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Abstract

Three methods will be used to evaluate the surface global irradiance: radiative transfer

theory, empirical regression, and artificial neural networks (ANN). Radiative transfer is the

fundamental theory that describes the propagation of radiation through a medium; empirical

regression predicts surface global irradiance in simple parameterizations; artificial neural

network, as an artificial intelligence technique, can also be tried to assess the surface global

irradiance. These three approaches are studied in the present work. Data from the station

“EL IDEAM” were used in the modeling experiments built upon these approaches to evaluate

the daily transparency, also known as clearness index. We found out that the optimal inputs

for artificial neural networks are extraterrestrial irradiance, surface relative humidity, and

a pollution index based on particulate matter of sizes less than 10µm (PM10). Surface

relative humidity was suggested in a regression trial under meteorological conditions of “EL

IDEAM”. By means of the programming code DISORT for the solution of the radiative

transfer equation, daily irradiance characteristics were analyzed, and a hybrid model was

created. Our results showed that artificial neural network produces higher scores than the

other methods, though advantages and drawbacks are also discussed and compared.

keywords: surface global irradiance, clearness index, linear regression, artificial

neural network, radiative transfer, DISORT.
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1. Introduction

Solar energy is the predominant driving force responsible for most activities on Earth, the

form of which is electromagnetic radiation. After a little more than 8 minutes of an undis-

turbed journey, a solar beam intercepted by the Earth will undergo some changes. The

intensity at the top of the Earth’s atmosphere is fairly stable, by virtue of the steady output

of the Sun’s burning rate and the small eccentricity of the Earth’s orbit. Our concern here is

the energy amount that will be able to reach the surface, an amount known as the global irra-

diance, whose prediction is complicated due to the interference of the Earth’s ever-changing

atmosphere.

The general purpose of this thesis is assessment of solar irradiance by indirect measurements.

For that purpose the theory of radiative transfer, originally developed by astrophysicists,

is available in an ever increasing wealth of treatises and at a highly sophisticated mathe-

matical level. Radiative transfer is the fundamental theory that describes how radiation

passing materials is modified. It has been codified since the important treatise by Chan-

drasekhar (1950). The radiative transfer equation (RTE), which is the master equation of

the whole transfer theory, is an integro-differential equation that challenges both mathe-

matical methods of solution and computational programming of its discrete form. Many

techniques have been developed to seek at least approximate solutions. The complexity rises

when the physical process of radiative transfer involves many factors, most of which hinge

on radiative properties of materials along the path and thermodynamic conditions along it.

That makes parameterization or simplifications unavoidable in actual applications. Models

of our atmosphere can be simplified based on data available.

One of the most notable and long-tested “parameterizations” is the empirical method of

Ångström and Prescott (Ångström 1924; Prescott 1940) called Ångström–Prescott regres-

sion. Its simplest depends on only one variable—sunshine duration. It is widely used in areas

where direct measurement equipment is not available. Besides Ångström–Prescott regres-

sion, there are countless numbers of other regression models that try to explore relationships

between global solar irradiance and other atmospheric variables.

It was not until the last decades that artificial neural networks (ANN) attracted atten-

tion among application-minded researchers, especially since computing power has become so

widely available. ANN belongs to the artificial intelligence technique called machine learn-

ing, by which a computer learns patterns of existing data, to predict new data through
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“training”. Since application to global irradiance, many authors draw the conclusion that

ANN can predict results that are superior to traditional regression methods (Elminir et al.

2007; Jiang 2008).

The particular purposes of the present work then, are to explore the three approaches:

radiative transfer, empirical regression and neural network, by studying their theories and

characteristics, then by doing numerical experiments with recorded data.

Following this introductory Chapter 1, Chapter 2 is devoted to the theory of radiative trans-

fer, while empirical methods and neural network technique are discussed in Chapter 3. Chap-

ter 4 deals with the data, while Chapter 5 builds models based on different approaches with

an analysis of the prediction results, beginning with empirical regression, continued neural

network, and then proceeding to consider the radiative transfer approach. Finally Chapter 6

discusses the conclusions. Validation procedures for the dataset is left to Appendix B.



2. Radiative transfer

2.1. Fundamentals and prerequisites

If monochromatic intensity of radiation is denoted by Iν , defined by a vector in the direc-

tion of propagation flux per unit of area and solid angle, the monochromatic net flux (or

irradiance) in direction n (perpendicular to a unit area) can be written as:

Qν(n) =

∫
4π

Iν(Ω) · n dΩ, (2.1)

where dΩ is an infinitesimal solid angle. In spherical polar coordinates, with zenith angle θ

and azimuthal angle φ, the integral over solid angles becomes
∫

4π
dΩ =

∫ 2π

0

∫ π
0

sin θ dθ dφ.

Letting n be the direction for which θ = 0, we find Iν(Ω) · n = Iν(θ, φ) cos θ, so that,

Eq. (2.1) becomes

Qν(nθ=0) =

∫ 2π

0

∫ π

0

Iν(θ, φ) cos θ sin θ dθ dφ. (2.2)

The net energy crossing an area ∆A (perpendicular to n) in a certain interval of time ∆t

and a frequency band of ∆ν is found by multiple integrations:

E(nθ=0) =

∫
∆t

∫
∆ν

∫
∆A

∫ 2π

0

∫ π

0

Iν(θ, φ) cos θ sin θ dθ dφ dAdν dt. (2.3)

Light passing through some interactive material, is subject to the processes of absorption,

scattering and emission. The fundamental radiative transfer equation describing the inter-

actions can be expressed in terms of extinction of the intensity and sources of radiation,

Sν :

− dIν(s, θ, φ)

κνρ ds
= Iν(s, θ, φ)− Sν(s, θ, φ). (2.4)

ρ refers to the density of the interactive material of mass extinction coefficient denoted as κν .

Eq. (2.4) describes how radiation dIν varies along with infinitesimal path ds in the material.

Our goal is to estimate or calculate irradiance or flux density, and for that we need to make

several simplifications, among which we mention the following ones:

1. Radiation is assumed to be unpolarized, which means that, only the first component

of the Stokes vector, the intensity I, is taken into account.



4 2 Radiative transfer

2. The Earth’s atmosphere will be regarded as a horizontally plane-parallel medium, that

is, we ignore the curvature of the Earth, on account of the fact that the atmosphere is

very thin compared to the radius of the Earth.

3. Solar radiation can be regarded as parallel or as a collimated beam at the Sun-Earth

distance, in view of the Earth’s disk area intercepting the Sun’s radiation.

4. Our atmosphere is grey in a first and crude approximation, i.e., it is taken to be a

wavelength-indifferent medium.

5. All processes involving long-wave radiation, namely, radiation whose wavelength is by

definition longer than 4µm, are not of concern, because its contribution to solar energy

received at surface is negligible.

6. Azimuthal independence in scattering processes. Azimuthal dependency can be ac-

counted for by carrying out a Fourier decomposition.

Based on the second simplification, if we define

τν =

∫ ∞
s

βe ds
′ =

∫ ∞
s

κνρ ds
′ (2.5)

as optical depth in a plane-parallel atmosphere, and calling βe = κνρ the extinction coeffi-

cient, then Eq. (2.4) can be written in the form

µ
dIν(τν , µ, φ)

dτν
= Iν(τν , µ, φ)− Sν(τν , µ, φ) (2.6)

as new independent angular variable with µ ≡ cos θ. Note that µ < 0 indicates downward

directions of radiations, as in the case of the solar beam in our atmosphere. Furthermore,

the fourth simplification implies that, the subscript “ν” can be suppressed henceforward.

The general solution of the inhomogeneous first-order differential equation (2.6) is:

I(τ, µ, φ) = I(τ0, µ, φ)e−
τ0−τ
µ − 1

µ

∫ τ

τ0

S(τ ′, µ, φ)e−
τ ′−τ
µ dτ ′. (2.7)

Following the third simplification, the solar radiation outside the atmosphere could be viewed

as being restrained to a single angle with cosine −µ0, then we denote I(0,−µ0, φ) as the

downwards extraterrestrial radiation at the top of atmosphere(TOA), which can be expressed

more rigorously as (Pelkowski 2007):

I(0,−µ0, φ) =
Q↓0
2
δ(µ+ µ0)[1−H(µ)]δ(φ− φ0). (2.8)

Q↓0 is the extraterrestrial downward irradiance, δ and H is the delta-function and the Heav-

iside step function respectively. Now, substituting τ0 = 0, µ = −µ0 into Eq. (2.7) leads

to:
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I(τ, µ < 0, φ) = I(0,−µ0, φ)e
τ
µ − 1

µ

∫ τ

0

S(τ ′, µ, φ)e−
τ ′−τ
µ dτ ′. (2.9)

The two terms on the right-hand side of Eq. (2.7) or (2.9) respectively represents the direct

and the diffuse radiation in a medium, this separation of the radiation field could be expressed

by:

I(τ, µ, φ) = I�(τ, µ, φ) + I∗(τ, µ, φ), (2.10)

where I� stands for the direct radiation, the radiation coming directly from the Sun’s disk in

the sky; and I∗ stands for the diffuse radiation, the radiation field coming from any direction

from the sky, after interaction with the medium. Boundary conditions at the TOA for I�

and I∗ can be determined:

I�(τ = 0, µ > 0, φ) = I∗(τ = 0, µ < 0, φ) = 0,

I�(τ = 0, µ < 0, φ) = I(0,−µ0, φ).
(2.11)

Comparing Eqs. (2.9) and (2.10), we might write the direct component as:

I�(τ, µ < 0, φ) = I(0,−µ0, φ)eτ/µ, (2.12)

and the diffuse component as:

I∗(τ, µ < 0, φ) = − 1

µ

∫ τ

0

S(τ ′, µ, φ)e−
τ ′−τ
µ dτ ′. (2.13)

Notice that Eq. (2.12) is the solution of

µ
dI�(τ, µ, φ)

dτ
= I�(τ, µ, φ), (2.14)

by applying the boundary condition at TOA. Eq. (2.14) is usually known as Beer-Lambert-

Bouguer law. Replacing extraterrestrial radiation Eq. (2.8) into Eq. (2.12), we have the

expression of direct radiation in a given optical depth τ :

I�(τ, µ < 0, φ) = Q↓0δ(µ+ µ0)δ(φ− φ0)e
τ
µ . (2.15)

The diffuse component (Eq. (2.13)) that contains the source function S, to make physical

sense, convergence is required:

lim
τ→∞

S(τ)e−τ → 0. (2.16)

S can be decomposed in the form:

S(τ, µ, φ) = [1− ω̃(τ)]B(τ) +
ω̃(τ)

4π

∫ 2π

0

∫ 1

−1

P (τ, µ, φ, µ′, φ′)I(τ, µ′, φ′) dµ′ dφ′. (2.17)
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The first term on the right-hand side is the emission term, where B(τ) is Planck function,

ω̃ = 1−βa/βe is called single scattering albedo, βa is the absorption coefficient, 1−ω̃ describes

the absorption portion in an extinction event. If we do not care about longwave radiation

on the basis of the fifth simplification, B(τ) ≈ 0 for shortwave range in our atmosphere, and

then the emission term [1− ω̃(τ)]B(τ) is neglected; the second term on the right-hand side

is the scattering term, because of this term, we can see that the source function depends on

I, which brings in a major difficulty to radiative transfer calculations. If we denote Θ as the

scattering angle between incidence and observation directions, then,

cos Θ = Ω ·Ω′ = µµ′ + (1− µ2)1/2(1− µ′2)1/2 cos(θ − θ′). (2.18)

P (τ, µ, φ, µ′, φ′) is called the scattering phase function, describing the normalized angular

energy distribution of a single scattering event without polarization. It can be expanded

in Legendre polynomials by the addition theorem for spherical harmonics (Chandrasekhar

1960):

P (µ, θ, µ′, θ′) ≈
N∑
m=0

(2− δ0,m)

{
N∑
l=m

$m
l P

m
l (µ)Pm

l (µ′)

}
cosm(θ′ − θ), (2.19)

where Pm
l is the associated Legendre polynomial, and

$m
l = $l

(l −m)!

(l +m)!
(l = m, ..., N, 0 ≤ m ≤ N), δ0,m =

{
1 if m=0,

0 otherwise.
(2.20)

The zeroth moment of phase function, $0, is equal to unity due to the normalization; the

first moment is usually related to the asymmetry factor as g = $1/3, which describes to a

great extent the symmetry of a scattering event.

Now, substituting Eqs. (2.8), (2.10) and (2.17) into Eq. (2.6), we get:

µ
dI∗(τ, µ, φ)

dτ
= I∗(τ, µ, φ)− ω̃(τ)

4π
Q↓0P (τ, µ, φ,−µ0, φ0)e

− τ
µ0

− ω̃(τ)

4π

∫ 2π

0

∫ 1

−1

P (τ, µ, φ, µ′, φ′)I∗(τ, µ′, φ′) dµ′ dφ′, (2.21)

an integro-differential equation. On the right-hand side, the first term describes the attenu-

ation by extinction processes, the second term is due to the primary scattering of the direct

radiation, while the third term is associated with contributions of multiple scattering from

the diffuse radiation. If then the sixth simplification is applied, Eq. (2.21) reduces to:

µ
dI∗(τ, µ)

dτ
= I∗(τ, µ)− ω̃(τ)

4π
Q↓0P (τ, µ,−µ0)e

− τ
µ0 − ω̃(τ)

2

∫ 1

−1

P (τ, µ, µ′)I∗(τ, µ′) dµ′. (2.22)
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The main task of the rest of this chapter is to tackle Eq. (2.22). It is customary to treat

only the diffuse component in RTE, the direct component being estimated independently by

Eq. (2.12) or (2.14). Instead of the requirement of data for τ , ω̃ and P for solving Eq. (2.22),

only τ is needed for calculation of the direct radiation.

