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Title in English
Data Stream Mining: an Evolutionary Approach

Abstract: This work presents a data stream clustering algorithm called ESCALIER.
This algorithm is an extension of the evolutionary clustering ECSAGO - Evolutionary
Clustering with Self Adaptive Genetic Operators. ESCALIER takes the advantage of the
evolutionary process proposed by ECSAGO to find the clusters in the data streams. They
are defined by sliding window technique. To maintain and forget clusters through the
evolution of the data, ESCALIER includes a memory mechanism inspired by the artificial
immune network theory. To test the performance of the algorithm, experiments using
synthetic data, simulating the data stream environment, and a real dataset are carried out.
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Título en español
Minería de Flujo de Datos: un Enfoque Evolutivo

Resumen: Este trabajo presenta un algoritmo para agrupar flujos de datos, llamado
ESCALIER. Este algoritmo es una extensión del algoritmo de agrupamiento evolutivo
ECSAGO - Evolutionary Clustering with Self Adaptive Genetic Operators. ESCALIER
toma el proceso evolutivo propuesto por ECSAGO para encontrar grupos en los flujos de
datos, los cuales son definidos por la técnica Sliding Window. Para el mantenimiento y
olvido de los grupos detectados a través de la evolución de los datos, ESCALIER incluye
un mecanismo de memoria inspirado en la teoría de redes inmunológicas artificiales. Para
probar la efectividad del algoritmo, se realizaron experimentos utilizando datos sintéticos
simulando un ambiente de flujos de datos, y un conjunto de datos reales.
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CHAPTER 1

Introduction

In recent years, the interest in analyzing and extracting information from large volume of
online data has grown. Such data, known as data streams, are generated at high rates
by different environments such as satellite systems and network monitoring applications,
among others. These environments are able to handle large amounts of data that are
produce at the same time and that must be quickly processed. For example, the National
Center for Atmospheric Research (NCAR) has some applications such as a system with
data weather in real-time, a system to manage satellite images of earth surface and a
system of weather forecasting. The Space Science and Engineering Center (SSEC) at the
University of Wisconsin has a system that maintains an image gallery in real time of Antarc-
tica, hurricanes and tropical storms; and an Atmospheric Emitted Radiance Interferometer
(AERI). Other examples of data streams are the millions of images captured by the Solar
and Heliospheric Observatory (Soho), the ATM (Automated Teller Machine) millionaire
transactions, e-commerce applications, and the great number of sensor measurements in
areas such as telecommunication and networks [96, 67, 74].

Analyze and understand data streams is not an easy task, due to limitations of com-
putational resources used for this purpose (e.g., not having enough memory to store all
data, not having enough time to process and compute data). Moreover, since data evolve
in time, the model of its behavior at a specific time, may not be obtained and therefore not
exploited at time. For this reason, many conventional algorithms, even when they have
been proved to be effective, have been discarded to be applied to data streams.

Classical data mining techniques have been often used for extracting such information
regardless online analysis (analysis made to data at the time they are generated). This kind
of analysis requires features that are not present in some approaches based in those classical
techniques. Some of those features are: a) high-speed in preprocessing and processing data
(single scan over the data and constant time to process them), b) an efficient memory
management (fixed memory used), c) online incremental learning, and d) the ability to
forget past information [43, 89, 153].

To address the problem of mining data streams, some algorithms from data mining
have been adapted and some other algorithms have been defined from scratch having in
mind the specific set of tasks associated with the mining data streams. A common way
to analyze data streams involves using clustering techniques in which a group of data is

1



CHAPTER 1. INTRODUCTION 2

represented by an element. Although there are a large amount of proposed works to deal
with this problem, there are some issues that can be improve.

Maintaining memory of past data through time is one of the features that has been
handled by some algorithms. Some of them use a factor of memorization or forgetting,
others have proposed the use of on-line and off-line phases to deal with this issue. Artificial
Immune Network Theory intends to explain the immune system behavior including one
of its most important features: how immune memory works [93]. The general frame of
how the immune system learns continuously and how it is able to forget with or without
external stimulus, could be compared with the way in which a cluster data streams model
carries out its learning process. The model must be able to learn and forget data which are
generated continuously (as an external stimulus) and to maintain the knowledge through
time. Among the advantages of using the immune memory mechanism are: it does not
require a factor of memorization or forgetting and it does not require an off-line phase to
process the data.

This work presents the ESCALIER algorithm, an extension of ECSAGO (Evolutionary
Clustering with Self Adaptive Genetic Operators) algorithm proposed in [109]. ECSAGO
is based on the Unsupervised Niche Clustering (UNC) [128] and uses the Hybrid Adap-
tive Evolutionary (HAEA) [69] algorithm. ECSAGO has show good results mining large
volumes of dynamic data and it may be possible to adapt this algorithm to mining data
streams. ESCALIER algorithm takes advantage of the evolutionary process proposed by
ECSAGO to find clusters, it also uses the strategy of summarization (prototypes that
represent the founded clusters) presented in [110], and additionally, a memory mechanism
based on the artificial immune network theory in order to maintain and forget clusters
has been added. Sliding window technique is included into the model, to handle the data
streams ESCALIER will be tested using synthetic and real datasets. In the next section,
the general and specific goals of this work are presented.

1.1 Goal

The purpose of this work is to develop a clustering algorithm for mining large volumes
of dynamic data streams, extending the evolutionary clustering algorithm with parameter
adaptation ECSAGO. To aims this goal, it is proposed specifically:

1. Making literature review: This work presents a study and an analysis of different
clustering techniques for mining data streams. To carry out this, a literature review is
performed. This review is focused on techniques and algorithms for dynamic data mining
streams, and management the evolution of data. A state of the art is developed and
presented.

2. Designing and Implementing of the data stream clustering algorithm: This
work presents a clustering algorithm for mining data streams. This algorithm is an ex-
tended model of ECSAGO algorithm. The prototype includes mechanisms for incremental
learning, consistency and data preprocessing. Also, a complexity analysis in time and space
to determine the efficiency of the proposed prototype is carried out.

3. Designing and Implementing a Memory Mechanism: This work proposes the
incorporation of a memory mechanism in the prototype. Techniques for memory manage-
ment such as artificial immune networks are studied. A memory mechanism is designed
and included in the algorithm.
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4. Defining the Experimental Design: This work presents the validations of the
proposed prototype with real and synthetic datasets, in order to test the quality of the
extracted information and the ability to handle the problem. Also, a report with the
comparison of the results achieved with those obtained by other algorithms is presented.

1.2 Main Contributions

The main contribution of this work is an algorithm to cluster data streams called ES-
CALIER. It is an extension of ECSAGO algorithm, that uses ideas from artificial immune
network to handle memory issues and incorporates the sliding window technique as a me-
chanism to support data streams. ESCALIER algorithm has been presented in CEC -
IEEE Congress on Evolutionary Computation 2013. Additionally, a state of the art on
clustering data stream mining techniques is proposed. It includes a structure of some
works developed, organized by technique and presented as a tree diagram. A journal
with the state of the art will be presented in IJIPM: International Journal of Information
Processing and Management.

1.3 Thesis Outline

This document is organized as follows: Chapter 2 presents the basic concepts used,
specifically on data streams and artificial immune networks; the proposed state of the
art on clustering data stream mining techniques, and the analysis of ECSAGO algorithm.
Chapter 3, presents the ESCALIER (Evolutionary Stream Clustering Algorithm with self
Adaptive Genetic Operators and Immune Memory) algorithm, and the results and analysis
of the performed experiments. Finally, Chapter 4 presents conclusions and proposes the
future work.



CHAPTER 2

Background

In this chapter the definition of data stream is given together with the description of
the mining and clustering data stream processes. A state of the art of the clustering
data stream mining organized by technique (Data-Based and Task-Based) is presented.
ECSAGO algorithm is explained and the main concepts about Artificial Immune Theory
are presented.

This chapter is divided in four sections. Section 2.1 presents the concepts associated
with mining and clustering data streams, and also a state of the art of the clustering data
mining techniques. Section 2.4 describes in detail the phases that composed the ECSAGO
algorithm. Section 2.5 gives the definition of concepts presented by the Artificial Immune
Theory. Section 2.6 presents a summary of this chapter.

2.1 Data Streams

A data stream is a continuous sequence of ordered data (each data have a specific arrival
time) generated in real time by events that occur day to day. In a formal and general way,
a data stream F can be represented as a multidimensional set of records X1, X2, ..., Xk, ...,
generated in a time T1, T2, ..., Tk, ..., respectively. If each record Xk has d dimensions, then
F can be represented as follows:

F = X1, X2, ..., Xk, ... = (x11, x12, .., x1d), (x21, x22, .., x2d), .., (xk1, xk2, .., xkd) , ...

F is characterized by quickly changing, having temporal correlations and growing at
an unlimited rate, which means that F can have a size very close to infinity.

Data stream representation (model) can vary depending on how the stream describe
F . Models in increasing order of generality are as follow [126]:

• Time Series Model: In this model each sequence of dataXk in the data stream F , appears
in increasing order of time Tk. This model is used to observed the traffic networks,
financial trades, among others applications.

4



CHAPTER 2. BACKGROUND 5

• Cash Register Model: In this model each Xk in F is a positive increment of Xk−1. In
this way, Xk = Xk−1 + Inck, where Inck is the stream produced in the time Tk. It is
important to notice that stream items do not arrive in a particular order. This model
has been used, among other applications, to monitoring the behavior that specific IP
addresses have.

• Turnstile Model: This is a general version of cash register model. In turnstile model each
Xk in F is a positive or a negative increment of Xk−1. In this way, Xk = Xk−1 + Inck,
where Inck is the stream produced in the time Tk. That means, that items could be both
inserted or deleted. When Inck > 0, the model is called strict turnstile, and non-strict
turnstile when it also admits negative increments. This model has been used to mining
frequent items in the stream.

2.2 Mining Data Streams

Data mining refers to the processing of data in order to discover non-obvious knowledge.
This is made by finding and adjusting a model that represents their characteristics, allowing
make descriptions or predictions about the data [44]. Mining data streams or streaming
mining is the process of applying data mining to data streams [79]. However, conditions for
applying mining process to data streams are different from those required for conventional
data.

Conventional mining uses datasets residing in hard drive, allowing multiple and com-
plete readings of them. Data streams volume is large and its generation rate is so fast and
variable that is not feasible to use those procedures that use the data many times. It is
not possible to store and process all data efficiently. For this reason, mining algorithms
must be designed or adapted to work with data in just one pass [42]. Additionally, design
of algorithms must be aimed to model changes and they must be obtained as a result of
mining process, which implies that models must be dynamic due to data tend to evolve
over time (implicit temporal component that exists between a datum and another) [2].

Those conditions impose on systems that work with data streams some restrictions.
These restrictions are listed below [41, 153, 89]:

• Data streams have, potentially, an unlimited size.

• It is not feasible to store all the data. When a datum is processed must be discarded.

• Data come online, and they are continuously generated.

• There is no way of controlling the order in which data arrives.

• Data in the stream have a temporal correlation which marks a specific order of arrival,
for each one.

• Data are highly changeable and presuppose an implicit evolution over time.

The above represents some issues in data streams such as memory management; pro-
blems related with the optimization of the memory space consumed and data structure
representation; and the time consuming by the pre-processing data, which has to be inte-
grated in the mining techniques.
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2.2.1 Clustering Algorithms Taxonomy

In data mining there are some different tasks to process data, such as association, classi-
fication and clustering. Clustering is an unsupervised learning technique that organizes
data into well separated groups without prior knowledge. Clusters are formed in such way
that data assigned to the same group are similar while data of different groups have low
similarity. There are many ways of clustering data which can be classified into: hard and
fuzzy clustering problems. In the first one, a data belongs only to one cluster. In the
second, a data may belong to two or more clusters with certain probability. Hard cluster-
ing problems can be divided into partitional, hierarchical, density-based, grid-based and
hybrid algorithms [78, 63].

• Partitioning algorithms produce a partition of data into clusters by applying a criterion
function defined on the dataset (usually the squared error criterion) [46, 40]. Algorithms
such as K-means, K-medians and CLARANS (Clustering Large Applications based on
RANdomized Search) [130] are examples of partitioning algorithms.

• Hierarchical algorithms produce a dendrogram that represents data clusters connected
to different levels of similarity. Most of these algorithms are variations of "single link",
"complete link" and "minimum variance" algorithms [78]. Hierarchical algorithms can
be divided into divisive and agglomerative algorithms. In particular, the agglomerative
method or "bottom-up" begins with a group for each value and then joint the groups
according to their similarity to obtain a single group or until achieve the stop criterion.
AGNES (AGglomerative-NESting) [12] and IHC (Incremental Hierarchical Clustering)
[166] are agglomerative algorithms.

• Density-based algorithms produce groups associated with dense regions. Clustering is
done when the density in the neighborhood is within a certain threshold or when new
data are connected to others through their neighbors. DBSCAN (Density Based Spatial
Clustering of Applications with Noise) [47], DENCLUE (DENsitybased CLUstEring)
[83] and UNC (Unsupervised Niche Clustering) [108], are density-based algorithms. A
review and a comparison of this kind of algorithms can be found in [9, 10].

• Grid-based algorithms divide the data space and produced a grid data structure formed
by a number of cells. Clustering is dependently of the number of cells grid and inde-
pendently of the number of data. Among grid-based algorithms are STING (STatistical
INformation Grid-base) [164] and OptiGrid (Optimal Grid-Clustering) [84]. A review
and a comparison of this kind of algorithms can be found on [11].

• Hybrid algorithms use other techniques, or a combination of them, to find the clusters.
Among hybrid algorithms are CLIQUE (CLustering In QUEst) [8], that use cells to
divide the data space; COBWEB [52] and AutoClass [27], that create statistical models
to establish the best description of the groups in the dataset; Gravitational Clustering
[70], that is inspired by the force of gravity as a mechanism for group the data.

2.2.2 Incremental Clustering Techniques for Data Streams

Clustering techniques are widely used, however, they are limited when datasets are too
large, in terms of computational cost, especially memory. Incremental clustering techniques
attempt to solve this problem by working with portions of data: given a dataset in a
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metric space, groups are formed by the way in which data are arriving. When new data
are observed they can: a) be assigned to existing groups, b) generate new groups, c) join
some groups [53, 91, 143]. Among methods that use incremental clustering technique are:

• Divide and Conquer Method: Algorithms developed with this method take portions of
data and apply a clustering algorithm to each partition, one at a time. These algorithms
can develop a structure to store information from each partition. This method implies
that an iteration of the clustering algorithm must be applied to each partition separately.
The iteration must generate representative prototypes of data portion used in it, which
will be use as a starting point for the next iteration. These algorithms must learn or
extract knowledge from analyzed data without knowing the entire dataset. INCRAIN
algorithm [72] uses this technique. This algorithm is the incremental version of RAIN
algorithm [71], which is based on the mass concept and its effect on the space. Mass
concept is used to delegate a data as a representative of a data group.

• Simple Observation Method: This method allows to analyze data only once. When
a data is analyzed, then a) a new group is created or b) the data is assigned to an
existing group. There are variations of this mechanism, some algorithms maintain data
in the group representation, others develop prototypes that represent the analyzed data
(groups). The disadvantage of the first variation is that storage space increases with
the number of data. Additionally, these algorithms make not distinction between old
and new data, which means that they cannot handle data evolution (when new groups
emerge previous groups disappear). STREAMS algorithm [74] uses simple observation
method. This algorithm minimized of sum of squared distances without differentiating
between new and old data.

A common way to analyze data streams, involves using clustering techniques. Usually
in these techniques, a group is represented by an element, commonly called "centroid"
or "prototype" when is numeric and "medoid" when is categorical [17]. The challenging
of clustering techniques applied to data streams, consists mainly in: a) determining the
prototypes of the groups when a new data arrives. These techniques must taking into
account that data cannot be used more than once [4]. b) Incorporate a mechanism, that
allows to forget portions of data stream and focus on those that are new.

The clustering problem is a difficult task to solve in the domain of data streams due to
traditional algorithms become too inefficient in this context. Single-pass algorithms, that
have been recently developed for clustering data streams, have particularly two issues:
first, groups quality is poor when data tend to change continuously over time; second,
algorithms do not include in its functionality a way to explore and discover new groups in
different stream portions.

