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DERIVATION-BOUNDED GROUPS

K. Mad]ener* and F. Otto

ABSTRACT. For some problems which are defined by combina-
torial properties good complexity bounds cannot be found
because the combinatorial point of view restricts the set
of solution algorithms. In this paper we present a phenom-
enon of this type with the classical word problem for fin-
itely presented groups. A presentation of a group is called
En—derivation—bounded (Ep-d.b.), if a function k € E; ex-
ists which bounds the derivations of the words defining the
unit element. For E -d.b. presentations a pure combinator-
ial Ep-algorithm for solving the word problem exists. It is
proved that the property of being E,-d.b. is an invariant
of finite presentations, but that the degree of complexity
of the pure combinatorial algorithm may be as far as pos-
sible from the degree of complexity of the word problem it-
self.

The complexity of logical theories and of algorithmic problems in algebraic
structures has been object of intensive studies during the last years ([Av],
[Av-Madl], [Can], [Can-Gat], [Fer-Rac], [Gat], [Madl]). One interesting aspect
in the proofs of good lower and upper bounds is the fact that some of these re-
sult were achieved not only by using combinatorial methods but also by using al-
gebraic arguments. Even more, for some problems which are defined by combinator-
Jal properties good complexity bounds cannot be found because the combinatorial
point of view restricts the set of solution algorithms.

In this paper we want to present a phenomenon of this type within the clas-
sical word problem for finitely presented groups ([M-K-S]).

let T = {s;,...,s } be a finite alphabet, ? = {51,.;.,§m} a disjoint cony
of T (éi is the formal*inverse of s;), I :Z U% $ a.l-ld §= the set of words over
L. Forw=aq...a i,a <1I, letbew ==kan...z:11 (s =s), let n = |w| be
the length of w, e the empty word, and L= Z".

The group G given by the presentation <Z;L> can be viewed as the set of e-
quivalence classes of the Thue system

’

* This research and the participation to the congress was partially supported
by the DAAD.
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T=(; w=elwe LUL_1U (ss,ss: s €L}}),

where u ~ v if there is a derivation from u to v in T. The set of equivalence
classes forms a group with the operations [u]-[v] = [uv] and [u]_1 = [u-1], [e]
being the unit element.

I is the set of gemerators, and L is the set of defining relators of this
presentation. If I is finite, <I;L> is a finitely generated (f.g) presentation
of G, and G is called f.g.. If L is finite, too, then <Z;L> is a finite presen-
tation of G, and G is finitely presented (f.p.).

The word problem for the presentation <IZ;L> of G is the problem of decid-
ing for an arbitrary word w £* whether w defines the unit element of G or
not, i.e. the membership to the set {w = gt | w gel=1 ez’ | there is a de-
rivation fromw to e in T}. It is well known that the complexity of the word
problem for G is independent of the chosen f.g. presentation for G, and we can
speak therefore about the complexity of the word problem for G.

We call an algorithm solving the word problem for <I;L> a natural algorithm
(n.a.) if forw ge it produces a derivation w = Wy e W = e in the Thue
system T. Of course the length of 2 produced derivation is a lower bound for
the complexity of a n.a..

From each solution of the word problem for <f;L> we can define a n.a. sim-
ply by generating all derivation in T for the words w with w g e, in some or-

dering.

Some questions concerning the n.a. arise. Does the complexity of any n.a.
give information about the complexity of the word problem? Of course, it gives
an upper bound, but does it give a lower bound in any way, too? Starting with °
an algorithm which solves the word problem can we produce a n.a. of the same

complexity? Given two presentations of the same group, what is the relation,

i

between the complexities of natural algorithms in both presentation? ‘

We introduce the concept of derivation bounded presentations to formulate
these questicns more precisely and also to give the answers. Let K be any com-
plexity class of word functions. We will restrict ourselves to the Grzegorczyk
classes B which are well known ([Weih]). A finite presentation <I;L> is called
K-derivation-bounded (K-d.b.) if there is a function k € K such that - every
word w & §* which defines the unit clement of <I;L> can be derived to e in T,
within no more than |k(w)| steps.

For a K-d.b. presentation there is always a standard n.:. for solving the
word problem. In order to decide for a word w = 2* whether w z e, just produce

all possible derivation in T which starvt with w, of lengtl: Lounded by [k(w)],
and tcst whether e has been derived. 'f K = En (n > 3) this is an En-algorithn.

In particul~r the word problem for an E_-d.b. finite presentation is decidable.
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On the other hand if there is a natural E -algorithm solving the word problem
for <Z;L> then <I;L> is En-d.b..

We will prove the following results.

(@) Ifa f.g. group has an E -d.b. finite presentation for some n > 1 then
every finite presentation of this group is E -d.b.. So the standard n.a. is an
En-algorithm for all finite presentations of this group, for n > 3.

(b) Every f.g. group G with En-decidable word problem (n > 3), and hence
any countable group with En—decidable word problem ([Ott]), can be embedded in-
to a f.p. group having an En-d.b. presentation. This means that a n.a. of the
same complexity can effectively be constructed from an algorithm solving the
word problem for G, but in general for a larger group only. The restriction of
this n.a. solves the word problem for G, but is general it is not a n.a. for G.

-These two facts give the hope that at least for f.p. En-d.b. groups with
n > 3 an optimal n.a. exists. But this hope is disappointed by the following
fact.

(c) For every n > 4 there is a f.p. EnAbut not En_1-d.b. group G having an
Es-decidable wourd problem. So G has no natural E _;-algorithm for solving the
word problem although there is an Es-algorithm for solving it. Thus the complex-
ity of any n.a. may be as far as possible from the complexity of the word prob-
lem. These results show that combinatorial properties of a Thue system are not
sufficient to prove good complexity bounds for the word problem. Similar re-
sults can be proved for semigroups.

Since there is a f.p. group with Es-decidable word problem such that none
of its finite presentations allows a natural Es-algorithm, the following ques-
tion seems to be natural: is there an infinite ''easy" presentation of this
growp for which a natural E;-algorithm exists?

Of course one could take all relators of the group as defining relators of
a presentation, which then trivially is Eo—d.b., since each derivation is of
*length 1. But such a presentation is not '"easy' because the full complexity of
the word problem is contained in the defining relators and so in the presenta-
tion. Let an easy presentation of a group be one for which the set of defining
relators is Erdecidable. Then we have:

(d) Every f.g. group G with E -decidable word problem (n > 3) has a f.g.
presentation with an E1—decidable set of defining relators which allows a nat-
ural E -algorithm for solving the word problem.

Similar questions may ve posed for finitely axiomatized (f.a.) theories.
Are natural decision algorithis for f.a. theories optimal, or are there easily
decidable theories for which the optimal proofs in any finite axiomatization

are too long?
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1 En-DERIVATION-BOUNDED GROUPS.

1.1. DEFINITION. Let G = <I;L> be a group, and let w « Z* be such that

w=e.
a) A derivation from w is a sequence of words w = WosWqse e Wy = e from I
such that w; . is formed by insertion of a word u between any consecutive sym-
bols of W, Or be fore w;, or after wi, or by deletion of a word u if it forms
a block of consecutive symbols of w,. In both cases u must be a member of
LUL” U{ss ss s e }. Here L~ «1 is defmed as {w 1lw:-:L} where e -1 ze,

(ws) T, we) s sw |, and = denotes the identity of the free monoid I”

= >

all

k is the length of this derivation.

b) Let be n > 1, <Z;L> is En—deriuation-bounded (En~d.b.) if there is a
function k = En(g) satisfying for all w = i w ze implies that there is a
derivation from w of length < |k(w)|, where | | denotes the length of a word,
i.e. the number of letters. Then k is called an En-bomd for <I;L>.

Of course a natural algorithm for solving the word problem exists for a

finite En-d. b. presentation.

1.2. LEMMA. Let n > 1, and k En(Z) be such that k(e) = e. Then there
is a monotonous function k1€ En@) satisfying: |k1(u) |+]k1(v)] < [k1(uv)| and
[k(w) | < |k1(WH for all u,v,w € §*.

Proof. m = 1. Let k « E,(2) with k(e) Ze. Then 3c 5 1 w3 I" (|k(W)| <
c|w]). Define k by k (w) = wC’ then k eE1(Z), 1 is monotonous, and [k(w)l <
[k, ()| for cvery W eZ . Let u,v < 1" then [k (W [+]k; (W | = c]u] +clv] =
cluv| = [k,(u)]. n>2. let k  E () with k(e) =e. Then there is a mono-
tonous function k' €E (I) satisfying [k(w)| € |k'(w)| and k'(e) = e. Define
k (c) e, k (ws) = vk(k (w) ,k'(ws)), where the function kaE1(§) denotes the

LOIILdtCﬂdthI’I of two words Then
Uy
k (s ..5ip) @k'(s” le)

; since k' is monotonous and n > 2, k1eEn(§)

and therefore |k1(w)| <
k] is also monotonous, and k1 a bound for k. Now,

|u| : |v] .
k] + kW] = j;lk'(sJ)I & jZ1|k'(SJ)|
Iul vl Y

LIk eh] « L] - Theshl = k.
J 5 i=1

This proves Lemma 1.2.

1.3. REMARK. If k is an En-bound it may be assumed that k(e) = e. But
then because of 1.2 it may be assumed that k is monotonous and satisfies

k| + [kMW | < [k |.

