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Abstract

Inventory Policies for the industry are a need to its profitability and to provide adequate service to the

clients. The final stage in the internal logistic of the supply chain, the storage and the final disposal,

must have a correct planning, but this requires a correct management of the final products demand.

New models based on Bayesian techniques are proposed in this thesis in order to do forecasts with

few data and for short periods. Also, new Inventory models, and the respective optimization for a

type of industry that has a storage center and final supply of its products.

The work is divided in two phases. The first phase will provide a better form to forecast, and the

second, the form to do optimization, to give to the industry adequate quantities to order, save, and

transport to fulfill service to the clients.

Keywords:Forecasts, Bayesian Techniques, Dynamic Linear Models, Inventory Models.

Resumen

Las políticas de inventario para la industria son una necesidad para su rentabilidad y para proveer

un servicio adecuado a los clientes. Es necesario buscar herramientas que faciliten a la industria

una buena planeación en la etapa final de la logística interna de la cadena de suministro, tanto

en el almacenamiento, como en la disposición final, pero ésto requiere un manejo adecuado de la

demanda de los productos finales. En ésta Tesis Doctoral se proponen nuevos modelos basados en

técnicas bayesianas, con el fin de hacer pronósticos con pocos datos y a corto plazo. También, se

proponen Modelos de inventario y su respectiva optimización, para un tipo de industria que tenga

un centro de almacenamiento y distribución final de sus productos. El trabajo se divide en dos

fases. La primera fase proporcionará una mejor forma de predecir, y la segunda, la forma de hacer

la optimización de modelos de inventario multiproducto, para dar a la industria de las cantidades

adecuadas para ordenar, guardar y transporte para cumplir con el servicio a los clientes.

Palabras clave:Pronósticos, Técnicas Bayesianas, Modelos Lineales Dinámicos, Modelos de

Inventarios.



Chapter 1

Introduction

The future of an organization can be affected by problems related to a bad inventory management,

or to bad demand forecasting. Such problems could reduce profits, or the management service, and

they could increase costs, among other aspects. Some of the causes of these problems can be tied to

wrong practices like over-ordering or shortfalls of existences and wrong forecasts, conducting the

organization to be unprepared to face unexpected changes in demand or prices, in relation to other

aspects (Gutiérrez and Vidal, 2008; Sarimveis et al., 2008; Sethi et al., 2003).

In this chapter it is presented the problem, the hypothesis, the expected contributions, and a

summary of the content of this Doctoral Thesis.

1.1 Problem Definition

It is increasingly necessary to make a proper planning of inventories in the industry, since several

effects can occur and impact, decisively, the future of the organizations. These effects may af-

fect profitability, good service and costs, among other things. Some of these conflicting practices

are over-ordering or shortage of stocks, or bad estimation of supply times, or demand forecasting,

leaving the organizations to be unprepared to respond to their markets.

Industry needs accurate and fast methods to be efficient (Silver, 1981; Nenes et al., 2010; Flynn

and Garstka, 1990; Chou et al., 2013; Vargas, 2009; Jeyanthi and Radhakrishnan, 2010). Planning,
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evaluation and control of inventories are activities of vital importance in order to fulfill the objectives

of the organizations, specially, in the manufacturing fields (Valencia et al., 2015). “The strategy used

to determine how to manage inventory is known as a firm’s inventory policy” (Simchi-Levi et al.,

2008). And this Inventory Policy for an organization, depends on many characteristics of the supply

chain of the inherent economical sector. For an industry, this leads to search adequate Inventory

Policies that provide the costs and profits needed to achieve the best possible results in order to be

sustainable. This leads to propose Inventory Models that can make a good representation of the

variables inherent to the industry management.

In general, the main characteristics to consider in an inventory model are: the demand behavior,

the number of periods of the planning horizon, the cost of products and inventory holding cost, the

service level, lead time, among others that will be detailed later (Simchi-Levi et al., 2008). The

demand behavior could be stochastic or deterministic, but, nowadays, the stochastic demand has

been a very investigated topic because of the impact it has over the inventory policy (Wang et al.,

2011; Sarimveis et al., 2008; Gutiérrez and Vidal, 2008; Taleizadeh et al., 2011). Besides this, it

is important to take into account, the kind of objective to optimize; and this considers the static or

dynamic variables.

Organizations currently face many dynamics by showing static models as inadequate to cope

with them (Gutiérrez and Vidal, 2008; Valencia et al., 2015). Unexpected drastic changes in some

variables of inventory models could generate bad consequences to the organization, leading to sig-

nificant effects. Some causes of this could be casual events in the market; for example, modifications

in representative money taxes, vulnerability of systems, uncertainty in the demands of terminated

products which affect the orders, uncertainty in lead times as well as the costs and profits (Simchi-

Levi et al., 2008; Ventura et al., 2013). In special, the demand of final products has a dynamic which

makes the Inventory planning very uncertain (Gutiérrez and Vidal, 2008; Jimenez Sanchez, 2005;

Sarimveis et al., 2008).

The demand of final product is one of the most important variables in order to propose an appro-

priate Inventory Policy (Simchi-Levi et al., 2008), because of the treatment that it receives (Bes and

Sethi, 1988; Feng et al., 2006; Gutiérrez and Vidal, 2008; Kumar et al., 2012; Samaratunga et al.,

1997; Schwartz and Rivera, 2006; Sethi et al., 2003). The stochastic formulation of the demands
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has been one of the most studied cases in the literature of these problems. In order to produce fore-

casts of sales of final products, one of the most used models has been the ARIMA (Autorregressive

Moving Average) and also, the Exponential Smoothing, but, how well do these models predict the

demand? The answer to this question depends, not only on the way to consider the components of

the time series, as the seasonality, randomness, trend, cycles, but also, on the theoretical structure

used to do the estimation based on assumptions over the errors or random perturbations εi. These

are tested with the estimated residuals, which are the result of the difference between the adjusted

response values (with model) and the observed values. In summary, the most important assump-

tions of ARIMA, Classical Regression models for time series are: normality distribution, constant

variance, and independence for residuals. For Exponential Smoothing models, it is necessary to test

the non-correlation of residuals, but not normality or homogeneity, because these models are not

estimated based on normal distribution, but based on an optimization method.

Sometimes, the assumptions about the residuals do not receive so much attention when a predic-

tion is done, and, if they are not actually fulfilled in a particular problem, possible bias can affect pa-

rameters estimations. Therefore, it can generate wrong predicted values (Valencia, 2010; Armstrong

et al., 2014). In Regression Analysis, besides these assumptions, there is another problem called

multicolinearity which sometimes could happen if there is not an appropriate exploratory analy-

sis, because it could introduce a variance inflation factor, and this is due to the non-independence

among co-variables. There is also another problem about the identification of seasonal behavior in

Regression and ARIMA models, because, as Armstrong et al. (2014) affirm, there is less accuracy

detecting seasonal component, when there are not enough historical data.

The compliance with the assumptions of most of the classical forecasting models can be ex-

plored with graphical methods, or verified with analytical tests. These will be explained in detail

later. For example, to check the constant variance it is useful to study the behavior of residuals

vs. fitted values. In order to determine the adjustment of residuals to a normal distribution, it is

recommended to use a plot like Quantile-Quantile normal (QQ -norm) (Montgomery et al., 2006;

Valencia et al., 2014b). Among the analytical methods, there are: Shapiro Wilks or Jarque bera

tests for normality, Bartlett or Levene tests for homogeneity of variance, and Ljung Box for non-

correlated residuals(Caridad y Ocerin, 1998).
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Sometimes ARIMA models do not show better accuracy than other models like Exponential

Smoothing (Makridakis et al., 1979) or empirical distribution, as Cohen and Dunford (1986) use

them. In fact, they also affirm that normality of SARIMA models is not achieved many times.

Makridakis et al. (1979) compare 111 time series data with randomness, and which are not, nec-

essarily, stable, estimating different kind of models. They estimate the indicator Mean Absolute

Percentage Error (MAPE) for fitting and forecast data, and they conclude that simple models per-

form well in comparison with ARIMA models.

Bayesian techniques are based on theoretical structures which are different from classical mod-

els. These can be useful to forecast demands as many authors have shown (West and Harrison,

1997; Lee et al., 2003; Pedroza, 2006; Bermúdez et al., 2009; Petris et al., 2009; Yelland and Lee,

2003; Yelland, 2010; Fúquene et al., 2015), and, also, these techniques can be helpful in optimiza-

tion methods (Bolstad, 1986). The question: why should a Bayesian approach be considered to

the analysis of time series? This can be answered as follows: first, because of the mistakes that

are committed when a classical model is estimated. These kinds of models fails in the theoretical

assumptions of its residuals, as it was previously mentioned. Second, many times there are few

historical data (sales of a product), or total absence of them. Third, priori distributions can be used

for Bayesian Methods in the first step of this estimation; and, fourth, there is evidence of many

works already presented about Non-Bayesian methods (Broemeling and Shaarawy, 1988; Gutiérrez

and Vidal, 2008; Valencia et al., 2014b, 2015). One hypothesis to verify in this Doctoral Thesis is if

the Bayesian models are a good alternative to produce better forecasts than other classical models,

in cases of drastic changes of the time series. But, can a Bayesian univariate model perform better

than a multivariate Bayesian model when there are multiple products? It is another hypothesis to

verify.

It is necessary to define criteria to evaluate the forecasts of the demands in a multiproduct sce-

nario, when the models do not follow the same theoretical structures.

Optimization of an Inventory Model in a time horizon T, needs accurate demands (Chen and Lee,

2004). Gutiérrez and Vidal (2008); Valencia et al. (2015) present reviews of statistical models for

demands and different aspects of Inventory Policies, and in Valencia et al. (2015) a conclusion about

some important requirements of these inventory models is that the dynamics must be considered
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in its formulation and optimization, because of the evident uncertainty of variables, in special, in

multiproduct demands. Other conclusion is, that, not many authors have used Bayesian Techniques

for these type of optimization in relation to this type of models.

One of the purposes of the Industry is, with no doubt, to minimize the total production and inven-

tory costs along the time horizon of planning, and this has been considered in different works (Bes

and Sethi, 1988; Buffett and Scott, 2004; Dunbar and Desa, 2005; Feng et al., 2006; Hausman and

Peterson, 1972; Jeyanthi and Radhakrishnan, 2010; Samaratunga et al., 1997; Sani and Kingsman,

1997; Sethi et al., 2003; Taleizadeh et al., 2011; Urrea and Torres, 2006; Wang et al., 2011). Costs

can be considered fixed or variable, according to the company process or external factors. But not

always this cost minimization is an objective. Also, the level of inventory quantity saved can be an

objective (Arrow et al., 1958; Arslan et al., 2007; Sarimveis et al., 2008; Wang et al., 2005). There

are other problems that consider a maximization of an objective, like profits or inventory level. In

Song (1998), the allowed level of inventory is maximized, in Dawande et al. (2006) the objective is

to achieve the maximum orders fulfillment, and others consider the maximization of the expected

profit (Choi et al., 2003; Chou et al., 2013; Gao and Ting, 2009).

The solutions of such Inventory policies can be achieved by using different kinds of techniques.

Sometimes statistical and simulation methods are useful in order to find possible solutions. Linear

Programming, Linear Integer-Mixed programming, and also, an organized form to search solutions,

known as heuristics, can also be programmed. However, this last technique does not always provide

the optimal solution of a proposed model. Many researchers have developed a Metaheuristic method

to get better solutions. “Metaheuristic is an iterative master process that guides and modifies the

operations of subordinate heuristics to produce efficiently high-quality solutions” (Silver, 2004). In

this way, Tabu Search algorithm can be used to minimize the inventory cost of the internal logistic

of an organization, according to Valencia et al. (2014a), where ARIMA and Time Series Regression

Models were used to forecast demand. This optimization technique was applied to the same products

with the same time horizon of the real situation of the company, and a saving of 20% was found

in inventory costs, with a 100% service level. Also, Genetic Algorithms can be used for efficient

supply chain management (Jeyanthi and Radhakrishnan, 2010). Among these techniques, can a

Bayesian technique be appropriate to help in the optimization of an Inventory Policy?
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The Bayesian Statistics has shown strength to be used in the mentioned forecasts, to help with

the optimization, when there are few historical data, in a complete absence of these, or in the pres-

ence of the before mentioned drastic changes. They can also use probability distributions based on

stochastic dependence facilitating an update of important variables as predicting demand in a mul-

tivariate level. These Bayesian techniques can be used to forecast demands concerning univariate

or multivariate level, which are used to plan production and storage, in an Optimal Inventory Policy

for multiple products, as it is proposed in this Doctoral Thesis.

This Doctoral Thesis focuses in two problems for an industry: The first, related to final demand

forecasting, because this is one of the principal factors causing uncertainty, and the second, related

to inventory planning, due to the increasing necessity for the industry to be prepared to order and

store properly to maintain an adequate service for clients, trying to face the several effects that can

occur and impact decisively the future of the organization. It is necessary to propose an appropriate

inventory policy in a general framework of an adequate storage, which is inherent to all the chain;

but in this Doctoral Thesis, the proposal is in the final stage of a supply chain. It means, the storage

of final multiple products, to provide an appropriate service.

A fundamental question of this research is to determine if the multivariate estimation of the

demands of terminated products, with Bayesian techniques, contributes to the optimization of a

Multiproduct Dynamic Inventory Model.

In summary, these are important hypothesis to solve through this Doctoral Thesis:

• Why should a Bayesian approach be considered to the analysis of time series?

• Are the Bayesian models a good alternative to produce better forecasts than other classical

models, in cases of drastic changes of the time series?

• Can a Bayesian univariate model perform better than a multivariate Bayesian model when

there are multiple products?

• Can a Bayesian technique be appropriate to help in the optimization of an Inventory Policy?
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1.2 Objectives

1.2.1 General Objectives

To develop a methodology for optimizing dynamic multiproduct inventory modeling with multivari-

ate demand.

1.2.2 Specific Objectives

• To select the main variables involved with the final stage of the supply chain, for terminated

products in a company manufacturing.

• To conduct a review of state-space models that have been proposed for upgrading demand

using Bayesian statistics.

• To define criteria for evaluating the multiproducts demand prediction performed with Bayesian

techniques.

• To propose a methodology for the analysis of the temporal evolution of the inventory system,

allowing to be represented with a state space model.

• To develop an optimization model of multiproduct inventory, according to multivariate de-

mand, with the conditions, variables, and parameters established.

• To simulate the optimization of the dynamic model proposed, integrating Bayesian techniques

properly.

• To select a study of case.

• To apply the model(s) developed to the selected case, using a statistical software.

• To validate the optimization of a dynamic model for the inventory management proposed.
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1.3 Contributions of this Doctoral Thesis

In summary, the contributions are:

• To develop a novel model to forecast in short term with few data, based on Bayesian tech-

niques, designed in R program.

• To develop a novel Multi-product Inventory Model, which optimization is based on a dynamic

algorithm. The optimal solution for the inventory model provides the quantities to order, store

and transport in an appropriate time horizon for the industry, by maximizing profits.

• To provide a methodological proposal applied to an industry, with an experimental design,

to find the best form to make a correct Inventory policy, based on the results of the designed

Algorithm in R program, according to the initial conditions of the industry.

The methodological proposal for the dynamic Inventory Model, includes two forms to do opti-

mization, the first one considers previous demand forecasts, derived from a comparison, from which

the best form was chosen. The second one, considers a simulation of the demands, and a calculation

of an Expected Value for the objective function proposed.

The forecast models are designed in an application with free access to the industry, that compares

final demand forecasts between classical and Bayesian models, for time series with the volatility,

seasonality and non-stationary characteristics, using software R. The application considers univari-

ate and multivariate time series models, and it provides the best possible model, using MAPE criteria

for fitting or forecasts.

Next, the Inventory Policies will be proposed, with the algorithm, to find optimal solutions,

using software R, that will be validated with real data. In this Doctoral Thesis, it will be shown the

structure, model representation, and solutions of an Inventory system for the final stage of a supply

chain of a company that needs to do forecasts and then, to store inventories and distribute them,

based on adequate modeling techniques and computer technologies that generate competitiveness

and profitability.

The dynamic inventory model can use a dynamic Bayesian prediction, in order to make a control

that allows, in turn, optimize the desired inventory levels.
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1.4 Summary of the content

The chapter two contains a State of the Art review, extending the principal topics of the Thesis

related with Inventory structures, works associated with Statistical applications to the demand pre-

diction, or to the optimization process, among other aspects. The problem was divided in two

phases, in order to argue the importance to choose the proposed models. In chapter three, the phase

of Statistical models to study and estimate the demands, will be developed, by choosing the best

models to forecast in the related case. Chapter four describes the phase two, with the Multiproduct

Inventory Model proposals, and the respective processes to do the Optimization, for establishing

the best way to program the inventory management for a company with the specifications related.

Finally, the conclusions chapter summarizes the results and the hypothesis that could be supported

by the research.
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Chapter 2

State of the art review

The logistics of a supply chain in an organization could be internal or external. This Doctoral thesis

will focus in the internal logistics, specifically, in the final stage of inventory management.

Planning, programming, evaluation and control of manufacture inventories in the industry are

important activities in order to fulfill the objectives previously defined by the company. The In-

ventory Management could be done for raw materials, products in process, or final products. The

problem studied in this Doctoral Thesis will be focused on final products. Further, this work could

be linked with inventories of products in process and with raw materials.

Inventory Optimization is not always easy to achieve due to the uncertainty present in the demand

fluctuations (Valencia et al., 2015). In many situations, the problem is so hard to solve, that finding

good solutions about how much to order, to store, and to send, requires more accurate and faster

mathematical and statistical techniques.

Few works have been proposed related to Bayesian applications in Inventory problems. Hansson

(1998) shows how to implement a solver of Bayesian problems (Bayesian Problem Solver - BPS)

to programing problems. Part of the motivation is that a chosen action depends on the form to take

decisions under uncertainty. Mockus (2002) uses Bayesian Heuristic Approach-(BHA) to facilitate

the choice of a heuristic among three, minimizing the completion time of all the tasks.

In this chapter, the proposals that have appeared in the literature of inventory models will be

reviewed. First, the state of the art will be presented about the dynamics in the inventory manage-
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ment, characteristics of inventory models, and how to work with them, according to the literature.

In a second stage, this Doctoral Thesis will present a review of the state of art of some classical

techniques and also, some Bayesian models for forecasting. An emphasis will be done as well in

the principal aspects of the time series components, and the residuals assumptions of some of these

models to do the estimation that could cause problems in classical models, as it was previously

mentioned.

After this, in order to define the kind of models to be proposed, it is necessary to characterize the

conditions, parameters and variables of inventory systems of an industry, and also, the conditions of

the proposed models to do forecast in this Doctoral Thesis.

2.1 Dynamics of the Inventory Management

Uncertainty has been a common factor in some systems of the industry that affects many decisions

(Rocquigny, 2012; Sarimveis et al., 2008). Sarimveis et al. (2008) present a review of 187 refer-

ences about dynamic models related to supply chain, external, and also, internal to the organization.

The authors show different factors included in the optimization of production and also, inventory

models, indicating that static models are not enough to face problems like unexpected fluctuations

in the demand. They affirm that inventory or production systems can be seen as dynamic programs,

because they have an uncertain and changing nature (Sarimveis et al. (2008), p. 3542).

Drastic changes in some variables of inventory models could generate bad consequences to the

organization, leading to significant effects. These changes could be caused by casual events in

the market, for example, jumps in the representative money taxes, vulnerability of systems, high

uncertainty in the demands, which affect orders, lead times and consequently, costs and profits

(Simchi-Levi et al., 2008; Ventura et al., 2013).

Some strategies for the fulfillment of its processes can be done by the organization, and all of

them have posterior effects in the internal systems. Other way to say this is: if we denote with d

the actions applied to a system, with x an input variable, and with z an output variable of a system;

then, the actions “d”, taken in a state (x, z), of a system, may impact the system on later times. This

is the reason why it is necessary to quantify the uncertainty via a measure of imperfect information
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on such state on some possible output variable of interest (Rocquigny, 2012).

The state of a system often involves a dynamic variation on time, but at the same time, charac-

teristics of this could involve a time series on inputs, outputs and events of that system (Rocquigny,

2012).

The word dynamics on inventory models means unexpected changes on the variability of the

system, causing uncertainty in variables like demand, lead times, prices or costs, among others,

which are associated to inventory management.

Inventory models that contemplate all fixed factors in time are not robust, because they do not

incorporate random fluctuations on internal logistics, for example, the bullwhip effect (Simchi-

Levi et al., 2008), this represents strong variations over demand, a violation in the assumption of

independence, or inventory policies with constant requests when the demand, really, has a random

and dependent variation (Bes and Sethi, 1988; Gutiérrez and Vidal, 2008; Sarimveis et al., 2008;

Shoesmith and Pinder, 2001). This suggests that the management of such inventories with fixed

demand for any period, or simply a constant expected value, is not appropriate.

It is necessary to define here the principal characteristics to plan Inventory Management in the

internal logistics of an organization, in addition to the mentioned variables, in order to give concepts

about the appropriate policy to reach the objectives searched.

In general, the main characteristics related to an inventory model, and which were previously

mentioned, will be explained in this review of the state of art, by emphasizing, more, on the behavior

of the stochastic demand, and on some dynamic inventory models. Besides this, it will be also

defined, the number of periods of the planning horizon, the cost of the product, the inventory holding

cost, the cost of ordering, the service level, and the lead time, among others, as follows:

• Demand is one of the principal determinants for the storage on manufacturing companies,

finding it in deterministic or stochastic forms, and modeled in different ways, or, with different

schemes. Moreover, it is very important to know or to forecast the demand of final products,

which, would guarantee an optimal planning of inventory models of the final stage of a supply

chain.

Those Organizations that contemplate inventory storage, often face dynamics where, static in-
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ventory models are not enough to do an adequate representation of their supply system. Many

authors review or present models to forecast the demand under uncertainty, or randomness,

and also, inventory models involving this randomness (Simchi-Levi et al., 2008; Gutiérrez

and Vidal, 2008; Sarimveis et al., 2008).

The demand forecasts have some problems such as changes in the distribution function, pro-

ducing a lack of stability in the time series, so, “...a time series is unstable if there are frequent

and significant changes in the distribution” (Hillier and Hillier (2007),p., 397). This problem

is cited by different authors (Braun et al., 2003; Sarimveis et al., 2008; Valencia et al., 2015).

However, in some situations, the models of interest cannot meet some theoretical assump-

tions, like normality in residuals or constant variance. In other situations, the researcher does

not have the enough required data to carry out the estimation of the model.

• Lead time is considered constant to simplify the inventory modeling in many works (Baker

and Urban, 1988; Chou et al., 2013; Silver, 1981). Silver (1981) affirms: “This is the most

used case in literature” and in few cases this is assumed with a random component (Song,

1998) that can be characterized with a probabilistic distribution like a Normal one.

• Price is determinant in demand variation for some inventory policies, since, sometimes, the

sales depend on the price or the price variations of the product. Urban and Baker (1997) cite

the elasticity model of the demand rate: D = αp−e, but it is a deterministic model; in these

cases, prices can be random (Chen and Lee, 2004; Sarimveis et al., 2008; Ventura et al., 2013;

Yang and Fung, 2013). In other cases, prices are incorporated on the Objective Function

(Gallego and Ryzin, 2013) and they are optimized, but often, these prices are assumed fixed

(Bassok et al., 2011; Félix and Nunes, 2003).

• Objective function is the equation to be optimized. One of the principal objectives in In-

ventory Systems, is to minimize the costs, as many authors have reviewed and worked on

this; (Sarimveis et al., 2008; Valencia et al., 2014a; Bes and Sethi, 1988; Buffett and Scott,

2004; Dunbar and Desa, 2005; Feng et al., 2006; Hausman and Peterson, 1972; Jeyanthi and

Radhakrishnan, 2010; Sani and Kingsman, 1997; Sethi et al., 2003; Taleizadeh et al., 2011;

13



Urrea and Torres, 2006; Wang et al., 2011). But, there are not many researches about the

maximization of profits (Choi et al., 2003; Chou et al., 2013).

In some cases, a minimization of random costs, is considered (Rocquigny, 2012; Wang, 2006;

Ventura et al., 2013). Ventura et al. (2013) develop a mixed integer nonlinear programming

model, to determine an optimal inventory policy that coordinates the transfer of materials

between consecutive stages of the supply chain from period to period while properly placing

purchasing orders to selected suppliers and satisfying customer demand on time. The pro-

posed model minimizes the total variable cost, including purchasing, production, inventory,

and transportation costs. The model can be linearized for certain types of cost structures.

Profits are the remainder of incomes minus costs. Some authors have provided works related

to profit optimization or to uncertainty in profits (Choi et al., 2003; Chou et al., 2013; Gao

and Ting, 2009).

Vidal and Goetschalckx (1997) describe a review where different models are proposed to do

production optimization. They use a profit maximization as one of the objective functions of

this kind of models.

Inventory level at the t-th time, measured as the simple balance inventory equation: It =

It−1 + xt − Dt, where xt is the quantity to order, and Dt is the demand rate at t-th period.

These restrictions of inventory balance represent the way in which the product enters and

leaves from the storage center, where the inventories are stored from one period to another.

