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Abstract

Automatic approaches for categorization of software repositories are increasingly gaining ac-

ceptance because they reduce manual effort and can produce high quality results. Most of the

existing approaches have strongly relied on supervised machine learning –which requires a set

of predefined categories to be used as training data– and have used source code, comments,

API Calls and other sources to obtain information about the projects to be categorized. We

consider that existing approaches have weaknesses that can have major implications on the

categorization results and haven’t been solved at the same time, namely the assumption of

non-restricted access to source code and the use of predefined sets of categories. Therefore,

we present Sally : a novel, unsupervised and multi-label automatic categorization model that

is able to obtain meaningful categories without depending on access to source code nor the

existence of predefined categories by leveraging on information obtained from the projects

in the categorization corpus and the dependency relations between them. We performed two

experiments in which we compared Sally to the categorization strategies of two widely used

websites and to MUDABlue, a categorization model proposed by Kawaguchi et al. that we

consider to be a good baseline. Additionally, we assessed the proposed model by conducting

a survey with 14 developers with a wide range of programming experience and developed a

web application to make the proposed model available to potential users.

Keywords: closed-source, open-source, software categorization, machine learning.
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Resumen

La categorización automática de repositorios de software ha ido ganando aceptación debido a

que reduce el esfuerzo manual y puede generar resultados de alta calidad. La mayoŕıa de los

modelos existentes dependen fuertemente del aprendizaje de máquina supervisado – que nece-

sita de un conjunto predefinido de categoŕıas para ser usado como datos de entrenamiento–

y han usado código fuente, comentarios, llamadas de API y otras fuentes para obtener in-

formación sobre los proyectos a categorizar. Consideramos que los modelos existentes tienen

debilidades que pueden tener implicaciones importantes en el resultado de la categorización

y no han sido resueltas al mismo tiempo, espećıficamente la suposición de que el código

fuente de los proyectos se encuentra completamente disponible y la necesidad de conjuntos

predefinidos de categoŕıas. Por esto, presentamos el modelo Sally : Un enfoque de cate-

gorización automática de software novedoso, no supervisado y multi-etiqueta que es capaz

de generar categorás descriptivas sin depender del acceso al código fuente ni a categoŕıas

predefinidas usando información obtenida de los proyectos a categorizar y las relaciones

entre ellos. Realizamos dos experimentos en los que comparamos a Sally con las estrate-

gias de categorización automática de dos herramientas online ámpliamente utilizadas y con

MUDABlue, un modelo de categorización automática de software propuesto por Kawaguchi

et al. que consideramos una buena base de comparación. Adicionalmente, evaluamos el

modelo propuesto por medio de un caso de estudio llevado a cabo con la participación de

14 desarrolladores con un ámplio rango de experiencia en programación y desarrollamos una

aplicación web para poner el modelo propuesto a disposición de usuarios potenciales.

Palabras clave: código propietario, código abierto, categorización de software, apren-

dizaje de máquina



Contents

Abstract vii

Contents ix

1. Introduction 2

1.1. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I. Background 7

2. Maven and the POM 8

3. Related Work 11

3.1. Software Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. Maven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II. The Sally software categorization approach 15

4. Description of the proposed categorization approach 16

4.1. Identifier extraction and filtering . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2. Dependency resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3. Generation of Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1. Primary categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.2. Secondary categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4. Concept definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5. Tag Cloud Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6. Sally: The application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



x Contents

III. Experimentation and analysis of results 30

5. Experimentation 31

5.1. Experiment 1: Comparison With Online Tools . . . . . . . . . . . . . . . . . 31

5.1.1. Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2. Experiment 2: MUDABlue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1. Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2. User study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6. Conclusions 50

A. Appendix: Experiments corpus 52

References 57



List of Tables

4-1. Identifiers removed from project htmlunit-core-js-2.15 after filtering. . . . . . 19

4-2. Extracted categories for project batik-css-1.7.jar . . . . . . . . . . . . . . . . 23

5-1. Computed categories for project jTransforms-2.4 . . . . . . . . . . . . . . . . 35

5-2. Computed categories for project bcprov-jdk15 . . . . . . . . . . . . . . . . . 35

5-3. Computed categories for project stringtemplate-3.2 . . . . . . . . . . . . . . 36

5-4. Computed categories for project annotations-3.0.0 . . . . . . . . . . . . . . . 36

5-5. Computed categories for project semargl-sesame-0.6.1 . . . . . . . . . . . . . 37

5-6. Number of projects without categories per approach. . . . . . . . . . . . . . 39

5-7. Excerpt of titles obtained for categories by MUDABlue . . . . . . . . . . . . 43

5-8. Excerpt of libraries belonging to cluster 205 . . . . . . . . . . . . . . . . . . 43

A-1. Categorization corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



List of Figures

1-1. An example of category propagation. Boxes contain the categories for each

project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4-1. Components of the proposed categorization model . . . . . . . . . . . . . . . 17

4-2. A sample question on Stack Overflow . . . . . . . . . . . . . . . . . . . . . . 19

4-3. Dependency graph calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4-4. Output of Sally ’s definition module for category RGB . . . . . . . . . . . . . 25

4-5. Tag Cloud output for project StringTemplate-3.2 . . . . . . . . . . . . . . . 26

4-6. Home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4-7. Project browsing view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4-8. Tag cloud output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4-9. Definition for tag analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5-1. The project categorization page from SourceForge for a newly created project. 32

5-2. The first search result for query “JUnit” on MVNRepository . . . . . . . . . 33

5-3. Summary of the distribution of categories given by MUDABlue to the libraries

in the corpus. Figures 5-3a and 5-3b show how many libraries belong to each

cluster (are labeled with each category). Figures 5-3c and 5-3d show how

many categories were assigned to the libraries in the corpus. . . . . . . . . . 42

5-4. Sample question taken from the survey. . . . . . . . . . . . . . . . . . . . . 46

5-5. Summary of reponses to demographic questions. . . . . . . . . . . . . . . . . 47

5-6. Amount of evaluations per rating for both approaches . . . . . . . . . . . . . 48



1. Introduction

Software reuse is the process of using existing software components to build software systems

instead of creating them from scratch. Reuse has proven to be an important part of the

software development lifecycle because its application on the planning and development of

software projects can provide significant benefits to organizations on aspects such as cost,

time, reliability, time needed for testing, etc.[12]

Currently it would be virtually impossible to build large-scale systems without reusing soft-

ware to some extent; developers often use libraries such as JUnit or TestNG for testing, JDBC

drivers for database connectivity, Log4j or SLF4J for logging, etc. These become depen-

dencies for projects and given their importance for any software development process, tools

as Maven1 and Gradle2 for handling these dependencies (and in general all aspects of the

build process, even documentation) have been created.

Several open and closed-source software repositories are available for developers to take

advantage of software components, which address particular needs their projects may have.

However, in order to be able to take advantage of a repository, there should be ways for

efficiently locating assets in it[11]. If for example, a user knows it is possible that a software

repository contains useful assets but has no efficient way to access them, it may be preferable

to implement the necessary functionality to avoid manually searching through the repository

and the cost associated with this search.

Acknowledging this need for tools that help locating software projects in a repository, re-

search has been made on the topic of Software Categorization. Categorization is the process

of assigning one or more tags —which describe categories— to items in order to group them

by their common properties (for example, books in a library are usually categorized by sub-

ject). It is usual for the set of categories to be defined before having knowledge of the items

that are going to be categorized. However, research has been made in models that auto-

matically create categories by leveraging on the properties of the set of items that are to be

categorized.

1http://maven.apache.org/
2http://www.gradle.org/
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Software categorization is the process of assigning categories to software projects, libraries,

binary files or in general any software asset. These categories could denote the application

domain, programming language, hardware platform on which the software has to operate or

any other feature that may be shared by groups of assets. The main objective of software

categorization is to improve the browsing/searching process that a user of a repository has

to make in order to find relevant assets. An effective categorization that improves browsing

is particularly important since finding a software asset that perfectly matches a user’s query

is rare [21]. In [1], it is shown that developers often perceive awareness (the knowledge of

the existence of a reusable asset) and acceptability (the asset must be acceptable to the de-

veloper for use in a new project) as impediments for software reuse. A proper categorization

combined with search tools would address both aspects by allowing developers to determine

if a particular functionality is available on projects belonging to the repository.

The categorization process could be done manually, for example by asking developers to

categorize their projects upon uploading them to the repository. However, this could lead to

misclassification and aditionally one cannot assume that developers will always take the time

to do it. The task could be left for repository owners or administrators, however, software

repositories are enormous and keep growing at a very fast pace, which could make a manual

categorization approach unpractical.

Automatic software categorization has progressively gained importance because of the ben-

efits that derive from its use. Research has been made on various approaches and methods

where the use of Machine Learning techniques for classification is common among the ma-

jority of them. Most of these approaches rely on the use of identifiers extracted from source

code, assuming there is full access to the repository [13, 14, 38]. This situation is not common

on environments different to those of repositories maintained by the Open Source commu-

nity; it is known that many companies often work under high security practices to protect

organizational secrets, which limits the access to source code thus giving no opportunity

for a categorization model that relies on such sensitive information to work. Attending this

concern about closed source repositories, approaches that rely not on the source code but on

the Application Programming Interface (API) calls have arisen with positive results [19, 24].

Among the reviewed literature it is found that on most approaches, category labels are cre-

ated manually by domain experts [5] or selected from a set of previously defined categories

[24, 19]. These approaches rely on supervised learning [2], thus require a previously cate-

gorized set of projects to be used as training data. This assumes that the set of categories

is sufficient to classify any new project that enters the repository although that may not

necessarily be the case. Also, a predefined set of categories is limited by the knowledge of

available domain experts or by the decisions made by repository administrators.
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In some cases, category labels are created automatically by analyzing the information of

hosted projects [13, 14, 36]. This automatic creation of category labels has the advantage

of relying only on information mined from the corpus, thus decoupling category names from

specific knowledge of the available domain experts. However, closed source repositories can

not be categorized using these approaches since they rely on source code, which is obviously

not available.