Now we give an example of an Eo—d.b. presentation.
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1.4. LEMMA. F = <I;0>, the free group generated by %, is Eo-d.b.

5 *
Proog. Define k(w) = w, then k e EO(Z_). Now let we I such that w Fe
This means Yf(w) = e, where Ye denotes the function calculating the free reduc-
tion. But the execution of the free reduction gives a derivation from w of

length %|w|. So k is an E -bound for <z;@>.

The following three propositions give technics to construct En—d.b. presen-
tations of groups from given En-d.b. presentations, such that the groups de-
fined by the given presentations are embedded into the groups defined by the
constructed presentations.

1.5. PROPOSITION. rLet }11 = <Z],L1> and H = <ZZ;L2> be groups such that
1,L1> and <)32,L2> are En-d.b. for some n > 2. Then
a) the presentation <Z,UZL,;L L,>of H1"H2 is En-d.b., and

17722712
b) the presentation <Z1 Uz Lz,abe-lE: a e 21,b € L,> of H1><H2 is En-d.b.

23k
Prood. Without loss of generality it may be assumed that I, and I, are dis-
joint alphabets. Let k1 e E (E ) and k e E (Z ) be E bounds for <X L > and

¥
<22,L2>, respectively, and let WS U VUV UV, e 21 , Vi€ 21 , where
Uy and v, are the syllables of w.
a) w=-e in H1*HZ. Then there is an i « {0,...,1} such that e # ug ﬁ e or

e £V, fj, €. So within no more than |k1(ui)| respectwely [k, (v, ), steps w
can be derived to a word w' containing less syllables than w. Hence there is a

derivation from w of length
S Ik-°HZ1(w) | +|k2°H22(w)| s
where “Z e E (Z UZZ) denotes the projection onto Zl.
Defme for sel UE U (w) = I I, ‘which is an E -function. Let k(w) =

-1
vk (k °Ua1(w),k2°Ub W) for some a; €Iy, b, =%, Then k «E (Z;UZ,) with

KGO | = [kyoUay 00 [+1ky2Up G | > [kpolly, () ]+ [kp2Ty 09|

since IHZ1(W)I < Jw] = IUa1(w)] and Ing(w)l < |wl = |Ub1(w)|. Hence k is an
E -bound for <Z4 UZZ, 1,L2

b) w = e in H1><H Then w = Hz1(w) HZZ(W) in H1><112, HE1(W) e and HZZ(W) i, €
There is a derivation from ! WZ1(W) of length not exceeding |k OH); w)| in
T3k, and there is a derivation from HZZ(W) of length not exceeding
|k]°H§2(w)[ in <Z,;L,> . w can be derived to H§1(w)ﬂgz(w) by sequences of the
form ba T ababba 3 ab. Therefore HZ](\V)HZZ(W) can be derived from w within no
(w)| steps. Define VK(w,e) = e, VK(w,us) = vk (VK (w,u),w)

more than 3|1z,
Then
VK(w,u) = Wil ana w <E,(Z,UZ,).

Now let k(w) = vk((VK(w,w))S, vk(k1oU31 (w) ,k2°Ub1(w)')). Since n > 2,
ke En(zl UI_IZ) and
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2
|k(W)l >/3|w| +|k]°nz1(w) |+|k2°HZZ(W)| >/3'H)_:1(w),' ng(w)|+|k1°H;](w)l+|k2°n§2(w)|.

Hence k is an En—bound for <z, UZZ;L1L2,abab: ae 21,b €1,

1.6. PROPOSITION. Let H = <I;L> be E -d.b. for some n > 3.
a) 17 H* = <H,t;iuitvi1: i=1,...0> is an HN\N-extension of H with rewriting
functions w for <up,...,up>y and w, for <vi,...,v,>y bounded by polynomials,then
the given presentation of H* is Ep-d.b.
b) 1f H* = <H,t1,...,tk;fiuijtivi}: j=1,.08, 1= 1,0,k is an HNN-exten-
ston of U with rewriting functions wuy for <ugq,...,u5p >y and Wy for
NViqseeesVip 2y 1= 1,...,k, bounded by polynomials, then the given presenta-

5 4 e
tion of H* is E -d.b. (See [Lyn-Sch] for the definition of HNN-extension).

Proof. As part (b) is nothing else than a finite iteration of part (a) it
suffices to prove part (a).
*
Define ¥: U = <up,...,up>y > V= <vy,...,Vp>y as follows: If we L NU,

A _
then w=w (W) = T uJ. Let $(w) = ft viJ. Define $:v » U analogously, Now ¥
H u j=1 1) j=1"1J

and ¥ realize the isomorphisms used for constructing the HNN-extension H" of H.
w, and w  are bounded by polynomials, and so are ¥ a:;d $. Therefore ¢ > 1 and
d > 2 can be chosen in such a way that for allwe I, Iwu(w) |, ]uuv(w) |,
19601, 1900 < clw]? are valid.

Define f(e) = e, f(ws) = f(w)s, s

n

z.

uy(v) if f(w) = utv, v e g*n U
f(wt) =
f(w)t otherwise
R uy(v) if f(w) = utv, ve g*n \'
f(wt) = _
f(w)t otherwise.

According to [Av-Madl] 3.2, p.94, f is a t-reduction function for H* satisfy-
ing
we CUID® [fW)] < p2cdlvl

let k, <E_(£) be an Ey-bound for <I;L>, and let be w « (£ e{t})” such
that w i ©- Then f(w) « §* and f(w) ies f(w) results from w by pinching out
%let t-pinches, and subsequently f(w) can be derived to e in <Z;L> within no
more than Ik“"f(w)| steps. Llet

_ H1 Hk *
WoE Wt WLt W, Wose oW €L, u1,...,pke{t1}
and
Mo WLy 5

w.t
i
be the lefmost t-pinch contained in w.

BNE 7 @)
uy = 1:w:E wot ..wi_1twitwi+1..wk —

' -1 (2)
Woe oWy _qtwy (wu(wi)) mu(wi)twi+1 T
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tw NUD LIRS B3y
Hi- 1 ui+2 .
ot i-1 (w. )w1+1 caW =8 w'

W_..W.
o' ""i-1

X
ad (1), Iw (w3 )| trivial relators are mserted
ad (2), w. (w (w ) e, and so w, (w (w )) can be derived to e in <ZI;L>
within at most ]kH(w (w, (w )) 1I steps
ad (3), Iwu(wl)lu the number of generators uy,...,uy in w,(w;). Now (3)
can be realized by |wu(wi) |u steps of the following kind:
(a) Insertion of tt.
(b) Insertion of vf1vj by using trivial relators.
(c) Deletion of 'Eujth'.1.
Hence within at most
-1
my = Juoy o) [+ 0w G (w307 [+lw (0 | e (2+J_=m]ax ! lv; )
steps the first t-pinch of w can be pinched out.

w513+ gy C 07D =

Tlyeey

since
]mu(wi) |u $ 'wu(wi) I
W= 1iws wotu1..wi 1ty ‘Ew. o wk A1,
Wy qtw (0 (W) ly MUBL k__@l,
wo"wi-1twv(wi)twi+‘l"wk ﬂl»
0..tui'1wi_1_(wi)wi+1tui+2...wk = W

ad (1), ]w (wy )| trivial relators are 1nserted
ad (2), w. (u) (w )) hn ies and so Wy (w (w )) can be derived to e in <Z;L>
within no more than |k (w (w, (w5 )~ )[ steps.
' oad (3), by lwv(wi) Iv steps of the following kind (3) can be realized:
(a) Insertion of tu; ttu.t by using trivial relators.
(b) Deletion of vjfu31t (z(iujtv371)") and of ti.
In this way th is derived from th Hence within at most
= o, (o)) [+ 1y w; (0, (w)) I +lu,6e) | (4+ max lu; D
J_L'-)K
steps the first t-pinch of w can be pinched out.
N -1 -
my < Jw, (W) | {S+J_n;ax Jug 13+l (03 00) 7D ] =3 my
since

|“’v(wi)lv € l“’v(wi) |-
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Let A = __r{xax {Iu Irs ]v |}, and a e I. Nowdthe first t- plnch of w can be pinch-
4 {5+A}+|k (a (c+1) |w] )| steps. Let w be the word formed

by pinching out the first i t-pinches of w.

izt .4k
ASSERTION. Let ie {I,Z,...,%Iw]t}. Then |wi| < (c+1) w|™ , and w!
«ot be derived from w! . within m; steps where m{ satisfies
2~ bai goped g 2i-1 i
] L1~ -
m < (5+A)+ () +k (Y w9y
Prood. By induction on i.
i=1:w) =w', then |wH = | ']—|w.‘-2+|‘f"‘(wi)|
< |wl+nl\~ [ [\s[+L]wI < (c+1)|w| (c+1) |w|
anMM(%Mﬂk““”hﬂ)l<ﬁﬂﬂaﬂ]M+k((uﬂIM)L
iri+1: \\';+] is formed from w by plnchmg out a t-pinch, then
iyl < el [f s (e )l
i+1
C (e* ) {(c+1)d21 1]\|d1 d - (c+1)d21+‘| Wy
< (c+l)d"1+1|w|d1+1,
and g
]|1;+1 < 5+1\)C‘w"d+|k (a(C+])I\Vil )I

a2i-1y. 1disq

X (5+A)u{(c+1)dzl 1[W|d1}d+lk ch (c+1) {(c+1)1 |w]97} )|
d i+1 di+

= Gene(en @ w ig a ) iwl 4
+
< (5*A}(C+1)d21+1|w|dl+1+|kn(a(C+])d " |W|dl

let w be the word formed by pinching out all t-pinches of w. Then w oz wlﬁ|w|t’

and hence
w|,.-1 (%) |w] w
lw'| < (C+l)d| It lw|d L {(c+1)fw|}d| |

The derivation from w to w' can be performed within
alle o lele N 2i-1) ydi
= ) e ) e (e 4T gl g (D ISy )y
wl alwl
(C+1) ]WD ) |}