In some works, It is an output of a model, or, an objective function (Salinas et al., 2013;

Samaratunga et al., 1997). But there is a work where it is considered to do a minimization

of deviations in relation to the required level (Wang et al., 2005). In this case, it is shown a

representation of a Dynamic Linear Model, and where a Kalman Filter is a tool in order to

proceed with the optimization.
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2.2 General Inventory Models

Inventories handling has been considered as one of the most important aspects of the production

and logistics processes of a company. Many inventory-decisions are difficult because they can have

important effects on customer service and costs (Ventura et al., 2013; Simchi-Levi et al., 2008). So,

it is fundamental to define that “the strategy used to determine how to manage inventory is known

as a firm’s inventory policy” (Simchi-Levi et al., 2008). And this inventory policy depends on many

characteristics of the supply chain, related, for example, to the internal logistics of the company.

Inventory can appear on these type of forms in the logistics of the industry: Raw material, Work-

in-process (WIP), or finished products inventory. “Every one of these needs their own inventory

control mechanism or control” (Simchi-Levi et al., 2008). The necessity of holding these kind of

inventory can be caused because:

• The demand can be modeled, but there is uncertainty almost all the time when forecasts must

be produced. Some causes of these uncertainty could be: a) Short life cycle of products; so

there are few historical data. b) The presence of other competing products in the market, for

example, due to free commercial trades. But, it is important to consider that a high uncer-

tainty can also be caused by unexpected changes in prices, taxes, or a wrong definition of the

forecasts. In order to find an effective inventory policy, a stochastic demand can be modeled

with different techniques (Makridakis et al., 1979; Bes and Sethi, 1988; Gutiérrez and Vidal,

2008; Sarimveis et al., 2008; Shoesmith and Pinder, 2001; Valencia et al., 2015), depending

on the kind of production, the type of products, components of the time series, among other

aspects.

• Other uncertainties are due to changes in supplier costs, and lead times.

• Costs involved in transportation, because there are some companies that encourage large-size

of shipments (Simchi-Levi et al., 2008).

Some of the recommended characteristics to take into account, in order to find an effective in-

ventory policy, by Simchi-Levi et al. (2008) are:
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1. Demand. If the demand is unknown, it must be predicted with the appropriate tools.

2. Replenishment lead time. It must be known at the time the order is placed, or it could be

uncertain.

3. Number of products. The inventory of one of them could affect the other(s), because of space

and budget requirements.

4. Length of the planning horizon.

5. Costs. These are: a. Order cost, that contemplates product and transportation cost. b. In-

ventory holding cost, which must consider maintenance, and obsolescence, among others

(Simchi-Levi et al., 2008).

6. Service level. It is necessary to specify an acceptable level, despite it is impossible to meet

100%.

It is increasingly important to develop Inventory Models based on dynamic variables like de-

mand, but also, lead times, and not many works in Colombia present this (Valencia et al., 2015;

Gutiérrez and Vidal, 2008).

We could state then an important question here: Should the order be equal to, higher or smaller

than the demand? There are some additional conditions proposed on inventory modeling of real

situations of the industry that could help to answer these aspects.

In order to answer the question, first, some generalities about inventory models of the literature,

are presented in the next sub-section. Then, in chapter four, the Inventory Policy will be proposed

and validated with real data.

2.2.1 Inventory Policies

In order to find an effective management of inventory, the most common policy is the Economic

Order Quantity (EOQ), which has, among other problems, a risk to lead the firm to have over-

stock or decreasing profits (Simchi-Levi et al., 2008). Other two common kinds of policies are the

Continuous Review Policy, and the Periodic Review Policy.
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• Continuous Review Policy: the inventory is continuously reviewed; an order is placed when

the inventory reaches a specific level or a reorder point. Here, when the inventory reaches a

level R, an order of size Q is placed, so this is called the (Q,R) policy.

• Periodic Review Policy: the inventory is reviewed in regular periods, and an order is placed

after each review.

Despite they are too similar policies, the first one is the most recommended when the company

has proper computerized tools to do the review. This also assumes a random demand, a fixed cost to

place orders k, an inventory holding cost per unit and per unit time, a replenishment lead time from

the supplier to the distributor, and a service level to reach (Hillier and Hillier, 2007; Simchi-Levi

et al., 2008).

Taha (2004) presents these policies, but he refers to them as models, and he also shows the

Dynamic Model of Economic Order Quantity (p. 443), that has a periodic review considering a

dynamic but deterministic demand. There are two models included in this section presented by

the author: Model without/with preparing cost, where he explains a general dynamic algorithm,

which establishes the optimal policy by reviewing period by period these aspects: the dynamic and

deterministic demand, the balance inventory constraints and the objective function costs for different

schemes of orders. The orders are set in a very similar way stated by Wagner and Whitin (1958),

that is the sum of demands at the beginning of the time horizon, and it decreases as time increases.

Other type of policies are related to Multistage, Multiple Installations, Multi-echelon, Multiple

products (Valencia et al., 2015), and some of them appear with combinations of the previous kinds of

models or with other variables, factors and mathematical functions, representing the models which

are optimized to find an effective policy.

These bases are used by many authors who propose mathematical models composed by an ob-

jective function, and constraints, in order to fulfill the objectives of the particular firm or a group of

companies having the same interest.
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2.2.2 Inventory Models with dynamics Structures

As it was previously mentioned, many kinds of inventory models have the demand as the main

variable that represents changes every time (Valencia et al., 2015). This aspect is also pointed out

by Sarimveis et al. (2008), who describe different schemes of Inventory Models with dynamics.

It is necessary to clear that dynamic programming is a different conception to the case when a

model has just some factors, or parameters, with dynamic behavior. But, Scarf (2002) affirms that

Richard Bellman, known author of Dynamic programming (Bellman, 1957), was convinced that

“all the optimization problems with a dynamic structure could be formulated fruitfully, and solved

as dynamic programs”. Sarimveis et al. (2008) point out that for some of the references reviewed,

“...dynamic programming serves as a tool for proving the existence of optimal feedback control laws

and characterize their general form. However, it is not employed as a computational tool due to

the course of dimensionality which is prevalent even for simplified, medium-scale supply networks.

In order to solve these complex stochastic control problems, some kind of simplifying assumptions,

decompositions or approximations need to be considered”. (Sarimveis et al. (2008), p., 3544). This

leads to permit different forms of techniques to provide solutions, not only dynamic programming,

but also, heuristics, for example.

Some of the representative models related to these topics that involve dynamics, will be presented

here.

Scarf (2002) describes different Inventory Models with dynamics, and cites one paper entitled

“Bayes Solutions to the Statistical Inventory Problem”; the paper studies a dynamic inventory prob-

lem, in which the purchase cost is strictly proportional to the quantity purchased. The innovation in

his paper is to allow the density function of the demand to depend on an unknown parameter, upon

which, he assumes a prior distribution.

Crowston et al. (1973) consider a problem of production planning of seasonal product, in a mul-

tistage form, it is, with a dynamic variation. The problem is to determine the production quantities

of the various components and assemblies at each period to minimize expected costs, and they use

two periods of Bayesian Forecast Revision over the demands in the period.

Taha (2004), (p. 448), explains an algorithm, called the Inventory Dynamic Model with preparing

cost. He presents an exact and an heuristic dynamic algorithm. The explanations are presented as
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follows:

• Zi: Order quantity.

• Di: Demand for period i.

• xi: Inventory at the beginning of the period i.

• Ki: Preparing cost in period i.

• hi: Unit inventory holding cost from period i to i+1.

• ci: Unit production cost for unities.

The function corresponding to the cost production for period i is:

Ci(zi) =

 0 i f zi = 0

Ki + ci(zi) i f zi > 0
(2.1)

(2.2)

Where ci(zi) is the production marginal cost for zi. It is possible that the cost changes according

to the quantities that will be sold every period.

A general dynamic programming algorithm is described by Taha (2004) as follows.

Without considering shortfalls, the inventory model proposal is based on the minimization of the

sum of production costs and storage for all the n periods. For simplicity, this model assumes that

the storage cost is based on the final inventory of the period i: xi+1 = xi + zi − Di. But the value zi is

the order to fulfill the demand in period i + 1. Besides this:

0 ≤ xi+1 ≤ Di+1 + . . . + Dn (2.3)

In this equation it can be recognized than the resting inventory, after period i, can satisfy the

demand for the rest of periods (i + 1, . . . , n). The objective function, which is a minimization of

costs is a recursive equation estimated for every time (Taha (2004), p. 449)
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f1(x2) = min0≤z1≤D1+x2 {C1(z1) + h1x2} (2.4)

fi(xi+1) = min0≤zi≤Di+xi+1 {Ci(zi) + hixi+1 + fi−1(xi+1 + Di − zi)} (2.5)

Sethi et al. (2003) establish an inventory model related to a dynamic structure. They seek to

minimize the expected total cost, and the demand is a random variable for two kinds of orders

emissions. A general description of the variables and parameters of this model are shown in table

2.1.

Sethi et al. (2003) affirm that at the beginning of each period, the on-hand inventory and the

demand information are updated. At the same time, decisions on how much to order using fast and

slow delivery modes are made. Fast and slow orders are delivered at the end of the current period

and at the end of the next period, respectively. A forecast-update-dependent (s, S)-type policy is

shown to be optimal. The authors also explain a dynamic programming function, and a theorem to

prove the optimality of the type of policy for the fast and the slow orders.

Yokoyama (2002) presents a minimization of holding inventories and transportation cost, and

considers that the demand at each period and for each client is a mutually independent random

variable that follows a stationary normal distribution. He uses and Order Up to Level policy, using

a periodic review of the inventory level. Some of the assumptions of his model are that each one of

these centers can distribute to multiple clients, and that each consumer could be supplied by multiple

distribution centers, every one of these have an Order-up-to-R policy. The author also assumes two

kinds of decision variables: transportation quantity and the inventory target. In order to solve the

problem, he applies and compares two processes: a random local search, and a genetic algorithm,

and he finds a better solution in the second one.

Bailey (1973), uses a dynamic programming technique as an approach to do optimization of

the model they present about a maximization of profits. The appendix of Bailey’s paper shows an

explanation about the Dynamic Programming Model, and he affirms that this technique “provides a

systematic procedure for determining the sequence of interrelated decisions that optimizes overall

effectiveness if the problem at hand conforms to certain characteristics” (Bailey (1973), p. 572).

The objective is the maximization of profits in Bailey (1973). This problem has constraints re-
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Variable Description

N The total periods of time

Fk The fast-order quantity in period k, k = 1, . . .N., a decision variable

S k The slow-order quantity in period k, k = 1, . . .N − 1., a decision variable

c f
k , c

s
k The unit cost for fast and slow-orders, respectively, in period k.

K f
k ,K

s
k The fixed cost for fast and slow-orders, respectively, in period k.

R1
k First determinant (random variable) of demand in period k, observed in period k − 1.

Qk(.) Distribution function of R1
k .

R2
k Second determinant (random variable) of the demand in period k,

at the end of period k.

vk The third determinant (a constant) of demand in period k.

Dk The demand in period k, modeled as a function gk(R1
k ,R

2
k , vk).

Gk(.) The distribution function of the demand Dk.

Xk The Inventory level at the beginning of the period k.

XN+1 The inventory level at the end of the last period N.

Hk(x) The inventory holding/backlog cost when X = x.

HN+1(x) The inventory holding cost when XN+1 = x ≥ 0.

E(R2
k ,R

1
k+1)[.] : The conditional expectation with respect to R2

k and R1
k+1.

Yk = Xk + S k−1 The inventory position at the beginning of period k.

δk = 0 when x ≤ 0;1 when x > 0 .

Table 2.1: Variables and parameters definitions. Source: Sethi et al., 2003
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lated to a inventory balance equation Ii = Ii−1+xi−yi, a limit for the level of variability in production,

using an interval without exceeding the capacity, limits for the inventories, among others.

Other form to analyze dynamics are based on Control Theory, because these techniques can be

used to do optimization in a time horizon. Wang et al. (2005) present a Model Predictive Control

optimization problem, according to the minimization of the next equation.

J =

P∑
l=1

Qe(l)((ŷ(k + l|k) − r(k + l))2 +

M∑
l=1

Q∆µ(l)(∆µ(k+l−1|k))2 +

M∑
l=1

Qµ(l)(µ(k+l−1|k)−µtarget(k+l−1|k))2

(2.6)

Subject to:

µmin < µ(k + l − 1|k) < µmax (2.7)

∆µmin < ∆µ(k + l − 1|k) < ∆µmax (2.8)

These authors develop a dynamic model based on the next balance inventory equation:

Ii(k + 1) = Ii(k) + Y jC j(k − θ j) −C j+1(k) (2.9)

Other kinds of theories could be proposed in order to formulate solutions to optimize the inven-

tory problem of an industry.

2.2.3 Wagner & Whitin Inventory Models

Some of the classical inventory models have been formulated based on the Wagner & Whitin model

(Wagner and Whitin, 1958) proposal about cost minimization. This model and theorems proposed

have been reviewed and cited by different authors about inventory models (Vargas, 2009; Fleis-

chhacker and Zhao, 2011; Ventura et al., 2013; Baker and Urban, 1988; Sarimveis et al., 2008).

Ventura et al. (2013) affirm that a relevant problem in supply chain logistics is to determine the

appropriate levels of inventory at the various stages involved in a supply chain. The basic problem

is to determine the production quantities for each period, so that all demands are satisfied on time

at minimal production and inventory cost. Wagner and Whitin (1958) use dynamic programming to

find an exact solution for the uncapacitated version of the problem.
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Some generalities about the Wagner and Whitin (1958) model are presented in this Doctoral

Thesis, and the theorem 2, that is important in order to develop this research. The parameters and

assumptions of this model are presented in table 2.2.

Parameter Assumption

dt Demand for period t, dt > 0

C Per unit order cost

K Fixed order cost, when an order is placed

δ(y) 1 if an order is placed: y > 0; 0 otherwise

h Holding cost per unit per period

I0 Initial inventory (which is zero)

Ld Lead times, which are zero

Decision Variables

yt Order, placed at the start of the period t.

It Inventory, is charged at the end of the period

Table 2.2: Parameters and variables of the Wagner & Whitin inventory models. Source: Simchi-

Levi et al. (2005).

The model formulated by Wagner & Whitin, cited in (Simchi-Levi et al., 2005), assumes that

we have a sequence of orders over a T period planning horizon. The assumptions of the model are

shown in table 2.2.

min Z =

T∑
i=1

[Kδ(yt) + hIt] (2.10)

Subject to:

It = It−1 + yt − dt (2.11)

The last expression is called the inventory balance equation which accounts the demand that

must be provided every period.
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And,

It = 0 (2.12)

Where yt, It > 0, t = 1, . . .T .

An order could be zero or the sum of some demands (Wagner and Whitin (1958), Theorem 2 p.

91).

Theorem 2 affirms: “there exists an optimal program such that for all t”:

xt = 0 or xt =
∑k

j=t d j , for some k, t < k < N

Proof: Since all demands must be met, any other value for xt implies there exists a period t∗ > t

such that Ixt∗ > 0; but Theorem 1 assures that it is sufficient to consider programs in which such a

condition does not arise. The implication of Theorem 2 is that we can limit the values of I in the

objective function about a cost minimization (p. 90), for period t to zero and the cumulative sums of

demand for periods t up to N. If initial inventory is zero, then only N(N + 1)/2 different values of I

in to over the entire N periods need be examined.

That will permit for this Doctoral thesis, to formulate schemes to order, by selecting between

doing or not doing orders in every period t, but programming the sums with dynamic variations, as

it was proposed by Taha (2004), which was mentioned previously.

Given the possible impact of transportation costs in both supplier selection and inventory re-

plenishment at each stage of the supply chain in today enterprises, Ventura et al. (2013), consider

in their model proposed, purchasing, production, inventory, and transportation costs over a plan-

ning horizon with time varying demand considering quality constraints for the suppliers, capacity

constraints for suppliers and the manufacturer, and inventory capacity constraints at all the stages.

The scenario described above can be viewed as a generalization of one of the most studied

problems in production and inventory planning for a single facility, called the dynamic inventory

lot-size problem, related to the problem explained in this research, in the form to connect the system

described about inventory holding and varying demands.

Ventura et al. (2013) address both supplier selection and inventory management decisions in a

supply chain, by studying the production and distribution of a single product in a serial supply chain
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structure. An example of this situation is a manufacturer that purchases raw parts from various

preferred suppliers. These raw parts are stored at the manufacturing facility or processed into final

products. These products are either stored at the manufacturer level or transported to a warehouse.

At the warehouse stage, either products are stored there or transported to a distribution center (DC).

In general, the DC may serve products to an entire market area or a set of retailers.

Ventura et al. (2013) present a multi-period inventory lot-sizing model, for a single product in a

supply chain, designed to the inventory management. This model considers raw-materials, inven-

tories in process and finished products. The total variable cost is minimized, including purchasing,

production, inventory and transportation costs.

Assuming that there is a set KD of intermediate warehouse/distribution stages, where the last

stage nk is the last supplier stage, that ships products to customers, they show an important theorem

((Ventura et al., 2013) , p. 261), that will be presented next.

Theorem 2 (Ventura et al., 2013). The supply chain inventory problem with supply selection

can only be feasible if for every demand node (nk, t), 1 +
∑nk−1

k′=mnk
lk′ ≤ t < 1 +

∑nk−1
k′=0 lk′ the following

condition holds:

nk∑
k′=kt

(
y0

k′−1 + i0
k′

)
−

t−1∑
t′=1

dt′ ≥ dt (2.13)

Where,

kt = min

nk, k ∈ K :
nk−1∑
k′=k

lk′ < t

 (2.14)

Where y0
k′−1 represents the replenishment order (units of finished products) for period k’, and i′0k

is the inventory initial level (units) held at stage k. The total lead time from 0 to stage nk is
∑nk−1

k′=0 lk′ .

The first term on the left
∑nk

k′=kt

(
y0

k′−1 + i0
k′

)
, is the accumulated initial inventory and pending orders

accessible to node (nK , t) (stage nk, period t).
∑t−1

t′=1 dt′ is the accumulated demand until period t − 1.

Therefore, the total quantity on the left is the maximum possible available inventory minus the

accumulated demand until period t−1, before attempting to satisfy the demand in stage nk at period

t. This term must be higher than the demand to be fulfilled in period t. Otherwise, the problem is

not feasible.
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This theorem is important to show that a Multiperiod-inventory model should consider the sums

of orders and inventories, discounting the demands until period (t − 1), in order to provide an ap-

propriate solution to the dynamic formulation, as it will be shown in this Doctoral thesis. This is

a similar conception to the sums previously formulated by Wagner and Whitin (1958), that will be

used here to formulate the Multiproduct Inventory Model and its correspondent proposed optimiza-

tion process.

2.2.4 Techniques to solve optimization of Inventory problems

In order to find optimal solutions for Inventory Models, classical Analytical techniques are very

common, as Linear programming, when the objective function and all the constraints are linear. The

linear Integer Mixed Programming is useful when continuous and integer variables are included in

the model. Other not very common techniques are the bounded variables algorithms, the Benders

and the Branch and Bound algorithms, the Decomposition technique (Sarimveis et al., 2008), the

Stochastic Dynamic Dual Programming, Dynamic Programming(Scarf, 2002), and Control Theory

techniques (Braun et al., 2003; Sarimveis et al., 2008). There are also heuristic and metaheuristic

techniques, that are combined among them, and it is possible that they use simulation (Zanakis and

Evans, 1981; Silver, 2004), in order to find the best possible solution not always the global optimum.

Heuristics and Meta-heuristics. The heuristics are simple procedures, that can present approx-

imate solutions (not always the optimal) to hard problems in an easy and fast way (Zanakis and

Evans, 1981). These techniques will probably need a lower quantity of constraints, and they “per-

mit the use of models that are more representative of the real world”(Silver (2004), p. 937).

Many authors have explored these techniques to find a very good approximation to the optimal

solution of an inventory policy (Arslan et al., 2007; Fouskakis and Draper, 2002; Hausman and

Peterson, 1972; Jeyanthi and Radhakrishnan, 2010; Taleizadeh et al., 2011; Urrea and Torres, 2006;

Zanakis and Evans, 1981). Jeyanthi and Radhakrishnan (2010) study genetic algorithms to Optimize

Multiproduct Inventory. Ant Colony algorithms can also be used, as in Wu et al. (2012) to do an

optimization of a production system. Sometimes, statistical and simulation techniques are used in

order to find possible solutions to inventory problems which are not linear, or that have so many
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variables or constraints that these classical structures become very difficult to solve (Silver, 2004;

Valencia et al., 2014a). But, these methods do not always provide the optimal solutions.

Fouskakis and Draper (2002) affirm: one alternative to solve objective functions, is to do stochas-

tic search, where optimum value search involves randomness in a constructive form (p. 315). The

authors review three optimization techniques: Simulated Annealing, SA, Genetic Algorithms, GA,

and Tabu Search, TS, and they apply those techniques to an objective function based on an expected

profit maximization.

There is a difference between heuristics and meta-heuristics procedures: “a meta-heuristic is an

iterative master process that guides and modifies the operations of subordinate heuristics to produce

efficiently high-quality solutions”Silver (2004).

Tabu Search algorithm has been used to minimize the inventory cost of the internal logistics of an

organization, according to (Valencia et al., 2014a), and showed a better result when it was compared

with a policy where there was only a previous demand forecast process, using ARIMA and Time

Series Regression Models. This optimization technique (Valencia et al., 2014a), was applied to the

same products with the same time horizon of the real situation of a company, and a saving of 20%

was found in inventory costs, and a 100% service level. In Urrea and Torres (2006), it is used a Tabu

Search algorithm in order to find the optimum level of orders.

Genetic algorithms can be used for efficient supply chain management (Jeyanthi and Radhakr-

ishnan, 2010), in a multi-product scenario, but it is not frequent to analyze scenarios like these,

in inventory models. A recent work in Colombia, Palacio and Adarme (2014), proposed a model

of multiproduct inventory among companies, to minimize costs of the logistics in an operational

context of urban distribution.

In all the mentioned cases about inventory optimization, the demand has been predicted previ-

ously.

Other works like Wang et al. (2005) and Braun et al. (2003) have used a technique based on Con-

trol Theory in order to manage inventories, the Model Predictive Control (MPC). MPC has become

an important tool to help the organization in planning of policies, for example, in semiconductor

demand networks (Wang et al., 2005).
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2.3 Statistical techniques to Forecast Demand

A time series is a realization of a stochastic process; the data are obtained and registered in fixed

intervals of time, of a particular variable. One of the objectives of a time series model is to identify

the behavior of historical data, by doing an adequate representation of such behavior, and with the

past of these data, try to predict the future, or to forecast it. The time series can have repetitive

patterns, that are identified as components (Bowerman and Oconnell, 2007), which are:

• Trend, as the component that represents the growth (or decreasing) over a time series.

• Seasonality, which are the oscillations produced and repeated in short periods of time, associ-

ated to dynamic factors, for example: customs, climate, vacations, among others (Bowerman

and Oconnell, 2007).

• Cycle, that is a fluctuation behavior lasting more than a year o more than a seasonal period,

and sometimes it is associated to the changing economical conditions.

• Irregular fluctuations, which are random variations, representing a remind in a time series,

after explaining the trend, cycles, and seasonal patterns (Bowerman and Oconnell, 2007).

Two of the most common and studied components, of a time series, are the trend, and seasonality.

The problems of detecting a signal and then estimating or extracting the wave form of the seasonal

patterns are of great interest in many areas of the engineering (Shumway and Stoffer, 2006). In some

cases these components are difficult to find, or are not easily identifiable. There are many kinds of

variations in the search of models to forecast variables; for example, in the co-variables introduced

in the estimation process, among others.

The demand forecasts are important for the industry, because of the mentioned need to have

adequate predictions to be considered in the planning of good inventory policy, and all these uses

have been reviewed by different authors, like Gutiérrez and Vidal (2008), and Valencia et al. (2015).

Besides the use of probability distributions to forecast demands of final products, there are also

classical statistical models like ARIMA, Exponential Smoothing, Regression Linear Model (Makri-

dakis et al., 1979; Chen, 2011; Valencia et al., 2014b). These have been used to find future values
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of demands of terminated products at a factory, and after this, these forecasts are used to look for

solutions of optimal inventory problems (Bes and Sethi, 1988; Cohen and Dunford, 1986; Sarimveis

et al., 2008).

Some of the general concepts of these classical models are presented next.

The correlation of two variables refers to that: the values of the responses of one variable depend

on the values of the other variable. In a time series, the correlation measure is called autocorrelation,

and it indicates if the values of the time series depend on any of the past values of the same time

series.

One of the principal aspects of a time series description, is to identify the form of the auto-

correlation of a series, providing the state of dependence in the data, when a comparison is done

among different periods. The autocorrelation permits to know if the dependent variable of a period

is linearly related with the values of the dependent variable of another period. This function is also

important to describe the behavior of the grade of dependence, seasonality, and this permits to iden-

tify the covariables that could be included in a model as Regression, or ARIMA(p, d, q), o explain

appropriately the response.

2.3.1 Classical statistical models

ARIMA Model

The classical ARIMA(p, d, q) models, developed over the 70′s, by George Box and Gwilym Jenkins

(Bowerman and Oconnell, 2007), have been widely studied (Cohen and Dunford, 1986; Bowerman

and Oconnell, 2007; Diebold, 1999; Makridakis et al., 1979; Chen, 2011). They incorporate char-

acteristics of the same time series according to the autocorrelation, providing predictions based on

its past values. A time series Regression Model is also a technique based on maximum likelihood

estimation to find the fixed parameters in order to write the equation to do inferences, and, of course,

forecasts with new data. The general form of an ARIMA model with order (p,d,q), could be rep-

resented as: φ(B)∇dyt = θ(B)εt. Where Yt is the time series data, εt is the error term, B is the back

shift operator that is defined as Byt = yt−1, and ∇ = 1 − B (Chen, 2011). For the estimation of these

models, four steps must be considered, as it is cited by Chen (2011):
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• Identification of ARIMA(p, d, q) structure, based on Autocorrelation and Partial autocorrela-

tion definitions.