These issues make that clustering algorithms have special requirements when deal with
data streams: compactness representation, fast and incremental processing of new data
points and, clear and fast identification of the outliers [17, 96].

• Compactness Representation: Due to the arriving data rate, it is not feasible to have a
large description of the clusters. Those descriptions grow when new data arrives. For
that reason, a compact clusters representation, that does not grows so much, is needed
(the linear growth is still high).
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• Fast and Incremental Processing: Data streams online nature makes this feature be
obvious. Function responsible for deciding the place for the new data should not make
comparisons between new elements and all processed data. This function must use the
proposed data representation. The assignment of the place for the new data, must have
a good performance, that means, good complexity. Additionally, algorithms should to
re-learn any recurrently occurring patterns.

• Clear and Fast Identification of Outliers: Outliers are data that do not fill well in any
created cluster. Algorithms must be able to detect those data and decide what to do with
them. This depends on how many outliers have been seen and on the kind of applications
to which data belong. Then, the function must decide if: creates new clusters, redefines
the boundaries of existing clusters or ignores the data.

2.3 Clustering Data Streams

2.3.1 Online Preprocessing

Activities used in the mining phase, such as understand, transform and integrate data
(pre-processing) are a key part in the process of knowledge discovery (KDD) [67]. Some
techniques have been considered to reduce the processing load and improve performance in
data streams [3]. As is shown in Figure 2.1 those methods can be classified into data-based
and task-based techniques [61, 89, 97].

Figure 2.1. Clustering Data Stream Mining Techniques

2.1.3.1 Data-Based Techniques

These techniques aim to create an approximate data representation of small size by either
of the following: examining only a subset of the dataset or summarizing the dataset.
Among these techniques are sampling, load shedding, sketching and aggregation methods.
Figure 2.2, shows some works developed in each of these methods. Dotted lines in the
figure represents a relation between the works with others data streams algorithms. If the
relation is with a classical data clustering algorithm its name is shown in italics.

• Sampling: This method selects statistically a subset of the data to be processed. Sam-
pling is the simplest among all other methods of construction of data streams synopsis.
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Figure 2.2. Data-Based Techniques for Clustering Data Streams. Dashed lines indicate the al-
gorithms in which the presented algorithm are based. Algorithm names in brackets
belong to task-based techniques. Algorithm names in brackets and italics belong to
traditional data clustering.
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The method is easy, efficient and has direct application in data mining and database
operations due to it uses the original representation of records. As data volumes are so
large, sampling is a very important step in processing. As the dataset size is unknown,
this method requires a special analysis to find error bounds (computation error rate). On
the other hand, sampling does not address the problem of fluctuating data rate and this
is a poor technique for anomaly detection. Some developed works with this technique
are shown below.

To deal with the performance of the system Fisher [52], has proposed COBWEB a
hierarchical clustering algorithm which uses category utility function to form a tree and
classify the data. Each node in the tree has a probabilistic description that summarized
the kind of objects that compose it. When new data are locate in the tree, node statistics
are updated. Manku et al. [120, 119] proposed, as a part of a framework, the NEW,
COLLAPSE and OUTPUT algorithms, which approximate quantiles based on non-
uniform random sampling technique, in order to analyze unknown length of the streams,
and estimate extreme values in order to calculate memory requirements.

Approaches proposed by Domingos and Hulten, VFDT (Very Fast Decision Tree Lear-
ning) [41] and VFKM (Very Fast K-Means) [42, 43], deal with training time, memory re-
quirements and learning loss. VFDT is based on a decision-tree method called Hoeffding
tree. In this algorithm, Hoeffding bounds are used to estimate the size of sub-samples in
order to decrease the training time. In the learning phase, VFDT only needs to see each
example once, avoiding store them in memory, such that required space is used for the
tree and the statistics. VFKM determines the upper limit for learning loss as a function
that depends on the number of data analyzed at each step of the algorithm.

VFDT and VFKM algorithms are based on the general method for scaling up machine
learning algorithms on K-means, called VFML (Very Fast Machine Learning). The
implementation of these algorithms is available in a toolkit which is presented in [87].

Reducing memory requirements is addressed by approaches such as STREAM, presented
by O’Callaghan et al. [131]. This algorithm processes data in chunks. Each chunk is
clustered using LOCALSEARCH and calculating the median of each cluster as the sum
of the elements in each chunk. In the memory is only maintained the weights of the
cluster centers and LOCALSEARCH is again applied to that set, in order to obtained
the weighted centers of the stream.

A framework that implements an OpenCL for SC benchmark data streams clustering
(a suite that provided parallel programs for the study of heterogeneous systems) [26],
is presented by Fang et al. [48]. The proposed framework has some memory optimiza-
tions over CUDA algorithm [90] and uses a model-driven auto-tuning to maximize the
clustering performance.

To deal with space reduction problems and the increasing approximation factors,
Charikar et al. [25] presents the PLS (Polylogarithmic Space) algorithm, as an extension
of the Small-Space algorithm presented in [75]. PLS aims to maintain an implicit lower
bound for the clusters.

A model that improves the running time, is proposed in [124]. This learning model called
PAC-Clustering (Probably Approximately Correct Clustering) uses the PAC learning
model. In the new model, the running time depends of the diameter of the data.

Among the algorithms that handled with dimensionality problems is StreamSamp [34],
a one pass algorithm, inspired on two steps CluStream algorithm [4]. StreamSamp sum-
marized data streams independently of its dimensionality using k-means algorithm.
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Approaches that treat with data streams representation, cluster resolutions and imbal-
anced data streams are, respectively: StrAP (Streaming Affinity Propagation) [177],
that is based on both DBSCAN [47] and DenStream [23]. StrAP extracts the best rep-
resentation of the dataset for which is used the message passing method, and stores
outliers. MR-Stream [159] is an extension of DenStream [23], which uses a grid of cells
that are dynamically subdivided by a tree data structure. This algorithm, updates syn-
opsis information in constant time, discovers clusters at multiple resolutions, generates
clusters of higher purity, and determines the right threshold function, for density-based
clustering, based on the data streams model. REA (Recursive Ensemble Approach) [28]
attempts to deals with imbalanced data streams using k-nearest neighbor algorithm.

• Load Shedding: The purpose of this method is to increase the monitoring system
performance. It is expected that the rate at which tuples are processed be at least
equal to the rate in which new tuples arrive to the data stream. Unprocessed tuples
are deleted to reduce the system load. This technique has been used in querying data
streams, although it sacrifies the accuracy of the query answers. Load shedding has the
same problems of sampling. Some developed works with this technique are shown below.

In this method, approaches for data streams monitoring and managing are proposed.
Among them are DEMON (Data Evolution and MOnitoring) proposed by Ganti et al.
[64], which is an extension of BIRCH [176]. DEMON goal is the maintenance of frequent
item sets and clusters algorithms that evolve through systematic addition or deletion of
data blocks. In the model is included a new dimension called data span, which allows
selections of the temporal subset of the database, defined by the user.

Ganti proposed in [65] two algorithms that uses insertions and deletion of data blocks:
GEMM, which works with unrestricted window option, and FOCUS that uses techniques
such as deviation in the dataset. Another proposed work is STREAM [13], a general-
purpose prototype data stream management system, that is a system supports query
plans and constraints over data streams such as clustering and ordering.

• Sketching: "Sketches" are an extension of random projection technique in the domain
of time series. An input data of dimensionality d is reduced to an axes system of
dimensionality k, choosing k random vectors of dimensionality d and computing the
dot product for each vector. This method has been applied in comparing different data
streams and it has been shown an improvement in algorithm running times. The accuracy
is the major problem of this method and its application in the context of data stream
mining is hard. Algorithms based on sketching have been successfully used in distributed
computation over multiple streams. Some developed works with this technique are shown
below.

Some approaches to deal with high dimensionality using this method have been proposed.
Among them are FC (Fractal Clustering) proposed by Barbará and Chen [18], that
defines groups as a set of points with high similarity, and assigns new points to the
group with minimal fractal impact. The fractal impact is measured in terms of the fractal
dimension and it is related to the scale parameter or data contamination rate. HPStream
(High-dimensional Projected Stream) [5, 6], introduces projected clustering methods
which deal with the problem of sparsity in high-dimensional space. The projection allows
to update the dimension of each cluster such as its evolve over time. The algorithm uses
statistical representations of the elements in the clusters in order to update data streams
in a fast way (such clusters are named projected clusters). To integrate historical and
actual data, the algorithm uses a fading cluster structure.
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Another works to deal with clustering of high-dimensional data streams are: CSketch [1],
a method for massive-domain clustering (data domains with possible very large number
of values). This model reduces the data dimensions in order to maintain intermediate
statistics, and assign data to clusters. CS-Tree (Cluster-Statistics Tree) [104] proposed
a scalable algorithm in which the multi-dimensionality problem is changed to a one-
dimensional problem. IncPreDeCon [101, 102] is an incremental version of clustering
density-based algorithm PreDeCon [20]. In this approach the problem of high dimen-
sionality on dynamic data is treated by the clusters update, when new data arrives.

Among models for address with problems of arbitrary shapes and distribute data streams
are non-linear two-tier architecture [92]. In the first tier, kernel methods have been used
in order to partitioning the stream in the feature space. In the second tier, stream
is projected into low-dimensional space (LDS) representation. uMediEval [31] is an
algorithm to process distributed location streams with redundancy and inconsistency.
This is based on min-wise hash in order to obtain uniform samples in distributed systems.
The algorithm provides an approximate k-median of the moving objects.

• Synopsis Data Structures: The construction of the synopsis, requires a summa-
rization techniques on incoming streams. Histograms, wavelet analysis, quantiles and
frequency moments have been used to construct synopsis. The problem of this technique
is that the synopsis does not represent all the features of dataset. However, at high rates
of incoming streams this technique should be not enough to summarize the data. Some
developed works with this technique are shown below.

Approaches that treat with space and memory issues have been suggested in works such
as the proposed by Guha et al. [75, 74] in which an adaptation of k-median and k-means
algorithms are developed. These algorithms are based on divide and conquer method.
They use a constant factor in order to make one pass over the data and to control the
large space requirements. The algorithm proposed in [74] makes a single pass over the
whole data using Small-Space.

In the same line has been proposed Grid Density-Based and DCT algorithm [174]. This
is a grid density-based algorithm that is able to detect clusters of arbitrary shapes and
that uses DCT (Discrete Cosine Transform) to identify clusters and to compress the
data. CompactStream [165] deals with storage space issues through an on-line and off-
line phases. In the on-line phase, data are summarized in micro-clusters of features in
form of hyper-elliptical shape. In the off-line phase, the summary is processed. SVStream
(Support Vector based Stream Clustering) [162] is based on support vector domain and
clustering, in which data are mapped into a kernel. This algorithm uses multiple spheres
in which support vectors are used to construct the clusters boundaries. Outliers are
detected and removed.

Among approaches to deal with dynamically multiple data streams is COD (Clustering
on Demand framework) [35, 36]. This framework has on-line and off-line phases. In
the first, it is maintained the summary hierarchies of the data. in the second phase, an
adaptive clustering algorithm is used to retrieve the approximations of the data streams.
Summarization is based on wavelet and regression analyses.

To deal with the problem of clustering distributed data streams, in [77] is proposed
StreamAP, an algorithm that uses propagation techniques in two levels. The first level
is the node level on the batch of data. The second level is in which data synopsis is
derived. An on-line version of affinity propagation algorithm is used locally on each
node.
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High-dimensional data streams issues are handle in works such as the proposed in [95]
which consists of two algorithms: PL-Tree that store data stream summary information
and PLStream that cluster high dimensional data streams on PL-Tree using damped
window and pruning list tree. PLStream considers high dimensionality, space scalability,
long running time and high memory consumption issues. Cell Tree Algorithm [135] is
an approach that maintains distribution statistics from arriving data streams. This
algorithm uses a partitioning factor and a partitioning threshold in order to divide the
grid-cell in equal and small grid-cells. A structure list is used as an index to manage and
locate the grid-cells in a one-dimensional data space. Another algorithm to evolutionary
clustering using frequent itemsets (sets of words which occur frequently) is proposed in
[146]. Outliers removal and dimensionality reduction are take into account in it.

Evolving and noisy data streams issues are treated in TRAC-STREAMS (TRacking
Adaptive Clusters in data STREAMS) [129]. This algorithm is a new version of TECNO-
STREAMS [127] and it is based on analytical optimization instead of evolutionary com-
putation. This approach uses different criterion function, that optimizes the synopsis of
the stream in the presence of noise, focusing on more recent data.

Another kind of issues, such as related with initial values and criterion to combine
clustering problems have been faced in [125]. In it CRF (Clustering using F-value
by Regression analysis) is proposed. This algorithm includes regression analysis and
cluster similarities using a criterion based on Maharanobis distance. Clusters are formed
taking into account the center of gravity of them. In [76], a framework called TRACDS
(Temporal Relationships Among Clusters for Data Streams) is presented. This uses
the concept of temporal clusters to deal with the problem of temporal relation between
clusters. This framework combines data stream clustering with Markov chains. In the
algorithm first partitioning of data is made and then clusters are learned dynamically.

• Aggregation: In many computing problems is desirable to compute aggregate statistics
(hierarchical) on data streams. Usually these statistics have estimates, frequency counts,
quantiles and histograms. Working on data statistics brings more benefits than working
directly with the data. Aggregation does not operate well on fluctuating data streams.
Aggregation has been successfully used in distributed data streams environments. How-
ever, this technique does not capture all features of the dataset. Some developed works
with this technique are shown below.

Some approaches to deal with running time and memory efficiency have been proposed.
One of them is CluStream proposed by Aggarwal et al. [4] that uses "Micro-Clustering"
with the concept of pyramidal time windows. This algorithm divides the clustering
into on-line and off-line processes. On-line process is responsible of maintain micro-
clusters, which are structures that store a summary of statistics for each data stream
before they have been discarded. Off-line process is responsible to create macro-clusters,
which summarize data. Once the algorithm has computed a good number of micro-
clusters, they are considered as pseudo-points. This is a modified version of the k-means
algorithm. Micro-clusters are grouped to identify groups at higher level.

To reduce running time, Ordoñez [134] presents a Clustering Binary Data Streams al-
gorithm, which has several improvements of k-means algorithm. Among those improve-
ments are include online k-means, scalable k-means and incremental k-means algorithms.
The proposed algorithm, updates the cluster centers and weights after the analysis of
each batch, instead to be one at time. ClusTree [99, 100] is a free parameter algo-
rithm that automatically adapts the data streams speed. The algorithm has a hierarchi-
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cal structure that can adapts dynamically the clusters sizes model to the speed of the
stream. The algorithm incorporates local aggregates (temporary buffers) and it is based
on micro-clusters representation.

To address problems of memory management, there are several works such as DUC-
stream [66], an incremental single pass algorithm which receive data in chunks. In this a
density grid is defined and considered as a dense unit depending on a threshold. Clusters
are identified as a connected components of a graph in which vertices are the dense units
and edges are common attributes between two vertices. In [150] is proposed Incremental
Gaussian Mixture Model, a probability-density-based data stream clustering approach
by merging components in Gaussian Mixture Model. This algorithm does not store his-
torical data, instead statistical structures are used only in new data. Clustering merging
strategy and expectation maximization are used in the algorithm. GMMGA (Gaussian
Mixture Model with Genetic Algorithm) [122] determines the number of Gaussian clus-
ters and the parameters of them in arbitrary shapes using genetic algorithms and fuzzy
clustering estimation method.

To deal with large and quickly streams speed has been proposed CGMM (Compound
Gaussian Mixture Model) [123], which is a semi-supervised model. This model finds and
merges Gaussian components using the Expectation Maximization algorithm to initialize
the proposed model.

Some works, that have been proposed to cope with memory requirements, computational
cost and processing time, are CluSandra framework [50] that includes an algorithm for
cluster evolving data streams. This algorithm uses the product of the micro-clusters real-
time statistical summary. LiarTree [98, 80], an extension of ClusTree [99, 100] algorithm,
deals with the overlapping of past entries, incorporates noise handling and allows the
transition from noise to novel concepts. KDE-SOM [81] a kernel density estimation
(KDE) method is based on self-organizing maps (SOM), that are generated on the data
streams to obtain summaries of them. The algorithm has a phase for learning in which
the SOM is builds to summarize the data, and a phase for analysis in which probability
density functions are analyzed on arbitrary periods of time.