: i
i=1 i=1

o 1548 e+ dllyg ah +[ky(al

<

steps. At last, w' is derived to e in <Z;L>Ithh1n at most
d w
“\'H(w+)| < Ik“(a((C””wl) )| steps.
*
flence there is a derivation from w in the given presentation of H of length

lwl
i d
SO

not exceeding
[w]
m, = k) | < Wl L) (Ceva) WD+l (alC
Define d1(w) = :1d|w|, dz(w) = VK(w,aCH), and

d3("‘"e) ='a, dS(w,us) E VK(dS(w,u) R
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+1

Then  d; eE5(1U{t)), d, e E,(TU{tH), d5 <Eg(EUIt}), dy(w) = v,
() | = (c*1) |w], and dy(w,u) = alwllul d,(w) = d5(dyw),d, (W) is a
function from E;(Z U{t}) satisfying

dyw) = a((c*D) M)dlwI

and k(W) = VK(vk(VK(d,(w) ,a>*Y), K;od, ()W) is from E (2 U{t}) satisfying:
d w|
kG| = Jw] €5+ CCes ]yl ]+ k(@D
Hence k is an E -bound for the given presentation of H". Thus this presentation
is E -d.b.

1.7. PROPOSITION. The H = <z;L> be E_-b.d. for some n > 2. If H* =
<H, t-tu.tu'-1

phism and with a rewmtmg function w = E (Z) for Upy ey Upp, then the given

ti=1, ..,0> is an HNN-extension of H with the identity as isomor-

presentation of H" s E -d.b.
Proof§. Define f(e) = e, f(ws) = f(w)s, se I,
= *
uv  if f(w) = utMv vel N<u;,...,u>
fwt™ = ; P
f(w) tH otherwise
£ is a t-reduction fuction for H satisfying |f(w)| < |w|. let w e (L uien®
*
with w ﬁ* e. Then f(w) €L and f(w) F{ e. Therefore w can be derived to e by
first pinching out all the t-pinches of w and thereafter deriving the resulting
word to e in <Z;L>. w(e) = e may be assumed. Then according to Lemma 1.2 there

is a monotonous function w, < E_ (%) satlsfymg o) | < |w,(w)| and
Iwz(u) |+]m2(v)l lw,(uv) | for every w,u,v = Z ;

Let ky EEh(Z) be an E_-bound for <I;L>, and let w =W tul..turw :
Ve sWy, & Z s Byss¥iaH {+1} with w jxe contain the t- pmch t”iwitui”.

This t-pinch can be p1nched out by the following sequence of operations:

s s
w = wotu1w1..w- t .t 1+1w. - WL —LL

i-1 ¥ i+1
wo..wi_1tuiw.l(w(wi))-1w(wi)tui+1wi+1. A ),
wo..wi_1tuim(wi)tui”wi+1 W _.(_:’i)

W .tui'1wi o lwy )w1+1tui+2..wr 4,
wo..tui_]w1 ™3 (m(w N w(w )»A.'l?ﬂ;uﬂz.,wr HON
wo..tui'Iw1 ]w1w1+1tu1+2..wr = bW

¢

ad (1), l“’(wi)l trivial relators are inserted.
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ad (2), wi(w(wi))'] ;i > and hence wi(m(wi))-1 can be derived to e in < ;L>
within at most IkH(wi(w(wi))'1)| steps.
ad (3), ]uo(wi)lu steps of the following form:
u; = -1: (a) Insertion of tuj Ujf by using trivial relators’
(b) D?letion of Eujtuj'.]_
In this way ujt is derived from tuj.
p. = 1: (a) Insertion of Eu31tfu.t by using trivial relators
(b) Deletion of quuJT1t (Z(Eujtu51)_1) and of tt:
tu, - tujfuJT]tiujt - tfujt - ujt.

ad (4), Wy (m(wi))_1 can be derived from e by inverting the derivation of

ad (5), Iw(wi)] trivial relators are deleted.
llence the t-pinch of w can be pinched out within
-1
< o) [+]1, v (ww))) )l+lw(wi)! T R
) - £
+ 'kH(Wi\“’(Wi)) 1|+'w(wi)| < [Iujl)+2,kH(wi(w(wi)) )I
steps, since |w(w.)[ < Im(wv)l. Let A = 1max Iujl. Then
JT giien p
m' < |U)(\~ I(()“\)"'ZII(I(W ( (W )7 1)' ZIkH(W Uz(w ))'+(6+A)‘“’ (w )|>

since Iw(“i” = ]w(wi) | < [wz(wi)l, and ky; being monotonous

2 Z|kH(a|w|+lw2(aIWI) |)+(6+A) [‘Uz(alwi) ,

since Iw.l < |w|, and k; and w, being monotonous.

's|w|, t-pinches must be pinched out. Of course |w'| < |w|. Hence w can be
derived to f(w) in the given presentation of H* within m" steps where n" satis-
fies: ]

m* (2|k (a |W|+|w2(a )I)I+ (6+A) Iw (alwl)|}
< |w|{|k (a IW|+]“’2(3 ])|)|+(3+A) l“’ (alwl)l}
f(w) is derived to e in <Z;L> within at most @ < |k of(w)| < |kH(a|wl)| steps,

as |f(w)| < |w| and k; being monotonous. Hence w can be derived to e in the
given presentation of H" within m steps where m satisfies:
|wi
m=m < |W|{|k}i(a'wl+lw2(a )I) [+(3+A) |w2(alwl) ]}+|kH(a|w|) Jis
Define
K(w) = VK(VK(vk (govk (U, 00) Uy o0,0U, 0)) , V(0,20 () ,a> ")) ) kel ()
Then k =E_(ZU {t}) and k satisfies:
|w]
koo | = fwl (i@ 192@E0 ) ey oy @M e g a1
Therefore k is an En-bound for the given presentation of H*, which is En-d.b.

herewith.
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2. AN EMBEDDING INTO DERIVATION-BOUNDED GROUPS.

The proposition in Sec. 1 give examples of embeddings of d.b. groups into
d.b. groups. But now the question arises whether a group possessing no En—d.b.
presentation can be cambedded into a E -d.b. group. The answer to this question
is given by the next theorem and its corollary.

2.1. THEOREM. Let G = <I;L> be f.g. with WPG e En@) , t.e. the word prob-
lem for the given presentation <L;L> of G is En-decida.ble, for some n > 3. Then
there is a finite En—d.b. presentation <A;M> of a group H such that G can be
embedded in H.

Proof. Starting with <I;L> we construct <A;M> in a few number of steps. Let
L-twer'wgel, and &= <. ThenGls f.g., Wz E (5), G = G, via the
identity mapping, and for each word w € Z with w é e there is a derivation of
length 1 in <I;L>, because w = e in G implies wel.

Let ¥ = {3|s I} be a copy of I satisfying InZ = ¢, I, = UL, and let
9: 3" > I be defined by #(s) =5, $(3) = 3. Let L_ e s YaueTigw) = w
and L - <ZO;LO>, then G is f.g., WPGOE En(_go), G, = G via ‘f, the deflni_ng
relators of G0 do contain only positive letters, and for every word w = go with
w = e there is a derivation of length < 2|w[+1 in <L ;L,>, because at first all
letters of the form s (s € L) contained in w must be substltuted by § by means
of the derivation s » ss§ + §, then all the letters of the form ; (s e §) con-
tained in w must be substituted by s by means of the derivation & + §§s s,
as s§,Ss € Lo, and at last the produced word w' ZO can be deleted in one

"

step.
Lo is an En-decid'able subset of E:. Hence there is a Turing Machine T =
(ZO,QT,qO,S), where QT is a finite set of states, q, '« Qr is the initial state
of T, and B is the transition function of T, and a function g € En(ZO) such
that T computes the characteristic function of the set Lj and g is a time bound
Jor T.
Now T can be modified to get a Turing Machine T = (fO,Q:r',%,E) , where Eo
is a finite alphabet including Zo, satisfying the following two conditions:
(1) There is a special state q e Q.f called the acceptingstate such that
starting at qW, T eventually reaches the state a4, if and only if
we L

(2) There is a function ky €E € ()3 UQp) satisfying for all u,v EZO,
q [ QT starting at the conf1gurat10n uqu T halts within |kT(ung)|
steps if T reaches the accepting states q, afeter all.

Especially it is E_ -decidable whether starting at w3V, T eventually
reaches ‘the state ay- For that T works as follows:



Start:

c
=
o
|
|
!
|
!
|
|
|
L~ 28
> | oo
o

+
% time: 0(n)

The tape is divided into four tracks. The input is copied onto track N° 1. Below
the leftmost letter of the copied input a "1" is printed onto track N° 4.