2.2. An overview of the main approaches for solving the

RTE

2.2.1. Discrete ordinates

The discrete ordinates approach, introduced by Chandrasekhar (1950), faces directly the

RTE. Replacing the integral over µ′ by a Gaussian quadrature formula, Eq. (2.22) can be

dealt with numerically:

µi
dI∗(τ, µi)

dτ
= I∗(τ, µi)−

ω̃(τ)

4π
Q↓0P (τ, µi,−µ0)e

− τ
µ0

− ω̃(τ)

2

n∑
j=−n

ajP (τ, µi, µj)I
∗(τ, µj), (i = −n, ..., n) (2.23)

I∗ is then discretized to 2n “streams”, with µi chosen to be the zeros of the even-order

Legendre polynomial P2n(µ), whilst aj(j = −n, ...,−1, 1, ..., n) are known as the Gaussian

quadrature weights, which are given by:

aj =
1

P ′2n(µj)

∫ 1

−1

P2n(µ)

µ− µj
dµ. (2.24)

The zeros and weights satisfy µ−j = −µj, and a−j = aj. Now define:

αij(τ) =
1

µi

[
δij −

ω̃(τ)

2
ajP (τ, µi, µj)

]
,

βij(τ) = − 1

µi
· ω̃(τ)

2
ajP (τ, µi, µ−j).

(2.25)

Where δij is the kronecker delta, from Eq. (2.18), we learn that the phase function respects

Helmholtz’s law of reciprocity, namely,

P (µ,−µ′) = P (−µ, µ′), P (−µ,−µ′) = P (µ, µ′). (2.26)

Therefore, α−ij = −αi−j, α−i−j = −αij, as well as β−ij = −βi−j, β−i−j = −βij. If we assume

the atmosphere to be homogeneous, i.e., ω̃, P , αij and βij are independent of τ , and separate

the upward and downward radiations, the homogeneous part of Eq. (2.23) becomes:
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dI∗↑(τ, µi)

dτ
=

n∑
j=1

αijI
∗↑(τ, µj) +

n∑
j=1

βijI
∗↓(τ, µ−j),

dI∗↓(τ, µ−i)

dτ
=

n∑
j=1

(−βij)I∗↑(τ, µj) +
n∑
j=1

(−αij)I∗↓(τ, µ−j),
(2.27)

and in compact matrix form:

d

dτ

[
I∗↓(τ)

I∗↑(τ)
]

=

[
−β
α

−α
β
][
I∗↓(τ)

I∗↑(τ)
]
, (2.28)

where,

I∗↑(τ) = [I∗(τ, µ1), I∗(τ, µ2), ..., I∗(τ, µn)],

I∗↓(τ) = [I∗(τ, µ−1), I∗(τ, µ−2), ..., I∗(τ, µ−n)].
(2.29)

By assuming solutions of the form I∗↑↓ = g↑↓e−kτ for Eq. (2.28), we arrive at an eigenvalue

problem: [
−β
α

−α
β
][
g↓
g↑
]

= −k

[
g↓
g↑
]
. (2.30)

Next, as solutions of vectors g↑ + g↓ and g↑ − g↓ can be found by adding and subtracting

two equations in Eq. (2.30), we can then obtain the eigenvectors [g↑ g↓]. By Eq. (2.23),

particular solution can be obtained of the form I∗p (τ, µj) = Mie
−τ/µ0 . The general solution

can then be written as (Liou 1973):

I∗(τ, µi) =
n∑

j=−n

Ljgj(µi)e
−kjτ +Mie

− τ
µ0 , (2.31)

where the constants Lj and Mi are to be determined from the boundary conditions.

2.2.2. Successive orders of scattering

Successive orders of scattering (Van de Hulst 1948; Busbridge 1960) is one of several iteration

methods that can be adopted to solve integro-differential equations. The idea is simple: if

we can get rid of the multiple scattering term in Eq. (2.22) in each iterative step, then an

integro-differential equation becomes a differential equation. Its physical sense is that, from

the original source, we just trace every single scattering event in medium step by step, and

then sum them up to get the combined contribution. For more details see Appendix A.1.
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2.2.3. Invariant imbedding

This approach, though it does not deal directly with RTE, seeks solutions by rigorous physical

reasoning. It was originally introduced by astrophysicist Ambartsumian (1942) for a semi-

infinite plane-parallel atmosphere, as principles of invariance (Sobolev 1963), then it was

developed by Chandrasekhar (1960) to be applied in finite atmospheres. Invariant imbedding

was generalized and “mathematized” by Bellman and Kalaba (1961). For more details see

Appendix A.2.

2.2.4. Adding and doubling

This is a method that divides a plane-parallel atmosphere into multiple thin layers, with

their own properties and eventually adds them up. When thin layers possess distinct optical

properties, the process is called adding, otherwise it is called to doubling. The doubling

method originated with Stokes (1862), but it was not until a century later that it was

introduced into atmospheric radiation by Van de Hulst (1963), Twomey et al. (1966), etc.

For more details see Appendix A.3.

2.2.5. Integral equation

It was used by Chandrasekhar (1960) and described by authors like Cheyney III and Arking

(1976). Instead of focusing on I, attention is centered on the source function S, for which a

Fredholm integral equation of the second kind can be set up (Thomas and Stamnes 2002).

For isotropic scattering, and denoting S∗ as source from the primary scattering, the source

function is solution to a linear integral equation in one variable:

S(τ) = S∗(τ) +
ω̃(τ)

2

∫ τb

0

E1(|τ − τ ′|)S(τ ′) dτ ′, (2.32)

which is called the Schwarzschild-Milne equation, whose kernel E1 is the exponential integral

of order 1. Various methods like Neumann series expansion can then be applied to find S(τ).

2.2.6. Feautrier method

By calculating from a density-like variable u = 1/2(I↑ + I↓), and a flux-like variable v =

1/2(I↑ − I↓) (cf. Eq. (2.27)), the RTE can be transformed into a second-order differential

transport equation of u(τ):

µ2d
2u(τ, µ)

dτ 2
= u(τ, µ)− S(τ). (2.33)

This method was generalized by Feautrier (1964), more details can be found in the astro-

physical monograph by Mihalas (1978).
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2.2.7. Spherical harmonics

This idea, developed by Eddington (1926), is somewhat similar to discrete ordinates. It

expands I(τ, µ) in RTE in a series of Legendre polynomials Pj(µ):

I(τ, µ) =
∞∑
j=0

Pj(µ)Ij(τ), (2.34)

which forms a complete set of orthogonal functions in the interval (−1, 1). The recurrence

relation of of Legendre polynomial can be used to obtain a system of linear differential

equations (Kourganoff 1952). The simplest two-term expansion I(τ, µ) = I0(τ) + µI1(τ)

leads to one of so-called Eddington’s approximations.

2.2.8. Monte Carlo

Monte Carlo for radiative transfer is a probabilistic method that simulates the stochastic

processes of photons in a medium. Starting from an original source, all subsequent events of

each photon depend on probability distribution functions (PDFs) at given positions, where

the optical properties are predefined. Computation simulates a large amount of photons,

the collective effect of the “random walk” of each photon approaching gradually “reality”.

Finally, the emerging photons from an interested position can be counted. Algorithms and

applications of the Monte Carlo method have been developed and used by Danielson et al.

(1969); Plass and Kattawar (1971); Kattawar et al. (1973); Marchuk et al. (1980), etc.

2.2.9. Comparison among approaches

The approaches outlined above show a variety of radiative calculation methods, some of

which share similarities, such as the connection between doubling and discrete ordinates

(Stamnes 1986), the equivalence of the adding method and the principles of invariance (Liou

2002). Nonetheless, all these methods and many more have their advantages and drawbacks,

and therefore their own applications.

Successive orders of scattering has a physically intuitive interpretation. However, in a thick

(τ > 5) and nearly conservative (ω̃ ≈ 1) medium, it converges slowly (Van de Hulst 1980).

Invariant imbedding can be analytically reduced to simple form under isotropic conditions or

even for Rayleigh scattering conditions, but when the phase function requires more than a few

Legendre polynomials, the analytic characteristic functions Ψ(µ′) (in Eqs. (A.14) and (A.15))

are less easy to calculate (Liou 2002).

Discrete ordinates solves the RTE directly in explicit form, unlike many iterative methods,

and its procedures do not depend upon the optical thickness. The accuracy and capability



2.3 A deeper look into discrete ordinates 11

has been demonstrated by Liou (1973), but for a thick atmosphere huge and tiny matrix

elements appear, leading to what is called ill-conditioning by Thomas and Stamnes (2002).

Adding and doubling is easily implemented for a medium of arbitrary optical depth, it has

been successfully put to practical use by Van de Hulst (1980). Both discrete ordinates and

adding and doubling are widely used to compute benchmark results with high accuracy

(Zdunkowski et al. 2007).

Other methods like those for solving an integral equation or Feautrier method are more

applicable to isotropic conditions and therefore are applied more frequently in astrophysics.

Monte Carlo can be used to solve problems not restricted to plane-parallel medium, but is

very demanding as to calculation time and not easy to model.

For our purposes, estimating irradiance relating to our results with atmospheric character-

istics, a more flexible and faster computing approach is to be preferred. Since the “ill-

conditioning” problem can be solved by the removal of positive exponentials through a

scaling transformation (Stamnes and Conklin 1984), a full-fledged computer code DISORT

using discrete ordinates has been developed successfully by Stamnes et al. (1988), and so

discrete ordinates is chosen for our work. In the following section, we therefore need to look

more deeply into this approach.

2.3. A deeper look into discrete ordinates

We take a closer look at Eq. (2.23), which basically builds a set of linear differential equa-

tions for I∗(τ, µi) from the original RTE (2.22). Note that normally we deal only with diffuse

radiation in RTE, so without fear of ambiguity superscript * may be dropped hereafter, for

simplicity. Gaussian quadrature is commonly chosen for numerical integration, although

Kourganoff (1952) argued that a Newton-Cotes type of formula provides more rapid conver-

gence in lower orders of approximation. However, the double-Gauss method can avoid this

problem (Stamnes et al. 1988), so we stick with Gaussian quadrature, as essentially there is

no theoretical difference between quadrature of Gauss and double-Gauss.

In this section, we examine more of the details of two simpler but representative cases:

isotropic scattering and two-stream approximation, along with some manipulation tech-

niques.

2.3.1. Isotropic scattering

In the isotropic-scattering case, and considering only a homogeneous atmospheric layer,

Eq. (2.23) becomes:
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µi
I(τ, µi)

dτ
= I(τ, µi)−

ω̃

4π
Q↓0e

− τ
µ0 − ω̃

2

n∑
j=−n

ajI(τ, µj). (2.35)

Substitution of I(τ, µi) = gie
−kτ into the homogeneous part of Eq. (2.35) yields:

(1 + µik)gi =
ω̃

2

n∑
j=−n

ajgj. (2.36)

Since gi and k are constants, we get the characteristic equation for eigenvalue k (Chan-

drasekhar 1960):

1 =
ω̃

2

n∑
j=−n

aj
1 + µjk

= ω̃
n∑
j=1

aj
1− µ2

jk
2
. (2.37)

If the layer is non-conservative (ω̃ < 1), we get 2n nonzero eigenvalues, so the homogeneous

general solution can be written by 2n linearly independent solutions:

I(τ, µi) =
n∑

j=−n

Lj
1 + µikj

e−kjτ . (2.38)

According to the property of Gaussian weights

n∑
i=−n

ai = 2, (2.39)

for the conservative case (ω̃ = 1), and Eq. (2.37) only produces 2n − 2 nonzero roots,

so two more independent solutions are required (for more details see Chandrasekhar 1960;

Kourganoff 1952). These eigenvalues can be thought of as effective extinction coefficients

such that every kjτ represents an effective optical path for each stream (Goody and Yung

1995; Liou 2002). By introducing Chandrasekhar’s H function, defined as

H(µ) =
1

µ1...µn

n∏
i=1

(µ+ µi)

n−1∏
α=1

(1 + kαµ)

, (2.40)

we may find a particular solution to to Eq. (2.35). The H function is actually the semi-infinite

limit case of the X function (cf. Eq. (A.14)), such that:

lim
τb→∞

X(µ) = H(µ) = 1 + µH(µ)

∫ 1

0

Ψ(µ′)

µ+ µ′
H(µ′) dµ′. (2.41)

The complete general solution can be expressed as (Chandrasekhar 1960; Liou 2002):
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I(τ, µi) =
n∑

j=−n

Lj
1 + µikj

e−kjτ +
ω̃Q↓0H(µ0)H(−µ0)

4π(1 + µi/µ0)
e
− τ
µ0 . (2.42)

2.3.2. Two-stream approximation

When the first-order Gaussian quadrature is carried out in discrete ordinates, we have what

is known as the two-stream approximation. The two-stream approximation has a longer

history, the original version dating back to the work by Schuster (1905) and Schwarzschild

(1906).

In a homogeneous atmosphere, we rewrite Eq. (2.22) by distinguishing diffuse radiation of

upper and lower hemisphere:

µ
dI↑(τ, µ)

dτ
= I↑(τ, µ)− ω̃

4π
Q↓0P (µ,−µ0)e

− τ
µ0

− ω̃

2

∫ 0

−1

P (µ, µ′)I↓(τ, µ′) dµ′ − ω̃

2

∫ 1

0

P (µ, µ′)I↑(τ, µ′) dµ′, (2.43)

µ
dI↓(τ, µ)

dτ
= I↓(τ, µ)− ω̃

4π
Q↓0P (µ,−µ0)e

− τ
µ0

− ω̃

2

∫ 0

−1

P (µ, µ′)I↓(τ, µ′) dµ′ − ω̃

2

∫ 1

0

P (µ, µ′)I↑(τ, µ′) dµ′. (2.44)

Upon approximating

I↑ = I↑(τ) ≈
∫ 1

0

I↑(τ, µ) dµ, I↓ = I↓(τ) ≈
∫ 0

−1

I↓(τ, µ) dµ, (2.45)

and defining a particular µ1,

µ1 = µ̄↑ =

∫ 1

0

I↑(τ, µ)µ dµ∫ 1

0

I↑(τ, µ) dµ

≈ F ↑

2πI↑
, −µ1 = µ̄↓ =

∫ 0

−1

I↓(τ, µ)µ dµ∫ 0

−1

I↓(τ, µ) dµ

≈ − F ↓

2πI↓
, (2.46)

we apply integration

∫ 1

0

dµ on Eq. (2.43) and

∫ 0

−1

dµ on Eq. (2.44), to get:

µ1
dI↑

dτ
= I↑ − ω̃b̄I↓ − ω̃(1− b̄)I↑ − ω̃b(−µ0)

2π
Q↓0e

− τ
µ0 , (2.47)

−µ1
dI↓

dτ
= I↓ − ω̃(1− b̄)I↓ − ω̃b̄I↑ − ω̃ [1− b(−µ0)]

2π
Q↓0e

− τ
µ0 , (2.48)
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where the backscattering coefficients b(µ′) and b̄ are given by:

b(µ′) =


1

2

∫ 0

−1

P (µ, µ′) dµ µ′ > 0

1

2

∫ 1

0

P (µ, µ′) dµ µ′ < 0

1− b(µ′) =


1

2

∫ 1

0

P (µ, µ′) dµ µ′ > 0

1

2

∫ 0

−1

P (µ, µ′) dµ µ′ < 0

(2.49)

b̄ =



∫ 0

−1

b(µ′)I↓(τ, µ′) dµ′∫ 0

−1

I↓(τ, µ′) dµ′
µ′ < 0

∫ 1

0

b(µ′)I↑(τ, µ′) dµ′∫ 1

0

I↑(τ, µ′) dµ′
µ′ > 0

1− b̄ =



∫ 0

−1

[1− b(µ′)] I↓(τ, µ′) dµ′∫ 0

−1

I↓(τ, µ′) dµ′
µ′ < 0

∫ 1

0

[1− b(µ′)] I↑(τ, µ′) dµ′∫ 1

0

I↑(τ, µ′) dµ′
µ′ > 0

(2.50)

here the definition from Wiscombe and Grams (1976) is adopted, that b(µ′) describes con-

tribution from intensity of a given direction µ′ to the opposite hemisphere, whilst many

other authors, like Coakley Jr. and Chýlek (1975) and Thomas and Stamnes (2002), give

a reverse description, defining b(µ) as contribution from intensity of backward hemisphere

to a designated direction µ, which is not adopted by the present author in the context of

two-stream approximation.