Although the use of API-calls for categorization (which solves the problem of closed-source

repositories) has been used previously [24, 19] by analyzing calls to the Java SDK, informa-

tion about external libraries has not been used as a source of information for the categoriza-

tion process. This means that relations among projects in the categorization corpus were

not taken into account as input for the categorization process. We hypothesize these rela-

tions could provide valuable information for determining the domain application of software

projects.

Consequently, the main hypothesis of this thesis is that application domains (categories) of

a software project depend to some extent on those of the projects it depends on. In order

to test the hypothesis, an approach that makes use of the dependency relations between

projects is proposed to propagate categories between projects.

Figure 1-1 shows a simplified example of the proposed approach. Projects x and w have

no dependencies and have been labeled with categories logging and database respectively.

Project v depends on w, therefore the category database is propagated to it. In the same

fashion, categories from x and v are propagated to u, which has by itself the category html.

This example propagates all categories and ignores the fact that the reuse of a certain library

does not directly imply that the application domain of the library and its dependencies is

the same; the details of the approach used for category propagation is described in chapter 4.

u

v

w

x

testing database

logging html

testing database

database

logging

Figure 1-1.: An example of category propagation. Boxes contain the categories for each

project.



1.1 Objectives 5

1.1. Objectives

The main objective of this thesis is to design and implement an automatic categorization

model that does not rely on access to the source code but rather the bytecode and harnesses

the dependency relations between projects to assign categories. Also, the set of categories

should not be predefined but generated from the projects that belong to the repository.

The specific goals and their contribution to the thesis project are the following:

Goal 1: To define and implement a procedure to construct dependency graphs from projects

in the repository. In order to test the hypothesis, a procedure that allows to efficiently

obtain information from the dependency relations is necessary.

Goal 2: To define and implement a categorization model based on the constructed depen-

dency graphs and the information extracted from each particular library. By using

information obtained from dependency graphs, the categories assigned to a particular

project can be weighted and propagated to others that depend on it. Additionally, it is

important to define the procedure under which projects that do not have dependencies

will be categorized.

Goal 3: To compare the proposed model with a state of art approach and currently available

alternatives. In order to assess the utility of the proposed model, a comparison against

the alternatives is necessary.

Goal 4: To build an application that uses the proposed categorization model and harnesses

the findings obtained from experimentation. The creation of an application will allow

potential users to harness the results of this research on their own repositories.

1.2. Contribution

This thesis presents Sally , a novel, multi-label and unsupervised approach for categorization

of Maven projects. By extracting identifiers from source code or bytecode and harness-

ing the dependency relations between projects, Sally is able to produce a set of weighted

communicative tags and present them in a useful way for the user.

Because of the way Sally is designed, the approach is capable of dealing with common

problems that previous work on the subject of automatic software categorization faced;

some of the features of the approach and their importance are:
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• Does not depend on source code : Unlike some of previously presented approaches [14,

36, 38], Sally does not need access to source code in order to work. This makes the

approach a feasible alternative for closed-source and organizational repositories where

access to information is restricted due to security reasons.

• Does not need a predefined set of categories : The use of predefined sets of categories

for software categorization, although being successful in controlled environments [19,

24, 38], greatly limits the range of possible domain categories software projects can

belong to. The use of these rigid sets of categories is likely to misclassify projects

that do not fit into the predefined categories regardless of the used approach for their

selection.

• Provides meaningful labels: Thanks to a category-filtering process based on tags from

StackOverflow3, a large knowledge base related to software development, the labels

obtained by Sally provide descriptive information to its users. Additionally, in order

to deal with cases where users do not know the meaning of a particular category, Sally

provides a simple way to obtain its definition from various popular information sources.

1.3. Document structure

The document is organized as follows:

Chapter 2: presents an introduction to Maven.

Chapter 3: presents related work on software categorization and empirical studies using

Maven.

Chapter 4: describes the proposed approach in detail.

Chapter 5: presents two experiments that were performed to assess the proposed model.

Chapter 6: presents conclusions and future work.

3http://stackoverflow.com
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2. Maven and the POM

“Maven is a project management tool which encompasses a Project Object Model, a set of

standards, a project lifecycle, a dependency management system and logic for executing plugin

goals at defined phases in a lifecycle” 1.

Maven is a tool mainly used with Java projects (although it can be used with other program-

ming languages) that favors the concept of convention over configuration to help developers

perform common tasks such as building, deploying, generating reports and even creating

web sites by running simple commands. It mainly revolves around the concepts of the build

lifecycle and the Project Object Model. A lifecycle is a clearly defined set of phases (or goals)

that are performed to fulfill tasks related to the project; by default, Maven includes lifecycles

for deploying, cleaning and generating sites. The Project Object Model is an XML file named

pom.xml that fully describes Maven projects and can be used to customize Maven’s default

behavior. It contains general information, build settings, environment and most importantly

the declaration of dependencies to other projects or POM files. A minimal POM file should

at least contain the groupId, artifactId and version attributes —known as the GAV

coordinates — to allow Maven to uniquely identify the project.

One of the main reasons organizations and development teams choose to adopt Maven is for

its dependency management scheme: new dependencies can be obtained by simply declaring

them in the dependencies section of the POM file, each one uniquely described by its GAV

coordinates. Also, when a developer builds a project, it is by default copied to the local

repository and is ready to be reused by other projects. This scheme makes the development

environment specially easy to replicate for new team members.

Besides from reusing projects available on local repositories, developers can reuse projects

published in online repositories by simply adding the dependency declarations to the pom

file. By default, dependencies that are not found in the local repository are searched for in

The Maven Central Repository (MCR)2. However, alternative online repositories can also be

used.

1Maven: The Complete Reference. http://books.sonatype.com/mvnref-book/reference/
2http://search.maven.org/
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Listing 1 shows an abridged version of the POM file for project spring-social-google3

taken from the MCR. General information about the project as its GAV coordinate, develop-

ers, url, etc. is present. Also, it can be seen that dependencies to projects javax.servlet-api,

jackson-annotations and others are declared. It is worth noticing that the declared depen-

dencies also have a scope tag defined, this tag allows Maven to know whether the dependency

should be packaged with the application, is only necessary for testing (<scope>test<scope/>))

or if the jar file should be searched for in the file system (<scope>provided<scope/>) instead

of the configured repositories.

By simply declaring GAV coordinates in its POM file, it is possible for Maven to obtain all

the dependencies a project requires to function properly. However, since these dependencies

are also Maven projects themselves, they can also have their own declared dependencies. All

dependencies that are listed in the POM file are known as direct dependencies and the

dependencies required by them are known as transitive dependencies. Maven seamlessly

resolves transitive dependencies without any special intervention from the developer.

Maven by itself is a plugin execution framework. This is, most of the functionality provided

by Maven is actually executed by plugins that can be retrieved from the central repository.

This allows both to add functionalities to a Maven installation and to make upgrades without

affecting the current ones. The Maven Dependency Plugin provides a set of goals related

to the manipulation of artifacts and allows the developer to perform various tasks related to

the dependencies of a project. These tasks include (but are not limited to) listing the set of

resolved dependencies, finding unused ones, copying all dependencies to a specified location

and listing all used repositories.

3https://github.com/GabiAxel/spring-social-google
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<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>org.springframework.social</groupId>

<artifactId>spring-social-google</artifactId>

<version>1.0.0.RELEASE</version>

<name>Google API</name>

<description>Google API</description>

<url>https://github.com/GabiAxel/spring-social-google</url>

<organization>...</organization>

<licenses>...</licenses>

<developers>...</developers>

<scm>...</scm>

<dependencies>

<dependency>

<groupId>javax.servlet</groupId>

<artifactId>javax.servlet-api</artifactId>

<version>3.0.1</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>com.fasterxml.jackson.core</groupId>

<artifactId>jackson-annotations</artifactId>

<version>2.3.3</version>

<scope>compile</scope>

</dependency>

<dependency>...</dependency>

<dependency>...</dependency>

<dependency>...</dependency>

</dependencies>

</project>

Listing 1: Abridged version of the POM file of project spring-social-google



3. Related Work

3.1. Software Categorization

Most of the previous work on the topic of software categorization has strongly relied on

Machine Learning algorithms and mainly differ in the way features are extracted and the

specific classification algorithm employed.

Source code [13, 14, 36], comments [36], README files [38], online repository profiles [40] and

API calls [24, 19] have been used as input for feature extraction. Besides source code, Ugurel

et al.[38] include comments and README files, finding that the use of comments can have

a negative effect on the classification for some languages. Kawaguchi et al. [13, 14] extract

identifiers only from source code arguing that the use of design documents, build scripts or

other software artifacts is not convenient because although these artifacts can contain highly

abstracted information, their quality can vary greatly from project to project thus affecting

the categorization results. Later on, Tian et al. present in [36] a similar approach that

also takes into account comments in source code and has a more strict filtering scheme for

identifiers.

In [24, 19], the authors ignore source code and make use of API calls for feature extraction

acknowledging the cases in which the availability of source code cannot be counted on. By

using their approach, closed-source and organizational software repositories can be subject

to automatic software categorization. It is known that several companies work under highly

restricted environments to protect organizational secrets so a categorization approach that

uses source code as input cannot work. In [40], Wang et al. use online repository profiles

(descriptions and collaborative tags) from various sites as input as well as a method to

aggregate them effectively.
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For classification, most of the approaches treat software projects as documents and textual

classification approaches are used to obtain categories. After extracting identifiers, Ugurel

et al. [38] use Expected Entropy Loss to select the most important features, Support Vector

Machines are used to categorize projects by programming language and application topic.

In [13], the authors use Decision Trees for categorization with a reported error rate of less

than 5%. To deal with the need of predefined categories required to use Decision Trees (and

in general any supervised learning algorithm), the authors propose the use of LSA as a way

to obtain similarities between software systems and to use this information for classification.

Their work is extended in [14] where MUDABlue is proposed: after obtaining similarities

between projects, MUDABlue uses cluster analysis to find sets of related software systems.

Tian et al. propose in [36] a similar approach that uses LDA as a way to obtain topics

and also applies cluster analysis to determine the software clusters. In [24], the authors use

Decision Trees, Naive Bayes and Support Vector Machines (SVM) for classification, finding

the SVM approach to be the most effective. Wang et al. also propose in [39] an approach

based on similarity of software systems and clustering using these similarities to build a

taxonomy for 40744 projects from Freecode1.