Among proposed approaches to deal with the data streams dimensionality is TECNO-
STREAMS (Tracking Evolving Clusters in NOisy Streams) presented by Nasraoui et.
al. [127]. This is a scalable algorithm for clustering multi-dimensional data streams
that uses artificial immune systems as a type of evolutionary optimization of a criterion
function. An important feature of this algorithm is the incorporation of temporal weights
that allow to forget, gradually, portions of data stream, and to focus on those that are
new. However, this algorithm does not give the memory bounds.

With the same purpose above, have been proposed PKS-Stream [138], that is based
on grid density and on the index Pks-tree. The algorithm deals with high dimensional
data, and counts with on-line and off-line phases. In the on-line phase, new data are
mapped to the related grid cells in the Pks-tree. If there is a grid cell for the data, it is
inserted. Otherwise, a new grid cell in the tree is created. In the off-line phase, the grid
density is checked and clusters are created or updated. In GDFStream (A Grid Fractal
Dimension-Based Data Stream Clustering) [114] is incorporated a Grid method and the
Fractal Clustering methodology to clustering data streams. The algorithm has on-line
and off-line component. In the first, summary of the statistics are stored. In the second,
final clusters are generated using the statistics.
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Another method that deals with multidimensional data streams is Hybrid-Partition
Method [105]. This is a grid-based statistical clustering algorithm, which allows three
different ways of partitioning a dense cell: based on the average, based on the standard
deviation, or choosing the more effective amount, among previous two. Partitions have
initially the same size and they are divided based on their distribution statistics. In
[136] the earlier work is used, in order to audit data streams. Features are identified
and represented by the algorithm, and each cluster represents the frequency range of
activities respect to the feature.

To clustering dynamic data streams, a methodology that uses Fuzzy Clustering is pre-
sented in [33]. The methodology deals with the movement, creation and elimination of
classes, updating the previous system with the new data.

Among approaches that aim to monitor data streams is the work proposed in [171].
In thisan algorithm that uses Weighted Distance Measure of snapshot deviations as the
distance measure between two streams, is presented. This algorithm can reflect the simi-
larity in the data values but ignores the trends in the streams. E-Stream [158] is another
algorithm to credit fraud detection and network intrusion detection. This supports the
evolution of the data streams, and classify them in: appearance, disappearance, self-
evolution, merge and split. Each cluster is represented as a Fading Cluster Structure
(FCS). The algorithm uses a histogram for each feature in the dataset. RepStream [118]
is proposed for network packet inspection and financial transaction monitoring. This
is an incremental graph-based clustering algorithm that uses the graphs to model the
spatio-temporal relationships in the data. Each cluster has exemplar data to capture
cluster stable properties, and predictor points to capture evolving properties of the data.

To address issues related with numerical, categorical and mix data, have been pro-
posed SCLOPE [133]. This is an algorithm for clustering categorical data streams that
uses pyramidal timeframe and micro-clusters. SCLOPE is based on CluStream [4] and
CLOPE [172] algorithms. For numerical data streams in [14] is presented a Feature-
Based Clustering Method. This algorithm uses k-means to select the initial centers of
clusters, and two measures to rank features. In this algorithm, unimportant features are
removed.

Another proposed algorithms that have been proposed to deal with different data types,
are CNC-Stream (Clustering data Stream with Numeric and Categorical attributes)
[163], that is composed of two parts. An on-line part, for micro-cluster maintenance
using Incremental Entropy Cost (IEC) and Merging Entropy Cost (MEC). An off-line
part, to generate final clusters. HClustream (Heterogeneous CluStream) [168] is an algo-
rithm based on CluStream [4], in which k-means clustering is modified with k-prototypes
clustering. H-UCF (Heterogeneous Uncertainty Clustering Feature) [86] uses the pro-
bability frequency histogram for tracking statistics of categorial data. This algorithm
has two phases. In the first phase, cluster candidates are determined. In the second
phase, new data are assigned to the created clusters. MStream [160] uses micro-clusters
to store statistical information, in the on-line phase. In the off-line phase, micro-clusters
are merged to form macro-clusters. HUE-Stream [121] is an extension of E-Stream [158].
The algorithm supports numerical and categorical data, and includes a distance function,
cluster representation, and histogram management.

Clustering documents are treat in [32], a framework for text patterns identification.
The keywords definition are defined using clustering and an incremental hierarchical
clustering algorithm. Nearest neighbor is used to manage the high rate of arriving
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documents. In Aggarwal [7] is presented an algorithm that uses statistical summary
data to cluster text and categorical data streams.

Arbitrary shapes and handle outliers are addressed in works such as D-Stream [29], that
uses density-grid approach to clustering data streams. The algorithm does not need to
know the number of clusters. This algorithm uses a decay factor to the density of each
data point in order to form clusters dynamically. In this scheme, most recent data have
more weight. Another algorithm with the same name, D-Stream [156] is proposed as a
framework that uses density-based approach. In this, each data stream is stored in a grid,
in an on-line component. The density of the grid and clusters are computed, in the off-
line phase. The grid attraction concept is used to manage the close of the data, in order
to improve the quality of the algorithm. AGD-Stream (Active Grid Density Streams)
[170], finds clusters in arbitrary shapes and deals with the problem of boundary points.
Data are mapped on a grid structure using the density concept.

Uncertain data streams are treat in [175], in which two phases algorithm called LuMicro
(Low uncertainty Micro) is proposed. On-line phase, uses micro-clustering, and off-line
phase, uses macro-clusters. The appropriate cluster is selected taking into account the
position and the uncertainty, which are calculated based on its probability distribution.

CluDistream framework [181] is proposed to deal with distributed data streams. The
algorithm uses Gaussian model based on Expectation Maximization (EM) to clustering
distributed data streams with noise or incomplete data. A test-and-cluster strategy is
proposed in order to capture the distribution of data stream at remote site and to deal
with different data streams lengths. In [137] is proposed an iterative merging algorithm,
that produces a partitioning of the data and admits creation, addition and merge clusters,
using MDL to decide. The algorithm also uses the Euclidean distance, to find time series,
and the nearest neighbor, to find the most similar subsequence in the input time series.

StreamGlobe [152] and ODAC (Online Divisive-Agglomerative Clustering) [141, 142],
have been proposed to clustering data streams in ad-hoc networks and sensor networks,
respectively. In the first work, the system meets challenges of efficient querying data
streams in an ad-hoc P2P network scenario. This system uses clustering to identify
reusable existing data streams in the network. This process transforms data streams
into a structural aspect represented by their respective properties. The second work is a
system for on-line prediction of all the variables in large sensor networks. The proposed
algorithm is a hierarchical tree-shaped structure of clusters and uses top-down strategy.
ODAC uses an incremental dissimilarity measure between time series. The algorithm
counts with two main operations: expansion and aggregation, that are performed based
on the clusters diameters.

Among other applications, it is possible to find a work for anomaly detection, presented
in [132], in which clusters are dynamically generated based on a minimum deviation, then
the cluster can be splitting or merging with adjacent clusters. For discover geophysical
processes, in [151] is proposed an algorithm that uses kernel methods to discover snow,
ice, clouds, among other processes. Authors of this work, introduce the Gaussian mixture
model with spherical covariance structure as a kernel.

Task-Based Techniques

These techniques adopt or create algorithms in order to achieve efficient solutions in time
and space. In general, methods that belong to this technique do not need to store data.
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Figure 2.3. Task-Based Techniques for Clustering Data Streams. Dashed lines indicate the al-
gorithms in which the presented algorithm are based. Algorithm names in brackets
belong to data-based techniques. Algorithm names in brackets and italics belong to
traditional data clustering.

Among these methods are approximation algorithms, sliding windows and algorithm output
granularity. Figure 2.3, shows some works developed in each of these methods. Dotted lines
in the figure represents a relation between the works with others data streams algorithms.
If the relation is with a classical data clustering algorithm its name is shown in italics.

• Approximation Algorithms: This method considers mining algorithms as hard com-
putational problem, designed with error bounds. These kind of algorithms are efficiently
in running time, however they do not solved problems associated with data rates and
available resources.

In this method, approaches for distributed data streams, evolutionary clusters, memory
and time responses have been proposed. Among them, in [16] is presented an adaptation
of k-means algorithm for distributed data streams peer-to-peer, such as sensor network
environment, called P2P K-means. The algorithm uses statistical bounds for estimate
the centroids error of clusters.

RSBCAM (Rough Set Based Clustering Algorithm for Multi-stream) [182] has been
proposed to mining multiple data streams. This algorithm taking into account the
quality and efficiency. RSBCAM calculates equivalence relations and similarity between
clusters in the initial phase. Then similarity is used to merge the clusters. K-means
algorithm is used to adjust dynamically clustering results.

Among the works to deal with evolutionary clusters are DD-Stream [94], a framework
that has an algorithm for density-based clustering data streams in grids. The clustering
quality is improved with the DCQ-means algorithm, which extracts border points of the
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grid. The framework has an on-line and off-line phases. In the first phase, new data
are read and mapped in the grids. In the second phase, clustering on grids using DCQ-
means algorithm is performed. Another approach is VQ-INC-EXT [116], an incremental
clustering method for data streams based on VQ (Vector Quantization). To adjust the
number of clusters adaptively during incremental clustering is used a sphere of influence
in the clusters, as well as some operations, such as deletion of clusters satellites and a
split-and-merge strategy.

Some approaches that address memory and time response issues, aresWFCM algorithm
[161], that is an extension of FCM (Fuzzy C-means Algorithm). In the extended al-
gorithm, clusters are treated in a fuzzy way, renewing the centers weight of them. In
[85], is proposed OptimDenStream, an extension of DenStream algorithm [23], that uses
the Hoeffding theory to improve the detection time strategy. In the algorithm, a double
detection time strategy is used, and the detection time for potential micro-clusters is
deleted.

GK-like (eGKL) [51], an extension of Gustafson- Kessel (GK) algorithm is proposed
to treat whit clusters that have different shapes. This algorithm is based on k-nearest
neighbor and LVQ (Linear Vector Quantization) algorithms.

Text and categorical data issues have been addressed by works such as TSC-AFS [73],
a text stream clustering based on adaptive feature selection, that uses two thresholds to
evaluate the index level. StreamCluCD [82], a clustering algorithm for categorical data.
This algorithm creates histograms and applies approximation counts technique over data
streams to keep the frequencies value. The algorithm uses Lossy Counting Algorithm,
and accepts a support threshold and an error parameter.

• Sliding Window: This technique is considered as an advanced technique in data
streams query. Sliding windows transform a given dataset containing time series, into
a new set of simple examples. For this purpose, windows with a certain size are moved
through the series, the horizon attribute value is used as a prediction label that is ex-
tended to the bottom of the window. Most recent elements are called active and the
rest are expired elements. This technique does not provides a model for the whole data
stream. Some developed works with this technique are shown below.

To address issues related with space and memory, Babcock et al. [15] proposed an
extension of the work presented in [75]. In the extension is included the sliding window
model, maintaining an exponential histogram for the active elements. Another extended
work of [75], that improves the training time, memory requirements and learning loss
is CVFDT (Concept-adapting Very Fast Decision Tree Learner) [88]. This is a longer
version of VFDT, in which a decision tree is maintained, and sliding windows with a
fixed size is added, to acquire the ability to learn and respond to dynamic changes in
the data. This algorithm has high accuracy and low complexity.

Another works in this line are CluTrans [111], for clustering transactional data streams,
which uses the INCLUS algorithm in elastic and equal-width time window. In [157] is
proposed a Density-Based Hierarchical method, which uses variance within cluster, and
density and distance intra clusters in the merging process. Three parameters, number
of cluster of the final step, the minimum and maximum number of clusters are needed.

In order to clustering multiple and parallel data streams, have been proposed SPE-cluster
(SPectral Cluster algorithm) [30], in which multiple streams with similar behavior based
on auto-regressive model, are clustered. For this purpose is used the estimated frequency
spectrum (amplitude, frequency, damping rate) of the streams. In [19] is proposed
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an adaptable and scalable on-line version of K-means algorithm using discrete Fourier
transforms and a fuzzy version of on-line k-means to cluster parallel data streams.

An approach based on the work developed in [19] and on the incremental proposition-
alisation algorithm [148] is proposed in [149]. This is an on-line version of k-means
algorithm to deal with growing objects (objects that grow and change their definition
over time), such as customers transactions. The algorithm transforms a multi-label
streams in single streams. Another work for clustering multi-label streams is proposed
in [148]. This model transforms streams in single-table streams, and maintains cache
and sliding windows from them.

High-dimensional issues are treated in works such as HSWStream [115], in which pro-
jected clustering technique, and exponential histograms EHCF (Exponential Histogram
of Cluster Feature) are used to deal with the in-cluster evolution, and eliminate the
influence of old points. WSTREAM [155], an extension of kernel density clustering to
mining data streams, uses d-dimensional hyper-rectangles to discover clusters which are
incrementally adjusted to capture dynamics changes in the streams. compareItems [103]
is a work that involves evolution of complex data, using a visual technique to see the
evolution of the streams. The algorithm uses similarity function based on keywords com-
parison, in order to clustering articles intro threads. Additionally, introduces an elevance-
based technique, which depends on aging, number of articles and duration. SWClustering
algorithm [180], uses the Exponential Histogram of Cluster Features (EHCF) to cluster
evolution. This algorithm eliminates the influence of old data improving the quality of
the clusters.

To deal with clusters in arbitrary shapes and handle with outliers, have been proposed
DenStream [23], which is based on DBSCAN [47]. The extended algorithm uses core-
micro-cluster to summarized the clusters in an arbitrary shape. To determined the
micro-clusters is uses the density. A modification of DenStream algorithm called Den-
Stream2 is presented in [154]. In this extension is included a time interval, a time
windows size, controls for the dimension of data streams and a maximum number of
micro-clusters. Another proposed work is Abstract-C framework [169], which includes a
clustering algorithm density-based outlier in order to maintain compact summaries.

Another approaches proposed to treat with arbitrary shapes are SDStream [140] and
C-DenStream [144]. SDStream performs density-based data stream clustering over sli-
ding windows. The method adopts CluStream [4] algorithm and introduces the core-
micro-cluster and outlier micro-cluster for on-line phase. Additionally, the method uses
Exponential Histogram of Cluster Feature (EHCF) to store the clusters and outliers.
DBSCAN [47] is used in the off-line phase to maintain the core-micro-clusters. C-
DenStream proposes a semi-supervised method and uses the background knowledge of
the data streams. The modifications are basically the adaptation of the off-line step of
DenStream [23] and the inclusion of constraints in creation, maintained and deletion of
micro-cluster.

Another extension of DenStream [23] is rDenStream (DenStream with retrospect) [112,
113], this is a three-step clustering algorithm with retrospect that learn about outliers.
First and second phases are similar to DenStream, and in the third phase, the algorithm
learns from discarded data. To deal with different temporal data representations has been
proposed WCE [173] an algorithm that uses weighted clustering ensemble on different
representations. This algorithm is composed of three modules: representation extraction,
initial clustering analysis and weighted clustering ensemble.
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To address with heterogeneous data streams has been proposed HCluWin [139], that
contains both continuos and categorical attributes over sliding window. The Heteroge-
neous Temporal Cluster Feature (HTCF) and Exponencital Histogram of Heterogeneous
Cluster Feature (EHHCF) are used to monitoring the distribution statistics.

OSKM (Online Spherical K-Means) algorithm [179] is proposed to mining text data
streams. The algorithm is an extension of SPKM (Spherical K-Means) [178], and in-
cludes a modification of the scalable clustering techniques algorithm [49] based on the
winner-take-all technique. Additionally, a forgetting factor is introduce in order to apply
exponential decay to the history data.