Loop:
W w
b. W
b b. b ;s gD T < ilib #
l] ]1]b 1] ol
— —
J J

time :0 (max{ |w|,j})

Track N° 1 is copied onto track N2 2, and track N° 4 is copied onto track N2 3.
If a letter a .:EO—ZO is contained in w, or if a letter a # 1 is contained in
the inscription of track N 4, T halts at the state q_, a nonaccepting state.
Otherwise T simulates T starting at qw on its track N° 2. Ahead of each step
of this simulation a "1" is erased from track N° 3. If T halts and accepts,
then T halts at state - If T halts without accepting, then T halts at state
q_. If the whole inscription of track N2 3 is erased before reaching the end
of the computation of T, then T breaks off the simulation of T, cleans track
N2 2, adds a "1'" to the inscription of track N° 4, and starts the loop again.
For carrying out this computation, T needs two additional tracks as scratch
paper ©o note the direction of the beginning of the inscription of track N2 1,
and with it the beginning of the inscriptions of tracks N° 3 and N° 4, and the
direction in which the actual cell of track N° 2 is situated in relation to the
position of the head of T.

Now the following is satisfied: for w e L starting at AW, T halts and
accepts. lence sta1t1ng at q,w T reaches the state q . On the other hand if
starting at QoWs T reaches the state q,, then w € Z , and T halts and accepts
starting at q oWs i.e. we Lo'

With the input w e E T does not carry out more than |g(w)l steps, T si-
mulates T step by step. Each step of this simulation takes T at most O(Ig(w)l)
steps, for T must erase a "1'" from track N° 3. Altogether, T simulates ): )]
=0 (|g(w)|z) steps of T. 53

llence T needs 0(]g(w) ]3) steps to carry through the simulation of T with
input w. If T is started at an arbitrary configuration quv, it simulates T
starting at a configuration depending on quv on track N° 2 for as many steps
as the inscription of track N2 3 tells. This takes no more than O(]uvlz) steps.
AMfterwards T simulates T, starting at a well defined initial configuration aw,



where w is the inscription of track N° 1 of the configuration ud;v, ifwe 2
Otherwise T halts at state q_. > 3 there is a function k~ e E (Z UQT)
satisfying condition (2).

According to [Av-Madl], p.89, a semigroup Ag = (SUQ;m) where S = Eo U {h},
Q = Qf Ulq}, and

- . - . . * -
m = {F;qi,6; = H;qi,K; ai{,93,<Q G H; K, 87, i =1,...,N}
can be constructed from T, satisfying:
(3)VW¢:E (hgwh q<_>w cL)

(4) If uqJV = q, then there is a derivation from quv to q in b of length
not exceeding Z[kT(uq.v) |+|quv| , because it may be assumed that kj is
non-decreasing ( [Weih}) :

Let u,ve s* with ug;jv KT q. Then quv Zq,orucz=hu, v:zvh, qj £q.
and starting at u'q.v', T reaches the accepting state q,. But for doing so, T
does not need more than |kp(u'q. v')| steps. Hence uq.v = hu'q.v'h can be derived
to hiiq,¥h in A7 within at most II\ (u' azv )| steps. Of course |Gv| < |u'v'|+
[kT(u qu )|, since T can increase the length of its tape inscription by at most
one per step. It takes A |Gv| steps to derive hq, h from HLq Vh by erasing Gv;
hqah can be derived to q within one step. Hence A can derive q from uq;v within
at most

2 [k (uazv) [+utv' |+ < 2|k (ua;) | +|ua;v]  steps.

Define kA(w) = Vk(vk(kT(w),k.f.(w)),w) . Then kA e En(S UQ), and kA bounds the
derivation of words w « (S UQ)* with w Z~ q to q in AF.
Now a Britton tower of groups is constructed:

Ny ™ <x;@> ,
Dy = <x,S;sxs = X (s € S)>
D2 = <Dy, Q;0>
Dy = <Dy,T; rlqul1 = l:liqizki,f'-lsxr.1 =sx(seS,i=1,...,N)> where
6iq-- lm) z 511 Sip
D4 = <D3,t txt = x,trt = r(re R)>
D = <D, Jokxk = x,f(rlf = E‘%rC_ R),kqtak =_('1tq>
" <D5,t°,k0 t, = (ay)” 't(hg) ky = hki>
= 3,t k (hqot qoh)'l(hq t qoh) = z_i: (hkgh)a(hkoh) =a(a {x}UR),
(hk h)ghq toqkoxg(ﬁk h) = qhq,t qgha> =: <SgiMg> = Dg
Z; ={s'|sel } ' Z +Z'* is defined by (sH)' = s'M,
GW' = 8¥, L°=’w cZO*[E!u el u = w}, and G' =<Z L>

ThenG'=G via '

H * DxG' = <s6u: Mg » Lo,as' s'a(a=Sg,s'€L)>

Hy = <Hj ,d;dss'd = s, df( sk d =k sko(s czo),atod t, dkotokod k, 0k0>



112 = <H1,z;zsz - s,zkoskoz = kosko(se):o),ztoz = tOd,zkotokoz = kot0k0d>
A= SgUz U{d,z}.
Let M be the set of defining relators of the given presentation of H, and

M= S’I—(I‘;—{s'g',?s'ls' < I'}) where ' = ()'c I

REMARK. ¥s e E(s3,5s = L) > ¥s e 5(s8,35 € L) = ¥s' € 2'(s'5',8's' = L))

Let H = <A;M>.  In [Av-Madl] Satz 1.1, p.184, Avenhaus and Madlener prove:
Imis f.p., WPHC En(z_x), and G embeds in H. It remains to show that <I;M> is
t l—d.h.

According to [Ott]§15,pp.156-173, the following assertions are valid:

I)0 is i;'O—d.b.

”1’[’7’”2’ and b, are L-'S-d.b.

}L) is L -d.b.
For proving thesc assertions propositions 1.4 until 1.7 are used. At the last
part once has to construct a rewriting function w Ln({M} USUQUR), for
<X, qta, R, \fter that, proposition 1.7 can be applied. Analogously there is
an L -rewriting function for <hxh,hrh h({ﬁq t (_1 hgh> in DA = <Dg,t, (hq t q h)
A(hq T q hj=a (a e {x} UR)> where 131 is E d b just like D Hence D6
Ln d.b., too.

(5) <Z;M> is E -d.b.
2l 1 s e ('_‘]) *
Proof. a) Let w' e L = LO-{s's',s's'|s' €1'}, andw = (w') €L SI,.
Then hq wh 7. q, and hence k (w-1t w) - (w_lt w)k , due to [Av-Madl], p.185.
o o™ Dy 0 % O
w' e l 1= I' = w' S e=>w g ©» since H = H, via the identity. Now w' can

il . H
be dCI‘lVCd to ¢ in <A;M> as follows:

), W t ww toww'dd (2) W t ww t dwcl (3)

w_1f0wzw l'cowzd (O wzk w lt ok 2a B8

w_]f wk w 't wk dd ), W t ww t wdd (7), ~5e
00 o0
ad (1), 2|w|+2 trivial relators are inserted.
! (2), by using the commutation relators of Hy w and w' can be mixed with-
in at most SI\\'IZ steps:
ww' > si1si1sizsi2..si>\si)\ :
After that:

Siﬁ{]--si)\si)\d d351151]dd512512dd .5,8 1)\d
(Insertion of A = |w| trivial relators)

+ dsj 1815051y = dw

(Insertion of sj l\’l and deletion of ds1J<1stl 23)*3

laken altoocther this derivation doesn't need more than 3|w| +3]w| steps.



i = - )
ad (3), w todw = Si)\~-511t0d511--51)\
+ (254,2) (zsi)\zs-i}‘) o5 (25112) (25112511) (todifoz) (Etoz)
(si251,2) (zs442).. (Si)\iéi)\z) (isi)‘z)
(Insertion of 6|w|+3 trivial relators),
- iéi}\z' .i§i1zitozisi1z. .Zsi)‘z
(Deletion of 2|w|+1 relators of the form zs;.zSj.,si.25;.2,t dzt z)
1 S I R R R R
+ zw t wz
o
(Deletion of 2|w| trivial relators).
Altogether (3) needs at most [10|w +4 steps.
-1 A g S
ad (4), w tow > (W towkow towko) (kow towko)
(Insertion of 2|w|+3 trivial relators).
Letk e E (S)beanE -bound for <S M6> Then w~ twkw twk can be de-
6 6’ -1- o O 4|W|+4
r1ved to e in <Sg;Me> w1th1n at most |kg (w” L wku t wk )| = kg (x )|
steps. Hence;
g pello & 1 b il
(w towk oM towko) (kow towko) > kow towk o In <A;M>
within at most |k (x4|w|+4)| steps, and (4) can be carried out within not more
than [kg (<114 [52]w]+3 steps.
ad (5), zk M =g wk z = zk su 511 oS- sl)\k z
+ (k Si)‘ko) (k 5i>\k zkosi)\k z) (k 51)\ 1 o) (k oSix- TkOZkOSi)\-1KOZ)"

(zk t k zdkotoko) (kotokod)(2k0511k zk 5i1k )

(kosi]ko)(zkosizkozioéizko)..(ikosukozkoslA o) (kgsi k) zk k2

(Insertion of 10 |w|+6 trivial relators),

> kosikkokosi)\Jko o 11}\ kotokodkosﬂko"k si)\k zk k z
(Deletion of 2|w|+1 relators of the form 212051 k zk s;.k ,k oSiqk zk si.k z

0“"0"1j 0 07 j70" 07 1j o
(siJ el ), zk t k zdkotoko),
> kow tokodkosi1ko"kosi>\ko'
(Deletion of |w|+2 trivial relators),
A Fre.. ¥ Jk Z | E o
> R Tk AR 51 (K 0K 51 Ko® (B si kod) - (ks ko ok od) (3K sk od)
(Insertion of 5|w| trivial relators),

- k Wt of ddk o511k d- dkoslxkod
(Deletion of |w| relators of the form kosijkodkosijkod (Sij ez)).
> kw Tt wk d.
o' 00

(Deletion of 2|w| trivial relators).
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Hence (5) can be carried out within 21|w|+9 steps.
= -1 = -1 -1z -1
ad (6), kow t:owko > (kow towkow tow) (w tow)
(Insertion of 2|w|+1 trivial relators).
Hence k oW 1‘c wk oW 1tow can be der1ved to e in <Sg;Mg> within |k (x
steps, and SO (kow Tt wk w t w) W~ t w) > w 1t nl in <A;M> within at most

Ik (x 4]w] +4 )| steps. Hence (6) doesn't need more than |k (x4|w| 4)|+Z|w|+1

4|w|+4 |
3

steps altogether.

ad (7), 2|w|+2 trivial relators are deleted.

