm{\Sigma})$ be such that $\mathrm{k}(\mathrm{e}) \equiv \mathrm{e}$. Then there is a monotonous function $\mathrm{k}_{1} \in \mathrm{E}_{\mathrm{n}}(\underline{\Sigma})$ satisfying: $\left|\mathrm{k}_{1}(\mathrm{u})\right|+\left|\mathrm{k}_{1}(\mathrm{v})\right| \leqslant\left|\mathrm{k}_{1}(\mathrm{uv})\right|$ and $|k(w)| \leqslant\left|k_{1}(w)\right|$ for all $u, v, w \in \underline{\Sigma}^{*}$.

Proof. $\mathbf{n}=1$. Let $k \in E_{1}(\Sigma)$ with $k(e) \equiv e$. Then $\exists c \geqslant 1 t_{w} \geqslant \Sigma^{*}(|k(w)| \leqslant$ $c|w|)$. Define k_{1} by $k_{1}(w) \equiv w^{c}$, then $k_{*} \in E_{1}(\Sigma), k_{1}$ is monotonous, and $|k(w)| \leqslant$ $\left|\mathrm{k}_{1}(\mathrm{w})\right|$ for every $w \in \Sigma^{*}$. Let $\mathrm{u}, \mathrm{v} \in \Sigma^{*}$ then $\left|\mathrm{k}_{1}(\mathrm{u})\right|+\left|\mathrm{k}_{1}(\mathrm{v})\right|=\mathrm{c}|\mathrm{u}|+\mathrm{c}|\mathrm{v}|=$ $\mathrm{c}|\mathrm{uv}|=\left|\mathrm{k}_{1}(\mathrm{uv})\right| . \quad \mathrm{n} \geqslant 2$. Let $\mathrm{k} \in \mathrm{E}_{\mathrm{n}}(\underline{\Sigma})$ with $\mathrm{k}(\mathrm{e}) \equiv \mathrm{e}$. Then there is a monotonous function $k^{\prime} \in E_{n}(\Sigma)$ satisfying $|k(w)| \leqslant\left|k^{\prime}(w)\right|$ and $k^{\prime}(e) \equiv e$. Define $k_{1}(e) \equiv e, k_{1}(w s) \equiv v k\left(k_{1}(w), k^{\prime}(w s)\right)$, where the function $v k \in E_{1}(\Sigma)$ denotes the concatenation of two words. Then
and therefore $\left|k_{1}(w)\right| \leqslant|w| \cdot\left|k^{\prime}(w)\right|$; since k^{\prime} is monotonous and $n \geqslant 2, k_{1} \in E_{n}(\Sigma)$ k_{1} is also monotonous, and k_{1} a bound for k. Now,

$$
\begin{aligned}
&\left|k_{1}(u)\right|+\left|k_{1}(v)\right|=\left|\sum_{j=1}\right| k^{\prime}\left(s^{j}\right)\left|+\left|\sum_{j=1}^{V}\right| k^{\prime}\left(s^{j}\right)\right| \\
& \leqslant|u| \\
& \sum_{j=1}\left|k^{\prime}\left(s^{j}\right)\right|+\sum_{j=1}^{|v|}\left|k^{\prime}\left(u s^{j}\right)\right|=\sum_{j^{\prime}=1}^{|u v|}\left|k^{\prime}\left(s^{j}\right)\right|=\left|k_{1}(u v)\right| .
\end{aligned}
$$

This proves Lemma 1.2.
1.3. REMARK. If k is an E_{n}-bound it may be assumed that $k(e) \equiv e$. But then because of 1.2 it may be assumed that k is nonotonous and satisfies $|k(u)|+|k(v)| \leqslant|k(u v)|$.

Now we give an example of an E_{0}-d.b. presentation.

1.4. LEMMA. $\mathrm{F}=\langle\Sigma ; \emptyset\rangle$, the free group generated by Σ, is $\mathrm{E}_{\mathrm{O}}-\mathrm{d} . \mathrm{b}$.

Proof. Define $k(w) \equiv w$, then $k \in E_{0}(\underline{\Sigma})$. Now let $w \in \Sigma^{*}$ such that $w \overline{\bar{F}}$ e. This means $\gamma_{f}(w) \equiv e$, where γ_{f} denotes the function calculating the free reduction. But the execution of the free reduction gives a derivation from w of length $\frac{1}{2}|w|$. So k is an E_{0}-bound for $\langle\Sigma ; \emptyset\rangle$.

The following three propositions give technics to construct $E_{n}-$ d.b. presentations of groups from given E_{n}-d.b. presentations, such that the groups defined by the given presentations are embedded into the groups defined by the constructed presentations.
1.5. PROPOSITION. Let $\mathrm{H}_{1}=\left\langle\Sigma_{1} ; \mathrm{L}_{1}\right\rangle$ and $\mathrm{H}_{2}=\left\langle\Sigma_{2} ; \mathrm{L}_{2}\right\rangle$ be groups such that $<\Sigma_{1} ; \mathrm{L}_{1}>$ and $<\Sigma_{2} ; \mathrm{L}_{2}>$ are $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. for some $\mathrm{n} \geqslant 2$. Then
a) the presentation $<\Sigma_{1} \cup \Sigma_{2} ; \mathrm{L}_{1}, \mathrm{~L}_{2}>$ of $\mathrm{H}_{1} \mathrm{H}_{2}$ is E_{n}-d.b., and
b) the presentation $\left\langle\Sigma_{1} \cup \Sigma_{2} ; \mathrm{L}_{1}, \mathrm{~L}_{2}\right.$, abāb: $a \in \Sigma_{1}, \mathrm{~b} \in \Sigma_{2}>$ of $\mathrm{H}_{1} \times \mathrm{H}_{2}$ is E_{n}-d.b.

Proof. Without loss of generality it may be assumed that Σ_{1} and Σ_{2} are disjoint alphabets. Let $k_{1} \in E_{n}\left(\Sigma_{1}\right)$ and $k_{2} \in E_{n}\left(\Sigma_{2}\right)$ be E_{n}-bounds for $\left\langle\Sigma_{1} ; L_{1}\right\rangle$ and $<\Sigma_{2} ; L_{2}>$, respectively, and let $w \equiv u_{o} v_{o} u_{1} v_{1} \ldots u_{1} v_{1}, u_{i} \in \Sigma_{-1}^{*}, v_{i} \in \Sigma_{-1}^{*}$, where u_{i} and v_{i} are the syllables of w.
a) $w=e$ in $H_{1} *_{2}$. Then there is an $i \in\{0, \ldots, 1\}$ such that $e \not \equiv u_{i} \overline{\bar{H}}_{1}$ e or e $\not \equiv \mathrm{v}_{\mathrm{i}} \overline{\bar{H}}_{2}$ e. So within no more than $\left|\mathrm{k}_{1}\left(\mathrm{u}_{\mathrm{i}}\right)\right|$, respectively $\left|\mathrm{k}_{2}\left(\mathrm{v}_{\mathrm{i}}\right)\right|$, steps w can be derived to a word w^{\prime} containing less syllables than w. Hence there is a derivation from w of length

$$
\mu \leqslant\left|k_{i}{ }^{\circ \Pi_{\underline{\Sigma}} 1}(w)\right|+\left|k_{2} \circ \circ_{\Sigma_{2}}(w)\right|
$$

where $\Pi_{\Sigma_{i}} \in E_{1}\left(\Sigma_{1} \cup \underline{\Sigma}_{2}\right)$ denotes the projection onto Σ_{i}^{*}.
Define for $s \in \sum_{-1} \cup{\underset{\Sigma}{2}}_{2}, U_{s}(w)=s^{|w|}$, which is an E_{1}-function. Let $k(w)=$ $\mathrm{vk}\left(\mathrm{k}_{1} \mathrm{O}_{\mathrm{a}_{1}}(\mathrm{w}), \mathrm{k}_{2} \mathrm{oU}_{\mathrm{b}_{1}}(\mathrm{w})\right)$ for some $\mathrm{a}_{1} \in \Sigma_{1}, \mathrm{~b}_{1} \in \Sigma_{2}$. Then $\mathrm{k} \in \mathrm{E}_{\mathrm{n}}\left(\Sigma_{1} \mathrm{U} \underline{\Sigma}_{2}\right)$ with

$$
|k(w)|=\left|k_{1} \circ U_{a_{1}}(w)\right|+\left|k_{2} \circ \mathrm{U}_{b_{1}}(w)\right| \geqslant\left|k_{1} \circ \mathbb{I}_{\Sigma_{1}}(w)\right|+\left|k_{2} \circ \Pi_{\Sigma_{2}}(w)\right|
$$

since $\left|\pi_{\Sigma_{1}}(w)\right| \leqslant|w|=\left|U_{a_{1}}(w)\right|$ and $\left|\Pi_{\Sigma_{2}}(w)\right| \leqslant|w|=\left|U_{b_{1}}(w)\right|$. Hence k is an E_{n}-bound for $\left\langle\underline{\Sigma}_{1} \cup{\underset{\Sigma}{2}}^{2} ; \mathrm{L}_{1}, \mathrm{~L}_{2}\right\rangle$.
b) $w=e$ in $H_{1} \times H_{2}$. Then $w=\Pi_{\Sigma_{1}}(w) \Pi_{\Sigma_{2}}(w)$ in $H_{1} \times H_{2}, \Pi_{\Sigma_{1}}(w) \overline{\bar{H}}_{1} e$, and $\Pi_{\underline{\Sigma}_{2}}(w) \overline{\bar{H}}_{2} e$. There is a derivation from $\Pi_{\Sigma_{1}}$ (w) of length not exceeding $\left|\mathrm{k}_{1} \circ \Pi_{\Sigma_{-}}(\mathrm{w})\right|$ in $<\Sigma_{1} ; \mathrm{L}_{1}>$, and there is a derivation from $\mathbb{I}_{\Sigma_{2}}(\mathrm{w})$ of length not exceeding $\left|\mathrm{k}_{1} \circ \Pi_{\Sigma_{2}}(\mathrm{w})\right|$ in $\left.\underline{\Sigma}_{2} ; \mathrm{L}_{2}\right\rangle$. w can be derived to $\mathbb{I}_{\Sigma_{1}}(\mathrm{w}) \Pi_{\Sigma_{2}}(\mathrm{w})$ by sequences of the form $\overline{b a} \overrightarrow{1}_{1}$ abābba $\overrightarrow{2}_{2}$ ab. Therefore $\mathbb{I}_{\Sigma_{1}}(w) \Pi_{\Sigma_{2}}(w)$ can be derived from w within no more than $3\left|\Pi_{\Sigma_{1}}(w)\right| \cdot\left|\Pi_{\Sigma_{2}}(w)\right|$ steps. Define $V K(w, e) \equiv e, V K(w, u s) \equiv v k(V K(w, u), w)$ Then

$$
V K(w, u) \equiv w^{|u|} \text { and } V K \in E_{2}\left(\Sigma_{1} \cup \Sigma_{2}\right) \text {. }
$$

Now let $k(w) \equiv \operatorname{vk}\left((V k(w, w))^{3}, \operatorname{vk}\left(k_{1} \circ U_{a_{1}}(w), k_{2} \circ \mathrm{U}_{\mathrm{b}_{1}}(w)\right)\right)$. Since $n \geqslant 2$, $k \in E_{n}\left(\underline{\Sigma}_{1} \cup \underline{\Sigma}_{2}\right)$ and

$$
|k(w)| \geqslant 3|w|^{2}+\left|k_{1}{ }^{\circ} \Pi_{\underline{\Sigma_{1}}}(w)\right|+\left|k_{2}{ }^{\circ} \Pi_{\underline{\Sigma}}^{2}(w)\right| \geqslant 3\left|\Pi_{\underline{\Sigma}}(w)\right| \cdot\left|\Pi_{\Sigma_{2}}(w)\right|+\left|k_{1} \circ \Pi_{\underline{\Sigma}}(w)\right|+\left|k_{2} \circ \Pi_{\underline{\Sigma}_{2}}(w)\right|
$$ Hence k is an E_{n}-bound for $\left\langle\Sigma_{1} \cup \Sigma_{2} ; L_{1} L_{2}\right.$, ababa: $\left.a \in \Sigma_{1}, b \in \Sigma_{2}\right\rangle$.

1.6. PROPOSITION. Let $H=\left\langle\varepsilon\right.$; L> be $E_{n}-$ d.b. for some $\dot{\mathrm{n}} \geqslant 3$.
a) If $\mathrm{H}^{*}=\left\langle\mathrm{H}, \mathrm{t} ; \overline{\mathrm{t}} \mathrm{u}_{\mathrm{i}} \mathrm{tv}_{\mathrm{i}}^{-1}: \mathrm{i}=1, \ldots l\right\rangle$ is an HNN -extension of H with rewriting functions ω_{u} for $\left\langle u_{1}, \ldots, u_{\ell}\right\rangle_{H}$ and ω_{v} for $\left\langle v_{1}, \ldots, v_{\ell{ }_{H}}\right.$ bounded by polynomials, then the given presentation of H^{*} is E_{n}-d.b.
b) If $H^{*}=\left\langle H, t_{1}, \ldots, t_{k} ; \bar{t}_{i} u_{i j} t_{i} v_{i j}^{-1}: j=1, \ldots, \ell_{i}, i=1, \ldots, k\right\rangle$ is an HNN-extension of H with rewriting functions $\omega_{u_{i}}$ for $\left\langle u_{i 1}, \ldots, u_{i \ell_{i}}\right\rangle_{H}$ and $\omega_{v_{i}}$ for $\left\langle v_{i 1}, \ldots, v_{i \ell_{i}}\right\rangle_{H}, i=1, \ldots, k$, bounded by polynomials, then the given presentation of H^{*} is E_{n}-d.b. (See [Lyn-Sch] for the definition of HNN-extension).

Proof. As part (b) is nothing else than a finite iteration of part (a) it suffices to prove part (a).

Define $\varphi: U=\left\langle u_{1}, \ldots, u_{\ell}\right\rangle_{H} \rightarrow V=\left\langle v_{1}, \ldots, v_{\ell}\right\rangle_{H}$ as follows: If $w \in \Sigma^{*} \cap U$, then $w \overline{\bar{H}}_{u} \omega_{u}(w) \equiv \prod_{j=1}^{\lambda} u_{i j}^{\varepsilon}$. Let $\varphi(w) \equiv \lambda_{j=1} v_{i} \varepsilon_{j}$. Define $\bar{\varphi}: v \rightarrow U$ analogously. Now φ and $\bar{\varphi}$ realize the isomorphisms used for constructing the $H N N$-extension H^{*} of H. ω_{u} and ω_{v} are bounded by polynomials, and so are φ and $\bar{\varphi}$. Therefore $c \geqslant 1$ and $d \geqslant 2$ can be chosen in such a way that for all $w \in \Sigma^{*},\left|\omega_{u}(w)\right|,\left|\omega_{v}(w)\right|$, $|\varphi(\mathrm{w})|,|\bar{\varphi}(\mathrm{w})| \leqslant \mathrm{c}|\mathrm{w}|^{\mathrm{d}}$ are valid.

Define $f(e) \equiv e, \quad f(w s) \equiv f(w) s, \quad s \in \Sigma$.

$$
\begin{aligned}
& f(w t) \equiv \begin{cases}u \varphi(v) & \text { if } f(w) \equiv u \bar{t} v, v \in \Sigma^{*} \cap U \\
f(w) t & \text { otherwise }\end{cases} \\
& f(w \bar{t}) \equiv \begin{cases}u \bar{\varphi}(v) & \text { if } f(w) \equiv u t v, v \in \Sigma^{*} \cap V \\
f(w) \bar{t} & \text { otherwise. }\end{cases}
\end{aligned}
$$

According to [Av-Madl] 3.2, p.94, f is a t-reduction function for H^{*} satisfying

$$
\forall w \in(\underline{X} U\{t\})^{*}|f(w)| \leqslant 2^{2 c d|w|}
$$

Let $k_{H} \in E_{n}(\underline{\Sigma})$ be an E_{n}-bound for $\langle\Sigma ; L\rangle$, and let be $w \in\left(\underline{\sum} \in\{\underline{t}\}\right)^{*}$ such that $w \overline{\bar{H}}^{*}$ e. Then $f(w) \in \underline{\Sigma}^{*}$ and $f(w) \overline{\bar{H}} e, f(w)$ results from w by pinching out $\frac{1}{2}|w|_{t} t$-pinches, and subsequently $f(w)$ can be derived to e in $<\Sigma$; $L>$ within no more than $\left|\mathrm{k}_{\mathrm{H}}{ }^{\circ} \mathrm{f}(\mathrm{w})\right|$ steps. Let

$$
w \equiv w_{o} t^{\mu 1_{w_{1}}} . . t^{\mu_{k_{k}}}, w_{o}, \ldots, w_{k} \in \Sigma^{*}, \quad \mu_{1}, \ldots, \mu_{k} \in\{ \pm 1\}
$$

and

$$
t^{\mu} i_{w_{i}} t^{\mu}{ }^{\mu+1}
$$

be the lefmost t-pinch contained in w.

$$
\begin{aligned}
\mu_{i}=-1: w \equiv & w_{o} t^{\mu} \cdot w_{i-1} \bar{t}_{i} t w_{i+1} \cdot \cdot w_{k} \xrightarrow{(1)} \\
& w_{o} \cdot w_{i-1}{ }^{t w_{i}}\left(\omega_{u}\left(w_{i}\right)\right)^{-1} \omega_{u}\left(w_{i}\right) t w_{i+1} \cdots w_{k} \xrightarrow{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& w_{o} \ldots w_{i-1}{ }^{\bar{t}} \omega_{u}\left(w_{i}\right) t w_{i+1} \ldots w_{k} \xrightarrow{(3)} \\
& w_{0} \ldots t^{t_{i-1}-w_{i-1}}\left(w_{i}\right) w_{i+1} t^{t_{i+2}} \ldots w_{k} \equiv: w^{\prime}
\end{aligned}
$$

$a d$ (1), $\left|\omega_{u}\left(w_{i}\right)\right|$ trivial relators are inserted.
ad (2), $\mathrm{w}_{\mathrm{i}}\left(\omega_{\mathrm{u}}\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1} \overline{\overline{\mathrm{H}}} \mathrm{e}$, and so $\mathrm{w}_{\mathrm{i}}\left(\omega_{\mathrm{u}}\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1}$ can be derived to e in $\langle\Sigma$; $\mathrm{L}>$ within at most $\mid \mathrm{k}_{\mathrm{H}}\left(\mathrm{w}_{\mathrm{i}}\left(\omega_{\mathrm{u}}\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1} \mid\right.$ steps.
ad (3), $\left|\omega_{u}\left(w_{i}\right)\right|_{u}=$ the number of generators u_{1}, \ldots, u_{ℓ} in $\omega_{u}\left(w_{i}\right)$. Now (3)
can be realized by $\left|\omega_{u}\left(w_{i}\right)\right|_{u}$ steps of the following kind:
(a) Insertion of $t \bar{t}$.
(b) Insertion of $v_{j}^{-1} v_{j}$ by using trivial relators.
(c) Deletion of $\overline{\mathrm{t}} \mathrm{u}_{\mathrm{j}} \mathrm{tv}_{\mathrm{j}}^{-1}$.