Among some applications are ASWDStream [22], a clustering data stream algorithm
applied to an intrusion detection. This algorithm uses micro-clusters, and is based on
sliding and damped window techniques. RA-HCluster (Resource-Aware High Quality
Clustering) [24] is used for clustering data streams on mobile devices. The algorithm is
based on resources-aware technique and has on-line and off-line phases. In the first phase,
the sliding window is used to create micro-clusters. In the second phase, hierarchical
summarized statistics are used for clustering. For anomaly detection has been proposed
CORM (Cluster based OutlieR Miner) [45], that uses k-mean to cluster the stream,
which has been previously divided in chunks. The algorithm takes into account the
outliers detected, and gives them the chance of survival in the next incoming chunk of
data. In [167], is proposed a method to clustering data streams for stock data analysis,
based on morphological characteristics.

• Algorithm Output Granularity (AOG): This technique is able to work with very
high data rate fluctuations, depending of the available resources. AOG has three stages:
mining, adaptation of resources and data streams rates. Then, generated structures
are merge. This is a general approach that can be use in any mining technique such
as clustering, classification and frequency counting. Some developed works with this
technique are shown below.

Issues related with limitations of computer resources are addressed by works such as LWC
(one-look clustering) [54, 55, 59], in which an one-pass approach is used to clustering,
classification and counting frequent items. The algorithm is adaptable to memory, time
constraints and data streams rate. The authors proposed the use of data rate adaptation
from the output side, using the Algorithm Output Granularity (AOG) [59].

Based on previous works, in [56, 60] is incorporated an ubiquitous data mining (process
of performing analysis of data on mobile), and a resource aware system (RA-UDM ),
which includes management for local resource information, context-aware middleware,
resource measurements and solutions optimizer.

To manage resource with fluctuating data streams (memory, time), Gaber et al. [57]
have been developed the LWC (Light-Weight Clustering), LWClass (Lightweight Classi-
fication) and LWF (Lightweight Frequent items) algorithms, which are based on the
AOG. AOG is able to manage resource with fluctuating data streams (memory, time).
In LWC, AOG defined an adaptive threshold for the minimum distance among the center
cluster and the data.

In the same line, are proposed RA-VFKM (Resource Aware Very Fast K-Means) [145]
and RA-Cluster (Resource-Aware Clustering) algorithm, proposed by Gaber and Yu
[58]. In RA-VFKM is proposed to ubiquitous environments, using AOG, and an ex-
tension of VFKM (Very Fast K-Means) [43]. RA-VFKM is able to adapt variations in
memory availability in mobile devices. Additionally, this algorithm increases the values
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of allowable error and probability, which compromises the accuracy of the results, but
enables the convergence, avoiding the total execution failure. RA-Cluster is a threshold-
based micro-clustering algorithm, that is able to adapt the available resources using the
AIG (Algorithm Input Granularity), AOG (Algorithm Output Granularity) and APG
(Algorithm Processing Granularity) algorithms, to adapt the availability of resources pe-
riodically, as an algorithm settings. Each previous algorithms are in charge of battery
and bandwidth, and memory and processing power, respectively. RA-Cluster deals with
unpredictable data streams rates, and resources constraints.

2.4 Evolutionary Clustering with Self Adaptive Genetic Ope-
rators Algorithm - ECSAGO

Evolutionary clustering algorithms deal with the problem of incorporating new data into
previously formed clusters. Those clusters should be similar to those existing and should
accurately reflect the new data. Among those kind of algorithms there is the Evolutionary
Clustering with Self Adaptive Genetic Operators (ECSAGO), proposed by Leon et. al.
[109]. This is a self adaptive genetic clustering algorithm which uses as basis the Unsu-
pervised Niche Clustering (UNC) algorithm [128]. ECSAGO follows the same philosophy
than UNC and improves some aspects. One of the most important is the inclusion of the
Hybrid Adaptive Evolutionary Algorithm (HAEA), proposed by Gomez [68], which is a
parameter adaptation technique for evolutionary algorithms. HAEA allows to ECSAGO
adapting the genetic operator rates automatically while evolves cluster prototypes. Thus,
crossover and mutation parameters are eliminated, and the best genetic operators to solve
the clustering problem are selected.

ECSAGO has been extended to real representations and tested using synthetic and real
data from anomaly detection applications and document clustering [106], [107]. Reported
results show that the algorithm is able to detect the majority of clusters except when
clusters have small size. ECSAGO model is shown in Figure 2.4
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Figure 2.4. ECSAGO Model

As mentioned before, ECSAGO is based on UNC, an evolutionary clustering technique
based on genetic niching optimization that is able to determine automatically the number
of clusters and that presents robustness to noise. ECSAGO is divided in the same three
stages that are proposed in the UNC model: evolutionary process, extraction of the final
prototypes and refinement of extracted prototypes. These phases are described below.

Evolutionary Process

In the first step of this component, the population P for each generation G is initialized. P
is composed by individuals pi and each of them represents a cluster candidate (hypothetical
cluster). An individual is determined by a center and a scale parameter σ2i . Then, niches
are formed and maintained using Deterministic Crowding (DC) technique. DC is presented
in the algorithm 1.
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Algorithm 1 Deterministic Crowding
1: Repeat for G generations
2: Repeat PopulationSize

2 times
3: Select two parents p1 and p2 randomly without replacement
4: Cross them to produce children c1 and c2
5: Optionally apply mutation to produce children c′1 and c′2
6: If [d (p1, c

′
1) + d (p2, c

′
2)] ≤ [d (p1, c

′
2) + d (p2, c

′
1)] Then

7: If f (c′1) > f (p1) Then Replace p1 with c′1
8: If f (c′2) > f (p2) Then Replace p2 with c′2
9: Else

10: If f (c′2) > f (p1) Then Replace p1 with c′2
11: If f (c′1) > f (p2) Then Replace p2 with c′1

DC technique selects two parents which are replaced by the respective child, which has
been generated by applying crossover and mutation with some probability, if its fitness is
greater than its parent fitness. Even though the improvement of each niche arises when
members are near to the real peaks, DC allows to apply crossover between different niches.

UNC implements a mating restriction to avoid those interactions between different
niches, however, ECSAGO does not use this restriction and implements another mechanism
for selection and replacement by joining HAEA and DC. This is presented in the algorithm
2.

HAEA evolves each individual independently of the others. For each genetic operator
is maintained a rate that represents the dynamically learned of them. In this way, in
each generation only one operator is applied to the individual, which is selected based
on its rates. If one parent is needed, it is selected without replacement. If two parents
are needed, the second one is selected with replacement. If the offspring fitness is greater
than its parents, then they are replaced and the rate of the applied operator is increases
as a reward. In other case, replacement is not made and operator rate is decreases as a
punishment. Operators have a real representation in ECSAGO, unlike UNC where the
representation is binary.

The fitness evaluation is based on a density measure of a hypothetical cluster. This
measure fi follows a Gaussian Distribution and it is calculated respect to the candidate
cluster ci and its dispersion measure σ2i . Fitness is calculated in the following way:

fi =

∑N
j=1wij

σ2i
(2.1)

where:

• wij is a robust weight that measures how typical data point xj is in the ith cluster.
In this way, the weight is high for points that are within the boundaries of the cluster
and low for those points that are outside of the boundaries.

wij = exp

(
−
d2ij
2σ2i

)
(2.2)

• d2ij is the Euclidean distance from data point xj to cluster center ci, define as:
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Algorithm 2 ECSAGO Evolutionary Algorithm: HAEA and DC Mixing
Evolution (δ, terminationCondition )
1: t0 = 0
2: P0 = initPopulation(δ)
3: while (terminationCondition(t, Pt) is false) do
4: Pt+1 = {}
5: for each ind ∈ Pt do
6: rates = extract−rates (ind)
7: δ = random(0, 1) . learning rate
8: oper = OP−SELECT (operators, rates)
9: parents = Extra−Sel(arity(oper)−1, Pt, ind) ∪{ind}

10: offspring = apply (oper, parents) ∪{ind}
11: N = size(offspring) . Initation of Replacement Policy
12: x = ind
13: min = 1e+ 8
14: for i = 1 to N do
15: if d(ind; offspringi) > 0 and d(ind; offspringi) < min then
16: x = offspringi
17: min = d(ind; offspringi)
18: if f(ind) > f(x) then x = ind
19: child = x . Best child
20: if (fitness(child) > fitness(ind)) then
21: rates[oper] = (1.0 + δ) ∗ rates[oper] . reward
22: else
23: rates[oper] = (1.0− δ) ∗ rates[oper] . punish
24: normalize−rates(ratest)
25: set−rates(child, rates)
26: Pt+1 = Pt+1 ∪ {child}
27: t = t+ 1

d2ij = ‖xj − ci‖ = (xj − ci)t (xj − ci) (2.3)

• N is the number of data points.

• σ2i is a robust measure of dispersion of each cluster ci, which helps to determined
the boundaries of the cluster, whose radius can be written as Kσ2i . K is close to
χ2
n,0.995 for spherical Gaussian clusters. The dispersion measure is updated through

an iterative hill-climbing procedure using the past values of σ2i in each iteration in
the following way:

σ2i =

∑N
j=1wijd

2
ij∑N

j=1wij

(2.4)

Extraction of Final Prototypes

In this component, better candidates (better individuals from each niche) are selected.
For this purpose, clusters are sorted in descending order of their fitness values. First,
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candidates under a minimum fitness value are discarded, this is the fitness extraction.
Then, the niche extraction is performed. This consists in select only the best cluster of
each niche, removing the others that have less fitness and that belong to the same niche.
Niche extraction is determined using the following:

If
(
dist (Pi, Pk) < Kmin

(
σ2i , σ

2
k

))
Then

Pi and Pk are from the same niche (2.5)

Refinement of the Extracted Prototypes

This component is an optional phase into the process. Its goal is to improve the center
and the size of final clusters. This phase consists in make a partition of the dataset into
c clusters in which each feature vector is assigned to the closest to the prototype. A local
search is performed with the partitions using a robust estimator called Maximal Density
Estimator (MDE), to estimate the center and scale parameters.

2.5 Artificial Immune Theory

Artificial Immune Systems (AIS) is a bio-inspired computing area that is based on immune
principles. This theory attempts to explain the memory and learning capabilities of the
immune system. The main hypothesis states that interactions between immune cells are
responsible for the behavior of the immune system and in consequence, responsible for the
immune memory [38, 37]. In a general way, an AIS is composed by:

• antigens (Ag): molecules that immune cells are able to recognize and that act like
training elements.

• antibodies or B-cells (Ab): elements generated by the model which recognized Ag.
The B-cells interactions (excitatory or inhibitory) are responsible for maintaining the
immune memory.

Immune Response

The process followed by the AIS begins when an Ab recognizes an Ag. This recognition is
made by binding a portion of the Ag called epitope, with a portion of the Ab region called
paratope. To measure how well an antibody recognizes an antigen a criteria called affinity
is used, which produce the activation of the immune system when this value is greater than
a threshold (affinity threshold). Once the immune system is activated an immune response
is triggered. The basic features of the immune response are:

• Clonal selection principle: this principle states that those Ab responsible of the im-
mune response, must proliferate and begin to be part of the memory cells. Clonal
selection does not use cross over due to it is an asexual reproduction.

• Affinity maturation of the immune response: this process leads to the evolution of
Ab populations to better adapt in order to recognize specific Ag. This is made by
replicating and mutating the memory cells in a process called clonal expansion, which
is composed by:
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– clonal proliferation: this is the cloning process of the memory cells. Cloning is
made with a rate that is directly proportional to the affinity with the Ag.

– hypermutation: once memory cells are cloned, they are mutated at high rates.
Mutation rates are inversely proportional to their affinity.

Immune Memory

Learning and memory properties include raising the population size and affinity of those
Ab’s that are consider valuable when recognized some Ag’s. These properties emerge from
clonal selection principle. The maturation of the immune response is composed by two
phases:

• Primary immune response: this is the process of generate new Ab’s when an Ag is
presented for the first time.

• Secondary immune response: this process is generated when an Ag has been presented
before to the Ab’s. In this case, Ab’s that recognized Ag’s are produced quickly and
in a larger amounts. The effectiveness of this response is explained by the existence
of the immune memory.

Those Ab’s presented in the secondary immune response (memory response) have,
on average, higher affinities than those presented in the primary immune response.
In the process can happen that:

– clonal selection process allows that occasionally an increases of the fitness of
the Ab’s occurs. Ab’s with high affinity are selected to be part of the pool of
memory cells,
or,

– memory cells may be gradually disabled. This is, those Ab’s with low affinity
may be suffer mutation again and may be eliminated if there is not improvement
on its affinity. Thus, something learned by the network can be forgotten unless
it is reinforced by other part of it. The programmed cell death of Ab’s that are
non-stimulated is called apoptosis [21, 39]. It is important to note that only
those cells which are sufficiently closely related to active parts of the network
will survive.

Artificial Immune Network

Artificial Immune Networks (AIN) are based on the Artificial Immune Network Theory,
proposed initially by Jerne [93]. This theory suggests that the immune system is composed
of a regulated network of cells Ab’s, that recognizes one another even in the absence of Ag’s
and that the system achieves immunological memory through the formation of a network
of B-cells in a process that could be stimulatory or suppressive: (In figure 2.5 is shown the
idiotypic network hypothesis (Figure taken from [117]).

• Stimulation: when the paratope of an Ab recognize epitopes or idiotopes (a set of
epitopes), the Ab is stimulated and its concentration increases (proliferation).



CHAPTER 2. BACKGROUND 27

• Suppression: when the idiotope of an Ab is recognized by the paratopes of other Ab’s,
the first is suppressed and its concentration is reduced.

Figure 2.5. Idiotypic Network Hypothesis

In general, an AIN has three characteristics: structure, dynamics and metadynamics.

• Network structure: describes the possible interactions among its components and
how they are link together.

• Dynamics: decribes the interactions among immune components; and represents the
changes of the concentration, the affinity variation of the Ab’s, and their adaptation
to the environment.

• Metadynamics addresses the process of Ab’s production, the death of unstimulated
Ab’s and the changes of the network connections. The metadynamic represents the
immune learning mechanism [39].

In [62], a comparison and classification of the AIN models is presented. Authors pro-
posed three branches in which models are presented. Another brief review of AIN models
and applications can be found in [147].

2.6 Summary

Clustering data stream mining techniques can be classified into data-based and task-based.
In the first one, Sampling, Load Shedding, Sketching, Synopsis Data Structure and Aggre-
gation methods can be found. The second technique is composed by Sliding Window,
Approximation Algorithms and Algorithm Output Granularity methods. Each technique is
explained and shown in a diagram. Each method is described and some works developed
in each of them are presented. Dependence among works is shown.

The three phases that composes the ECSAGO algorithm: evolutionary process, extrac-
tion of the final prototypes and refinement of extracted prototypes are described. Concepts
and main processes about Artificial Immune Theory are introduced and explained together
with the way in which an Artificial Immune Network is formed and the immune memory
maintained.
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ESCALIER Algorithm

In this chapter is presented a new model to mining data streams. The new algorithm
called ESCALIER: Evolutionary Stream Clustering Algorithm with seLf adaptive genetic
operators and Immune mEmoRy is based on the ECSAGO. ESCALIER takes advantage
of the evolutionary process proposed by ECSAGO and adds some new features. Such as
the use of the sliding window technique and a memory mechanism based on the artificial
immune network theory. The first is used to deal with high amount of data. The second
aims to maintain and forget clusters that have been discovered.

ESCALIER is divided in two stages: evolutionary process and extraction of the pro-
totypes, which are inherited from ECSAGO. However, some processes within these phases
have also been modified to adjust the model to deal with data streams.

This chapter is divided in four sections. Section 3.1 presents the proposed evolutionary
stream clustering algorithm with self adaptive genetic operators and immune memory,
ESCALIER. Section 3.2 reports some experimental results on synthetic dataset. Section
3.3 reports some results on a real dataset. Section 3.4 presents a summary of this chapter.

3.1 Proposed ESCALIER Model and Algorithm

In order to extend the ECSAGO for mining large volumes of dynamic data streams, some
modifications over the original model have been developed in terms of Artificial Immune
Network Theory. The proposed model ESCALIER is divided in two stages: evolutionary
process and extraction of the prototypes, which are inherited from ECSAGO. However,
some processes within these phases have also been modified to adjust the model to deal
with data streams.