Taken altogether, there is a derivation from w' in <A;M> of length not ex-
ceeding Zlkb(x4lw|+4) |+3|w|2+42|w|+21. Define

k' (W) = vk (vk(kgU (48) kgU, (W), VK(VK,) g0y

Then k' < E_(4), k' is nondecreasing, for all u,v El_s*(|k'(u)|+lk'(v)] <
[k'(uv) |) and for every w'e L:) there is a derivation from w' in <A;M> of length
bounded by |k'(w')|.

b) Let w 64* with [w| =0 andw e, and sow 7 e. According to the proof
of Proposition 1.6 (a), w can be derived to e in H1 in the following way:
) (2) ' (3 4)
w W' E..H_’ ﬂS (w' )1rv (w") w—-—ﬁﬁ»ﬂgo(w ) o ©

(d-pinches are pinched out in H1, in step (1))
This derivation can be simulated in <A;M>:

ad (1), d-pinches are pinched out in the following way:

d"Hud" » fi“u(mu(u))_.lwu(u)du
(Insertion of |wp(u)| trivial relators),
> auu Uy (u) a*

(W1th1n 3(!u|+|mu(u)|) steps u(w (u)) can be transformed into uju, where
= S() and u, € Z )

> uuzmu(u) a*

%

(u(w (u))'1 ie and so u; § e and u, (=3' e. But then u; can be derived to e in
<S43Mg> within at most 1k6(u1)] steps) ,
» d' (wad*
U

(In 1, s' is substituted by s' , and é' is substituted by s': s'>5'srE g
aid S»s'S's' >~ s'. Let u2 be the result of these substitutions. Then u2 can
be derived from u, within at most 2|u,| steps. Since e oy oy, O cL
and because of (a), u2 can be derived to e in <A;M> within no more than
|k'(,)]| steps),

“ >



(7|wu(u)| steps of the form: Insertion of trivial relators, deletion of trivial
relators, and deletion of a d-relator).

A = SRx - k <k (c ¥
Let /\1 <ss ,l\obko(s < ZO)’to koto}\O H,? Bl = <5,]\O51\O(5 ELOJ T kOtOKO i

+ B, and B
spectively. According to [Av-Madl] Lemma 1.4, p.187, there are constants c > 1
and d » 2 sastisfiring |wA1(w)| |qu1(u')|, lew) |, |$w)]| < c[wld. Hence for
pinching out the d-pinch dMud* one doesn't need more than

and  and ¥ denote function realizing the isomorphisms A i 17 Ay, re-

d = d
8] u] B3 1) 2] 29+ 1y (D 101 oy ) S i (L DI
¢ 13(ee D2l k (DS Lo e D Ul

<

steps in <A;M>. Let w! be the word formed from w by pinching out i d-pinches.
Then by the proof of Prop 1.6.fa)

il € (@il
Therefore every dpinch d“ud” pinched out at (1) is bounded by

al o lw]
lul < (c+n)d " |w|d

Hence there is a function k1 € E (N) bounding the nunber of steps needed for
carrying out (1), since n » 3. Of course w' satisfies |w'| < ((c+1)|w])d™™

ad (2), by using the commutation relators of Ho and some tr1v1a1 relators,
w' can be transformed into 7g (w' )TTZ W', w1th1n at most 3]w'| steps. So this
transformation can be bounded by a functlon k <E(N).

ad (3), there is a derivation from TTS6(W ) in <§6 Mg> consmtmg of no more
than |k 6°Tse (W' )| < |k (xlw I)| steps, and so there is a function k <E ()
bounding this derivation.

ad (4), within at most 2|“z (w')| steps each ' and each ' contained in
Trz '(w') can be substituted by S' or s', respectively. In this way “z '(w') is
transfomed into a word W « L which can be derived to e in <A; ;M wlthm at
most |k' (xl I)l < |k (x| l)Iosteps because of (a). Hence (4) is bounded by a
function k; e En(N) too.

So there is a functlon keE (\I) bounding the derivations from w to e in
<A;M> for all w = A satisfying |w| =0 and w  e.

c) et we A" with lw|, >0 and w jj e, and so W, €. According to the
proof of Prop. 1.6 (a), w can be derived to e in H, as follows:

o e B

(z-pinches are pinched out in HZ’ in steps (1)).
This derivation can be simulated in <A;M>:

ad (1), z-pinches are pinched out in the following way

¢

et AR iuu(wu(u) )" 1wu(u) M

(Insertation of |wu(u)| trivial relators),
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> iuwu(u) M
(u(w (u))'1 i, € and |u(mu(u))']|2 = 0. Hence u(wu(u))'1 can be derived to e in
<A;M> within at most k(lu]+|wu(u) |) steps because of (b) ),
> g
(SIwU(u)I steps of the form: insertion of trivial relators, deletion of a z-re-

lator, and deletion of trivial relators). Let

A =<<ksk (SEZ)t k tk> B2=<sksk (sez)tdkotokod>“,

2 0’70 0.0 H1
and ¥ and ¥ denote functions realizing the isomorphisms A, > B, and B, ~ A,
respectively. Because of [Av-Madl] Lemma 1.5, p.187, there are constants a,f »2
satisfying:

o, 61, log, @[, 1960 [, 1960 | < alwl®.
Hence for pinching out the z-pinch z"uz" one only needs a]u|B+E((a+1) [u[s) +
SGIUIB 90¢'u|8+k((a+1)|u| ) steps.

Let w denote the word formed from w by pinching out i z- pmches By the
proof of Prop 1.6 (1), Iw | < (o+1)PB -l 1] [B Hence any z-pinch z"uz" pinched
out at (1) satisfies |u| < ((a+1) |w|)B , and therefore the number of steps
necessary to realize (1) can be bounded by a function k'1' < En(N). Furthe rmore
w'| < ((a+1)|w|)8|w,.

ad (2), lw'l =0 and e Avgw . Hence, because of (b), w' can be derived
to e in <A;M> w1th1n at most K(|w' |) steps a.nd so, there is a function kHE:En(A)
" bounding the derivations of all words w = A with w H e in <A;M>.

Therefore <A;M> is En d.b.

2.2. COROLLARY. Every countable group G having an En—decidable word prob-
lem for some n > 3 can be embedded into a f.p. group H possessing a finite En-
d.b. presentation.

Proof. Every countable group G having an E -decidable word problem for some
n > 2 can be embedded into a f.g. group G, having an E -decidable word problem
too ([Ott] Thm. 12.1, p.117).

3.F.P. En—DERIVATION BOUNDED GROUPS AND THE WORD PROBLEM.

For finite E -d.b. presentations of groups there is a standard natural al-
gorithm for solving the word problem. But of what degree of complexity is this
algorithm, and how is this degree of complexity related to the selected finite

presentation?

3.1. THEOREM. Let H = <Z;L> be f.p. and E -d.b. for some n>3. Then the
standard natural algorithm for <L;L>, as it is descmbed in the introduction,
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is an En-algorithm. In particular the word problem for <I;L> is En-decidable.

Proof. Let £ = {sy,..,s.}, L = {w;,..,wel<Z", and k « E_(Z) be an E-bound
for <Z;L>. Without loss of generality m > 3 may be assumed, for otherwise aux-
iliary generators and defining relators can be added.

Tfwe §* with w ﬁ e, then there is a derivation from w in <I;L> of length
not exceeding |k(w) 1. During each step of this derivation a word u € Rel =
rut {ss,ss|s e I} is inserted or deleted. L contains £, and I contains m
elements only. Hence there are only 2(£+m) possible choices for u. Define A as
the length of the longest possible word u. Then every word v found in that
bounded derivation from w satisfies |v| < [w]+|'22‘—1-k(w)], where [yl denotes the
least natural number greater than or equal to u, because in order to derive a
word of greater length from w more than %|k(w)| steps are necessary, but then
in order to derive this word to e more than %|k(w)| steps are needed, again
contradicting the fact that the derivation from w is bounded by |k(w)|. Define

w, = lwl+ie ke .