Hence within at most

$$
m_{1}=\left|\omega_{u}\left(w_{i}\right)\right|+\left|k_{H}\left(w_{i} \cdot\left(\omega_{u}\left(w_{i}\right)\right)^{-1}\right)\right|+\left|\omega_{u}\left(w_{i}\right)\right|_{u} \cdot\left(2+\max _{j=1, \ldots, \ell}\left|v_{j}\right|\right)
$$

steps the first t-pinch of w can be pinched out.

$$
m_{1} \leqslant\left|\omega_{u}\left(w_{i}\right)\right| \cdot\left\{3+\max _{j=1, \ldots, \ell}\left|v_{j}\right|\right\}+k_{H}\left(w _ { i } \left(u^{\left.\left.\left.\left(w_{i}\right)\right)\right)^{-1}\right) \mid=: m_{2}}\right.\right.
$$

since

$$
\begin{aligned}
& \left|\omega_{u}\left(w_{i}\right)\right|_{u} \leqslant\left|\omega_{u}\left(w_{i}\right)\right| . \\
& \mu_{i}=1: w \equiv w_{o} t^{\mu_{1}} . . w_{i-1} t_{w_{i}} \bar{t}_{i+1} \ldots w_{k} \xrightarrow{(1)} \\
& w_{o} . . w_{i-1}{ }^{t w_{i}}\left(\omega_{v}\left(w_{i}\right)\right)^{-1} \omega_{v}\left(w_{i}\right) \bar{t}_{w_{i}+1} . . w_{k} \xrightarrow{(2)} \\
& w_{o} . . w_{i-1}{ }^{t \omega_{v}}\left(w_{i}\right){ }^{\tau} w_{i+1} \ldots w_{k} \xrightarrow{(3)} \\
& w_{0} . . t^{\mu_{i-1}} w_{i-1}\left(w_{i}\right) w_{i+1} t^{\mu_{i+2}} \ldots w_{k} \equiv: w^{\prime}
\end{aligned}
$$

$a d$ (1), $\left|\omega_{v}\left(w_{i}\right)\right|$ trivial relators are inserted.
ad (2), $\mathrm{w}_{\mathrm{i}}\left(\omega_{\mathrm{v}}\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1} \overline{\overline{\mathrm{H}}} \mathrm{e}$, and so $\mathrm{w}_{\mathrm{i}}\left(\omega_{\mathrm{v}}\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1}$ can be derived to e in $\langle\Sigma$; L\rangle within no more than $\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{w}_{\mathrm{i}}\left(\omega_{\mathrm{v}}\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1}\right)\right|$ steps.

- ad (3), by $\left|\omega_{v}\left(w_{j}\right)\right|_{v}$ steps of the following kind (3) can be realized:
(a) Insertion of $\bar{t} u_{j}^{-1} t \bar{t} u_{j} t$ by using trivial relators.
(b) Deletion of $v_{j} \overline{\mathrm{t}} \mathrm{u}_{\mathrm{j}}^{-1} \mathrm{t}\left(\equiv\left(\overline{\mathrm{t}} \mathrm{u}_{\mathrm{j}} t v_{\mathrm{j}}^{-1}\right)^{-1}\right)$ and of $\mathrm{t} \overline{\mathrm{t}}$.

In this way $u_{j} t$ is derived from $t v_{j}$. Hence within at most

$$
m_{1}^{+}=\left|\omega_{v}\left(w_{i}\right)\right|+\left|k_{H}\left(w_{i}\left(\omega_{v}\left(w_{i}\right)\right)^{-1}\right)\right|+\left|\omega_{v}\left(w_{i}\right)\right|_{v} \cdot\left(4+\max _{j=1, \ldots, \ell}\left|u_{j}\right|\right)
$$

steps the first t-pinch of w can be pinched out.
since

$$
m_{1}^{+} \leqslant\left|\omega_{v}\left(w_{i}\right)\right| \cdot\left\{5+\max _{j=1, \ldots, \ell}\left|u_{j}\right|\right\}+\left|k_{H}\left(w_{i}\left(\omega_{i}\left(w_{i}\right)\right)^{-1}\right)\right|=: m_{2}^{+}
$$

$$
\left|\omega_{v}\left(w_{i}\right)\right|_{v} \leqslant\left|\omega_{v}\left(w_{i}\right)\right| .
$$

Let $A=\max _{j=1, \ldots, \ell}\left\{\left|u_{j}\right|,\left|v_{j}\right|\right\}$, and $a \in \sum$. Now the first t-pinch of w can be pinched out in at most $c|w|{ }^{d} \cdot\{5+A\}+\left|k_{H}(a(c+1)|w| d)\right|$ steps. Let w_{i}^{\prime} be the word formed by pinching out the first i t-pinches of w.

ASSERTION. Let $i \in\left\{1,2, \ldots, \frac{1}{2}|w|_{t}\right\}$. Then $\left|w_{i}^{\prime}\right| \leqslant(c+1)^{d^{2 i-1}}|w|^{d^{i}}$, and w_{1}^{\prime} war be derived from $\mathrm{w}_{\mathrm{i}-1}^{\prime}$ within $\mathrm{m}_{\mathrm{i}}^{\prime}$ steps where $\mathrm{m}_{\mathrm{i}}^{\prime}$ satisfies

$$
m_{i}^{\prime} \leqslant(5+A) \cdot(c+1)^{d^{2 i-1}}|w|^{d^{i}}+\left|k_{H}\left(a^{(c+1)^{d^{2} i-1}}|w|^{d^{i}}\right)\right|
$$

Proof. By induction on i.
$i=1: w_{1}^{\prime} \equiv w^{\prime}$, then $\left|w_{1}^{\prime}\right|=|w|-\left|w_{i}\right|-2+\left|\varphi^{\mu}\left(w_{i}\right)\right|$

$$
\begin{aligned}
& \leqslant|w|+c\left|w_{i}\right|^{d} \leqslant|w|+c|w|^{d} \leqslant(c+1)|w|^{d} \leqslant(c+1)^{d}|w|^{d} . \\
& m_{1}^{\prime} \leqslant c|w|^{d}(5+A)+\mid k_{H}\left(a^{\left.(c+1)|w|^{d}\right)\left.\left|\leqslant(5+A)(c+1)^{d}\right| w\right|^{d}+k_{H}\left(a^{(c+1)^{d}|w|^{d}}\right) \mid} .\right.
\end{aligned}
$$

$i \gtrdot i+1: w_{i+1}^{\prime}$ is formed from w_{i}^{\prime} by pinching out a t-pinch, then

$$
\begin{aligned}
& \left|w_{i}^{\prime}+1\right| \leqslant\left|w_{i}^{\prime}\right|+c\left|w_{i}^{\prime}\right|^{d} \leqslant(c+1)\left|w_{i}^{\prime}\right|^{d} \\
\leqslant & (c+1) \cdot\left\{(c+1)^{d^{2 i}-1}|w|^{d^{i}}\right\}^{d}=(c+1)^{d^{2 i}+1}|w|^{d^{i+1}} \\
\leqslant & (c+1)^{d^{2 i}+1}|w|^{d^{i+1}}
\end{aligned}
$$

and

$$
\begin{aligned}
m_{i+1}^{\prime} & <(5+A) c\left|w^{\prime}\right|^{d}+\left|k_{H}\left(a^{(c+1)}\left|w_{i}^{\prime}\right|^{d}\right)\right| \\
& <(5+A) c \cdot\left\{(c+1)^{d^{2 i}-1}|w| d^{i}\right\}^{d}+\left|k_{H}\left(a^{(c+1)} \cdot\left\{(c+1)^{d^{2} i-1}|w|{ }^{d i}\right\}^{d}\right)\right| \\
& =(5+A) c(c+1)^{2} d^{2 i}|w|^{d+1}+\left|k_{H}\left(a^{(c+1)} \mathrm{d}^{2 i+1}|w| d^{i+1}\right)\right| \\
& \leqslant(5+A)(c+1)^{2 i+1}|w|^{i+1}+\left|k_{H}\left(a^{(c+1)} d^{2 i+1}|w| d^{d^{i}+1}\right)\right|
\end{aligned}
$$

let w^{+}be the word formed by pinching out all t-pinches of w. Then $\left.w^{+} \equiv w_{\frac{1}{2}}^{\prime}|w| t \right\rvert\,$, and hence

$$
\left|w^{+}\right| \leqslant(c+1)^{d^{|w|} t^{-1}}|w|^{d^{\left(\frac{1}{2}\right)|w|}} t \leqslant\{(c+1)|w|\}{ }^{|w|}
$$

The derivation from w to w^{+}can be performed within

$$
\begin{aligned}
m^{+}=\sum_{i=1}^{\frac{1}{2}|w|} m_{i}^{\prime} & \leqslant \sum_{i=1}^{\frac{1}{2}|w| t}\left\{(5+A)(c+1)^{d^{2} i-1}|w|^{d^{i}}+k_{H}\left(a^{(c+1)^{d^{2 i}-1}|w|^{d^{i}}}\right) \mid\right\} \\
& \left.\leqslant \frac{1}{2}|w|_{t} \cdot\{5+A)(c+1)^{\left.d^{\mid w}\right|_{w} d^{|w|}}+\left|k_{H}\left(a((c+1)|w|)^{d^{|w|} \mid}\right)\right|\right\}
\end{aligned}
$$

steps. At last, w^{+}is derived to e in $\langle\Sigma ; \mathrm{L}\rangle$ within at most

$$
\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{w}^{+}\right)\right| \leqslant\left|\mathrm{k}_{\mathrm{HI}}\left(\mathrm{a}((\mathrm{c}+1)|\mathrm{w}|)^{\mathrm{d}|\mathrm{w}|}\right)\right| \text { steps. }
$$

Hence there is a derivation from w in the given presentation of H^{*} of length

$$
\begin{aligned}
& \text { not exceeding } \\
& \qquad m_{w}=m^{+}+\left|k_{H}\left(w^{+}\right)\right| \leqslant|w|\left\{(5+A)((c+a)|w|)^{d^{|w|}}+\mid k_{H}\left(a^{\left.\left.((c+1)|w|)^{|w|}\right) \mid\right\} .}\right.\right.
\end{aligned}
$$

Lefine $d_{1}(w) \equiv a^{d|w|}, d_{2}(w) \equiv V K\left(w, a^{c+1}\right)$, and

$$
\mathrm{d}_{3}(\mathrm{w}, \mathrm{e}) \equiv \mathrm{a}, \mathrm{~d}_{3}(\mathrm{w}, \mathrm{us}) \equiv \operatorname{VK}\left(\mathrm{d}_{3}(\mathrm{w}, \mathrm{u}), \mathrm{w}\right) .
$$

Then

$$
d_{1} \in E_{3}\left(\underline{\sum} \cup\{\underline{t}\}\right), d_{2} \in E_{2}\left(\underline{\sum} \cup\{\underline{t}\}\right), d_{3} \in E_{3}\left(\underline{\sum} \cup\{t\}\right), d_{2}(w) \equiv w^{c+1},
$$ $\left|\mathrm{d}_{2}(\mathrm{w})\right| \equiv(\mathrm{c}+1)|\mathrm{w}|$, and $\mathrm{d}_{3}(\mathrm{w}, \mathrm{u}) \equiv \mathrm{a}|\mathrm{w}||\mathrm{u}| . \quad \mathrm{d}_{4}(\mathrm{w}) \equiv \mathrm{d}_{3}\left(\mathrm{~d}_{2}(\mathrm{w}), \mathrm{d}_{1}(\mathrm{w})\right)$ is a function from $E_{3}(\underline{\Sigma} U\{t\})$ satisfying

$$
\begin{aligned}
& \text { satisfying } \\
& \mathrm{d}_{4}(\mathrm{w}) \equiv \mathrm{a}^{((\mathrm{c}+1)|\mathrm{w}|)^{\mathrm{d}}|\mathrm{w}|}
\end{aligned}
$$

and $k(w) \equiv \operatorname{VK}\left(\operatorname{vk}\left(V K\left(d_{4}(w), a^{5+A}\right), \mathrm{k}_{H}{ }^{\circ} \mathrm{d}_{4}(\mathrm{w})\right), \mathrm{w}\right)$ is from $\mathrm{E}_{\mathrm{n}}\left(\underline{\sum} \cup\{t\}\right)$ satisfying:

$$
|\mathrm{k}(\mathrm{w})|=|\mathrm{w}|\left\{(5+\mathrm{A})((\mathrm{c}+1)|\mathrm{w}|)^{\left.\mathrm{d}^{\mid w}\right|^{2}}+\mathrm{k}_{\mathrm{H}}\left(\mathrm{a}((\mathrm{c}+1)|\mathrm{w}|)^{\mathrm{d}^{\mid w} \mid}\right) \mid\right\}
$$

Hence k is an E_{n}-bound for the given presentation of H^{*}. Thus this presentation is E_{n}-d.b.
1.7. PROPOSITION. The $\mathrm{H}=\langle\Sigma ; \mathrm{L}\rangle$ be E_{n}-b.d. for some $\mathrm{n} \geqslant 2$. If $\mathrm{H}^{*}=$ $\left\langle\mathrm{H}, \mathrm{t} ; \mathrm{tu}_{\mathrm{i}} \mathrm{tu}_{\mathrm{i}}^{-1}: \mathrm{i}=1, \ldots, \ell\right\rangle$ is an HNN -extension of H with the identity as isomorphism and with a rewriting function $\omega \in \mathrm{E}_{\mathrm{n}}(\underline{\Sigma})$ for $\left\langle\mathrm{u}_{1}, \ldots, \mathrm{u}_{\ell}\right\rangle_{\mathrm{H}}$, then the given presentation of H^{*} is E_{n}-d.b.

Proof. Define $f(e) \equiv e, f(w s) \equiv f(w) s, s \in \Sigma$,

$$
f\left(w t^{\mu}\right) \equiv\left\{\begin{array}{lll}
u v & \text { if } & f(w) \equiv u t^{\mu} v, \\
f(w) t^{\mu} & \text { otherwise }
\end{array}\right.
$$

f is a t-reduction fuction for H^{*} satisfying $|f(w)| \leqslant|w|$. Let $w \in(\underline{\Sigma} \cup\{t\})^{*}$ with $w \bar{H}_{\mathrm{H}}{ }^{e}$. Then $f(w) \in \underline{\Sigma}^{*}$ and $f(w) \overline{\bar{H}}$ e. Therefore w can be derived to e by first pinching out all the t-pinches of w and thereafter deriving the resulting word to e in $\langle\Sigma ; \mathrm{L}\rangle . \omega(\mathrm{e}) \equiv \mathrm{e}$ may be assumed. Then according to Lemma 1.2 there is a monotonous function $\omega_{2} \in E_{n}(\underline{\text { V }})$ satisfying $|\omega(w)| \leqslant\left|\omega_{2}(w)\right|$ and $\left|\omega_{2}(u)\right|+\left|\omega_{2}(v)\right| \leqslant\left|\omega_{2}(u v)\right|$ for every $w, u, v \in \underline{\Sigma}^{*}$.

Let $k_{H} \in E_{n}(\underline{\Sigma})$ be an E_{n}-bound for $\left\langle\Sigma\right.$; L>, and let $w \in w_{o} t^{\mu_{1}} . . t^{\mu_{r_{w_{r}}}}$,
 This t-pinch can be pinched out by the following sequence of operations:

$$
\begin{aligned}
w \equiv & w_{o} t^{\mu_{1}} w_{1} \ldots w_{i-1} t^{\mu_{i}} w_{w_{i}} t^{\mu_{i+1}} w_{w_{i+1}} \ldots w_{r} \xrightarrow{(1)} \\
& w_{o} \ldots w_{i-1} t^{\mu_{i}}{ }_{w_{i}}\left(\omega\left(w_{i}\right)\right)^{-1}{ }_{\omega\left(w_{i}\right) t} t^{\mu_{i+1}} w_{i+1} \ldots w_{r} \xrightarrow{(2)} \\
& \left.w_{o} \ldots w_{i-1} t^{\mu_{i}}{ }_{\omega\left(w_{i}\right)}\right) t^{\mu_{i+1}} w_{w_{i+1}} \cdot w_{r} \xrightarrow{(3)} \\
& w_{0} \ldots t^{\mu_{i-1}} w_{w_{i-1}} \omega\left(w_{i}\right) w_{i+1} t^{\mu_{i+2}} \ldots w_{r} \xrightarrow{(4)} \\
& w_{0} \ldots t^{\mu_{i-1}} w_{i-1} w_{i}\left(\omega\left(w_{i}\right)\right)^{-1} \omega\left(w_{i}\right) w_{i+1} t^{\mu_{i+2}} \ldots w_{r} \xrightarrow{(5)} \\
& w_{0} \ldots t^{\mu_{i-1}} w_{i-1} w_{i} w_{i+1} t^{\mu_{i+2}} \ldots w_{r} \equiv: w^{\prime} .
\end{aligned}
$$

$a d$ (1), $\left|\omega\left(\mathbf{w}_{\mathbf{i}}\right)\right|$ trivial relators are inserted.
ad (2), $w_{\mathrm{i}}\left(\omega\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1} \underset{\mathrm{H}}{=} \mathrm{e}$, and hence $\mathrm{w}_{\mathrm{i}}\left(\omega\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1}$ can be derived to e in ε; L> within at most $\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{w}_{\mathrm{i}}\left(\omega\left(\mathrm{w}_{\mathrm{i}}\right)\right)^{-1}\right)\right|$ steps.
ad (3), $\left|\omega\left(w_{i}\right)\right|_{\mathrm{u}}$ steps of the following form:
$\mu_{i}=-1$: (a) Insertion of $t u_{j}^{-1} u_{j} \bar{t}$ by using trivial relators.
(b) Deletion of $E u_{j} \mathrm{Tu}_{j}^{-1}$

In this way $u_{j} \bar{\tau}$ is derived from $\bar{\tau} u_{j}$.