Now we look for consistency with discrete ordinates. In Eqs. (2.19) and (2.20), when m = 0

(azimuthal average or independence), truncating the expansion to l ≤ 1 leads to:

P (µ1, µ
′
1) ≈ 1 +$1µ1µ

′
1 = 1 + 3gµ1µ

′
1, (2.51)

According to the first-order Gaussian quadrature,

a1 = a−1 = 1, µ1 =
1√
3
, µ−1 = −µ1 = − 1√

3
. (2.52)

Note that, the value µ1 = 1/
√

3, sometimes is referred to as the diffusivity factor, which

agrees with discrete ordinates. However, it is not the only choice, many authors have their

own tuning selections in different two-stream variants. More details, along with the range of

choices for µ1, can be found in a discussion by Pelkowski (2007, 2009). Additionally, under

the two-stream approximation, we might denote:

P (µ1, µ
′) =

∫ 1

0

P (µ, µ′) dµ, P (µ−1, µ
′) = P (−µ1, µ

′) =

∫ 0

−1

P (µ, µ′) dµ. (2.53)
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Then from Eqs. (2.49) to (2.53), we obtain:

b̄ = b

(
± 1√

3

)
≈ 1− g

2
, (2.54)

which is consistent with the assumption by Sagan and Pollack (1967). Now, by comparing

with Eqs. (2.25) and (2.27), when i = j = 1, the equivalence between the earliest two-

stream approximation and the Gaussian quadrature approach can be found (cf. Eqs. (2.52)

to (2.54)):

±α11 = ±1− ω̃(1− b̄)
µ1

= ± 1

µ1

[
1− ω̃(1 + g)

2

]
,

±β11 = ∓ ω̃b̄
µ1

= ∓ 1

µ1

· ω̃(1− g)

2
.

(2.55)

Based on the foregoing relationships, we rewrite Eqs. (2.47) and (2.48) as:

µ1
dI↑

dτ
=

[
1− ω̃(1 + g)

2

]
I↑ − ω̃(1− g)

2
I↓ − ω̃Q↓0

4π
(1− 3gµ0µ1)e

− τ
µ0 , (2.56)

−µ1
dI↓

dτ
=

[
1− ω̃(1 + g)

2

]
I↓ − ω̃(1− g)

2
I↑ − ω̃Q↓0

4π
(1 + 3gµ0µ1)e

− τ
µ0 . (2.57)

By adding and subtracting Eqs. (2.56) and (2.57), we find the coupled equations of I↑ − I↓
and I↑ + I↓:

d2(I↑ − I↓)
dτ 2

= Γ2(I↑ − I↓) +M∗
1 e
− τ
µ0 , (2.58)

d2(I↑ + I↓)

dτ 2
= Γ2(I↑ + I↓)−M∗

2 e
− τ
µ0 , (2.59)

where

Γ2 =
(1− ω̃)(1− ω̃g)

µ2
1

, (2.60)

and

M∗
1 = (1− ω̃)

3gµ0µ1ω̃Q
↓
0

2πµ2
1

+
ω̃Q↓0

2πµ0µ1

,

M∗
2 = (1− ω̃g)

ω̃Q↓0
2πµ2

1

+
3gω̃Q↓0

2π
.

(2.61)

Seeking general solutions to the homogeneous part in the form I↑↓ = g↑↓e−kτ , as well the

particular solutions in the form I↑↓p = M↑↓e
− τ
µ0 , leads to the eigenvalues:
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k±1 = ±Γ = ±
√

(1− ω̃)(1− ω̃g)

µ1

, (2.62)

and a relationship of the eigenvectors:

g↓−1

g↑−1

=
g↑1

g↓1
= γ∞ =

√
1− ω̃g −

√
1− ω̃

√
1− ω̃g +

√
1− ω̃

, (2.63)

here γ∞ has its own physical meaning, which represents the albedo of a semi-infinite atmo-

sphere (Petty 2006). The solutions are:

I↑ = L1e
Γτ + γ∞L2e

−Γτ +M↑e
− τ
µ0 , (2.64)

I↓ = γ∞L1e
Γτ + L2e

−Γτ +M↓e
− τ
µ0 , (2.65)

where

M↑ =
µ2

0

2(1− µ2
0Γ2)

(M∗
1 +M∗

2 ), M↓ =
µ2

0

2(1− µ2
0Γ2)

(M∗
1 −M∗

2 ), (2.66)

and L1 and L2 are two constants that depend on boundary conditions. For a black surface,

I↓(0) = 0, I↑(τb) = 0, (2.67)

we can get:

L1 =
M↓γ∞e

−Γτb −M↑e
− τb
µ0

eΓτb − γ2
∞e
−Γτb

, L2 =
M↑γ∞e

− τb
µ0 −M↓eΓτb

eΓτb − γ2
∞e
−Γτb

. (2.68)

For a non-black surface, if we assume as an approximation Lambertian reflection, which

means radiation is reflected irrespectively of direction, the boundary conditions are given by

(Thomas and Stamnes 2002):

I↓(0) = 0, I↑(τb) = ρ
L

[
µ0Q

↓
0e
− τb
µ0 + 2πµ1I

↓(τb)
]
, (2.69)

where ρ
L

refers to the surface Lambertian reflectance, or can be thought of as the surface

albedo, then:

L1 =
M↓C3e

−Γτb − C4e
− τb
µ0

C1eΓτb + C2e−Γτb
, L2 =

−M↓C1e
−Γτb + γ∞C4e

− τb
µ0

C1eΓτb + C2e−Γτb
, (2.70)

where

C1 = 2πγ∞ρLµ1 − 1, C2 = γ2
∞ − 2πγ∞ρLµ1,

C3 = 2πρ
L
µ1 − γ∞, C4 = 2πM↓ρ

L
µ1 −M↑ +Q↓0ρLµ0.

(2.71)
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Note that in the two-stream approximation, by utilizing F ↑↓ = 2πµ1I
↑↓ in Eq. (2.46), irra-

diance can later readily be obtained.

For higher order of discrete ordinates, or, more streams (2n, n > 1), I↑ and I↓ in Eq. (2.45)

will be replaced by vectors in Eq. (2.29), and matrix manipulation is needed (Stamnes

and Conklin 1984; Nakajima and Tanaka 1986), although analytic solutions for four-stream

(n = 2) can be derived in closed forms (Liou 1974).

2.3.3. Inhomogeneous atmosphere

The discussions above are for a homogeneous layer. For realistic applications, inhomogeneity

should be considered. A similar strategy could be taken up as the adding method (see Sec-

tion 2.2.4 and Appendix A.3) to deal with the inhomogeneity, by regarding the atmosphere

as a stack of several homogeneous layers, each layer being characterized by its own thickness,

single scattering albedo and phase function. Then solutions in the form of Eq. (2.31) can

be concatenated, with the constants determined by boundary conditions (Liou 1975). We

identify variables of each layer by superscript l, where l = 1, 2, ..., L, and τ l = τl+1 − τl, at

the bottom of the atmosphere τb = τL.

First we rewrite Eq. (2.69) in an n-stream case:

I1(0) = 0, IL(τL, µi) = ρ
L

[
µ0Q

↓
0e
− τL
µ0 + 2π

n∑
j=1

ajI
L(τL, µ−j)µj

]
, (2.72)

The rest of conditions are determined by the continuity at interfaces between layers:

I l(τl, µi) = I l+1(τl, µi), (l = 1, 2, ..., L− 1) (2.73)

Substituting Eq. (2.31) into Eqs. (2.72) and (2.73) leads to:

n∑
j=−n

L1
jg

1
j (µ−j) = −M1

j ,

n∑
j=−n

[
Lljg

l
j(µj)e

−kljτ l − Ll+1
j gl+1

j (µi)
]

= −(M l
i −M l+1

i )e
− τl
µ0 ,

n∑
j=−n

LLj

[
gLj (µ+i)− 2πρ

L

n∑
p=1

gLj (µ−p)apµp

]
e−k

L
j τ

L

=

(
ρ
L
µ0Q

↓
0e
− τL
µ0 + 2πρ

L

n∑
j=1

ML
−jajµj −ML

+i

)
e
− τL
µ0 .

(2.74)

The remaining task is to determine 2n × L coefficients Llj by the linear equation system,

Eq. (2.74).
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2.3.4. Scaling of phase function

In the application of discrete ordinates, the phase function is usually expressed as a Legendre

expansion:

P (cos Θ) ≈
N∑
n=0

(2n+ 1)χnPn(cos Θ), (2.75)

or in an azimuthal average, from Eqs. (2.18) to (2.20), in the form:

P (µ, µ′) ≈
N∑
n=0

(2n+ 1)χnPn(µ)Pn(µ′). (2.76)

Scattering by an aerosol, composed of larger particles compared to the wavelength of inter-

acting light, has a strong forward peak, requiring at least hundreds of terms in Eq. (2.76) to

represent a relatively accurate phase function. According to Thomas and Stamnes (2002),

a similar number of streams in discrete ordinates is advised, which makes the computation

even more unwieldy.

A popular group of treatments can be reduced to a truncation method called δ-M of Wis-

combe (1977), whose expression (defining f as the truncation factor) is given by:

P ′(µ, µ′) = 2fδ(µ− µ′) + (1− f)
2M−1∑
n=0

(2n+ 1)χ′nPn(µ)Pn(µ′). (2.77)

This transformation is equivalent to “truncating” the forward-peak portion of the phase

function to approximate by a delta-function, and this portion is treated as unscattered. χ′n
and f are chosen as:

χ′n =
χn − f
1− f

, (n = 0, ..., 2M − 1) f = χ
2M
, (n ≥ 2M) (2.78)

By a property of the delta-function (Morse and Feshbach 1953)

δ(µ− µ′) =
1

2

∞∑
n=0

(2n+ 1)Pn(µ)Pn(µ′), (2.79)

the error incurred by the δ-M transformation can be obtained:

ε = P (µ, µ′)− P ′(µ, µ′) =
∞∑

n=2M

(χn − f)(2n+ 1)Pn(µ)Pn(µ′), (2.80)

so it reduces the error from the approximation of the ordinary phase function expansion by

a portion of f . Instead of χn = 0 for n > 2M , now χn = f = χ2M for n > 2M . After the

transformation, we have,
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dτ ′ = (1− ω̃f)dτ, ω̃′ =
1− f

1− ω̃f
ω̃. (2.81)

The reduction of optical depth is understandable because the forward-peak is regarded as not

being scattered. Seeking effective optical depth and single scattering albedo like in Eq. (2.81)

is generalized to similarity relations by Van de Hulst (1980). McKellar and Box (1981) also

proved that δ-M as well as other transformations like δ-Eddington (Joseph et al. 1976), can

be classified into a scaling group, where

τ = βτ ′. (2.82)

To maintain invariance in transformation, the new single scattering albedo and Legendre

polynomial weights entail the following relationship with the original ones:

1− ω̃′ = β(1− ω̃), 1− ω̃′χ′n = β(1− ω̃χn). (2.83)

In the case of δ-M ,

β = (1− ω̃f)−1. (2.84)

Lin et al. (2018) introduced an improved δ-M+ method, replacing the rather coarse treat-

ment of setting χn = χ2M for all n > 2M by modifying the expansion weights of delta-

function with a factor of a Gaussian distribution, gaining much better results. δ-M+ has

been implemented into the latest version of the DISORT code.

2.4. Application and minimal layering of atmosphere

To put all this into practice, there is still more work to do. For our objective—the downward

flux at the surface, the strategy is to design a model as economical as possible, using as few

parameters as possible. The reason is very simple: information available is scanty.

As mentioned in Section 2.1, we simplify the radiative interaction as a grey process, that

is, in each homogeneous layer, only one value of single scattering albedo, optical depth,

or phase function needs to be assigned. Furthermore, the complicated Mie-scattering phase

function can be replaced by the widely used Henyey-Greenstein phase function PHG (Henyey

and Greenstein 1941), by choosing the Legendre expansion weights χn = gn in Eq. (2.75),

and so a simple analytic form can be found:

PHG(cos Θ) =
∞∑
n=0

(2n+ 1)gnPn(cos Θ) =
1− g2

(1 + g2 − 2g cos Θ)3/2
. (2.85)

In the Henyey-Greenstein phase function, only the first moment or asymmetry factor g of the

phase function appears. Although this is an approximate treatment, the multiple scattering
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process and the integral calculation for obtaining irradiance will smooth out the results.

By the way, the same guiding principle as with the grey simplification, the purpose here is

not to discover and employ precise parameters, which are beyond our reach, but to keep

only the essential physics, by choosing reasonable parameters in our pragmatic scheme. One

scattering parameter is enough for grey simplification. The parameters in each layer to be

specified are ω̃, τ and g.