A step of a derivation can be encoded as a triple (i1,i2,i3) of natural
numbers such that i, e {0,1}, 1, € {1,2,...,2(#+m)}, and iz E{O,1,2,..,uw}.
Here i1 = 0 stands for "insertion", i, =1 for "deletion" of the relator with
the number i, at the position described by iz. Hence there are v = 2+2+ (£+m)+
(uw+1) different steps which can be chosen in a derivation of w. Therefore

k(W) | possible derivations from w of length |k(w)|.

there are not more than (vm)
In order to decide w j e, it is sufficient to apply these derivations one after
another to w, and to test whether one of these derivations produces e. Define

f1(e) Ze, fz(e) = sy, f1(ws) s fz(w), fz(ws) £ vk(f1(w),s1) then f1,f2 €
E.(Z), satisfying
1 rle"l1 fJ—-}—w o
fi(w) =s , £,(w) = s
1 1 2 1
- A =
Let ML(w) = vk(US1(w) sVK(Us ok(w) ,£;(s7))) where X = unelaRéllul. Then
M€ E_(2) and

A
w| #1571 [k (w) |
ML(w) = sl1 £ zs:w

Each step in a derivation is described by a triple

(i1,i2,i3) e {0,1}><{1,2,..,2(£+m)}><{0,1,..,uw}, and so it can be encoded
as a word over I, namely as (55, TR
Byt | STRINY .
which is a word of length not exceeding 2+2(Z+m)+y +1 = 2(2+m) +3+|w|+l‘71-|k(w)|.
Hence a derivation of w can be described by a word of length at most

) lkw) .

(2Cerm) +3+ w] + 131+ [k (W)

Let
LDAGW) = VK(vk(s2 M *3M.00) K (0)



150

then LDA e E (Z) satisfying e s

_ s52(5+m)+3»+|wl+ 2k ) (kW) |
In order to decide whether w qe is valid or not one only has to check whether
there is a word u of length at most |LDA(w)| describing a derivation from w to
e in <I;L>. Now a Turing Machine M will be defined to test for a pair (w,u) €
(g*)2 whether u is the description of a derivation from w, by trying yo apply
u to w. In an initial part of u is the description of a derivation from w to e,
then M will halt with its output tape being empty, but if u doesn't meet this
condition, then M will print the letter 's;" and halt.
Let M have two input tapes, one output tape, and four auxiliary tapes.

1) w is the inscription of the first input tape, and u is the inscription
of the second one.

2) w is copied onio the first auxiliary tape, while u is copied onto the
second one. This can be done within 2|w|+2|u|+3 steps. i.e. amount of time
(A.t.) = 2|w|+2|u|+3.

3) The elements of the set Rel are printed onto the third auxiliary tape
separated by a 'b'", respectively.

Act. <2 (A+1)<2+(g+m) < 8A(L+m).

11: --bl w E

Al: 5D w b..

m m

A3: ..blwy|bjw;T[bfwy[b..bjw;T|bls;5,[b..blS s |b..

+

4) If u starts with a letter s £ S1» then outputs 1 and halts. A.t. = 3.
If u starts with s, then mind "'insertion'. A.t. = 3.
If u starts with s%, then mind "'deletion'. A.t. = 4.
If u starts with s% for an i > 2, then. outputs Sq and halts. A4.t. = 4.

A2: b b{ u  {b.. u = s%u' for some i e {1,2}.

1.
If u' starts with a letter s # Sy» then outputs 4 and halts. A.t. = 2.
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If u' starts with s%, then for i-1 times M puts the head of its third auxiliary
tape onto the next symbol 'b'" to the right of the actual position of the head.
After that this head perfomms one step to the right. 4. t. < i(A+1)+1.

If M reads a "b" on its third auxiliary tape, then output sq and halts. 4. ¢ =2.
Otherwise, the head of A3 is pointing to the relator which shall be inserted or
deleted from w.

A2: ..l uw [b... u'Esizu" for some i € {1,...2(+m)}
1«

A3: .8 W b...b W, b...b|spsplb b...

+
If u" starts with a letter s S5, then output sy and halts 4.t. = 2.
If u'" starts with s%, then the operition R (i.e. make a step to the right) is

executed on Al, j-1 times. A4.t. = j.

If the head of Al is now pointing at a cell containing 'b'", and if M has to de-
lete the relator marked on A3, then M prints "51” and halts. A4.t. = 2.

If the head of Al is pointing at a cell containing "b", if j > 2, and if M has
to insert the relator marked on A3, then M prints "s," and halts. A.t. = 2.
Otherwise, the head of Al is pointing at the first letter of w which shall be

erased or behind which the indicated relator shall be inserted.

Al: ..bb| w' |s| w' |b... w = w'sw"

f

5) Insertion: The indicated relator is copied from A3 onto A4, subsequent-
ly w'" is appended at the rigth end of this copy, and at last w'" is erased from
Al Act. < A+|w|+1.

If j = 1, then the inscription of A4 is copied onto Al, in the course of which
it is erased from A4. Otherwise the inscription of A4 is appended to the inscrip-
tion of A1 (w's), at which it is erased from A4. The head of Al is put onto the
fiTst "b" to the left of the inscription of Al.

Act. < |w+2(|w]+r+1)+|w]+a+ T = 4|w|+3r+3.

Al: ..bib| W' [s] Wy Wt e
o -1 |
A2% “oknb] it Thies RS s%ﬁ
4
A3:  ..b| wy |b..b| w, [b]...D SpSm|P|b---
M:  .blblb
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Deletion. The indicated relator is compared to the subword of w, begin-
ning at the position the head of Al is pointing at. By doing so, the subword
of w is erased. If this subword of w and the indicated relator do nos coincide,
then M prints "51" and halts. Otherwise an initial part or ‘an internal segment
of w has been erased. In the first case the head of Al performs .one step to the
left, in the second casc M appends the remained end of w to the remained initial
part by using the tape A4 as scratch paper. At last M puts the head of Al onto
the first '"b" to the left of the inscription of Al. A.t. < A+2|w|+\+2+2|w|+1=
4|w|+22+3.

Al: ..blb} w' w'" |b.. W wWww'
A2#- B T ' = s
*
A3: ..b| Wy b..bl Wy, ‘b ..b §msmb
Ad: «+bibib.. .
T

6) The head of tape A3 returns to the left.
Act. & (A1) 2«(1+m)+2 < 4X(1+m) +2.
If the inscription of tape Al is e, then M halts because e has been derived
from w. Otherwise M continues with step (4).
Astit LB
Of course M eventually halts satisfying fM(w,u) = e iff an initial part of u is
describing a derivation from w. Altogether M has the following amount of time.
Tyw,u) < 2|w[+2[u] +3+8X (€+m) +|u] - {4+ |u] (A+1) +1+2+|u| +2+
SC|w|+x|u|) +4x+4+4X(L+m) +2+2} .
(In the course of the computation w may grow, but it cannot become larger than
lw] +[u])
= 2|w[+2|u|+3+8X(L+m) +|u| * {5 |w|+(6A+2) |u|+4X (L+m+1) +17} .
But A,¢,m are constants, and so fy €E,(L) because of [Weih] Kap. 4.3, Satz 2.

Now we have:

wie iff Jue g* (Ju] € LDA(W)| and fyw,u) = e)
iff 3Ju vk(LDA(w),s]) (fM(w,u) =e).

But as n » 3, En(g) is closed under bounded quantification and therefore w = e

et

is E -decidable by the standard n. a. implemented above. Hence, WP, = En()_Z) g
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Next we prove that En-derivation boundedness is an invariant of finite pres-
entations.

3.2. THEOREM. Let H = <I;L> be f.p. and E -d.b. for some n > 1. Then every
finite presentation for H is E -d.b., too.

Proof. Let be Z,L, and k as in the proof of Theorem 3.1, and let <A;M>,

= {t1,. t } M= {u coUg } e A , be another finite presentation for H.
Then, for all s; € z there is vy eA such that S5 and vy define the same ele—
ment of the group H. Define f(e) = e, f(wsll'l) g vk(f(w) ,vll‘) Then for all wzz

w and f(w) define the same element of the group H, and there is a constant
¢ > 0 such that [fw)] < ¢

VtJ. e 03X € §+, tj and x; define the same element of H. Moreover,

gle) = e, g(wt?) = vk(g(w),xljl) . Then for all w « 4*, w and g(w) define the same
element of H, and there is a constant c, > 0 such that lgw) ] < cz-]wl.

f
e s ok el
g A
N /
H
Then B(w) 3 i acg(w) f Bof° g(w), and so w = f°g(w) Also |fog(w)| < 1|g(w)| <
cytcyt [w] . Espec1ally t“(fog(tu)) {e Hence for each t? €A there is a
derivation from t?(fog(t))) 1 to e in <A;M> of length l il cz = ma:x{[J u,

j=1,...,r,u € {£1}}, then fog(tJ) can be derived from t;‘ in <A;M> within at
most ¢, = cz+1 steps by the followmg sequence :
u Uzl U VAN I U
5 t og(th fog(t! = fog(th).
ty gz~ tt] (Eeal P ——1—>( °g(ty)) = = fog(ty)
Hence every word w « A® can be derived to fog(w) within c,|w| steps.