(b) Deletion of $u_{j} \bar{\tau} u_{j}^{-1} t\left(\equiv\left(\bar{t} u_{j} t u_{j}^{-1}\right)^{-1}\right)$ and of $t \bar{t}$:

$$
t u_{j} \rightarrow t u_{j} \bar{E} u_{j}^{-1} t \bar{t} u_{j} t \rightarrow t \bar{t} u_{j} t \rightarrow u_{j} t
$$

$a d(4), w_{i}\left(\omega\left(w_{i}\right)\right)^{-1}$ can be derived from e by inverting the derivation of (2).
ad (5), $\left|\omega\left(w_{i}\right)\right|$ trivial relators are deleted.
Hence the t-pinch of w can be pinched out within

$$
\begin{aligned}
& m^{\prime} \leqslant\left|\omega\left(w_{i}\right)\right|+\left|k_{H}\left(w_{i}\left(\omega\left(w_{i}\right)\right)^{-1}\right)\right|+\left|\omega\left(w_{i}\right)\right|_{u} \cdot\left(4+{ }_{j=1} \max _{j, \ldots, \ell}\left|u_{j}\right|\right) \\
& +\mid k_{H}\left(w_{i}\left(\omega\left(w_{i}\right)\right)^{-1}\left|+\left|\omega\left(w_{i}\right)\right| \leqslant\left|\omega\left(w_{i}\right)\right| \cdot\left(6+\max _{j=1, \ldots, \ell}\left|u_{j}\right|\right)+2\right| k_{H}\left(w_{i}\left(\omega\left(w_{i}\right)\right)^{-1}\right) \mid\right. \\
& \text { steps, since }\left|\omega\left(w_{i}\right)\right|_{u} \leqslant\left|\omega\left(w_{i}\right)\right| \text {. Let } A=\max _{j=1, \ldots, \ell}\left|u_{j}\right| \text {. Then } \\
& m^{\prime} \leqslant\left|\omega\left(w_{i}\right)\right|(6+A)+2\left|k_{H}\left(w_{i}\left(\left(w_{i}\right)\right)^{-1}\right)\right| \leqslant 2\left|k_{H}\left(w_{i} \omega_{2}\left(w_{i}\right)\right)\right|+(6+A)\left|w_{2}\left(w_{i}\right)\right|, \\
& \text { since }\left|\omega\left(w_{i}\right)\right|=\left|\omega\left(w_{i}\right)^{-1}\right| \leqslant\left|\omega_{2}\left(w_{i}\right)\right| \text {, and } k_{H} \text { being monotonous } \\
& \leqslant 2\left|k_{H}\left(a^{|w|+\left|\omega_{2}\left(a^{|w|}\right)\right|}\right)+(6+A)\right| \omega_{2}\left(a^{|w|}\right),
\end{aligned}
$$

since $\left|w_{i}\right| \leqslant|w|$, and k_{H} and ω_{2} being monotonous.
$\frac{1}{2}|w|_{t} t$-pinches must be pinched out. Of course $\left|w^{\prime}\right| \leqslant|w|$. Hence w can be derived to $f(w)$ in the given presentation of H^{*} within m^{*} steps where m^{*} satisfies:

$$
\begin{aligned}
\mathrm{m}^{*} & \leqslant \frac{1}{2}|\mathrm{w}|_{\mathrm{t}} \cdot\left(2\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{a}^{|\mathrm{w}|+\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|}\right)\right|+(6+\mathrm{A})\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|\right\} \\
& \leqslant|\mathrm{w}|\left\{\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{a}^{|\mathrm{w}|+\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|}\right)\right|+(3+\mathrm{A})\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|\right\} .
\end{aligned}
$$

$\mathrm{f}(\mathrm{w})$ is derived to e in $\langle\Sigma ; \mathrm{L}\rangle$ within at most $\tilde{\mathrm{m}} \leqslant\left|\mathrm{k}_{\mathrm{H}}{ }^{\circ} \mathrm{f}(\mathrm{w})\right| \leqslant\left|\mathrm{k}_{\mathrm{H}}\left({ }^{(\mathrm{a}}{ }^{|\mathrm{w}|}\right)\right|$ steps, as $|f(w)| \leqslant|w|$ and k_{H} being monotonous. Hence w can be derived to e in the given presentation of H^{*} within m steps where m satisfies:

$$
m=m^{*}+\tilde{m} \leqslant|w|\left\{\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{a}^{|\mathrm{w}|+\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|}\right)\right|+(3+\mathrm{A})\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|\right\}+\left|\mathrm{k}_{\mathrm{H}}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|
$$

Define

$$
k(w) \equiv \operatorname{vk}\left(\operatorname{vK}\left(v k\left(k_{H} \circ v k\left(U_{a}(w), U_{a}{ }^{\circ} \omega_{2} \circ U_{a}(w)\right), v K\left(\omega_{2} \circ U_{a}(w), a^{3+A}\right)\right), w\right), k_{H} \circ U_{a}(w)\right) .
$$

Then $k \in E_{n}\left(\underline{\sum} \cup\{t \underline{t}\}\right)$ and k satisfies:

$$
|k(w)|=|w|\left\{\left|k_{H}\left(\mathrm{a}^{|w|+\left|w_{2}\left(\mathrm{a}^{|w|}\right)\right|}\right)\right|+(3+\mathrm{A}) \cdot\left|\omega_{2}\left(\mathrm{a}^{|\mathrm{w}|}\right)\right|\right\}+\mathrm{k}_{\mathrm{H}}\left(\mathrm{a}^{|\mathrm{w}|}\right) \mid
$$

Therefore k is an E_{n}-bound for the given presentation of H^{*}, which is E_{n}-d.b. herewith.

2. AN EMBEDDING INTO DERIVATION-BOUNDED GROUPS.

The proposition in Sec. 1 give examples of embeddings of d.b. groups into d.b. groups. But now the question arises whether a group possessing no E_{n}-d.b. presentation can be cambedded into a $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. group. The answer to this question is given by the next theorem and its corollary.
2.1. THEOREM. Let $\mathrm{G}=\langle\Sigma ; \mathrm{L}\rangle$ be f.g. with $\mathrm{WP}_{\mathrm{G}} \in \mathrm{E}_{\mathrm{n}}(\Sigma)$, i.e. the word problem for the given presentation $\left\langle\Sigma ; \mathrm{L}>\right.$ of G is E_{n}-decidable, for some $\mathrm{n} \geqslant 3$. Then there is a finite $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. presentation $\langle\Delta ; \mathrm{M}\rangle$ of a group H such that G can be embedded in H .

Proof. Starting with $\langle\Sigma ; \mathrm{L}\rangle$ we construct $\langle\Delta ; M\rangle$ in a few number of steps. Let $\hat{\mathrm{L}}=\left\{\mathrm{w} \in \underline{\Sigma}^{*} \mid \mathrm{w} \overline{\bar{G}}_{\mathrm{G}} \mathrm{e}\right\}$, and $\widehat{\mathrm{G}}=\langle\Sigma ; \hat{\mathrm{L}}\rangle$. Then $\widehat{\mathrm{G}}$ is f.g., WP $\hat{\mathrm{G}} \in \mathrm{E}_{\mathrm{n}}(\underline{\Sigma}), \hat{\mathrm{G}} \cong \mathrm{G}$, via the identity mapping, and for each word $W \in \underline{\Sigma}^{*}$ with $w \hat{\overline{\hat{G}}}$ e there is a derivation of length 1 in $\langle\Sigma ; L\rangle$, because $w=e$ in \hat{G} implies $w \in \hat{L}$.

Let $\tilde{\Sigma}=\{\tilde{s} \mid s \in \Sigma\}$ be a copy of Σ satisfying $\tilde{\Sigma} \cap \underline{\Sigma}=\emptyset, \Sigma_{0}=\Sigma \cup \tilde{\Sigma}$, and let $\varphi: \underline{\Sigma}^{*} \rightarrow \Sigma_{0}^{*}$ be defined by $\varphi(\mathrm{s}) \equiv \mathrm{s}, \varphi(\overline{\mathrm{s}}) \equiv \tilde{s}$. Let $L_{0}=\left\{w \in \tilde{\Sigma}_{0}^{*} \mid \exists u \in \hat{\mathrm{~L}}: \varphi(\mathrm{u}) \equiv \mathrm{w}\right\}$ and $G_{0}=\left\langle\Sigma_{0} ; L_{0}\right\rangle$, then G_{o} is f.g., $W_{G_{0}} \in E_{n}\left(\Sigma_{0}\right), G_{o} \cong G$ via φ, the defining relators of G_{0} do contain only positive letters, and for every word $w \in \Sigma_{-0}^{*}$ with ${ }^{w} \overline{\bar{G}}_{0}$ e there is a derivation of length $\leqslant 2|w|+1$ in $\left\langle\Sigma_{0} ; L_{0}\right\rangle$, because at first all letters of the form $\bar{s}(s \in \Sigma)$ contained in w must be substituted by \tilde{s} by means of the derivation $\bar{s} \rightarrow \bar{s} s \tilde{s} \rightarrow \tilde{s}$, then all the letters of the form $\overline{\tilde{s}}(\tilde{s} \in \tilde{\Sigma})$ contained in w must be substituted by s by means of the derivation $\overline{\tilde{s}} \rightarrow \overline{\tilde{s}} \tilde{\mathrm{~s}} \mathrm{~s} \rightarrow \mathrm{~s}$, as $\operatorname{ss}, \tilde{s} s \in L_{0}$, and at last the produced word $w^{\prime} \in \Sigma_{0}^{*}$ can be deleted in one step.
L_{o} is an E_{n}-decidable subset of Σ_{0}^{*}. Hence there is a Turing Machine $T=$ $\left(\Sigma_{0}, Q_{T}, q_{0}, \beta\right)$, where Q_{T} is a finite set of states, $q_{0} \in Q_{T}$ is the initial state of T, and β is the transition function of T, and a function $g \in E_{n}\left(\Sigma_{o}\right)$ such that T computes the characteristic function of the set L_{O} and g is a time bound . for T .

Now T can be modified to get a Turing Machine $\tilde{T}=\left(\tilde{\Sigma}_{0}, \tilde{Q}_{\tilde{T}}, q_{0}, \tilde{B}\right)$, where $\tilde{\Sigma}_{0}$ is a finite alphabet including Σ_{0}, satisfying the following two conditions:
(1) There is a special state $q_{a} \in Q_{T}^{\sim}$ called the acceptingstate such that starting at $q_{o} w, \tilde{T}$ eventually reaches the state q_{a} if and only if $w \in L_{0}$.
(2) There is a function $k_{T} \in E_{n} \in\left(\tilde{\Sigma}_{0} \cup Q_{T} \tilde{)}\right.$) satisfying for all $u, v \in \Sigma_{0}^{*}$, $q_{j} \in Q_{T}^{\sim}$: starting at the configuration $u q_{j} v$, \tilde{T} halts within $\left|k_{T}\left(u g_{j} v\right)\right|$ steps if \tilde{T} reaches the accepting states q_{a} afeter all.
Especially it is E_{n}-decidable whether starting at $u_{j} v, \tilde{T}$ eventually reaches the state q_{a}. For that \tilde{T} works as follows:

Start:

The tape is divided into four tracks. The input is copied onto track № 1 . Below the leftmost letter of the copied input a " 1 " is printed onto track № 4.

Loop :

Track № 1 is copied onto track № 2, and track № 4 is copied onto track № 3 . If a letter a $\in \tilde{\Sigma}_{0}-\Sigma_{0}$ is contained in w, or if a letter a $\not \equiv 1$ is contained in the inscription of track № $4, \widetilde{T}$ halts at the state q_{-}, a nonaccepting state. Otherwise \vec{T} simulates T starting at $q_{0} w$ on its track $^{\circ}{ }^{\circ} 2$. Ahead of each step of this simulation a " 1 " is erased from track № 3. If T halts and accepts, then \tilde{T} halts at state q_{a}. If T halts without accepting, then \tilde{T} halts at state q_{-}. If the whole inscription of track № 3 is erased before reaching the end of the computation of T, then \widetilde{T} breaks off the simulation of T, cleans track № 2, adds a " 1 " to the inscription of track $№ 4$, and starts the loop again. For carrying out this computation, \widetilde{T} needs two additional tracks as scratch paper to note the direction of the beginning of the inscription of track № 1 , and with it the beginning of the inscriptions of tracks № 3 and № 4, and the direction in which the actual cell of track № 2 is situated in relation to the position of the head of \widetilde{T}.

Now the following is satisfied: for $w \in L_{0}$ starting at $q_{0} w, T$ halts and accepts. Hence starting at $q_{0}, w \tilde{T}$ reaches the state q_{a}. On the other hand if starting at $q_{0} w, \tilde{T}$ reaches the state q_{a}, then $w \in \Sigma_{0}^{*}$, and T halts and accepts starting at $q_{0} w$, i.e. $w \in L_{o}$.

With the input $w \in \Sigma_{0}^{*}, \quad T$ does not carry out more than $|g(w)|$ steps, \tilde{T} simulates T step by step. Each step of this simulation takes \tilde{T} at most $0(|\mathrm{~g}(\mathrm{w})|)$ steps, for \breve{T} must erase a " 1 " from track $N o$. 3 . Altogether, \widetilde{T} simulates $\left.\underset{i=1}{|g(w)|}\right|_{i}$ $=0\left(|g(w)|^{2}\right)$ steps of T.

Hence \tilde{T} needs $0\left(|\mathrm{~g}(\mathrm{w})|^{3}\right)$ steps to carry through the simulation of T with input w. If \tilde{T} is started at an arbitrary configuration $\mathrm{uq}_{\mathrm{j}} \mathrm{v}$, it simulates T starting at a configuration depending on $u q_{j} v$ on track № 2 for as many steps as the inscription of track № 3 tells. This takes no more than $0\left(|u v|^{2}\right)$ steps. Afterwards \tilde{T} simulates T, starting at a well defined initial configuration $q_{0} w$,
where w is the inscription of track $N=1$ of the configuration $u q_{j} v$, if $w \in \Sigma_{0}^{*}$. Otherwise \tilde{T} halts at state $q_{\text {. }}$. As $n \geqslant 3$ there is a function $k_{\tilde{T}} \in E_{n}\left(\tilde{\Sigma}_{\mathrm{O}} \cup Q_{\tilde{T}}\right)$ satisfying condition (2).

According to [Av-Mad1], p.89, a semigroup $\Delta_{\tilde{T}}=(S U Q ; \pi)$ where $S=\tilde{\Sigma}_{0} \cup\{h\}$, $\mathrm{Q}=\mathrm{Q}_{\mathrm{T}} \cup\{q\}$, and

$$
\pi=\left\{F_{i} q_{i} G_{i}=H_{i} q_{i_{2}} K_{i} \mid q_{i_{1}}, q_{i_{2}} \in Q, F_{i}, G_{i}, H_{i}, K_{i} \in S^{*}, \quad i=1, \ldots, N\right\}
$$

can be constructed from \tilde{T}, satisfying:
(3) $\forall w \in \tilde{\Sigma}_{0}^{*}\left(h g_{0} w h \overline{\bar{\Delta}}_{\tilde{T}} q \Leftrightarrow w \in L_{0}\right)$.
(4) If $u q_{j} v=q$, then there is a derivation from $u q_{j} v$ to q in $\Delta_{\tilde{T}}$ of length not exceeding $2\left|\mathrm{k}_{\mathrm{T}}\left(\mathrm{uq}_{\mathrm{j}} \mathrm{v}\right)\right|+\left|u q_{j} \mathrm{v}\right|$, because it may be assumed that k_{T} is non-decreasing ([Weih]).

Let $u, v \in S^{*}$ with $u q_{j} v \overline{\bar{\Delta}}_{T} q$. Then $u q_{j} v \equiv q$, or $u \equiv h u^{\prime}, v \equiv v^{\prime} h, q_{j} \equiv q$, and starting at $u^{\prime} q_{j} v^{\prime}$, \widetilde{T} reaches the accepting state q_{a}. But for doing so, \tilde{T} does not need more than $\left|k_{T}\left(u^{\prime} q_{j} v^{\prime}\right)\right|$ steps. Hence $u q_{j} v \equiv h u^{\prime} q_{j} v^{\prime} h$ can be derived to hun $q_{\text {aah }}$ in $\Delta_{\tilde{T}}$ within at most $\left|k_{\tilde{T}}\left(u^{\prime} q_{j} v^{\prime}\right)\right|$ steps. Of course $|\tilde{u} \tilde{v}|<\left|u^{\prime} v^{\prime}\right|+$ $\left|\mathrm{k}_{\tilde{T}}\left(u^{\prime} q_{j} v^{\prime}\right)\right|$, since \tilde{T} can increase the length of its tape inscription by at most one per step. It takes $\Delta_{\tilde{T}}|\tilde{u} \tilde{v}|$ steps to derive $h q_{a} h$ from hus $q_{a} \tilde{v}$ by erasing $\tilde{u} \tilde{v}$; $\mathrm{hq} \mathrm{a}_{\mathrm{h}} \mathrm{c}$ can be derived to q within one step. Hence Δ_{T} can derive q from $\mathrm{uq}_{\mathrm{j}} \mathrm{v}$ within at most

$$
2\left|k_{\tilde{T}}\left(u_{j} v\right)\right|+\left|u^{\prime} v^{\prime}\right|+1 \leqslant 2\left|k_{\tilde{T}}\left(u_{q} v\right)\right|+\left|u_{j} v\right| \text { steps. }
$$

Define $k_{\Delta}(w) \equiv \operatorname{vk}\left(v k\left(k_{\tilde{T}}(w), k_{\tilde{T}}(w)\right), w\right)$. Then $k_{\Delta} \in E_{n}(S U Q)$, and k_{Δ} bounds the derivation of words $w \in(S \cup Q)^{*}$ with $w=\overline{\bar{\Delta}}_{\tilde{T}} q$ to q in $\Delta_{\tilde{T}}$.