The next question is how to subdivide our atmosphere into certain number of homogeneous

layers. Theoretically, our inhomogeneous atmosphere should be divided into an infinite num-

ber of layers, but here we have to find a feasible scheme. Pelkowski (2007, 2009) designed a

tri-layered atmosphere, which divides the atmosphere into three layers: 1) an upper layer:

the cloud-free atmosphere above the tropopause (or more generally above any significant

cloud formation, since sometimes severe cumulonimbus’ anvil can overshoot into the strato-

sphere); 2) a middle layer: the free troposphere, or the thermodynamically active layer,

where the clouds form; 3) a lower layer: the boundary layer below the cloud base.

Let us examine these three layers one by one.

The upper layer has lower air density and is almost free of aerosols, except for dramatic

events like volcanic eruptions, so optical variables are relatively stable, fluctuations do not

affect daily estimations. Scattering in this layer will be treated as of Rayleigh type, such

that g = 0. Ozone content needs to be considered when accounting for absorption of solar

radiation.

The middle layer is most problematic, where capricious clouds form, with their irregular and

discontinuous distribution, which is neither vertically nor horizontally homogeneous. Inside

and outside clouds, there are utterly distinct optical properties: within the cloud, absorption

of visible light is weak and the scattering of cloud droplets is strongly asymmetric; if the

optical depth of a cloud is large, a photon might experience a great number of scattering

events before it emerges from it; whilst outside the cloud, or in the interstices, the properties

fall in somewhere between the upper layer and lower layer. The effective optical depth of

this layer should be overall the largest of the three layers.

The lower layer is optically less dynamic than the middle layer, but compared with the upper

layer and interstices of the middle layer, it has higher air density, contains normally more

water vapor and aerosols. The amounts of water vapor and aerosols could be due to small or

large scale weather system and local anthropogenic activity, hence vary discernibly during

the day.

This reasonable layering scheme will be adopted, since more layers, say, even just 4, will not

improve any performance of estimation owing to the lack of information; but layers less than

3 is far too simple to sufficiently render the realistic complexity of the radiative contribution.

In any case, the main difficulty arises when all these variables have to be defined, especially
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the estimation of optical depths of the middle and lower layers. The practical choices and

relative discussions of ω̃, τ and g in the tri-layered model will be left to Chapter 5, when

numerical experiments are carried out.

Figure 2-1.: Early morning air pollution trapped in boundary layer (the lower layer) by

inversion. (Photographed by the author in Bogotá, September 1st at 06:49

am, 2017.)



3. Statistics-driven approaches:

empirical and neural network

3.1. Why do we need them?

The complexity of radiative calculations arises from our very atmosphere. Macroscopically,

even if our atmosphere were well stratified, it is still a ceaselessly moving fluid, giving rise

to a constantly changing structure, which complicates the vertical distribution. Particle

density and composition at a certain altitude directly modify the behavior of electromag-

netic waves passing through it. On the other side, microscopically, different particles affect

electromagnetic waves of different frequencies, and molecular properties in absorption bands

and scattering properties determine a phase function and extinction coefficient.

Figure 3-1.: Spectral distribution of surface irradiance by direct solar rays of zero zenith

angle for a classic tropical atmosphere. (Generated by LOWTRAN 7, the

elevation is set to 2600 meters above the sea level, approximately the altitude

of Bogotá.)

As a whole, there are numerous factors that should be taken into account. Apart from the

field of remote sensing or other particular purposes where line-by-line integration is employed,
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it is too cumbersome to collect all the information for surface global irradiance. Fig. 3-1

shows the complexity of direct spectral irradiance for tropical atmosphere, not considering

diffuse irradiance in cloudless or clouded condition. Even if a large number of simplifications

have been imposed in the previous chapter, there is still room for practical approaches. In

this chapter, empirical regression approaches and artificial intelligence techniques will be

discussed.

3.2. Empirical approaches

It is not easy to categorize the countless empirical models. Authors like Bakirci (2009)

distinguish models on the basis of mathematical form, other authors like Besharat et al.

(2013) divide them by parameters which the model makes use of. In this section, we believe

that the long-established Ångström–Prescott model and its varieties are worth discussing

separately, with models that use cloudiness sharing a similar form, so we classify them

together with Ångström–Prescott-type models; there are many other models which rely on

variables other than sunshine duration or cloudiness, and we review them afterwards; then,

a group of models which focuses on direct irradiance estimation will be discussed, too.

3.2.1. Ångström–Prescott-type models

First of all, we define a variable H,

H(∆t,∆µ) =

∫
∆t

∫
∆µ

Qν dν dt, (3.1)

with the unit [J ·m−2 · ∆µ−1 · ∆t−1] standing for energy per unit square of area, received

in a spectral range and a time range. Practically, the spectral range ∆µ is usually set to

be the effective range of irradiance detector deployed, and ∆t to be a day. Unless otherwise

stated, hereafter we will regard H as daily global solar irradiance, or daily irradiance without

writing ∆t and ∆µ.

Ångström (1924) suggested the linear relationship between daily irradiance and sunshine

duration (see also the earlier attempt by Kimball (1919)). The modification later by himself

(Ångström 1956) provided a general form:

H↓g

H↓c
= α + (1− α)σ, (3.2)

where σ refers to the relative sunshine duration, whose value varies from σ = 0 for a fully

overcast day, to σ = 1 for a entirely clear day, H↓g represents the predicted daily irradiance

on the ground, H↓c represents the daily irradiance under a clear sky condition at the same

location and the same time range. In such condition, H↓g = H↓c complying with Eq. (3.2). On

the other side, Ångström suggested α = 0.25, which implies that for a wholly overcast day,
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H↓g would take on one quarter of the value of H↓c . Nevertheless, definition of H↓c brings in

vagueness to a certain extent, a review by Mart́ınez-Lozano et al. (1984) listed four possible

interpretations. To avoid the problem of interpretation, Prescott (1940) instead used a more

stable parameter—daily extraterrestrial downward irradiance H↓0 (cf. the definition of Q↓0 in

Section 2.1) to replace it, proposing an equation in the form:

k =
H↓g

H↓0
= a+ bσ, (3.3)

where a = 0.25, b = 0.54 on his data analysis, k is the daily clearness index, or transparency.

By this modification, H↓g = 0.79H↓0 for a perfectly sunny day, and H↓g = 0.25H↓0 for a

wholly overcast day. Eq. (3.3) is the most basic form of Ångström–Prescott equation, it

links the sunshine duration and the clearness index by a linear relationship. Because of the

simplicity—only σ is required a lot of efforts based on this equation have been made in quest

of best results.

One could easily get lost in the ocean of varieties of Ångström–Prescott-type models that

have been published, hundreds of trimmed forms or modifications have been summarised by

Mart́ınez-Lozano et al. (1984); Bakirci (2009); Besharat et al. (2013); Despotovic et al. (2015)

etc., ranging from linear, quadratic and cubic equations, to those mingled with trigonometric

functions which relate to solar declination (see Section 4.1) or latitude. Nonetheless, all

these models share a common feature that they all use sunshine duration. Yet, in our

opinion, another group of models using cloudiness degree η—the average fractional total

cloud amount recorded subjectively—should be counted as Ångström–Prescott type as well.

Since these two variables, though one is time-based and the other is space-based, could

conceivably hold a close relationship, which has been studied by a number of authors: some

accept the approximation of a linear relationship like η = 1−σ (Kondratyev 1969; Brutsaert

1982), or do so with an expedient definition of cloudiness (Hoyt 1977); others dabble in

special analyses trying to discover relatively sophisticated empirical relationships (Biga and

Rosa 1980; Harrison and Coombes 1986; Bădescu 1990, 1991).

In some advanced versions, a and b themselves are set to be functions of day of the year,

latitude, elevation, solar altitude, temperature, precipitation, or even σ as well (Glover and

McCulloch 1958; Driedger and AJ 1970; Neuwirth 1980; Sfeir 1981; Frère 1975; Rietveld

1978; McEntee 1980; Gariepy 1980; Gopinathan 1988). However, these models could also

been viewed as belonging to the group that we are going to talk about next.

3.2.2. Models involving other meteorological variables

Although sunshine duration and cloudiness are the variables that are most directly related

to surface global irradiance, these data or observations are not available everywhere, at

least not as common as such variables like temperature or humidity, or some other crucial
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meteorological variables. Hargreaves and Samani (1982) came up with the idea of using the

difference value between daily maximum and minimum temperature to guess the clearness

index:

k = a(Tmax − Tmin)0.5. (3.4)

This approach later was adopted and developed by many authors like Bristow and Camp-

bell (1984), Allen (1997), Hunt et al. (1998), Meza and Varas (2000), Annandale et al.

(2002), Mahmood and Hubbard (2002), Chen et al. (2004), among others. Beyond the

Ångström–Prescott-type models, the temperature-dependent regression models have become

most widely used.

Other authors argued that surface global irradiance should also be related to variables as

relative humidity, precipitation, pressure, or water vapor content (Swartman and Ogunlade

1967; Lewis 1983; Ododo et al. 1995; Thornton and Running 1999; Maghrabi 2009).

3.2.3. Direct irradiance models

Even if most of the models take the typical H↓0 as in Eq. (3.3), H↓c (in Eq. (3.2)) still appears

in some models (e.g., Toğrul et al. 2000, and Bakirci 2008), thus the estimation for H↓c itself

becomes meaningful. Besides, the direct irradiance itself is essential for some application

like concentrated solar power systems (Gueymard 2003a).

Leckner (1978) propounded a formula that reads:

H↓ν = H↓0νTrνToνTgνTwνTaν . (3.5)

This equation describes how extraterrestrial irradiance abates when it passes through the

atmosphere, or more specifically, how the direct part of irradiance is affected by five major

constituents in the air (cf. Fig. 3-1). Notice the subscript ν in the equation, which means the

calculation is to be done for each spectral interval, Tν indicates the spectral transmissivity,

and subscript r, o, g, w and a correspondingly denotes Rayleigh particles, ozone, mixed

gases, water vapor and aerosols. Later, Bird and Riordan (1986) developed a version based on

Eq. (3.5). Nonetheless, more commonly used are broadband models, which do not distinguish

the transmissivities of each constituents by frequency. Most of the broadband models share

forms akin to Eq. (3.5), the modifications being largely made about the specialization of

“mixed gases” as empirical equations for estimation of each transmissivity. Extensive work

of review and performance comparison has been published by Gueymard (1993, 2003a,b).
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3.3. Artificial intelligence technique

As a relatively new technique, artificial neural network, an artificial intelligence technique,

may provide an alternative approach to estimate insolation. The nomenclature of neural

network was inspired by neurobiological mechanisms of the brain. In contrast to traditional

methods, the relationship between inputs and outputs is not pre-determined, but is the target

itself; instead of calculating outputs from inputs and their relationship, the machine “learns”

the relationship from samples of input and output variables, though this relationship, if any,

will be enciphered in a batch of less meaningful numbers. The basic structure of an artificial

neural network, consists of an input layer, an output layer, and single or multiple hidden

layer/layers in between. Each layer is made of neurons, every one of which is associated

with an output number, called activation. In a feed-forward neural network, each neuron

has connection to all neurons in the adjacent layers, all connections having weights, the

collection of which in a network represents the relationship between inputs and outputs that

the network learns through training. The activation of a neuron is achieved by applying

an activation function to the sum of its received signals, which are the results of the dot

product of all the previous layer’s activations (if the previous layer is the input layer, then

activations are equal to inputs), and weights of the corresponding connections to this neuron.

The learning process is normally first to search for the error contributions of all weights by

back-propagation, short for “backward propagation of errors”, which starts from the output

errors, calculating backwards layer by layer; then doing gradient descent, which updates

weights based on their error contributions, towards lower output errors.

Input #1

Input #2

Input #3 ...

Hidden layer 1

...

Hidden layer 2

Output

Input layer Output layer

Figure 3-2.: Demonstration of a feed-forward neural network with structure of 3 inputs, 2

hidden layers, and 1 output.

In atmospheric science, especially for irradiance evaluation, more efforts of machine learning
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have been put during the last decade of the past century (Elizondo et al. 1994; Mohandes

et al. 1998; Gardner and Dorling 1998; Lopez et al. 2005; Khatib et al. 2012). Comparisons

have been made between machine learning and Ångström–Prescott-type linear regression

and other empirical models (Tymvios et al. 2005; Elminir et al. 2007; Jiang 2008; Kumar

et al. 2015). One of the main drawbacks of machine learning approaches is that, as the

ultimately determined weights of the network hardly reveal a specific physical relationship

between inputs and outputs, an artificial neural network is just a black box, but even so,

the merits are tempting. Our atmosphere is a complicated system, researchers have been

crafting many empirical equations by trial and error for more than a century, and since

this means is now handily available, we may let the artificial intelligence technique help us

explore more interrelations among atmospheric variables.

The application of ANN is more an engineering way or even an art than a science (Chollet

2017). More details, along with programming language environment, choices of network

structure and other hyperparameters, etc., will be unfolded in Chapter 5, along with a

discussion of pros and cons of the three evaluation approaches.
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4.1. On the upper boundary condition

Before running any model, some boundary conditions are needed, such as: extraterrestrial

irradiance, zenith angle of incident solar beam, daily maximum sunshine duration, etc.

Let us begin by assuming the Sun to be a blackbody, so it emits radiance according to

Planck’s function:

Bλ(T ) =
2hc2

λ5(ehc/kBλT − 1)
, (4.1)

where h is the Planck constant, c is the speed of light, kB is Boltzmann’s constant, T is the

temperature of the black body. We then have (cf. Eq. (2.2)):

Qλ =

∫ 2π

0

∫ α

0

Bλ(T ) cos θ sin θ dθ dφ = πBλ(T ) sin2 α = πBλ(T )
r2
sun

d2
sun−earth

, (4.2)

where α is the zenith half angle subtended by the Sun’s disk. The Sun’s radius is rsun; the

Sun-Earth distance is denoted as dsun−earth. Integrating with respect to wavelength, we get

the irradiance at the TOA Q↓⊥.

Q↓⊥ =

∫ ∞
0

πBλ(T )
r2
sun

d2
sun−earth

dλ

=
πr2

sun

d2
sun−earth

∫ ∞
0

Bλ(Tsun) dλ =
πr2

sun

d2
sun−earth

· σT
4
sun

π
=
σT 4

sunr
2
sun

d2
sun−earth

, (4.3)

where σ = 5.67× 10−8W/m2K4 is the Stefan–Boltzmann constant. If we insert the effective

temperature of the Sun Tsun = 5780K, the radius of the Sun rsun = 6.957× 108m and the

average distance between the Sun and the Earth d̄sun−earth = 1.496 × 1011m, we get the

solar constant Q↓const = 1365.8W/m2. Because the Sun-Earth’s distance is not constant, Q↓⊥
varies along with the position of the Earth relative to the Sun; for instance, at perihelion,

dsun−earth = 1.471×1011m, and Q↓⊥ = 1412.7W/m2; at aphelion, dsun−earth = 1.521×1011m,

where Q↓⊥ = 1321.3W/m2.