• Estimation of the unknown parameters.

• Goodness of fit tests of the estimated residuals.

• Forecast future unknown values.

In R program (R Core Team, 2014), the ARIMA model can be estimated with the function

auto.arima, which provides the best possible fit according to parameters like the number of pos-

sible autorregressive, seasonal, differencing components that can be identifiable according to the

Autocorrelation and Partial Autocorrelation functions.

The selection of the type of model depends on specific autocorrelation and partial autocorrelation

functions, as they are presented in the table 2.3:

Model Autocorrelation Function (ACF) Partial autocorrelation Function (PACF)

MA(q) Fast decrease to zero after q lag (order q) Exponential or slow decreasing, sinusoidal.

AR(p) Exponential or slow decreasing, sinusoidal Fast decrease to zero after lag p (order p).

ARMA(p, q) Exponential or slow decreasing, sinusoidal Exponential or slow decreasing, sinusoidal.

Table 2.3: Identification of an ARIMA model. Source: Bowerman et al., 2007

Exponential Smoothing (ES) Model

Exponential Smoothing (ES) is another very used statistical technique (Bermúdez et al., 2009;

Wang, 2006; Chen, 2011). It is based on the moving average technique, with a weight of the values

of past periods of the same series. The forecast is based on: Ft+1 = αYt + (1 − α)Ft. Here, Ft+1 is

the forecast value of the response, in period t + 1, the observed variable is Yt, and α is the smoothed

constant Chen (2011). The fitting is adjusted in a time horizon using an optimization of the Sum of

Squared Errors (SSE) value, searching for the value of α that minimizes such sum. It could incor-

porate a level such as a trend and a seasonality components of the data in variations of these, like

Holt Winter’s method.
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Classical Regression Model

A classical Multiple Regression Model can incorporate multiple co-variables in order to establish

a relation among these and a response variable Y; and provides an interpretation of the effect that

each one of these variables, also called explanatory, causes over the response. A general form

of these models is Y = β0 + β1x1 + β2x2 + . . . + βkxk + ε. Where ε is a random variable with

the assumptions based on mean zero, constant variance, with a Normal distribution behavior, and

uncorrelation among temporal values (Bowerman and Oconnell, 2007; Valencia et al., 2014b).

As it was previously mentioned in Chapter 1, the most important assumptions for ARIMA and

also classical Regression models, for the residuals after the estimation of these for a time series

are: normality distribution, constant variance, and independence for residuals. For Exponential

Smoothing models, it is important to check the independence in errors, not the normality, because

of the optimization estimation method.

The principal assumptions to be tested over the residuals of an ARIMA or a Regression Model

Tabares et al. (2014); Valencia et al. (2014b), and the form to verify them, are:

• Normal Distribution, that is explored with graphs like QQ norm, where theoretical residuals

are estimated using Normal Standard Distribution, and are plotted against estimated standard-

ized residuals. The plotted point should be very linear, and must be inside the interval (−2, 2).

If there are isolated points that are outside these bands, there is an apparent non normality.

But it is precise to do analytical tests like Shapiro or Jarque Bera tests (Jarque and Bera, 1987;

Valencia et al., 2014b).

• Constant Variance, or homogeneous variance, explored with the graph between residuals vs

fitted values, that will show a constant form if there is uniformity around zero residual, and

non constant variance if there is a conical behavior along the residuals, or inappropriate trends.

Some of the analytical tests to prove homogeneity are Levene and Bartlett (Shoemaker, 2003;

Tabares et al., 2014).

• Uncorrelated residuals, explored with a graph of Autocorrelation of residuals, and, if there

are lags with values outside the bands, there is evidence of autocorrelation, but it can also be
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tested with Ljung-Box (Bowerman and Oconnell, 2007).

If some of the tests are not actually fulfilled in a particular problem, possible bias can affect the

parameters estimations. Therefore, the model will produce wrong predicted values (Valencia, 2010;

Armstrong et al., 2014). There is also another problem about the form to identify seasonal behavior

in Regression and ARIMA models, because, as Armstrong et al. (2014) says, “there is less accuracy

when there are not enough historical data”, and, in general, for classical models, it is better to have

more historical data in order to identify the correct behavior of the series.

If the tests indicate problems, some times transformations can be used. However, in some cases,

these transformations do not work. This leads to possible bias to the results. (Makridakis et al.,

1979) affirms that “the ultimate test of any forecast is whether or not it is capable of predicting

any future events accurately”. In this sense, it is better to measure the predictive capacity of the

estimated models, and there are error indicators, like the Root of the Mean Square Error (RMSE),

the Mean Absolute Deviation (MAD), and the Mean of absolute Percentage error (MAPE).

2.3.2 Bayesian alternatives

Finding better methodologies for forecasting in difficult situations is the first aim of this research,

because it is the first step in order to define a good inventory policy.

For the industry, it may be necessary to find models that do not require too much historical

data to make predictions of demand. Sometimes, the industry must do a correct planning about

new products, or short term ones; and they have no idea about how much to order or program

on inventories, and there are no data available. These techniques to forecast can also help when

special conditions of the time series are found, like: changes in the seasonal component, level

drastic changes. Besides this, as it was previously mentioned, when theoretical assumptions of many

classical models cannot be fulfilled, the researcher could have problems with lack of accuracy and

trust-ability. These gaps could be filled using Bayesian techniques, which are explored to develop

forecasts in numerous investigations (Alba and Mendoza, 2007; Fei et al., 2011; Gill, 2007; Harrison

and Stevens, 1976; West and Harrison, 1997; Tabares et al., 2014; Lee et al., 2003; Pedroza, 2006;

Bermúdez et al., 2009; Petris et al., 2009; Yelland and Lee, 2003; Yelland, 2010; Fúquene et al.,
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2015).

There are special Bayesian models for doing forecasts, like the Bayesian Regression, the Bayesian

Dynamic Linear Models (Zellner, 1996; West and Harrison, 1997; Petris et al., 2009). The first

Bayesian treatment of the Dynamic Linear Models (DLM), in the statistical literature was done by

Harrison and Stevens (1976), and since then, much work has been undertaken to extend the theoret-

ical basis and applications (Petris et al., 2009; Fúquene et al., 2015; Pole et al., 1988).

Crowston et al. (1973) proposes a Bayesian approximation to forecast the demand and shows,

with different types of heuristics, that the production costs can be optimized, assuming a high ca-

pacity, and considering N periods of demands. Few works consider Bayesian models related to

operations research, in especial, inventories (Choi et al., 2003; Nechval et al., 2011).

In this line, State Space models have been formulated for many reasons in engineering or popula-

tion dynamics. Harrison and Stevens (1976) formulated these models in the framework of Bayesian

forecasts over a period of equally-spaced discrete time, and here, they call them as: Dynamic Linear

Models (DLM). State-Space models consider a time series as outputs of dynamic systems perturbed

by random disturbances (Petris et al., 2009), and, in this way, they can be used to generate forecasts.

Some generalities of these models and the Bayesian framework are summarized in the next sections.

2.3.3 Fitting and Forecasts indicators

The most used indicators, to compare forecast, are the MAPE, Mean Absolute Percentage Error or

the MSE, Mean Square Error (Makridakis et al., 1979; Bowerman and Oconnell, 2007), not only

used in classical, but also, in Bayesian works, were it is precise to compare forecasts of different

models (Petris et al., 2009; Rojo and Sanz, 2010; Armstrong et al., 2014). Petris et al. (2009) affirms

that MAPE (Mean of Absolute Percentage Error) indicator, also used by Makridakis et al. (1979), is

one the most used statistics to compare models, besides MAD (Mean of Absolute Deviations) and

RMSE (Root of Mean Square Error), and the measures of demands are always positive values, so,

a percentage as MAPE can provide a good information about the accuracy of the studied models.

Additionally, it expresses, in a simple form, an amount of error associated to the real measure of the

response, providing, to anyone who does not even understand what is a big or very small quantity, a

33



proportion of the possible bias committed. These are the reasons to use the MAPE measures in order

to do comparisons among statistical models, for making decisions based on one response behavior.

2.4 Bayesian Processes

The Bayesian Analysis uses the Bayes’ Theorem, and it does not need a big sample data to do

inferences. These techniques have assumptions that are different with respect to classical models.

For example, some parameters of probability distributions are random variables. This includes

prior information quantified in a probability distribution (Gelman et al., 2004; Gill, 2007) known as

ξ(θ), also, data information represented by: y1, . . . , yn, which is included in the likelihood function

L(y1, . . . , yn|θ).

The form to estimate the posterior distribution can be explained as follows. Using the Bayes The-

orem, the prior distribution ξ(θ) times likelihood, takes to the posterior distribution: ξ(θ |y1, . . . , yn)

(Gill, 2007; Congdon, 2002).

Then, in order to find a distribution for forecasting, it is possible to estimate the predictive dis-

tribution, as an integral of the distribution of the variable to be predicted, times the posterior (Gill,

2007; Congdon, 2002).

Bayesian Inference requires the use of prior information for the parameter(s), then, prior prob-

ability distributions are selected for the parameters, but often, there is not so much information,

and that is the reason to require sometimes, knowledge from experts, because the data never speak,

completely, by themselves. Besides this, the data information is also involved in this process to

build Bayesian estimations.

A practical form to do bayesian estimation is to consider conjugate priors distributions. If the

density of the prior distribution belongs to the same family of the posterior, then, it is conjugate

(Gill, 2007).

Bayesian approach, according to Broemeling and Shaarawy (1988), unify and simplify the anal-

ysis of time series.

In summary, in a Bayesian process to do forecast, these definitions can be considered:

• Prior Distribution: Distribution of the parameters. This can be informative or non informative.
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• Posterior Distribution: The product between the prior distribution and the likelihood function

of the data.

• Predictive Distribution: The integral of the distribution of the data to be predicted, times the

posterior distribution.

Broemeling and Shaarawy (1988) present a review of Bayesian Analysis applied to Autorregres-

sive Moving Average processes (ARMA) as a formulation, but it does not contemplate the Dynamic

Linear Models, or State-Space Models.

It is necessary to begin defining the usual Bayesian models to predict the demand of final prod-

ucts under study, by doing a review of some other authors defined models, and also, the novel

designed models. In the next chapter, it will be done a comparison among different models, and a

selection process of the best.

2.4.1 Bayesian Regression Model

The general Bayesian Regression Model has many kinds of variations, but it can be presented in a

general form to understand the general mathematical process. In this section it is shown some of the

results of the model presented in Zellner (1996). The author builds this model from the assumptions:

A prior non informative distribution: 1
σ

, for model parameters β, σ, a Normal Distribution for data,

thereby likelihood of data sample; and the product between this prior distribution and likelihood

generates posterior parameter distribution. Followed to this, the integral of the distribution of the

data to be predicted, times the posterior distribution, leads to the predictive Bayesian distribution,

which is the finally distribution used to do forecasts of the response variable.

Suppose Y is a vector that contains all the information of the serie: Y = (y1, y2, . . . , yT ) and

Y−1 = (y0, y1 . . . , yT−1), a vector of lag 1, and we use the matrix form of the general model: Y = Xβ.

The likelihood will be as it follows.

L(y|y0, β) ∝
1
σT exp−

1
2σ2 (Y−Xβ)′(Y−Xβ) (2.15)
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Posterior and Predictive Distributions for the Bayesian Regression Model

Assuming a non informative prior distribution for the parameters β, σ:

ξ(β, σ) ∝
1
σ

(2.16)

With the product between these two (the likelihood, eq. 2.15, and the prior, eq. 2.16), the

posterior distribution is 2.17:

ξ(β, σ|y0,Y) ∝
1

σT+1 exp−
1

2σ2 (Y−Xβ)′(Y−Xβ) (2.17)

Re-expressing the term of the exponent, it will be:

(Y − Xβ)′(Y − Xβ) = Y ′Y − 2X′βY + β′X′Xβ (2.18)

X′X
(
β′β − 2β(X′X)−1X′Y

)
+ Y ′Y = (β − β̂)′X′X(β − β̂) + Y ′Y (2.19)

Where β̂ = (X′X)−1X′Y . So posterior distribution for β will be:

ξ(β, σ|y0,Y) ∝
1

σT+1 exp−
1

2σ2 [(β−β̂)′X′X(β−β̂)+Y′Y] (2.20)

The expression 2.20 will be used to calculate the Predictive distribution.

Predictive distribution for the Bayesian Regression Model

The predictive distribution is the integral of the product between the distribution for the new data,

and the posterior. Using the posterior 2.20, for the parameters β, σ, then:

f (YT+1|y0, yT ) =

∫ ∫
f (YT+1|β, σ,Y)ξ(β, σ|y0,Y)dσdβ (2.21)

And assuming S +1 = Y+1 − X+1β and S = Y − Xβ, it is:

f (YT+1|y0, yT ) ∝
∫ ∫

1
σT+2 exp

1
2σ2 (S ′

+1S +1+S ′S )dσdβ (2.22)
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According to the properties of the Inverse Gamma distribution (Zellner, 1996; Casella and Berger,

2002), and after algebra work it leads to 2.23:

f (YT+1|y0, yT ) ∝
∫

K
1[(

T+1
2

)
(S ′

+1S +1 + S ′S )
](T+1)/2 dβ (2.23)

Which is a Student-t. Where K =
Γ[(T+1)/2]
√

2π

The term of the denominator of the equation 2.23, can be re-expressed in terms of β parameters.

Doing the term of the denominator C = S ′
+1S +1 + S ′S :

C = (Y+1 − X+1β)′(Y+1 − X+1β) + (Y − Xβ)′(Y − Xβ)

C = Y ′+1Y+1 − Y ′+1Xβ − β′X′+1Y+1 + X′+1X+1β
′β + Y ′Y − Y ′Xβ − X′Yβ + X′Xβ′β

C = β′β(X′+1X+1 + X′X) − 2β′(X′+1Y+1 + X′Y) + Y ′+1Y+1 + Y ′Y (2.24)

Completing the square, and doing M−1 = (X′
+1X+1 + X′X)−1:

C =
[
β′β − 2β′M−1(X′+1Y+1 + X′Y)

]
M + Y ′+1Y+1 + Y ′Y (2.25)

Doing β̃ = M−1(X′
+1Y+1 + X′Y)

C =
[
(β − β̃)′M(β − β̃) − β̃Mβ̃ + Y ′+1Y+1 + Y ′Y

]
C =

[
(β − β̃)′M(β − β̃) + K]

C = K
[
(β − β̃)′MK−1(β − β̃) + 1] (2.26)

Where K = Y ′
+1Y+1 + Y ′Y − β̃Mβ̃

f (yt+1|yt) ∝
∫

1(
T+1

2

) [
K

(
(β − β̃)′MK−1(β − β̃) + 1

)](T+1)/2 dβ (2.27)

f (yt+1|yt) ∝
1(

Y ′
+1Y+1 + Y ′Y − β̃Mβ̃

)(ν+q)/2 (2.28)
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After an algebraic process, shown in Zellner (1996), pg. 73 it is:

f (yt+1|yt) ∝
1[

ν + (Y+1 − X+1β̂)′H(Y+1 − X+1β̂)
](ν+q)/2 (2.28)

Where the parameter estimation β̂ = (X′X)−1X′Y , and H = 1
s2 (I − X+1MX+1). Besides, the degrees

of freedom: ν = T − p; p: Number of parameters; q: Number of forecasting position. The power

of the denominator can be changed, depending on the number of the forecasting position (q); for

yT+1, q = 1, the exponent will be: (ν + 1)/2 = (T − 2 + 1)/2 = (T − 1)/2, and for yT+2, (ν + 2)/2 =

(T − 2 + 2)/2 = T/2. This is the Predictive Distribution to do forecasts for the Bayesian Regression

Model (BRM) presented by Zellner (1996), with diffuse Prior distribution for the parameters.

2.4.2 New Bayesian Regression Model with Normal Prior Distribution

For this Doctoral Thesis, a novel model will be proposed to do forecasts for the demands. This

is a Bayesian Regression Model with the Normal, as the Prior distribution for the parameters β,

introducing modifications to the original proposed by Zellner (1996). As it is discussed by Gelman

et al. (2004) or Zellner (1996), the Normal Distribution can be used instead of a Non informative.

In this thesis, it will be changed the original non informative prior distribution, to the informa-

tive distribution, ”Normal”, for the model parameters β. It is a joined distribution with σ1, with

σ1 = σ0σ. Moreover, in this research, it will be introduced a dynamic modification to the prior

parameters, called the vector β0. And the analytical process to obtain the predictive distribution will

be presented.

• Likelihood function

Assuming that the value of y0 is known, and if all the observations of responses, are collected

in a vector: Y = (y0, y1, y2, . . . , yT ). The model can be expressed as: Y = Xβ = λY−1 + αXt,

the likelihood function is:

L(y|y0, β) ∝ σ−T exp
[
− 1

2σ2 (Y−Xβ)′(Y−Xβ)
]

(2.29)
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Assuming the Normal distribution as the prior with the parameters β and σ1, N(β, σ1), with

σ1 = σ0σ.

ξ(β, σ) ∝
1
σ1

exp

[
− 1

2σ2
1

(β−β0)′(β−β0)
]

ξ(β, σ) ∝
1
σ0σ

exp
[
− 1

2(σ0σ)2
(β−β0)′(β−β0)

]
(2.30)

• Posterior Distribution.

With the product between the likelihood and the prior (eq. 2.29 and eq. 2.30), and changing:

τ = 1
σ2 , τ0 = 1

σ2
0
, then, the equation of the posterior distribution changes to the expression

2.32.

ξ(β, τ|τ0, β0, y0, yt) ∝ τ(T+1)/2τ1/2
0 exp[− τ2 (Y−Xβ)′(Y−Xβ)− ττ0

2 (β−β0)′(β−β0)] (2.31)

ξ(β, τ|τ0, β0, y0, yt) ∝ τ
T+1

2 τ
1
2
0 exp−

τ
2 [(Y−Xβ)′(Y−Xβ)+τ0(β−β0)′(β−β0)] (2.32)

• Predictive Distribution

Let Y+, be the h dimensional vector to be predicted, and X+ is the design matrix with hxp

dimension. Here it is also necessary to use the Normal distribution, f (Y+|β, τ) = Nh(X+β, τI),

of the original data to calculate the integral that leads to the predictive distribution.

If S = Y − Xβ and S + = Y+ − X+β.

f (Y+|y0,Y) =

∫
<

∫ ∞

0
f (Y+|β, τ)ξ(β, τ|Y0,Y)dτdβ

f (Y+|y0,Y) ∝ τ
1
2
0

∫ ∫
τ

T+2
2 exp−

τ
2 [(S ′S )+(S ′+S +)+τ0(β−β0)′(β−β0)]dτdβ

f (Y+|Y0,Y) ∝ τ
1
2
0

∫ ∫ Γ
[

T+4
2

]
D

T+4
2

∗
D

T+4
2

Γ
[

T+4
2

]τ T+2
2 exp−

τ
2 [D]dτdβ

f (Y+|Y0,Y) ∝ τ
1
2
0

∫ [
(S ′S ) + (S ′+S +) + τ0(β − β0)′(β − β0)

]− T+4
2 dβ (2.33)
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Expanding the expression of the brackets in the integral of (2.33):

D = Y ′Y − 2βX′Y + β′X′Xβ + Y ′+Y+ − 2βX′+Y+

+ β′X′+X+β + β′τ0β − 2β′β0τ0 + β′0τ0β0

D = β′(X′+X+ + X′X + τ0)β − 2β′(X′Y + X′+Y+ + τ0β0) + Y ′Y + Y ′+Y+ + β′0τ0β0

D =
[
β′β − 2β′M−1(X′Y + X′+Y+ + τ0β0) + M−1(Y ′Y + Y ′+Y+ + β′0τ0β0)

]
M (2.34)

Where M−1 = (X′+X+ + X′X + τ0)−1. Let βn = M−1(X′Y + X′+Y+ + β0τ0). Then,

D = (β − βn)′M(β − βn) − β′nMβn + Y ′Y + Y ′+Y+ + β′0τ0β0 (2.35)

f (Y+|Y0,Y) ∝ τ
1
2
0

∫ [
(β − βn)′M(β − βn) + Y ′Y + Y ′+Y+ + β′0τ0β0 − β

′
nMβn

]− T+4
2 dβ (2.36)

Doing A = Y ′Y + Y ′+Y+ + β′0τ0β0 − β
′
nMβn.

After solving:

f (Y+|Y0,Y) ∝ τ
1
2
0

∫ [
(β − βn)′M(β − βn) + A

]− T+4
2 dβ (2.37)

The integral in 2.37 is a Student-t distribution.

f (Y+|y0,Y) ∝ τ
1
2
0

∫ [
A

(
(β − βn)′A−1M(β − βn) + 1

)]− T+4
2 dβ

f (Y+|y0,Y) ∝ τ
1
2
0
[
Y ′Y + Y ′+Y+ + β′0τ0β0 − β

′
nMβn

]− T+4
2 (2.38)

Expression 2.38 is a Student-t distribution, but we can change the internal terms, to get a

function of Y+.

Expanding the expression in the brackets of (2.38):

40



I = Y ′+Y+ − β
′
nMβn + Y ′Y + β′0τ0β0 (2.39)

Doing M−1 = (X′+X+ + X′X + τ0)−1 and βn = M−1(X′Y + X′+Y+ + β0τ0)

I = Y ′+Y+ − M−1(X′Y + X′+Y+ + β0τ0)MM−1(X′Y + X′+Y+

+ β0τ0) + Y ′Y + β′0τ0β0

I = Y ′+Y+ + Y ′Y + β′0τ0β0 − M−1((X′Y)′(X′Y) + (X′+Y+)′(X′+Y+)

+ (β0τ0)′β0τ0 + 2(X′Y)′(X′+Y+) + 2(X′Y)′(β0τ0) + 2(X′+Y+)′(β0τ0))

I = Y ′+(I − X+M−1X+)Y+ − 2Y+X+M−1(X′Y + β0τ0)

+ β′0τ0β0 − M−1(YX′X′Y + τ0β0β0τ0 + 2X′Yβ0τ0) + Y ′Y

I =
[
Y ′+Y+ − 2Y+X+(I − M−1X′+X′+)−1M−1(X′Y + β0τ0)

]
(1 − M−1X′+X′+)

+ (β′0τ0β0 − M−1τ0β0β0τ0) + (Y ′(I − M−1X′X)Y − 2M−1X′Yβ0τ0)

I =
[
(Y+ − Yn)′(Y+ − Yn) − Y ′nYn

]
(1 − M−1X′+X′+)

+ (β′0τ0β0 − M−1τ0β0β0τ0)

+ (Y ′Y − 2M−1(I − M−1X′X)−1X′Yβ0τ0)(I − M−1X′X)

I =
[
(Y+ − Yn)′(Y+ − Yn) − Y ′nYn

]
(1 − M−1X′+X′+)

+ (β′0τ0β0 − M−1τ0β0β0τ0) +
[
(Y − Ym)′(Y − Ym) − Y ′mYm

]
(I − M−1X′X) (2.40)

Where: Yn = (I − X+M−1X+)−1X+M−1(X′Y + β0τ0), using a definition of inverted difference in

matrices (Zellner, 1996).

Yn = (I + X+(X′X)−1X+)M−1X+(X′Y + β0τ0)

Yn = (I + (X′X)−1X′+X+)(X′X + τ + X′+X+)−1X+(X′Y + β0τ0)

Yn = (I + (X′X)−1X′+X+)(I + (X′X + τ0)−1X′+X+)−1X+(X′X + τ0)−1(X′Y + β0τ0) (2.41)

τ0 is a very small quantity, so, Yn = (X′X + τ0)−1X+(X′Y + β0τ0) = X+β̃. Besides, some
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terms disappear due to the proportionality. By doing A = (Y − Ym)′(Y − Ym), and Ym =

M−1(I − M−1X′X)−1X′β0τ0, and simplifying the final predictive distribution, it leads to:

I =
[
(Y+ − Yn)′(Y+ − Yn) − Y ′nYn

]
(1 − M−1X′+X′+)

+
[
(Y − Ym)′(Y − Ym) − Y ′mYm

]
(I − M−1X′X)

I =
[
(Y+ − Yn)′(Y+ − Yn) + (Y − Ym)′(Y − Ym)

]
(2.42)

f (Y+|Y0,Y) ∝
[[

(Y+ − Yn)′(Y+ − Yn) + A
]]− T+4

2

f (Y+|Y0,Y) ∝
[
((Y+ − Yn)′A−1(Y+ − Yn) + 1)A

]− T+4
2 (2.43)

The expression (2.43) is a Student-t distribution, with mean: Yn = X+β̃, with ν degrees of

freedom, and Variance, ν
ν−2 A= ν

ν−2 (Y − Ym)′(Y − Ym), which mean is different to the result of

Zellner (1996), with non informative prior distribution.

2.4.3 Predictive Model innovation in the Prior distribution

Assuming the final model in 2.43, which is a Student-t distribution, with mean: Yn = X+β̃. If

we assume, besides, an expert knowledge that will change the β0 parameter, for every time t,

like, β0t it will permit that a user can do variations to the prior distribution, internally, posterior

and, finally, the predictive distribution will also change, according the time goes on.