Now a Britten tower of groups is constructed:

$$
\begin{aligned}
& D_{0}=\langle x ; \emptyset\rangle \\
& D_{1}=\left\langle x, S ; \text { xs }=x^{2}(s \in S)\right\rangle \\
& D_{2}=\left\langle D_{1}, Q ; \emptyset\right\rangle \\
& D_{3}=\left\langle D_{2}, r ; \bar{r}_{i} \bar{F}_{i} q_{i} G_{i} r_{i}=\bar{H}_{i} q_{i}{ }_{2} k_{i}, \bar{r}_{i} s x r_{i}=s \bar{x}(s \in S, i=1, \ldots, N)\right\rangle \text { where } \\
& \left.\overline{s_{i_{1}} \cdot s_{i_{m}}}\right) \equiv \bar{s}_{i_{1}} . . \bar{s}_{i_{m}} \\
& D_{4}=\left\langle D_{3}, t ; \overline{\text { t. }}=x, \bar{t} r t=r(r \in R)\right\rangle \\
& D_{5}=\left\langle D_{4}, k ; \bar{k} x k=x, \bar{k} r k=r(r \in R) \text {, } \bar{k} q t q k=\bar{q} t q\right\rangle \\
& \cong\left\langle\mathrm{D}_{5}, \mathrm{t}_{\mathrm{o}}, \mathrm{k}_{\mathrm{o}} ; \mathrm{t}_{\mathrm{o}}=\left(\overline{\mathrm{h}} \mathrm{q}_{\mathrm{o}}\right)^{-1} \mathrm{t}\left(\overline{\mathrm{~h}} \mathrm{~g}_{\mathrm{O}}\right), \mathrm{k}_{\mathrm{o}}=\mathrm{hkh}\right\rangle \\
& \cong\left\langle D_{3}, t_{0}, k_{0} ;\left(\overline{\mathrm{h}} \mathrm{q}_{0} \overline{\mathrm{t}}_{\mathrm{o}} \bar{o}_{0} \mathrm{~h}\right) a\left(\overline{\mathrm{~h}} \mathrm{q}_{0} \mathrm{t}_{0} \bar{q}_{0} h\right)=a,\left(\bar{h}_{\mathrm{K}} \mathrm{~h}\right) \mathrm{a}\left(\overline{\mathrm{~h}} \mathrm{k}_{\mathrm{o}} \mathrm{~h}\right)=\mathrm{a}(\mathrm{a}\{x\} \cup \mathrm{R})\right. \text {, } \\
& \left.\left(\overline{\mathrm{h}} \mathrm{k}_{0} \mathrm{~h}\right) \mathrm{gh}_{0} \mathrm{t}_{0} \overline{\mathrm{~h}}_{\mathrm{h}}\left(\overline{\mathrm{~h}}_{0} \mathrm{~h}\right)=\overline{\mathrm{q}} \mathrm{~h}_{0} \mathrm{t}_{0} \bar{q}_{0} \mathrm{hq}\right\rangle=:\left\langle\mathrm{S}_{6} ; \mathrm{M}_{6}\right\rangle=\mathrm{D}_{6} \\
& \Sigma_{0}^{\prime}=\left\{s^{\prime} \mid \mathrm{s} \in \Sigma_{0}\right\}_{0} \quad{ }^{\prime}: \Sigma_{0}^{*} \rightarrow \Sigma_{-0}^{\prime * *} \text { is defined by }\left(\mathrm{s}^{\mu}\right)^{\prime} \equiv \mathrm{s}^{\prime \mu} \text {, } \\
& \left(\tilde{s}^{\mu}\right)^{\prime} \equiv \tilde{s}^{\prime \mu}, L_{0}^{\prime}=\left\{W^{-0} \in \Sigma_{0}^{\prime}{ }^{-}| | \exists u \in L_{0}: u^{\prime} \equiv w\right\} \text {, and } G^{\prime}=\left\langle\Sigma_{0}^{\prime} ; L_{o}^{\prime}\right\rangle .
\end{aligned}
$$

Then $\mathrm{G}^{\prime}=\mathrm{G}_{\mathrm{o}}$ via ' .

$$
\begin{aligned}
& H_{0} \neq D_{6} \times G^{\prime}=\left\langle S_{6} \cup \Sigma_{0}^{\prime} ; M_{6}, L_{0}^{\prime}, a s^{\prime}=s^{\prime} a\left(a \in S_{6}, s^{\prime} \in \Sigma_{0}^{\prime}\right)\right\rangle
\end{aligned}
$$

$H_{2}=\left\langle H_{1}, z ; \bar{z} s z=s, \bar{z} \bar{k}_{0} s k_{0} z=\bar{k}_{0} s k_{0}\left(s \in \Sigma_{0}\right), \bar{z} t_{0} z=t_{0} d, \bar{z} \bar{k}_{0} t_{0} k_{o} z=\bar{k}_{0} t_{0} k_{0} d\right\rangle$ $\Delta=S_{6} \cup \Sigma_{0}^{\prime} \cup\{d, z\}$.
Let M be the set of defining relators of the given presentation of H_{2} and $M=\tilde{M}-\left(L_{0}^{\prime}-\left\{s^{\prime} \tilde{s}^{\prime}, \tilde{s}^{\prime} s^{\prime} \mid s^{\prime} \in \Sigma^{\prime}\right\}\right)$ where $\Sigma^{\prime}=(\Sigma)^{\prime} \subseteq \Sigma_{0}^{\prime}$

REMARK. $\forall s \in \Sigma(s \bar{s}, \bar{s} s \in \hat{L}) \Rightarrow \forall s \in \Sigma\left(s \tilde{s}, \tilde{s} s \in L_{0}\right) \Rightarrow \forall s^{\prime} \in \Sigma^{\prime}\left(s^{\prime} \tilde{s}^{\prime}, \tilde{s}^{\prime} s^{\prime} \in L_{0}^{\prime}\right)$
Let $H=\langle\Delta ; M\rangle$. In $[A v-M a d 1]$ Satz 1.1, p.184, Avenhaus and Madlener prove: 11 is f.p., $\mathrm{WP}_{\mathrm{H}} \in \mathrm{E}_{\mathrm{n}}(\underline{\Delta})$, and G embeds in H . It remains to show that $\left.<\Sigma ; \mathrm{M}\right\rangle$ is $E_{n}-\mathrm{d} . \mathrm{b}$.

According to [Ott] $515, \mathrm{pp} .156-173$, the following assertions are valid:
D_{O} is E_{O}-d.b.
$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$, and D_{4} are $\mathrm{E}_{3}-\mathrm{d} . \mathrm{b}$.
D_{5} is E_{n}-d.b.
For proving these assertions propositions 1.4 until 1.7 are used. At the last part one has to construct a rewriting function $\omega \in E_{n}(\{\underline{x, t}\} \cup S \underline{S} \cup Q \cup \underline{R})$, for $\left.<x, q{ }^{2} q, R\right\rangle_{D_{4}}$. After that, proposition 1.7 can be applied. Analogously there is an E_{n}-rewriting function for $\left\langle h x \bar{h}, h r \bar{h}, h \bar{q} h q_{0} t_{0} \bar{q}_{0} h q \bar{h}>\right.$ in $D_{4}^{\prime}=\left\langle D_{3}, t_{0}\right.$; $\left(\bar{h} q_{0} \bar{t}_{0} \bar{q}_{0} h\right)$ • $a\left(\bar{h} q_{0} t_{0} \bar{q}_{0} h\right)=a \quad(a \in\{x\} \cup R)>$ where D_{4}^{\prime} is $E_{3}-$ d.b. just like D_{4}. Hence D_{6} is E_{n}-d.b., too.
(5) $\langle\Sigma ; M\rangle$ is $E_{n}{ }^{-d}$ d.b.

Prook. a) Let $w^{\prime} \in \tilde{L}_{\mathrm{O}}^{\prime}=L_{\mathrm{O}}^{\prime}-\left\{\mathrm{s}^{\prime} \tilde{s}^{\prime}, \tilde{s}^{\prime} s^{\prime} \mid s^{\prime} \in \Sigma^{\prime}\right\}$, and $w \equiv\left(w^{\prime}\right)^{(\prime-1)} \in \mathrm{L}_{\mathrm{O}} \subseteq \Sigma_{\mathrm{o}}^{*}$. Then $h q_{0}$ wh $\bar{\Delta}_{\tilde{T}} q$, and hence $\mathrm{k}_{\mathrm{o}}\left(\mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w}\right) \overline{\mathrm{D}}_{6}\left(\mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w}\right) \mathrm{k}_{\mathrm{o}}$, due to [Av-Mad1], p. 185 . $w^{\prime} \in \tilde{L}_{\mathrm{O}}^{\prime} \subseteq \mathrm{L}_{\mathrm{O}}^{\prime} \Rightarrow w^{\prime}{\underset{H}{2}}^{=} \mathrm{e} \Rightarrow \mathrm{w}^{\prime} \underset{\mathrm{H}}{=} \mathrm{e}$, since $\mathrm{H} \cong \mathrm{H}_{2}$ via the identity. Now w^{\prime} can be derived to e in $\langle\Delta ; \mathrm{M}\rangle$ as follows:

$$
\begin{aligned}
& w^{\prime} \xrightarrow{(1)} w^{-1} \bar{t}_{0} w w^{-1} t_{0} w w^{\prime} d \bar{d} \xrightarrow{(2)} w^{-1} \bar{t}_{0} w w^{-1} t_{0} d w \bar{d} \xrightarrow{(3)} \\
& w^{-1} \bar{t}_{0} w \bar{z} w^{-1} t_{0} w z \bar{d} \xrightarrow{(4)} w^{-1} \bar{\tau}_{0} w \bar{z} \overline{\mathrm{k}}_{0} w^{-1} t_{0} w k_{o} z \bar{d} \xrightarrow{(5)} \\
& w^{-1} \bar{t}_{0} w \bar{k}_{0} w^{-1} t_{0} w k_{0} d \bar{d} \xrightarrow{(6)} w^{-1} \bar{t}_{0} w{ }^{w-1} t_{0} w d \bar{d} \xrightarrow{(7)} e .
\end{aligned}
$$

ad (1), $2|w|+2$ trivial relators are inserted.
ad (2), by using the commutation relators of $\mathrm{H}_{\mathrm{o}} \mathrm{w}$ and w^{\prime} can be mixed within at most $3|w|^{2}$ steps:

$$
w w^{\prime} \rightarrow s_{i_{1}} s_{i}^{\prime} s_{1} i_{2} s_{i}^{\prime} i_{2} . . s_{i_{\lambda}} s_{i}^{\prime} i_{\lambda}
$$

After that:

$$
\mathrm{s}_{\mathrm{i}_{1}} \mathrm{~s}_{\mathrm{i}}^{\prime} \ldots \mathrm{s}_{\mathrm{i}_{\lambda}} \mathrm{s}_{\mathrm{i}_{\lambda}}^{\prime} \mathrm{d} \rightarrow \mathrm{dd}_{\mathrm{i}_{1}} \mathrm{~s}_{1}^{\prime} \mathrm{dd}_{\mathrm{i}_{2}} \mathrm{~s}_{i_{2}}^{\prime} \mathrm{d} \mathrm{\bar{d}} . . \mathrm{s}_{\mathrm{i}_{\lambda}} \mathrm{s}_{\mathrm{i} \lambda}^{\prime} \mathrm{d} .
$$

(Insertion of $\lambda=|w|$ trivial relators)

$$
\rightarrow \mathrm{ds}_{\mathrm{i}_{1}} \mathrm{~s}_{\mathrm{i}_{2}} . . \mathrm{s}_{\mathrm{i}_{\lambda}}=\mathrm{dw}
$$

(Insertion of $\bar{s}_{i_{j}} \mathrm{~s}_{\mathrm{i}}{ }_{\mathrm{j}}$ and deletion of $\overline{\mathrm{d}} \mathrm{s}_{\mathrm{i}} \mathrm{s}^{\prime} \mathrm{S}_{\mathrm{j}} \mathrm{d}^{-}{ }_{\mathrm{i}}^{\mathrm{j}}$).
Taken altoyether this derivation doesn' t need more than $3|w|^{2}+3|w|$ steps.
$a d$ (3), $w^{-1} t_{0} d w \equiv \bar{s}_{i_{\lambda}} . . \bar{s}_{i_{1}} t_{0} \mathrm{ds}_{i_{1}} . . s_{i_{\lambda}}$

$$
\begin{aligned}
\rightarrow & \left(\bar{z} \bar{s}_{i_{\lambda}} z\right)\left(\bar{z} s_{i_{\lambda}} \dot{s}_{i_{\lambda}}\right) \ldots\left(\bar{z} \bar{s}_{i_{1}} z\right)\left(\bar{z} s_{i_{1}} z \bar{s}_{i_{1}}\right)\left(t_{o} d \bar{z} \bar{t}{ }_{o} z\right)\left(\bar{z} t_{o} z\right) \\
& \left(s_{i_{1}} \bar{z} \bar{s}_{i_{1}} z\right)\left(\bar{z} s_{i_{1}} z\right) \ldots\left(s_{i_{\lambda}} \bar{z} \bar{s}_{i_{\lambda}} z\right)\left(\bar{z} s_{i_{\lambda}} z\right)
\end{aligned}
$$

(Insertion of $6|w|+3$ trivial relators),

$$
\rightarrow \bar{z} \bar{s}_{i_{\lambda}}{ }^{z} \cdot . \bar{z} \bar{s}_{i_{1}} z^{z} t_{o} z \bar{z} s_{i_{1}} z . . \bar{z} s_{i_{\lambda}} z^{z}
$$

(Deletion of $2|w|+1$ relators of the form $\bar{z} s_{i_{j}} z \bar{s}_{i_{j}}, s_{i} \bar{z}^{\bar{z}} \bar{s}_{i_{j}}{ }^{z}, t_{o} \bar{d} \bar{z} \bar{\tau}_{o} z$),

$$
\rightarrow z w^{-1} t_{0} w z
$$

(Deletion of $2|\mathrm{w}|$ trivial relators).
Altogether (3) needs at most $|10| \mathrm{w}+4$ steps.
$a d$ (4), $\mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w} \rightarrow\left(\mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w} \bar{k}_{0} \mathrm{w}^{-1} \overline{\mathrm{t}}_{\mathrm{o}} \mathrm{wk} \mathrm{o}_{0}\right)\left(\bar{k}_{\mathrm{o}} \mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{wk} \mathrm{k}_{\mathrm{o}}\right)$
(Insertion of $2|w|+3$ trivial relators).
Let $\mathrm{k}_{6} \in \mathrm{E}_{\mathrm{n}}\left(\mathrm{S}_{6}\right)$ be an E_{n}-bound for $\left\langle\mathrm{S}_{6} ; \mathrm{M}_{6}\right\rangle$. Then $w^{-1} \mathrm{t}_{0} w \bar{k}_{0} w^{-1} \bar{t}_{0} w k_{0}$ can be de rived to e in $\left\langle\mathrm{S}_{6} ; \mathrm{M}_{6}\right\rangle$ within at most $\left|\mathrm{k}_{6}\left(\mathrm{w}^{-1} \mathrm{t}_{0} \mathrm{wk}_{0} \mathrm{o}^{-1} \overline{\mathrm{t}}_{\mathrm{o}} \mathrm{wk}_{\mathrm{o}}^{0}\right)\right|=\left|\mathrm{k}_{6}\left(\mathrm{x}^{4|\mathrm{w}|+4}\right)\right|$ steps. Hence;

$$
\left(\mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w} \overline{\mathrm{k}}_{\mathrm{o}} \mathrm{w}^{-1} \overline{\mathrm{t}}_{\mathrm{o}} \mathrm{wk}_{o}\right)\left(\overline{\mathrm{k}}_{\mathrm{o}} \mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{wk}_{o}\right) \rightarrow \overline{\mathrm{k}}_{\mathrm{o}} \mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{wk} \mathrm{~K}_{\mathrm{o}} \text { in }\langle\Delta ; \mathrm{M}\rangle
$$

within at most $\left|\mathrm{k}_{6}\left(\mathrm{x}^{4|\mathrm{w}|+4}\right)\right|$ steps, and (4) can be carried out within not more than $\left|k_{6}\left(x^{4|w|+4}\right)\right|+2|w|+3$ steps.

(Insertion of $10|w|+6$ trivial relators),

(Deletion of $2|w|+1$ relators of the form $\bar{z} \bar{k}_{o} s_{i}{ }_{j} k_{o} z \bar{k}_{o} \bar{s}_{i_{j}} k_{o}, \bar{k}_{o} s_{i}{ }_{j} k_{o} \bar{z} \bar{k}_{o} \bar{s}_{i_{j}} k_{o}{ }^{z}$ $\left.{ }^{\prime}\left(s_{i_{j}} \in \Sigma_{0}\right), \bar{z} \bar{k}_{0} t_{0} k_{0} z \overline{\mathrm{~d}} \bar{k}_{0} \bar{t}_{0} k_{0}\right)$,

$$
\rightarrow \overline{\mathrm{k}}_{\mathrm{o}}{ }^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{k}_{\mathrm{o}} d \overline{\mathrm{k}}_{\mathrm{o}} \mathrm{~s}_{1} \mathrm{k}_{\mathrm{o}} . . \overline{\mathrm{k}}_{\mathrm{o}} \mathrm{si}_{\lambda} \mathrm{k}_{0} .
$$

(Deletion of $|\mathrm{w}|+2$ trivial relators),

(Insertion of $5|w|$ trivial relators),

$$
\rightarrow \bar{k}_{o} w^{-1} t_{o} k_{o} d \bar{d} \bar{k}_{o} s_{i} k_{0} d . . d \bar{d}_{o} s_{i \lambda} k_{o} d
$$

(Deletion of $|w|$ relators of the form $\bar{k}_{o} s_{i}{ }_{j} k_{o} \bar{d}_{o} \bar{s}_{i_{j}} k_{o} d\left(s_{i j} \in \Sigma_{o}\right)$).

$$
\rightarrow \overline{\mathrm{k}}_{\mathrm{o}} \mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w} \mathrm{o}_{\mathrm{o}} .
$$

(Deletion of $2|w|$ trivial relators).