From Eq. (4.3), we get the expression for extraterrestrial irradiance Q↓0:
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Q↓0 = Q↓⊥ cos θ = Q↓const(
d̄sun−earth
dsun−earth

)2 cos θ, (4.4)

where θ is the zenith angle, as introduced in Section 2.1, the angle between the normal vector

of a horizontal surface and the solar beam. By denoting latitude as ϕ; δ as solar declination,

the angle between the plane of the equator and the solar beam, which varies from −23.45◦ to

23.45◦ due to the tilt of the Earth; and ω as hour angle, the angle between the local meridian

and the meridian that includes the solar beam, which increases 15◦ every hour, due to the

rotation of the Earth, we can write for the cosine of θ,

cos θ = cosϕ cos δ cosω + sinϕ sin δ. (4.5)

To calculate (d̄sun−earth/dsun−earth)
2 in Eq. (4.4), we use the equation proposed by Spencer

(1971), a truncated Fourier expansion, with a maximum error of 0.00001 (Iqbal 1983).

(
d̄sun−earth
dsun−earth

)2 = 1.000110 + 0.034221 cos Γ + 0.001280 sin Γ

+ 0.000719 cos 2Γ + 0.000077 sin(2Γ), (4.6)

where the “day angle” Γ is defined as,

Γ = 2π(dn − 1)/365 (4.7)

where dn is the day number of the year.

In order to calculate the extraterrestrial irradiance and the daily maximum sunshine duration

we largely use the code provided by Whiteman and Allwine (1986), who also present useful

Figure 4-1.: Daily variations of extraterrestrial irradiance and solar zenith angle. The irra-

diance at the equinox days and the solstice days are shown. Figures calculated

for the location of the station “EL IDEAM” (as for the choice of station, see

more in the next section).
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methods for calculating the hour angle ω, the declination δ, and the correction for the Local

Standard Time (LST).

Fig. 4-1 shows how extraterrestrial irradiance and zenith angle vary during four represen-

tative days in a year. Fig. 4-2 shows how maximum daily sunshine duration and maximum

daily irradiance change over a year, their variations are relatively quite small, owing to the

close to the Equator latitude.

Figure 4-2.: Variations of maximum daily sunshine duration and maximum daily irradiance

over a year, at the location of “EL IDEAM”.

4.2. Global irradiance data

The blueprint of our study is to apply three approaches—empirical regression, neural network

and radiative transfer, using accessible variables to predict global irradiance at the surface.

To evaluate results, we certainly need the data of the variable in question, namely, surface

global irradiance, to compare the approaches with.

4.2.1. The station

The station “EL IDEAM” was chosen, for the following reasons:

1. Length of record. Two aspects were judged of importance: the completeness of the

record, which means much less missing observations; and time span, which takes into

account the length of the total record.

2. Quality of the data. Datasets are never perfect, and sometimes the quality of the

data is unacceptable. Details of data validation of global irradiance measurements are

presented in Appendix B.
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3. Availability of other variables. We need other variables to estimate semi-empirically

the global irradiance, so their availability was a factor in selecting the station.

4. Proximity. Is was judged important to have access to the metadata of the selected

station.

Taking these factors into account, the station “EL IDEAM”, with the geographic coordinate

of 4◦36′28.8′′N, 74◦4′22.8′′W, stands out among the competitors. The instrument for irra-

diance measurement is a Kipp & Zonen CM11 pyranometer. Data is recorded every hour,

with the unit W/m2, covering all significant spectrum of solar energy received at the Earth’s

surface.

Figure 4-3.: Left: the pyranometer of the station “EL IDEAM”; Right: the author and

the pyranometer.

4.2.2. From hourly measurements to daily values.

Measurements from the pyranometer are recorded hourly. To get daily average, we use

Eq. (3.1), and because the measurements cover the whole frequency range, the integral over

frequency need not be carried out. We multiply each hourly measurement by 3600, and sum

them up to obtain daily values:

Hdaily =
h=23∑
h=0

Qh · 3600 =
h=18∑
h=6

Qh · 3600. (4.8)

On the left-hand side, the time limits are set at 06 : 00 and 18 : 00 indiscriminately, thanks

to the fact that Bogotá is located near the equator line, so daily sunshine duration varies

little over a whole year, and beyond these limits extraterrestrial irradiance is always zero.
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We should notice that the hourly recorded data can not always truly represent the daily

values. Fig. 4-4 draws the 2-minute recorded and hourly recorded data of the surface global

irradiance in two days from the station “EL DORADO” (there are no 2-minute records on

Figure 4-4.: The comparison between the 2-minute recorded data and the daily recorded

data from the station “EL DORADO”, along with the extraterrestrial irradi-

ance.

Figure 4-5.: The approximate daily irradiance and the calculated extraterrestrial daily ir-

radiance over the year 2015, at the station “EL IDEAM”.
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the station “EL IDEAM”), along with the extraterrestrial irradiance. It shows how surface

global irradiance drastically varies during a day in Bogotá, and the fact that the hourly

records do not always match with the 2-minute records. Fig. 4-5 shows the approximate

daily surface global irradiance (from Eq. (4.8)) at “EL IDEAM” over a year, along with the

extraterrestrial daily irradiance.

We might next define a daily mean zenith angle θd, which is needed by the program DISORT,

to wit:

θd =

∫ sunset
sunrise

θ(t) ·Q↓0(t) dt∫ sunset
sunrise

Q↓0(t) dt
, (4.9)

the above equation can actually be viewed as a weighted arithmetic mean for daytime zenith

angles, weighted by the corresponding extraterrestrial irradiance Q↓0. Our calculation is done

by numerical integration with an interval of one minute. A graph of θd changing over a year

is shown by Fig. 4-6. By comparing Fig. 4-2 and Fig. 4-6 we can explain the bimodal shape

of the maximum daily irradiance in Fig. 4-2, i.e., because of the change of the declination

δ, or more directly, the change of the daily mean zenith angle θd.

Figure 4-6.: Variation of daily mean zenith angle over a year, at the location of “EL

IDEAM”.

4.3. Variables for predicting global irradiance

The traditional Ångström–Prescott model uses sunshine duration or cloudiness degree η

to predict surface insolation. However there are no observations of them at the station

“EL IDEAM”. To remedy this deficiency, we borrow sunshine duration data from 4 sta-

tions nearby, where Campbell–Stokes sunshine recorders are extant (Fig. 4-7). By means
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Figure 4-7.: Locations of “EL IDEAM”(red) and nearby stations(blue) where equip sun-

shine recorders. Plotted in Google Map.

of an interpolation, we add weights to each station’s data depending on its distance to “EL

IDEAM”. However, after many series of trials, equally weighted sunshine duration for all

these 4 stations, actually provide better correlation with irradiance, so as a result simply the

average values are applied. For cloudiness, only the surface synoptic observations (SYNOP)

data from the international airport El Dorado include this information, but the distance

between “EL IDEAM” and airport is around 12 km, and furthermore, observations are very

subjective and limited in either values (octant numbers, from 1 to 8) or frequency of ob-

servations (recorded every 3 hours). Preliminary tests showed the correlation between the

cloudiness degree information extracted from SYNOP and daily global irradiance was not

such as to justify further efforts. Hence we will focus only on the sunshine duration.

As for machine learning, the necessary variables can be picked at our discretion. At “EL

IDEAM”, hourly recorded data of temperature, humidity, pressure, precipitation are avail-

able and were adopted. Besides, precipitable water vapor data (column-integrated water

vapor) obtained from permanent GPS stations, made available by the Servicio Geológico

Colombiano was used. For more information on the methodology to obtain this variable,

see Bevis et al. (1994). Like in the case of irradiance data, datasets of these variables are

validated before use.

We also retrieved air quality data from the Secretaŕıa Distrital de Ambiente, the indicator

chosen being PM10—particulate matter of size less than 10 micrometers in diameter. For

the same reason as explained for the data of sunshine duration, we take the average of 11
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stations in Bogotá’s urban area.

4.4. Summary and size of dataset

To summarize the variables used, they are listed in Table 4-1. Amongst them is the ex-

traterrestrial irradiance Q↓0. From extraterrestrial daily irradiance H↓0 and daily irradiance

H↓g (H↓0 and H↓g are obtained by Eq. (4.8)), we can get the clearness index k (defined by

Eq. (3.3)). Relative sunshine duration σ is obtained by dividing the average of sunshine

duration observations from 4 stations by the theoretical maximum daily sunshine duration.

DoY is the day of a year. The remaining variables are hourly recorded data.

Table 4-1.: Summary of variables needed in this study.

Variable Symbol Measured unit Frequency

Surface Global irradiance Qh W ·m−2 hourly

Extraterrestrial irradiance Q↓0 W ·m−2 calculated

Surface daily irradiance H↓g J ·m−2 · day−1 daily

Extraterrestrial daily irradiance H↓0 J ·m−2 · day−1 calculated

Clearness index k dimensionless daily

Relative sunshine duration σ dimensionless daily

Surface air temperature T ◦C hourly

Surface relative humidity RH dimensionless hourly

Surface air pressure P hPa hourly

Precipitable water vapor PWV kg ·m−2 hourly

Precipitation PT mm hourly

PM10 PM10 µg ·m−3 hourly

Day of year DoY dimensionless daily

After validating and discarding invalid data for each variable, from the year 2008 to 2017,

data from only 1381 days are left for analysis, or 37.8% percent of the ten-year time span.

However, abundance of data is crucial for both empirical regression and ANN, we might

try to prepare dataset separately due to the model applied, only considering the necessary
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variable/variables in order to preserve more records for use, e.g., for the Ångström–Prescott-

type regression, only sunshine duration σ and clearness index k are needed, then data from

1841 days are available; while for ANN, when σ is not used, data from 1692 days are available.

The probability distribution of these 1692 clearness indices k is shown in Fig. 4-8, with the

sample mean equal to 0.35, and standard deviation equal to 0.11. A fitting of a Gamma

distribution is also shown, with an approximate shape parameter 15.

Figure 4-8.: Probability distribution of k, data grouped into 20 bins. A fitting line of a

Gamma distribution is also shown, whose shape parameter is close to 15.



5. Experiments and results

5.1. Design of experiments

The idea of our numerical experiments is to make use of the datasets described in Chapter 4

to predict the clearness index k by three paths: radiative transfer, empirical regression, and

ANN. These approaches seemingly share little similarity, whether from starting point or

methods, but nevertheless, we shall make comparisons of several characteristics.

Table 5-1.: Comparison of three evaluation approaches in several perspectives. H, M, L are

respectively short for high, medium and low, as attributes of criteria.

Method Complexity
Model’s

Transparency
Flexibility

Variables

demanded

RTE H H L/H H

Empirical L M M L

ANN M L H M

• Complexity

Radiative transfer has the highest complexity. Empirical approaches are used exten-

sively because of their relative simplicity. The complexity of ANN depends upon its

actual structure, but by and large it is more complex than empirical equations.

• Transparency

The black-box-like ANN makes it the least transparent. In RTE, on the other hand,

details in the whole pathway of the light can be theoretically calculated at will, provided

sufficient parameters and variables are accessible.

• Flexibility

We refer the flexibility here to two aspects: the flexibility of the choice of variable and

the flexibility of model structure. From the viewpoint of the choice of variable, ANN

can freely choose inputs, parameters needed for RTE are rather fixed; from the model

structure’s perspective, the choice of layer number in RTE and the choice of network

architecture in ANN are both flexible.
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• Variables required

The RTE would need many variables to calculate any quantity of the theory, so many

that it is often not practical. In most cases, the empirical approaches have the lowest

requirement of variables.

In our experiments, we supposed that the atmospheric constitution from the year 2008 to

2017 is time-independent. Although this is not the case in the real world, ten years, the time

span of our data, is not a very long period, so climate characteristics could be considered

as stable, instead of evolving in time, that is, daily variations of meteorological factors play

the predominant role. The data can consequently be safely shuffled. All the regression

coefficients and model scores will be obtained by averaging results from 30 repeated runs,

and before each run, the dataset will be randomly shuffled.

Four metrics are used for evaluation of different models:

Pearson’s r The Pearson correlation coefficient, or Pearson’s r measures the linear corre-

lation between two variables,

r(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄2)
√∑n

i=1(xi − x̄2)
. (5.1)

We use Pearson’s r to estimate the correlation between prediction and recorded data from

the test set. In linear regression, however, this score has no difference with Pearson’s r

calculated from the two variables.

Mean absolute error Mean Absolute Error (MAE) estimates the average absolute differ-

ence between two variables with the expression:

MAE(x, y) =
1

n

n∑
i=1

|yi − xi|. (5.2)

We also apply MAE on prediction and recorded data from the test set, for its clear interpre-

tation, and it is easy to compare the prediction departure with the magnitude of the physical

quantity in question.

Mean bias error Mean Bias Error (MBE) measures the average of error bias. Since MBE

does not take the absolute value, positive and negative errors cancel out, it gives the overall

deviation to indicate whether a model is good at prediction in long period.

MBE(x, y) =
1

n

n∑
i=1

(yi − xi). (5.3)
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Mean square error Mean Square Error (MSE) is the second moment of the error, we

use it as the loss function in ANN to monitor the scores during the training process (see

Section 5.3.1.2).

MSE(x, y) =
1

n

n∑
i=1

(yi − xi)2. (5.4)

We start with the easiest applied empirical regression, followed by the neural network, and

finally turn to DISORT.

5.2. Empirical regression

For empirical regression approaches, the data are separated into 75% for the training set,

and 25% for the test set.

training set test set

75% 25%

Figure 5-1.: Separation of dataset for regressions.

Linear regression for Ångström–Prescott equation (Eq. (3.3)) leads to:

k = 0.374 + 0.226 · σ. (5.5)

Quadratic regression leads to:

k = 0.225 + 0.379 · σ − 0.008 · σ2. (5.6)

Regression with Eq. (3.4) with respect to daily surface temperature range gives

k = 0.120 · (Tmax − Tmin)0.5. (5.7)

Scores of these three regressions (the test set) are shown in Table 5-2:

Table 5-2.: Scores of three empirical regressions.