That leads to the next expression of the mean, to do predictions for every t + 1 period:

Yn = (X′X + τ0)−1X+(X′Y + β0,t+1τ0) (2.44)
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2.5 Bayesian Dynamic Linear Model (BDLM)

A Dynamic Linear System is a general mechanism for representing the State Space Model

of univariate and multivariate systems. The State Space models are a powerful technique for

the analysis and forecasting of time series data, applied to areas like econometrics, signal

processing, genetics and population dynamics (Petris, 2010).

The state estimation of a system is an important problem for engineering, and the Kalman

Filter is a technique to do recursive estimation of the parameters of this system. But one

of the most known applications of this filter is related to the Dynamic Linear Models in the

framework of Bayesian forecasting, developed by Harrison and Stevens (1976). The estima-

tion of Dynamic Linear Models, implies four principal steps for estimation and prediction:

Establishing initial conditions, estimation of the next stage, prediction of new observation,

and updating the parameters (Peña and Guttman, 1988).

Specifically, the standard form to represent the dynamics in statistical areas, involves one step

at a time of the linear dependence about the parameter of the system, say θ. The general

process for this analysis is explained by different authors (Meinhold and Singpurwalla, 1983;

Harrison and Stevens, 1976; West and Harrison, 1997). There are also new developments

in these models, for example, in creating robust algorithms to establish robust procedures to

outliers (Peña and Guttman, 1988; Pericchi and Pérez, 2010; Fúquene et al., 2015), and tests

to demonstrate stability (Tsurumi, 1988).

General Dynamic Linear Model

The following is a general representation of a Dynamic Linear Model(DLM), whose estima-

tion is built with a Bayesian Process, and a recursive Kalman Filter (Meinhold and Singpur-

walla, 1983).

Let Yt,Yt−1, . . . ,Y1 be the data, denoting the observed values of a variable of interest at times

t, t − 1, . . . , 1. Yt depends on the parameter unobserved θt, known as the State of nature. A

DLM is a representation of a Normal Prior Distribution for this state vector θt and a pair of
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equations, that is expressed with the linear relation between Yt and θt, and specified with the

equations:

Observation equation: Yt = Ftθt + νt, νt ∼ N(0,Vt)

System equation: θt = Gtθt−1 + wt, wt ∼ N(0,Wt)
(2.45)

where Ft and Gt are known quantities, and may or not change with time. Gt is the evolution

matrix which describes a relation between times t − 1 and t for parameter θt; and Ft describes

the information of the system or response, for example, it can be the px1 vector of explanatory

variables. νt and wt are independent random Gaussian vectors with mean zero and variance

matrices Vt and Wt, and independent with each other.

At time t − 1: (θt−1|Yt−1) ∼ N(θ̂t−1,Σt−1), where θ̂t−1 and Σt−1 are initial mean and variance.

An easy example of this problem, is a State Space Regression model cited in Tsurumi (1988),

who presents a test created by LaMotte and McWhorter Jr (1978) (p. 90):

Yt = xtβt + εt, εt ∼ N(0, σ2
t )

βt = βt−1 + µt, µt ∼ N(0, σ2
µD)

(2.46)

Yt is the response variable, and xt is a known co-variable. D is a known matrix. βt is repre-

sented as a random walk with independent random variable µt.

Other example is the linear growth model, also called, local linear trend (Petris et al., 2009).

Yt = µt + νt, νt∼N(0,Vt)

µt = µt−1 + βt−1 + µ1,t, µ1,t
iid
∼ N(0, σ2

µ)

βt = βt−1 + µ2,t, µ2,t
iid
∼ N(0, σ2

µ)

(2.47)

Gt =

 1 1

0 1

 ; Ft =
[

1 0
]

; Wt =

 σ2
µ 0

0 σ2
β

 (2.48)
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The matrices Gt, Ft, and the covariance matrices Vt and Wt are constant. In this case, the

model is said to be time invariant.

These kind of processes are applied to special cases of changes in time series, as it is exposed

by Pole et al. (1988), (p. 167), who cite: “The first comprehensive Bayesian treatment of

these models in the statistical literature was Harrison and Stevens (1976), and since then,

motivated both by academic interest and the perceived requirements of practitioners, much

work has been undertaken to extend the theoretical basis and range of application of these

models”.

Dynamic State Space models provide a basis for constructing forecasting models for reasons

as simplicity, structuring, and insights into model construction (Pole et al., 1988). “The choice

of the state-space form of the DLM as an appropriate framework within which to model many

forecasting system rests in the twin foundations of simplicity and interpretbility. Its simplicity

derives from having just two constituents: an observation equation relating the values actu-

ally recorded, and a system equation that defines the evolutionary dynamics of the individual

components describing these conditions” (p. 168).

2.5.1 Bayesian Dynamic Linear Model with Kalman Filter

Inferences in DLM involves two operations: evolution to build up the prior and posterior

distributions, and updating to incorporate new observations. In order to understand how these

two components work, there are some techniques, like a Kalman filter, that also produces

forecasts. There are different forms to build this filter, and one of the simplest forms to

understand it, is the recursive Kalman Filter explained by (Meinhold and Singpurwalla, 1983),

who represent this model as:

Observation equation: Yt = Ftθt + νt, νt ∼ N(0,Vt)

System equation: θt = Gtθt−1 + wt, wt ∼ N(0,Wt)
(2.49)

Where the first line is the Observation equation, and the second one is the system equation.
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The recursive Kalman Filter does an estimation of the state of the parameter θt, and also, the

prediction of the response.

In order to explain the process, first, we must be focused on time t − 1. and the observed data

until this period, it is, Yt−1. Here, let Y and θ are the vectors of responses and parameters of

the system, respectively (Meinhold and Singpurwalla, 1983).

Process

The recursive process can be described as follows.

– Starts from initial values of the parameters: θ0, and a variance matrix
∑

, at time 0.

– Generate θt with a Normal Prior Distribution with mean: µ = Gtθ̂t−1 and variance: Rt =

Gt
∑

tG′t + Wt

– Update the Normal posterior distribution: (θt|Yt−1) ∼ N
(
θ̂t−1,

∑̂
t−1

)
.

– Estimate the mean and the variance of the posterior distribution, as follows:

Mean:

θ̂t = Gtθ̂t−1 + Rt[F′t (Vt + FtRtF′t )]
−1et (2.50)

Variance: ∑
t

= Rt − RtF′t (Vt + FtRtF′t )
−1FtRt (2.51)

– Update the posterior distribution (θt−1|Yt−1) ∼ N(θ̂t−1,
∑

t−1), where the mean and the

variance are shown in the previous equations.

– Estimate the system equation: θt = Gtθt−1 + wt, using the estimated value θ̂t−1.

– Estimate the observation equation: Ŷt = FtGtθ̂t + νt

– Predict Ŷp using the Normal predictive distribution, with mean Ŷt and variance Rt

– Estimate the error et = Y0 − Yp and cycle re-starts.
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Derivation of the Posterior Distribution

Suppose at = θ̂t−1 mean of θt at initial condition, and mt the posterior mean.

– Parameter Prior distribution.

ξ(θt) ∝ exp
{
−

1
2

(θt − at)
′

Rt
−1(θt − at)

}
(2.52)

– Data distribution

L(Yt|θt) ∝ exp
{
−

1
2

(Yt − F′tθt−1)
′

Vt
−1(Yt − F′tθt−1)

}
(2.53)

(West and Harrison, 1997)

– Posterior distribution

For parameter θt, the posterior distribution is:

ξ(θt|Dt) ∝ L(Yt|θt)ξ(θt|Dt−1) (2.54)

Taking natural log and multiply by −2:

−2ln(ξ(θt|Dt)) ∝ (Yt − F′tθt−1)
′

Vt
−1(Yt − F′tθt−1) + (θt − at)

′

Rt
−1(θt − at) (2.55)

Expanding the expression, it will be:

θ′t (Rt
−1 + F′t Vt

−1Ft)θt − 2θt(Rt
−1at + F′t Vt

−1Yt) + constant (2.56)

According to the results of proved theorem in West and Harrison (1997):

C−1
t = Rt

−1 + F′t Vt
−1Ft
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C−1
t mt = Rt

−1mt + F′t Vt
−1Ftmt = Rt

−1mt + F′t Vt
−1Yt (2.57)

Which conduces to:

θ′tCt
−1θ′t − 2θtCt

−1mt + constant (2.58)

(θt − mt)′Ct
−1(θt − mt) + constant

ξ(θt|Dt) ∝ exp
{
−

1
2

(θt − mt)′Ct
−1(θt − mt)

}
(2.59)

The Normal Posterior Distribution presented, applies to univariate and multivariate cases

(West and Harrison, 1997).

– Forecast according to the final steps explained at the past subsection, using the observa-

tion equation and the Normal Predictive Distribution.

2.5.2 Dynamic Linear Regression

Different kinds of components, such as trends, seasonality, or stochastic evolution, could also

be included in these models. One general form to present these components can be in a

Dynamic Linear Regression, as it will be presented in this section.

(Petris et al., 2009) describes a Dynamic Linear Regression Model in a univariate form as:

Yt = x′tθt + νt νt ∼ N(0, σ2
t )

θt = Gtθt−1 + wt wt ∼ N(0,Wt)
(2.60)

Where xt = [x1,t, . . . , xp,t] are the values of the p explanatory variables at time t, which are

fixed. The matrix Gt has an order pxp, and Ft has order mxp for every time t (m: observation

equation for every time, which is 1 for univariate cases).
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It is possible to define the evolution matrix Gt as an identity and Wt is a diagonal matrix, this

corresponds to model the parameters as independent random walks (Petris et al., 2009).

For example,

Yt = θt1 + θt2xt + νt νt ∼ N(0, σ2
t )

θt = Gtθt−1 + wt wt ∼ N(0,Wt)
(2.61)

Where θt1 = θt1−1 + wt1 and θt2 = θt2−1 + wt2, and Vt = σ2
t . The model can be described with

the matrices:

Gt =

 1 0

0 1

 ; Ft =
[

1 xt

]
; Wt =

 σ2
t1 0

0 σ2
t2

 (2.62)

(Petris, 2010) developed a package in R in order to proceed with the estimation and generate

Bayesian forecasts of these kinds of DLM. He explains generalities about models that were

exposed more detailed in the book of 2009 (Petris et al., 2009).

Other example can be related to the addition of terms of lagged variables in the observation

equation, as it is expressed in equation (2.63).

Yt = λtYt−1 + αtxt + νt νt ∼ N(0, σ2
t )

λt = λt−1 + wtλ

αt = αt−1 + wtα

(2.63)

The parameters are random walks, with wt = (wtλ,wtα), so wt ∼ N(0,Wt), and Vt = σ2
t

(Zellner, 1996).

Gt =

 1 0

0 1

 ; Ft =
[

Yt−1 xt

]
; Wt =

 σ2
tλ 0

0 σ2
tα

 (2.64)
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2.5.3 DLM for Multivariate Time Series

Assuming that the quantity y is observed for m statistical units over time, for example, pro-

ducts, companies, etc., so, we have a multivariate time series Yt = (Y1,t, . . . ,Ym,t). These

models introduce dependence along the m − variate process. Here, the Seemingly Unrelated

Time Series equations (SUTSE) is a multivariate model that assumes that all the m series

can be modeled by the same DLM structure, the same observation Matrix F, and the same

system matrix G. P-dimensional state vector have the same interpretation. These DLM’s, can

assume that the m processes follow the same time-invariant matrices F and G, and could be

represented by the expression (2.65) (Petris et al., 2009):

Observation equation: Yi,t = Fθ(i)
t + νi,t

System equation: θ(i)
t = Gθ(i)

t−1 + wi,t
(2.65)

Where νi,t ∼ N(0,Vi), and wi,t ∼ N(0,Wi).

Here, it is assumed that all the m series follow the same type of dynamics, but different values

for Yi,t. Additional theory related about these processes can be found in Petris et al. (2009)

and in West and Harrison (1997).

General framework

Assuming that the information set available at time t is Dt = Yt,Dt−1, and that initial prior dis-

tribution at t=0 is multivariate normal: (θ0|D0) ∼ N[m0,C0], for some mean m0 and variance

C0 known (West and Harrison, 1997).

As the theorem 15.1 proposed by West and Harrison (1997), who cite: “One-step forecast and

posterior distribution in the model just defined are given, for each t, as follows”:

– Posterior Distribution at t − 1, for some mean mt−1 and variance Ct−1 known.

(θt−1|Dt−1) ∼ N[mt−1,Ct−1] (2.66)
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– Prior Distribution for parameters at time t.

(θt|Dt−1) ∼ N[at,Rt] (2.67)

Where: at = Gtmt−1 and Rt = GtCt−1G’t + Wt

– One-Step forecast:

(Yt|Dt−1) ∼ N[ft,Qt] (2.68)

Where: ft = F’tat−1 and Qt = F’tRt−1Ft + Vt

– Posterior Distribution for θt at t

(θt|Dt) ∼ N[mt,Ct] (2.69)

Where: at = at + Atet and Ct = Rt − AtQtA’t

At = RtFtQ−1
t and et = Yt − ft

An Example of a Multivariate Model

It is possible to use the level and the trend components but also, the seasonal representation,

for example factor and Fourier models, in the model structure, in order to give a correct

explanation of the response.

An example of a representation of these models with level and trend, where there are m time

series Ym,t is the expression (2.70):

yi,t = αi,t + βi,txt + νi,t, νi,t
iid
∼ N(0, σ2

i )

αi,t = αi,t−1 + wtα,i, wtα,i
iid
∼ N(0, σ2

wα,i)

βi,t = βi,t−1 + wtβ,i, wtβ,i
iid
∼ N(0, σ2

wβ,i)

(2.70)

Where

Ft =
[

1 xt

]
; Gt =

 1 0

0 1
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State vector: θ(i)
t = (αi,t, βi,t), for i = 1, . . . ,m, and a vector of parameters: ϕ = (σ2

i , σ
2
w1,i, σ

2
w2,i).

Where σ2
w1,i, σ

2
w2,i are the variances of the parameters.

To introduce a dependent level and slope, can be governed by correlated inputs (Petris et al.,

2009), across the m series Ym,t.

A matricial representation of this model is:

yt = (Ft ⊗ Im)xt + νt νt
iid
∼ N(0,V)

θt = (Gt ⊗ Im)θt−1 + wt wt
iid
∼ N(0,W)

(2.71)

Where

yt =


y1,t
...

ym,t

 ; θt =



α1,t
...

αm,t

β1,t
...

βm,t


; νt =


ν1,t
...

νm,t

 ; wpm,t =


w11,t
...

wpm,t



The matrix W is the variance covariance structure of the parameters for the m DLM’s. A

matrix of p blocks (Petris et al., 2009) (p.128), every one with order mxm, in total W has the

order pmxpm.

For example, if m = 2, then we will have four parameters: θt = (α1,t, α2,t, β1,t, β2,t), and 2x2

error components wt = (wtα,1,wtα,2,wtβ,1,wtβ,2). Then, the matrix W will have an order 4x4,

with variances in the diagonal: (σ2
wα,1

, σ2
wα,2

, σ2
wβ,1

, σ2
wβ,2

), and covariance in order to consider

dependence.

With the R software it is possible to build the evolution for every parameter, and also, to do

forecasts of the response, using the dlm package created by Petris Petris (2010), in univariate

or multivariate structures.
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Estimation

Petris et al. (2009) (p.150), in the proposition 4.1, present a common case of conjugate

Bayesian Inference that can be followed, in order to build a DLM, by showing that the predic-

tive density is a Student-t. In multivariate extensions, when there are m time series models, it

can be assumed a diagonal matrix W for state parameters.

When the samples are large, the posterior distribution has an asymptotic behavior that can be

used to do estimations of the parameters by using Maximum Likelihood Estimation, MLE.

For a sequence of independent and identically distributed (i.i.d), random vectors Yt, condi-

tioned to θ (that has a prior distribution π(θ)), if n is large, it can be proved that the posterior

distribution π(θ |y1, . . . , yn) can be approximated by means of a normal density (Petris et al.,

2009), centered at the MLE estimator θ̂n, this implies that in these cases, frequentist and

bayesian estimators do not differ so much.

For other kind of distributions, which can not be analytically deduced, the estimation of pa-

rameters could be approximated with Monte Carlo Methods using simulation, like Gibbs

sampling (Petris, 2010). Gibbs draws a sample from the conditional posterior distribution of

interest, in two possible forms: the parameters, given the data and the unobserved states, or

the states given the data and the parameters.

Petris (2010) package, dlm, in the software R (R Core Team, 2014), has been developed in

order to do filter, Maximum Likelihood Estimation, Gibbs sampling, and also forecasting of

these DLM models.

2.6 Linear Mixed Models (LMM)

In contrast to multiple Linear Regression Models, that only have a fixed component Xβ, in

the Linear Mixed Models, there is an additional component which expresses a random com-

ponent, Zb, where Z is a matrix with known covariables, introducing a random variation for

the repeated observations, which corresponds, for example, to different products that have
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chronological values of sales. b is a random vector of effects, which are predicted; and the

response values are contained in the vector y (Valencia, 2010). This model considers these

two components, fixed and random. The following is the expression according to the general

form of the model Lange and Ryan (1989), cited and used by Valencia (2010):

y = X β + Z b + ε

T × 1 T × p p × 1 T × Nr Nr × 1 T × 1
(2.72)

– y is the vector that contains the components of response, yi j, with i individuals: i =

1, ...N, j = 1, . . . , ni.

– ni is the quantity of measures by individual.

– N: total of individuals.

– X fixed covariables design matrix, relating parameters β with y.

– Z design matrix of random effects relating vector b with y.

Z = diag(Z1,Z2, . . . ,ZN) y b = (b
′

1, b
′

2, . . . , b
′

N)
′

, dim(bi) = r × 1

ε ∼ N(0,R)

b ∼ N(0,B)

– T =
∑N

i=1 ni. Where p is the number of covariables of the design matrix X plus 1. r is the

number of co-variables of the Design matrix Z plus 1 (the random intercept).

– bi are independent among them, and with εi and identically distributed.

– R = σ2
e I Variance Matrix of Residuals.

– B Variance matrix of random effects.

It is an interest, to estimate the parameters β′s and to predict the b′i s, and variance components.

This LMM presented in this Doctoral Thesis is based in the Maximum Likelihood Estimation

with the frequentist techniques, not the Bayesian theory, as the Bayesian DLM.
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2.7 Synthesis of the problems related to Inventory Planning

Inventory planning at the industry is a necessity, because, the previously mentioned problems,

impact the future of an organization. Some of the frequent problems are:

– Inadequate levels of inventories.

– Inadequate service levels.

– Sometimes the supply times are not fulfilled.

– Mistakes in demand forecasts.

– Industry must be prepared for drastic changes, associated to its functioning; changes

dealing with factors such as demand, seasonality and irregular fluctuations, among oth-

ers.

– The demand of final products has a dynamic which makes the inventory planning uncer-

tain (Gutiérrez and Vidal, 2008; Jimenez Sanchez, 2005; Sarimveis et al., 2008).

– Industry needs accurate and fast methods to be efficient (Silver, 1981; Nenes et al., 2010;

Flynn and Garstka, 1990; Chou et al., 2013; Vargas, 2009; Jeyanthi and Radhakrishnan,

2010).

– Bayesian techniques can be used to forecast demands, but also, to do optimization, but

there are not many works in this sense (Bolstad, 1986; West and Harrison, 1997). There

are two important questions about forecast models that will be answered in this research.

Can the estimation be very good with univariate models? or can a multivariate estimation

model be better?

– It is necessary to define criteria to evaluate the forecasts of the demands in a multiproduct

scenario.

– Optimization of an Inventory Model in a time horizon T, needs accurate demands (Chen

and Lee, 2004)

And the principal contributions to the State of the art can be summarized in:
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– It is necessary to consider the dynamics in the industry systems, because fixed factors

are not robust to face the problems that it produces; this conduces to search techniques

with more advantages in comparison to others, to find optimal inventory policies.

– Theoretical assumptions about the residuals of classical models estimations, do not re-

ceive so much attention when a prediction is done, and, if they are not actually fulfilled

in a particular problem, possible bias can affect parameters estimations.

– The question: why should a Bayesian approach be considered to the analysis of time

series? This can be answered as follows: 1. Some mistakes are committed when a clas-

sical models are estimated, and if these are omitted, a bias can be done in forecasts. 2.

Many times the industry has few historical data, which are not enough to do estima-

tions of classical models. 3. In Bayesian Analysis, different priori distributions can be

used, also, it is possible to an update process every time, for parameters or probability

distributions. 4. Many works already presented about Non-Bayesian methods.

– Bayesian approximations to forecast the demand are not so frequently studied for inven-

tory problems, in special, for multiproduct problems. These techniques have advantages,

as: use of few data, facilitate changes in probability prior distributions, change and up-

dating of the parameters, and predicted data, but also, they could be applied to do the

optimization of inventory models, (Choi et al., 2003; Nechval et al., 2011; Valencia et al.,

2014b).

– State Space models have been formulated for reasons like dynamics in engineering, and

it is possible to formulate them, considering a time series as outputs of dynamic systems,

and, in this way, they can be used to generate forecasts for inventory management, but

also, to represent inventory levels as outputs of these kind of systems.

2.7.1 Problems to Solve

After the review process, it is possible to identify two problems that do not have so much

research, when an industry must provide a good planning policy of the final inventories.
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1. Forecast demands of final products for few historical data, in short terms.

2. Multiproduct-Multiperiod Inventory Optimization, when there are few historical data,

with Bayesian techniques.

2.7.2 Proposal

This Doctoral Thesis will present the problem in two principal phases of work.

1. Forecast models of final products for few historical data, in short terms, establishing

a comparison between some classical and some Bayesian univariate and multivariate

models, and proposing the best models.

2. Multiproduct-Multiperiod Inventory Optimization proposal, when there are few histori-

cal data, using Bayesian techniques.
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Chapter 3

Phase 1: Forecasting the Demand

3.1 Forecast Models

In this chapter we will simulate short time series under control conditions. For each simulated

series, an estimation process will be executed using classical and Bayesian techniques. After

that, a comparison will be done. The objective is to answer that if the time series behaves with

seasonal and drastic changes in variability, which of the techniques works better to estimate

the model to forecast the demand for different number of periods of prediction and length of

the time series, in such a way, that the demand predicted values are useful for the inventory

Policy to be proposed in the chapter 4.

In order to make decisions, about what is or which are the best models, first, it is going to be

shown the example of the estimation of every model with the real data of fuel sales, and after,

these models will be used in the simulation, in order to compare results of forecast values.

The estimations are organized according to a Factorial Design of Experiments, a technique

that permits the control of the factors: Distribution of time series data, periods to do forecasts,

model, and also, equation of the regression models. The response variable of the designs

is the MAPE of forecast, obtained after the estimation of time series simulated, for all the

univariate and multivariate models used. The decisions to be held will be related with the best
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possible models and equations to use after changing the size of data, and also, the mean and

probability distribution of the time series simulated.

The models to be compared for the time series simulation are presented bellow:

Univariate Models

– Classical Models: ARIMA, and Exponential Smoothing (ES).

– Linear Models (LM). Classical Multiple Regression. The same formulas of the Bayesian

Regression will be used in order to do the comparison.

– Bayesian Regression Models (BRM): different co-variables, and a variation of per-

centiles.

– Bayesian Dynamic linear Models (BDLM). Two kinds of these models will be used

(BDLM1, BDLM2).

Multivariate Models

– Bayesian Dynamic Linear Models of two kinds: linear growth or polynomial, and sea-

sonal plus polynomial.

– Linear Mixed Models (LMM). These models have a multivariate structure, according to

multiple product demands (Lange and Ryan, 1989). Seasonal co-variables will be added

in order to find the best result.

The MAPE indicator, as it was used in Makridakis et al. (1979), can be estimated in two forms:

for the fitting and for the forecast values. As it was previously mentioned, MAPE is a measure

that is used for different authors in order to examine the quality of adjustment and forecasts,

in classical and Bayesian models (Makridakis et al., 1979; Bowerman and Oconnell, 2007;

Petris et al., 2009; Rojo and Sanz, 2010). In this research, after simulation of time series with

size n, data will be divided in a group of length n − k and another with length k values. The

estimation of all the models will be done for n−k values, and the forecasts derived from those
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models, to the k data, in order to compare forecasts with real values with the Mean Absolute

Percentage Error (MAPE). This MAPE for forecasts will give the criteria to choose the best

model in this type of comparisons, because the principal purpose when forecasting is held, is

to achieve a very good future horizon (Makridakis et al., 1979; Valencia et al., 2014b).

The first three models, ARIMA, ES and LM, will be estimated in first place, and a summary of

the process is going to be shown. After this, the other bayesian models will be estimated and

detailed in order to understand the results and error indicators that every one of the models

provide.

3.1.1 Summary of the Bayesian Regression Model with Normal Prior
distribution (BRM).

This is the summary of the process shown in the past chapter, where it was presented the

structure in which, this model uses the Prior Normal distribution for the parameters β, with

dynamic variation presented as a novel model for this Doctoral Thesis.

– General Regression model:

yt = β0 + β1x1 + . . . + βkxk + εt (3.1)

Here, εt ∼ N(0, σ2); which are independent, and identically distributed. σ could have a

non informative distribution, but here, as it will be shown, the marginal distribution is

Gamma.

Prior, Posterior and Predictive distributions

– Prior Distribution for the parameters β and σ1.

Supposing a Normal distribution as the prior for β and σ1 parameters, N(β0, σ1), with

σ1 = σ0σ, this will lead to the next equation.
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ξ(β, σ) ∝
1
σ0σ

exp
[
− 1

2(σ0σ)2
(β−β0)′(β−β0)

]
(3.2)

– Posterior Distribution of β

By doing: τ = 1
σ2 , τ0 = 1

σ2
0
, the posterior distribution is re-expressed, in the next form.