Hence (5) can be carried out within $21|w|+9$ steps.
$a d$ (6) , $\overline{\mathrm{k}}_{\mathrm{o}} \mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{wk} \mathrm{o}_{\mathrm{o}} \rightarrow\left(\overline{\mathrm{k}}_{\mathrm{o}} \mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{wk} \mathrm{o}_{\mathrm{o}} \mathrm{w}^{-1} \overline{\mathrm{t}}_{\mathrm{o}} \mathrm{w}\right)\left(\mathrm{w}^{-1} \mathrm{t}_{\mathrm{o}} \mathrm{w}\right)$
(Insertion of $2|w|+1$ trivial relators).
Hence $\bar{k}_{0} w^{-1} t_{0} w k_{0} w^{-1} \bar{t}_{0} w$ can be derived to e in $\left\langle S_{6} ; M_{6}\right\rangle$ within $\left|k_{6}\left(x^{4|w|+4}\right)\right|$, steps, and so $\left(\bar{k}_{0} w^{-1} t_{0} w_{k_{0}} w^{-1} \bar{t}_{0} w\right)\left(w^{-1} t_{0} w\right) \rightarrow w^{-1} t_{0} w$ in $\langle\Delta ; M\rangle$ within at most $\left|k_{6}\left(x^{4|w|+4}\right)\right|$ steps. Hence (6) doesn't need more than $\left|k_{6}\left(x^{4|w|+4}\right)\right|+2|w|+1$ steps altogether.
ad (7), $2|w|+2$ trivial relators are deleted.
Taken altogether, there is a derivation from w^{\prime} in $\langle\Delta ; M\rangle$ of length not exceeding $2\left|k_{6}\left(x^{4}|w|+4\right)\right|+3|w|^{2}+42|w|+21$. Define

$$
\mathrm{k}^{\prime}(\mathrm{w}) \equiv \operatorname{vk}\left(\operatorname{vk}\left(\mathrm{k}_{6} \mathrm{U}_{\mathrm{x}}\left(\mathrm{w}^{8}\right), \mathrm{k}_{6} \mathrm{U}_{\mathrm{x}}\left(\mathrm{w}^{8}\right)\right), \operatorname{VK}\left(\mathrm{VK}(\mathrm{w}, \mathrm{w}), \mathrm{x}^{66}\right)\right)
$$

Then $k^{\prime} \in E_{n}(\Delta), k^{\prime}$ is nondecreasing, for all $u, v \in \underline{\Delta}^{*}\left(\left|k^{\prime}(u)\right|+\left|k^{\prime}(v)\right| \leqslant\right.$ $\left.\left|k^{\prime}(u v)\right|\right)$ and for every $W^{\prime} \in L_{0}^{\prime}$ there is a derivation from w^{\prime} in $\langle\Delta ; M\rangle$ of length bounded by $\left|k^{\prime}\left(w^{\prime}\right)\right|$.
b) Let $w \in \underline{\Delta}^{*}$ with $|w|_{z}=0$ and $w \overline{\bar{H}}$ e, and so $w \overline{\bar{H}}$ e. According to the proof of Proposition 1.6 (a), w can be derived to e in H_{1} in the following way:

$$
w \xrightarrow{(1)} w^{\prime} \xrightarrow[\text { in } H_{0}]{(2)} \pi_{-6}\left(w^{\prime}\right) \pi_{\Sigma_{0}^{\prime}}^{\prime}\left(w^{\prime}\right) \xrightarrow[\text { in } D_{6}]{(3)} \pi_{\Sigma_{0}^{\prime}}^{\prime}\left(w^{\prime}\right) \xrightarrow[\text { in } G^{\prime}]{(4)} \text { e }
$$

(d-pinches are pinched out in H_{1}, in step (1))
This derivation can be simulated in $\langle\Delta ; M\rangle$:
ad (1), d-pinches are pinched out in the following way:

$$
\mathrm{d}^{-\mu} u d^{\mu} \rightarrow \overline{\mathrm{d}}^{\mu} u\left(\omega_{\mu}(u)\right)^{-1} \omega_{\mu}(u) \mathrm{d}^{\mu}
$$

(Insertion of $\left|\omega_{\mu}(u)\right|$ trivial relators),

$$
\rightarrow \quad \bar{d}^{\mu} u_{1} u_{2} \omega_{\mu}(u) d^{\mu}
$$

(Within $3\left(|u|+\left|\omega_{\mu}(u)\right|\right)^{2}$ steps $u\left(\omega_{\mu}(u)\right)^{-1}$ can be transformed into $u_{1} u_{2}$ where $\dot{u}_{1} \in S_{-6}^{*}$ and $\left.u_{2} \in \Sigma_{-0}^{\prime *}\right)$,

$$
\rightarrow \quad \overline{\mathrm{d}}^{\mu} \mathrm{u}_{2} \omega_{\mu}(\mathrm{u}) \mathrm{d}^{\mu}
$$

$\left(u\left(\omega_{\mu}(u)\right)^{-1} \overline{\bar{H}} \mathrm{e}\right.$, and so $u_{1} \overline{\overline{\mathrm{D}}}_{6} \mathrm{e}$ and $u_{2} \overline{\bar{G}}^{\prime}$ e. But then u_{1} can be derived to e in $<S_{6} ; M_{6}>$ within at most $\left|\mathrm{k}_{6}\left(\mathrm{u}_{1}\right)\right|$ steps $)$,

$$
\rightarrow \overline{\mathrm{d}}^{\mu} \omega_{\mu}(\mathbf{u}) \mathrm{d}^{\mu}
$$

(In ${\underset{z}{2}}^{2}, \bar{s}^{\prime}$ is substituted by s^{\prime}, and $\overline{\tilde{s}}^{\prime}$ is substituted by $s^{\prime}: \bar{s}^{\prime} \rightarrow \bar{s}^{\prime} s^{\prime} \tilde{s}^{\prime} \rightarrow \tilde{s}^{\prime}$, a.d $\overline{\tilde{s}}^{\prime} \rightarrow s^{\prime} \tilde{s}^{\prime} \tilde{\tilde{s}}^{\prime} \rightarrow s^{\prime}$. Let \tilde{u}_{2} be the result of these substitutions. Then \tilde{u}_{2} can be derived from u_{2} within at most $2\left|u_{2}\right|$ steps. Since $e \overline{\bar{G}}^{\prime} u_{2} \overline{\bar{G}}, \tilde{u}_{2}, \tilde{u}_{2} \in L_{0}^{\prime}$, and because of $(a), \tilde{u}_{2}$ can be derived to e in $\langle\Delta ; M\rangle$ within no more than $\left|k^{\prime}\left(\tilde{u}_{2}\right)\right|$ steps $)$,

$$
\rightarrow \varphi^{\mu}(u)
$$

$\left(7\left|\omega_{\mu}(u)\right|\right.$ steps of the form: Insertion of trivial relators, deletion of trivial relators, and deletion of a d-relator).

$$
\text { Let } A_{1}=\left\langle s s^{\prime}, \bar{k}_{0} s k_{0}\left(s \in \Sigma_{0}\right), t_{0}, \bar{k}_{0} t_{0} k_{0}\right\rangle H_{0}, B_{1}=\left\langle s, \bar{k}_{0} s k_{0}\left(s \in \Sigma_{0}\right), t_{0}, k_{0} t_{0} k_{0}\right\rangle H_{0},
$$ and φ and $\bar{\varphi}$ denote function realizing the isomorphisms $A_{1} \rightarrow B_{1}$ and $B_{1} \rightarrow A_{1}$, respectively. According to [Av-Madl] Lemma 1.4, p. 187, there are constants $\mathrm{C} \geqslant 1$ and $d \geqslant 2$ sastisfining $\left|\omega_{A_{1}}(w)\right|,\left|\omega_{B_{1}}(w)\right|,|\varphi(w)|,|\bar{\varphi}(w)| \leqslant c|w|$. Hence for pinching out the d-pinch $\overline{\mathrm{d}} \mu_{u d^{\mu}}$ one doesn't need more than

$$
\begin{aligned}
& 8 c|u|^{d}+3(c+1)^{2}|u|^{2 d_{+}}+\left|k_{6}\left(x^{(c+1)|u|^{d}}\right)\right|+2(c+1)|u|^{d}+\left|k^{\prime}\left(x^{\left.(c+1)|u|^{d}\right)}\right)\right| \\
\leqslant & 13(c+1)^{2}|u|^{2 d^{d}}+k_{6}\left(x^{\left.(c+1)|u|^{d}\right)\left|+\left|k^{\prime}\left(x^{(c+1)|u|^{d}}\right)\right|\right.}\right.
\end{aligned}
$$

steps in $\langle\Delta ; M\rangle$. Let w_{i}^{\prime} be the word formed from w by pinching out i d-pinches. Then by the proof of Prop. 1.6 (a),

$$
\left|w_{i}^{\prime}\right| \leqslant(c+1)^{d^{2} i-1}|w|^{d^{i}}
$$

Therefore every d-pinch $\overline{\mathrm{d}}^{\mu} \mathrm{ud}^{\mu}$ pinched out at (1) is bounded by

$$
|u| \leqslant(c+1)^{|w|}|w|^{|w|}
$$

Hence there is a function $k_{1}^{\prime} \in E_{n}(N)$ bounding the number of steps needed for carrying out (1), since $n \geqslant 3$. Of course w^{\prime} satisfies $\left|w^{\prime}\right| \leqslant((c+1)|w|)^{d|w|}$.
ad (2), by using the commutation relators of H_{0} and some trivial relators, w^{\prime} can be transformed into $\pi_{S_{6}}\left(w^{\prime}\right) \pi_{\Sigma_{0}}^{\prime}\left(w^{\prime}\right)$, within at most $3\left|w^{\prime}\right|^{2}$ steps. So this transformation can be bounded by a function $k_{2}^{\prime} \in E_{n}(N)$.
ad (3), there is a derivation from $\pi_{S_{6}}\left(\mathrm{w}^{\prime}\right)$ in $\left\langle\mathrm{S}_{6} ; \mathrm{M}_{6}\right\rangle$ consisting of no more than $\left|k_{6}{ }^{\circ} \underline{S}_{6}\left(w^{\prime}\right)\right| \leqslant\left|k_{6}\left(x^{\mid w^{\prime}} \mid\right)\right|$ steps, and so there is a function $k_{3}^{\prime} \in E_{n}(N)$ bounding this derivation.
$a d$ (4), within at most $2\left|\pi_{\Sigma_{0}^{\prime}}^{\prime}\left(w^{\prime}\right)\right|$ steps each $\bar{s}^{\prime \prime}$ and each $\overline{\tilde{s}}^{\prime}$ contained in $\pi_{\sum_{0}^{\prime}}^{\prime}\left(w^{\prime}\right)$ can be substituted by ${ }^{-1}{ }^{\prime}$ or s^{\prime}, respectively. In this way $\pi_{\underline{E}_{0}^{\prime}}^{\prime}\left(w^{\prime}\right)$ is transformed into a word $\tilde{W} \in L_{0}^{\prime}$ which can be derived to e in $\langle\Delta ; M\rangle$ within at $\operatorname{most}\left|k^{\prime}\left(x^{|\tilde{w}|}\right)\right| \leqslant\left|k^{\prime}\left(x^{\left|w^{\prime}\right|}\right)\right|$ steps because of (a). Hence (4) is bounded by a function $k_{4}^{\prime} \in \mathrm{E}_{\mathrm{n}}(\mathrm{N})$, too.

So the re is a function $\tilde{k} \in E_{n}(N)$ bounding the derivations from w to e in $\langle\Delta ; M\rangle$ for all $w \in \Delta^{*}$ satisfying $|w|_{Z}=0$ and $w{ }_{H}^{=}$e.
c) Let $w \in \Delta^{*}$ with $|w|_{z}>0$ and $w \overline{\bar{H}} e$, and so $w \overline{\bar{H}}_{2}$ e. According to the proof of Prop. 1.6 (a), w can be derived to e in H_{2} as follows:

$$
w \xrightarrow{(1)} w^{\prime} \xrightarrow[\text { in } \mathrm{H}_{1}]{(2)} \mathrm{e}
$$

(z-pinches are pinched out in H_{2}, in steps (1)).
This derivation can be simulated in $\langle\Delta ; M\rangle$:
ad (1), z-pinches are pinched out in the following way

$$
\bar{z}^{\mu} u z^{\mu} \rightarrow \bar{z}^{-\mu} u\left(\omega_{\mu}(u)\right)^{-1} \omega_{\mu}(u) z^{\mu}
$$

(Insertation of $\left|\omega_{\mu}(u)\right|$ trivial relators),

$$
\rightarrow \quad \bar{z}^{-\mu} \omega_{\mu}(u) z^{\mu}
$$

$\left.\left(u\left(\omega_{\mu}(u)\right)^{-1} \bar{H}_{1} \text { e and } \underset{\sim}{\mid u\left(\omega_{\mu}\right.}(u)\right)^{-1}\right|_{z}=0$. Hence $u\left(\omega_{\mu}(u)\right)^{-1}$ can be derived to e in $\left\langle\Delta ; M>\right.$ within at most $k\left(|u|+\left|\omega_{\mu}(u)\right|\right)$ steps because of (b)),

$$
\rightarrow \varphi^{\mu}(u)
$$

$\left(8\left|\omega_{\mu}(u)\right|\right.$ steps of the form: insertion of trivial relators, deletion of a z-relator, and deletion of trivial relators). Let

$$
A_{2}=\left\langle s, \bar{k}_{0} s k_{0}\left(s \in \sum_{0}\right), t_{0}, \bar{k}_{0} t_{0} k_{0}\right\rangle H_{1}, B_{2}=\left\langle s, \bar{k}_{0} s k_{0}\left(s \in \sum_{0}\right), t_{0} d, \bar{k}_{0} t_{0} k_{0} d\right\rangle H_{H_{1}},
$$

and φ and $\bar{\varphi}$ denote functions realizing the isomorphisms $A_{2} \rightarrow B_{2}$ and $B_{2} \rightarrow A_{2}$, respectively. Because of [Av-Madl] Lemma 1.5 , p.187, there are constants $\alpha, \beta \geqslant 2$ satisfying:

$$
\left|\omega_{A_{2}}(w)\right|,\left|\omega_{B_{2}}(w)\right|,|\varphi(w)|,|\bar{\varphi}(w)| \leqslant \alpha|w|^{\beta} .
$$

Hence for pinching out the z-pinch $z^{\mu} u z^{\mu}$ one only needs $\alpha|u|^{\beta}+\tilde{k}\left((\alpha+1)|u|^{\beta}\right)+$ $8 \alpha|\mathrm{u}|^{\beta}=9 \alpha|\mathrm{u}|^{\beta}+\tilde{\mathrm{k}}\left((\alpha+1)|\mathrm{u}|^{\beta}\right)$ steps.

Let w_{i}^{\prime} denote the word formed from w by pinching out $i z$-pinches. By the proof of Prop. 1.6 (1) , $\left|w_{i}^{\prime}\right| \leqslant(\alpha+1)^{\beta^{2 i-1} \mid w}|w|^{\beta^{i}}$. Hence any z-pinch $z^{\mu} u z^{\mu}$ pinched out at (1) satisfies $|u| \leqslant((\alpha+1)|w|)^{\beta|w|}$, and therefore the number of steps necessary to realize (1) can be bounded by a function $k_{1}^{\prime \prime} \in E_{n}(N)$. Furthermore $\left|w^{\prime}\right| \leqslant((\alpha+1)|w|)^{\beta|w|}$.
$a d$ (2), $\left|w^{\prime}\right|_{z}=0$ and $e \overline{\bar{H}} w^{\bar{H}} w^{\prime}$. Hence, because of (b), w^{\prime} can be derived to e in $\left\langle\Delta ; \mathbb{M}\right.$ within at most $\tilde{k}\left(\left|w^{\prime}\right|\right)$ steps and so, there is a function $k_{H}^{\prime} \in E_{n}(\Delta)$ bounding the derivations of all words $w \in \Delta^{*}$ with $w{ }_{H}^{=} \mathrm{e}$ in $\langle\Delta ; M\rangle$. Therefore $\langle\Delta ; \mathrm{M}\rangle$ is $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$.
2.2. COROLLARY. Every countable group G having on E_{n}-decidable word probLem for some $\mathrm{n} \geqslant 3$ can be embedded into a f.p. group H possessing a finite $\mathrm{E}_{\mathrm{n}}{ }^{-}$ d.b. presentation.

Proof. Every countable group G having an E_{n}-decidable word problem for some $n \geqslant 2$ can be embedded into a f.g. group G_{1} having an E_{n}-decidable word problem too ([Ott] Thm. 12.1, p.117).

3. F.P. E_{n}-DERIVATION BOUNDED GROUPS AND THE WORD PROBLEM.

For finite $E_{n}-$ d.b. presentations of groups there is a standard natural algorithm for solving the word problem. But of what degree of conplexity is this algorithm, and how is this degree of complexity related to the selected finite presentation?
3.1. THEOREM. Let $\mathrm{H}=\langle\Sigma ; \mathrm{L}\rangle$ be f.p. and $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. for some $\mathrm{n} \geqslant 3$. Then the standard natural algorithm for $\langle\Sigma$; L\rangle, as it is described in the introduction,
is an E_{n}-algorithm. In particular the word problem for $\langle\Sigma ; \mathrm{L}\rangle$ is E_{n}-decidable.
Proo6. Let $\Sigma=\left\{s_{1}, \ldots, s_{m}\right\}, L=\left\{w_{1}, \ldots, w_{\ell}\right\} \subseteq \Sigma^{*}$, and $k \in E_{n}(\underline{\Sigma})$ be an E_{n}-bound for $\langle\Sigma ; \mathrm{L}\rangle$. Without loss of generality $m \geqslant 3$ may be assumed, for otherwise auxiliary generators and defining relators can be added.