Regarding topic detection and automatic labeling of software components, Wang et al.[41]

use L-LDA [31] to solve the problem of software topic detection by mining software tags and

profiles from three large open source repositories and compare their approach to LACT [36]

and LDA-TR [15] with positive results. Kuhn proposes in [16], an approach based on log-

likelihood ratio to automatically retrieve labels from source code and applies it to label the

Java API and to compare different revisions of the JUnit software system. Later on, Kuhn

et al. present in [17] an LSI-based semantic clustering approach to produce characterization

of software systems which can help new developers to familiarize with unknown systems.

The work done by Bruno et al. [3] and Di-Lucca et al. [5] shows that not only software

projects can be subject to categorization. In [3], the authors use an SVM-based approach to

classify web services using identifiers extracted from WSDL files. Their approach produced

good results generating a limited set of classes to which the services could belong. Di-Lucca et

al. present in [5] a comparison of different Machine Learning algorithms to classify software

maintenance requests.

1http://freecode.com
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3.2. Maven

Due to the widespread use of Maven by software developers, various aspects of Maven and the

Maven Central Repository have been studied by researchers. These include trends of library

usage [25], project versioning practices and their relation to backward compatibility [29],

the relation between the popularity of components and their quality [34], bugs in the Maven

build system [42] among others. Furthermore, the Maven Central Repository has served the

purposes of multiple research projects by giving researchers a simple way to obtain projects

to form a corpus. Migration graphs [35], software bertillonage 2 [4], the evaluation of a

genetic algorithm to refactor interfaces using ISP principles [33] and an automatic bottom-

up approach for generating software repositories [26] are some of the projects that the MCR

has leveraged. Since it has proven to be a valuable resource for research on multiple subjects,

a particular project was focused on providing a set of characteristics of the MCR to facilitate

their use in future research [28].

Mileva et al. [25] analyzed 250 open source projects from the Apache Software Foundation3

to find trends of library usage. Dependencies were collected over a period of two years to

find interesting behaviors of development teams regarding the release of new versions and

an Eclipse4 plugin as well as a web tool called AKTARI were presented as a result of their

findings.

Raemaekers et al. mined in [29] 150000 binary jar files to analyze various aspects related

to the use of semantic versioning practices and their implications regarding backward com-

patibility. It was found that currently used mechanisms to indicate interface instability

are not applied properly, which increases the amount of work necessary to upgrade project

dependencies.

Sajnani et al. analyzed in [34] if there was a relation between the popularity of Maven

components and their quality. Analyzing bug patterns and various software quality metrics,

they found no evidence to support the commonly believed claim that states that popular

components tend to have greater quality and less bugs than non popular ones.

Teyton et al. [35] mined a set of approximately 39000 projects from the MCR to extract

migration graphs and produce visual patterns that can help developers find feasible options

whenever a particular library must be replaced. By using these graphs, developers can

quickly identify candidate libraries to migrate to and see how many projects have migrated

from them.

2Bertillonage was originally a system based on anthropometric measurements for the identification of crim-

inals invented by Alphonse Bertillon.
3http://www.apache.org/
4http://eclipse.org/
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Davies et al. made use of the MCR on [4] to evaluate a Software Bertillonage approach for

narrowing the search space for determining the provenance of Java software assets.

Romano et al. used in [33] information of public API usage from the Maven Central Repos-

itory to evaluate a genetic algorithm to refactor interfaces by applying the Interface Segre-

gation Principle. The algorithm was shown to outperform other search based approaches.

Ossher et al. proposed in [26] a bottom-up approach for automatically constructing software

repositories and performed a comparison between the structure of a generated repository

with the structure of the Maven Central Repository. They found that although the Maven

Central Repository is manually maintained and curated, the proposed approach generated

a competitive and in some aspects superior structure.

Xia et al. performed in [42] an empirical study to determine various aspects of bugs in soft-

ware build systems including Maven. Bug densities, categories and severities were analyzed.

In [28], Raemaekers et al. present the Maven Dependency Dataset, a set of code metrics,

dependencies, breaking changes between library versions and a call-graph for the repository

with the intention of providing easy access to the Maven Central Repository for research.



Part II.

The Sally software categorization

approach



4. Description of the proposed

categorization approach

On this chapter we formally present Sally , a novel, multi-label and unsupervised approach for

automatic categorization of Java Maven projects. Sally is capable of producing categories

for projects in a software repository by analyzing identifiers and information about the

dependency relations extracted from bytecode.

The main features of the proposed approach are the following:

• Does not depend on source code : Since Sally uses information extracted from byte-

code, it is possible to use it to categorize closed-source and organizational Maven

repositories.

• Does not need a predefined set of categories : Sally is capable of generating categories

without requiring any special action from developers, this allows the model to work on

repositories that do not have a defined categorization scheme and on projects that do

not provide a description of their purpose.

• Provides meaningful labels: Thanks to a category-filtering process based on tags from

StackOverflow1, Sally is able to provide descriptive information about the projects in

a repository. Additionally, by mining information from widely used sources, definitions

for the presented labels can be obtained.

• Provides information beyond category names: Besides generating categories based on

identifiers and dependency relations, Sally is able to produce a measure of how relevant

is a category for a project.

1http://stackoverflow.com
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Figure 4-1.: Components of the proposed categorization model

Figure 4-1 shows a diagram of the different phases of the Sally Categorization Model. A

resolved set of Maven projects2 is used as input for the Dependency Resolver (1) and

Identifier Extractor (2) modules. Then, extracted identifiers are filtered using the Iden-

tifier Filter (3) module. The information obtained from these three modules is used by the

Category Generator (4) to be able to select a set of identifiers that become categories.

This module is also in charge of harnessing the dependency information obtained from the

Dependency Resolver to propagate categories. The output of the model is a set of categories

whose context is augmented by the Concept Definition (5) module and presented to the

users using a Tag Cloud (6). The depicted phases of the process are explained in the

remainder of this section:

4.1. Identifier extraction and filtering

Extraction

The use of identifiers extracted from software for automatic categorization is common among

various approaches [5, 36, 38, 14, 24]. This is because identifiers extracted from internal

documentation of software such as comments, variable names and class names can clearly

reflect human concepts [7]. Source code, comments, bytecode, README files, etc. have

been successfully used for feature extraction in the past, therefore, we also make use of this

approach in Sally .

2We refer to a resolved set of projects as a set in which all dependencies of the members of the set also

belong to the set.
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The Identifier Extractor module makes use of the ASM Bytecode Manipulation Frame-

work 3 to obtain class names, class fields, method names and method arguments from byte-

code. Then, by using Apache Lucene 4, the obtained identifiers are stemmed to prepare them

for future computations. The output of this module is a set of (root, term) pairs, where root

is the stemmed identifier and term is the original identifier. For example, the word stemming

would produce the pair (stem, stemming) after going through the extraction process.

Filtering

The identifiers obtained as output from the Identifier Extraction Module are filtered in the

Identifier Filter Module. This module is in charge of retaining only the identifiers that

fulfill certain conditions in order to produce a set that is useful for computations in further

steps and that also provides information that is descriptive for humans.

The first step of the filtering process removes identifiers with less than 3 characters, identifiers

that appear on more than 50% of the projects and treats all Java keywords as stopwords. The

lower bound on the number of characters for each identifier was chosen because in software

development there are various widely known acronyms and abbreviations that describe high

level concepts and are composed of three characters, e.g., XML, POM, RSS, etc. Removing

these kind of identifiers could also remove a large amount of useful information for the

categorization model.

The second step is to filter the identifiers by using tags found on StackOverflow 5, a popular

question and answer site where programmers with a wide range of experience help each other

by asking and answering questions. With a community of over 3.5 million users and more

than 8.4 million questions, the site has become a valuable resource for programmers as well as

an important knowledge base for research [37]. We consider this filtering necessary because

the set of identifiers obtained from bytecode can be polluted with names and instructions

that do not convey any useful information for humans.

Figure 4-2 shows a question taken from the StackOverflow site. It contains a title (1), a

description (2), a set of tags (3), zero or more answers (4) and votes (5) that are given by the

community to rate the importance and quality of questions and answers. All content-related

aspects from the site are maintained and filtered by the community, which gives a high level

of quality to the information present on the site.

3http://asm.ow2.org/
4http://lucene.apache.org
5http://stackoverflow.com
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Figure 4-2.: A sample question on Stack Overflow

The filtering process works by comparing the obtained identifiers to the tags available in

StackOverflow and removing the ones that do not appear in this set. Since these tags are

maintained and filtered by the community to ensure that they provide useful information

about the questions to which they are assigned, they represent concepts related to Software

Development, Computer Science, Programming and General Tasks. This makes the set of

StackOverflow tags 6 a diverse and curated list of categories, concepts and terms which we

consider to be valid descriptors for the software projects to be categorized. In the same way

a tag on a question in StackOverflow can give a reader an idea about the subject of the

question, we expect it to give information about the project it is assigned to.

To illustrate the benefits of filtering using the StackOverflow set of tags, Table 4-1 shows

25 (out of 442 total) identifiers that were filtered out by applying the described process to

identifiers extracted from project htmlunit-core-js-2.15.

6http://stackoverflow.com/tags

prologue tza fsub getelem bitnot

significand fneg wide nclass dtostr

iproxy impdep dstore cpbegin aastore

arrayobj pos withexpr frac actual

arraylength getprop iushr descendants dude

Table 4-1.: Identifiers removed from project htmlunit-core-js-2.15 after filtering.
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The description for project HtmlUnit7 is the following: “HtmlUnit is a GUI-Less browser

for Java programs. It models HTML documents and provides an API that allows you to

invoke pages, fill out forms, click links, etc... just like you do in your normal browser. It

has fairly good JavaScript support (which is constantly improving) and is able to work even

with quite complex AJAX libraries, simulating either Firefox or Internet Explorer depending

on the configuration you want to use. It is typically used for testing purposes or to retrieve

information from web sites.”

It can be seen from table 4-1 that the removed terms do not provide much information on

what the purpose of the library is, they instead might confuse an observer and make the

task of understanding it significantly more difficult.