Pearson’s r MAE MBE

Linear regression 0.6323 0.0683 −5.6× 10−4

Quadratic regression 0.6323 0.0686 −1.4× 10−4

Temperature range regression 0.4495 0.0805 −2.0× 10−3
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Figure 5-2.: Regression plot of relative sunshine duration σ and clearness index k. Red

dots are training set, blue dots are test set, the purple line is the result of

linear regression, the green line of quadratic regression. We can observe that

these two lines are very close to each other.

Figure 5-3.: Regression plot of daily temperature range and clearness index k. Red dots

are training set, blue dots are test set, the black line is result of regression

from Eq. (3.4).
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Fig. 5-2 shows the data distribution of clearness index k and relative sunshine duration

σ, along with the linear and the quadratic regressions; Fig. 5-3 shows data distribution of

clearness index k and daily surface temperature range Tmax−Tmin, along with the regression

of Eq. (5.7).

From Fig. 5-2 one can see that σ and k, though not tightly tied, show a degree of correlation.

It also can be seen from both the scores and the figure that, a quadratic regression is

unnecessary since performance is not improved, the small quadratic coefficient in Eq. (5.6)

reflects this fact. On the other hand, the daily temperature range shows even less correlation

with clearness index.

5.3. Artificial neural network

5.3.1. Architecture of neural networks

Neural networks in this thesis are built up by Keras, which is an open source Application

Program Interface (API) based on Python. Keras is a high-level modular library, it relies

on and runs on top of machine learning engines like “TensorFlow”, “Theano” or Microsoft

cognitive Toolkit (“CNTK”). We use “Tensorflow”, a framework developed by Google, as the

backend engine. Feed-forward neural network is chosen as the model type. Before training,

we first determine the dataset structure and the hyperparameters.

5.3.1.1. Dataset for learning step

As Table 4-1 shows, most atmospheric variables that could be used as ANN’s inputs are

recorded hourly, while the output k is daily values.

In the data science community, the structure of data, as far as their dimension number of

variables is concerned, is usually distinguished by tensors. E.g., if an hourly recorded dataset

contains 3 variables—temperature, relative humidity and air pressure, and grouped in days,

then its structure is called a 2-Dimensional (2D) tensor with a (24,3) shape, where 24 refers

to the recording times in a day, 3 refers to the three variables. A daily recorded dataset with

3 variables has a structure of a 1-Dimensional (1D) tensor, since there is no time dimension

anymore. When just one daily variable is involved, the structure is further downgraded to a

0-Dimensional tensor, or a scalar.

We set the structure of hourly data—all of them are inputs—to a (11,n) 2D tensor. On most

days in a year in Bogotá, the Sun rises around 6:00 and sets around 18:00, so atmospheric

parameters at dawn or dusk contribute negligibly to the daily insolation, so we truncate the

hour number to 11 (from 7:00 to 17:00); n, a flexible value, refers to the number of input

variables.
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We set the structure of daily data to a (1,n) 1D tensor, considering that daily variables such

as relative sunshine duration and day of the year, could also be used as inputs. When only

one input variable is dealt with, the structure downgrades to a scalar, which is also the case

of the output, consisting only of one daily variable—clearness index k.

An extra step is needed to split the dataset as compared to the empirical regression method:

a validation subset should be reserved from the training set to monitor the error, or the

score, during the training process. 25% of the training set are held back for the validation

set in this work. It is worth mentioning that the term validation here has a different meaning

in the data science community as that mentioned in Chapter 4 or Appendix B. The process

of examining and cleansing the faulty records is sometimes instead called data scrubbing,

but without fear of ambiguity, the term “validation” will be kept. Moreover, k-fold cross

validation is applied. We set k = 4, which means, the dataset other than the test set (75%

in our work) is equally divided into 4 subsets, the model being trained 4 rounds, in each

round one of these subsets will interchangeably be reserved as the validation set without

repetition, while other 3 subsets are combined to still serve as the training set, as shown in

Fig. 5-4. Finally, the test set, the same as in the regression method, is set completely aside

as the unseen data.

test set

training set validation set

k-fold, k = 4

75%

75% 25%

25%

Figure 5-4.: Separation of dataset for neural network.

Another pretreatment is the feature scaling for inputs, as input variables have different

scales or orders of magnitudes. It is important, often necessary, for an ANN model to rescale

variables into a same range. One of the common techniques is standardization,

x′ =
x− x̄
σ

, (5.8)

where x is the original value, x̄ and σ are the mean and the standard deviation of the training

set. After the standardization, x′ is used as the input.



5.3 Artificial neural network 43

5.3.1.2. Hyperparameters

Hyperparameters are parameters that should be set before the training phase. They include

network structure, epoch number, batch size, activation function, loss function, optimizer,

learning rate, regularization method, etc. In the following, these terms will be explained,

along with our choice for each hyperparameter. It should be pointed out that, there are many

possible configurations of hyperparameters for an ANN. The treatise by Géron (2017) could

be referred to for many available options; however, only the hyperparameters eventually

adopted will be presented below, which are singled out from a number of candidates by trial

and error.

Neural network structure The structure of an ANN is composed of layer number, neuron

number in each layer and the topology of neuron connections.

In the first and main case, inputs are hourly and (11,n) 2D tensor data, while the output

layer has the structure of a scalar. The network construction with (11,3) 2D tensor inputs

is shown in Fig. 5-5. To combine the 2D tensor input layer and the scalar output layer,

we build 3 hidden layers, with respectively 12, 8 and 16 neurons in each layer. From the

input layer to the second hidden layer, connections are hourly separated, which means that
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Figure 5-5.: Demonstration of a feed-forward neural network with 3 hidden layers. The

structure of inputs is (11,3) 2D tensor, the structure of output is scalar. Until

the second hidden layer, neurons are hourly separately connected. Solid circles

denote bias neurons.
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within these three layers, neurons “belonging to one hour” do not have cross connections to

neurons “belonging to other hours”. Then, the second hidden layer of (11,8) 2D tensor is fully

connected to the third hidden layer of (16) 1D tensor (which means there are 11× 8× 16 =

1408 connections and their weights between these two layers). Finally, all the neurons in

the third hidden layer are connected to the scalar output layer. In addition, each layer,

except the output layer has bias neuron/neurons, which, depicted as solid circles in Fig. 5-5,

connect fully to the next layer. The purpose of bias neuron will be explained later with the

configuration of “activation function”.

In the second case, daily inputs are also considered, as their structure is a 1D tensor or a

scalar, they are placed at the same level as the 1D tensor third hidden layer, then fully con-

nected to an additional fourth hidden layer with 5 neurons. This four-hidden-layer network

construction is shown in Fig. 5-6.
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Figure 5-6.: Demonstration of a feed-forward neural network with 4 hidden layers. Be-

sides the hourly (11,3) 2D tensor inputs, there are also daily (2) 1D tensor

inputs. One extra hidden layer is added to the construction in Fig. 5-5 before

connecting to the output layer.

Epoch number One epoch is defined when the ANN algorithm runs through the whole

training set. Though we set the epoch number at 1000, usually however the training process

will not reach the 1000th epoch (see early stopping below).
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Batch size The batch size is the number of training samples that are passed through the

network at one time when all the weights are updated once, so the model tends to learn

faster with a higher batch size setting. The setting depends on the computer memory and

capability. We set batch size 16.

Activation function The activation function of a neuron converts input signals from the

previous layer to an output signal of this neuron, it builds a non-linear connection between

layers and eventually between inputs and outputs of the network. An activation function

should be differentiable for back-propagation to be possible. We finally chose a sigmoid,

which is a logistic function (Hagan et al. 2014):

S(x) =
1

1 + e−x
, (5.9)

then the output of neuron j in layer i is:

Oji = S(
∑

(Wkj ·Ok) + bias), (5.10)

where k indicates the index of a neuron in layer i−1, Ok represent the outputs (activations)

from neurons in layer i − 1, Wkj are connection weights between layer i − 1 and layer i.

The bias neurons, shown by solid circles in Fig. 5-5 and Fig. 5-6, serve to shift the whole

weighted sum, it being analogous to the constant or the intercept term in a polynomial

regression.

Loss function Loss function is the function that measures the error of predictions with

respect to the recorded data. To improve the performance of an ANN simply means to

minimize its loss function. We use MSE as the loss function.

Optimizer Optimizer is the actual algorithm to improve the performance. It specifies how

a network optimizes by self-modifying its weights. In a feed-forward neural network, this is

done by back-propagation. Starting with the loss function, the algorithm propagates back-

ward through the network carrying the error information to update the weights. Gradient

descent is the core technique to do this. We choose Adam, which belongs to a group called

adaptive learning algorithms, whose learning rate is adapted for each parameter (Ruder

2016).

Learning rate It defines the pace at which weights will be updated by the optimizer in

back-propagation. While for a higher learning rate the model will learn faster, it may not

be able to reach the lowest value of the loss function; at lower learning rates, the model will

adjust more carefully each time, but may not be able to escape from a local minimum to

reach a global one. We set the initial learning rate for Adam optimizer at 0.0002.
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Regularization This is a technique to prevent overfitting, which means the model fits too

well on the training set that it fails to generalize to the unseen dataset. Regularization meth-

ods include penalizing the large weights, randomly dropping out (setting to zero) a portion

of activations of a layer, etc (Chollet 2017). However, we chose not to use regularization.

Early stopping Early stopping could also be regarded to be part of the regularization

technique, except it applies to time. The loss function is calculated on both training and

validation set. To avoid overfitting, the training process will be stopped when the loss

function of the training set has been consecutively lower than that of validation set in a

number of epochs. We set the patience of early stopping in Keras equal to 40.

Our networks are built based on the 9 hyperparameters discussed above.

5.3.2. Input variables and performances

Theoretically, all independent variables in Table 4-1 have an influence to some extent upon

the output, clearness index k. However carrying out all the combinations of those variables

is not necessary. E.g., we have 9 input variable candidates, so there will be 29 = 512

combinations if applying the exhaustive searching method. In data science, the process of

choosing a subset of relevant variables is called feature selection. To do that, we conduct

experiments on a subset of input combinations based on physical understanding, and a

number of additional experiments will also be done as control groups for comparison. 9

input variable candidates and the results of 32 experiments are listed in Table 5-3, the

respectively chosen variables being shown as gray boxes. The first 7 variables (Q↓0, T , RH,

P , PWV , PM10, PT ) in the Table are hourly variables. If only these variables are used, the

ANN structure of Fig. 5-5 applies, but if any daily variable (σ, DoY ) is combined to make

up the input, the structure of Fig. 5-6 applies.

Another strategy was also tried, which is, setting hourly irradiance values Qh as outputs,

instead of the daily clearness index k, we then compute k afterwards by applying Eq. (4.8).

Nevertheless, the results do not show significant differences with respect to models that set

k as the output, so this scheme will not be exhibited or discussed.

The dataset is shuffled before running every model, each model is run 30 times and their

average scores are presented. We can see that the results with highest scores among these

experiments share Pearson’s r around 0.8, and MAE around 0.054. By observing Table 5-3,

all the models of the 11 highest scores include input variable Q↓0, RH and PM10, thus, the

Q↓0-RH-PM10 input combination is considered to be the optimum (these three variables are

also depicted by darker color in all lines of Table 5-3). Even though the combination exactly

of these three variables is the one that holds the fourth highest score, we should be aware of

that, first, the superiorities of three higher scores are not significant; second, the sample do

not represent the whole population; third, the shuffling procedure of dataset also introduces
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Table 5-3.: ANN scores from 32 experiments (ranked by Pearson’s r). Input variables in

each experiments are shown as gray boxes. 3 variables—Q↓0, RH and PM10,

whose combination is believed to be the optimum one, are highlighted by darker

color.

Inputs Metrics of models

Experiment Q↓
0 T RH P PWV PM10 PT σ DoY Pearson’s r MAE MBE

1 0.8006 0.0541 1.7× 103

2 0.8000 0.0536 1.7× 103

3 0.7992 0.0538 2.2× 104

4 0.7985 0.0537 3.4× 104

5 0.7983 0.0537 1.2× 103

6 0.7964 0.0537 −5.5× 104

7 0.7944 0.0537 −4.6× 104

8 0.7939 0.0538 −3.0× 104

9 0.7923 0.0547 −8.2× 104

10 0.7907 0.0543 −8.4× 104

11 0.7902 0.0542 −3.5× 103

12 0.7869 0.0543 2.4× 103

13 0.7843 0.0546 5.5× 104

14 0.7832 0.0555 1.7× 103

15 0.7815 0.0557 3.2× 103

16 0.7760 0.0558 2.5× 103

17 0.7724 0.0557 −2.2× 103

18 0.7721 0.0559 −7.1× 105

19 0.7717 0.0563 2.5× 103

20 0.7710 0.0565 −8.2× 104

21 0.7702 0.0562 9.8× 104

22 0.7654 0.0566 2.2× 105

23 0.7646 0.0562 −1.0× 103

24 0.7578 0.0572 1.2× 103

25 0.7468 0.0590 3.3× 103

26 0.7361 0.0591 1.9× 103

27 0.7202 0.0597 5.6× 104

28 0.7024 0.0632 −1.8× 103

29 0.7022 0.0633 3.4× 103

30 0.6313 0.0696 −3.0× 103

31 0.6240 0.0707 −2.9× 103

32 0.5969 0.0725 −9.5× 104
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randomness. According to “Occam’s razor principle”, we choose the simpler inputs. Any

other combinations including Q↓0-RH-PM10 (line 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 19 and 23) do

not produce significantly, if any, better outcomes; combinations with variables less than 3

degrade the scores severely (line 17, 20, 22, 25, 26, 31 and 32); the rest of the combinations

(line 12, 13, 14, 15, 16, 18, 21, 24, 27, 28, 29 and 30) do not generate better results either.

From Table 5-3, the conclusion in the previous section is supported, namely, that tempera-

ture range is not an appropriate variable to estimate surface insolation.

By contrast, attention should be drawn to the fact that, the surface relative humidity RH by

itself (line 26) already yields an acceptable score, which exceeds that of traditional regressions

(Table 5-2). We thus might try linear and quadratic regressions for RH and k by the same

procedure as in Section 5.2. A similar technique as Eq. (4.9) is applied to generate a daily

average relative humidity RHd:

RHd =

∑
RH(h) ·Q↓0(h)∑

Q↓0(h)
. (5.11)

Regression results, data scatter and scores are shown in Eq. (5.12), Eq. (5.13), Fig. 5-7 and

Table 5-4. It can be seen that even the linear regression of RHd and k has outdone the

Ångström–Prescott regression, either by producing higher regression scores or in view of the

more tightly clustered distribution of data.

k = −9.77× 10−3 + 0.924 ·RHd, (5.12)

k = 1.230− 2.02× 10−2 ·RHd + 8.75× 10−5 ·RH2
d , (5.13)

Table 5-4.: Scores of regressions between daily average relative humidity RHd and clearness

index k.