Tf $w \in \Sigma^{*}$ with $w \underset{\bar{H}}{ } \mathrm{e}$, then there is a derivation from w in $\langle\Sigma ; L\rangle$ of length not exceeding $|k(w)|$. During each step of this derivation a word $u \in \operatorname{Rel}=$ $L \cup L^{-1} U\{s \bar{s}, \bar{s} s \mid s \in \Sigma\}$ is inserted or deleted. L contains ℓ, and Σ contains m elements only. Hence there are only $2(\ell+m)$ possible choices for u. Define λ as the length of the longest possible word u. Then every word v found in that bounded derivation from w satisfies $\left.|v| \leqslant|w|+\left\lceil\frac{\lambda}{2}\right\rceil \cdot k(w) \right\rvert\,$, where $\lceil\mu\rceil$ denotes the least natural number greater than or equal to μ, because in order to derive a word of greater length from w more than $\frac{1}{2}|\mathrm{k}(\mathrm{w})|$ steps are necessary, but then in order to derive this word to e more than $\frac{1}{2}|k(w)|$ steps are needed, again contradicting the fact that the derivation from w is bounded by $|k(w)|$. Define

$$
\mu_{w}=|w|+\Gamma \frac{\lambda}{2} 1 \cdot|k(w)| .
$$

A step of a derivation can be encoded as a triple (i_{1}, i_{2}, i_{3}) of natural numbers such that $i_{1} \in\{0,1\}, i_{2} \in\{1,2, \ldots, 2(\ell+m)\}$, and $i_{3} \in\left\{0,1,2, \ldots, \mu_{w}\right\}$. Here $i_{1}=0$ stands for "insertion", $i_{1}=1$ for "deletion" of the relator with the number i_{2} at the position described by i_{3}. Hence there are $\nu_{w}=2 \cdot 2 \cdot(\ell+m) \cdot$ $\left(\mu_{w}+1\right)$ different steps which can be chosen in a derivation of w. Therefore there are not more than $\left(\nu_{m}\right)|k(w)|$ possible derivations from w of length $|k(w)|$. In order to decide $w \underset{\bar{H}}{\bar{H}}$ e, it is sufficient to apply these derivations one after another to w, and to test whether one of these derivations produces e. Define $\mathrm{f}_{1}(\mathrm{e}) \equiv \mathrm{e}, \quad \mathrm{f}_{2}(\mathrm{e}) \equiv \mathrm{s}_{1}, \quad \mathrm{f}_{1}(\mathrm{ws}) \equiv \mathrm{f}_{2}(\mathrm{w}), \quad \mathrm{f}_{2}(\mathrm{ws}) \equiv \mathrm{vk}\left(\mathrm{f}_{1}(\mathrm{w}), \mathrm{s}_{1}\right)$ then $\mathrm{f}_{1}, \mathrm{f}_{2} \in$ $\mathrm{E}_{1}(\underline{\Sigma})$, satisfying

$$
f(w)=s^{r \frac{|w|}{2} 1} \quad f_{(w)}=s^{\quad \frac{|w|+1}{2} 1}
$$

Let $\mathbb{M L}(w) \equiv v k\left(U_{S_{1}}(w), V K\left(U_{S_{1}} \circ k(w), f_{1}\left(\mathrm{~s}_{1}^{\lambda}\right)\right)\right.$ where $\lambda=\max _{u \in \operatorname{Re} 1}|u|$. Then ${ }_{0} L \in E_{n}(\underline{\Sigma})$ and

$$
\mathbb{M L}(w) \equiv s_{1}^{|w|+r \frac{\lambda}{2} \imath \cdot|k(w)|} \equiv s_{1}^{\mu_{W}}
$$

Each step in a derivation is described by a triple

$$
\left(i_{1}, i_{2}, i_{3}\right) \in\{0,1\} \times\{1,2, \ldots, 2(\ell+m)\} \times\left\{0,1, \ldots, H_{w}\right\} \text {, and so it can be encoded }
$$ as a wọd over Σ, namely as

$$
s_{1}^{i_{1}+1} s_{2}^{i_{2}} s_{3}^{i_{3} 3^{+1}}
$$

which is a word of length not exceeding $2+2(\ell+m)+\mu_{w}+1=2(\ell+m)+3+|w|+r \frac{\lambda}{2} \uparrow \cdot|k(w)|$. Hence a derivation of w can be described by a word of length at most

$$
\left(2(\ell+m)+3+|w|+\Gamma \frac{\lambda}{2} 7 \cdot|k(w)|\right) \cdot|k(w)| .
$$

Let

$$
\mathrm{LDA}(\mathrm{w}) \equiv \operatorname{VK}\left(\mathrm{vk}\left(\mathrm{~s}_{1}^{2(\ell+\mathrm{m})+3}, \mathrm{ML}(\mathrm{w})\right), \mathrm{k}(\mathrm{w})\right)
$$

then LDA $\in E_{n}(\underline{\Sigma})$ satisfying

$$
\operatorname{LDA}(\mathrm{w}) \equiv \mathrm{s}_{1}^{\left.\left(2(\ell+\mathrm{m})+3+|\mathrm{w}|+\Gamma \frac{\lambda}{2}\right\rceil \cdot|\mathrm{k}(\mathrm{w})|\right) \cdot|\mathrm{k}(\mathrm{w})| .}
$$

In order to decide whether $w \overline{\bar{H}} \mathrm{e}$ is valid or not one only has to check whether there is a word u of length at most $|\operatorname{LDA}(w)|$ describing a derivation from w to e in $\langle\Sigma ; L\rangle$. Now a Turing Machine M will be defined to test for a pair $(w, u) \in$ $\left(\Sigma^{*}\right)^{2}$ whether u is the description of a derivation from w, by trying yo apply u to w. In an initial part of u is the description of a derivation from w to e, then M will halt with its output tape being empty, but if u doesn't meet this condition, then M will print the letter " $\mathrm{s}{ }^{1}$ " and halt.
Let M have two input tapes, one output tape, and four auxiliary tapes.

1) w is the inscription of the first input tape, and u is the inscription of the second one.
2) w is copied onto the first auxiliary tape, while u is copied onto the second one. This can be done within $2|\mathrm{w}|+2|\mathrm{u}|+3$ steps. i.e. amount of time (A.t. $)=2|w|+2|u|+3$.
3) The elements of the set Rel are printed onto the third auxiliary tape separated by a ' b ", respectively.
A.t. $\leqslant 2(\lambda+1) \cdot 2 \cdot(\ell+m) \leqslant 8 \lambda(\ell+m)$.

I1:

I2 :

\uparrow
A2 :

$\ldots b$	u	b..

A3:

\uparrow
4) If u starts with a letter $s \not \equiv s_{1}$, then outputs s_{1} and halts. A.t. $=3$. If u starts with s_{1}, then mind "insertion". A.t. $=3$.
If u starts with s_{1}^{2}, then mind "deletion". A.t. $=4$.
If u starts with s_{1}^{i} for an $i>2$, then outputs s_{1} and halts. A.t. $=4$.
A2:

If u^{\prime} starts with a letter $s \not \equiv s_{2}$, then outputs s_{1} and halts. A.t. $=2$.

If u^{\prime} starts with s_{2}^{i}, then for i-1 times M puts the head of its third auxiliary tape onto the next symbol ' b ' to the right of the actual position of the head. After that this head perfoms one step to the right. A. $t . \leqslant \mathrm{i}(\lambda+1)+1$.
If M reads a ' b " on its third auxiliary tape, then output s_{1} and halts. A.t. $=2$. Otherwise, the head of A3 is pointing to the relator which shall be inserted or deleted from w.

A2:

If $u^{\prime \prime}$ starts with a letter $s \neq s_{3}$, then output s_{1} and halts A.t. $=2$.
If $u^{\prime \prime}$ starts with s_{3}^{j}, then the operation R (i.e. make a step to the right) is executed on A1, j-1 times. A.t. $=j$.
If the head of A 1 is now pointing at a cell containing ' b ", and if M has to delete the relator marked on $A 3$, then M prints " s_{1} " and halts. A.t. $=2$. If the head of $A 1$ is pointing at a cell containing ' b ", if $\mathrm{j} \geqslant 2$, and if M has to insert the relator marked on A 3 , then M prints " s_{1} " and halts. A.t. $=2$. Otherwise, the head of A1 is pointing at the first letter of w which shal1 be erased or behind which the indicated relator shall be inserted.

A1:

$$
\mathrm{w} \equiv \mathrm{w}^{\prime} \mathrm{s} \mathrm{w}^{\prime \prime}
$$

5) Insertion: The indicated relator is copied from $A 3$ onto $A 4$, subsequent$l y w^{\prime \prime}$ is appended at the rigth end of this copy, and at last $w^{\prime \prime}$ is erased from A1. A.t. $\leqslant \lambda+|w|+1$.
If $j=1$, then the inscription of $A 4$ is copied onto A1, in the course of which it is erased from A4. Otherwise the inscription of A4 is appended to the inscription of A1 (w's), at which it is erased from A4. The head of A1 is put onto the first ' b " to the left of the inscription of A1.
A.t. $\leqslant|w|+2(|w|+\lambda+1)+|w|+\lambda+1=4|w|+3 \lambda+3$.

Deletion. The indicated relator is compared to the subword of w, beginning at the position the head of A 1 is pointing at. By doing so, the subword of w is erased. If this subword of w and the indicated relator do nos coincide, then M prints " s_{1} " and halts. Otherwise an initial part or an internal segment of w has been erased. In the first case the head of $A 1$ performs one step to the left, in the second case M appends the remained end of w to the remained initial part by using the tape $A 4$ as scratch paper. At last M puts the head of $A 1$ onto the first ' b ' to the left of the inscription of A1. A. $t . \leqslant \lambda+2|w|+\lambda+2+2|w|+1=$ $4|\omega|+2 \lambda+3$.

A1:

$w \equiv w^{\prime} w w^{\prime \prime}$

A2:

$u^{\prime \prime} \equiv \mathrm{s}_{3}{ }^{\mathrm{u}}$

A3:

A4:

6) The head of tape $A 3$ returns to the left.
A.t. $\leqslant(\lambda+1) \cdot 2 \cdot(1+m)+2 \leqslant 4 \lambda(1+m)+2$.

If the inscription of tape $A 1$ is e, then M halts because e has been derived from w. Otherwise M continues with step (4).
A.t. $=2$.

Of course M eventually halts satisfying $f_{M}(w, u) \equiv e$ iff an initial part of u is describing a derivation from w. Altogether M has the following amount of time.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{M}}(\mathrm{w}, \mathrm{u}) \leqslant & 2|\mathrm{w}|+2|\mathrm{u}|+3+8 \lambda(\ell+\mathrm{m})+|\mathrm{u}| \cdot\{4+|\mathrm{u}|(\lambda+1)+1+2+|\mathrm{u}|+2+ \\
& 5(|\mathrm{w}|+\lambda|\mathrm{u}|)+4 \lambda+4+4 \lambda(\ell+\mathrm{m})+2+2\} .
\end{aligned}
$$

(In the course of the computation way grow, but it cannot become larger than $|w|+|u|)$

$$
=2|w|+2|u|+3+8 \lambda(\ell+m)+|u| \cdot\{5|w|+(6 \lambda+2)|u|+4 \lambda(\ell+m+1)+17\}
$$

But λ, ℓ, m are constants, and so $f_{M} \in E_{2}(\underline{\Sigma})$ because of [Weih] Kap. 4.3, Satz 2 . Now we have:

$$
\begin{aligned}
& w_{H}=\text { e iff } \exists u \in \underline{\Sigma}^{*}\left(|u| \leqslant \operatorname{LDA}(w) \mid \text { and } f_{M}(w, u) \equiv e\right) \\
& \text { iff } \exists u \leqslant \operatorname{vk}\left(\operatorname{LDA}(w), s_{1}\right) \quad\left(f_{M}(w, u) \equiv e\right)
\end{aligned}
$$

But as $n \geqslant 3, E_{n}(\underline{\Sigma})$ is closed under bounded quantification and therefore $w \overline{\bar{H}} e$ is E_{n}-decidable by the standard n. a. implemented above. Hence, $W_{H} \in E_{n}(\underline{\Sigma})$.

Next we prove that E_{n}-derivation boundedness is an invariant of finite presentations.
3.2. THEOREM. Let $\mathrm{H}=\langle\Sigma ; \mathrm{L}\rangle$ be f.p. and $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. for some $\mathrm{n} \geqslant 1$. Then every finite presentation for H is E_{n}-d.b., too.

Proof. Let be Σ, L, and k as in the proof of Theorem 3.1, and let $\langle\Delta ; M\rangle$, $\Delta=\left\{t_{1}, \ldots, t_{r}\right\}, M=\left\{u_{1}, \ldots, u_{S}\right\} \subseteq \Delta^{*}$, be another finite presentation for H. Then, for all $s_{i} \in \Sigma$ there is $v_{i} \in \Delta^{+}$such that s_{i} and v_{i} define the same element of the group H. Define $f(e) \equiv \bar{e}, f\left(w s_{i}^{\mu}\right) \equiv v k\left(f(w), v_{i}^{\mu}\right)$. Then for all w $\in \sum_{-}^{*}$, w and $f(w)$ define the same element of the group H, and there is a constant $c_{1}>0$ such that $|f(w)| \leqslant c_{1} \cdot|w|$.
$\forall t{ }_{j} \in \Delta_{1} \exists x_{j} \in \Sigma^{+}, t_{j}$ and x_{j} define the same element of H. Moreover, $g(e) \equiv e, g\left(w t_{j}^{\mu}\right) \equiv v k\left(g(w), x_{j}^{\mu}\right)$. Then for all $w \in \Delta^{*}, w$ and $g(w)$ define the same element of H, and there is a constant $c_{2}>0$ such that $|g(w)| \leqslant c_{2} \cdot|w|$.

Then $\beta(w) \underset{\bar{H}}{\bar{H}} \alpha^{\circ} g(w) \overline{\bar{H}} \beta^{\circ} f \circ g(w)$, and so $w \overline{\bar{H}} f \circ g(w)$. Also $|f \circ g(w)| \leqslant c_{1}|g(w)| \leqslant$ $c_{1} \cdot c_{2} \cdot|w|$. Especially $t_{j}^{\mu}\left(f \circ g\left(t_{j}^{\mu}\right)\right)^{-1} \stackrel{H}{H}$ e. Hence for each $t_{j}^{\mu} \in \Delta$ there is a derivation from $t_{j}^{\mu}\left(f \circ g\left(t_{j}\right)\right)^{-1}$ to e in $\langle\Delta ; M\rangle$ of length $\ell_{j, \mu}$. If $c_{3}=\max \left\{\ell_{j, \mu}\right\}$ $j=1, \ldots, r, \mu \in\{ \pm 1\}\}$, then $f \circ g\left(t_{j}\right)$ can be derived from t_{j}^{μ} in $\langle\Delta ; M\rangle$ within at most $c_{4}=c_{3}+1$ steps by the following sequence:

$$
t_{j}^{\mu} \underset{c_{3}}{ } t_{j}^{\mu} \bar{t}_{j}^{\mu}\left(f \circ g\left(\bar{t}_{j}^{\mu}\right)\right)^{-1} \longrightarrow\left(f \circ g\left(\bar{t}_{j}^{\mu}\right)\right)^{-1} \equiv f \circ g\left(t_{j}^{\mu}\right)
$$

Hence every word $w \in \underline{\Delta}^{*}$ can be derived to $f \circ g(w)$ within $c_{4}|w|$ steps.
For every $u \in \operatorname{Re} 1, f(u) \overline{\bar{H}} e$, and therefore there is a derivation from $f(u)$ to e in $\langle\Delta ; M\rangle$ of length ℓ_{u}^{\prime}. If $c_{5}=\max \left\{\ell_{u}^{\prime} \mid u \in \operatorname{Re} 1\right\}$, then $f(u)$ can be derived to e in $\langle\Delta ; \mathrm{M}\rangle$ within no more than c_{5} steps. Let $\mathrm{w} \in \underline{\Delta}^{*}$ with $\mathrm{w} \overline{\overline{\mathrm{H}}} \mathrm{e}$, then $\mathrm{g}(\mathrm{w})$ $\overline{\overline{\mathrm{H}}}$ e, too. Hence there is a derivation from $g(w)$ to e in $\langle\Sigma ; L\rangle$ of length not exceeding $|k \circ g(w)| \leqslant\left|k\left(s_{1}^{c_{2}}|w|\right)\right|:$

$$
g(w) \equiv u_{o} \rightarrow u_{1} \rightarrow \ldots \rightarrow e
$$

But then

$$
f \circ g(w) \equiv g\left(u_{0}\right) \underset{c_{5}}{ } f\left(u_{1}\right) \xrightarrow[c_{5}]{c_{5}} f(e) \equiv e
$$

in $\langle\Delta ; M\rangle$, i.e. there is a derivation from $f \circ g(w)$ to e in $\langle\Delta ; M\rangle$ of length not exceeding $c_{5} \mid k\left(s_{1} c_{2}|w|\right.$. Now w can be derived to e in $\langle\Delta$; $M>$ in the following manner:

$$
\mathrm{w} \xrightarrow[c_{4}|w|]{ } f \circ g(w) \xrightarrow[c_{5}\left|k\left(s_{1} c_{2}^{|w|}\right)\right|]{ } e
$$

Of course there is an E_{n}-function bounding this derivation. Hence $<\Sigma$; $M>$ is E_{n}-d.b.

The last theorem shows that the property of being $\mathrm{E}_{\mathrm{n}}-\mathrm{d}$.b. does not depend on the chosen finite presentation. It merely depends on the group. Hence a f.p. group is called E_{n}-d.b. if one, and the rewith each, of its finite presentations is $E_{n}-$ d.b. A conclusion of the proof of the last theorem is the fact that even every f.g. presentation of a f.p. $E_{n}-$ d.b. group is $E_{n}-$ d.b. But of course each f.p. E_{n}-d.b. group has a f.g. $E_{o}-$ d.b. presentation, i.e. $\left\langle\Sigma ;\left\{w \in \sum^{*} \mid w \overline{\bar{G}}\right.\right.$ e\}>for example. Therefore the property of being E_{n}-d.b. does depend on the chosen f.g. presentation of a group.

It remains to answer the question wheter for f.p. E_{n}-d.b. groups with $\mathrm{n} \geqslant 3$ an optimal n.a. exists. The following theorem gives an answer in the negative sense.
3.3. THEOREM. For every $n \geqslant 4$ there is a f.p. group $\mathrm{G}_{5}=\left\langle\mathrm{S}_{5} ; \mathrm{L}_{5}\right\rangle$ such that the word problem for G_{5} is E_{3}-decidable, but $\left\langle\mathrm{S}_{5} ; \mathrm{L}_{5}\right\rangle$ is only E_{n}-, but not $\mathrm{E}_{\mathrm{n}-1}$-d.b. Especially there is no finite $\mathrm{E}_{3}-\mathrm{d} . \mathrm{b}$. presentation for G_{5}.