In the first stage is shows how the model performs the selection of the initial population.
Population Pi to be evolve is composed by three subsets: wp that contains the Ab’s selected
randomly from the window wi; the prototype prot that contains the discovered prototypes
in the window wi − 1 and the clones of the prototypes ClonProt that are generated by
the Clonal Selection Principle. These two last subsets are part of the Pool of Memory
Cells. Each individual ind ∈ Pi evolves independently as proposed by ECSAGO. Fitness
evaluation is performed making a distinction between Ab’s that belong to wi and that

28
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represent a single data; and Ab’s that belong to prot or ClonProt which have information
of the past data.

In the second stage, suppression is performed. This is made in two steps of elimination:
first, Ab’s under an affinity threshold and second Ab’s that belong to the same niche (Ab’s
that recognize another Ab’s). ESCALIER model is presented in the Figure 3.1 and its
detail explanation is given in the following subsections.

Figure 3.1. ESCALIER Model

3.1.1 Sliding Window

The high amount of data produced continuously at high rates requires the inclusion of a
technique to handle them. Sliding window technique is the mechanism to divide the data
in order to be processed. In this technique, a window wi (line 1 in the algorithm 3) is a
chunk of data that is continuous and keeps the arriving order of the data. A window w
in a time i is defined as: wi = (Xt−w+1, ..., Xt), where Xi is the i-es-record (Ag) in the
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window and w is the number of total records in the window i, that means that X1 is the
oldest record in the window. These windows are count-based which means that all of the
windows that arrive to the algorithm, have the same size and the size is determined by the
kind of the application (satellite systems, sensor systems, network monitoring applications,
etc).

3.1.2 Population Generation using Clonal Selection

The initial population of each window Pi (line 2 in the algorithm 3) is performed in the
following way: for each window wi, population generated is composed by the union of three
sets:

• wp is a proportion of the Ag’s that is taken randomly from the wi.

• prot is composed by the discovered prototypes Ab’s in the window wi − 1

• ClonPop is formed by non-identical copies generated from the prot set. These copies
are product of the clonal selection principle but unlike this process, ESCALIER
generates copies using one of the genetic operators: Gaussian Mutation or Linear
CrossOver. The selection of the operator is made according to the process explained
in 3.1.4.

Notice that the prot set is smaller in proportion to the wp set; and the number of
generated copies of each cluster is proportionally to its density. This means the higher the
amount of points the cluster has recognized through its existence the higher number of
copies of it.

Explicitly from AIN point of view, Ab’s are clusters that have been recognized and Ag’s
are the data arriving in each window. In each new window, clusters coming from previous
windows are represented by those Ab’s that have been activated. They must proliferate
proportionally with their affinity value. Despite that proliferation of clones is given by
performing hypermutation, this model proposes to perform it by using the same operators
applied in the population evolution. Thus, proliferation is made by selecting Gaussian
mutation or Linear Crossover, depending on the rates learned from them. Additionally, as
the generated copies correspond to a proportion of the population, the algorithm ensures
that the amount of population is controlled, and avoids the explosion population. In the
figure 3.2 the process of population generation is shown.

Figure 3.2. ESCALIER - Population Generation
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Population for a window wi is generated in the following way:

Pi = wp ∪ prot ∪ ClonPop (3.1)

where:

• wp is the population generated randomly from wi.

• prot is the set composed by prototypes that have been discovered in past windows.

• ClonPop is the population generated from the prot set, which is defined as:

ClonPop = clonPop1 ∪ ... ∪ clonPopi (3.2)

where each clonPopn with 1 > n >= i has the copies generated of the respective
protk ∈ prot. The number of copies of each prototype is calculated as:

Be {NPointsProt1, ..., NPointsProti} the number of recognized points by each
protk when the window wi arrives, and be NP the total population to be created.
Then the number of copies by prototype NClonesProt is given by:

NClonesProt1 =
NPointsProt1∗NP

NPointsProt1+...+NPointsProti
.
.
.

NClonesProti =
NProtn∗NP

NPointsProt1+...+NPointsProti

(3.3)

Notice that for the first window w1, ClonPop = {∅}

3.1.3 Population Summarization and Fitness Evaluation - Affinity

Each individual in the population Pi is composed by a weight Wj and a radius σj . Such
values have the information about the points that they represent. Individuals that belong
to wp are initialized with the values 0 and 1 respectively; while prototypes from prot have
been learning those values through their evolution. Used fitness function (lines 3 and 18
in the algorithm 3) is shown in the equation 3.4, and explained in detail in subsection 2.4.

fi =

∑N
j=1wij

σ2i
(3.4)

The above implies that interactions with prototypes are different from the interactions
with individuals that not represent a subset of points, they are individuals that do not have
summarized data. For this reason, the weight and the radius calculations for prototypes
should be different. These values are based on the Scalable ECSAGO algorithm [110].
According to this, the weight Wij takes into account the proportion that an individual i
intersects to another j and it is calculated as:
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Wij =


Wj ∗

∫
exp

(
− dx

2

2σ2
j

)
dx

∫
exp

(
− x2

2σ2
j

)
dx

if j ∈ prot or j ∈ ClonProt

1 if j ∈ wp and Wij > Tw
0 otherwise

(3.5)

where:

• i represents the i− th individual.

• j represents the j − th prototype.

• Wj is the cumulative weight of the j − th prototype.

• Tw is a weight threshold used for binarization.

The radius σ2new of the individual i is calculated as:

σ2new =

Nnew∑
j=1

Wijd
2
ij

Nnew∑
j=1

Wij

(3.6)

where:

• Nnew is the size of the window wi + number of summarized points.

•

d2ij =


2∗ri−|dij−ri|+rj

2 if j ∈ prot
σ2j if j ∈ wp and dij 6= 0

d2ij otherwise

(3.7)

Generated copies inherit a portion of the parent fitness. First, a percentage of area
that child and parent has in common is calculated. Then, that percentage of fitness and
recognized points from the parent are added to the child (line 4 in the algorithm 3). The
affinity is given by the fitness measure. Thus, when a point is cover by an specific cluster
means that an Ag has been presented and recognized by an Ab, and this reinforces the
memory of that Ab.

3.1.4 Selection and Replacement Mechanism

Replacement mechanism used in ECSAGO is followed by ESCALIER. For this, DC and
HAEA are used to select the best individual indj in each generation (lines 6 to 29 in the
algorithm 3). The operators used by each individual are Gaussian mutation (GM) and
linear crossover (LC) (line 9 in the algorithm 3). GM is performed by randomly selecting
a gene from the parent and adding to it a random number which follows the Gaussian
distribution. Notice that hypermutation is not performed due to HAEA has a mechanism
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to learn the operator rates. LC is applied over two parents. In the process, a value
between 0 and 1 is selected. Children are generated as follows: the first one is the result of
multiplying the first parent by the selected value, the second parent is multiplying by 1−
selected value, and then the two parents are added. The second child is generated in the
same way, but changing the multiplication value. This is, the first parent is multiply by
1− selected value and the second one by the selected value.

3.1.5 Prototypes Extraction - Suppression

At the end of each generation, two things are made: first, the fitness of the prototypes that
have survived for more than a window is updated by taking into account the new data on
the window. This update is made by calculating the fitness of the prototype with the new
data and by adding it to the fitness that they had (line 31 in the algorithm 3). Second,
fitness and niche extraction (equation 2.5) are performed (lines 32 to 36 in the algorithm
3). Existing prototypes after extraction process are include into the population, prot, to
be evolve in the next window wi + 1.

This process means that activated Ab’s are included as part of the pool of memory
cells. Ab’s that were not activated are eliminated, as part of the apoptosis process. Notice
that ESCALIER ensures that at the end of each generation only the best prototypes per
niche are maintained, and for this reason, suppression is enough to avoid the population
explosion, which makes not necessary the application of apoptosis (programmed cell death).

3.1.6 ESCALIER Algorithm

Since ESCALIER is based on ECSAGO algorithm, and modifications over this algorithm
are not in its evolutionary process, ESCALIER inherits its complexity. ECSAGO [109] is
linear with respect of size of the dataset, population size and number of generations. Due
to ESCALIER does not need all the dataset, the algorithm complexity only depends on the
windows size. And since the size of the population and number of generations compared
with the size of the windows are very small, complexity in time remains linear.

Something similar occurs with the space complexity. Every window that arrives to
ESCALIER is evolved, and data stored in memory are replaced by the arriving data. So,
linear complexity in space in maintained through all the process. ESCALIER algorithm is
presented in algorithm 3.
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Algorithm 3 ESCALIER Algorithm
1: Repeat for each window (wi, prot)
2: Generate Population Pi = wp ∪ prot ∪ ClonPop
3: Calculate Fitness fj for each indj ∈ Pi

4: Calculate Inheritance Fitness hfj for each ClonPopj ∈ Pi

5: while Generations
6: for j = 1 to j = size(pi) do
7: ratesj = extract−rates (indj)
8: δ = random(0, 1) . Learning rate
9: oper = op−select ((GM, LC), ratesj)

10: parents = extra−sel(arity(oper)−1, pi, indj) ∪{ind}
11: offspring = apply (oper, parents) ∪{indj}
12: x = indj
13: min = 1e+ 8
14: for k = 1 to size(offspring) do
15: if d(indj ; offspringk) > 0 and d(indj ; offspringk) < min then
16: x = offspringk
17: min = d(indj ; offspringk)
18: Calculate f(x)
19: if f(indj) > f(x) then
20: x = indj
21: ratesj [oper] = (1.0− δ) ∗ ratesj [oper] . Punish
22: else
23: ratesj [oper] = (1.0 + δ) ∗ ratesj [oper] . Reward
24: child = x . Best child
25: normalize−rates(ratesj)
26: set−rates(child, ratesj)
27: Pi = Pi ∪ {child}
28: end for
29: end for
30: end while
31: Update prot Fitness fi−1 + fi
32: Sort each ind ∈ Pi by its fitness value
33: for k = 1 to size(pi) do
34: if f(indk) > fext) and niche of indk is 6= from niches ∈ prot then
35: prot ← prot ∪ indk
36: end for

3.2 Experiments Using Synthetic Data

In order to determine the performance of ESCALIER, the algorithm has been tested using
three synthetic datasets: 1) a 2-dimensional Gaussian dataset; 2) the t7.10k Chameleon
dataset; and 3) a synthetical dataset generated by MOA (Massive Online Analysis)1. In
the two first datasets, two stages are proposed: a) clusters in datasets are in order, and
b) dataset has been shuffled randomly. Experimental setup, results and analysis for these

1Available: http://moa.cms.waikato.ac.nz/. April, 2013



CHAPTER 3. ESCALIER ALGORITHM 35

datasets are shown in sections 3.2.1 and 3.2.2. The third dataset is compared with other
stream clustering algorithms. Results and analysis are shown in section 3.2.3.

3.2.1 Experimental Setup

The first dataset 2-dimensional Gaussian consists of 8000 points and 10 clusters.
Chameleon dataset is composed by 10000 points. The figure 3.3 shows the two datasets.
For each of the two stages of the two datasets, three experiments have been carried out,
each of them with three different window sizes. For all the experiments the percentage
of population generated from a new window is 60%, and 40% is the percentage of copies
generated from the clusters. Parameters used in the experimentation are shown in table
3.1.

a) 2-dimensional Gaussian b) t7.10k Chameleon
Figure 3.3. 2-dimensional Gaussian and t7.10k Chameleon Datasets

2-dimensional Gaussian set t7.10k Chameleon
in order disorganized in order disorganized

Population Size 80 80 20 20
Number of Generations 30 30 10 10

Window Size Experiment 1 200 200 400 400
Window Size Experiment 2 400 400 600 600
Window Size Experiment 3 600 600 800 800

Table 3.1. Parameters Setup for Synthetic Datasets

3.2.2 Results and Analysis

Figures presented below belong to the four experiments performed over the two datasets.
Each figure shows the experiments carried out with different windows size, and how the
environment is in four specific windows. For all the figures, the black points are data that
belong to the current window and the green points are data belonging to past windows.
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3.2.2.1 Stage 1: 2-Dimensional Gaussian Set (In Order)

Figures 3.4, 3.5 and 3.6 show the results obtained using a window size of 200, 400 and
600, respectively. Each subfigure in the figures show the obtained results in the windows
10, 20, 30 and 40.

a) window 10 b) window 20 c) window 30 d) window 40

Figure 3.4. Detected clusters on different windows for the 10-Gaussian Cluster Dataset.
Window Size = 200

a) window 5 b) window 10 c) window 15 d) window 20

Figure 3.5. Detected clusters on different windows for the 10-Gaussian Cluster Dataset.
Window Size = 400

a) window 4 b) window 8 c) window 12 d) window 14

Figure 3.6. Detected clusters on different windows for the 10-Gaussian Cluster Dataset.
Window Size = 600

Figures presented above show how ESCALIER recognizes clusters in those zones with
high density of points. For windows size equal to 400 and 600, all 10 clusters in the
dataset are recognized. For the window size equal to 200 only 7 out 10 clusters have been
recognized. This is because the points presented in small windows are not enough dense
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to be considered as a cluster. The algorithm considers those points as outliers. Subfigures
in each figure show how through time recognized clusters are maintain in the following
windows and how new clusters that represent the points in the new window are detected.

3.2.2.2 Stage 2: 2-Dimensional Gaussian Set (Disorganized)

Figures 3.7, 3.8 and 3.9 show the results obtained using a window size of 200, 400 and
600, respectively. Each subfigure in the figures show the obtained results in the windows
10, 20, 30 and 40.

a) window 10 b) window 20 c) window 30 d) window 40

Figure 3.7. Detected clusters on different windows for the 10-Gaussian Cluster Dataset
Disorganized. Window Size = 200

a) window 5 b) window 10 c) window 15 d) window 20

Figure 3.8. Detected clusters on different windows for the 10-Gaussian Cluster Dataset
Disorganized. Window Size = 400

a) window 4 b) window 8 c) window 12 d) window 14

Figure 3.9. Detected clusters on different windows for the 10-Gaussian Cluster Dataset
Disorganized. Window Size = 600
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When clusters are presented in a disorganized way, for windows size equal to 200 and
400 is recognized 9 out 10 clusters. For the window size equal to 600, 10 clusters have been
recognized. However, 2 of them are not part of the real clusters in the dataset. Figures
show that there are two zones with less density of points, that are recognized as outliers.

3.2.2.3 Stage 3: t7.10k (In Order)

Figures 3.10 , 3.11 and 3.12 show the results obtained using a window size of 400, 600 and
800, respectively. Each subfigure in the figures show the obtained results in the windows
1, 3, 6 and the last window in each window size.

a) window 5 b) window 15 c) window 20 d) window 25

Figure 3.10. Detected clusters on different windows for the t7.10k Dataset. Window Size = 400

a) window 4 b) window 8 c) window 12 d) window 17

Figure 3.11. Detected clusters on different windows for the t7.10k Dataset. Window Size = 600

a) window 1 b) window 3 c) window 6 d) window 13

Figure 3.12. Detected clusters on different windows for the t7.10k Dataset. Window Size = 800
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Windows Size
400 600 800

Window 1 15 19 35
Window 3 28 26 35
Window 6 36 38 35

Window (25 - 17 - 13) 37 38 38
Table 3.2. t7.10k (In Order) - Recognized Clusters

Figures above show that the algorithm is able to recognized all the dense areas and
maintain clusters through time. Notice that clusters represent the dataset and only 10
generations for each window has been used. The amount of recognized clusters per windows
are shown in table 3.2

3.2.2.4 Stage 4: t7.10k (Disorganized)

Figure 3.13 shows results obtained with a size window = 400, figure 3.14 with a size window
= 600 and figure 3.15 with a size window = 800. In each of them, subfigures show the
results in windows intervals of 1, 3, 6 and the last window in each window size.

a) window 5 b) window 15 c) window 20 d) window 25

Figure 3.13. Detected clusters on different windows for the t7.10k Dataset Disorganized.
Window Size = 400

a) window 4 b) window 8 c) window 12 d) window 17

Figure 3.14. Detected clusters on different windows for the t7.10k Dataset Disorganized.
Window Size = 600
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a) window 1 b) window 3 c) window 6 d) window 13

Figure 3.15. Detected clusters on different windows for the t7.10k Dataset Disorganized.
Window Size = 800

Figures above show that the algorithm is able to recognized all the dense areas and
maintain clusters through the time even when clusters in the dataset are disorganized.
Although the amount of recognized clusters when dataset is disorganized is less than the
recognized amount when dataset is organized, recognized clusters in the disorganized case,
have less intersections between them and in general, represents the dataset. The amount
of recognized clusters per windows are shown in table 3.3

Windows Size
400 600 800

Window 1 12 15 12
Window 3 19 24 20
Window 6 25 26 26

Window (25 - 17 - 13) 26 26 26
Table 3.3. t7.10k (Disorganized) - Recognized Clusters

Discussion

Experiments show that ESCALIER is able to recognize clusters in dense areas and to
maintain those clusters through time. Notice that there are clusters that are not forgotten
and they are carried from window to window. This is because once clusters are recognized,
the following windows contain points they recognize. Those points make that clusters are
kept active. Likewise, there are clusters that are forgotten after some windows. These are
the clusters that have not been activated for a while.