4.2. Dependency resolution

Software reuse can be seen as the inclusion/adaptation of previously developed software arti-

facts into new projects with the intention of using their functionality; this inclusion creates a

dependency relation between the projects. More formally, it is said that a project u depends

on another project v when there is at least one method invocation, object instantiation or

inheritance relation from classes in u to classes in v. We will refer to each of these situations

that create dependency relations as dependency calls.

The use of graphs for modeling various kinds of relations between software projects or com-

ponents is a commonly used technique for extracting information from them [23, 20, 27].

Given a set of projects in a repository, a dependency graph can be obtained by modeling

projects as nodes and dependency relations as directed edges. Each edge can optionally be

weighted by the number of dependency calls between the pair of nodes it connects.

On the Dependency Resolver Module, a dependency graph whose edges are weighted

by the number of dependency calls is obtained from the projects to be categorized. This

graph is used to compute a dependency measure defined as:

Duv =
dc(u, v)∑i=n
i=1 dc(u, i)

7http://htmlunit.sourceforge.net/
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Figure 4-3.: Dependency graph calculation

Where dc(x, y) is the number of dependency calls made from project x to project y and

n is the number of projects on which x depends on. Using this measure we can define

the dependency between projects as a tuple (source, destination, weight) where source and

destination are both projects and weight is the dependency measure between them.

Figure 4-3a shows a simple dependency graph where the weight of each edge represents the

number of dependency calls between pairs of projects. In this graph, project u has a total of

12 outgoing dependency calls, 5 to x and 7 to v. Figure 4-3b depicts the same graph with

its edges displaying the computed dependency measure for each pair of connected nodes.

The dependency measure between u and x is then 5/12 = 0.42 (the number of outgoing

dependency calls from u to x divided by the total number of dependency calls made by u).

4.3. Generation of Categories

For each project, a set of categories is found and assigned to it. A category is defined as a

tuple (name, relevance) where name is the name of the category and relevance is a value

that describes how relevant is the category for the particular project. The relevance measure

is subject to

0 ≤ ri ≤ 1.0 ∧
∑

ri = 1.0

where ri is the relevance value of category i. For example, if we were examining the project

JUnit we would expect to have some categories whose names are related to testing and have

high relevance measures. Moreover, the Category Generator Module divides categories

into primary and secondary categories, both types are described below:
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4.3.1. Primary categories

Primary categories arise from the analysis of a particular project by itself, i.e., only taking

into account the identifiers extracted from bytecode and ignoring dependencies. To obtain

the primary categories, Gensim [32] is used to compute TF-IDF [22, 30] values for the

identifiers obtained from the Identifier Filter Module described in section 4.1.

TF-IDF is a term weighting scheme that combines the concepts of term frequency (TF)

and inverse document frequency (IDF) to find how important is a term for a document in

a corpus while reducing the effect of terms that occur very often across documents; it is

calculated as follows:

tft,d × log
N

dft

where tft,f is the number of occurrences of term t in document d (term frequency) and dft
refers to the number of documents in the corpus that contain term t (document frequency).

The computed values are used to obtain relevance measures for each one of the terms,

calculated as:

tfidf(ti)∑m
k=1 tfidf(tk)

where tfidf(ti) is the TF-IDF value for term i and m is the number of identifiers obtained

from the project. Finally, identifiers are sorted in descending order by relevance and the

roots (recall that the Identifier Filter Module outputs a set of (term, root) pairs) of the

identifiers become the primary categories.

4.3.2. Secondary categories

The secondary categories of a project are the primary categories of its direct dependencies8

with their relevance measures scaled using the dependency measure that was computed by

the Dependency Resolver Module. Once again, categories are sorted in descending order by

their relevance values.

If we define each project p to be a 3-tuple (Dp, Cp, Sp) where Dp is the set of projects on which

p depends on, Cp is the set of primary categories of p, and Sp its set of secondary categories;

the category propagation algorithm can be described by the following pseudo-code:

8A deeper exploration of the dependency graph (i.e. using transitive dependencies) was tried but the results

were not satisfactory for most of the projects.
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Data: A project p = (Dp, Cp, Sp)

Result: Project p with its primary and secondary categories fully resolved.

1 begin

2 for d ∈ Dp do

3 for c ∈ Cd do

4 add new category (c.name, c.relevance ∗ d.weight) to Sp ;

5 end

6 end

7 end

Listing 2: Category propagation algorithm

To illustrate the output of the Category Generator Module, Table 4-2 shows the top 5

primary and secondary categories (as well as their relevance measure) obtained for project

batik-css-1.7.jar.

Primary Secondary

rgb - 0.5123 svg - 0.5585

color - 0.1494 css - 0.2847

style - 0.1304 smil - 0.0925

cssom - 0.1130 tag - 0.0349

selector - 0.0949 feature - 0.0293

Table 4-2.: Extracted categories for project batik-css-1.7.jar

The following is the description for project batik-css-1.7.jar : “Batik CSS Engine. Batik is a

Java-based toolkit for applications or applets that want to use images in the Scalable Vector

Graphics (SVG) format for various purposes, such as display, generation or manipulation”.

Project batik-css-1.7.jar depends on project batik-util-1.7.jar from where the secondary cat-

egories are extracted. It can be seen that both projects are related to graphics. Moreover it

can be seen by looking at their relevance measures, that the secondary categories svg and css

are significantly more important than the other three, which helps support the conclusion

that the project’s domain application is related to graphics.

The number of categories that are obtained for projects can be customized either by the

number of categories desired or by establishing a relevance threshold, e.g. only obtain

categories with a relevance measure greater than 15%.
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4.4. Concept definition

Depending on the background and programming experience of users of Sally , it is possible

to perceive that the generated categories do not provide useful information because the

concepts are unknown. To deal with this possibility, a Concept Definition Module was

developed; given a term, it is capable of searching for its definition on various information

sources to provide detailed information about it.

For example, identifiers tiff, glyph and rgb were extracted by Sally as categories for project

xmlgraphics-commons-1.3.1.jar. Given these identifiers, it is possible for a user without prior

knowledge about graphics to perceive that the information provided by the model is not

useful enough. Since each of these identifiers are related to concepts, we can provide the

user with a better understanding of the identifiers by defining what these concepts mean.

The following are excerpts from the definitions obtained by the module for the aforemen-

tioned concepts:

tiff: TIFF (Tag Image File Format) is a common format for exchanging raster graphics

(bitmap) images between application programs, including those used for scanner images.

A TIFF file can be identified as a file with a “.tiff” or “.tif” file name suffix.

rgb: RGB (red, green, and blue) refers to a system for representing the colors to be used

on a computer display. Red, green, and blue can be combined in various proportions to

obtain any color in the visible spectrum. Levels of R, G, and B can each range from 0

to 100 percent of full intensity.

glyph: In information technology, a glyph (pronounced GLIHF ; from a Greek word meaning

carving) is a graphic symbol that provides the appearance or form for a character. A

glyph can be an alphabetic or numeric font or some other symbol that pictures an

encoded character.The following is from a document written as background for the

Unicode character set standard. In the Unicode standard, a character is stated to be

an abstract entity and not a glyph (some visual representation of a character).

Since the most relevant identifiers become categories for projects, we expect users to find the

assigned categories more useful by giving them detailed information on what the concepts

behind these categories mean. Currently, StackOverflow 9, Wikipedia10, Wiktionary11 and

TechTarget12 are the supported sources for concept definition.

9http://stackoverflow.org
10http://www.wikipedia.org/
11https://www.wiktionary.org/
12http://whatis.techtarget.com
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Figure 4-4.: Output of Sally ’s definition module for category RGB

To obtain definitions from the mentioned sites, the JSoup HTML Parser 13 was used. We

manually obtained the html anchors that are used on each of the sites to visually present

results from queries. For example, TechTarget uses “articleBody” as the id attribute of the

paragraph that contains the text of a definition. Using JSoup we can find these elements

by id and extract their contents. Figure 4-4 shows the output of the Concept Definition

Module for category RGB.

Having an automatic way to obtain these definitions aids users without prior knowledge

about some particular application domains to get a better understanding of them. However,

the main reason for developing the definition module is that although the selected identi-

fiers are related to the application domains of projects, they are not necessarily enough to

describe them; this is because identifiers present low-level information about projects, e.g.

frameworks, communication protocols, related programming languages, technologies, etc. In

order for a user to find the concepts that describe what a project’s application domain is, it is

necessary to go beyond this specific details that identifiers by themselves provide and relate

them to form more general concepts. We expect definitions to be the bridge between iden-

tifiers and the complex concepts that serve to describe the application domains of software

projects.

13http://jsoup.org/
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Figure 4-5.: Tag Cloud output for project StringTemplate-3.2

4.5. Tag Cloud Output

In order to visually present the obtained information in a useful way, Sally’s user interface

presents the extracted categories and their relevance measures as a tag cloud, where the

size of each tag is directly related to the relevance of the category for the project that is being

visualized. The intention behind this decision is to provide visual aid to users in finding the

most relevant categories for a particular project, i.e, although all extracted categories are

related to a project in one way or another, there are some of them that are more relevant

than the others.

As an example, figure 4-5 depicts the generated tag cloud for project Stringtemplate-3.2.

The description obtained from the official website14 is the following: “StringTemplate is a

java template engine for generating source code, web pages, emails, or any other formatted

text output. StringTemplate is particularly good at code generators, multiple site skins, and

internationalization localization. StringTemplate also powers ANTLR.”

4.6. Sally: The application

Sally is composed by two main components, one is responsible for core functionality and the

other is in charge of making the information obtained by the core component available to

users. All modules in charge of information extraction (i.e. identifier extraction / filtering,

dependency resolution, category generation, definition mining) were developed as a Java

Maven project that makes use of Python and Bash scripts.

14http://www.stringtemplate.org/
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Figure 4-6.: Home page

The web application was developed using the Meteor15 Javascript platform, which allowed

for a very fast development process and all information is stored in a MongoDB16 database.

Sally is currently hosted at http://sally.meteor.com.

As Figure 4-6 shows, users are greeted with a description of Sally and an explanation of

how to use the site and the meaning of the colors of categories on the tag cloud.