Proof. Let $n \geqslant 4$. The f.p. group G_{5} will now be constructed in the same manner as the group D_{5} has been constructed in the proof of Theorem 2.1. Only the underlying Turing Machine will be modified. Let $S^{\prime}=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $L=S^{\prime *}$, and let $T=\left(S^{\prime}, Q_{T}, q_{0}, B\right)$ be a single tape machine acting as follows. For every $w \in S^{\prime *}$, starting at $q_{0} w, T$ conputes $A_{n}(w, w)$ where $A_{n} \in E_{n}\left(S^{\prime}\right)$ denotes the n -th Ackermann function over S^{\prime} ([Weih]). After that T enters the accepting state q_{a} and halts. For carrying out this computation T has to execute more than $\left|A_{n}(w, w)\right|$ steps. On the other hand, T can be chosen in such a way that there exists a function $g \in E_{n}\left(S^{\prime}\right)$ which bounds the time, i.e. the number of steps T needs for its computation ([Weih] Kap.4.4, Satz 1).

Now ' T can be modified to get $\tilde{T}=\left(\tilde{S}, Q_{\tilde{T}}, q_{o}, \tilde{B}\right)$, where \tilde{S} is a finite alphabet containing S^{\prime} such that there is a function $\mathrm{k}_{\tilde{T}} \in E_{n}\left(\tilde{S} \cup Q_{\tilde{T}}\right)$ satisfying.
$\forall u, v \in S^{*} \forall q_{j} \in Q_{T}$, starting at the configuration $u q_{j} v, \tilde{T}$ halts in the accepting state q_{a} within at most $\left|\mathrm{k}_{\mathrm{T}}\left(u_{\mathrm{j}} \mathrm{v}\right)\right|$ steps.
This modification is done in the same way as the one used in the proof of theorem 2.1, with the only exception that the non-accepting state q_{o} is omitted, i.c. instead of entering q_{-}, \tilde{T} enters the accepting state q_{a}. Since for every $w \in S^{\prime *}$, starting at $q_{o} w, T$ halts in the state q_{a}, \tilde{T} also halts in the state q_{a}, starting at any configuration $u q_{j} v$. The execution time of T is bounded by the function $g \in E_{n}\left(S^{\prime}\right)$. Hence there is a function $k_{\tilde{T}} \in E_{n}\left(\tilde{S} \cup Q_{\tilde{T}}\right)$ satisfying the condition formulated above. Of course, starting at $\mathrm{q}_{\mathrm{o}} \mathrm{w}, \tilde{T}$ has to carry out more than $\left|A_{n}(w, w)\right|$ steps for avery $w \in S^{\prime *}$, too.

CLAIM. Let $S=\tilde{S} \cup\{h\}, Q=Q_{T} \cup\{q\}$ and $\Delta=(S \cup Q ; \pi)$, where $\pi=\left\{F_{i} q_{i}{ }_{1} G_{1}=\right.$ $\left.H_{i} q_{i_{2}} K_{i} \mid q_{i_{1}}, q_{i_{2}} \in Q, \mathrm{~F}_{\mathrm{i}}, \mathrm{G}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}}, \mathrm{K}_{\mathrm{i}} \in \mathrm{S}^{*}, \mathrm{i}=1, \ldots, \mathrm{~N}\right\}$ is the semigroup constructed from T according to $[A v-M a d l], p .89$. Then the following three conditions are satisfied:
(1) $\forall u, v \in S^{*} \forall q_{j} \in Q\left(u q_{j} v \overline{\bar{\Delta}} q \Leftrightarrow u q_{j} v \equiv q\right.$ or $u \equiv h u^{\prime}, v \equiv v^{\prime} h$, with $u^{\prime}, v^{\prime} \in \tilde{S}^{*}$ and $q_{j} \neq q$).
(2) $\forall W \in S^{*} \forall q_{j} \in Q\left(u q_{j} v{ }_{\Delta} q \rightarrow \exists\right.$ derivation from $u q_{j} v$ to q in Δ, of length not exceeding $\left.2\left|\mathrm{k} \tilde{\mathrm{T}}\left(\mathrm{uq}_{\mathrm{j}} \mathrm{v}\right)\right|+\left|\mathrm{uq}_{\mathrm{j}} \mathrm{v}\right|\right)$.
(3) $\forall_{w} \in S^{\prime *}\left(h q_{0} w h \overline{\bar{\Delta}} \mathrm{q}\right.$, but there is no derivation from hq_{0} wh to g in Δ of length $\left.\leqslant\left|A_{\mathrm{n}}(\mathrm{w}, \mathrm{w})\right|\right)$.

Proof.
ad (1) " $\Rightarrow{ }^{\prime \prime}$. Let $u q_{j} v \overline{\bar{\Delta}} q$, but $u q_{j} v \neq q$. Then $q_{j} \neq q, u \equiv h u^{\prime}$ and $v \equiv v^{\prime} h$ for some $u^{\prime}, v^{\prime} \in \tilde{S}^{*}$.

$a d$ (2) This can be proved in exactly the same way as the corresponding
statement in the proof of Theorem 2.1 was proved. Hence there is a function $k_{\Delta} \in E_{n}(S U Q)$ which bounds the derivations from $w \in(S U Q)^{*}$ to q in Δ if $w \overline{\bar{\Delta}} q$.
$a d$ (3) Δ simulates \tilde{T}, step by step. But starting at $q_{o} w, \tilde{T}$ has to execute more than $\left|A_{n}(w, w)\right|$ steps before reaching q_{a}. Therefore Δ has a carry out more than $\left|A_{n}(w, w)\right|$ steps to reach q, too, when started at hq ${ }_{0}$ wh.

Now a Britton tower of groups is constructed:
$G_{o}=\langle x, \emptyset\rangle, S_{o}=\{x\}$,
$G_{1}=\left\langle G_{0}, S ; \bar{S}_{x s}=x^{2}(s \in S)\right\rangle, S_{1}=S_{0} \cup S$,
$G_{2}=\left\langle G_{1}, Q ; \emptyset\right\rangle, S_{2}=S_{1} \cup Q$,
$G_{3}=\left\langle G_{2}, R ; \bar{r}_{i} \bar{F}_{i} q_{i} G_{i} r_{i}=\bar{H}_{i} q_{i} k_{i}, \bar{r}_{i} s x r_{i}=s \bar{x}(s \in S, 1 \leqslant i \leqslant N)\right\rangle, S_{3}=S_{2} \cup R$,
$G_{4}=\left\langle G_{3}, t ; \overline{t x t}=x, \overline{\text { trt }}=r\left(r \in R^{2}\right)\right\rangle, S_{4}=S_{3} \cup\{t\}$,
$G_{5}=\left\langle G_{4}, k ; \bar{k} a k=a(a \in\{x, \bar{q} \operatorname{tq}\} \cup R)\right\rangle, S_{5}=S_{4} \cup\{k\}, R_{x}=R \cup\{x\}$.
Of course $G_{o}, G_{1}, \ldots, G_{5}$ are f.p. Furthermore they satisfy ([Av-Madl]):

- (α) For $i=1, \ldots, 4, G_{i}$ is an HNN-extension of G_{i-1}, there is a reduction function $f_{i} \in E_{3}\left(S_{i}\right)$ for G_{i}, and the word problem for G_{i} is E_{3}-decidable.
(B) There is a function $g \in E_{3}\left(\underline{S}_{3}\right)$ satisfying:
- $\forall w \in S_{3}^{*}\left(g(w) \overline{\bar{G}}_{3}\right.$ uw for some $\left.u \subset \mathbb{R}_{x}^{*}\right)$.
- If $w \in S_{3}^{*}$ is R-reduced, there is no $u \in \mathbb{R}_{x}^{*}$ such that there is a R-pinch in $\mathrm{ug}(\mathrm{w})$ just on the border $u-g(w)$.
- If $w \in S_{3}^{*}$ is R-reduced, and if $g(w) \equiv u r_{i}^{\mu} v$ where $u \in S_{2}^{*}, v \in S_{3}^{*}$, then w has the form $u^{\prime} r_{i}^{\mu} v$ for some $u^{\prime} \in S_{3}^{*}$.
(γ) Over S_{-3}^{*} define the predicate: $\tilde{P}(u) \Leftrightarrow \exists w_{1}, w_{2} \in \mathbb{R}_{x}^{*}\left(w_{1} u w_{2} \overline{\bar{G}}_{3} q\right)$.
- If $u \in{\underset{\sim}{3}}_{*}^{*}$ is reduced and $v \equiv g\left((g(u))^{-1}\right)^{-1}$, then: $\tilde{P}(u) \operatorname{ifff}_{*} v \in S_{2}^{*}$ and $\tilde{P}(v)$.
- If $v \in S_{2}^{*}$ is reduced and v^{\prime} is the result of deleting all x and \bar{x} symbols of v, then:
$\tilde{P}(v)$ iff $\exists X, Y \in S^{*}, q_{j} \in Q\left(v^{\prime} \equiv \bar{X} q_{j} Y\right.$ and $\left.\tilde{P}\left(X q_{j} Y\right)\right)$.
$-\forall X, Y \in S^{*}, q_{j} \in Q\left(\tilde{P}\left(\underset{X}{\sim} q_{j} T\right)\right.$ iff $\left.X q_{j} Y \stackrel{=}{\Delta}\right)$.

Assertion. $\tilde{\mathrm{P}} \in \mathrm{E}_{3}\left(\mathrm{~S}_{3}\right)$.
Prootf. Let $u^{\prime} \in S_{-3}^{*}$. Then $u \equiv f_{3}\left(u^{\prime}\right)$ satisfies $u^{\prime} \overline{\bar{G}}_{3} u$, and so $\tilde{P}\left(u^{\prime}\right)$ iff $\tilde{P}(u)$. Let $v \equiv g\left((g(u))^{-1}\right)^{-1}$. Then because of $(\gamma), \tilde{P}(u)^{3}$ iff $v \in S_{2}^{*}$ and $\tilde{P}(v)$, since u is reduced. Let $\tilde{v} \equiv f_{2}(v)$, and $v^{\prime} \equiv \pi_{S U Q Q}(\tilde{v})$. If $v \in S_{2}^{*}$, then the following is true because of (γ) :

$$
\tilde{P}(v) \text { iff } \exists X, Y \in S^{*}, q_{j} \in Q \quad\left(v^{\prime} \equiv \bar{X} q_{j} Y \text { and } \tilde{P}\left(\bar{X} q_{j} Y\right)\right)
$$

Altogether we have thus:
$\tilde{P}\left(u^{\prime}\right)$ iff $\tilde{P}(u)$ iff $v \in S_{2}^{*}$ and $\tilde{P}(v)$
iff $v \in S_{-2}^{*}$ and $\exists X, Y \in S^{*}, q_{j} \in Q\left(v^{\prime} \equiv \bar{X} q_{j} Y\right.$ and $\left.\tilde{P}\left(\bar{X} q_{j} Y\right)\right)$
iff $v \in S_{-2}^{*}$ and $\exists X, Y \in S^{*}, q_{j} \in Q\left(v^{\prime} \equiv \bar{X} q_{j} Y\right.$ and $\left.X q_{j} Y \overline{\bar{\Delta}} q\right)$.
But u, v, \tilde{v}, and v^{\prime}, and the rewith also $X_{q_{j}} Y$, are E_{3}-computable from $u^{\prime} \cdot X q_{j} Y \overline{\bar{\Delta}} q$ is E_{1}-decidable because of (1). Hence $\tilde{P} \in E_{3}\left(S_{3}\right)$.

Now let $u \in \underset{-4}{*}$ be such that $f_{4}(u) \equiv u_{0} t^{\mu} 1_{u_{1}} . . t^{\mu_{1 \pi}} u_{m}, u_{i} \in S_{-3}^{*}, \mu_{i} \in\{ \pm 1\}$. According to the proof of [Av-Mad] Lemma 4.9, p.102, the following assertion is satisfied:
$u \in\langle x, \bar{q} t q, R\rangle{ }_{G_{4}}$ iff $u_{o} u_{1} \ldots u_{m} \in\langle x, R\rangle{ }_{G_{3}}$ and $\bigwedge_{i=0}^{m-1} \tilde{P}\left(\left(u_{o} u_{1} \ldots u_{i}\right)^{-1}\right)$.
But $\langle x, R\rangle_{G_{3}}$ is E_{3}-decidable because of the proof of [Av-Madl] Lemma 4.6, p. 100. Hence $\langle x, \bar{q} t q, R\rangle{ }_{G}$ is E_{3}-decidable and so G_{5} is an E_{3}-admissible HNN -extension of G_{4}. Hence $\mathrm{WP}_{\mathrm{G}_{5}} \in \mathrm{E}_{3}\left(\mathrm{~S}_{5}\right)$.

According to [Ott] §15, pp.156-173, the presentation $\left\langle S_{5} ; \mathrm{L}_{5}\right\rangle$ of G_{5} is $E_{n}{ }^{-}$ d.b.

Now let $w \in S^{\prime *}$, then $q_{o} w \vec{T} \cdots q_{a} \cdots$ so $q_{o} w \vec{T}_{T} \cdots q_{a} \ldots$, and therefore $h q_{o} w h=\overline{\bar{\Delta}} q$. $\bar{k} \bar{h}^{-1} \bar{q}_{0} h t \bar{h} q_{0}$ whk $\overline{\bar{G}}_{5} \overline{h w}^{-1} \bar{q}_{0} h t \bar{q}_{q_{0}}$ wh according to ${ }^{T}$ [Rot] Lemma 12.13, p.229. Therefore, there is a derivation from $\overline{\mathrm{kh}} \mathrm{w}^{-1} \overline{\mathrm{q}}_{0} h t \overline{\mathrm{~h}} \mathrm{q}_{0}$ whkh $\bar{W}^{-1} \overline{\mathrm{q}}_{0} h \overline{\mathrm{~h}} \bar{h}_{0}$ wh to e in $\left\langle\mathrm{S}_{5} ; \mathrm{L}_{5}\right\rangle$. luring this derivation \bar{k} and k must be eliminated by using relators of the form kaka $^{-1}(a \in\{x, \bar{q} t q\} \cup R)$. But for that, $\bar{h} w^{-1} \bar{q}_{o} h t h q_{o} w h$ must be rewritten into a word $u \in(\underline{\{x, \bar{q} t q\} \cup R})^{*}$. Let $u \equiv u_{0} \bar{q} t^{\mu} 1_{q u_{1}} . . \bar{q} t^{\mu} 1_{q u_{1}}, u \in R_{-x}, \mu_{i} \in\{ \pm 1\}$ be such that

$$
\overline{\mathrm{h}} \mathrm{w}^{-1} \overline{\mathrm{~g}}_{0} h t \bar{h} q_{0} w h \overline{\overline{\mathrm{G}}}_{4} u \equiv{u_{0}}_{\mathrm{q}} \mathrm{t}^{\mu} 1_{q u_{1}} . . \overline{\mathrm{q}} t^{\mu} 1_{q u_{1}}
$$

$\overline{\mathrm{h}} \mathrm{w}^{-1} \bar{q}_{\mathrm{o}} h t \bar{h}{q_{0}}_{0}$ wh is t-reduced in G_{4}. Hence there is an $i \in\{1, \ldots, \ell\}$ such that $u \equiv u_{o} \bar{q} t^{\mu} 1_{q u_{1}} \ldots \bar{q} t^{\mu} \ell_{u_{\ell}} \overline{\bar{G}}_{4} u_{0} . . u_{i-1} \bar{q} t q u_{i} u_{i+1} \ldots u_{\ell} \overline{\bar{G}}_{4} \gamma_{f}\left(u_{0} \ldots u_{i-1}\right) \bar{q} t q \gamma_{f}\left(u_{i} \ldots u_{\ell}\right)$, where γ_{f} denotes the free reduction. Then $\bar{h} w^{-1} \bar{q}_{0} h t h q_{o} w h \overline{\bar{G}}_{4} u \overline{\bar{G}}_{4} v_{1} \bar{q} t q v_{2}$ with $v_{1} \equiv \gamma_{f}\left(u_{0} . . u_{i-1}\right)$ and $v_{2} \equiv \gamma_{f}\left(u_{i} . . u_{\ell}\right)$. So, $\bar{h} w{ }^{-1} \bar{q}_{0} h t h q_{o} w h v_{2}^{-1} \bar{q} \bar{q} v_{1}^{-1} \overline{\bar{G}}_{4}$ e. Hence there is a $v_{3} \in R_{x}^{*}$ freely reduced with $\bar{h} q_{o} w h v_{2}^{-1} \bar{q} \overline{\bar{G}}_{3}, v_{3}$. But $v_{3}^{-1} \bar{h} q_{0} w h v_{2}^{-1} \overline{\bar{G}}_{3} q$ with $v_{3}^{-1}, v_{2}^{-1} \in R_{x}^{*}$ freely reduced. So $\left|v_{3}^{-1}\right|_{R}=\left|v_{2}^{-1}\right|_{R}$. According to the proof
of [Rot] Lemma $12.18, \mathrm{p} .304, \pi_{\mathrm{R}}\left(\mathrm{v}_{2}^{-1}\right)$ describes a derivation from hq_{o} wh to q in Δ. Because of (3) such a derivātion contains more than $\left|A_{n}(w, w)\right|$ steps. This means $\left|v_{2}^{-1}\right|_{R}>\left|A_{n}(w, w)\right|$, and therefore $\left|A_{n}(w, w)\right| \leqslant\left|v_{2}^{-1}\right|_{R} \leqslant\left|v_{2}^{-1}\right| \leqslant\left|u_{1} . . u_{1}\right| \leqslant$ $|u|-3$. Therefore, a word of length $2|w|+7$, namely $\bar{h}^{-1} \bar{q}_{0} h t h q_{0} w h$, is substituted by a word of length $>\left|A_{n}(w, w)\right|+3$, namely u.