Pearson’s r MAE MBE

Linear regression -0.7198 0.0611 6.4× 10−4

Quadratic regression -0.7247 0.0605 −6.8× 10−4

We look for reasons of why the best inputs were found to be Q↓0-RH-PM10 instead of others.

First, it is conceivable that PM10, representing the air quality, contributes to the optical

depth; second, RH is a relative value, it does not only include information of the water

vapor, it includes information of atmosphere’s temperature as well, which is also related

to solar radiation; third, there is another possible reason that RH predicts better than T ,

that T reacts quickly with the environment, a cumulus cloud coming and going could cause
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Figure 5-7.: Scatter diagram of daily average relative humidity RHd and clearness index

k. Red dots are training set, blue dots are test set, purple line is the result of

linear regression, green line that for quadratic regression.

fluctuation of the surface temperature, and as the hourly measurement of T is recorded only

at one moment, it might not truly reflect the average temperature of that particular hour.

RH on the other hand, changes more smoothly, thus it more closely represents the average

values of an hour.

Surface air pressure P cannot be viewed as an indicator of weather in Bogotá, since pressure

is not relevant here.

Precipitable water content PWV could provide information about cloudiness, which partly

may already be contained in the surface relative humidity RH.

As to DoY , if the daily irradiance values over a year show any patterns, the extraterrestrial

irradiance Q↓0 should reflect this information. From Fig. 4-5, we can also see that the daily

irradiance does not have a clear pattern over a year.

While for the precipitation PT , it does not necessarily indicate cloud amount, a non-

precipitable cloud may subsist a long time to block the sunshine.

Above all, regarding clearness index k, based on feature selection and physical analysis, Q↓0,

RH and PM10 are the most relevant variables; RH, PWV , T and DoY might be considered

as redundant variables; P and PT might be considered as relatively irrelevant variables.



50 5 Experiments and results

5.4. Radiative transfer method

5.4.1. Feature of irradiance in tri-layered model

For radiative transfer calculations, the DISORT code (version 4.0.98) and the tri-layered

model introduced in Section 2.4 are used. In all computations, we chose an 8-stream ap-

proximation, which takes both accuracy and computing speed into account. One caveat

should be stated: the direct result from RTE is radiation or irradiance. We use DISORT to

obtain daily energy by defining some effective parameters, such as daily mean zenith angle,

daily effective optical depth, etc. If we let H↓0 ≡ 1, calculating k and H↓g are equivalent.

Although the tri-layered model is a “minimal” model, still various parameters are needed,

Table 5-5 shows our settings of phase function P (cos Θ), optical depth τ and single scattering

albedo ω̃ for each layer, the daily mean zenith angle θd being calculated by Eq. (4.9), and

the surface albedo ρ
L

is set to be 0.15. The optical depths of middle layer τm and lower layer

τl are left unfixed, for these two parameters change most drastically in time. Their values

could serve to represent daily features.

Table 5-5.: Parameterization for the tri-layered model, all values are for daily calculations.

P (cos Θ) τ ω̃ θd ρ
L

upper layer isotropy 0.02 0.97

Eq. (4.9) 0.15middle layer HG with g = 0.85 0.95

lower layer HG with g = 0.70 0.8

We now examine some daily radiative features under several typical atmospheric conditions,

which is shown in Fig. 5-8. Each diagram divides the upper layer, the middle layer and the

lower layer from left to right, with both direct and diffuse part of irradiance drawn, as well

as their sum—the global irradiance. We also call the diffuse radiation skylight. The abscissa

represents optical depth, while it is re-scaled to make each layer occupy a fixed length in

the scheme. The ordinate is the clearness index k. The only parameters changed in these

four cases are two optical depths: τm and τl, the others being set as in Table 5-5. The four

scenarios are: clear day: τm = 0.64, τl = 0.3; cloudy day: τm = 9.0, τl = 0.4; polluted day:

τm = 1.0, τl = 1.0; a presumably normal case: τm = 5.0, τl = 0.5. Note that in the clear day

example, even if the air density is much thinner above the boundary layer than below, we

still set τm more than twice than τl, due to the fact that, in the tropics, the height of the

lower layer is much smaller than the middle layer, for the troposphere can reach up as high

as 20 km. The zenith angle is set to 40◦, which is a typical daily mean zenith angle in Bogotá

(cf. Fig. 4-6). The optical depth where the skylight reaches its maximum is indicated by the

green dashed line. Interestingly, in a clear sky condition (k = 0.80), skylight would never
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Figure 5-8.: Radiative features under four scenarios: clear day, cloudy day, polluted day

and normal day. The vertical green dash line indicates the optical depth where

diffuse irradiance reaches its maximum.
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peak before it touches the ground; in the other cases, this peak will occur in the middle layer,

except in the polluted-day scenario, where skylight reaches its maximum at the boundary

between the middle and the lower layer (third panel in Fig. 5-8).

A phenomenon that might be found counter-intuitive from our everyday experience is that,

even in a clear day condition (first panel in Fig. 5-8), the direct irradiance has quite a low

value when it reaches the surface. From the shadow on the ground in any sunny day, we

might claim a higher value. With the condition of forward-peak phase functions (gm = 0.85

and gl = 0.70 in Henyey-Greenstein approximation) and shallow optical depth, and even if

the solar beam is scattered, it still has a forward component and concentrates closely around

the original path, but it actually belongs to the diffuse part in the calculation, people on the

ground could still experience it as the direct part.

5.4.2. Prediction by DISORT

In the previous model, the prediction of daily clearness index k is reduced to the estimation

of τm and τl.

Optical depth in the lower layer τl As we discussed in Section 2.4, the lower layer is

characterized by water vapor and aerosols. However, the variability of aerosol load is more

pronounced and modifies significantly the optical depth, and we would like to simplify its de-

termination by extracting information about the τl of aerosols. There is global aerosol optical

depth (AOD) data available, such as from the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) of NASA, but it is subject to the limitations of both spatial resolution (1◦, or

111 kilometers) and time resolution (data provided by polar orbit satellites). We therefore

turn to locally recorded data of PM10. Research on the relationship between PM10 and

AOD (at 0.55 microns) at Bogotá has been done by Guevara Luna et al. (2018), who give a

linear regression, but with a negative intercept (or constant term), see Eq. (5.14). Because

a negative value of AOD is not acceptable, we offer a linear regression without an intercept,

see expression Eq. (5.15) below, and whose graph is shown in Fig. 5-9.

AOD = 0.0209 · PM10 − 0.953, (5.14)

AOD = 0.00472 · PM10. (5.15)

At first sight, Fig. 5-9 does not exhibit a strong correlation, we see that Pearson’s r between

these two samples is only 0.44, but by looking at Eq. (2.5), ρ and τ do have a linear rela-

tionship; also notice the fact that the sampling of these two variables cannot possibly match

well with respect to time or location, so we keep the idea of a linear regression.

To represent τl with the help of AOD, there is more work to do. The AOD values we use are

solely measured at the wavelength of 0.55 microns, but definitely there are more constituents
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Figure 5-9.: Linear regression between monthly AOD and PM10 from 2001 to 2015. (The

collection of data is courtesy of Guevara Luna et al. (2018))

in the lower atmosphere that will contribute to the optical depth. Therefore, we construct

a modified empirical expression, adding a coefficient 1.4 and a constant term 0.25 for the

representation of τl:

τl = 1.4 · AOD + 0.25 = 0.0066 · PM10 + 0.25. (5.16)

Optical depth of the middle layer τm An average daily value for τm is largely related

to the cloudiness degree, whose information, unfortunately, is hard to retrieve directly (as

discussed in Section 4.3). We turn our eyes to ANN. As we know from Section 5.3.2, the

variables that provide most information to global irradiance are extraterrestrial irradiance

Q↓0, surface relative humidity RH, and an air pollution index PM10, but of these, in our

tri-layer model, PM10 is related more to the lower layer, so we use Eq. (5.16) to evaluate

the τl, and so there are two variables left, Q↓0 and RH to predict τm. The structure of this

hybrid model is shown below in Fig. 5-10:

The score from this hybrid model is shown in Table 5-6. We can see that whilst the MAE

score is unable to compete with most scores from ANN, the Pearson’s r on the other hand

is acceptable. Fig. 5-11 shows the probability distributions of τl and τm from our particular

determination. It makes sense that the shape of probability distribution of τm is closer to k

than τl is (see Fig. 4-8), for τm does have a greater weight in radiative transmission through

the three layers.
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parameter 1

··
·

parameter 2

fixed parameters

τm

Q↓0(predetermined)

RH

τl

k

PM10

ANN

linear regression

DISORT

Figure 5-10.: A hybrid model that uses ANN, linear regression and DISORT to predict the

clearness index.

Table 5-6.: Three-score metric of the hybrid model.

Pearson’s r MAE MBE

Hybrid model 0.7613 0.0625 −1.6× 10−2

Figure 5-11.: Probability distributions of optical depths in the lower and the middle layers,

each data are grouped into 20 bins.
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So far in this work, theoretical studies along with numerical exercises have been carried out

by three different methods. A complementary table to echo the comparisons at the beginning

of Chapter 5 is shown below.

Table 6-1.: Comparison of evaluation approaches from several perspectives. H, M, L are

respectively short for high, medium and low.

Method
Accuracy

in theory

Accuracy with

accessible variables

RTE H M

Empirical M L

ANN unpredictable H

An overview of our results shows that, the mean bias errors in the three approaches are

all low (high scores), meaning that they qualify for long-term prediction; with other model

scores, artificial neural network has the better performance, in comparison with the other

two approaches.

First let us look at the empirical regression approach, whose performance is lowest. This

long-standing empirical approach has its physical justification, of course. For example, the

ground-based sunshine duration records relate to the total energy amount received on the

surface. There are, however, problems with the approach: 1) we did not use data of sunshine

duration and irradiance from the same location, and the “borrowed” sunshine data from

surrounding stations cannot avoid the “inconsistency” of weather conditions, particularly

considering the complicated weather system in the plateau of Bogotá; 2) sunshine duration

given by Campbell-Stokes recorder does not weigh the values with extraterrestrial irradiance

at a given moment, a burnt mark on a card at late afternoon will not distinguish from high

noon, or say, a heavily burnt mark and a mildly burnt mark contribute indiscriminately to

the observation, while the insolation at each relative moment is unlikely to be the same;

3) human factors cannot be ignored, e.g. reading values on a card is after all a subjective

process, different observers might read out different results from the same card. There are

many more empirical regression approaches based on all types of variables, and researchers
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have devised a variety of forms with different coefficients. However, coefficients can, and

should be related to the actual atmospheric parameters (Pelkowski 2009), which vary from

one place to another.

Next we consider the neural network approach, which produced higher prediction scores

compared with the other two approaches in our work. Machine learning has attracted more

and more attention either in data science or meteorology. Where many authors build artificial

neural networks trying to get better irradiance prediction, we take it one step further, using

feature selection to find out the most relevant input variables, where a heuristic method

was chosen to decide and limit the input variable candidates. The Q↓0-RH-PM10 inputs

(extraterrestrial irradiance, surface relative humidity, and surface pollution index PM10)

turn out to be the optimum among all others. This result makes sense, as: 1) the relative

humidity is most related to the cloud system, which exerts most influence on the optical

depth; 2) the pollution also significantly affects the atmosphere’s transparency; 3) finally,

the pre-calculated extraterrestrial irradiance provides information of hourly weights. While

other variables might as well be relevant to clearness index k, they are redundant to the

Q↓0-RH-PM10 combination, and thus by “Occam’s razor rule” we take as few input variables

as possible.

Finally let us take the radiative transfer approach. The specific solution we chose is the

discrete ordinate with the aid of a widely used programming code—DISORT. We simplify

our atmosphere to a medium that contains only three layers, whose imagined borderlines

are the tropopause and the top of the atmosphere’s boundary layer. For the aim of daily

value calculations, concepts like effective daily optical depth and daily mean zenith angle are

introduced, and other rather stable parameters are hypothesized by meteorological reasoning.

We still need assumptions to parameterize τl and τm: based on the idea of the tri-layered

model and analysis from the previously applied artificial neural network model, PM10 was

chosen to estimate τl by linear regression, RH and Q↓0 were chosen to estimate τm by artificial

neural network modeling. Despite all this, the score of this hybrid model is not impressive—

better than empirical regression, yet behind the artificial neural network. We surmise some

reasons for it: 1) the linear regression for τl loses too much information, the low Pearson’s

r also shows the imperfection of this makeshift; 2) our parameterization method for the

tri-layered model oversimplifies our complicated atmosphere; 3) variables do not separately

contribute to the optical depths of the lower and the middle layers. E.g., high surface relative

humidity could affect the optical depth in the lower layer; in turn, the aerosols might facilitate

the nucleation activity in condensation and the cloud formation in the middle layer.

We close with some practical suggestions, along with recommendations for future work.

As far as applications are concerned, the fact should be noticed that the manually operated

sunshine recorder is not able to continuously provide highly reliable data; on the other hand,

we have found that a single surface relative humidity variable RH (we actually applied
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another variable—extraterrestrial irradiance Q↓0 for hourly weighting, but it is calculable

beforehand) can predict the daily irradiance better than sunshine duration does. (By the

way, humidity sensors are normally more economical, and more reliable, with less human

manipulation required). Therefore, the RH data could also be employed for the irradiance

prediction. For this country, nevertheless, as our experiments were all limited to one station,

the regression does not represent general conditions due to the complicated and special

topography. To verify and validate our conclusion above, data from other and more diverse

areas will be needed to test them in future work; a station at which both sunshine recorder

and pyranometer are present would be a better choice to make comparison of the three

prediction approaches. If an artificial neural network is applied to multiple stations, variables

like latitude and elevation should then be considered as inputs.

In regard to the radiative transfer theory, while the radiative transfer approach is not

tractable for the purpose of surface insolation estimation, we still put a lot of effort into

studying that theory. It falls short of an easy-to-implement method, from the pragmatic

viewpoint, but it is nonetheless the only means to understand the atmospheric radiation

behavior.