For every u =Rel, f(u) je, and therefore there is a derivation from f(u)
to e in <A;M> of length lil'l. If ¢g = max{£' Iue Rel}, then f(u) can be derived
to e in <A;M> within no more than Cg steps. let w = A with w § e, then g(w)
qe too. Hence there is a derivation from g(w) to e in <I;L> of length not
exceeding |keg(w) | < Ik(s(;Zle)I:

gw) = U, > up L.
But then
fog(w) = g(uo) C—5—> f(u1) —C—5—> —C?>f(e) ze

in <A;M>, i.e. there is a derivation from fog(w) to e in <A;M> of length not
exceeding c5|k(s(,]:2 w|) |. Now w can be derived to e in <A;M> in the following
manner:

w ——> fog(w) ——— > e.

C 21wl
ik slk(sy2™ )]
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Of course there is an En—function bounding this derivation. Hence <I;M> is
En—d.b.

The last theorem shows that the property of being E -d’b. does not depend
on the chosen finite presentation. It merely depends on the group. Hence a f.p.
group is called En—d.b. if one, and therewith each, of its finite presentations
is E -d.b. A conclusion of the proof of the last theorem is the fact that even
cvery f.g. presentation of a f.p. E -d.b. grouwp is E -d.b. But of*course each
f.p. E -d.b. group has a f.g. E -d.b. presentation, i.e. <I;{we I lw g e}> for
exanple. Therefore the property of being E -d.b. does depend on the chosen f.g.
presentation of a group.

[t remains to answer the question wheter for f.p. En-d.b. groups with n>3
an optimal n.a. exists. The following theorem gives an answer in the negative

sense.

3.3. THEOREM. For every n > 4 there is a f.p. group Gg = <Sg;Lg> such that
the word problem for Gg is Eg-decidable, but <Sg;Lg> is only E -, but not

L .q-d.b. Especially there is no finite Es—d.b. presentation for Gg.

Proof. Let n > 4. The f.p. group Gy will now be constructed in the same man-
ner as the group Dg has been constructed in the proof of Theorem 2.1. Only the
underlying Turing Machine will be modified. Let S' = {51,52,53} and L =S %,
and let T = (S' ,QT,qO,B) be a single tape machine acting as follows. For every
we S'*, starting at quw, T computes A (w,w) where A = E (S') denotes the
n-th Ackermann function over S' ([Weih]). After that T enters the accepting
state q and halts. For carrying out this computation T has to execute more
than I.»\n (w,w)| steps. On the other hand, T can be chosen in such a way that
there exists a function g e En(S') which bounds the time, i.e. the number of
steps T needs for its computation ([Weih] Kap.4.4, Satz 1).

Now T can be modified to get T = (5,Q§,q,,8), where S is a finite alphabet
containing S' such that there is a function ki = En(S UQf) satisfying.

yu,v S*qu < Qf, starting at the configuration quv, T halts in the

accepting state q within at most |k'.f(quv)] steps.

This modification is done in the same way as the one used in the proof of theo-
rem 2.1, with the only exception that the non-accepting state q_ is omitted,
i.c. instead of entering q_, T enters the accepting~state q,- Since for every
w €8'*, starting at q.w, T halts in the state q,, T also halts in the state
Q> starting at any configuration quv. The execution time c~>f T is bounded by
the function g €E_(S'). Hence there is a function kT‘ S En(S UQ;I:) satisfying
the condition formulated above. Of course, starting at AW, T has to carry out

more than Il\n(w,w)] steps for avery w € S'#, too.
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CLAIM. Let S = SU{h}, Q = QrUial and & = (SUQsm), where m = {F,qi 6, =
HiinKilquin < Q’Fi’Gi’Hi’Ki = S*, i=1,...,N} is the semigroup construct-
ed from T according to [Av-Madl],p.89. Then the following three conditions are
satisfied:

(1) yu,ve S*qu eQ (quv 4= quv =Zqoru=hu', v=vh, with u',v'eg*
and qj Eqdis

(2) weS* \:!qJ =Q (uqu q > 3 derivation from uqu to q in A, of length not
exceeding ZIkT(uq v) |+|uqu])

(3) w est* (hqowh A but there is no derivation from hqowh to g in A of
length < lAn(w w) ).

Proog.
ad (1) " =", Let quVZ q, but uq;v # q. Then a4y £q, u=hu and v = v'h
~%
for some u',v' « S .

-
""", Letu',v' €§, q. EQ’T' Then u'q.v' :fqa, and so huq v'h 3 A hq h x q.

ad (2) This can be proved in exactlthhe same way as the correspondlng
statement in the proof of Theorem 2.1 was proved. Hence there is a function
kA < En(S UQ) which bounds the derivations from w e (S UQ)* toqind ifw3{q.
ad (3) A simulates f‘, step by step. But starting at qoW, T has to execute
more than I%(w,w)l steps before reaching Au- Therefore A has a carry out more
than ]An(w,w)] steps to reach q, too, when started at hqowh.
Now a Britton tower of groups is constructed:
G. = <x,0>, CIRE {x},
Gy = <Gp,S;5xs = xX(s € §)>, S = S, US,
G, = <G,Q;0>, S, =5,UQ,
Gy = <G2,R'f.f3.qi1Giri = Hiqizki,f‘isxri = sx(s € S,1<igN)>, Sz = S, UR,
Gy = <Gg,t;txt = x, frt = r(r e RZ)>, Sy = Szuitl,
= <G4,k,ka.k = a(a « {x,qtq} UR)>, Sy = S, U{k}, R, = RU{x}.
Of course G_,Gy,...,G; are f.p. Furthermore they satisfy ([Av-Mad1]):
« (o) Fori=1,..,4, G is an HNN-extension of G 1» there is a reduction
function f.l < E3(§i) for Gi’ and the word problem for G; is E3-decidab1e.
(©)] There is a function g E3(53) satisfying:
- Yw ES (g(w) G, W for some u cR)
-Ifwe 83 is R-reduced, there is no u Rx such that there is a R-pinch in
ug(w) Just on the border u - g(w). . .
- Ifwe §; is R-reduced, and if g(w) = ur‘ilv where u S, ve §3, then w has
the form u'ruv for some u' = S;
(y) Over S3 define the predicate: P(u) 1<':> Iwg,W, € B: (w1uw2 63 q) .
< {f ue 53 is reduced and v = g((g(u)) ) , then:
P(u) ffive 52 and P(v).
-Ifve S; is reduced and v' is the result of deleting all x and x symbols

of v, then:
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P(v) Hf Y e s*, q. €eQ (v' = Xq;Y and P(Xq ).
- ¥X,Ye s* , a5 = Q (B(XayT) iff Xq; Y= T Q).

Assertion. P = E3(§3).

Proog. Let u' S . Then u = f (u') satisfies u' G W and so P(u') iff
P(u). let v = g((g(u)) )'1. Then because of (v), P(w iff v «-:S2 and P(v),
since u is reduced. let Vv = fz(v), and v' = SUQ(v). Ifve 52, then the fol-

lowing is true because of (Y):
P(v) iff A,Ye S¥, q;€Q (v = Xq;Y and f>()‘<qu)).

Altogether we have thus:
f’(u') iff I’(u) iff ve S and P(v)
iff ve s and 3X y es” S = Q (v' = 5(qu and 13(>‘<qu))

iff ve 52 and 3X,Y « §%,q; « Q (v' = Xq;Y and Xq;Y'§ @)

But u,v,Vv, and v', and therewith also Xq.Y, are E3-computab1e from u'. quYzq
is E]-dccidablc because of (1). Hence P & E3(§3).

in s
Now let ue 34 be such that f,(u) = uotmur.t “hm’ u; e Sz, 1y € {£1}.
According to the proof of [Av- Mad] Lemma 4.9, p.102, the following assertion is
satisfied:

m-1
= . = -1
ue <x,qtq,R>G4 iff uu,..u < <x,R>G3 and i/=\OP((uou1. u) ).

But <x,R>G3 is E;-decidable because of the proof of [Av-Madl] Lemma 4.6, p.100.
llence <x,qtq,R>q is Es—decidable and so G5 is an Es-admissible HNN-extension
of GJ‘ llence WPGS € E3(§5).

According to [Ott] §15, pp.156-173, the presentation <Sg;Lc> of Gg is E -
d.b.

\ow let w e S'*, then qw F -+9a’3 S0 q w-_l{ -.q,--, and therefore hq wh zq.
khw™ (| hthq whk & hw 1q hthq wh accordmg to [Rot] Lemma 12.13, p.229. There-
fore, thL re is a derlvatlon from khw™ q hthq whkhw 1q hthq wh to e in <Sg;Lg>
buring this derivation k and k must be ellmlndted by using relators of the form
faka™ " (a e{x,qtq} UR). But for that hw™ qohthq wh must be rewritten into a
word UC({X,QAtg} UR)*. let u = qt ]qul .qt 1qu1, ueR, Y € {#1} be such

i fw 'g hthq wh " 1
w g hthq wh = u_uq qu qu
() 0 (;_1 q

ﬁw']dohtﬁqowh is t-reduced in G_1 Hence there is an i e {1,...,£} such that
uzu dtulqu qt lue 64 s qtqu iUee 21(3 Yelug..uy 1)c'1tqyf(ui..u1_),
where Y¢ denotes the free reductlon Then hw qohthq wh (;4 u G4 jatqv, with
vy = yglug..uy_q) and v, = velu;..up). So, hw’ q hthq whv, ’qtqv1 G4 e. Hence
there is a vq Ii freely reduced with hq whvz q G3 Vs. But v:(>1hqowhv§1 ‘(";3 q

with v;, Ig*( freely reduced. So Iv Ir = IV;IR‘ According to the proof
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of [Rot] Lemma 12.18, p.304, NR(V-1) describes a derivation from hqwh to q in
A. Because of (3) such a derivation contains more than ]An(w w) | steps This
means |v2 Ig > |A,(w,w)|, and therefore [A (W, w) | < |v2 g < |v2 | < Juy.yyls
|u] - 3. Therefore, a word of length 2|w|+7, namely hw- 1g hthq wh, is substi-
tuted by a word of length > |/\1(w w) |+3, namely u.