On the project browsing view shown in Figure 4-7, users can use filters to reduce the number

of projects that are displayed to help them find the one they are looking for more easily.

When a project is selected, the user is presented with the tag cloud for it as shown in

Figure 4-8. The number of displayed tags can be increased or decreased by inputting a

number on the upper box. By clicking on a tag, the mined definition is presented as a modal

dialog. As an example, the definition for tag analysis is presented on Figure 4-9.

15https://www.meteor.com/
16https://www.mongodb.org/

http://sally.meteor.com
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Figure 4-7.: Project browsing view

Figure 4-8.: Tag cloud output
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Figure 4-9.: Definition for tag analysis



Part III.

Experimentation and analysis of results



5. Experimentation

In order to assess the quality of the proposed model, two different experiments were per-

formed. The first one was a comparison against the categorization schemes of two widely

used tools: SourceForge1, an online repository where developers can share their software

projects and MVNRepository2, a search engine that allows users to look for character-

istics (mainly the GAV coordinate) of Maven projects. The second experiment consisted

on implementing MUDABlue[14], an unsupervised multi-label categorization approach for

software projects developed by Kawaguchi et al. and comparing it to Sally .

The set of projects for both experiments was obtained by using MVNRepository to find the

GAV coordinates of 68 Maven projects with the net.sourceforge groupId. These projects

were declared as dependencies on the pom file of an empty project and the Maven depen-

dency plugin (described in Chapter 2) was used to resolve all transitive dependencies. This

selection process produced a set of 167 jar files and the rationale behind it was to obtain a

corpus composed by projects that were present on both MVNRepository and SourceForge,

thus making a comparison possible. Appendix A shows the complete set of projects that

were used for the experiments.

5.1. Experiment 1: Comparison With Online Tools

Currently, there are multiple online software repositories for developers to publish their own

projects or to search for previously developed ones for reuse. SourceForge, Google Code3,

Github4 and IBiblio5 are just some of many available alternatives. SourceForge has been

used in previous occasions either as a baseline for comparison or as the categorization corpus

in various research projects [24, 9, 40, 14, 19, 36]. It is considered for comparison with Sally

as well.

1http://sourceforge.net
2http://mvnrepository.com
3http://code.google.com
4http://github.com
5http://www.ibiblio.org/
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Regarding Maven libraries, alternatives are not as numerous as they are for self-contained

applications. Although there exist some available online Maven repositories (with the Maven

Central Repository being by far the most prominent one), there are not many ways to search

for particular projects by purpose nor domain application. MVNRepository, a site that

indexes projects belonging to the Maven Central Repository and presents information about

them by using their pom file is one of the most widely used alternatives.

The categorization schemes used by SourceForge and MVNRepository are described below:

SourceForge

SourceForge is an open source project hosting site with over 3.7 million registered users and

is one of the most widely used alternatives by developers for publishing software projects.

After registering a project, the developer can optionally add tags and select topics that

describe its characteristics. The set of topics is built as a 4-level hierarchy with 21 general

topics on the top that are specialized to form a set of 754 possible topics.

Figure 5-1 shows the screen that is presented to a developer for categorizing a new project.

The developer can add any number of free text tags (1) to the project and select up to three

categories from the predefined set of topics (2).

Figure 5-1.: The project categorization page from SourceForge for a newly created project.
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Figure 5-2.: The first search result for query “JUnit” on MVNRepository

MVNRepository

MVNRepository is a search tool for Maven projects. It helps its users find the GAV coordi-

nates of a project by only providing its groupId or artifactId. Additionally, it shows the

content of the project’s description tag –if available– and displays it on the website. The

categorization scheme from MVNRepository is divided into tags and categories, this means

projects are labeled with both. Tags are extracted from the text in the pom file and we be-

lieve categories are assigned manually6. To differentiate categories from tags in the following

section, the same convention from MVNRepository is used: categories are presented with

initial capital letters and tags are shown in lower case.

Figure 5-2 is an excerpt of what an user of MVNRepository sees after performing a query

with the term junit. The user is presented with the assigned categories (1), the content of

the description tag from the pom file (2) and with the tags (3) assigned to the project.

6We tried multiple times to contact the creator of the search tool in order to fully understand the scheme

used for classification and tagging but we never received any reply from him.
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5.1.1. Experiment setup

Our goal was to compare the categories generated by Sally to those from SourceForge and

MVNRepository in terms of their availability (whether the approaches have categories for all

of the projects in the corpus) and how descriptive they are. Therefore, the following research

questions were addressed in this experiment:

• RQ1: How do the categories assigned by developers in SourceForge compare to the ones

generated by Sally in terms of their descriptiveness?

• RQ2: How do the categories generated by MVNRepository compare to the ones gener-

ated by Sally in terms of their descriptiveness?

• RQ3: How do Sally, SourceForge and MVNRepository compare in terms of the avail-

ability of categories?

In order to answer these questions, categories and tags were manually obtained from the

SourceForge and MVNRepository websites and Sally was used to generate 5 primary and 5

secondary categories for each project. A manual examination was then conducted to compare

the categories assigned by each approach.

5.1.2. Results

In this section, an excerpt of the results obtained in the experiment is presented, the full

table with results is available at http://bit.ly/categresults. For each of the following

tables, categories assigned by Sally (primary and secondary) as well as the relevance measure

described in section 4.3 are shown on the first and second columns, the third column contains

tags and categories assigned by MVNRepository and the last one contains the categories from

SourceForge. After each table, the description for the analyzed project is shown.

1. Results for project net.sourceforge.jtransforms:jtransforms-2.4.jar

Description:7 JTransforms is the first, open source, multithreaded FFT library writ-

ten in pure Java. Currently, four types of transforms are available: Discrete Fourier

Transform (DFT), Discrete Cosine Transform (DCT), Discrete Sine Transform (DST)

and Discrete Hartley Transform (DHT). The code is derived from General Purpose

FFT Package written by Takuya Ooura and from Java FFTPack written by Baoshe

Zhang.

7https://sites.google.com/site/piotrwendykier/software/jtransforms

http://bit.ly/categresults
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Sally MVNRepository SourceForge

fft - 0.4968 None None Mathematics

dct - 0.1857

dht - 0.1701

dst - 0.1010

benchmark - 0.0464

Table 5-1.: Computed categories for project jTransforms-2.4

In Table 5-1 it can be seen that MVNRepository has no categories for project jtrans-

forms and that although SourceForge does assign the category Mathematics to it,

only Sally provides specific categories for the project at hand. Although the first four

categories assigned to the project by our approach are precise and specific, the last

one (benchmark) does not seem to be as useful as the other four. This less relative

importance can also be seen in the relevance value assigned to it.

2. Results for project bouncycastle:bcprov-jdk15.jar

Sally MVNRepository SourceForge

jce - 0.3482 test - 0.4469 Encryption Libraries Missing

certificate - 0.2066 suite - 0.1794

cipher - 0.1588 runner - 0.1794

revocation - 0.1442 failures - 0.1315

rsa - 0.1422 defect - 0.0628

Table 5-2.: Computed categories for project bcprov-jdk15

Description:8 The Bouncy Castle Java API for handling the OpenPGP protocol. This

jar contains the OpenPGP API for JDK 1.5 to JDK 1.8. The APIs can be used in

conjunction with a JCE/JCA provider such as the one provided with the Bouncy Castle

Cryptography APIs.

Table 5-2 shows the categories assigned by the three approaches to project bcprov-

jdk15, which is basically a cryptography API. All primary categories are closely related

to the project at hand but the secondary ones are not. This is the result of considering

all the declared dependencies from the pom file of the projects instead of those only

under the compile scope.

8https://repo1.maven.org/maven2/org/bouncycastle/bcpg-jdk15on/1.51/bcpg-jdk15on-1.51.pom
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3. Results for project org.antlr.stringtemplate-3.2.jar

Sally MVNRepository SourceForge

test - 0.4125 token - 0.2660 Template Engines Missing

templates - 0.3639 ast - 0.2638

expr - 0.083 grammar - 0.1721

region - 0.081 gen - 0.1659

group - 0.057 rule - 0.1319

Table 5-3.: Computed categories for project stringtemplate-3.2

Description:9 StringTemplate is a java template engine for generating source code,

web pages, emails, or any other formatted text output. StringTemplate is particularly

good at code generators, multiple site skins, and internationalization / localization.

StringTemplate also powers ANTLR.

Table 5-3 shows how both primary and secondary categories found by Sally contain

terms associated to regular expressions and grammars, which directly relate to the

application domain of the project under analysis. MVNRepository has a relevant

category as well, however it does not present any automatically generated tags. The

project is not available in SourceForge.

4. Results for project com.googlecode.findbugs:annotations-3.0.0.jar

Sally MVNRepository SourceForge

confidence - 0.4905 None analysis Software Development

desired - 0.1426 annotations

annotation - 0.1280 Defect Detection Metadata

priority - 0.1197

warning - 0.1192

Table 5-4.: Computed categories for project annotations-3.0.0

Description:10 Annotation support for the FindBugs too, a program which uses static

analysis to look for bugs in Java code.

9http://www.stringtemplate.org/index.html
10http://findbugs.sourceforge.net/index.html



5.1 Experiment 1: Comparison With Online Tools 37

Table 5-4 shows that none the approaches is successful at describing the application

domain of the project at hand. Sally produces a set of categories that despite be-

ing related to the relevant application domain, are too specific and fail to provide

the necessary context to understand it. This situation arises because of the way the

dependency relations in the graph are analyzed and used as input for the approach

(e.g. only outgoing connections in the graph are taken into account). MVNRepository

also shows a similar situation with its tags although the terms are better at describ-

ing the domain of the project than the ones presented by Sally . SourceForge on the

other hand, presents a very wide category which does not provide useful information

to describe the project.

5. Results for project org.openrdf.sesame:sesame-rio-rdfjson-2.7.12.jar

Sally MVNRepository SourceForge

rdf - 0.4558 rdf - 0.3630 json Storage

json - 0.3234 datatype - 0.2123 Libraries

graph - 0.0780 owl - 0.1915 Semantic Web

literal - 0.073 statement - 0.1184 (RDF, OWL, etc.)

statement - 0.069 axiom - 0.1145

Table 5-5.: Computed categories for project semargl-sesame-0.6.1

Description:11 Rio parser and writer implementation for the RDF/JSON file format

included in the Sesame Framework, a powerful Java framework for processing and

handling RDF data. This includes creating, parsing, storing, inferencing and querying

over such data. It offers an easy-to-use API that can be connected to all leading RDF

storage solutions.