Let $\alpha=\max \left\{|y|: y \in L_{5} \cup L_{5}^{-1} U\left\{s \bar{s}, s s \mid s \in S_{5}\right\}\right\}$. Then in order to construct a word of length $>\left|A_{n}(w, w)\right|+4$ from a word of length $2|w|+7$, at least $\Gamma \frac{1}{\alpha}\left(\left|A_{\mathrm{n}}(w, w)\right|-2|w|-3\right) 1$ steps are necessary. Hence a derivation from $\bar{h} w^{-1} \bar{q}_{0} h t \overline{q_{0}} q_{0} w$ to a word $u \in(\underline{(x, \bar{q} t q\}} \cup R)^{*}$ needs at leas $\left.r \frac{1}{\alpha}\left(\left|A_{\mathrm{h}}(w, w)\right|-2|w|-3\right)\right\rceil$ steps. Therefore every derivation from $\bar{k} \bar{h} w^{-1} \bar{g}_{0} h t h q_{0} w^{w h} \bar{h} w^{-1} \bar{q} h \overline{\mathrm{~g}} \overline{\mathrm{~h}} \mathrm{q}_{\mathrm{o}} \mathrm{wh}$ to e in $\left\langle S_{5} ; L_{5}\right\rangle$ needs at least $\left\lceil\frac{1}{\alpha}\left(\left|A_{n}(w, w)\right|-2|w|-3\right) 1\right.$ steps, i.e. in order to derive a vord of length $3|w|+16$ to e in $\left\langle S_{5} ; \mathrm{L}_{5}\right\rangle$ at least $\left\lceil\frac{1}{\alpha}\left(\left|\mathrm{~A}_{\mathrm{n}}(\mathrm{w}, \mathrm{w})\right|-2|\mathrm{w}|-3\right) 1\right.$ steps are necessary.

Hence $\left\langle\mathrm{S}_{5} ; \mathrm{L}_{5}\right\rangle$ is not $\mathrm{E}_{\mathrm{n}-1}$-d.b., which proves Theorem 3.3.
3.4. COROLLARY. For every $\mathrm{n} \geqslant 4$ there is a f.p. group having on E_{3}-decidable word problem such that each finite presentation of this group is $\mathrm{E}_{\mathrm{n}}-$, but not $\mathrm{E}_{\mathrm{n}-1}$-d.b.

Proo6. Theorem 3.3 and Theorem 3.2.
3.5. COROLLARY. For every $4 \leqslant \mathrm{~m}<\mathrm{n}$ there is a f.p. group such that the word problem for this group is E_{m}, but $\operatorname{not} \mathrm{E}_{\mathrm{m}-1}$-decidable, and each finite presentation of this group is $\mathrm{E}_{\mathrm{n}}-$, but not $\mathrm{E}_{\mathrm{n}-1}$-d.b.

Proo6. Let $G_{1}=\left\langle\Sigma_{1} ; L_{1}\right\rangle$ be f.p. having an E_{3}-decidable word problem and being $\mathrm{E}_{\mathrm{n}}{ }^{-}$, but not $\mathrm{E}_{\mathrm{n}-1}-$ d.b. (3.3). Let $\mathrm{H}=\langle\Delta ; \mathrm{M}\rangle$ be f.g. having an $\mathrm{E}_{\mathrm{m}}{ }^{-}$, but not E_{m-1}-decidable word problem. Then there is a group $G_{2}=\left\langle\Sigma_{2} ; L_{2}\right\rangle$ which is f.p. and E_{m}-d.b. s.t. $H \rightarrow G_{2}$ (2.1). According to 3.1, G_{2} has an E_{m}-decidable word problem. The word problem of G_{2} is not $\mathrm{E}_{\mathrm{m}-1}$-decidable since the word problem of H is not either. Hence G_{2} is not $E_{m-1}-$ d.b. because of 3.1. Let $G=G_{1}{ }^{*} G_{2}$ $=\left\langle\Sigma_{1} \cup \Sigma_{2} ; L_{1}, L_{2}\right\rangle$. Then G is f.p., the word problem for G is $E_{m}{ }^{-}$, but not E_{m-1} decidable, and the given presentation of G, and therewith each finite presentation of G, is E_{n}^{-}, but not $E_{n-1}-$ d.b. (1.5 a)).

This last corollary shows that even for f.p. groups the complexity of a n.a. for solving the word problem can be of an arbitrarily higher degree than the complexity of the word problem itself.
3.6. REMARK . According to a remark in [Av-Mad1], p.93, the word problem of the group G_{5} constructed in the proof ot Theorem 3.3 is even E_{2}-decidable, since the special word problem of the underlying semigroup Δ is E_{1}-decidable
because of (1), p. 155 . Hence for every $n \geqslant 3$ there is a f.p. group having an E_{2}-decidable word problem and being $\mathrm{E}_{\mathrm{n}}{ }^{-}$, but not $\mathrm{E}_{\mathrm{n}-1} 1^{-d . b}$.

4. NATURAL E_{n}-ALGORITHMS FOR E_{n}-DECIDABLE GROUPS.

For f.p. groups the property of E_{n}-derivation-boundedness leads to a natural E_{n}-algorithm for solving the word problem of the group. If a presentation has infinitely many relators we have infinitely many possibilities of inserting a relator in each step of a derivation, but only a finite number of deletions of a defining relator are possible, since only subwords are deleted. For nonf.p. groups a stronger concept of derivation-boundedness is therefore needed which guarantees the existence of a natural algorithm of the same complexity. There are several different possible definitions of d.b. group presentations for non-f.p. groups. We choose the following one, in which the allowed derivations are restricted.
4.1. DEFINITION. Let $G=\langle\Sigma ; L\rangle$ f.g. The presentation $\langle\Sigma ; \mathrm{L}\rangle$ is strongly E_{n}-derivation bounded (s. E_{n}-d.b.) if there is a function $k \in E_{n}(\underline{\Sigma})$ such that for any $w \overline{\bar{G}}^{\mathrm{e}}$ in $\underline{\Sigma}^{*}$, there is a derivation $w \equiv \mathrm{w}_{\mathrm{o}} \rightarrow \mathrm{w}_{1} \rightarrow \ldots \rightarrow \mathrm{w}_{\ell} \equiv \mathrm{e}$ in $\langle\Sigma ; \mathrm{L}\rangle$ such that (i) $\ell \leqslant|k(w)|$, (ii) only trivial relators are inserted. Such a derivation is called a strongly E_{n}-bounded derivation.
4.2. OBSERVATION. a) Let $G=\langle\Sigma$; $L>$ f.p. Then for all $n \geqslant 1,\langle\Sigma$; $L\rangle$ is s.-$E_{n}-d . b$. iff $\langle\Sigma ; L\rangle$ is $E_{n}-d . b$. (The insertion of a relator u can be simulated by the insertion of $u u^{-1}$ by using trivial relators and the delection of u^{-1}. So the length of the derivation is at most increased by the factor $\mu=(\max \{|\mathrm{u}|: \mathrm{u} \in$ L\} +1).
b) Let $\mathrm{n}, \mathrm{p} \geqslant 0$, and $\mathrm{g}:=\max \{\mathrm{n}, \mathrm{p}, 3\}$. If $\mathrm{G}=\langle\Sigma$; L\rangle is $\mathrm{s} . \mathrm{E}_{\mathrm{n}}-$ d.b. with $\mathrm{L} \subseteq \Sigma^{+}$, E_{p}-decidable, then there is a natural algorithm $x \in E_{q}(\Sigma)$ for the word problem of $\langle\Sigma$; L \rangle, i.e.
$x(w) \equiv \begin{cases}\left(w_{0}, w_{1}, \ldots, w_{\ell}\right) & \text { if } w \overline{\bar{G}} e, \text { and } w \equiv w_{0} \rightarrow w_{1} \rightarrow \ldots \rightarrow w_{\ell} \equiv e \text { is a strongly } \\ & E_{n} \text {-bounded derivation from w to e in }\langle\Sigma ; L\rangle . \\ \# & \text { if } w \text { 者e. }\end{cases}$
The proof of this fact is similar to the proof of Theorem 3.1. The only difference is that only strongly E_{n}-bounded derivations are considered.
c) The property of being strongly $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. is dependent on the chosen presentation of the group. Let $n \geqslant 2, \Delta=\left\{a_{i} \mid \mathrm{i} \geqslant 1\right\}$, and

$$
G=\left\langle\Delta ; a_{1}^{i}(i \geqslant 1), a_{i} a_{1}^{A_{n+1}(i, i)}(i \geqslant 2)\right\rangle,
$$

where A_{n+1} is the $n+1$ st Ackermann-function ([Rit]Def.1.1, p.1028).

For allw $\in \Delta^{*}$, $w \overline{\bar{G}}$ e, i.e. $G \cong\langle e\rangle$, and so $W P_{G} \in E_{1}(\Delta)$. Let $F=\langle b, c ; \emptyset\rangle$ and $K=F^{*} G \cong F$. Then $\left.W P_{K} \in E_{1}(\underline{U} \underline{\{b, c}\}\right)$. Finally let

Then $\left\langle\Sigma ; L^{\prime}\right\rangle$ is $s . E_{2}-$ d.b. and $\left\langle\Sigma ; L_{n+1}\right\rangle$ is s. E_{n+1}-d.b. but not s. E_{n}-d.b.
Since there are f.p. groups with E_{3}-decidable word problem for which no finite presentation allows a natural E_{3}-algorithm (the group $\mathrm{G}_{5}=\left\langle\mathrm{S}_{5} ; \mathrm{L}_{5}\right\rangle$ in 3.3 has this property), we ask whether there is an infinito strongly E_{3}-d.b. presentation for this group, and further on whether this is the case for all E_{n}-decidable f.g. groups.

For the group G_{5} we get that the presentation
 has an E_{1}-decidable set of defining relators, and that it is in fact s. E_{3}-d.b. So a natural E_{3}-algorithm exists for this special presentation. We want to prove that such easy presentation can be constructed for all E_{n}-decidable f.g.groups $(\mathrm{n} \geqslant 3)$. Therefore we need the following technical lemma, which is proved by standard methods.
4.3. LEMMA. Let Σ with $|\Sigma|>1, \mathrm{t} \in \Sigma$, be a finite alphabet, and $\emptyset \neq \mathrm{L} \subseteq \Sigma^{*}$ be E_{n}-decidable for some $\mathrm{n} \geqslant 3$. Then there is a function $\mathrm{g} \in \mathrm{E}_{1}(\Sigma)$ such that (a) $g\left(\left\{\mathrm{t}^{\mathrm{i}} \mid \mathrm{i} \geqslant 0\right\}\right)=\mathrm{L}$.
(b) There exists a function $\mathrm{k} \in \mathrm{E}_{\mathrm{n}}(\Sigma)$ satisfying:
$\forall w \in \Sigma^{*}\left(w \in L \rightarrow \exists i \leqslant|k(w)|: g\left(t^{i}\right) \equiv w\right)$,
i.e. L is enumerated by an E_{1}-function g such that for each word w an index can. be calculated by an E_{n}-function.
4.4. THEOREM. Let $\mathrm{G}=\langle\Sigma ; \mathrm{L}\rangle$ be f.g. with E_{n}-decidable word problem fon some $\mathrm{n} \geqslant 3$, and let $\mathrm{t} \notin \sum$. Then G has a non-finite presentation $<\Sigma, \mathrm{t} ; \mathrm{L}_{\mathrm{g}}>$ such that
(1) $\mathrm{L}_{\mathrm{g}} \subseteq(\underline{\Sigma} \cup\{\underline{t}\})^{*}$ is E_{1}-decidable.
(2) $<\Sigma, \mathrm{t} ; \mathrm{L}_{\mathrm{g}}>$ is strongly E_{n}-d.b.

Proot. Let $\tilde{L}:=\left\{w \in \Sigma^{+} \mid w \bar{G}{ }^{e}\right\}$. \tilde{L} is E_{n}-decidable in $\underline{\Sigma}^{*}$, and so \tilde{L} is E_{n}-decidable in $(\Sigma \cup\{\underline{t}\}\}^{*}$. Because of Lemma 4.3 there is a function $g \in E_{1}(\underline{Y} \cup\{\underline{t}\})$ such that $g\left(\left\{t^{i} \mid i \geqslant 0\right\}\right)=\tilde{L}$ and there exists a function $k \in E_{n}\left(\sum U\{t\}\right)$ satisfying:

$$
\forall w \in(\underline{X} U\{\underline{t}\})^{*}\left(w \in \tilde{L} \rightarrow \exists i \leqslant|k(w)|\left(g\left(t^{i}\right) \equiv w\right)\right) .
$$

$$
\begin{aligned}
& \mathrm{H}=\left\langle\mathrm{K}, \mathrm{t} ; \mathrm{tb}^{\mathrm{n}} \mathrm{cb}^{\mathrm{n}} \mathrm{cb}^{\mathrm{n}} \mathrm{cb}^{\mathrm{n}} \mathrm{t}=\mathrm{b}^{\mathrm{n}} \mathrm{cb}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \mathrm{cb}^{\mathrm{n}} \mathrm{cb}^{\mathrm{n}}: \mathrm{n} \geqslant 1\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& t \bar{b} \bar{C} \bar{b} \bar{c})^{A_{n+1}}(\mathrm{i}, \mathrm{i}): i \geqslant 2>
\end{aligned}
$$

Let $L_{g}=\left\{t, t^{i} g\left(t^{i}\right): i \geqslant 0\right\}$. Then

$$
\begin{aligned}
\left\langle\Sigma, t ; L_{g}\right\rangle & =\left\langle\Sigma, t ; t, t^{i} g\left(t^{i}\right): i \geqslant 0\right\rangle \cong\left\langle\Sigma ; g\left(t^{i}\right): i \geqslant 0\right\rangle=\langle\Sigma ; \tilde{L}\rangle \\
& \cong\langle\Sigma ; L\rangle=G,
\end{aligned}
$$

and so $<\Sigma, t ; \mathrm{L}_{\mathrm{g}}>$ is a f.g. presentation of G .
 with $v \in \underline{\Sigma}^{+}$and $v \equiv g\left(t^{i}\right)$.
b) Claim. $<\Sigma, \mathrm{t} ; \mathrm{L}_{\mathrm{g}}>$ is strongly $\mathrm{E}_{\mathrm{n}}-\mathrm{d} . \mathrm{b}$. Let $\mathrm{w} \overline{\bar{G}}^{\mathrm{e}}$. Then we have the following derivation, where $w^{\prime} \in \underline{\Sigma}^{*}: w \overrightarrow{1} w^{\prime} \overrightarrow{2} t^{i} w^{\prime} \overrightarrow{3}$ e.
ad 1, all t^{ε} which appear in w are deleted. This takes $|w|_{t} \leqslant|w|$ steps, and $w^{\prime} \equiv \pi_{\underline{\Sigma}}(w)$ satisfies $\left|w^{\prime}\right| \leqslant|w|$ and $w^{\prime} \overline{\bar{G}} e$.
$a d$ 2, if $w^{\prime} \equiv e$ then we are ready. Let $w^{\prime} \not \equiv e$. Then $w^{\prime} \in \tilde{L}$ and because of (b) there is an $i \leqslant\left|k\left(w^{\prime}\right)\right|$ with $g\left(t^{i}\right) \equiv w^{\prime}$. Insertion of i trivial relators $\bar{t} t$ and deletion of i relators \bar{t} result in $t^{i} w^{\prime}$. Here $2 i \leqslant 2\left|k\left(w^{\prime}\right)\right|$ steps are sufficient.
ad 3, $\mathrm{t}^{\mathrm{i}_{W^{\prime}}} \equiv \mathrm{t}^{i} \mathrm{~g}\left(\mathrm{t}^{\mathrm{i}}\right) \in \mathrm{L}_{\mathrm{g}}$, and so $\mathrm{t}^{\mathrm{i}_{W^{\prime}}}$ can be deleted within one step. Thus we have a derivation of w to e in $\left\langle\Sigma, t ; L_{g}\right\rangle$ of length $m \leqslant|w|+2\left|k\left(w^{\prime}\right)\right|+1$ in which only trivial relators are inserted. Hence the presentation $<\Sigma, t ; L_{g}>$ is s. E_{n}-d.b.
4.5. COROLLARY. Let $G=\langle\Sigma ; L\rangle$ be f.g. with E_{n}-decidable word problem for some $\mathrm{n} \geqslant 3$. Then there exists a f.g. presentation for G with an E_{1}-decidable set of defining relators such that the word problem for this presentation can be solved by a natural E_{n}-algorithm.

REFERENCES .

[Av] J. Avenhaus, 'Komplexitätsuntersuchungen zum Wurzelproblem in Gruppen', Habilitationsschrift, Kaiserslautern, 1978.
[Av-Madl] J. Avenhaus, K.E. Madlener, Subrekursive Komplexität bei Gruppen;
I. Gmuppen mit vorgeschmiebener Komplexitat; Acta Inf. 9 (1977), 87104.
II. Der Einbettungssatz von Higman fur entscheidbare Gmuppen; Acta Inf. 9 (1978) 183-193.
[Can] F.B. Cannonito, Hierarchies of Computable Groups and The Word Problem J.S.L. 31 (1966) 376-392.
[Can-Cat] F.B. Cannonito, R.W. Gatterdam, The Computability of Group Constructions I; in Boone, Cannonito, Lyndon (Ed.), Word Problems, North-Ho11 and, Amsterdam 1973.
[Fer-Rac] J. Ferrante, C.W. Rackoff, The Computational Complexity of Logical Theories, Springer Verlag, 1979.
[Gat] R.W. Gatterdam, The Computability of Group Constructions II; Bull. Austr. Math. Soc. 8 (1973) 27-60.
[Hen] F.W. v. Henke, Primitiv-Rekursive Transformationen; GMD Bonn, Bericht № 92, 1974.
[Lyn-Sch] R.C. Lyndon, P.E. Schupp, Combinatoriat Group Theory; Springer Verlag, 1977.
[Mad1] K.E. Madlener, "Zur Komplexität des Konjugiertheitsproblems und verwandter algorithmischer Probleme in Gruppen', Habilitationsschrift, Kaiserslautern, 1977.
[M-K-S] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory; Interscience, N.Y. 1966.
[Ott] F. Otto, 'Untersuchungen zur Komplexität algorithmischer Probleme in abzählbar erzeugten Gruppen", Dissertation, Kaiserslautern, 1980.
[Rit] R.W. Ritchie, Classes of Recursive Functions Based on Ackermann's Function; Pacific Journal of Math. 15 (1965), 1027-1044.
[Rot] J.J. Rotman, The Theory of Groups; Allyn and Bacon, Boston, 1973.
[Weih] K. Weihrauch, Teilklassen primitiv-rekursiver Wortfunktionen; GMD Bonn, Bericht № 91, 1974.

Universität Kaiserslautern
Fachbereich Informatik
Kaiserslautern, West Germany.

[^0]: * This research and the participation to the congress was partially supported by the DAAD.