Let a = max {|y|: y e Lg UL Tugss ,Ss|s e Sgl}. Then in order to construct
a word of length > [A (w,w) |+4 from a word of length 2|w|+7, at least
r—(|%(w w)|-2|w|-3)1 steps are necessary Hence a derivation from
hw™ 1q hthq wh to a word u e ({x,qtq} UR)* needs at leas ra(lf\l(w w)|-2]w|-3)1
steps. Therefore every derlvatlon from khw 1g hthqowhkhw'1qgthq wh to e in
<Sg;Lg> needs at least I’—([An(w w)|-2|w|-3)1 steps, i.e. in order to derive a
vord of length 3|w|+16 to e in <Sg;Lg> at least l'—(lAn(w w) |-2|w|-3)1 steps are
necessary.

Hence <Sg;Lg> is not E _4-d.b., which proves Theorem 3.3.

3.4. COROLLARY. For every n 3> 4 there is a f.p. group having an Ez-decid-
able word problem such that each finite presentation of this group is E -, but
not E 1—d b.

Proog. Theorem 3.3 and Theorem 3.2.

3.5. COROLLARY. For every 4 < m < n there is a f.p. group such that the
word problem for this group is Em-, but not Em_rdecidable, and each finite
presentation of this group is E 0 but not E _1-d.b.

Proof. Let G1 = ],L1> be f.p. having an E -decidable word problem and
being En-, but not En— -d.b. (3.3). Let H = <p; M> be f.g. having an Em but
not Em_1-decidable word problem. Then there is a group G, = <Z,;L,> which is
f.p. and Em-d.b. s.t. He G2 (2.1). According to 3.1, 62 has an Em—decidable
word problem. The word problem of G, is not E _i-decidable since the word prob-
lem of H is not either. Hence G, is not Em_l-d.b. because of 3.1. Let G=G*G,
= <Z1 UZZ,L1,L2> Then G is f.p., the word problem for G is Em—, but not E1-
decidable, and the given presentation of G, and therewith each finite presen-

tation of G, is E -, but not E _{-d.b. (1.5 a)).

This last corollary shows that even for f.p. groups the complexity of a
n.a. for solving the word problem can be of an arbitrarily higher degree than

the complexity of the word problem itself.

3.6. REMARK . According to a remark in [Av-Madl], p.93, the word problem
of the group G constructed in the proof ot Theorem 3.3 is even E,-decidable,
since the special word problem of the underlying semigroup A is E;-decidable



because of (1), p.155. Hence for every n > 3 there is a f.p. group having an

E,-decidable word problem and being E -, but not En_1-d.b.

4. NATURAL E -ALGORITHMS FOR En—DECIDABLE GROUPS.

For f.p. groups the property of En—derivation-botmdedness leads to a natu-
ral Iin—algorithm for solving the word problem of the group. If a presentation
has infinitely many relators we have infinitely many possibilities of inserting
a relator in each step of a derivation, but only a finite number of deletions
of a defining relator are possible, since only subwords are deleted. For non-
f.p. groups a stronger concept of derivation-boundedness is therefore needed
which guarantees the existence of a natural algorithm of the same complexity.
There are several different possible definitions of d.b. group presentations
for non-f.p. groups. We choose the following one, in which the allowed deriva-

tions are restricted.

4.1. DEFINITION. Let G = <Z;L> f.g. The presentation <I;L> is strongly
F -derivation bomded (s. En-d.b.) if there is a function k = En(g) such that
for any w & e in Z , there is a derivation w = W Wy owp S € in <z;L>
such that (1) £ < |k(w)|, (ii) only trivial relators are inserted. Such a de-

rivation is called a strongly En-bounded derivation.

4.2. OBSERVATION. a) Let G = <¢;L> f.p. Then for all n > 1, <Z;L> is s.-

d b. iff <I;L> 1s E -d.b. (The insertion of a relator u can be simulated by
tho insertion of uu by using trivial relators and the delection of u . So the
length of the derivation is at most increased by the factor p = (max{|u|: ue
L}+1).

b) let n,p > 0, and g: = max{n,p,3}. If G = <Z;L> is s. E -d.b. with LCZ+
r) -decidable, then there is a natural algorithm x € E (Z) for the word problem

of<2l> 1265

(wo,w],..,w[) ifwge, andw = Wy T Wy >.r W, S e is a strongly

F,n-boundcd derivation from w to e in <I;L>.
x(w) =

# if w é e
The proof of this fact is similar to the proof of Theorem 3.1. The only differ-
ence is that only strongly En—bounded derivations are considered.
¢) The property of being strongly En-d.b. is dependent on the chosen pres-
entation of the group. Let n > 2, A = {aj|i > 1}, and

An+1(d, 1)

G = <A;a;(i > 1),(11 > 2>,

where A, is the n+lst Ackermann-finction ([!éit]l)cf.tl, p.1028).
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For allwe A", w G & 1.e. G=<e>, and so Wpg EE1(1§). Let F = <b,c;#> and
K = F*G = F. Then WP < El(éU{b,c}). Finally let

<K, t;tb"cb" b bt = bncbnancbncbn: n> 1>

n

jas
n

b,c,t; (Bbtbebebebtbeh) 1(i » 1), ch tbichicbichitbieb e (bebibebebeh

n

thebe) 1 (1) o,
=2 <Z;Ln+1>
<z;thlcb'chlcb th b bl i » 1> =: <I;L'>.

e

Then <Z;L'> is S.E2~d.b. and <Z;Ln+1> is s.En+1—d.b. but not s.En—d.b.
Since there are f.p. groups with E3-decidab1e word problem for which no
finite presentation allows a natural E-algorithm(the group Gy = <Sg3Lg> in 3.3
has this property), we ask whether there is an infinite strongly Es—d.b. pres-
entation for this group, and further on whether this is the case for all E -de-

cidable f.g. groups.

For the group Gg we get that the presentation
<sS;L5,1z£y'1aj5<' ‘hteﬁxqjmm"ajr‘hf%xqjm ee +1},X,Ye S, a; =Q-la}>
has an E;-decidable set of defining relators, and that it is in fact s.E;-d.b.
So a natural E;-algorithm exists for this special presentation. We want to prove
that such easy presentation can be constructed for all En—decidable f.g. groups

(n > 3). Therefore we need the following technical lemma, which is proved by
standard methods.

*

4.3, LEMMA. Let I with |L| > 1, te I, be a finite alphabet, and # # L= L
be En-decidable for some n > 3. Then there is a function g El(Z) such that
() g({tt]i >0} = L.
(b) There exists a function ke Ey(L) satisfying:

* . d

wel (wel>3ig|kW]|: gth) =w),

i.e. L is enumerated by an Eqi-function g such that for each word w an index

can be calculated by an E-function.
.

4.4, THEOREM. Let G = <Z;L> be f.g. with En—decidable word problem fo»
some n > 3, and let t & L. Then G has a non-finite presentation <L, t;Lg> such
that
M Le@ Ut)" is E;-decidable.

(2) <Z,t;Lg> ig strongly En-d.b.

Proog. let Li={w e I |w gel. L is E, -decidable in £*, and so L is E, -de-
cidable in (Z U{'_c})*. Because of Lemma 4.3 there is a function g e E1()_: u{th
such that g({t*|i > 0}) = L and there exists a function k « E (ZU{t}) satis-

fying: *

weEUth wel 3¢ ke |th) =w).



let Lg = {t,tig(ti): i > 0}. Then

<I,tL> = <Lt tig(th): i3 0> 2 <njg(th): i » 0> = <5l
<Z;L> = G,

ne

and so <I,t;L > is a f.g. presentation of G. .
a) Claim. L_ is Ei-decidable in (U {t}))". We have w e Ly iffw =t or wEthy
with v €§+ and v = g(th).
b) Claim. <E,t;l‘g> 18 st:ongly E -d.b. Let w Fe. Then we have the following
derivation, where w' €2 : w 3 w' 3 thw' 3e-

ad 1, all t© which appear in w are deleted. This takes |w|t < |w| steps,
and w' = my(w) satisfies |w'| < |w| and w' Fe.

ad 2, if w' = e then we are ready. Let w' # e. Then w' « L and because of
(b) there is an i < |k(w')| with g(ti) = w'. Insertion of i trivial relators
it and deletion of i relators © result in tiw'. Here 2i < 2|k(w')| steps are
sufficient.

ad 3, thyr = tig(ti) = Lg’ and so tiw' can be deleted within one step. Thus
we have a derivation of w to e in <E,t;Lg> of length m < |w|+2]|k(w')[+1 in
which only trivial relators are inserted. Hence the presentation <Z,t;Lg> is
S.Ijn-d.b.

4.5. COROLLARY. Let G = <I;L> be f.g. with En—decidable word problem for
some n % 3. Then there exists a f.g. presentation for G with an Eq-decidable
set of defining relators such that the word problem for this presentation can

be solved by a natural Ep-algorithm.
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