In the experiments in which the smaller windows size has been used, not all the clusters
have been recognized. This is because the points presented in small windows are not enough
dense to be considered as a cluster. The algorithm considers those points as outliers. In
the case of shuffled data is possible to observe that not all the clusters are recognized
and some of the recognized clusters are not part of the real clusters. These situations are
presented because: i) the points are distributed in small portions among the windows, in
this case points are taken as outliers. ii) nearby points which belongs to different classes
are contained in a window and the algorithm recognized them as a cluster.
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3.2.3 Synthetic MOA Dataset

In order to compare the ESCALIER performance with another algorithms, a synthetic
dataset has been generated using the RandomRBG Generator function2 provided by MOA.
MOA is a real time analytics tool for data streams. Algorithms to perform clustering
data streams included in the tool are: CluStream, DenStream, ClusterGenerator, CobWeb,
WekaClustering, ClusTree and StreamKM. The generated dataset has 5 attributes, 100000
instanes, and 3 classes. For all the algorithms a windows size equal to 1000 has been used.

The performance of ESCALIER is compared with those algorithms implemented in
MOA that reported results. The clusters quality are shown in the table 3.4. This table
present the purity of the clusters in the windows 1, 25, 50, 75 and 100, for all the algorithms.
Purity is calculated using the equation 3.8 [154].

purity wi =

K∑
i=1

| Cd
j |

| Cj |
K

(3.8)

where:

• K is the number total of clusters in the window wi.

• Cd
j is the number of data points of the dominant class in the cluster Cj .

• Cj is the total number of data points in the cluster Cj .

Algorithm
Cluster Generator CluStream ClusTree ESCALIER

Window 1 0.455 0.881 0.923 0.797
Window 25 0.441 0.879 0.857 0.734
Window 50 0.408 0.768 0.772 0.678
Window 75 0.432 0.621 0.813 0.756
Window 100 0.423 0.729 0.762 0.737

Table 3.4. Purity - MOA Synthetical Dataset

Results show that the algorithms, with the exception of Cluster Generator, have a
similar behavior. However, the number of generated clusters in each window for all the
algorithms is 3, except ESCALIER that in its first window generated 4 clusters. The
average purity of the 5 reported windows for each algorithm is: Cluster Generator 0.43;
CluStream 0.77; ClusTree 0.82 and ESCALIER 0.74. Notice that ESCALIER does not
need prior knowledge about the dataset, such as the class to which each data belongs and
the total number of clusters.

2Available: http://www.cs.waikato.ac.nz/ abifet/MOA/Manual.pdf. Page 25. April 2013
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3.3 Experiments Using Real Data

ESCALIER has been tested using the Sensor Stream dataset3. This dataset contains
information (temperature, humidity, light, and sensor voltage) collected from 54 sensors
deployed in Intel Berkeley Research Lab. The stream contains consecutive information
recorded over a 2 months period (1 reading per 1− 3 minutes). The dataset is composed
by 5 attributes, 2.219.803 instances and 54 classes. The proportion of samples per class is
shown in table 3.5.

Class Samples % Class Samples % Class Samples %
1 43047 1.93 21 58521 2.63 41 40836 1.83
2 46915 2.11 22 60164 2.71 42 44860 2.02
3 46633 2.10 23 62409 2.81 43 38656 1.74
4 43793 1.97 24 57352 2.58 44 47681 2.14
6 35666 1.60 25 53162 2.39 45 53245 2.39
7 55354 2.49 26 61513 2.77 46 52988 2.38
8 15809 0.71 27 37627 1.69 47 56858 2.56
9 45204 2.03 29 64384 2.90 48 58215 2.62
10 47155 2.12 30 38343 1.72 49 34811 1.56
11 41833 1.88 31 65689 2.95 50 15737 0.70
12 19016 0.85 32 43092 1.94 51 42259 1.90
13 27013 1.21 33 35749 1.61 52 34067 1.53
14 26667 1.20 34 48764 2.19 53 25622 1.15
15 2038 0.09 35 51338 2.31 54 28718 1.29
16 32998 1.48 36 56357 2.53 55 2850 0.12
17 33779 1.52 37 47915 2.15 56 2372 0.10
18 33433 1.50 38 49155 2.21 58 4497 0.20
19 39455 1.77 39 32736 1.47
20 28832 1.29 40 46621 2.10

Table 3.5. Class Distribution for Sensor Stream Dataset

3.3.1 Experimental Setup

For this dataset, two experiments have been carried out: First, for a window size of 10000;
second, for a window size of 50000. Population size and number of generation were the
same for all the experiments. The dataset has been normalized maintaining its original
order, this is, as the data generated by the sensors. Parameters used in the experimentation
are shown in the table 3.6.

3.3.2 Results and Analysis

Every window in the experiments is composed of sample of all the classes. For the analysis
of the results two metrics have been taken into account: the amount of clusters recognized
in each window and the purity of those clusters. Since results obtained in both experiments

3http://www.cse.fau.edu/ xqzhu/stream.html
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Sensor Data Stream
Population Size 300

Number of Generations 30
Window Size Experiment 1 10000
Window Size Experiment 2 50000

Table 3.6. Parameters Setup for Real Dataset

are similar, reported results are from the second experiment, using a window size equal to
50000.

For this experiment, a total of 45 windows has been obtained. Figure 3.16 shows the
amount of clusters recognized in each window. The amount of clusters in each window are
between 17 and 29, except the last window in which clusters are 10. It is important to
notice that the last window has only 19803 data.

Figure 3.16. Real Dataset - Generated Clusters per Window

In more detail, figure 3.17 shows the clusters distribution for each window. In the figure
is clear that some classes are never detected as clusters, such as class numbers 12, 13, 14,
15, 50, 52 and 53. Other classes have been detected only in few windows, such as class
numbers 6, 8, 33, 39, 54, 55 and 56. As we can see in the table 3.6, those classes have
a low percentage of presence in the whole dataset. This could be an explanation of why
those classes are not totally recognized.
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Figure 3.17. Real Dataset - Distribution of Detected Clusters per Window

In each window, clusters quality has been evaluated as the average purity of each
cluster using the equation 3.8. In figure 3.18, graphics a) and b), show the purity of the
recognized clusters for the windows 1 and 21. Graphic c), shows the clusters purity of
whole 45 windows. In average, clusters purity reach values into the range 0.25 and 0.57.

a) Window 1 b) Window 21 c) All Windows
Figure 3.18. Real Dataset - Clusters Purity

3.3.3 Comparison with other Streaming Algorithms

The real dataset was tested using other algorithms from MOA (Massive Online Analy-
sis)4. MOA is a real time analytics tool for data streams. Algorithms included in MOA
are: CluStream, DenStream, ClusterGenerator, CobWeb, WekaClustering, ClusTree and
StreamKM.

All algorithms in MOA were tested with the real dataset, but only three of them
reported results. Additionally, processing all the data was not possible. At the moment to
extract the results, the tool reported a memory issue. For this reason, only 150000 data
were processed. Windows size in MOA are adapted automatically. For Sensor dataset,
the size of the window was adapted to 1000. In the experiments, default parameters were
used.

4http://moa.cms.waikato.ac.nz/
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Tables 3.7 and 3.8 show the purity and number of clusters recognized using CluStream,
DenStream, ClusterGenerator and ESCALIER. Results correspond to windows 1 and 3
from ESCALIER, and windows 1 and 150 for the other algorithms (size of the windows in
MOA is equal to 1000).

Algorithm
CluStream DenStream ClusterGenerator ESCALIER

Purity 0.82 0.44 0.64 0.41
Number of Clusters 43 42 52 23

Table 3.7. Algorithms Comparison - Window 1

Algorithm
CluStream DenStream ClusterGenerator ESCALIER

Purity 0.63 0.28 0.38 0.39
Number of Clusters 42 47 52 23

Table 3.8. Algorithms Comparison - Window 3

We can see that despite that purity in clusters recognized by ESCALIER is relative
low, the algorithm maintains a constant behavior throughout the whole dataset. Algo-
rithms from MOA, suffer sharp falls in their purity. Although CluStream has better values
for purity, the tool does not provided a way to check how the clusters are formed. Algo-
rithms mentioned above presented good performance with other datasets, but with this in
particular, results have not presented good quality because this is a complex dataset.

3.4 Summary

A new model and algorithm for clustering data streams called ESCALIER - Evolutionary
Stream Clustering Algorithm with seLf adaptive genetic operators and Immune mEmoRy
are proposed. This model is an extension of ECSAGO algorithm. ESCALIER adopts
the two first stages proposed by ECSAGO : evolutionary process and extraction of the
prototypes. These stages have been modified to adjust the model to deal with data streams.
Additionally, ESCALIER uses the sliding window technique and introduces a memory
mechanism based on the artificial immune network theory.

ESCALIER algorithm has been tested by simulating a data stream environment using
three synthetical datasets. Also, a real dataset that contains data taken by a group of
sensors has been used for testing. Experiments have been carried out with different size
of windows. Results show that ESCALIER is able to recognized and maintained clusters
through time and forgetting those clusters that have not been activated for a while. The
behavior of ESCALIER is similar to the other tested algorithms, with the advantage that
not need previous knowledge of the dataset.
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Conclusions and Future Work

In this work, a new evolutionary stream clustering algorithm with self adaptive genetic
operators and immune memory called ESCALIER was presented. This algorithm is an
extension of the ECSAGO algorithm from which two of its three stages are taking as
basis: evolutionary process and extraction of the prototypes. ESCALIER modifies the
first stage, incorporating new processes for the population generation and the population
summarization, taking as a frame the general process proposed by the artificial immune
network theory, in order to simulate a memory mechanism. Additionally, sliding window
technique is used to handle the data streams.

We highlight the fact that populations size and number of generations needed to evolve
each window is low. Additionally, ESCALIER does not need a memorization factor to
remember recognized clusters, as some other algorithms. Memory is given as a result of
the process of the Artificial Immune Network. Also, ESCALIER does not need to make
off-line phase to performed any process, such as summarization process.

Synthetical and real datasets were used to evaluate the performance of ESCALIER
algorithm. In the first case, 2-dimensional datasets were used and performance was mea-
sured by the amount of recognized clusters. Results suggest that the algorithm is able to
detect clusters through time and cover the dense areas. In the second case, a real dataset
was used and the amount of clusters per window, and its purity were measured. Results
suggest that the algorithm presents a constant behavior through windows, this means, that
the algorithm maintained its rate of detecting clusters. Although clusters purity are not
high, comparisons made with another algorithms supported by MOA tool, confirmed that
the dataset is complex, and that ESCALIER recognizes classes with low density as noise.

Obtained results suggest that the algorithm is able to maintain a representation of the
past data. This representation is defined as memory of the summarized data, through
each window. Data need to be presented only once to the process. We also notice that
clusters that are not stimulated with new data are forgotten. They can disappear if arriving
windows do not have data of the corresponding class.

The use of the Artificial Immune Network makes that clusters recognized can main-
taining their knowledge of the past data. And one of the major issues, the population
explosion in the network, it is totally controlled by the phase of extraction, which makes
that the network has good performance. The cost of the whole process of recognize and

46
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evolve clusters is low, which makes possible to have good representations of data regard-
less the size and dimensionality of them. Taking into account the above, together with
use of the sliding window technique, makes ESCALIER scalable. Since arriving data are
processed and discarded, keeping their knowledge through time, and maintaining time and
space complexity linear.

As a summary, the contributions of this work are:

• a state of the art on clustering data stream mining techniques which include a struc-
ture of some works developed, organized by technique and presented as a tree dia-
gram. A journal with the state of the art will be presented in IJIPM: International
Journal of Information Processing and Management.

• a new algorithm for the problem of clustering data streams with linear complexity.
This algorithm uses ideas from artificial immune network to handle memory issues
and extends the ECSAGO approach. The algorithm was presented in CEC - IEEE
Congress on Evolutionary Computation 2013.

• elimination of the memory factor used by Scalable ECSAGO.

• the incorporation of the sliding window technique as a mechanism to deal with data
streams.

As a future work we propose:

• testing ESCALIER with some other real datasets, modifying population size and
generation number parameters.

• incorporating a mechanism to merge and divide clusters. This could make that classes
with low presence be recognized and maintained through time.

• incorporating a new mechanism to performed summarization, in which fitness is not
based on the intersection of the individuals.

• incorporating a mechanism to adapt automatically the size of the windows instead
of using a fixed one.



Bibliography

[1] Charu Aggarwal. A framework for clustering massive-domain data streams. In IEEE
International Conference on Data Engineering, 2009.

[2] Charu C. Aggarwal. An intuitive framework for understanding changes in evolving
data streams. In 18th International Conference on Data Engineering, 2002.

[3] Charu C. Aggarwal. Data Streams: Models and Algorithms. Springer, 2007.

[4] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for
clustering evolving data streams. In 29th International Conference on Very Large
Data Bases, 2003.

[5] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework
for projected clustering of high dimensional data streams. In Thirtieth International
Conference on Very Large Data Bases, 2004.

[6] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. On high dimen-
sional projected clustering of data streams. Data Mining and Knowledge Discovery,
10:251 – 273, 2005.

[7] Charu C Aggarwal and Philip S Yu. A framework for clustering massive text and
categorical data streams. In Sixth SIAM International Conference on Data Mining,
2006.

[8] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan.
Automatic subspace clustering of high dimensional data for data mining applications.
In ACM SIGMOD International Conference on Management of Data, 1998.

[9] Amineh Amini and Teh Ying Wah. Density micro-clustering algorithms on data
streams: A review. In International Conference on Data Mining and Applications
(ICDMA), 2011.

[10] Amineh Amini and Teh Ying Wah. A comparative study of density-based clustering
algorithms on data streams: Micro-clustering approaches. Intelligent Control and
Innovative Computing, 110:275 – 287, 2012.

[11] Amineh Amini, Teh Ying Wah, Mahmoud Reza Saybani, and Saeed Reza Aghabo-
zorgi Sahaf Yazdi. A study of density-grid based clustering algorithms on data
streams. In Eighth International Conference on Fuzzy Systems and Knowledge Dis-
covery (FSKD), 2011.

48



BIBLIOGRAPHY 49

[12] Giulio Antoniol, Massimiliano Di Penta, and Markus Neteler. Moving to smaller
libraries via clustering and genetic algorithms. In Proceedings of the Seventh European
Conference on Software Maintenance and Reengineering, 2003.

[13] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith
Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. Stream: The stanford
data stream management system. Technical report, Stanford InfoLab, 2004.

[14] Mohsen Jafari Asbagh and Hassan Abolhassani. Feature-based data stream cluster-
ing. In International Conference on Computer and Information Science, 2009.

[15] Brain Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Main-
taining variance and k-medians over data stream windows. In Twenty-second ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2003.

[16] Sanghamitra Bandyopadhyay, Chris Giannella, Ujjwal Maulik, Hillol Kargupta, Kun
Liu, and Souptik Datta. Clustering distributed data streams in peer-to-peer envi-
ronments. Information Sciences, 176:1952 – 1985, 2006.

[17] Daniel Barbara. Requirements for clustering data streams. ACM SIGKDD Explo-
rations Newsletter, 3:23 – 27, 2002.

[18] Daniel Barbara and Ping Chen. Using the fractal dimension to cluster datasets. In
Proceedings of the ACM-SIGKDD International Conference on Knowledge and Data
Mining, 2000.