Table 5-5 shows that the automatic tagging approach from MVNRepository does not

extract all possible information for the analyzed project and is outperformed by both

Sally and SourceForge. It is important to recall that although both SourceForge and

Sally produced similar results, the categories presented by SourceForge were manually

assigned, while the ones presented by Sally were automatically obtained without any

interaction from developers.

11http://rdf4j.org/
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RQ1: SourceForge

Categories in SourceForge are selected manually by developers, which allows them to have

some control over the indexing of their projects on the site. However, this allows for am-

biguous categorizations and the assignation of categories that do not correspond to the real

purpose or domain application of projects. Also, since the set of categories is predefined,

there are categories in the site that are too broad to give useful information, (e.g. Software

Development, Framework, Libraries, etc.). It is important to keep in mind that SourceForge

is not commonly used to host projects as a set of libraries that depend on each other as the

Maven Central repository is, it is rather oriented towards hosting standalone applications or

self-contained libraries. This evidenced two particular consequences: First, that even though

all projects declared as dependencies in the pom file that was used to form the corpus be-

longed to the net.sourceforge groupId, a large amount (37%) of transitive dependencies

were not available in SourceForge. This subject is mentioned in depth in the discussion of

research question 3. The second consecuence is that since Maven software projects are gen-

erally divided into modules that have particular functions inside the project, by using the

SourceForge categorization scheme (e.g ignoring these modules) all modules get classified

under the same category although this is not necessarily correct and could lead to overly

broad categories for projects.

We identified 41 projects out of the 106 projects from the repository present in SourceForge

(39%) as being categorized under an overly broad category. For 38 out of these 41 projects,

Sally was able to produce more specific categories than those given by SourceForge. In most

of the cases where developers assigned appropriate and specific categories, Sally was able to

generate terms closely related to them. We conclude that Sally generates more descriptive

categories for Maven projects than SourceForge. However, for standalone applications that

are categorized under a specialized category in a manual fashion, we can not say that Sally

produces better categories because there are high-level concepts that can not be abstracted

only by looking at information obtained from bytecode.

RQ2: MVNRepository

MVNRepository assigns tags to projects by extracting information from their pom file12.

Unlike SourceForge, MVNRepository is focused solely on Maven projects, this allows us to

do a better comparison with Sally. Manual examination showed that in most cases, Sally is

able to generate tags that are at least as descriptive as those generated by MVNRepository.

12We do not include categories in the comparison because we do not have information about how they are

assigned to projects
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For 27 out of the 167 projects in the repository (16%), at least one of the categories generated

by Sally exactly matched one or more tags from MVNRepository. Additionally, there are 66

projects (≈ 40%) for which MVNRepository does not have any tag assigned but Sally does.

Moreover, there is only 1 project for which MVNRepository has a tag and Sally does not:

javax.inject-1.jar and the assigned tag is javax, which is filtered by Sally because we do not

consider file names to be valid categories (e.g project activation.jar can not have a category

named activation).

When present, tags assigned by MVNRepository were mostly considered appropriate for the

projects they were assigned to. However, since these tags depend on the description tag

from the pom file while the ones generated by Sally do not, in the majority of cases Sally

was able to produce more descriptive tags for Maven projects than MVNRepository.

RQ3: Availability of categories

In order to measure category availability, we counted the number of projects that were in-

dexed on the sites but had no categories or tags assigned. Table 5-6 depicts these quantities.

The number of projects that were not categorized by Sally is minimal compared to the num-

ber of projects without categories or tags assigned by the other approaches. This is a direct

consequence of the fact that Sally does not rely in any source different to bytecode.

Sally MVNRepository SourceForge

Primary Secondary Categories Tags Categories

2 71 93 67 23

1.20% 42.51% 56.36% 40.6% 21.69%

Table 5-6.: Number of projects without categories per approach.

Since both SourceForge and MVNRepository need a certain set of conditions to be met in

order to be able to categorize a project (i.e. manual categorization for SourceForge and a

descriptive pom file for MVNRepository), we can conclude that the availability of categories

of Sally is superior than those of SourceForge and MVNRepository.
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5.1.3. Conclusion

We compared Sally to two popular online tools with different categorization schemes and

found that both SourceForge and MVNRepository have weaknesses that our proposed ap-

proach does not. The success of the categorization made by SourceForge strongly depends

on developers carefully choosing categories for their projects. On the other hand, the success

of the categorization scheme applied by MVNRepository depends on developers adding a de-

scription of their projects on the pom files; neither of the requirements can be guaranteed to

be fulfilled at all times. Results obtained from this experiment show that Sally can produce

competitive results without the need for any special requirements from developers.

Comparing tags from MVNRepository and categories from SourceForge to the categories

generated by Sally , we see that Sally can produce competitive and in various cases supe-

rior results in terms of how descriptive the generated categories are. Also, Sally is able to

produce categories in conditions under which neither SourceForge nor MVNRepository

can operate.

5.2. Experiment 2: MUDABlue

MUDABlue [14] is an unsupervised categorization approach based on Latent Semantic Anal-

ysis. We consider it a good baseline for comparison given the fact that both Sally and

MUDABlue are unsupervised thus neither approach requires a set of predefined categories

to work.

The MUDABlue method consists of 7 steps detailed below:

1. Identifier extraction

Only source code is considered for identifier extraction. Comments are left out because

the authors consider that the presence of copyright notices and the varying quality of

comments among software projects make them less useful for categorization.

2. Identifier-by-software matrix creation

Each software system is considered as a document and each identifier as a word to

create an identifier-by-software matrix.
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3. Identifier filtering

Identifiers that appear in only one software system or more than 50% of them are

removed. According to the authors, identifiers that appear on only one system do

not provide any useful input for LSA and identifiers that appear on more than half of

the projects may be general terms whose removal should not affect the result of the

categorization.

4. Latent Semantic Analysis

LSA[18] is applied on the filtered matrix. LSA is a statistical technique for inferring

the contextual meanings of terms based on Singular Value Decomposition (SVD).

5. Identifier clustering

Cosine similarities between all pairs of identifiers are calculated using the matrix from

the LSA result. Using these similarities, cluster analysis is applied in order to create

identifier clusters. Each of these clusters is considered to be a category.

6. Software clustering

Software systems that contain one or more identifiers belonging to an identifier cluster

are grouped together. These groups are referred to as software clusters.

7. Cluster labeling

To create labels that describe the software systems contained in each cluster, all iden-

tifier vectors comprised in the cluster are added together and the ten identifiers that

have the highest values are concatenated to create its label.

Our implementation of MUDABlue is written as a python script; Gensim was used for LSI,

corpus processing tasks and cosine similarity calculation. To the best of our knowledge, we

have implemented MUDABlue as its authors describe it. In [14], specific details as the exact

cluster creation algorithm, whether identifier clustering is done in a fuzzy or hard fashion

and the exact parameters used for LSI are omitted. In our implementation, identifier clusters

were created by grouping together identifiers for which the similarity score was greater than

0.8 and each one was allowed to belong to multiple clusters. Identifiers were obtained by

using the ASM bytecode manipulation framework and stemmed using Apache Lucene. This

is the same process used for the proposed categorization approach described in Chapter 4.
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5.2.1. Preliminary Results

MUDABlue generated 744 categories for this corpus by following the procedure described

in section 5.2, results are available at http://bit.ly/mblueresults. On average, each

library was labeled with approximately 51% of the generated categories and each category

was assigned to 51% of libraries. This indicates that categories were distributed over the

whole repository rather than concentrating on a small set of libraries. Figure 5-3 shows

how categories were distributed over libraries and vice versa. It is evident that a very high

number of categories was assigned to each library, this could produce adverse results when

searching for a library in the repository since a query could return too many matches.

0 50 100 150

(a) Libraries per category

0.1 0.3 0.5 0.7 0.9

(b) Libraries per category (relative)

0 200 400 600 800

(c) Categories per library

0.1 0.3 0.5 0.7 0.9

(d) Categories per library (relative)

Figure 5-3.: Summary of the distribution of categories given by MUDABlue to the libraries

in the corpus. Figures 5-3a and 5-3b show how many libraries belong to each

cluster (are labeled with each category). Figures 5-3c and 5-3d show how many

categories were assigned to the libraries in the corpus.

Regarding cluster titles, Table 5-7 shows an excerpt of the titles obtained for generated cate-

gories. The terms that comprise the titles do not seem to be closely related, which can make

significantly different projects to be classified under the same category. To further explain

this issue, Table 5-8 shows some of the libraries that were labeled with category 205 (install,

endian, circle, emacscript, keyup, keydown, mousedown). The libraries shown in this table

are related to domains as web testing, graphics, XML file processing, DOM manipulation,

Input/Output and Logging. There does not seem to be a strong relation between them that

would lead a manual categorization process to produce this same grouping.

http://bit.ly/mblueresults
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Cluster id Category name Size

622 entries, external, grid, human 101

666 build, destroy, alt, apache 101

84 bind, image, clean, timer, indicator, addr, acc, producer, png,

asymmetric

102

329 tag, evaluate, domain, day, arithmetic, regexp, azimuth, similar 102

584 modified, lang, mutex 102

604 build, common, authority, color, collapse, closure, banner 102

615 event, execute, evaluate, exclude, exec, exe 102

12 condition, marker, http, destroy, decoration, diff, mpeg 103

59 search, label, limiting, bracket, slot, busy, boot, drawable 103

384 change, manager 103

Table 5-7.: Excerpt of titles obtained for categories by MUDABlue

Cluster 205: (install, endian, circle, emacscript, keyup, keydown, mousedown)

Library

findbugs-3.0.0.jar batik-svg-dom-1.7.jar

htmlunit-2.15.jar commons-io-2.4.jar

htmlunit-core-js-2.15.jar xalan-2.7.1.jar

jackson-core-2.2.1.jar commons-lang3-3.3.2.jar

logback-classic-0.9.28.jar dom4j-1.6.1.jar

Table 5-8.: Excerpt of libraries belonging to cluster 205

These results lead us to think that MUDABlue is not a good approach for categorizing

Maven repositories since the identifiers obtained from the libraries belonging to them may

be significantly more related than those extracted from repositories of standalone software

projects such as SourceForge, which produced good results in the past. Nevertheless, a user

study was conducted in order to determine how Sally and MUDABlue compare on the task

of categorizing repositories of Maven projects.
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5.2.2. User study

We conducted an evaluative survey to assess the proposed categorization approach. The

goal of the survey was to compare the categories generated by MUDABlue and the ones

generated by Sally in terms of their Expressiveness and Completeness related to the purpose

and application domain of selected projects. Expressiveness refers to how much information

the set of terms provide about the purpose / application domain of the library. Completeness

on the other hand, refers to the measure of how much of the purpose / application domain

of the library is described by the terms. The context of the survey is a set of 50 randomly

selected projects from the corpus used for Experiment 1 and the preliminary experiment

with MUDABlue.