By doing a product between the Prior Distribution and the likelihood, then:

ξ(β, τ|τ0, β0,Y0,Y) ∝ τ
T+1

2 exp−
τ
2 A[(β−β̃)′A−1(X′X+τ0)(β−β̃)+1] (3.3)

Which is a Normal-Gamma: N(β̃, (X′X + τ0)−1)Ga(T+3
2 ,D)

– Predictive distribution

The final Predictive Distribution to do forecasts with this model is finally:

f (Y+|Y0,Y) ∝
[
((Y+ − Yn)′A−1(Y+ − Yn) + 1)A

]− T+4
2 (3.4)

Which is a Student-t distribution, with mean: Yn = X+β̃, with ν degrees of freedom, and

Variance, ν
ν−2 .

A =
ν

ν − 2
(Y − Ym)′(Y − Ym) (3.5)

3.1.2 Example 1- Application to real data of combustible demands for a
Colombian gas station.

It is important to do, in first place, a descriptive analysis of the time series, in order to establish

the adequate components and possible patterns of the behavior. This will permit to include

possible covariables in models like the ARIMA or Regression. Also, if a seasonal behavior is

detected, it can be possible to establish this kind of components in Exponential Smoothing.

In second place, all the forecast models of this work, will be estimated to the real case. In

this Doctoral Thesis, this applications will permit to help to understand the process of the
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statistical models to be presented. In a third place, after the case study, a simulation study

will be presented, and with these simulations, different Designs of Experiments will be shown

in order to answer to all the formulated hypothesis. All of these results are developed in R

program, with functions and algorithms, used and designed in this Doctoral Thesis.

The real demands of products, are the sales of three kinds of fuel: Corriente, Extra and Diesel,

from a gas station in Colombia. The data cannot be shown due to confidentiality of the

company, but they consist on 92 daily sales of these fuels, in a period between November

2014 and January 2015. Here, the estimation of all the models for the three time series will

be done in the software R, and the Multivariate Dynamic Bayesian Models will be done by

using the packages designed and explained by Petris et al. (2009).

As it can be seen in the values of the covariance between pairs of time series data, in the matrix

shown below, named Covar, some of these values are high. For example, between sales of

corriente and extra fuel, the covariance value is 2422.15, between corriente and diesel, is

4031.42, and between extra and diesel, −145.29.

Covar =


31885.56 2422.15 4031.42

2422.15 1460.34 −145.29

4031.42 −145.29 11635.17


Besides this, the covariances which are different from zero, reflect presence of correlation

between the respective time series. This matrix is used in this work as a base to do the

estimation of the multivariate Bayesian models.

On the other side, the figure 3.1, that presents the autocorrelation function (ACF) and Partial

autocorrelation (PACF) shows that in the three series, there are significantly high lags to be

considered for the model estimations. In the first line of the graph, there is a lag of order

seven, in the second, there is a lag of order one and seven, which are out of the bands (of

zero values), and in the third one, the seventh lag is high enough to provide conclusions about

seasonal behavior with this order. This fact implies that these can be the lag terms added to the

ARIMA, and also, they can be covariables to the Regression Models. Besides, this seasonal
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component leads to consider additional kinds of explanatory variables for the classical as well

as for the Bayesian Regression Model.

Using the Ljung Box test (table 3.1), it is possible to see that the two first series (Corriente and

Extra sales) do not have stationary behavior, because the p-value is lower than the significance

level of 5%.

Box-Ljung test
X-squared Df P-value

Corriente 18.292 7 0.01072

Extra 75.963 7 9.137e-14

Diesel 8.0757 7 0.326

Table 3.1: Tests for non-correlation for Fuel predictions

The first two series do not show normality (table 3.2), according to the Jarque bera test, which

is more recommended for time series data.

Jarque Bera Test
X-squared Df P-value

Corriente 18.905 7 7.851e-05

Extra 13.582 7 0.001124

Diesel 3.3219 7 0.19

Table 3.2: Jarque Bera Tests for Fuel predictions- Normality tests

The last time series (Diesel) fits to a Normal Distribution, according to the Jarque Bera test

(table 3.2).

In summary, the possible covariables that can help to explain adequately the response of fuel

sales are: lags of order one, and seven; also, trigonometric components, as cos
(

2πt
L

)
, sin

(
2πt
L

)
;

and indicators for every period of the seasonal component, for example, on Tuesday (1 to this

day, 0 other case), on Wednesday (1 to this day, 0 other case), etc.
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Figure 3.1: Autocorrelation and Partial Autocorrelation for fuel sales.
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Classical Linear Model (LM) applied to real data of combustible demands.

The estimation of these three models will be done with the R program. For the Regression

Classical Model (LM), the lm function must read covariables according to specifications of

the researcher, in this case, according to the descriptive analysis done before.

Regression Model (LM)

The general equation that will be shown here for the three time series of fuel, is the expression

(3.6).

Yt = α0 + β1yt−1 + γ2Indicator2 + . . . + γ7Indicator7 (3.6)

The Anova tables for all the models of the time series are shown in the table 3.3. This Anova

table can indicate the significance of the co-variables included in order to identify which

one provides a better explanation for the response. It can be appreciated that the co-variable

indicator introduced in the model, is significant at 5%, but the lag covariable is only significant

for the linear regression of the Extra fuel. Besides this, the validation tests of the assumptions

are not fulfilled for the three time series.
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Model for fuel Corriente
Covariable Sum Sq Df F value P-value-Pr(>F)

(Intercept) 1468710.02 1 53.46 0.00

yt−1 64617.54 1 2.35 0.13

indicator 389756.95 6 2.36 0.04

Residuals 2088136.93 76

Model for fuel Extra
Covariable Sum Sq Df F value P-value-Pr(>F)

(Intercept) 1004.26 1 1.02 0.32

yt−1 35712.57 1 36.12 0.00

indicator 15034.91 6 2.53 0.027

Residuals 75135.06 76

Model for fuel Diesel
Covariable Sum Sq Df F value P-value-Pr(>F)

(Intercept) 801344.44 1 94.25 0.00

yt−1 291.29 1 0.03 0.85

indicator 323135.88 6 6.33 0.00

Residuals 646177.09 76

Table 3.3: Anova Tables for three fuel time series
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Normality test
Fuel Statistic parameter p.value

Corriente 52.25 2 0.00

Extra 5.424 2 0.0664

Diesel 40.6 2 0.00

Non-correlation test
Corriente 11.63 7.00 0.08

Extra 12.59 7.00 0.08

Diesel 4.74 7.00 0.69

Constant Variance test
Corriente 1.22 6 0.31

Extra 0.585 6 0.74

Diesel 1.34 6 0.24

Table 3.4: Assumptions of the Linear Model estimation
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The normality assumption for residuals (in the table 3.4) is only fulfilled by extra fuel, because

it is the only that has a p-value higher than 5%. The non-correlation test is accepted for the

three tests for the residuals of the three estimated models, and also the constant variance, but

MAPE values estimated do not show so much accuracy, to trust in the predictions.

Fuel Fitting MAPE Forecast MAPE

Corriente 11.1 6.3

Extra 48.44 38.7

Diesel 24.7 17.3

Table 3.5: MAPES (%) for the fuel sales for the Linear Model estimation

The estimations of the LM models for every fuel time series, produces the MAPE values seen

in the table 3.5, here, it can be appreciated that the lower MAPE values are the calculated for

the fuel Corriente, but this model does not fulfill normality assumption. When a transforma-

tion over the response value is done, this assumption is not satisfied either.

ARIMA and ES

For the ARIMA model, the function auto.arima from the R program, is an automatic process

helping to find the best possible combination of lag terms of the model. For ES, the function

ets, provides also an automatic selection.

Summarizing the MAPE results of these two classical models, the table 3.6 shows that the

minimum results are for the fuel Corriente.

Bayesian Regression Model (BRM) to real data of combustible demands.

The past Predictive distribution must have covariables, and also, the prior parameter values of

τ0 and seasonal components. In the designed program presented in this Doctoral Thesis, the

inputs to be typed in the R program, in order to run the model and do the estimations, are:
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ARIMA
Fuel Fitting MAPE Forecast MAPE

Corriente 12 10

Extra 51.2 95.2

Diesel 35.9 69.88

ES
Corriente 13 7.3

Extra 52.8 95.5

Diesel 36.2 65.5

Table 3.6: MAPES (%) for the fuel sales for ARIMA and ES estimation

– τ0=1 if it is not specified a different value by the user.

– The time series data (series)

– The formula with the covariables (formulation)

– Initial Percentile (Stad)

– Value of n-k (cuts)

– Indicator variables (indicator)

– Number of seasonal pattern (L)

– Criteria to chose the best model, between: Fitting and Forecast MAPE.

– Number of simulation (sim) for the internal optimization of the vector β0, this will permit

to begin the forecast with the best fitting.

– Value of the first period to forecast, it is, cuts + 1 if the forecast values are part (at the

end) of the data.

– Periods to do forecasts, k.

The results of the designed algorithm are the fitted values, and its respective MAPE value, the

forecast values, and, its respective forecast MAPE, the percentile that was chosen as the best
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(minimum), according to the criteria (Fitting or Forecast), and the equation of the model used

to do the estimation. In this example the equation is the same as the used for the regression

model, with a lag variable, and the indicator,

Yt = α0 +β1yt−1 +γ2Indicator2 + . . .+γ7Indicator7. It is used the criteria of minimum forecast

MAPE. The results of the MAPE values and the best percentile, are shown in the table 3.7.

Fuel Fitting MAPE Forecast MAPE Best percentile

Corriente 11 4.55 45.79

Extra 68.5 22.2 95

Diesel 33.96 9.64 91.2

Table 3.7: MAPES (%) and percentile, results from the New BRM.

The MAPE values to do forecast, are lower than the previous classical models, when it is

considered the same periods to forecast, seven days.

Figure 3.2 shows the fitting and forecast values provided by the designed algorithm, for the

sales of fuel regular. It is possible to see that the dashed line is very close to the real values,

in especial, in the forecast periods, after the vertical line.

Figures 3.3 and 3.4 show the fitting and forecast for Extra and Diesel fuels. It can be seen that

there are some periods where the fitted line is close to the real values, in especial, when the

values goes down, and at the end, but in all the movement of the horizon, the two lines are not

totally close.

3.1.3 New Bayesian Dynamic Linear Model (BDLM1)

In the review of the state of the art, it was presented the general theory about Dynamic Linear

Models (DLM) and a procedure to estimate the Kalman Filter process, and also, a general

recursive Kalman Filter applied to the estimation of a DLM, that was used, as well, in Valencia

and Correa (2013). Here, the Bayesian Dynamic Linear Model (BDLM1) explained in the
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Figure 3.2: Bayesian Regression Model for Regular fuel.
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Figure 3.3: Bayesian Regression Model for Extra fuel.
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Figure 3.4: Bayesian Regression Model for Diesel fuel.
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past chapter, as an approach of this Doctoral Thesis, has a modification, and will be used in

the comparison of models estimated to the time series simulated data.

Here, it will be proposed a model that uses percentages of changes as the information of

the system, and also, as its evolution, according to the previously exposed theory about the

recursive Kalman Filter explained by (Meinhold and Singpurwalla, 1983):

Observation equation: Yt = Ftθt + νt, νt ∼ N(0,Vt)

System equation: θt = Gtθt−1 + wt, wt ∼ N(0,Wt)
(3.7)

3.1.4 Bayesian Dynamic Linear Model with linear growth (BDLM2)

The linear growth DLM, also called, local linear trend developed by Petris et al. (2009), will

be used here. It can be expressed as in the equation (3.8)):

Yt = µt + νt, νt∼N(0,Vt)

µt = µt−1 + βt−1 + µ1,t, µ1,t
iid
∼ N(0, σ2

µ)

βt = βt−1 + µ2,t, µ2,t
iid
∼ N(0, σ2

µ)

(3.8)

Gt =

 1 1

0 1

 ; Ft =
[

1 0
]

; Wt =

 σ2
µ 0

0 σ2
β

 (3.9)

The complete matrix F, for all the model, will have an order of 18x18, and the covariance

matrices Vt and Wt will be supported in the covariance matrix of the data.

3.1.5 Multivariate Bayesian Dynamic Linear Model (MBDLM1)

Assume three time series processes, with an observation equation: yi,t = µi,t + νi,t. The general

form of a SUTSE model (Seemingly unrelated time series equations) of a linear growth model,

is:
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y1,t = µ1,t + ν1,t,

y2,t = µ2,t + ν2,t, (ν1,t, ν2,t, ν3,t)′ ∼ N(0,V)

y3,t = µ3,t + ν3,t,

µ1,t = µ1,t−1 + β1,t−1 + w1,t

µ2,t = µ2,t−1 + β2,t−1 + w2,t

µ3,t = µ3,t−1 + β3,t−1 + w3,t

β1,t = β1,t−1 + w4,t (w1,t,w2,t,w3,t,w4,t,w5,t,w6,t)′ ∼ N(0,W)

β2,t = β2,t−1 + w5,t

β3,t = β3,t−1 + w6,t

(3.10)

Where

Ft =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

. . .


; Gt =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


besides,

V =


σ2

1 σ21 σ31

σ21 σ2
2 σ32

σ31 σ32 σ2
3

 ; W =

 Wµ(3x3) 0(3x3)

0(3x3) Wβ(3x3)


V is a variance covariance matrix of the vector of errors, (ν1,t, ν2,t, ν3,t), of the observation

equation, with order 3x3. W is a block diagonal matrix, with order 6x6, with variances

(σ2
w1, σ

2
w2, σ

2
w3) for the Wµ matrix and (σ2

w4, σ
2
w5, σ

2
w6), for Wβ matrix. There are also covari-

ances in order to consider dependence. But it is possible to fix one of these (Wµ,Wβ) with

zeros, that will lead to have constant parameters in all time horizons.
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3.1.6 Example 2- Application of MDLM1 to the real data of combustible
demands for a Colombian gas station.

The performance of the multivariate models will be shown by applying the models explained

to a real time series data, the fuel sales mentioned before, and using the R program and the

package dlm and codes designed by Petris (2010). The first model to show is the MDLM1,

then, the MDLM2; showing the movements of the parameters from one time to another, and

estimating forecasts, with the respective MAPE indicators.

Figure 3.5 shows the adjustment of the Multivariate Bayesian Dynamic Linear Model (MB-

DLM1).

It can be seen that the fitting of the MDLM1 is relatively good, but the performance of the

forecasts are not good, because the predicted points go to different directions, from the ones

of the real values, as it is shown in figure 3.5.

Besides the fitting and forecast, it is possible to see the dynamic parameters, because this

model permits it. The Figure 3.6 shows the intercept parameters, and the polynomial compo-

nent for every fuel sales, respectively, Corriente, Extra, Diesel.

The estimation of forecast MAPE, for a period of 7 days provides the results, Corriente

16.63%, Extra 47.84%, and Diesel 28.51%. The R-code to estimate the model was adapted

from the code help provided by (Petris, 2009), that is in the appendix A.
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Figure 3.5: Multivariate Bayesian Dynamic Linear Model-1 for fuel sales
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Figure 3.6: Dynamic parameters of the Multivariate Bayesian Dynamic Linear Model-1 (MDLM1)
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3.1.7 Example 3- Application of MDLM2 to the real data of combustible
demands for a Colombian gas station.

The MDLM2 is applied for the three real time series data of the same initial example. Fixing

the same periods to forecast as the estimation exposed above, (7 days), it is possible to see

that the MDLM2 can make a good representation of the seasonal behavior, along the horizon

period of fitting, and also, of forecasts (figure 3.3).

As the figure 3.7 shows, the predictions are, in general, close to the real values, for fitted as

well as for forecasts, concerning this MBDLM2. This accuracy can also be appreciated in the

forecast MAPE values for the 7 days: for Corriente 9.897%, Extra 24.149%, and for Diesel:

18.223%. Values that are lower than those of the MDLM1, despite these are the same real

time series data.

The R-code to do the estimation of this model is presented in the appendix B.

The Figure 3.8 shows the dynamic intercept parameters, and one indicator of the six seasonal

patterns that the model contemplates. This shows that the parameters are not fixed in all

the periods, and moreover, there are some periods where they are higher, which can lead to

possible interpretation of a change in the level of the series.

3.1.8 Example 4- Application of LMM to the real data of combustible
demands for a Colombian gas station.

The same data of the fuel sales is used here to do the estimation of the Linear Mixed Model

presented in the chapter 2. As it was mentioned, this is a model estimated with frequentist

techniques, not Bayesian. The estimation considers the sales of the multiple products, in this

case, they are three, and it is possible to do forecasts simultaneously of the three products. The

estimations of the model that can be analyzed in order to do inferences are the Anova table, the

standard deviation of the random component, and the validation tests of the residuals about
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Figure 3.7: Multivariate Bayesian Dynamic Linear Model-2 for fuel sales
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Figure 3.8: Dynamic parameters of the Multivariate Bayesian Dynamic Linear Model-2 (MDLM2)

normality and constant variance, and this is done with 85 days of sales for every product, but

the forecast is done with the 7 periods left.

The model estimated for this fuel sales example has the next general equation.

y = β0 + b0 + β2I2 + . . . + β7I7 + ε (3.11)

Where the responses, in the vector y, are the sales of the three fuel time series data expose

before, together.

b0 is the random intercept, which changes according to each one of the products. Ii is the

period indicator, which represents seasonality. The vector of fixed coefficients represents

first, the intercept β0, and after, the effects of every indicator β2, . . . , β7, that in this case,

are the days of the week minus one that is not in the model, and it is represented by the

general intercept. But, this model provides the form to add the random effects to the fixed,

according to the quantity of random components specified by the researcher. This model has

only one random component, the vector b0, which differ for every product, so, there will be
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three different values of intercept, respectively, for every fuel, Corriente, Extra and Diesel.

Intercept Residual

473.6 131.26

Table 3.8: Standard Deviation of Random effect

It is possible to find a standard deviation of 473.6 for the random intercept (table 3.8), which

is not negligible, in fact, is a quantity that justifies the LMM estimation.

Chisq Df Pr(>Chisq)

Intercept 3.0669 1 0.0799

Indicator-day 29.7927 6 4.304e − 05

Table 3.9: ANOVA table of linear mixed model applied to fuel sales

It is possible to see that the fixed intercept, and the parameters of the factor indicator-day, are

significant at level 10%, because p-value (0.0799 and 4.304e − 05) are lower, as it is seen in

table 3.9. But the residuals of this model do not fit to a normal distribution, because P-value of

the test of Jarque Bera (2.2e−16) is lower than 5%. When a transformation is done, the result

also leads to the non-normality for residuals. This leads to a possible bias in the inferences.

The sum of the random and fixed coefficient leads to final coefficients of the model, in order

to be used to do predictions. This sums are valid for the intercept for the model estimated in

this example (table 3.10), because it has a fixed and a random component for every product.

Product Intercept

Corriente 1007.41

Extra 99.03

Diesel 344.66

Table 3.10: Intercepts of the LMM for fuel sales

Vector of the coefficients of the seasonal indicators are the same for all the products in all
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periods:

(β2, β3, β4, β5, β6, β7) = (−23.85, 40.984,−91.5,−27.28,−65.6,−19.92).

The forecast MAPE calculated for 7 periods, in order to do a comparison with the Multivariate

Bayesians, are: 10.6%, 93.08%, 69.74%.

The multivariate Dynamic Linear models with Bayesian theory, presented above, provides a

better performance of the accuracy of the forecast MAPE, than this mixed model estimation.

At the end, the differences in the results of the LMM vs MBDLM’s are the techniques em-

ployed, because in the Bayesians (MDLM1 and MDLM2), the parameters are dynamic, they

vary from one period to another, and in the LMM, the parameters do not change for every

period involved in the estimations.

The advantages are in the analysis of the behavior for every period, in order to provide tools

in the identification of periodical patterns of the demands, as in this case shown.

3.2 Time Series Simulation and Estimation of Models

Some of the answers to be achieved with the simulation process must be directed to find the

best models to supply the need of a good representation for a demand behavior that presents:

unexpected changes, seasonal component, non stationary, lack of stability in time series, lack

of historical data, non normality distributions, or high variance.

It is important to find good models because these problems can affect the decisions making

about production and storage in business, as it was mentioned before (Correa and Gómez,

2009; Diebold, 1999; Ventura et al., 2013). And also, to know if it can be possible that

Bayesian techniques are good alternatives to produce more robust estimations.

The real time series shown in the before examples, about the demand of the three types of

fuels, represent the kind of behavior of the time series that is desired to be simulated in

this section, because of the seasonality, autocorrelation, covariance, and non normality in

the response.
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In this research, it is proposed first, to simulate scenarios of time series under normality and

non normality behaviors, and with these bases, to estimate different models, and to compare

them, to determine the best form to represent adjustment and forecast of the simulated data,

using a Design of experiments, analyzed with the R program.

The figure 3.9 presents the process employed in the simulation, followed by a Design of

experiments for the comparison among models.

Figure 3.9: Process employed in the time series simulation

This process consists on doing the simulation of N values: y1, y2, . . . yN . In order to do it,

different variances are previously fixed for every period of a seasonal pattern, these are taken

by every probability distribution to obtain a random variable, and include it into an equation

to calculate every value of yi. Here, it is possible to use different probability distributions

changing variances or skew parameter terms for every periods, as it corresponds to Skew

Probability Distributions. The schemes employed for the univariate comparison, were:

– Variable with Normal distribution, and dynamic variance.
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– Equation of regression, as Yt = β0 + β1 ∗ Yt−1 + et. Error variable (et) with Skew Normal

(SN) distribution, changing the variance and fixing one skew parameter for every period.

The next items have the same equation of regression.

– Error variable with Skew t (ST) distribution, changing the variance and fixing one skew

parameter for every period.

– Error variable with Gamma distribution, changing the variance for every period.

– Error variable with Poisson distribution, changing the variance for every period.

And for the multivariate comparison, the only difference is that the probability distributions

were: Multivariate Skew Normal distribution, and Multivariate Skew-t distribution, and a

matrix of variance-covariance where used.

The simulation study is done in order to select the best model to forecast; among the ARIMA,

an Exponential Smoothing (ES), a classical linear regression (LM), a Bayesian Regression

(BRM), two Bayesian Dynamic Linear Models (BDLM): percentage changes and linear growth

(BDLM1, BDLM2). Also, multivariate Bayesian models (MBDLM1, MBDLM2), and the

Linear Mixed Model, as it was presented before. In summary, the models to be estimated for

every time series simulated, are:

Univariate Models

– Classical Models: ARIMA, and Exponential Smoothing (ES).

– Linear Models (LM). Classical Multiple Regression. The same formulas of the Bayesian

Regression will be used in order to do the comparison.

– Bayesian Regression Models (BRM): different co-variables, and a variation of per-

centiles.

– Bayesian Dynamic linear Models (BDLM). Two kinds of this model will be used (BDLM1,

BDLM2).
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Multivariate Models

– Bayesian Dynamic Linear Models of two kinds: linear growth or polynomial, and sea-

sonal plus polynomial.

– Linear Mixed Models (LMM). These models have a multivariate structure, according to

multiple product demands (Lange and Ryan, 1989). Seasonal co-variables will be added

in order to find the best result.

The estimated models are compared using the MAPE for adjustment and forecasts, after mak-

ing a partition of the data. Forecast MAPE will be the final decision criteria to choose the

best models for every case, because the models do not have the same validation tests, neither,

they have the same kind of inferences. Different authors make comparisons between different

Bayesian models and others, with MAD, MAPE, and RMSE (Petris et al., 2009; Rojo and

Sanz, 2010).

A second class of multivariate simulation of vector auto-regressive time series, will be done

and two Multivariate Dynamic linear Models will be estimated to find the best possible fore-

cast model. The simulation will recreate cases when there is not a Normal Distribution be-

havior for the series of interest.

MAPE =
1
k
|ẑt+1 − zt+1|

zt+1
(3.12)

Where ẑt+1 is the predicted value for the demand in the period t + 1; Zt+1 is the real value for

the demand in the period t + 1, which is (N − k) + 1, in a one step forecast.

This process is repeated 100 times, getting a final percentage that explains the frequency

of times in which every model is chosen as the best to do adjustment and forecast of every

simulated series.

The quantity of simulated data is fixed in N=63. For every case, a partition will be done: N−k

values, to do the adjustment, and k will be the data left to forecast.
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3.2.1 Description of the Statistical Model

Figures 3.10 shows one time series simulated, and the figure 3.11, shows its ACF and PACF

behavior. This demonstrates the behavior of the seasonality, dynamic variance and non normal

distribution used to simulate the data.

Figure 3.10: Behavior of the time series simulated. Source: By the authors.

The simulated series present seasonality, because of the repetitive patterns, and the non con-

stant variance that it demonstrates (see figures 3.10, 3.11). In especial, the figure 3.11 shows

the ACF and PACF behavior about the simulation done. The ACF shows autocorrelations

out from the significant bands, in seasonal periods, which demonstrate the dependence in

seasonality.

3.2.2 Comparison of the models estimations

First, in order to understand how the comparison will be done, the six models will be estimated

to one simulated time series data, and they will be compared. In order to estimate the Classical
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Figure 3.11: ACF and PACF of Time series simulated
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regression model and the Bayesian Regression, i is necessary to define an equation, and it will

be the same in order to establish a better comparison of the two models.

The equation of the two regressions, for this section, is: Model : Yt = β0 + β1Yt−1 + β2t +

β3S in +
∑L−1

i γiIi, it is, the same covariables in the two cases. After, a comparison with other

equations will be done.