[19] JÃ1
4rgen Beringer and Eyke HÃ1

4 llermeier. Online clustering of parallel data streams.
Data & Knowledge Engineering archive, 58:180 – 204, 2006.

[20] Christian Bohm, Karin Kailing, Hans-Peter Kriegel, and Peer Kroger. Density con-
nected clustering with local subspace preferences. In Fourth IEEE International
Conference on Data Mining, 2004.

[21] Barbara Borowik, Bohdan Borowik, Jan Kucwaj, and Sophie Laird. Associative
memory in artificial immune systems. Annales UMCS Informatica, 10:111 – 122,
2010.

[22] Zhu Can-Shi, Dun Xiao, and Zhu Lin. A study on the application of data stream
clustering mining through a sliding and damped window to intrusion detection. In
Fourth International Conference on Information and Computing (ICIC), 2011.

[23] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. Density-based clustering
over an evolving data stream with noise. In SIAM Conference on Data Mining, 2006.

[24] Ching-Ming Chao and Guan-Lin Chao. Resource-aware high quality clustering in
ubiquitous data streams. In ICEIS, 2011.

[25] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming al-
gorithms for clustering problems. In Proceedings of the Thirty-fifth Annual ACM
Symposium on Theory of Computing, 2003.

[26] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang
ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous comput-
ing. In IEEE International Symposium on Workload Characterization, 2009.



BIBLIOGRAPHY 50

[27] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor, and Don
Freeman. Autoclass: A bayesian classification system. Fifth International Conference
on Machine Learning, 27:54 – 64, 1988.

[28] Sheng Chen and Haibo He. Towards incremental learning of nonstationary imbal-
anced data stream: A multiple selectively recursive approach. Evolving Systems, 2:35
– 50, 2011.

[29] Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In 13th
International Conference on Knowledge Discovery and Data Mining, 2007.

[30] Ling Chena, Ling-Jun Zoua, and Li Tuc. A clustering algorithm for multiple data
streams based on spectral component similarity. Information Sciences, 183:35 – 47,
2012.

[31] Zhihong Chong, Weiwei Ni, Lizhen Xu, Zhuoming Xu, Hu Shu, and Jinwang Zheng.
Approximate k-median of location streams with redundancy and inconsistency. In
Int. J. Software and Informatics, 2010.

[32] Seokkyung Chung and Dennis Mcleod. Dynamic pattern mining: An incremental
data clustering approach. Journal on Data Semantics, 2:85 – 112, 2005.

[33] Fernando Crespo and Richard Weber. A methodology for dynamic data mining based
on fuzzy clusterings. Fuzzy Sets and Systems, 150:267 – 284, 2005.

[34] Baptiste Csernel, Fabrice Clerot, and Georges Hebrail. Streamsamp datastream
clustering over tilted windows through sampling. In Fourth International Workshop
on Knowlegde Discovery from Data Streams, volume 11, pages 251 – 252, 2007.

[35] Bi-Ru Dai, Jen-Wei Huang, Mi-Yen Yeh, and Ming-Syan Chen. Clustering on demand
for multiple data streams. In Fourth IEEE International Conference on Data Mining,
2004.

[36] Bi-Ru Dai, Jen-Wei Huang, Mi-Yen Yeh, and Ming-Syan Chen. Adaptive clustering
for multiple evolving streams. IEEE Transactions on Knowledge and Data Engineer-
ing, 18:1166 – 1180, 2006.

[37] Leandro Nunes de Castro and Jonathan Timmis. Artificial Immune Systems: A New
Computational Intelligence Approach. Springer-Verlag, 2002.

[38] Leandro Nunes de Castro and Fernando Jose Von Zuben. Artificial immune systems:
Part i-basic theory and applications. Technical report, TR - DCA, 1999.

[39] Leandro Nunes de Castro and Fernando Jose Von Zuben. In Data Mining: A Heuris-
tic Approach, chapter aiNet: An Artificial Immune Network for Data Analysis, pages
231 – 259. Idea Group Publishing, 2002.

[40] Inderjit Dhillon, Jacob Kogan, and Charles Nicholas. A Comprehensive Survey of
Text Mining, chapter Feature Selection and Document Clustering, pages 73 – 100.
Springer-Verlag, 2003.

[41] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings
of the sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2000.



BIBLIOGRAPHY 51

[42] Pedro Domingos and Geoff Hulten. Catching up with the data: Research issues in
mining data streams. InWorkshop on Research Issues in Data Mining and Knowledge
Discovery DMKD, 2001.

[43] Pedro Domingos and Geoff Hulten. A general method for scaling up machine learning
algorithms and its application to clustering. In Eighteenth International Conference
on Machine Learning, 2001.

[44] Margaret H. Dunham. Data Mining Introductory and Advanced Topics. Prentice
Hall, 2003.

[45] Manzoor Elahi, Kun Li, Wasif Nisar, Xinjie Lv, and Hongan Wang. Efficient
clustering-based outlier detection algorithm for dynamic data stream. Fifth Interna-
tional Conference on Fuzzy Systems and Knowledge Discovery, 5:298 – 304, 2008.

[46] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Michael Wimmer, and Xiaowei Xu.
Incremental clustering for mining in a data warehousing environment. In Proceedings
of 24rd International Conference on very large Data Bases, 1998.

[47] Martin Ester, Hans peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In 2nd In-
ternational Conference on Knowledge Discovery, 1996.

[48] Jianbin Fang, A. L. Varbanescu, and H. Sips. An auto-tuning solution to data streams
clustering in opencl. In IEEE 14th International Conference on Computational Sci-
ence and Engineering (CSE), 2011.

[49] Fredrik Farnstrom, James Lewis, and Charles Elkan. Scalability for clustering algo-
rithms revisited. In The Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2000.

[50] Jose R. Fernandez and Eman M. El-Sheikh. Clusandra: A framework and algorithm
for data stream cluster analysis. International Journal of Advanced Computer Science
and Applications ( IJACSA ), 2:87 – 99, 2011.

[51] Dimitar Filev and Olga Georgieva. Evolving Intelligent Systems: Methodology and
Applications, chapter An Extended Version of the Gustafson-Kessel Algorithm for
Evolving Data Stream Clusterings, pages 273 – 299. Institute of Electrical and
Electronics Engineers, 2010.

[52] Douglas H. Fisher. Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2:139 – 172, 1987.

[53] Dimitris Fotakis. Incremental algorithms for facility location and k-median. Theo-
retical Computer Science, 361:275 – 313, 2005.

[54] Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady Zaslavsky. Adaptive
mining techniques for data streams using algorithm output granularity. In Congress
on Evolutionary Computation, 2003.

[55] Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady Zaslavsky. Cost-
efficient mining techniques for data streams. In Second Workshop on Australasian
Information Security, Data Mining and Web Intelligence, and Software Internation-
alisation, volume 32, pages 109 – 114, 2004.



BIBLIOGRAPHY 52

[56] Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady Zaslavsky. Ubiquitous
data stream mining. In 8th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, 2004.

[57] Mohamed Medhat Gaber, Shonali Krishnaswamy, and Arkady Zaslavsky. Advanced
Methods for Knowledge Discovery form Complex Data, chapter On-board Mining of
Data Streams in Sensor Networks, pages 307 – 335. Springer, 2005.

[58] Mohamed Medhat Gaber and Philip S. Yu. A holistic approach for resource-aware
adaptive data stream mining. New Generation Computing, 25:95 – 115, 2006.

[59] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Resource-
aware knowledge discovery in data streams. In First International Workshop on
Knowledge Discovery in Data Streams, 2004.

[60] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Towards
an adaptive approach for mining data streams in resource constrained environments.
Lecture Notes in Computer Science, 3181:189 – 198, 2004.

[61] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining
data streams: a review. ACM SIGMOD Record, 34:18 – 26, 2005.

[62] Juan Carlos Galeano, Angelica Veloza-Suan, and Fabio A. Gonzalez. A compara-
tive analysis of artificial immune network models. In Conference on Genetic and
Evolutionary Computation, 2005.

[63] Guojun Gan, Chaoqun Ma, and jianhong Wu. Data Clustering. Theory, Algorithms,
and Applications. ASA-SIAM, 2007.

[64] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Demon: Mining and
monitoring evolving data. In IEEE Transactions on Knowledge and Data Engineer-
ing, 2001.

[65] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Mining data streams
under block evolution. ACM SIGKDD Explorations Newsletter, 3:1 – 10, 2002.

[66] Jing Gao, Jianzhong Li, Zhaogong Zhang, and Pang-Ning Tan. An incremental
data stream clustering algorithm based on dense units detection. Lecture Notes in
Computer Science. Advances in Knowledge Discovery and Data Mining, 3518:420 –
425, 2005.

[67] Lukasz Golab and M. Tamer Ozsu. Issues in data stream management. ACM SIG-
MOD Record, 32:5 – 14, 2003.

[68] Jonatan Gomez. Self adaptation of operator rates for multimodal optimization.
Congress on Evolutionary Computation, 2:1720 – 1726, 2004.

[69] Jonatan Gomez. Self adaptation of operator rates in evolutionary algorithms. In
Proceedings of the Genetic and Evolutionary Computation Conference, 2004.

[70] Jonatan Gomez, Dipankar Dasguptaw, and Olfa Nasraoui. A new gravitational clus-
tering algorithm. In In Proceedings of the Third SIAM International Conference on
Data Mining, 2003.



BIBLIOGRAPHY 53

[71] Jonatan Gomez, Elizabeth Leon, and Olfa Nasraoui. Rain: Data clustering using
randomized interactions of data points. In In Proceedings of the Third International
Conference on Machine Learning and Applications, 2004.

[72] Jonatan Gomez, Juan Pena-Kaltekis, Nestor Romero-Leon, and Elizabeth Leon. In-
crain: An incremental approach for the gravitational clustering. In 6th Mexican
International Conference on Advances in Artificial Intelligence, 2007.

[73] Linghui Gong, Jianping Zeng, and Shiyong Zhang. Text stream clustering algorithm
based on adaptive feature selection. Expert Systems with Applications, 38:1393 –
1399, 2011.

[74] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Transactions
on Knowledge and Data Engineering, 15:515 – 528, 2003.

[75] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams. In IEEE Annual Symposium on Foundations of Computer Science,
2000.

[76] Michael Hahsler and Margaret Dunham. Temporal structure learning for cluster-
ing massive data streams in real-time. In SIAM International Conference on Data
Mining, 2011.

[77] Maria Halkidi and Iordanis Koutsopoulos. Online clustering of distributed streaming
data using belief propagation techniques. In 12th IEEE International Conference on
Mobile Data Management (MDM), 2011.

[78] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2006.

[79] David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining. The
MIT Press, 2001.

[80] Marwan Hassani, Philipp Kranen, and Thomas Seidl. Precise anytime clustering of
noisy sensor data with logarithmic complexity. In Proceedings of the Fifth Interna-
tional Workshop on Knowledge Discovery from Sensor Data, 2011.

[81] Haibo He and Yuan Cao. Kernel density estimation with stream data based on self-
organizing map. In IEEE Workshop on Evolving and Adaptive Intelligent Systems
(EAIS), 2011.

[82] Zengyou He, Xiaofei Xu, Shengchun Deng, and Joshua Zhexue Huang. Clustering
categorical data streams. Journal of Computational Methods in Science and Engi-
neering, 11:185 – 192, 2011.

[83] Alexander Hinneburg and Daniel A. Keim. An eficient approach to clustering in large
multimedia databases with noise. In Fourth International Conference on Knowledge
Discovery and Data Mining, 1998.

[84] Alexander Hinneburg and Daniel A. Keim. Optimal grid-clustering: Towards break-
ing the curse of dimensionality in high-dimensional clusterings. In 25th International
Conference on Very Large Data Bases, 1999.



BIBLIOGRAPHY 54

[85] Ma Hong, Kang Jing, and Liu Li-xiong. Research on clustering algorithms of data
streams. In The 2nd IEEE International Conference on Information Management
and Engineering (ICIME), 2010.

[86] Guo-Yan Huang, Da-Peng Liang, Chang-Zhen Hu, and Jia-Dong Ren. An algorithm
for clustering heterogeneous data streams with uncertainty. International Conference
on Machine Learning and Cybernetics, 4:2059 – 2064, 2010.

[87] Geoff Hulten and Pedro Domingos. Vfml – a toolkit for mining high-speed time-
changing data streams, 2003.

[88] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Seventh ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 2001.

[89] Elena Ikonomovska, Suzana Loskovska, and Dejan Gjorgjevik. A survey of stream
data mining. Technical report, University Ss. Cyril & Methodius, Faculty of Electrical
Engineering and Information Technologies, 2007.

[90] NVIDIA Inc., 2011.

[91] Anil K. Jain, M.Narasimha Murty, and Patrick J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31:264 – 323, 1999.

[92] Ankur Jain, Zhihua Zhang, and Edward Y. Chang. Adaptive non-linear clustering in
data streams. In 15th ACM International Conference on Information and Knowledge
Management, 2006.

[93] N. Jerne. Towards a network theory of the immune system. Ann. Immunology (Inst.
Pasteur), 125:373 – 389, 1974.

[94] Chen Jia, ChengYu Tan, and Ai Yong. A grid and density-based clustering algorithm
for processing data stream. In Second International Conference on Genetic and
Evolutionary Computing, 2008.

[95] Hong Jiang, Qingsong Yu, and Dongxiu Wang. A high-dimensional data stream
clustering algorithm based on damped window and pruning list tree. In Biomedical
Engineering and Informatics (BMEI), 2011.

[96] Madjid Khalilian and Norwati Mustapha. Data stream clustering: Challenges and
issues. In International Conference on Data Mining and Applications (IAENG ),
2010.

[97] Mahnoosh Kholghi, Hamed Hassanzadeh, and MohammadReza Keyvanpour. Classi-
fication and evaluation of data mining techniques for data stream requirements. In
International Symposium on Computer Communication Control and Automation,
2010.

[98] Philipp Kranen, Felix Reidl abnd Fernando Sanchez Villaamil, and Thomas Seidl. Hi-
erarchical clustering for real-time stream data with noise. Lecture Notes in Computer
Science, 6809:405 – 413, 2011.

[99] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. Self-adaptive any-
time stream clustering. In Ninth IEEE International Conference on Data Mining,
2009.



BIBLIOGRAPHY 55

[100] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The clustree:
Indexing micro-clusters for anytime stream mining. Knowledge and Information
Systems, 29:249 – 272, 2011.

[101] Hans-Peter Kriegel, Peer Kroger, Irene Ntoutsi, and Arthur Zimek. Towards subspace
clustering on dynamic data: An incremental version of predecon. In Proceedings of
the First International Workshop on Novel Data Stream Pattern Mining Techniques,
2010.

[102] Hans-Peter Kriegel, Peer Kroger, Irene Ntoutsi, and Arthur Zimek. Density based
subspace clustering over dynamic data. In 23rd International Conference on Scientific
and Statistical Database Management, 2011.

[103] Milos Krstajic, Enrico Bertini, Florian Mansmann, and Daniel A. Keim. Visual
analysis of news streams with article threads. In Proceedings of the First International
Workshop on Novel Data Stream Pattern Mining Techniques, 2010.

[104] Jae Woo Lee, Nam Hun Park, and Won Suk Lee. Efficiently tracing clusters over
high-dimensional on-line data streams. Data & Knowledge Engineering, 68:362 – 379,
2009.

[105] Nam Hun Parkand Won Suk Lee. Statistical grid-based clustering over data streams.
ACM SIGMOD Record, 33:32 – 37, 2004.

[106] Elizabeth Leon. Scalable and Adaptive Evolutionary Clustering for Noisy and Dy-
namic Data. PhD thesis, Universiy of Louisville, 2005.

[107] Elizabeth Leon, Jonatan Gomez, and Olfa Nasraoui. A genetic niching algorithm
with self-adaptating operator rates for document clustering. In LA-WEB, 2012.

[108] Elizabeth Leon, Olfa Nasraoui, and Jonatan Gomez. Anomaly detection based on
unsupervised niche clustering with application to network intrusion detection. In
Congress on Evolutionary Computation, 2004.