As recommendation for future work, a more elaborate method of parameterization could be

tried; second, since our method for deciding τl and τm was rather coarse, the hybrid model

could have lost some capacity to evaluate proper values. There is another possibility: let a

machine or a neural network itself learn the combination of daily τl and τm. One possible

approach is to set outputs of the original neural network as τl and τm, instead of k, but τl
and τm do not have observations to compare with. A possible remedy could be to attach

the DISORT program to the end of the neural network, letting DISORT be the last layer,

and using numeric methods to rewrite the back-propagation algorithm for this “DISORT”

layer. This tempting idea, if it works, might help us find out the optimal τl-τm combination,

revealing a more realistic relationship between optical depths in different layers and the

global irradiance.



Appendix A. Approaches for solving the

RTE

A.1. Successive orders of scattering

By expressing the radiation as a series:

I∗(τ, µ, θ) =
∞∑
n=1

I∗n(τ, µ, θ), (A.1)

where I∗n(τ, µ, θ) refers to the nth order of the scattering. As in Section 2.1, without azimuthal

dependence, the primary scattering from the direct solar beam is found in Eq. (2.22):

S1(τ, µ) =
ω̃(τ)

4π
Q↓0P (τ, µ,−µ0)e

− τ
µ0 , (A.2)

when n > 1, we have:

Sn(τ, µ) =
ω̃(τ)

2

∫ 1

−1

P (τ, µ, µ′)In−1(τ, µ′) dµ′. (A.3)

From Eq. (2.13), we can write:

I∗n(τ, µ < 0) = − 1

µ

∫ τ

0

Sn(τ ′, µ)e−
τ ′−τ
µ dτ ′. (A.4)

Upon substituting Eq. (A.2) into Eq. (A.4), letting τ = τb, we find the first order n = 1 of

diffuse transmitted radiation to be:

I∗1 (τb, µ < 0) =
µ0

µ0 + µ

Q↓0 ¯̃ω

4π
P̄ (µ,−µ0)

(
e
− τb
µ0 − e

τb
µ

)
, (A.5)

where P̄ and ¯̃ω respectively represents the average phase function and average single scat-

tering albedo in the atmosphere with thickness τb. With Eqs. (A.2) and (A.5) as starting

points, we can make use of Eqs. (A.3) and (A.4) to iteratively obtain each order’s radiation

caused by corresponding scattering events, and finally we add them up as in Eq. (A.1).
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A.2. Invariant imbedding

Assuming an atmospheric layer with optical depth τb, where only diffuse shortwave radi-

ation is concerned, the reflection function R(τb, µ, θ, µ
′, θ′), and the transmission function

T (τb, µ, θ, µ
′, θ′) can be defined as (Liou 2002):

I∗(0, µ > 0, φ) =
1

π

∫ 2π

0

∫ 1

0

R(τb, µ, φ, µ
′, φ′)I(0, µ′ < 0, φ′)µ′ dµ′dφ′, (A.6)

I∗(τb, µ < 0, φ) =
1

π

∫ 2π

0

∫ 1

0

T (τb, µ, φ, µ
′, φ′)I(0, µ′ < 0, φ′)µ′ dµ′dφ′. (A.7)

Note that R and T are not functions of τ , but of τb. Substituting in Eq. (2.8) leads to:

R(τb, µ, φ, µ
′, φ′) =

πI∗(0, µ > 0, φ)

µ0Q
↓
0

, (A.8)

T (τb, µ, φ, µ
′, φ′) =

πI∗(τb, µ < 0, φ)

µ0Q
↓
0

. (A.9)

By adding a thin layer above the TOA (here “thin” means that in such layer scattering

more than once can be safely neglected), considering the change of R and T between the

augmented atmosphere with “imbedded” layer and the original one, differential equations

that do not involve the intensity I can be established, and, by neglecting the azimuthal

dependence and temporarily the surface reflection, equations of R and T can be found in

the form (Zdunkowski et al. 2007):

(µ0 + µ)Q↓0
π

R(τ0, µ,µ0) = 2µ

∫ 1

0

R(τ0, µ, µ
′)S(0,−µ′) dµ′

− 2µ

∫ 1

0

T (τ0, µ, µ
′)S(τb, µ

′)dµ′ + S(0, µ)− S(τb, µ)e−
τb
µ , (A.10)

(µ0 + µ)Q↓0
π

T (τ0, µ,µ0) = 2µ

∫ 1

0

R(τ0, µ, µ
′)S(τb, µ

′) dµ′

− 2µ

∫ 1

0

T (τ0, µ, µ
′)S(0,−µ′)dµ′ + S(τb,−µ)− S(0,−µ)e−

τb
µ , (A.11)

where source functions are:

S(0, µ) =
ω̃

2π
µQ↓0

∫ 1

0

R(τ0, µ
′, µ0)P (µ, µ′) dµ′ +

ω̃

4π
Q↓0P (µ,−µ0), (A.12)

S(τb, µ) =
ω̃

2π
µQ↓0

∫ 1

0

T (τ0, µ
′, µ0)P (µ,−µ′) dµ′ + ω̃

4π
Q↓0e

− τb
µ0P (µ,−µ0). (A.13)
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Further, R and T can be expressed by Chandrasekhar’s X and Y functions:

X(µ) = 1 + µ

∫ 1

0

Ψ(µ′)

µ′ + µ
[X(µ)X(µ′)− Y (µ)Y (µ′)] dµ′, (A.14)

Y (µ) = e−
τb
µ + µ

∫ 1

0

Ψ(µ′)

µ′ − µ
[X(µ)Y (µ′)−X(µ′)Y (µ)] dµ′, (A.15)

where Ψ(µ) refers to the characteristic function. For the case of isotropic scattering, Ψ(µ) =

ω̃/2, rather simple expressions for R and T can then be found:

(
1

µ
+

1

µ0

)
R(τb, µ, µ0) =

ω̃

4µµ0

[X(µ)X(µ0)− Y (µ)Y (µ0)], (A.16)(
1

µ
− 1

µ0

)
T (τb, µ, µ0) =

ω̃

4µµ0

[X(µ)Y (µ0)−X(µ0)Y (µ)]. (A.17)

Numerical results of X and Y functions under isotropic scattering were tabulated by authors

like Carlstedt and Mullikin (1966); Fuller and Hyett (1968), etc.

Finally, when a surface is non-black, with reflection terms to be added to Eqs. (A.8)

and (A.9), the extra effort is not excessive (Liou 2002; Zdunkowski et al. 2007). In essence,

mathematically speaking, invariant imbedding turns a two-point boundary-value problem

into an initial value problem (Bellman and Wing 1992), and instead of coping with details

within the medium, only emerging radiations from the two boundaries are need in calcula-

tions.

A.3. Adding and doubling

On the grounds of Eqs. (A.6) and (A.7), functions R and T can be utilized as operators,

and by assuming an atmospheric layer (Layer 1) of optical depth τ1 and ignoring emission,

we can write (cf. Eq. (2.29) ) (Goody and Yung 1995):[
I↓(τ1)

I↑(0)
]

=

[
T 1

R1

R̃1

T̃ 1

][
I↑(τ1)

I↓(0)
]
, (A.18)

where R1 and T 1 are matrix operators for downward radiation, while R̃1 and T̃ 1 are ones

referring to upward radiation. Eq. (A.18) is known as the interaction principle (Grant and

Hunt 1969). Like invariant imbedding in Appendix A.2, information inside the layer is not of

interest, vector operators R, T can be obtained through applying the foregoing mentioned

Gaussian quadrature (cf. Section 2.2.1) to Eqs. (A.6) and (A.7). By adding a layer (Layer

2) of thickness τ2 − τ1 below Layer 1, we likewise get a second matrix equation:
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[
I↓(τ2)

I↑(τ1)
]

=

[
T 2

R2

R̃2

T̃ 2

][
I↑(τ2)

I↓(τ1)
]
. (A.19)

If we only care about reflection and transmission functions of the combined layer 0 ∼ τ2

(Layer 12), we can eliminate I↑↓(τ1) in Eqs. (A.18) and (A.19), then obtain relationships of

solely I↑↓(0) and I↑↓(τ2) for Layer 12:[
I↓(τ2)

I↑(0)
]

=

[
T 12

R12

R̃12

T̃ 12

][
I↑(τ2)

I↓(0)
]
, (A.20)

where

[
T 12

R12

R̃12

T̃ 12

]
=

[
T 2(1− R̃1R2)−1T 1

R1 + T̃ 1(1−R2R̃1)−1R2T 1

R̃2 + T 2(1− R̃1R2)−1R̃1T̃ 2

T̃ 1(1−R2R̃1)−1T̃ 2

]
, (A.21)

here 1 denotes the identity matrix. Eq. (A.21) represents so-called addition theorems, from

which we can obtain the combined layer’s properties from properties of each independent

layer.

If a layer is homogeneous, ignoring polarization and azimuthal dependence, then R = R̃
and T = T̃ (Hovenier 1969). Further, when the adding layer is optically identical as the

original one, Eq. (A.21) becomes:[
T 11

R11

]
=

[
T 1(1−R2

1)−1T 1

R1 + T 1(1−R2
1)−1R1T 1

]
. (A.22)

Eq. (A.22) is referred to as the doubling method. Adding and doubling can thus be elaborated

in the following steps:

1. divide an inhomogeneous atmosphere into several fictitious layers, each layer regarded

as vertically homogeneous.

2. further divide a homogeneous layer into 2n “thin enough” sublayers, where the concept

“thin” can be based on the same idea mentioned in Appendix A.2, so only the primary

scattering takes place in such a sublayer, then the properties are much easier to handle.

3. obtain properties of a thin sublayer of thickness τ1, “double” n times to find R and

T of the homogeneous layer that has thickness of (2n · τ1) by Eq. (A.22). Likewise for

the other homogeneous layers.

4. making use of Eq. (A.21), add each homogeneous layer together, to finally get R and

T of the whole atmosphere.
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methodology

Before data are put to use, their quality should be validated. In a validation procedure, if a

record fails any test of validation procedures, it will be marked with a questionable flag. In

this appendix, the validation methodology we used is discussed, mainly for irradiance data.

Borrowing the idea proposed by O’Brien and Keefer (1985) for hydrological gauging data,

Meek and Hatfield (1994) developed a systematic method to validate meteorological variables

from individual stations, their methodology contains three general types of test: 1) whether

the value is within the physically permitted range; 2) whether the rate of change is within

a reasonable range; 3) whether the rate of change is unreasonably small in a time span.

For solar irradiation, Younes et al. (2005) borrowed the “Page model” (Page 1997), and

proposed a more sophisticated empirical algorithm, which defines an envelope with upper

and bottom boundary in calculating clearness index. Moradi (2009) also used a three-step

test, but deciding the value range based on Ångström–Prescott equation.

B.1. Validation procedure

B.1.1. Irradiance data

Global irradiance dataset is tested by the seven steps shown below. The hourly irradiance

record is denoted as Qh.

Valid test The data logger might not be working appropriately all the time, missing data

will be marked as “invalid”.

Rigid Bound Test This step is to test whether the record is within a permitted range,

assumed by Schuster (1905), 1500W/m2, was used, but since the irradiation only fluctuates

6.9% around the solar constant in a year, from 1321W/m2 to 1412W/m2 (see Section 4.1),

it should suffice to set the upper boundary at 1420W/m2:

− 10 < Qh < 1420W/m2. (B.1)
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Note that the lower limit tolerance being set to −10 instead of 0 is based on the consideration

that the pyranometer is not always perfectly calibrated, and a small negative overall shift

has limited influence on daily calculation. Similarly hereinafter.

Dynamic bound test This step can be considered as a further and more meticulous step

than the previous rigid bound test, where we take the extraterrestrial irradiation Q↓0 at any

given moment into account.

(0.05 ·Q↓0 − 10) < Qh < (Q↓0 + 10). (B.2)

If a record is too low (lower than 0.05 · Q↓0 − 10), we mark it as questionable. Considering

cloud reflection and aerosol scattering from nocturnal man-made light source, the upper

boundary is set to Q↓0 + 10, instead of Q↓0. (Especially around the sunset time, there is more

chance that recorded irradiance will exceed the extraterrestrial irradiance. This phenomenon

was also noticed by Meek and Hatfield (1994), who proposed some possible explanations.)

Clear-sky bound test Many works (e.g., Moradi 2009, and Younes et al. 2005) test solar

irradiation dataset by comparing records with presumed highest value that could be detected

in the clear sky condition. Here a simple empirical equation is adopted, proposed by Allen

(1996):

kc = 0.75 + 2 · 10−5z, (B.3)

where z is the altitude of the concerned station. According to a suggestion by Allen (1996),

this equation is suitable for altitudes from 0m to 3000m above see level. Considering the

elevation of Bogotá is very close to 3000, we changed 0.75 to 0.80, a more tolerant threshold.

Step test The step test compares the change between successive observations. If the

difference exceeds an allowed value, the record will be marked. The step test has proven to

be useful for detecting erroneous records due to loose wires or any other datalogger problems.

We use a fixed rate-of-change limit, which follows the proposal by Shafer et al. (2000):

|Qh −Qh−1| ≤ 800W/m2. (B.4)

Persistence test The persistence test is designed to determine damaged instruments or

“stuck” records (Shafer et al. 2000). It marks suspicious records that do not show any

change over time (Meek and Hatfield 1994). We apply two substeps: first, the “simple

persistence test”, to check the rule that consecutive three observations shouldn’t be exactly

the same:

Qh 6= Qh−1 6= Qh−2, (B.5)
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Second, the “variance test”, to make sure the unbiased sample variance of 10 consecutive

values should not be less than 0.1:

s2 > 0.1[ for every 10 consecutive observations ]. (B.6)

B.1.2. Other variables

For other variables, the validation procedures are rather simple, physically unreasonable

observations are discarded, normally only the rigid bound test is applied, e.g., for the surface

temperature T , if a record is too high or too low (such as higher than 30◦C or lower than

0◦C), it will be marked.

B.2. Testing and preparing the dataset

We set the tolerance threshold as 1 in daytime, which means, if records in one day’s daytime

(usually 13 hours) contain more than 1 marked records, the data from this day will not be

used. Following this rule, combining validations of all variables, the station “EL IDEAM”

has relatively plenty data left, with 1692 days’ records in ten years (from 2008 to 2017) that

we picked out for numerical experiments.
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