Then the models will be applied to the different scenarios of the simulated time series data,

and a forecast MAPE will be shown to do comparisons. For all the cases of simulations, the

time series simulated with Skew Normal, Skew t, Gamma and Poisson distributions for the

errors, with dynamic variance, the comparison among models provides the results shown in

tables 3.11 and 3.12.

Distribution MAPE OF FORECASTS (%)

ARIMA ES LM BRM BDLM1 BDLM2
Normal Adjusted 0.54 0.54 0.53 0.83 7.89 3.41

Forecasted 0.26 0.26 0.33 0.33 8.34 0.47

Skew Normal Adjusted 5.33 5.33 0.58 0.80 10.81 9.61

(λ = 50) Forecasted 22.99 23.00 17.83 0.95 5.87 6.87

Skew T Adjusted 5.06 5.55 0.40 0.57 13.14 9.65

(λ = 50) Forecasted 23.12 23.41 19.08 1.20 5.74 6.89

Gamma Adjusted 17.06 31.65 3.93 4.88 64.52 38.67

Forecasted 8.93 1.79 24.72 7.73 65.54 47.45

Poisson Adjusted 18.43 20.77 4.35 4.70 30.19 24.81

Forecasted 16.54 17.78 21.30 6.33 30.54 23.11

Table 3.11: MAPE values for the comparison of models, mean=200, periods to forecast=7, N=63.

In the first case of table 3.11, for the data simulated with normal distribution, the ARIMA or

ES model have the lowest MAPE (0.26%), but the others have also low MAPE values, except

for BDLM1. In the next two cases (Skew Normal and Skew T), the λ represents the skew

parameter used in these distributions. The best MAPE of forecasted values is the Bayesian
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Regression Model (BRM) (0.95%, 1.2%), followed by the BDLM1 and BDLM2, which can

be good alternatives.

In the fourth case, for the data simulated with Gamma distribution, the Exponential Smoothing

is chosen as the best, followed by the BRM. In the Poisson simulation case, the BRM is

chosen.

After changing the number of data simulated, the models chosen are not always the same as

in the past case.

Distribution MAPE OF FORECASTS (%)

ARIMA ES LM BRM BDLM1 BDLM2

Normal Adjusted 0.51 0.51 0.45 0.68 6.19 6.11

Forecasted 0.33 0.33 0.47 0.44 12.77 0.55

Skew Normal Adjusted 4.85 4.85 0.41 0.66 10.07 11.58

(λ = 50) Forecasted 22.80 22.80 15.39 1.96 8.17 7.37

Skew T Adjusted 5.00 5.00 0.41 0.69 12.56 11.70

(λ = 50) Forecasted 23.41 23.41 18.95 1.96 4.95 7.95

Gamma Adjusted 23.67 31.71 3.64 4.77 30.43 40.70

Forecasted 5.19 2.03 25.06 12.05 71.58 46.06

Poisson Adjusted 20.14 21.51 4.27 6.97 45.33 29.82

Forecasted 16.81 15.89 23.89 11.35 34.15 17.10

Table 3.12: MAPE values for the comparison of models, mean=200, periods to forecast=7, N=35.

In table 3.12, ARIMA is chosen as the best model for simulated data with Normal distribu-

tion. In the next two cases, also the BRM has the minimum MAPE for Skew normal and

Skew t distributions. For simulated data with Gamma distribution, the ES is the best model,

followed by ARIMA. And, in the last case, for the simulated data under Poisson distribution,

the option is BRM. As we can see, the BDLM1 and BDLM2 have MAPE values which are

good alternatives in some simulated data, like the Normal for BDLM2, and SN or ST for

BDLM1.
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But, what is the best model, if we change some factors like: mean, number of the data (size),

kind of distribution, or equation of the regressions?

After a variation in different scenarios, it can be useful to estimate a Design of experiments

(DOE), a Factorial Design, where the response to evaluate is the MAPE of the forecast values.

This analysis can allow to find the most influential factors in order to choose a particular model

for forecasting.

3.2.3 Design of Experiments for simulation

In this section, two Designs of Experiments will be created, factorial designs. The first will

have these factors: the probability distribution to obtain time series data, the models em-

ployed, the mean of the data that will be: 30 and 200; and the size of data, 35 and 63. The

second will have the factors: the probability distribution to obtain time series data, the models

with specific equations, the mean of the data; and the size of data. The sizes are not higher,

because one of the hypothesis of this Doctoral thesis is that Bayesian models perform well

when there are few historical data.

The levels of the factors are shown in tables 3.13, 3.14, 3.15.

ARIMA

Exponential Smoothing

Linear Model

Bayesian Regression

Bayesian Dynamic Linear Model 1-percentage change

Bayesian Dynamic Linear Model 2-linear growth, polynomial 2

Table 3.13: Levels of the factor Model for univariate comparison.

In the table 3.14, for the indicator variable, k = 1, . . . , (L− 1). Where L is the seasonal period

The factor model will be separated of the equation of the regression models, because it is
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Eq 1 yt = β0 + β1yt−1 + β2t + β3sin +
∑L−1

k γkindicatork

Eq 2 yt = β0 + β1yt−1

Eq 3 yt = β0 + β1yt−1 + β2t

Eq 4 yt = β0 + β1yt−1 + β3sin

Eq 5 yt = β0 + β1yt−1 + β3sin +
∑L−1

k γkindicatork

Eq 6 yt = β0 + β1yt−1 +
∑L−1

k γkindicatork

Eq 7 yt = β0 + β1yt−1 + β2t + β3sin

Table 3.14: Equations of the regression models.

necessary to identify in general, the best kind (s) of models to forecast. The equation will be

explored as a block, to see the impact, and also, as a factor if it deserves.

Looking for low variability, some other factors will be fixed. The skew parameter of the

distributions Skew normal and Skew t, will be fixed in 50, and the forecast validation data

will be 7 in all cases, to calculate MAPE of forecast.

Skew Normal

Skew T

Gamma

Poisson

Table 3.15: Levels of the factor distributions for simulated data

Exploratory plots

After the exploration of preliminary figures of Box Plot (Figs. 3.12, 3.13, 3.14), it is possible

to see that the distributions of MAPE of forecasts change depending on the model. In especial,

the Bayesian Regression Model (BRM), in figure 3.12, shows a lower distribution, when we

compare it with the classical Linear Model (LM), and maybe, the ARIMA. It is also possible

to find how Bayesian Dynamic Linear Models 1 and 2 have a variability that can be due to the

distributions used, or that can affect the inferences.
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In figure 3.13, it is possible to see that the Gamma distribution has a high variance, despite it

does not show differences in mean or medians from one box to another.

Figure 3.12: Box plot for MAPE of forecasts vs Model

The Box plot for the MAPE vs size in figure 3.14, does not show differences in mean or

medians, and neither MAPE vs distribution.

These results provide ideas about the possible significance or not, of the factors and interac-

tions. But, according to the exploration, there is not evidence that the factor size of data can

affect the response, and, neither, that this response can be affected by the interaction among

models and the mean and size of data.

Estimation of the ANOVA table

The previous descriptive results can be verified using the ANOVA tables. Observing the p

values higher than 5%, of the interactions: Model-size and Model-mean of data and of the

factor size, in the preliminary Anova Table (3.16), it leads to conclude the non significance
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Figure 3.13: Box plot for MAPE of forecasts vs distribution of simulated data

Figure 3.14: Box plot for MAPE of forecasts vs size of simulated data
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of these two interactions, besides of the factor size of data, on the response: Forecast MAPE

(%).

Sum Sq Df F value Pr(>F)

Distri 429.54 4 602.54 0.0000

Model 186.30 5 209.07 0.0000

Size 0.01 1 0.05 0.8164

Meandata 1.36 1 7.62 0.0059

Distri:model 407.70 15 152.51 0.0000

Model:size 0.21 5 0.24 0.9452

Model:meandata 1.35 5 1.51 0.1833

Residuals 113.35 636

Table 3.16: Preliminary Anova Table for model comparison with simulated time series.

The non significant factors were eliminated one by one, so, at the end no interactions re-

mained. And the residuals did not have the normality expected, because p-values of the

residuals were lower than 5%. So, a transformation is necessary in order to obtain good

performance in the results.

The model is re-estimated without the non meaningful factors, but, despite the significance,

the residuals do not fulfill the assumptions of normality and constant variance needed, so the

model is not trustable. Another model is re-estimated with no interactions (table 3.17), and

using a transformation in the response value, a power of 0.6, so, the new response is taken

as: y∗ = y0.6, because this is an optimal power to find the normality in the residuals. It is

also considered a blocking factor that represents the kind of equation used for the regression,

and it is efficient because it explains a Mean Square Sum (MSB) higher than the MSE of the

model, so, it adds value to the design.

In the final ANOVA table (3.17), it is possible to see that all factors considered are significant,

at level 5%, but the block Equation contributes to explain the variance estimation, because its

MSB, 5.96, is higher than the MSE, 5.29.
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Df Sum Sq Mean Sq F value Pr(>F)

Distribution 3 110.74 36.91 6.98 0.0001

Mean of data 1 36.38 36.38 6.88 0.0089

Model 5 588.42 117.68 22.24 0.0000

BL.Equation 6 35.77 5.96 1.13 0.3450

Residuals 656 3470.96 5.29

Table 3.17: Final Anova Table for model comparison with simulated time series.

Besides, the normality and variance assumptions of this model with transformed response, are

fulfilled. The Jarque Bera Test has a p-value = 0.1425, and the Levene’s Test for Homogeneity

of Variance, when the factor mean of data is used to group, has a P-value of 0.6019, higher

than 5% of significance level, so, normality and constant variance are accepted.

In the table of coefficients (table 3.18), it is possible to see that in presence of SN and ST

distributions, the forecast MAPE can be more easily reduced than with other distributions

used for data simulation. In this table (3.18), it is possible to see that the BRM has the lowest

value of the coefficient estimated.
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Estimate Std. Error t value Pr(> |t|)

(Intercept) 5.9832 0.3549 16.86 0.0000

Dist-POISSON -0.1194 0.2510 -0.48 0.6345

Dist-SN -0.9467 0.2510 -3.77 0.0002

Dist-ST -0.7677 0.2510 -3.06 0.0023

Mean-data200 -0.4654 0.1775 -2.62 0.0089

Model-BDLM1 1.1470 0.3074 3.73 0.0002

Model-BDLM2 0.7114 0.3074 2.31 0.0210

Model-BRM -1.6254 0.3074 -5.29 0.0000

Model-ES -0.1540 0.3074 -0.50 0.6165

Model-LM 0.9756 0.3074 3.17 0.0016

BL.EQE2 0.0484 0.3320 0.15 0.8842

BL.EQE3 0.1717 0.3320 0.52 0.6053

BL.EQE4 0.4373 0.3320 1.32 0.1883

BL.EQE5 -0.0195 0.3320 -0.06 0.9531

BL.EQE6 -0.3775 0.3320 -1.14 0.2559

BL.EQE7 0.1881 0.3320 0.57 0.5712

Table 3.18: Effects of linear Model for the first Design of Experiments.
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For the Tukey mean differences tests, in table 3.19, the hypothesis to be tested in every case is

H0 : µ1−µ2 = 0 vs H1 : µ1−µ2 , 0. In this table, the names of the levels in the left of the first

column, produce higher values of means than in the right. When the difference is significant,

the p-value is lower than 5%, and it also can be seen in the interval, if the two limit values

are positive. For example, in the first line, the interval (-0.47, 0.83) indicates that the mean of

forecast MAPES are equal for the distributions SN and ST; and in the second line (0.18, 1.47)

indicates that the mean of MAPE is higher for Poisson distribution, than for SN. Then, it can

be seen that Gamma distribution has a higher mean than the other distribution if they are not

equal. The factor means of data have also significant differences, indicating that the higher

mean (200) produces lower MAPE of forecast.

It can also be seen that the BRM is in the second place of the differences for all comparisons

involved. It means that BRM produces the lower MAPES of forecasts, but other good model

is the exponential smoothing. The other two Bayesian models: BDLM1 and BDLM2 have

equal effects, but when they are compared to the BRM, this last is better. When BDLM’s

are compared to the classical linear model, the dynamic Bayesian produces, in general, better

results.

In general, from these analysis, it can be concluded that BRM produces significantly lower

MAPE of forecast than the other proposed models.
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Differences of means of the factor distribution

Difference lower upper p Value adj Decision

ST-SN 0.18 -0.47 0.83 0.89 EQUAL

POISSON-SN 0.83 0.18 1.47 0.01 DIFFERENT

GAMMA-SN 0.95 0.30 1.59 0.00 DIFFERENT

POISSON-ST 0.65 0.00 1.29 0.05 DIFFERENT

GAMMA-ST 0.77 0.12 1.41 0.01 DIFFERENT

GAMMA-POISSON 0.12 -0.53 0.77 0.96 EQUAL

Differences of means in factor mean of the data

30-200 0.47 0.12 0.81 0.01 DIFFERENT

Differences of means of the factor Model

ES-BRM 1.47 0.59 2.35 0.00 DIFFERENT

ARI-BRM 1.63 0.75 2.50 0.00 DIFFERENT

BDLM2-BRM 2.34 1.46 3.22 0.00 DIFFERENT

LM-BRM 2.60 1.72 3.48 0.00 DIFFERENT

BDLM1-BRM 2.77 1.89 3.65 0.00 DIFFERENT

ARI-ES 0.15 -0.72 1.03 1.00 EQUAL

BDLM2-ES 0.87 -0.01 1.74 0.06 EQUAL

LM-ES 1.13 0.25 2.01 0.00 DIFFERENT

BDLM1-ES 1.30 0.42 2.18 0.00 DIFFERENT

BDLM2-ARI 0.71 -0.17 1.59 0.19 EQUAL

LM-ARI 0.98 0.10 1.85 0.02 DIFFERENT

BDLM1-ARI 1.15 0.27 2.03 0.00 DIFFERENT

LM-BDLM2 0.26 -0.61 1.14 0.96 EQUAL

BDLM1-BDLM2 0.44 -0.44 1.31 0.72 EQUAL

BDLM1-LM 0.17 -0.71 1.05 0.99 EQUAL

Table 3.19: Difference in means for the first Design of Experiments
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Second Analysis-Second Design of experiments

Another model which produces a lower MSE than before (5.13), is to consider only two

factors: distribution of simulated data, and the models specifying the equation used, but also,

with the transformed response. ANOVA table (table 3.20) shows two significant factors at the

level 5%.

Df Sum Sq Mean Sq F value Pr(>F)

Distri 3 110.74 36.91 7.19 0.0001

Equation 17 790.31 46.49 9.06 0.0000

Residuals 651 3341.23 5.13

Table 3.20: Anova Table, factors: Equation of model and distribution

Here, both factors are significant at 5%. Besides, in the coefficients table 3.21, it can be

seen that in BRM, equation 6 that has two covariables: Yt−1 and the seasonal indicator, has

the lowest effect of this model, followed by Eq-1, and after, Eq-5. Besides, the model also

accepts the hypothesis of normality and constant variance at 5%.

The differences of means were tested also with the Tukey technique, whose results are shown

in tables 3.22 to 3.24.

In table 3.22 it is possible to see the differences between means of forecast MAPE for the

factor distribution of data.

For the comparison between pairs of means of the factor equation of the model, of the forecast

MAPE (table 3.23), in the first 17 lines are the pairs compared to the BRM-equation 6. It

can be seen that the first 7 lines decide equality, and they are only compared among BRM

equations, but, in the rest of the lines, the BRM equations are compared with different models.
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Estimate Std. Error t value Pr(> |t|)

(Intercept) 5.8146 0.2622 22.18 0.0000

Dist-POISSON -0.1194 0.2472 -0.48 0.6293

Dist-SN -0.9467 0.2472 -3.83 0.0001

Dist-ST -0.7677 0.2472 -3.11 0.0020

Eq-BDLM1 1.1470 0.3027 3.79 0.0002

Eq-BDLM2 0.7114 0.3027 2.35 0.0191

Eq-BRME1 -2.6338 0.6055 -4.35 0.0000

Eq-BRME2 -0.8264 0.6055 -1.36 0.1728

Eq-BRME3 -0.3695 0.6055 -0.61 0.5419

Eq-BRME4 -0.7787 0.6055 -1.29 0.1989

Eq-BRME5 -2.5659 0.6055 -4.24 0.0000

Eq-BRME6 -2.9661 0.6055 -4.90 0.0000

Eq-BRME7 -1.2373 0.6055 -2.04 0.0414

Eq-ES -0.1540 0.3027 -0.51 0.6111

Eq-LME1 1.0087 0.6055 1.67 0.0962

Eq-LME2 -0.2946 0.6055 -0.49 0.6268

Eq-LME3 -0.1067 0.6055 -0.18 0.8602

Eq-LME4 2.2007 0.6055 3.63 0.0003

Eq-LME5 1.1820 0.6055 1.95 0.0513

Eq-LME6 0.6736 0.6055 1.11 0.2663

Eq-LME7 2.1653 0.6055 3.58 0.0004

Table 3.21: Effects of linear model for the second Design of Experiments
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Differences of means of the factor distribution

Difference lower upper p Value adj Decision

ST-SN 0.18 -0.46 0.82 0.89 EQUAL

POISSON-SN 0.83 0.19 1.46 0 DIFFERENT

GAMMA-SN 0.95 0.31 1.58 0 DIFFERENT

POISSON-ST 0.65 0.01 1.29 0.04 DIFFERENT

GAMMA-ST 0.77 0.13 1.4 0.01 DIFFERENT

GAMMA-POISSON 0.12 -0.52 0.76 0.96 EQUAL

Table 3.22: Fist table-Difference in means for the second Design of Experiments
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Differences of means of the factor equation of model
Difference Lower Upper P Value adj Decision

BRME1-BRME6 0.33 -2.47 3.14 1 EQUAL

BRME5-BRME6 0.4 -2.41 3.21 1 EQUAL

BRME7-BRME6 1.73 -1.08 4.53 0.78 EQUAL

BRME2-BRME6 2.14 -0.67 4.95 0.4 EQUAL

BRME4-BRME6 2.19 -0.62 4.99 0.36 EQUAL

BRME3-BRME6 2.6 -0.21 5.4 0.11 EQUAL

LME2-BRME6 2.67 -0.13 5.48 0.08 EQUAL

ES-BRME6 2.81 0.69 4.93 0 DIFFERENT

LME3-BRME6 2.86 0.05 5.67 0.04 DIFFERENT

ARI-BRME6 2.97 0.85 5.09 0 DIFFERENT

LME6-BRME6 3.64 0.83 6.45 0 DIFFERENT

BDLM2-BRME6 3.68 1.56 5.8 0 DIFFERENT

LME1-BRME6 3.97 1.17 6.78 0 DIFFERENT

BDLM1-BRME6 4.11 1.99 6.23 0 DIFFERENT

LME5-BRME6 4.15 1.34 6.95 0 DIFFERENT

LME7-BRME6 5.13 2.33 7.94 0 DIFFERENT

LME4-BRME6 5.17 2.36 7.97 0 DIFFERENT

BRME5-BRME1 0.07 -2.74 2.87 1 EQUAL

BRME7-BRME1 1.4 -1.41 4.2 0.96 EQUAL

BRME2-BRME1 1.81 -1 4.61 0.71 EQUAL

. . . . . .

Table 3.23: Second table-Difference in means for the second Design of Experiments

103



Differences of means of the factor equation of model
Difference lower upper p Value adj Decision

BRME7-BRME5 1.33 -1.48 4.13 0.97 EQUAL

BRME2-BRME5 1.74 -1.07 4.55 0.77 EQUAL

BRME4-BRME5 1.79 -1.02 4.59 0.73 EQUAL

BRME3-BRME5 2.2 -0.61 5 0.35 EQUAL

LME2-BRME5 2.27 -0.53 5.08 0.29 EQUAL

ES-BRME5 2.41 0.29 4.53 0.01 DIFFERENT

LME3-BRME5 2.46 -0.35 5.26 0.17 EQUAL

ARI-BRME5 2.57 0.45 4.69 0 DIFFERENT

LME6-BRME5 3.24 0.43 6.05 0.01 DIFFERENT

BDLM2-BRME5 3.28 1.16 5.4 0 DIFFERENT

LME1-BRME5 3.57 0.77 6.38 0 DIFFERENT

BDLM1-BRME5 3.71 1.59 5.83 0 DIFFERENT

LME5-BRME5 3.75 0.94 6.55 0 DIFFERENT

LME7-BRME5 4.73 1.93 7.54 0 DIFFERENT

LME4-BRME5 4.77 1.96 7.57 0 DIFFERENT

. . . . . .

Table 3.24: Third table-Difference in means for the second Design of Experiments
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All the results of differences in means are not shown here because they are so extensive.

In table 3.23, the BRM-Equation 6, has the lower MAPE value of forecasts, compared to

almost all the models: BDLM1, BDLM2, ARI, ES, and LM (equations 1, 3, 4, 5, 6, 7, not

2). In the table 3.24, BRM-Equation 5 is equal to other BRM equations, but lower than many

other models. Among the same BRM, there are not many significant differences. The model

BDLM1 has equal mean than models like ES and some equations of LM, and BDLM2. This

result confirms that the proposed BDLM1 model designed in this Doctoral Thesis can be also

a good alternative to do forecast.

Until here, it can be confirmed that BRM produces better forecasts when the univariate data

have non normality, but, they do have seasonality as well as abrupt changes. Then, the hy-

pothesis verified is that Bayesian models are a good alternative to produce good forecasts in

cases of drastic changes.

3.2.4 Repeating the most important cases

After repeating every particular simulation a thousand times, it is possible to find the fre-

quency of choice of the best adjusted model. The estimation of the six models will be shown

for the Normal distribution simulation, followed by the Skew Normal and T, by changing the

skew parameter in four cases. Using a fixed scenario: Skew T distribution for the demand

and errors, with the skew dynamic parameter taking the values of: 1, 10, 50 and 100, and

the mean values of data: 30, 200, and 500. Finally, the simulation with Gamma and Poisson

distributions will be used.

The performed simulations for the fixed scenarios with mean of data: 30 and 200, Skew

Normal distribution for the data, and equation with covariables: Yt−1 and the indicator, which

results are shown in table 3.25, confirms that this model BRM proposed in this Doctoral

Thesis is a very good alternative for forecasting, because it is the most selected almost all

times. In the cases with mean 30, the BRM is chosen 83% (of 1000 simulations), and with

mean 200, this percentage in 100%.
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Mean: 30

Skew-parameter 1 10 50 100

ARIMA 0.00 0.00 0.00 0.00

ES 0.00 0.00 0.00 0.00

LM 0.00 0.00 0.00 0.00

BRM 83.33 83.33 83.33 83.33

BDLM1 0.00 16.67 0.00 0.00

BDLM2 16.67 0.00 16.67 16.67

Mean: 200

Skew-parameter 1 10 50 100

ARIMA 0 0 0 0

ES 0 0 0 0

LM 0 0 0 0

BRM 100 100 100 100

BDLM1 0 0 0 0

BDLM2 0 0 0 0

Table 3.25: Selection of models for simulation with Skew Normal distribution.
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In the scenario of the Skew t distribution (table 3.26) used to simulate data, it can be seen that

the model with the most frequent selection is also the Bayesian Regression. With mean 30,

and skew parameters 1 and 10, the BRM is followed by the BDLM2 in 10%, and for mean

200, it is followed by the BDLM1 in 16.67%, for skew parameter 50.

Skew-parameter 1 10 50 100

Mean: 30

ARIMA 0.00 0.00 0.00 0.00

ES 0.00 0.00 0.00 0.00

LM 0.00 0.00 0.00 0.00

BRN 90.00 90.00 100.00 100.00

BDLM1 0.00 0.00 0.00 0.00

BDLM2 10.00 10.00 0.00 0.00

Mean: 200

ARIMA 0.00 0.00 0.00 0.00

ES 0.00 0.00 0.00 0.00

LM 0.00 0.00 0.00 0.00

BRN 100.00 100.00 83.33 100.00

BDLM1 0.00 0.00 16.67 0.00

BDLM2 0.00 0.00 0.00 0.00

Table 3.26: Selection of models for simulation of Skew t distribution

3.2.5 Multivariate Comparison

The models estimated until here have univariate theoretical structures, and are used to uni-

variate time series. What happens if different time series present multivariate behavior, with

a covariance among them? are there different results? is there a different model with better

behavior?
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This questions will be answered with two process. First, by applying all the models, univari-

ate and multivariate, to a real case, of sales of fuel in a Colombian gas station, and second,

by simulating a multivariate time series with three variables using Skew Normal and Skew

T probability distributions, with a covariance matrix, and a seasonal behavior, and after, ap-

plying the models to the time series simulated, in order to estimate the response MAPE, and

compare the results obtained of all estimated models.

It will be fixed the size of the data in 63, because it was found no significant effect of this

factor, and a factorial design will be used to answer what is the best form for forecasting:

with univariate or with multivariate models.

Factors: Model (table 3.27), multivariate distribution for data simulation (Skew Normal and

Skew t Multivariate distributions), and periods to forecast (7 and 14).

Univariate Models
ARIMA

Exponential Smoothing

Linear Model

Bayesian Regression

Bayesian Dynamic Linear Model 1-percentage change

Bayesian Dynamic Linear Model 2-linear growth, polynomial 2

Multivariate Models
Multivariate Bayesian Dynamic Linear Model 1-linear growth

Multivariate Bayesian Dynamic Linear Model 2-linear growth plus seasonal

Linear Mixed Model- seasonal co-variables

Table 3.27: Univariate and Multivariate models estimated.
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Example 5- Comparisons of models estimated to the real data of combustible demands
for a Colombian gas station.