[109] Elizabeth Leon, Olfa Nasraoui, and Jonatan Gomez. Ecsago: Evolutionary clustering
with self adaptive genetic operators. In IEEE Congress on Evolutionary Computa-
tion, 2006.

[110] Elizabeth Leon, Olfa Nasraoui, and Jonatan Gomez. Scalable evolutionary clus-
tering algorithm with self adaptive genetic operators. In Congress on Evolutionary
Computation, 2010.

[111] Yanrong Li and Raj P. Gopalan. Clustering transactional data streams. In 19th Aus-
tralian joint conference on Artificial Intelligence: advances in Artificial Intelligence,
2006.

[112] Liu Li-xiong, Huang Hai, Guo Yun-fei, and Chen Fu-cai. rdenstream, a clustering
algorithm over an evolving data stream. In International Conference on Information
Engineering and Computer Science, 2009.

[113] Liu Li-xiong, Kang Jing, Guo Yun-fei, and Huang Hai. A three-step clustering
algorithm over an evolving data streams. In Intelligent Computing and Intelligent
Systems, 2009. ICIS 2009. IEEE International Conference on, volume 1, pages 160
– 164, 2009.



BIBLIOGRAPHY 56

[114] Guopin Lin and Leisong Chen. A grid and fractal dimension-based data stream clus-
tering algorithm. International Symposium on Information Science and Engineering,
1:66 – 70, 2008.

[115] Weiguo Liu and Jia OuYang. Clustering algorithm for high dimensional data stream
over sliding windows. In IEEE 10th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011.

[116] Edwin Lughofer. Extensions of vector quantization for incremental clustering. Pat-
tern Recognition, 41:995 – 1011, 2008.

[117] Guan-Chun Luh and Chun-Yi Lin. Pca based immune networks for human face
recognition. Applied Soft Computing, 11:1743 – 1752, 2011.

[118] Sebastian Luhr and Mihai Lazarescu. Incremental clustering of dynamic data streams
using connectivity based representative points. Data & Knowledge Engineering, 68:1
– 27, 2009.

[119] Gurmeet Singh Manku, Sridhar Rajagopalan, , and Bruce G. Lindsay. Random
sampling techniques for space efficient online computation of order statistics of large
datasets. In ACM SIGMOD International Conference on Management of Data, 1999.

[120] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate
medians and other quantiles in one pass and with limited memory. In ACM SIGMOD
International Conference on Management of Data, 1998.

[121] Wicha Meesuksabai, Thanapat Kangkachit, and Kitsana Waiyamai. Hue-stream:
Evolution-based clustering technique for heterogeneous data streams with uncer-
tainty. In Advance Data Mining and Applications. Lecture Notes in Computer Sci-
ence, 2011.

[122] Ming ming Gao and Chang Tai hua Xiang-xiang Gao. Research in data stream
clustering based on gaussian mixture model genetic algorithm. In 2nd International
Conference on Information Science and Engineering (ICISE), 2010.

[123] Ming ming Gao, Ji zhen Liu, and Xiang xiang Gao. Application of compound gaus-
sian mixture model clustering in the data stream. International Conference on Com-
puter Application and System Modeling (ICCASM), 7:172 – 177, 2010.

[124] Nina Mishra, Dan Oblinger, and Leonard Pitt. Sublinear time approximate cluster-
ings. In Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

[125] Masahiro Motoyoshi, Takao Miura, and Isamu Shioya. Clustering stream data by
regression analysis. In Second Workshop on Australasian Information Security, Data
Mining and Web Intelligence, and Software Internationalisation, 2004.

[126] S. Muthu Muthukrishnan. Data streams: Algorithms and applications. In Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[127] Olfa Nasraoui, Cesar Cardona, Carlos Rojas, , and Fabio Gonzalez. Tecnostreams:
Tracking evolving clusters in noisy data streams with a scalable immune system
learning model. In Third IEEE International Conference on Data Mining (ICDM),
2003.



BIBLIOGRAPHY 57

[128] Olfa Nasraoui and Raghu Krishnapuram. A novel approach to unsupervised robust
clustering using genetic niching. Proceedings of the Ninth IEEE International Con-
ference on Fuzzy Systems, 1:170 – 175, 2000.

[129] Olfa Nasraoui and Carlos Rojas. Robust clustering for tracking noisy evolving data
streams. In Computer Engineering, 2006.

[130] Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for spatial
data mining. IEEE Transactions on Knowledge and Data Engineering,, 14:1003 –
1016, 2002.

[131] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data
algorithms for high-quality clusterings. In 18th IEEE International Conference on
Data Engineering, 2002.

[132] Sang-Hyun Oh, Jin-Suk Kang, Yung-Cheol Byun, Gyung-Leen Park, and Sang-Yong
Byun. Intrusion detection based on clustering a data stream. In Third ACIS Interna-
tional Conference on Software Engineering Research, Management and Applications,
2005.

[133] Kok-Leong Ong, Wenyuan Li, Wee-Keong Ng, and Ee-Peng Lim. Sclope: An algo-
rithm for clustering data streams of categorical attributes. Lecture Notes in Computer
Science, 3181:209 – 218, 2004.

[134] Carlos Ordonez. Clustering binary data streams with k-means. In 8th ACM SIGMOD
Workshop on Research issues in Data Mining and Knowledge Discovery, 2003.

[135] Nam Hun Park and Won Suk Lee. Cell trees: An adaptive synopsis structure for
clustering multi-dimensional on-line data streams. Data & Knowledge Engineering,
63:528 – 549, 2007.

[136] Nam Hun Park, Sang Hyun Oh, and Won Suk Lee. Anomaly intrusion detection
by clustering transactional audit streams in a host computer. Information Sciences,
180:2375 – 2389, 2010.

[137] Thanawin Rakthanmanon, Eamonn J. Keogh, Stefano Lonardi, and Scott Evans.
Time series epenthesis: Clustering time series streams requires ignoring some data.
In IEEE 11th International Conference on Data Mining (ICDM), 2011.

[138] Jiadong Ren, Binlei Cai, and Changzhen Hu. Clustering over data streams based on
grid density and index tree. Journal of Convergence Information Technology, 6:83 –
93, 2011.

[139] Jiadong Ren, Changzhen Hu, and Ruiqing Ma. Hcluwin: An algorithm for clustering
heterogeneous data streams over sliding windows. International Journal of Innovative
Computing, Information and Control, 6:2171 – 2179, 2010.

[140] Jiadong Ren and Ruiqing Ma. Density-based data streams clustering over sliding
windows. In Sixth International Conference on Fuzzy Systems and Knowledge Dis-
covery, 2009.

[141] Pedro Pereira Rodrigues and JoÃ£o Gama. Online prediction of clustered streams.
In Fourth International Workshop on Knowlegde Discovery from Data Streams, vol-
ume 11, pages 251 – 252, 2007.



BIBLIOGRAPHY 58

[142] Pedro Pereira Rodrigues, JoÃ£o Gama, and Joao Pedroso. Hierarchical clustering of
time-series data streams. IEEE Transactions on Knowledge and Data Engineering,
20:615 – 627, 2008.

[143] Josep Roure and Luis Talavera. Robust incremental clustering with bad instance
orderings: A new strategy. In Proceedings of the 6th Ibero-American Conference on
AI: Progress in Artificial Intelligence, 1998.

[144] Carlos Ruiz, Ernestina Menasalvas, and Myra Spiliopoulou. C-denstream: Using
domain knowledge on a data stream. In 12th International Conference on Discovery
Science, 2009.

[145] Rahul Shah, Shonali Krishnaswamy, and Mohamed Medhat Gaber. Resource-aware
very fast k-means for ubiquitous data stream mining. In 2nd International Workshop
on Knowledge Discovery in Data Streams, 2005.

[146] Ravi Shankar, Kiran G. V. R., and Vikram Pudi. Evolutionary clustering using
frequent itemsets. In Proceedings of the First International Workshop on Novel Data
Stream Pattern Mining Techniques, 2010.

[147] Xian Shen, X. Z. Gao, Rongfang Bie, and Xin Jin. Artificial immune networks:
Models and applications. International Conference on Computational Intelligence
and Security, 1:394 – 397, 2006.

[148] Zaigham Faraz Siddiqui and Myra Spiliopoulou. Combining multiple interrelated
streams for incremental clustering. In 21st International Conference on Scientific
and Statistical Database Management, 2009.

[149] Zaigham Faraz Siddiqui and Myra Spiliopoulou. Stream clustering of growing objects.
Lecture Notes in Computer Science, 5808:433 – 440, 2009.

[150] Mingzhou Song and Hongbin Wang. Highly efficient incremental estimation of gaus-
sian mixture models for online data stream clustering. Intelligent Computing: Theory
and Applications III, 5803:174 – 183, 2005.

[151] Ashok N. Srivastava and Julienne Stroeve. Onboard detection of snow, ice, clouds
and other geophysical processes using kernel methods. In Workshop on Machine
Learning Technologies for Autonomous Space Applications, 2003.

[152] Bernhard Stegmaier, Richard Kuntschke, and Alfons Kemper. Streamglobe: Adap-
tive query processing and optimization in streaming p2p environments. In Proceeed-
ings of the 1st International Workshop on Data Management for Sensor Networks,
2004.

[153] Michael Stonebraker, Ugur Cetintemel, and Stan Zdonik. The 8 requirements of
real-time stream processing. ACM SIGMOD Record, 34:42 – 47, 2005.

[154] Jiaowei Tang. An algorithm for streaming clustering. Master’s thesis, Uppsala Uni-
versity, 2011.

[155] Dimitris K. Tasoulis, Niall M. Adams, and David J. Hand. Unsupervised clustering in
streaming data. In Sixth IEEE International Conference on Data Mining Workshops,
2006.



BIBLIOGRAPHY 59

[156] Li Tu and Yixin Chen. Stream data clustering based on grid density and attraction.
ACM Transactions on Knowledge Discovery from Data (TKDD), 3:1 – 27, 2009.

[157] Q. Tu, J.F. Lu, B. Yuan, J.B. Tang, and J.Y. Yang. Density-based hierarchical
clustering for streaming data. Pattern Recognition Letters, 33:641 – 645, 2012.

[158] Komkrit Udommanetanakit, Thanawin Rakthanmanon, and Kitsana Waiyamai. E-
stream: Evolution-based technique for stream clustering. Lecture Notes in Computer
Science, 4632:605 – 615, 2007.

[159] Li Wan, Wee Keong, Xuan Hong Dang, Philip S. Yu, and Kuan Zhang. Density-
based clustering of data streams at multiple resolutions. In ACM Transactions on
Knowledge Discovery from Data, 2009.

[160] Renxia Wan and Lixin Wang. Clustering over evolving data stream with mixed
attributes. Journal of Computational Information Systems, 6:1555 – 1562, 2010.

[161] Renxia Wan, Xiaoya Yan, and Xiaoke Su. A weighted fuzzy clustering algorithm
for data stream. International Colloquium on Computing, Communication, Control,
and Management, 1:360 – 364, 2008.

[162] C. Wang, J. Lai, D. Huang, and W. Zheng. Svstream: A support vector based
algorithm for clustering data streams. In IEEE Transactions on Knowledge and
Data Engineering, 2011.

[163] Shuyun Wang, Yingjie Fan, Chenghong Zhang, HeXiang Xu, Xiulan Hao, and Yunfa
Hu. Entropy based clustering of data streams with mixed numeric and categorical
values. In Seventh IEEE/ACIS International Conference on Computer and Informa-
tion Science, 2008.

[164] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical information grid
approach to spatial data mining. In Proceedings of the 23rd International Conference
on Very Large Data Bases, 1997.

[165] Niwan Wattanakitrungroj and Chidchanok Lursinsap. Memory-less unsupervised
clustering for data streaming by versatile ellipsoidal function. In 20th ACM Interna-
tional Conference on Information and Knowledge Management, 2011.

[166] Dwi H. Widyantoro, Thomas R. Ioerger, and John Yen. An incremental approach
to building a cluster hierarchy. In Proceedings of the 2002 IEEE International Con-
ference on Data Mining, 2002.

[167] Xueyan Wu and Daoping Huang. Data stream clustering for stock data analysis. In
2nd International Conference on Industrial and Information Systems (IIS), 2010.

[168] Chunyu Yang and Jie Zhou. Hclustream: A novel approach for clustering evolving
heterogeneous data stream. In Sixth IEEE International Conference on Data Mining
Workshops, 2006.

[169] Di Yang. Mining and Managing Neighbor-Based Patterns in Data Streams. PhD
thesis, Worcester Polytechnic Institute, 2012.

[170] Jing Yang, Wenxin Zhu, Jianpei Zhang, and Yue Yang. Data stream clustering
algorithm based on active grid density. In Fifth International Conference on Internet
Computing for Science and Engineering (ICICSE), 2010.



BIBLIOGRAPHY 60

[171] Jiong Yang. Dynamic clustering of evolving streams with a single pass. In 19th
International Conference on Data Engineering, 2003.

[172] Yiling Yang, Xudong Guan, and Jinyuan You. Clope: A fast and effective clustering
algorithm for transactional data. In Knowledge Discovery and Data Mining, 2002.

[173] Yun Yang and Ke Chen. Temporal data clustering via weighted clustering ensemble
with different representations. IEEE Transactions on Knowledge and Data Engineer-
ing, 23:307 – 320, 2011.

[174] Feng Yu, Damalie Oyana, Wen-Chi Hou, and Michael Wainer. Approximate clus-
tering on data streams using discrete cosine transform. Journal of Information Pro-
cessing Systems, 6:67 – 78, 2010.

[175] Chen Zhang, Ming Gao, and Aoying Zhou. Tracking high quality clusters over un-
certain data streams. In IEEE 25th International Conference on Data Engineering,
2009.

[176] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A efficient data cluster-
ing method for very large databases. In Proceedings of the ACM SIGMOD Conference
on Management of Data, 1996.

[177] Xiangliang Zhang, Cyril Furtlehner, and MichÃ¨le Sebag. Data streaming with
affinity propagation. In European Conference on Machine Learning and Knowledge
Discovery in Databases, 2008.

[178] Shi Zhong. Efficient online spherical k-means clustering. In IEEE International Joint
Conference on Neural Networks, 2005.

[179] Shi Zhong. Efficient streaming text clustering. Neural Networks, 18:790 – 798, 2005.

[180] Aoying Zhou, Feng Cao, Weining Qian, and Cheqing Jin. Tracking clusters in evolv-
ing data streams over sliding windows. Knowledge and Information Systems, 15:181
– 214, 2008.

[181] Aoying Zhou, Feng Cao, Ying Yan, Chaofeng Sha, and Xiaofeng He. Distributed
data stream clustering: A fast em-based approach. In 23rd International Conference
on Data Engineering, 2007.

[182] Haiyan Zhoua, Xiaolin Baib, and Jinsong Shana. A rough-set-basedclustering algo-
rithm for multi-stream. Procedia Engineering, 15:1854 – 1858, 2011.


	Contents
	List of Tables
	List of Figures
	Introduction
	Goal
	Main Contributions
	Thesis Outline

	Background
	Data Streams
	Mining Data Streams
	Clustering Algorithms Taxonomy
	Incremental Clustering Techniques for Data Streams

	Clustering Data Streams
	Online Preprocessing

	Evolutionary Clustering with Self Adaptive Genetic Operators Algorithm - ECSAGO
	Artificial Immune Theory
	Summary

	ESCALIER Algorithm
	Proposed ESCALIER Model and Algorithm
	Sliding Window
	Population Generation using Clonal Selection
	Population Summarization and Fitness Evaluation - Affinity
	Selection and Replacement Mechanism
	Prototypes Extraction - Suppression
	ESCALIER Algorithm

	Experiments Using Synthetic Data
	Experimental Setup
	Results and Analysis
	Stage 1: 2-Dimensional Gaussian Set (In Order)
	Stage 2: 2-Dimensional Gaussian Set (Disorganized)
	Stage 3: t7.10k (In Order)
	Stage 4: t7.10k (Disorganized)

	Synthetic MOA Dataset

	Experiments Using Real Data
	Experimental Setup
	Results and Analysis
	Comparison with other Streaming Algorithms

	Summary

	Conclusions and Future Work
	Bibliography