Research Questions

The relevant research questions are presented below:

• RQ4:How do the categories produced by Sally and MUDABlue compare in terms of their

Completeness?

• RQ5:How do the categories produced by Sally and MUDABlue compare in terms of their

Expressiveness?

We define Edomain and Epurpose to represent the Expressiveness of the categories for describing

the application domain and purpose of the projects respectively. Similarly, Cdomain and

Cpurpose represent the Completeness of the categories for describing the application domain

and purpose of projects.

Both research questions directly aim at comparing the categories generated by the ap-

proaches. To answer them, we asked developers to rate the 10 terms that form category

names for MUDABlue and 10 terms generated by Sally for each of the 50 projects using

a Likert scale. The terms obtained from Sally correspond to 5 primary categories and 5

secondary categories. When no secondary categories were available, 10 primary categories

were extracted. All terms were presented to developers without the relevance measure to

avoid negative effects on the validity of the study.
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Data Collection Process

To find out the perceptions of developers about the terms generated by both approaches,

5 different online surveys, each containing 10 projects for evaluation were created using

Google Forms13. The survey included demographic questions intended for measuring the

programming experience of participants taken from the work done by Feigenspan et al. [8],

the employed guidelines for the survey design were the following:

1. Participants should have enough information for them to understand the purpose and

application domain of a project before rating its assigned categories. To ensure this,

each question presented both a description of the project to evaluate as well as a link

to its official website.

2. We should obtain information about the rationale behind the ratings given by devel-

opers. With this in mind, participants were asked to give a brief description of the

reasons behind their ratings.

3. The survey should not take more than 45 to 50 minutes to be completed to reduce the

possibility of quick answers and drop-out. We estimated that each question would take

between 4 and 5 minutes to be answered so each survey type contained 10 questions.

Figure 5-4 shows one of the questions that were present on the surveys. It contains the

description of the library spring-context-2.5.6.jar as well as a link to the official project

site. Participants are asked to rate Expressiveness and Completeness of the presented sets of

terms regarding their ability to describe the domain application and purpose of the library,

after this, they are asked to give a brief description of the rationale behind the assigned

rating.

Results

14 participants completed the survey, which ensured that the categories generated for each

project were evaluated at least twice. Figures 5-5a and 5-5b depict the background infor-

mation we gathered with the questions taken from [8]. The demographic questions that were

included in the survey are the following:

1. DQ1: On a scale from 1 to 10, how do you estimate your programming experience?

2. DQ2: On a scale from 1 to 5, how do estimate your experience with the Java program-

ming language?

13http://forms.google.com
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Figure 5-4.: Sample question taken from the survey.

3. DQ3: What has been the typical size of the professional projects you have worked on?

(Small for less than 900 lines of code. Medium for 901 to 4000 lines of code. Large for

more than 4000)

4. DQ4: For how many years have you been programming?
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Figure 5-5.: Summary of reponses to demographic questions.

RQ4: Completeness

Figure 5-6a depicts the ratings given by developers to the terms provided by both approaches

with regard to their completeness. It can be seen that Sally substantially outperformed

MUDABlue, e.g. Sally obtained a score greater or equal to 3 on 72% of the evaluations vs

26% for MUDABlue and the highest possible score on 15% of the evaluations vs 1.4%.

RQ5: Expressiveness

Regarding Expressiveness, similar results were obtained and Sally is shown to be superior.

For example, Figure 5-6b shows that sally obtained a score greater or equal to 3 on 76%

of the evaluations vs 28% for MUDABlue and the highest possible score on 16.8% of the

evaluations vs 1.1%.
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Figure 5-6.: Amount of evaluations per rating for both approaches

Both the results obtained in the preliminary experiment described in section 5.2.1 and the

user study suggest that Sally is superior to MUDABlue for categorizing Maven projects.

However, it is important to consider that MUDABlue was not developed with the intention

of being used on these kind of repositories while Sally was specifically designed for this

particular use case.

To validate that the results for each property (i.e., Edomain, Epurpose, Cdomain, Cpurpose)

are statistically significant, when comparing the answers for Sally and MUDABlue, we

used the Mann-Whitney test [6] with α = 0.05. We also computed the Cliff’s delta d

effect size [10] to measure the magnitude of the difference. We followed the guidelines

in [10] to interpret the effect size values: negligible for |d| < 0.147, small for 0.147 ≤
|d| < 0.33, medium for 0.33 ≤ |d| < 0.474 and large for |d| ≥ 0.474.). Because we are

not assuming population normality and homogeneous variances, we used non-parametric

methods (Mann-Whitney test, and Cliff’s delta). In all the pairwise comparisons (e.g.,

Edomain(Sally) vs Edomain(MUDABlue)) we found statistical significance (i.e., p-value<

0.05), and the magnitude of the difference is large according to the Cliff’s delta coefficient.
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Analysis of Open Questions

In general, participants perceived the categories assigned by MUDABlue to be either too

general or to be completely unrelated to the project they were attempting to describe. In

some cases, results obtained by Sally were said to contain words that were unrelated to the

projects. The effect of these “less related” categories is mitigated by the use of the relevance

measure described in Chapter 4, however, this measure was not presented to the participants

in order to guarantee a valid comparison between both approaches.



6. Conclusions

This thesis presents an approach for performing automatic multi-label categorization of Java

applications that use Maven as a project management tool. In order to do so, Sally only

needs to have access to the bytecode of projects that are to be categorized, a requirement

easily fulfilled by development environments that use Maven. Sally extracts identifiers from

projects, filters them by using tags from StackOverflow as a knowledge base of software

engineering and weights them using TF-IDF. Additionally, Sally extracts dependency infor-

mation from projects to construct a dependency graph which is later used for another key

aspect of the model; category propagation. Using all this information, the model is able to

produce categories that are both curated using the knowledge of software developers and

weighted according to their relevance for each of the projects, all of this without needing

any special action from developers such as adding their own categories or describing their

projects using natural language.

All the information obtained from the model is made available to its users via an intuitive

web application that besides allowing them to search and browse through the repository,

helps them to augment the context of the presented categories using two more features. A

tag cloud in which the size of each tag visually represents its relative importance to the

project at hand and a concept definition module, an extensible tool that allows Sally to

obtain the definitions of presented tags using different sources of information.

Moreover, we compared Sally with popular online tools with different schemes for catego-

rization of projects (namely SourceForge and MVNRepository) and to MUDABlue[14], a

similar approach presented in the past which depends on source code and is also able to

produce category names without the intervention of developers.
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The comparison to available online alternatives shed light on the weaknesses of categorization

schemes that need participation of developers in one way or another. For SourceForge,

many projects can end up without any assigned category if developers choose not to add

any or if they consider that the predefined set of categories offered by SourceForge does not

contain one that properly describes their projects. With regard to this prior definition of

the set of categories, it was discovered that on many cases it leads to overly broad categories

being assigned to projects that can be described with more specific tags. To deal with

this problems, SourceForge allows developers to add any number of free text tags to their

projects, but this adds problems related to naming and noise to the category set. In the

case of MVNRepository, for the approach to be able to generate tags it its necessary that

development teams have the discipline to always add and properly populate the description

tag of their pom files.

The comparison with MUDABlue showed that the characteristics of Maven repositories can

influence negatively the performance of automatic categorization approaches that performed

satisfactorily on different kinds of repositories. It is important to mention that MUDABlue

was not conceived as a tool for categorizing Maven repositories and that as it was originally

presented, it depends on identifiers extracted from source code and not bytecode. It is

possible that these particular experiment settings affected the capacity of MUDABlue to

produce useful categories for the categorization corpus.

To assess the quality of the categorization produced by Sally we conducted a survey with

developers with a wide range of programming experience. By only comparing the perfor-

mance to that of MUDABlue we cannot ensure that the categorization produced by Sally is

perceived to be good by developers. However, we can look at some other aspects extracted

from the survey:

• Over 45% of the scores given to Sally in both expressiveness and completeness were

greater or equal to 4.

• In most cases, developers reported to be able to convey the purpose of the presented

projects by looking at the categories generated by Sally .

Furthermore, some of the developers mentioned that they were able to understand the pur-

pose of the libraries because they already knew the terms that were presented to them. This

helps support the need for the Concept Definition module presented in Chapter 4.

To conclude, we have not only presented a competitive approach that provides meaningful

and descriptive labels for projects, we have also shown that it is possible to do so without

relying heavily on Machine Learning techniques.



A. Appendix: Experiments corpus

Table A-1 shows the set of projects that were used for the experiments described in Chapter

5.