The application among all the different models will be first shown for the same real data of

combustible demand, exposed with the previous examples.

– Data: Daily sales of three kinds of fuel of a gas station: Extra, Corriente, Diesel.

– Period: November 1 2014 to January 31, 2015.

– Horizon time of forecasts: 14 days of January 2015.

The table 3.28 shows the forecast MAPES for the estimated models to the time series of the

three kinds of fuel.

MAPE OF FORECASTS (%)-Fuel sales

ARIMA ES LM BRM BDLM1 BDLM2 MDLM1 MDLM2 MIXED

Corriente 12.38 12.79 11.50 10.17 16.23 16.93 14.47 12.37 88.00

Extra 94.00 94.58 39.82 30.99 37.97 26.58 58.50 45.22 88.14

Diesel 68.94 69.48 68.14 9.14 79.82 19.60 17.50 15.25 88.58

Table 3.28: MAPES Comparison for the three Fuel sales. 14 forecast periods.

As it can be seen in the table 3.28, the best model to do forecasts is the BRM (MAPES:

10.17%, 30.99%, 9.14%), followed by LM in Corriente and Extra fuels, and the model

MDLM2, that produces lower results than ARIMA or ES for the three series.

3.2.6 Multivariate Simulation

The results of the simulation of multivariate time series, using the Skew Normal and Skew

T multivariate distributions, and posterior estimation of models for data, are shown in table

3.29. The BRM-eq 6 produces better results than all the other models (MAPE of forecasts

4.47%, 3.45%, 4.92%). For the first series, this model is followed by the Mixed model, and
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MDLM2. Multivariate Dynamic linear models (1 and 2), have a good result compared to the

classical models, and univariate DLM’s, but apparently not better than the BRM-eq 6.

Besides this, apparently, the mixed model used is not better than the rest of models in all

series.

Skew t distribution

ARIMA ES LM BRM BDLM1 BDLM2 MDLM1 MDLM2 MIXED

Series 1 7.84 8.10 4.63 4.47 12.28 7.06 7.33 5.11 4.72

Series 2 19.18 19.18 13.03 3.45 11.38 5.85 12.99 5.94 21.01

Series 3 48.23 48.22 42.91 4.92 13.27 19.19 18.27 5.88 48.29

Skew Normal distribution

Series 1 7.07 7.07 2.41 1.90 6.96 6.20 7.00 3.74 2.64

Series 2 16.07 16.07 14.83 2.46 9.44 15.59 12.09 3.53 16.27

Series 3 46.33 46.14 38.16 9.95 16.94 13.63 12.40 12.05 46.76

Table 3.29: Comparison of models after multivariate simulation. 7 forecast periods.

For the Skew Normal distribution for the data (table 3.29), the best model chosen is also

BRM-eq 6, in all the three series generated with multivariate simulation. Figure 3.15 shows a

comparison, where models BRM, and MDLM2 have an apparent closer estimation, in com-

parison with the others.

After obtained the simulated time series data, a factorial design of experiments was estimated.

The results of the experimental design are shown in next section.

3.2.7 Results of the experimental design for multivariate arrangements

In the exploratory box plots, it is possible to see that the factor distribution of the data has no

apparent differences for the forecast MAPE response, but, the factor model has differences,

and it is possible to identify that the BRM, and the MDLM2 have apparent lower values than

others.
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Figure 3.15: Comparison of Univariate and Multivariate models
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In the first ANOVA table 3.30, it is possible to identify that there was no significant inter-

actions, neither some factors. The non significant interactions and factors were eliminated

one by one, so, at the end no interactions remained. The residuals do not have the normality

expected. So a transformation is necessary in order to obtain good performance in the results

(y∗ = y0.6). A final significant model is identified, and the results are shown in the final Anova

table 3.31.

Sum Sq Df F value Pr(>F)

(Intercept) 9.40 1 19.18 0.0000

Model 3.42 8 0.87 0.5416

Distribution 0.00 1 0.00 0.9760

Periods 0.02 1 0.04 0.8411

Model:distribution 0.25 8 0.06 0.9999

Model:periods 0.43 8 0.11 0.9989

Distribution:periods 0.00 1 0.00 0.9663

Model:distribution:periods 0.32 8 0.08 0.9996

Residuals 88.21 180

Table 3.30: First Anova Table for model comparison, for the multivariate time series simulation.

The final ANOVA table 3.31, reflects two significant factors: model and periods. Besides,

after verifying the residuals, the p-value of the Jarque Bera test was 0.5734, and the p-value

of the Levene test was 0.8732, leading to the acceptance of the hypothesis of normality and

constant variance of the residuals.

The table of coefficients (3.32), shows the BRM with the lowest value, which leads to lower

MAPE values with this model. The next model with low value is the MDLM2.

In the first table of difference of means 3.33, it is possible to verify that the BRM produces

the lowest mean, because the intervals of the differences are positive, indicating that the mean

in first place is higher than the mean in the second place, but it is significantly equal to the

MDLM2, because the interval of the difference goes from a negative value to a positive:
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Sum Sq Df F value Pr(>F)

Intercept 172.01 1 394.31 0.0000

Model 40.82 8 11.70 0.0000

Periods 1.91 1 4.38 0.0376

Residuals 89.86 206

Table 3.31: Final Anova Table for the multivariate time series simulation

Estimate Std. Error t value Pr(> |t|)

Intercept 2.8219 0.1421 19.86 0.0000

BDLM1 -0.3377 0.1907 -1.77 0.0780

BDLM2 -0.5545 0.1907 -2.91 0.0040

BRM -1.3148 0.1907 -6.90 0.0000

ES 0.0002 0.1907 0.00 0.9990

LM -0.3235 0.1907 -1.70 0.0913

MDLM1 -0.3581 0.1907 -1.88 0.0618

MDLM2 -1.0851 0.1907 -5.69 0.0000

MIXED -0.1386 0.1907 -0.73 0.4680

Periods14 0.1881 0.0899 2.09 0.0376

Table 3.32: Effects of linear model for the Design of experiments of the multivariate simulation
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(−0.37, 0.83), in the first line.

In this table 3.33, the MDLM2 produces lower means than the models: ARIMA, ES, LM,

MIXED, BDLM1, and MDLM1, but it is significantly equal to the BDLM2.

In table 3.34, it is easy to appreciate that the difference in the means of the factor periods,

show that if periods are lower, the forecast is better, in general, with p-value of 4%. It is also

appreciable that the Mixed model, which is the other classical multivariate model that can

consider co-variables like seasonal terms, is not significantly better than any other model, it

just produces equal mean results to ARIMA, ES, and LM. Besides this, residuals of the mixed

model do not reach normal distribution, neither constant variance.

It is demonstrated until here, that BRM and BDLM2 produced better forecasts than other

models, when multivariate data are analyzed with non normality, seasonality, and with abrupt

changes, so, this hypothesis is verified: Multivariate bayesian models are a good alternative

to produce good forecasts in cases of drastic changes for multivariate demand.

Multivariate demand can be predicted using the Bayesian Regression model proposed and

designed in R, as a novel proposal for this Doctoral Thesis. Besides this, a very good alterna-

tive is the Multivariate Dynamic Linear Model with seasonality and linear growth (MDLM2),

which is found in the dlm package designed by (Petris, 2010).

3.3 Elicitation process for the studied case of combustible

demands.

Expert Judgment in the prediction of variables like demand could improve results. Österholm

(2009) presented a weighted linear combination, also referred as linear opinion pool, boarding

several conflicting scenarios in order to predict different variables. This technique can be used

by applying low and high weighted values, like those that come from different sources of

forecasting models.
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Differences of means of the factor model
Difference lower upper p Value adj Decision

MDLM2-BRM 0.23 -0.37 0.83 0.95 EQUAL

BDLM2-BRM 0.76 0.16 1.36 0 DIFFERENT

MDLM1-BRM 0.96 0.36 1.55 0 DIFFERENT

BDLM1-BRM 0.98 0.38 1.57 0 DIFFERENT

LM-BRM 0.99 0.39 1.59 0 DIFFERENT

MIXED-BRM 1.18 0.58 1.77 0 DIFFERENT

ARIMA-BRM 1.31 0.72 1.91 0 DIFFERENT

ES-BRM 1.31 0.72 1.91 0 DIFFERENT

BDLM2-MDLM2 0.53 -0.07 1.13 0.13 EQUAL

MDLM1-MDLM2 0.73 0.13 1.32 0.01 DIFFERENT

BDLM1-MDLM2 0.75 0.15 1.35 0 DIFFERENT

LM-MDLM2 0.76 0.16 1.36 0 DIFFERENT

MIXED-MDLM2 0.95 0.35 1.54 0 DIFFERENT

ARIMA-MDLM2 1.09 0.49 1.68 0 DIFFERENT

ES-MDLM2 1.09 0.49 1.68 0 DIFFERENT

MDLM1-BDLM2 0.2 -0.4 0.79 0.98 EQUAL

BDLM1-BDLM2 0.22 -0.38 0.81 0.97 EQUAL

LM-BDLM2 0.23 -0.37 0.83 0.95 EQUAL

MIXED-BDLM2 0.42 -0.18 1.01 0.42 EQUAL

ARIMA-BDLM2 0.55 -0.04 1.15 0.09 EQUAL

ES-BDLM2 0.55 -0.04 1.15 0.09 EQUAL

Table 3.33: First table-Difference in means of the final factorial design-Multivariate time series

simulation
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Differences of means of the factor model

Difference lower upper p Value adj Decision

BDLM1-MDLM1 0.02 -0.58 0.62 1 EQUAL

LM-MDLM1 0.03 -0.56 0.63 1 EQUAL

MIXED-MDLM1 0.22 -0.38 0.82 0.97 EQUAL

ARIMA-MDLM1 0.36 -0.24 0.96 0.63 EQUAL

ES-MDLM1 0.36 -0.24 0.96 0.63 EQUAL

LM-BDLM1 0.01 -0.58 0.61 1 EQUAL

MIXED-BDLM1 0.2 -0.4 0.8 0.98 EQUAL

ARIMA-BDLM1 0.34 -0.26 0.94 0.7 EQUAL

ES-BDLM1 0.34 -0.26 0.94 0.7 EQUAL

MIXED-LM 0.18 -0.41 0.78 0.99 EQUAL

ARIMA-LM 0.32 -0.27 0.92 0.75 EQUAL

ES-LM 0.32 -0.27 0.92 0.75 EQUAL

ARIMA-MIXED 0.14 -0.46 0.74 1 EQUAL

ES-MIXED 0.14 -0.46 0.74 1 EQUAL

ES-ARIMA 0 -0.6 0.6 1 EQUAL

Differences of means of the factor periods

14-7 0.19 0.01 0.37 0.04 DIFFERENT

Table 3.34: Second table-Difference in means of the final factorial design-Multivariate time series

simulation
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It is necessary to choose the best form to do forecasts. In this case, two criteria are used for

every case: adjusted and forecast MAPE.

Bases of the questionnaire for the studied case.

First, it is necessary to investigate for the existence of the seasonality. Time depends on the

problem, for example, which days (periods) of the week (month, year), do you think that the

demand is high or low. If the seasonality is found, next questions will have to be done for

every periods of the seasonal period.

Percentiles.

In order to obtain the values for every period of sales, and through these, to build an empirical

distribution of the predicted values, it is necessary to formulate the next questions day by day.

– What do you consider is the real minimum of all values of sales of product . . .

– Which value could be low, but not the minimum.

– Which value is very common in the regular period (from: . . . to: . . .)

– Which value is so high that is not common but there could be higher than this . . .

– Which value is so high that is almost impossible to have a higher value in this regular

period . . .

– The same questions will be done if there is another period which shows seasonality for

predicted data.

There were some difficulties in getting the information. The expert was in other city and did

not have much time to solve all the questions for the different days of predictions proposed,

so she finally told me some generalities of the behavior of the sales for the three fuels.

Other difficulty is that this process is specifically for a particular case, because it requires the

expertise knowledge. An specific process will be used here for the case of the combustible
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demands provided. The expert is the person who does the planning of the orders defined

the next aspects for every product and period, because it is a forecasting process. But the

methodology can be generalized for different kind of products.

It is important to know that the company is interested in observing the results of 15 or 31

days of the month of January, in order to do a real comparison, and the need they have about

managing the periods of countability close.

After finishing the interview, the gathering of the data starts. Empirical distribution will be

analyzed, in order to understand the behavior of the data.

Corriente fuel.

– The day Saturday, the Corriente fuel increases the actual level, minimum in 300 gallons,

maximum in 450

– For day with no motorcycle, which is a policy of that city, for the last Tuesday of the

month, the level of this gas reduces between 200 and 300 gallons.

Extra fuel.

– In the weekends, this fuel increases the proper mean in about 30 to 45 gallons, but if this

weekend has festive, there is a higher increase, between 35 and 50 gallons at maximum.

Diesel fuel.

– In the weekends, this fuel decreases, because it is used principally by public transporta-

tion. The decreasing level is between 20 to 30% of the real level of the mean.

The distributions used to estimate the empirical elicited distribution consists in doing a sample

of three data, given by the expert, because it is not possible to get more data to do the process.

Then, a minimum, a mean and a maximum, are used with a discrete probability to occur,

then a sampling is done, generating a sample of the mean with a posterior distribution, and

generating a predicted value with an uniform distribution, which mean was updated. The

distributions are explained in the next chapter, in the section of bayesian optimization.
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In the past chapter, the equation 6 of the BRM was the best, but it is statistically equal to

the other equations for the BRM models, the minimum difference of the results is with the

equation 1:

yt = β0 + β1yt−1 + β2t + β3sin +

L−1∑
k

γkindicatork

for k = 1, . . . , (L − 1), L, minus 1, where L is the seasonal period. In table 3.35 it is possible

to appreciate differences for the real fuel demands, compared to the elicited forecast values.

Forecast MAPE (%)-Fuel sales

ARIMA ES LM BRM BDLM1 BDLM2 MDLM1 MDLM2 ELICIT

7 days forecasts

Corriente 12.46 12.58 13.66 9.19 27.75 14.10 17.26 12.07 9.87

Extra 93.64 94.46 52.45 32.00 38.80 34.97 80.66 50.73 60.46

Diesel 69.24 70.07 67.33 9.20 42.44 27.38 16.69 15.00 20.7

ARIMA ES LM BRM BDLM1 BDLM2 MDLM1 MDLM2 ELICIT

15 days forecasts

Corriente 15.43 14.88 17.74 9.86 16.33 16.60 105.91 21.58 11.963

Extra 86.62 88.51 74.83 38.35 66.29 98.70 90.88 87.00 51.177

Diesel 68.44 86.13 67.84 24.21 38.83 25.15 32.42 24.83 22.417

ARIMA ES LM BRM BDLM1 BDLM2 MDLM1 MDLM2 ELICIT

31 days forecasts

Corriente 9.51 7.31 12.17 5.57 14.19 19.26 16.63 9.90 9.256

Extra 95.25 95.45 44.71 24.06 26.62 47.80 47.84 24.15 27.958

Diesel 69.89 65.52 68.86 8.96 22.18 32.45 28.51 18.22 21.392

Table 3.35: Comparison for three fuel sales, including elicitation process, for 7-15-31 forecast days.

As we can realize (table 3.35), the expert elicitation forecast do not show better results than

the BRM model for 7, 15, nor 31 forecast days, but this elicitation process is an additional

alternative for example, when a new station is going to be opened, having an idea about mean

initial levels. Until here, the proposed BRM produces a good performance to do forecasts.
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3.4 Proposal to do forecast with validation through simula-

tion.

As a novel approach, in order to generate trust-able forecasts, it is proposed a method, con-

sisting in selecting a model by validation using simulation. Three distributions will generate

multiproduct time series (three time series for the case of fuel): Skew Normal (SN), Skew

T (ST) multivariate distributions, and the simulation using elicitation process directed by the

expert.

Table 3.36 shows error indicators, comparing the simulated series data with the real values.

For every case (SN, ST and Elicitation), the indicators MAD, RMSE and MAPE will be

provided, estimated between a last part of the real series according to periods, in the month

January, and the simulated series, in order to know which one of the simulated cases has the

lower values. The minimum indicators will provide results about the best possible represen-

tation of the reality.

The table 3.36 shows a better performance of elicitation simulation data is appreciable. So,

these can be the better kinds of reference to predict data on February month.

The decision is to use the Elicitation to simulate new data, because it has lower values of

forecast MAPES, compared to the cases of SN and ST. Then, the 16 days of February are

simulated, and these data are joined to the rest time series. Then the models are fitted for all

the available data, and the equation used for regression is Eq-6, doing a partition: 92 know

data for fitting (November 1, to January 31), and 16 of February (simulated), for forecasting.

Table 3.37 shows the result of every scenario (SN, ST and Elicitation). Where the best are

the Elicitation process, but, as it can be seen, the forecasts of fuel shows most accuracy with

LMM, but this model was not trustable, according to the Normality problems shown before.

The other possible were, ES, ARIMA, and BRM. For Extra, the BDLM1, MDLM2 and BRM

have good results, and for Diesel, the BRM, BDLM1 and MDLM2.
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IRMSE IMAD IMAPE

SN multivariate distribution for extended data
CORRIENTE 1984.9 19038.4 19.2

EXTRA 487.8 4679.2 73.3

DIESEL 1038.5 9961.4 28.6

ST multivariate distribution for extended data
CORRIENTE 2901.3 27828.3 28.4

EXTRA 415.1 3981.0 67.0

DIESEL 1399.5 13423.8 40.2

Elicitation forecasts
CORRIENTE 1389.1 13324.1 12.7

EXTRA 314.3 3015.0 53.1

DIESEL 952.4 9134.7 22.1

Table 3.36: Indicators for validation with elicitation, and extended data
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Fitting Mape (%)
Serie ARI ES LM BRM BDLM BDLM2 MBDLM1 MBDLM2 MIX

CORRIENTE 12.3 12.5 10.9 10.6 28.4 20.2 15.6 14.4 11.7

EXTRA 2 49.7 51.1 49.3 42.3 31.1x107 60.0 95.4 63.5 77.7

DIESEL 35.5 34.8 24.6 22.8 113.9 51.2 41.0 29.4 29.6

Forecast Mape (%)
SN multivariate distribution for extended data

CORRIENTE 11.5 11.4 11.1 12.7 11.9 33.8 33.4 13.8 12.6

EXTRA 91.2 90.8 41.0 46.8 336 203.6 261.5 86.2 92.9

DIESEL 69.1 59.2 64.5 28.7 35.8 35.3 70.4 27.8 69.1

ST multivariate distribution for extended data
CORRIENTE 14.3 15.5 16.0 22.1 21.3 19.1 18.3 19.4 19.0

EXTRA 92.4 92.1 42.4 205.4 10.1x1020 464.5 427.0 190.3 93.8

DIESEL 73.4 64.9 68.6 48.2 104.4 69.0 113.6 61.6 73.2

Elicitation forecasts
CORRIENTE 14.1 13.8 14.2 16.2 20.8 29.2 31.1 18.1 13.0

EXTRA 91.5 91.1 43.0 39.7 26.0 76.9 109.4 35.4 93.1

DIESEL 70.2 60.7 65.1 14.7 15.2 63.0 107.8 22.2 70.1

Table 3.37: MAPE for fitting and forecast-Validation process. 16 days of forecast.
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Table 3.38 shows the particular results for the 16 days of February, in the algorithm that

chooses the best model according to one criteria: Fitting or Forecast MAPE.

SERIE MAPE PERCENTILE BEST MODEL

Criteria minimum fitting MAPE (%)
CORRIENTE 16.1 31.9 BRM

EXTRA 15.3 NA LM

DIESEL 14.8 10.46 BRM

Criteria minimum Forecast MAPE (%)
CORRIENTE 14.4 NA ES

EXTRA 22.9 80.4 BRM

DIESEL 14.4 5.46 BRM

Table 3.38: Forecasts using elicitation extended series.

In most cases, BRM is still the best model chosen (table 3.38) to do forecasts, and the MAPE

to forecasts seems to be close to elicitation, but is also possible to have more approximated

solutions using other equation.

3.5 Synthesis of the chapter

– The Bayesian Regression Model, with equation 6, which has the variables first lag of

the series (Yt−1), and the season indicator (7 categories minus 1), showed the best per-

formance for the Forecast MAPE response, for univariate and multivariate responses.

– The Bayesian Multivariate Dynamic Linear Model with linear growth (polynomial 2-

Petris et al. (2009)), plus seasonal factors, has a good performance, statistically equal to

the BRM-eq 6 model.

– The application of the model comparisons, using the designed algorithm in R, to real

data about fuel sales generates the same results found in simulation cases.
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– It was shown that not always it is necessary to consider the covariance values between

time series data in order to provide good performance of the forecasts.

– Expert elicitation of empirical distributions for daily forecast are an alternative when

there are no data. But, in general, for this comparison among models, results are not

better for elicitation process, than for BRM.

– The validation proposal to do forecasts can be useful in order to use expert knowledge

as a guide to the decision making.
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Chapter 4

Phase 2: Inventory Models Proposal

As it was pointed in the State of Art chapter, the finished products inventory needs its own

inventory control mechanism or just, to have any control (Simchi-Levi et al., 2008). Also,

another important aspect mentioned is to do an adequate planning of the demands. In this

chapter, it will be presented the proposal used to determine how to manage the final inventory,

for a general type of industries, and the respective algorithm was designed in R to find optimal

solutions to manage it, as a novel approach.

In the chapter three, it was demonstrated that the multivariate demands can be predicted with

the Novel Bayesian Regression Model proposed and designed here. And, as it was previously

mentioned, this model had a better performance than the ones shown in that chapter, and, even

some models with multivariate structures. Also, a Bayesian Multivariate DLM, by Petris et al.

(2009) can be a second alternative in relation to the demand forecasting. This is a preliminary

phase that should be carried out in order to continue designing an adequate Inventory Policy.

A general framework to represent the inventory policies that are proposed in this Doctoral

Thesis, have the next elements:

– Dynamic demand for sales periods

– Storage centers to dispose the final products for clients, or to supply.
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– Capacity of storage

– Transportation of material to the storage centers.

And the cost that these aspects involve:

– Cost of the product.

– Cost of storage from one period to another.

– Cost of transportation.

– If it is the case, sometimes it implies a cost of order requirement.

A motivational context to do this work is the inventory problem of a gas station of Colombia

that expends three kinds of fuel: Corriente, Extra and Diesel. The company provided informa-

tion of: daily demands for each one of the fuel sold by one service station in the time interval

from November 1, 2014, to January 31, 2015. They also provided the quantities of fuel that

entered to the service station in the respective periods, and, the quantities left in inventory at

the end of every day. In the same way, they provided a cost of the products, storage, trans-

portation, and the price in order to estimate total profits at the end of every day in the time

interval, and to do the validation with the partition of the data, the group of all the January

values. The distribution of the fuels, has been detailed in a thesis of the Msc. in System

Engineering of Universidad Nacional de Colombia (Calle, 2015), who explored an Inventory

and Routing problem of the distribution of this fuel in a network of gas stations.

The demand behavior in this problem, fits to the generalities described in this Doctoral thesis

proposal. As it was shown in the past chapter, the demands present autocorrelation in different

lag periods, seasonality, non stationary and non normality. Besides, all the models presented,

were estimated to these demand information.

The company has planned the inventories for this gas station, with an anticipated month,

considering daily characteristics of the demands, according to the aspects pointed in the Elic-

itation section of the past chapter. That is why they prefer 30 days of planning.
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4.1 Heuristic-Optimization Multiproduct Inventory Model

(HOMINV)

The purpose of the Multiproduct Inventory Model proposed here is to provide an adequate

inventory policy that maximizes profits, and provide orders, inventory values, costs, but also,

quantities to transport and all the costs involved.

Different types of policies are going to be proposed, looking for the best alternative. In this

case, the problem can require many periods, and for every one, variables as demands, final and

initial inventories and orders can be required, and therefore, many variables can be required.

Also, some constraints are not linear. For these reasons, we propose a heuristic to find the

best possible solution for the inventory model proposal.

In this section, first, it will be presented a general mathematical model of Inventory manage-

ment, to be optimized. Then, it will be proposed the schemes that contemplate different forms

to do orders. After this, it will be done a modification of the original model, then, combi-

nations of models and types of orders, to create inventory policies, and it will be designed a

final heuristic that incorporates different policies into one which provides the best approxi-

mated solution. In order to choose a good form to do this plan, an experimental design will

help to make a better decision related to the way of programming inventories. These policies

will assume the theorems exposed in the State of Art review, from the authors Wagner and

Whitin (1958) and Taha (2004), who establish optimal policies by reviewing period by period,

the balance inventory constraints, for different forms to do the orders in a general dynamic

algorithm, with some differences.

In this research, the objective function is related to the profits, and therefore, to the costs,

because the prices and costs are considered fixed in the analyzed periods. Besides this, a

transportation cost is considered here, and it will be presented more forms to do orders ac-

cording to the maximum capacities of the transportation. These schemes are incorporated

into a function that permits to calculate all the forms to order for a defined interval of periods,

t = 1, . . . ,T , for every product that is considered for the Inventory policy to be provided. An
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algorithm for every policy is designed to provide results, in the R program.

The forecasts of the daily demand values will be inputs of this model, according to the final

results of the previous chapter.