GroupId ArtifactId Version Scope

1 antlr antlr 2.7.7 compile

2 aopalliance aopalliance 1.0 compile

3 bouncycastle bcprov-jdk15 140 compile

4 ch.qos.logback logback-classic 0.9.28 compile

5 ch.qos.logback logback-core 0.9.28 compile

6 com.beust jcommander 1.27 compile

7 com.fasterxml.jackson.core jackson-annotations 2.3.0 runtime

8 com.fasterxml.jackson.core jackson-core 2.2.1 runtime

9 com.fasterxml.jackson.core jackson-databind 2.3.3 runtime

10 com.github.jsonld-java jsonld-java 0.5.0 runtime

11 com.github.jsonld-java jsonld-java-sesame 0.5.0 runtime

12 com.google.code.findbugs annotations 3.0.0 compile

13 com.google.code.findbugs bcel-findbugs 6.0 compile

14 com.google.code.findbugs findbugs 3.0.0 compile

15 com.google.code.findbugs jFormatString 3.0.0 compile

16 com.google.code.findbugs jsr305 3.0.0 compile

17 com.google.guava guava 17.0 compile

18 com.google.inject guice 4.0-beta compile

19 com.google.inject.extensions guice-multibindings 4.0-beta compile

20 com.sun tools 0 system

21 commons-codec commons-codec 1.9 compile

22 commons-collections commons-collections 3.2.1 compile

23 commons-io commons-io 2.4 compile

24 commons-lang commons-lang 2.6 compile

25 commons-logging commons-logging 1.1.3 compile

26 dom4j dom4j 1.6.1 compile

27 javax.activation activation 1.1 compile
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28 javax.inject javax.inject 1 compile

29 javax.mail mail 1.4.5 compile

30 javax.servlet servlet-api 2.5 compile

31 jaxen jaxen 1.1-beta-8 compile

32 jdom jdom 1.0 compile

33 jfree jcommon 1.0.15 compile

34 jfree jfreechart 1.0.12 compile

35 jivesoftware smack 3.1.0 compile

36 jivesoftware smackx 3.1.0 runtime

37 junit junit 3.8.1 compile

38 log4j log4j 1.2.17 compile

39 net.java.dev.javacc javacc 5.0 compile

40 net.sf.trove4j trove4j 3.0.3 compile

41 net.sourceforge.argparse4j argparse4j 0.4.4 compile

42 net.sourceforge.barbecue barbecue 1.5-beta1 compile

43 net.sourceforge.cobertura cobertura 2.0.3 compile

44 net.sourceforge.collections collections-generic 4.01 compile

45 net.sourceforge.cssparser cssparser 0.9.14 compile

46 net.sourceforge.floggy floggy-persistence-framework 1.4.0 compile

47 net.sourceforge.htmlcleaner htmlcleaner 2.9 compile

48 net.sourceforge.htmlunit htmlunit 2.15 compile

49 net.sourceforge.htmlunit htmlunit-core-js 2.15 compile

50 net.sourceforge.jadex jadex-applib-bdi 2.4 compile

51 net.sourceforge.jadex jadex-bridge 2.4 compile

52 net.sourceforge.jadex jadex-commons 2.4 compile

53 net.sourceforge.jadex jadex-javaparser 2.4 compile

54 net.sourceforge.jadex jadex-kernel-application 2.4 compile

55 net.sourceforge.jadex jadex-kernel-base 2.4 compile

56 net.sourceforge.jadex jadex-kernel-bdi 2.4 compile

57 net.sourceforge.jadex jadex-kernel-bdibpmn 2.4 compile

58 net.sourceforge.jadex jadex-kernel-bpmn 2.4 compile

59 net.sourceforge.jadex jadex-kernel-component 2.4 compile

60 net.sourceforge.jadex jadex-kernel-extension-envsupport 2.4 compile

61 net.sourceforge.jadex jadex-kernel-micro 2.4 compile

62 net.sourceforge.jadex jadex-model-bpmn 2.4 compile

63 net.sourceforge.jadex jadex-platform 2.4 compile

64 net.sourceforge.jadex jadex-platform-base 2.1 compile

65 net.sourceforge.jadex jadex-rules 2.4 compile
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66 net.sourceforge.jadex jadex-rules-eca 2.4 compile

67 net.sourceforge.jadex jadex-tools-base 2.4 compile

68 net.sourceforge.jadex jadex-tools-base-swing 2.4 compile

69 net.sourceforge.jadex jadex-xml 2.4 compile

70 net.sourceforge.javacsv javacsv 2.0 compile

71 net.sourceforge.jchardet jchardet 1.0 compile

72 net.sourceforge.jeuclid jeuclid-core 3.1.9 compile

73 net.sourceforge.jexcelapi jxl 2.6.12 compile

74 net.sourceforge.jtds jtds 1.3.1 compile

75 net.sourceforge.jtransforms jtransforms 2.4.0 compile

76 net.sourceforge.jwebunit jwebunit-core 3.2 compile

77 net.sourceforge.jwebunit jwebunit-htmlunit-plugin 3.2 compile

78 net.sourceforge.messadmin MessAdmin-Core 4.1.1 compile

79 net.sourceforge.nekohtml nekohtml 1.9.21 compile

80 net.sourceforge.owlapi owlapi-api 4.0.0 compile

81 net.sourceforge.owlapi owlapi-apibinding 4.0.0 compile

82 net.sourceforge.owlapi owlapi-distribution 4.0.0 compile

83 net.sourceforge.owlapi owlapi-impl 4.0.0 compile

84 net.sourceforge.owlapi owlapi-parsers 4.0.0 compile

85 net.sourceforge.owlapi owlapi-util 3.3 compile

86 net.sourceforge.plantuml plantuml 8008 compile

87 net.sourceforge.pmd pmd 5.1.3 compile

88 net.sourceforge.reb4j net.sourceforge.reb4j 2.1.0 compile

89 net.sourceforge.saxon saxon 9.1.0.8 compile

90 net.sourceforge.serp serp 1.14.1 compile

91 net.sourceforge.stripes stripes 1.5.8 compile

92 net.sourceforge.wurfl wurfl 1.3.1.1 compile

93 org.antlr antlr-runtime 3.1.3 compile

94 org.antlr stringtemplate 3.2 compile

95 org.apache.ant ant 1.8.3 compile

96 org.apache.ant ant-launcher 1.8.3 compile

97 org.apache.commons commons-lang3 3.3.2 compile

98 org.apache.directory.studio org.apache.commons.io 2.4 compile

99 org.apache.httpcomponents httpclient 4.3.3 compile

100 org.apache.httpcomponents httpclient-cache 4.2.5 runtime

101 org.apache.httpcomponents httpcore 4.3.2 compile

102 org.apache.httpcomponents httpmime 4.3.3 compile

103 org.apache.xmlgraphics batik-anim 1.7 compile
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104 org.apache.xmlgraphics batik-awt-util 1.7 compile

105 org.apache.xmlgraphics batik-css 1.7 compile

106 org.apache.xmlgraphics batik-dom 1.7 compile

107 org.apache.xmlgraphics batik-ext 1.7 compile

108 org.apache.xmlgraphics batik-parser 1.7 compile

109 org.apache.xmlgraphics batik-svg-dom 1.7 compile

110 org.apache.xmlgraphics batik-util 1.7 compile

111 org.apache.xmlgraphics batik-xml 1.7 compile

112 org.apache.xmlgraphics xmlgraphics-commons 1.3.1 compile

113 org.ccil.cowan.tagsoup tagsoup 0.9.7 compile

114 org.eclipse.jetty jetty-http 8.1.15 compile

115 org.eclipse.jetty jetty-io 8.1.15 compile

116 org.eclipse.jetty jetty-util 8.1.15 compile

117 org.eclipse.jetty jetty-websocket 8.1.15 compile

118 org.functionaljava functionaljava 3.1 compile

119 org.jdom jdom2 2.0.5 compile

120 org.mortbay.jetty jetty 6.1.14 compile

121 org.mortbay.jetty jetty-util 6.1.14 compile

122 org.mortbay.jetty servlet-api-2.5 6.1.14 compile

123 org.mozilla rhino 1.7R3 compile

124 org.openengsb.wrapped net.sourceforge.htmlunit-all 2.8.w1 compile

125 org.openrdf.sesame sesame-model 2.7.12 compile

126 org.openrdf.sesame sesame-rio-api 2.7.12 compile

127 org.openrdf.sesame sesame-rio-binary 2.7.12 runtime

128 org.openrdf.sesame sesame-rio-datatypes 2.7.12 runtime

129 org.openrdf.sesame sesame-rio-languages 2.7.12 runtime

130 org.openrdf.sesame sesame-rio-n3 2.7.12 runtime

131 org.openrdf.sesame sesame-rio-nquads 2.7.12 runtime

132 org.openrdf.sesame sesame-rio-ntriples 2.7.12 runtime

133 org.openrdf.sesame sesame-rio-rdfjson 2.7.12 runtime

134 org.openrdf.sesame sesame-rio-rdfxml 2.7.12 runtime

135 org.openrdf.sesame sesame-rio-trig 2.7.12 runtime

136 org.openrdf.sesame sesame-rio-trix 2.7.12 runtime

137 org.openrdf.sesame sesame-rio-turtle 2.7.12 runtime

138 org.openrdf.sesame sesame-util 2.7.12 compile

139 org.ow2.asm asm 4.1 compile

140 org.ow2.asm asm-analysis 4.1 compile

141 org.ow2.asm asm-commons 4.1 compile
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142 org.ow2.asm asm-debug-all 5.0.2 compile

143 org.ow2.asm asm-tree 4.1 compile

144 org.ow2.asm asm-util 4.1 compile

145 org.semarglproject semargl-core 0.6.1 runtime

146 org.semarglproject semargl-rdf 0.6.1 runtime

147 org.semarglproject semargl-rdfa 0.6.1 runtime

148 org.semarglproject semargl-sesame 0.6.1 runtime

149 org.slf4j jcl-over-slf4j 1.6.6 compile

150 org.slf4j slf4j-api 1.7.7 compile

151 org.springframework spring-beans 2.5.6 compile

152 org.springframework spring-context 2.5.6 compile

153 org.springframework spring-core 2.5.6 compile

154 org.springframework spring-web 2.5.6 compile

155 org.w3c.css sac 1.3 compile

156 oro oro 2.0.8 compile

157 regexp regexp 1.3 compile

158 xalan serializer 2.7.1 compile

159 xalan xalan 2.7.1 compile

160 xerces xercesImpl 2.11.0 compile

161 xerces xmlParserAPIs 2.6.2 compile

162 xml-apis xml-apis 1.4.01 compile

163 xml-apis xml-apis-ext 1.3.04 compile

164 xom xom 1.0b3 compile

Table A-1.: Categorization corpus
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