The policies, the performance of the algorithms, and a Design of Experiments, will be applied

to the real case of the combustible demands of a gas station in Colombia, to provide a solution

for the same periods of the last month that the company provided, in order to define if the

designed policies contribute or not, to the currently company policy, or if these will give

advices in order to find better profits.

4.1.1 Variables and parameters of the Proposed Inventory Models

The table 4.1 shows the parameters, decision variables or outputs related, that are part of the

general model.

Variables and Parameters
T Periods of the horizon time

ci Cost of the product i (i = 1, 2 . . . ,K)

hi Cost of holding inventory for product i

Yit Demand of product i, period t (t=1, . . . , T)

Ctr Transportation cost

Iio Initial Inventory for the i-th product

Capi Capacity of storage for the i-th product

Capc Capacity of the compartments of the cars

Cmisit Cost of missing values

nc Number of compartments in every car

s Random variable, Stock

Output Variables
Iit Final Inventory at period t

Carst Number of cars to be sent at period t

Decision Variable
Xit Ordered quantity to be supplied at the beginning of period.

Table 4.1: Variables definitions of the proposed Inventory Model

Where i = 1, . . . , k products, and t = 1, . . . ,T periods.
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4.1.2 Proposed Inventory Model 1

This is the general formulation of the inventory model proposed, based on the variables defi-

nitions given in 4.1. This model will be called Model 1 (M1), for purposes of the algorithm

explanations.

Maximize z =
∑k

i=1
∑T

t=1
{
pi ∗ min(yit, xit + Ii(t−1))

}
−

(∑k
i=1

∑T
t=1 cixit

+
∑k

i=1
∑T

t=1 hi(Iit) +
∑T

t=1 Ctr ∗Carst)
(4.1)

Subject to

An Inventory Balance Constraint, for the i-th product, the t-th period.

Iit = max
{
0, Ii(t−1)t + xit − yit

}
(4.2)

A capacity constraint,

xit ≤ Capi (4.3)

A number of cars,

Carst =
∑k

i=1

⌈∣∣∣∣∣ 1
nc

⌈∣∣∣∣ xit
Capc

∣∣∣∣⌉∣∣∣∣∣⌉ (4.4)

All variables are greater or equal to 0.

The transportation quantities, and the respective cost, will depend on the number of cars to

be used, Carst and these cars depend on their compartments, nc, and these in their capacities,

Capc, assuming equal values. When the quantity to order xit is divided into Capc, a number

of compartments will be obtained, the integer part of these compartments are divided into the

number nc, so, the integer part of the final fraction will produce the total of cars required to

take the order for every time t as it is represented in the expression (4.4). This expression is

replaced in eq. (4.1).
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4.1.3 Proposed Inventory Model 2

A different objective function is proposed, considering missing quantities. Also, it is aggre-

gated a restriction that limits the inventory amount, when it is so much high.

Missit = max(0, yit − soldit) (4.5)

For i = 1, . . . k, t = 1, . . .T.

Where soldit is the amount available to be sold in period t for product i.

The profits must be reduced in the cost:

K∑
i=1

T∑
t=1

(MissitCmisit) (4.6)

– Model 2 (M2):

So, the Objective function will be the expression (4.7):

Maximize z =
∑k

i=1
∑T

t=1
{
pi ∗ min(yit, xit + Ii(t−1))

}
−

(∑k
i=1

∑T
t=1 cixit +

∑k
i=1

∑T
t=1 hi(Iit)

+
∑T

t=1 Ctr ∗Carst +
∑K

i=1
∑T

t=1(MissitCmisit))
(4.7)

Subject to the same constraints that Model 1, which objective function is (4.1), but with the

addition of the Limit of inventories in the expression (4.8):

If in any period, the inventory of (t-1) period is higher than 1.5 times the demand of period t,

so, the orders must be reduced for the t-period. It is,

If I(i,t−1) > 1.5 ∗ yit, (4.8)

Then in period t, an order cannot be sent in this case.
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4.1.4 Inventory Policies.

Five policies are designed and presented in this proposal, in order to find the best form to

make decisions. They consist of the combination of a form to do orders, a set of constraints

and an objective function, that provides the optimal solution.

In the next sections it will be introduced the Schemes to order 1, 2 and 3. One combination is,

for example, Model 1 with Schemes 1, to create the policy 11 (P11). The process of this policy

is explained in the figure 4.1. The Scheme 1 (S1) corresponds to a matrix with a deterministic

order schemes explained in the table 4.2. The Model 1 (M1), is the same inventory model

explained in eqs. (4.1, . . . , 4.4). The matrix S1 calculated with the previous forecasts of the

demands, is then read by the function that calculates constraints according to a Policy that

provides a solution.

Figure 4.1 considers the general process of the first policy 11 (P11).

The process of the Policy 12, that combines the Model 1 with Schemes 2, is explained in the

figure 4.2.

In total, the policies will be: Policy 11 (P11), Policy 12 (P12), Policy 21 (P21), Policy 22

(P22), Policy 13 (P13).

4.1.5 Algorithms to find the optimal solution

The optimal form to order will be a vector xit that will be chosen with an algorithm based on

4.9, that will depend on the r-th position of orders.

Doing xitr, the r-th vector of orders, then, this can be represented in general by 4.9, but, the

vectors are obtained with the table 4.2, explained below.
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Figure 4.1: Process of Policy 11 (P11)
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Figure 4.2: Process of Policy 12 (P12)
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xitr =


0,∑T

t=p Yit

Yit + s

(4.9)

– Here, r is the number of the type of order, that is a vector with T elements, calculated

in a deterministic form (in the table 4.2), r = 1, . . . ,R. The vector of orders will be

replaced in the formulas of the constraints of the Inventory Model, in order to detect

which one of these produces the best results, in a r-th position. So, the maximum of Z,

is the max of all the R values calculated. Then, the optimal of the objective function

will be Z = max {Z1, . . . ,ZR}, and it must give one optimal solution, the values of xit that

maximizes Z, from the xitr generated, and also one Iit, and one Cost. The figure 4.1 can

help to understand the process.

– Doing solditr = min(yit, xitr + Ii(t−1)r), the quantity of effective sales of product i at the

period t, for the r-th type. The optimal solution of this quantities will be part of the final

optimal solution when a maximum of Z, from the R values, are chosen.

Schemes to order 1

This first scheme of orders is called Schemes 1 (S1) in this proposal. It was formulated with

a base on the theorem 2 of (Wagner and Whitin (1958), p. 91), as in the State of the art was

shown, that affirms: “there exists an optimal program such that for all t”:

xt = 0 or xt =
∑k

j=t d j , for some k, t < k < N

The Proof was presented in the State of Art chapter. So, this theorem is the base to know that

an optimal policy will be achieved if the orders formulation are based on the values: zero,

or the sum of demands in a such a way that the order contemplates all the demands left of

the time interval until the last, or, that this sum discounts one by one, the demands, until it is

obtained the demand value of the t-th period. This is also explained by Taha (2004) (p. 448),
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called the Inventory Dynamic Model with preparing cost. It also uses the initial formulation

of the inventory model proposed by Wagner and Whitin (1958).

Table 4.2 consigns, which in this Doctoral Thesis proposal is called, S1, or Schemes 1, to be

used in the first policy of the inventory model proposed.

Order type 1 2 3 4 5 . . . t . . . T

1
∑T

t=1 Yt 0 0 0 0 . . . 0 . . . 0

2 Y1
∑T

t=2 Yt 0 0 0 . . . 0 . . . 0

3 Y1 Y2
∑T

t=3 Yt 0 0 . . . 0 . . . 0

. . .∑2
t=1 Yt 0

∑4
t=3 Yt 0

∑6
t=5 Yt . . . . . . . . . 0

... Y1 Y2 Y3 Y4 Y5 . . . . . .
∑T−1

t=t−2 Yt 0

R Y1
∑3

t=2 Yt 0 Y4
∑6

t=5 Yt 0 . . . . . . 0

Table 4.2: Schemes 1. Types to order in Inventory Model

Explanations of table 4.2.

1. To order in the first period all the demands estimated for the planning horizon (first line

of table 4.2).

2. To order in the first period only the demand for period 1 and in the second period, the

sum of the remaining demands.

3. To order in the first two periods the respective demand for the day, and in the third one,

the sum of remaining demands.

4. . . .Continue successively, until ordering all the periods of the time interval. So, until

here, these quantities depend on how many periods are fixed in the problem.

5. To order every two periods in this way: in the first, order the demand, in the second, to

order for two periods (second and third), and without ordering on the third, then to order

the demand in the fourth, and in the fifth, to order for two periods, . . . , until T − 1, and

not to order at the final period.
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6. To order every three periods, with the third, being the sum of two demands.

7. To order every four periods.

8. To order every five periods.

As an additional aspect, studying the solutions of the algorithm, the Economic Order Quantity

(EOQ) was never chosen as an optimal solution for this problem, then, it was discarded from

the types of orders.

Schemes to order 2

The second scheme, S2, uses the demands as means of the predictive Bayesian distribution,

and the sums of the schemes 1 as limits, to allow the generation of orders, with a Bayesian

process explained in next subsection. These demands are incorporated into the formulas of

S1, given in the table 4.2.

Bayesian process to obtain the predictive distribution

This is the procedure Schemes 2 (S2). The assumptions of this process will be:

– The data distribution is uniform (Data ∼ uni f (a1, b1)). Let “µ”, the mean of this dis-

tribution, with a prior, Truncated Normal Distribution with parameters µ0: mean; σ0:

standard deviation, that will be assumed to be constant; a: inferior limit; and b: superior

limit.

ξ (µ) =
f (µ|data)

(φ(µ, σ, b, x) − φ(µ, σ, a, x))
=

1
√

2πσ0

e
−

(µ−µ0)2

(2σ2
0)

(F(b) − F(a))
∝ e

−
(µ−µ0)2

(2σ2
0) (4.10)

It results to be proportional to the constants (eq. 4.10), which do not depend on the

parameter “µ”. As it was mentioned in the State of Art chapter, the product between the
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prior distribution and the likelihood function will lead to a posterior distribution. In this

section, this posterior distribution will be for the mean of the uniform distribution.

– Final equation of the posterior distribution is eq. (4.11). It does not depend on the

parameters, and σ0 is assumed to be constant.

ξ(µ, σ0|data) = ξ(µ, σ0) ∗
n

(b1 − a1)

ξ(µ, σ0|data) ∝
n

(b1 − a1)
∗

f (µ, σ0|datos)
(F(b) − F(a))

∝
1
σ0

e
−

(µ−µ0)2

(2σ2
0) (4.11)

– The predictive Bayesian distribution (in eq. (4.12)), is used to calculate the orders, after

the mean is updated by using the posterior (4.11) for every time t. Previously, the de-

mands are read, and with these, their sums are calculated, according to the explanations

of schemes 1.

P(Xt+1|x) ∝
∫ ∞

−∞

1
(b1 − a1)

∗
1
σ0

e

(
−(µ−µ0)2

2σ2
0

)
dµ =

√
2π

(b1 − a1)
∝

1
(b1 − a1)

(4.12)

Example of Inventory Policy 12 applied to the combustibles inventories of the Colombian
gas station.

The plot between the profits and costs applied to the products of Corriente, extra and Diesel,

that are produced by the Policy 12 (P12), with the Model 1 and the Schemes 2, is presented

in the figure 4.3.

The policy will be shown here for 15 days of forecasts, as an example.

The information of the orders of every product appears in the final solution of the algorithm.

The solutions of the fuel Corriente are shown in the table 4.3. In the complete solution, it is
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Figure 4.3: Profits vs costs. 15 periods. With no Initial Inventories, and P12.
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Day Demand Order Cost Inventory Income Profit (not minus transport)

1 1096.86 0.00 63635.24 903.14 8729908.74 8666273.50

2 1120.79 2295.11 16317709.72 2077.46 8920343.73 -7397365.99

3 1049.42 0.00 72435.64 1028.04 8352349.70 8279914.06

4 845.77 2393.34 17044941.71 2575.61 6731457.17 -10313484.55

5 886.88 0.00 118987.72 1688.73 7058708.96 6939721.24

6 896.58 0.00 55814.63 792.15 7135886.59 7080071.95

7 931.68 2376.46 16902179.84 2236.93 7415235.55 -9486944.29

8 945.68 0.00 90981.72 1291.25 7526648.02 7435666.30

9 1027.03 2373.27 16907909.76 2637.49 8174170.77 -8733738.99

10 1074.24 0.00 110146.31 1563.25 8549910.38 8439764.07

11 909.12 0.00 46089.77 654.13 7235679.71 7189589.94

12 948.89 2386.12 16959936.40 2091.35 7552213.92 -9407722.49

13 938.90 0.00 81201.72 1152.45 7472725.79 7391524.08

14 940.50 2449.78 17448705.30 2661.73 7485448.25 -9963257.04

15 938.01 0.00 121453.44 1723.72 7465619.20 7344165.76

16 1018.88 0.00 49662.98 704.84 8109285.82 8059622.84

17 1087.64 2377.57 16892898.82 1994.77 8656529.94 -8236368.88

18 948.50 0.00 73720.14 1046.27 7549096.38 7475376.24

19 982.90 2396.98 17062501.74 2460.35 7822891.55 -9239610.19

20 967.18 0.00 105208.93 1493.17 7697798.35 7592589.43

21 956.22 0.00 37833.34 536.95 7610591.59 7572758.25

22 946.34 2457.76 17461718.26 2048.37 7531904.14 -9929814.12

23 1022.48 0.00 72284.51 1025.89 8137897.63 8065613.12

24 1098.53 2491.06 17722376.20 2418.42 8743185.94 -8979190.25

25 979.35 0.00 101397.07 1439.07 7794633.12 7693236.05

26 1008.56 2446.80 17442919.00 2877.31 8027167.24 -9415751.76

27 990.97 0.00 132911.43 1886.34 7887158.88 7754247.45

28 974.13 0.00 64274.17 912.21 7753107.83 7688833.66

29 960.41 2389.66 17002542.31 2341.46 7643926.27 -9358616.04

30 1030.99 0.00 92335.37 1310.47 8205670.10 8113334.73

31 1109.21 0.00 14180.33 201.25 8828213.53 8814033.20

Table 4.3: Application of Policy 22, 31 periods. Initial Inventory 212 fuel Corriente
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possible to see the quantities: demands, final inventories, costs, Profits, number of cars, and

transportation costs, for all the kinds of fuel. The total profits are $59′030.896.

It can be seen that the orders are not sent in all the periods, and the costs and profits can be

obtained, according to the previously demand forecasts, read by the algorithm. The complete

table of the appendix C shows the results for the three fuels.
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4.1.6 Design of experiments for Inventory Policies

The experimental design will help in the decision making in order to get solutions in a better

form. It is necessary to define the factors as: initial inventories, and the policies to be con-

trasted. The experimental design will be factorial, because all the levels will be considered,

and there are not a big quantity of factors to be controlled, in order to do a fractional design.

The levels of the factors and the response variable to be considered in the factorial design,

will be:

– Factor Initial inventories (Io): a. No initial inventories (Noinv); b. Low initial: 1000, 80,

300 gallons (Io183) for Corriente, Extra and Diesel fuels, respectively; c. High invento-

ries: 2000, 1000, 2000 (Io212), for Corriente, Extra and Diesel fuels, respectively.

– Factor Policy: P11, P12, P21, P22, P13. And the fixed values will be the costs, prices,

and periods as it will be seen in the next three designs of experiments.

– The response variable of the DOE is: Profits of the sales of all the three products in all

the time horizon, in Colombian pesos.

The figure 4.4 represents the general process that helps to find the best possible Inventory

Policy, and the form to do the design of experiments, for these kinds of industries, at the end

of its final internal logistic chain.

For the Schemes 3 in the Policy 13 (P13), the order is replaced by the total capacities in integer

quantity of the corresponding compartment. For example, if an order is 150, then the order is

replaced by 1000.

The differences in initial inventories and the type of policy can lead to different profits amounts.

The periods obviously will give different quantities, because of the costs and incomes.

Descriptive Statistics of profits

It is possible to see that each one, P12 and P22, produces apparently, high levels of Profits,

compared with the others, but the variability must be due to the initial inventory (Io). It will
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Figure 4.4: Process of the Design of Experiments of Inventory Policies.
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be verified in the posterior analysis.

7 15 31

p11 14.100.320,26 20.797.878,00 33.208.490,68

p12 17.120.194,24 28.143.593,33 39.139.063,30

p13 12.121.710,90 12.839.849,33 15.610.035,60

p21 14.842.692,76 13.975.275,50 20.151.014,23

p22 16.447.066,23 27.151.451,33 37.615.205,90

Table 4.4: Means of profits by periods and by policies

The profits are very different according to every time horizon (see table 4.4), this is the reason

to do different Design of experiments, according to every interval of periods to plan (7, 15 or

31).

Design of experiments - Inventory policy for 7 days of planning

For 7 days of planning, the figure 4.5 shows that the initial inventory in zero level produces

lower profits, as it is expected, because it is necessary to buy products and to pay transport

at the beginning of the planning horizon. This implies that the industry can analyze different

forms to plan inventories depending on the initial quantities, the budget to buy products, the

costs of these, and their holding capacities.

This behavior for the levels of policies is similar, but they have different scales of values, for

every interval of periods analyzed, as it will be shown in next section.

The ANOVA Table 4.5 estimates the significance of the factors; Initial Inventories (Io), and

Policy, on the response, profits. With a significance level of 10%, the factor policy does not

have significance,because the p-value is higher than this level.

Due to the variability behavior of these data, it was necessary to do a transformation over the

response y∗ = y(1.5). In the Anova table (4.5), with the transformed response, it is possible
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Figure 4.5: Interaction of Policy and Initial Inventory. Response Profits. 7 periods.
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Sum Sq Df F value Pr(>F)

(Intercept) 4.033x1021 1 2.51 0.1278

Io 9.385x1022 2 29.25 0.0000

policy 14.0285x1021 4 2.19 0.1056

Residuals 33.687x1022 21

Table 4.5: Anova Table for response profits of Inventory Models. 7 days

to identify the significant impact of the initial inventories, with a p value lower than the level

5%. The policy is efficient enough as to include it in the analysis.

The table for effects (4.6) shows that, to have amounts in the initial inventories, produces more

profits. The policies P12, and P22, contribute significantly, to the increasing of the profits.

Estimate Std. Error t value Pr(> |t|)

(Intercept) 30948371551.2 19518754361.67 1.59 0.1278

Io212 105406920317.8 17911637424.4841 5.88 0.0000

IoNoinv -32039307343.8 19518754361.67 -1.64 0.1156

Policyp12 56889602229.22 26491669012.3 2.15 0.0436

Policyp13 -9790116221.89 23123824482.78 -0.42 0.6763

Policyp21 14114653492.2 23123824482.78 0.61 0.5482

Policyp22 35615610261.2 23123824482.78 1.54 0.1384

Table 4.6: Effects of the linear model for response profits of Inventory Models. 7 days

This design, with the transformed response, achieves adequately the normality and constant

variance assumptions, so no transformation is necessary in order to find a better model.

The policy was considered as a blocking factor, and it does not show statistical differences,

but, as the table 4.7 shows, the initial level of inventories produces significant differences,

with 95% of confidence; for example, for the level Io212, this mean of profits is higher than

the other two levels of initial inventories. In the figure 4.5 it was also possible to appreciate

a benefit for policy P12 in the level of initial inventories 2000, 1000 and 2000 gallons, but if
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diff lwr upr p adj Decision

Io183-Noinv 41420220413.08 295304511.23 82545136314.93 0.1 DIFFERENT

Io212-Noinv 146827140730.88 105702224829.03 187952056632.73 0 DIFFERENT

Io212-Io183 105406920317.8 66633977771.24 144179862864.37 0 DIFFERENT

Table 4.7: Difference in means for response profits of Inventory Models. 7 days

there is zero inventory, the policy P11 seems to be better.

Design of experiments - Inventory policy for 15 days of planning

When a design of experiments for 15 periods is run, the two factors are also significant, with

a level of significance of 5% (table 4.8).

Sum Sq Df F value Pr(>F)

(Intercept) 1553407117499104.50 1 31.36 0.0000

Io 2806927933792558.50 2 28.33 0.0000

policy 1223830156034678.00 4 6.18 0.0016

Residuals 1139438180080087.50 23

Table 4.8: Anova Table for response profits of Inventory Models. 15 days

The policy and the Initial Inventory (Io) are significant at a level 5%.

According to the table 4.9, the policies that produce more profits are P12 and P22. And the

initial inventory specifies that it is better to have initial inventories in order to have higher

profits, which is a logical result, because if there are no initial amounts, the company must

buy the product in the same periods planned, and this, will consequently lead to lower profits

in this time interval.

For the test of differences in means (table 4.10), it can be appreciated that the Policies P11,

P12, P21, P22 have higher means of profits than the policy 13 (with 95% of confidence), so
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Estimate Std. Error t value Pr(> |t|)

(Intercept) 19038425.9000 3399929.0829 5.60 0.0000

IoIo212 14387567.1000 3147722.6828 4.57 0.0001

IoNoinv -9109210.8000 3147722.6828 -2.89 0.0082

policyp12 7345715.3333 4063692.5096 1.81 0.0838

policyp13 -7958028.6667 4063692.5096 -1.96 0.0624

policyp21 -6822602.5000 4063692.5096 -1.68 0.1067

policyp22 6353573.3333 4063692.5096 1.56 0.1316

Table 4.9: Effects of linear model for response profits of Inventory Models. 15 days

this policy P13, is not recommended. Besides this,each one of these policies, P12 and P22,

also produces higher profits than P21. This can also be seen in figure 4.6.

The residuals of this design also fulfill the requirements of normality and constant variance,

at 5% of significance.

Design of experiments - Inventory policy for 31 days of planning

The table 4.11, shows that the two factors, policy and Initial Inventory (Io) are significant to

explain the profits.

The table for effects (4.12) shows, in a similar form than the previous design, that policies 12

and 22 produce the higher increases over the profits for the 31 days of planning period.

The results are also similar for the initial inventory (Io) factor. The initial inventory coef-

ficients specify that is better to have more initial inventories in order to have higher profits

(table 4.12).

According to the difference in means of the table 4.13, the best policies are P12 and P22,

because they generate higher mean of profits, with a confidence level of 95%. But, it was

found a significant equality to the policy P11, and this to P21. But, P13 does not show in any
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Figure 4.6: Interaction of Policy and Io. Response Profits. 15 periods.
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diff lwr upr p adj Decision

p21-p13 1135426.17 -9479972.69 11750825.03 1 EQUAL

p11-p13 7958028.67 -2657370.19 18573427.53 0.32 EQUAL

p22-p13 14311602 3696203.14 24927000.86 0.01 DIFFERENT

p12-p13 15303744 4688345.14 25919142.86 0.01 DIFFERENT

p11-p21 6822602.5 -3792796.36 17438001.36 0.47 EQUAL

p22-p21 13176175.83 2560776.97 23791574.69 0.03 DIFFERENT

p12-p21 14168317.83 3552918.97 24783716.69 0.02 DIFFERENT

p22-p11 6353573.33 -4261825.53 16968972.19 0.53 EQUAL

p12-p11 7345715.33 -3269683.53 17961114.19 0.39 EQUAL

p12-p22 992142 -9623256.86 11607540.86 1 EQUAL

Io183-Noinv 9109210.8 2328736.71 15889684.89 0.02 DIFFERENT

Io212-Noinv 23496777.9 16716303.81 30277251.99 0 DIFFERENT

Io212-Io183 14387567.1 7607093.01 21168041.19 0 DIFFERENT

Table 4.10: Difference in means for response profits of Inventory Models. 15 days

Sum Sq Df F value Pr(>F)

(Intercept) 3830608265899293.00 1 54.66 0.0000

Io 4714006932663745.00 2 33.63 0.0000

policy 2713348120579523.00 4 9.68 0.0001

Residuals 1611783122648776.00 23

Table 4.11: Anova Table for response profits of Inventory Models. 31 days
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Estimate Std. Error t value Pr(> |t|)

(Intercept) 29896631.8400 4043689.2788 7.39 0.0000

Io212 20050030.8000 3743728.8115 5.36 0.0000

IoNoinv -10114454.2700 3743728.8115 -2.70 0.0127

Policyp12 5930572.6167 4833133.1133 1.23 0.2322

Policyp22 4406715.2167 4833133.1133 0.91 0.3713

Policyp13 -17598455.0833 4833133.1133 -3.64 0.0014

Policyp21 -13057476.4500 4833133.1133 -2.70 0.0127

Table 4.12: Effects of linear model for response profits of Inventory Models. 31 days

diff lwr upr p adj Decision

p21-p13 4540978.63 -9745881.58 18827838.84 0.88 EQUAL

p11-p13 17598455.08 3311594.87 31885315.29 0.01 DIFFERENT

p22-p13 22005170.3 7718310.09 36292030.51 0 DIFFERENT

p12-p13 23529027.7 9242167.49 37815887.91 0 DIFFERENT

p11-p21 13057476.45 -1229383.76 27344336.66 0.08 EQUAL

p22-p21 17464191.67 3177331.46 31751051.88 0.01 DIFFERENT

p12-p21 18988049.07 4701188.86 33274909.28 0.01 DIFFERENT

p22-p11 4406715.22 -9880144.99 18693575.43 0.89 EQUAL

p12-p11 5930572.62 -8356287.59 20217432.83 0.74 EQUAL

p12-p22 1523857.4 -12763002.81 15810717.61 1 EQUAL

Io183-Noinv 10114454.27 738898.57 19490009.97 0.03 DIFFERENT

Io212-Noinv 30164485.07 20788929.37 39540040.77 0 DIFFERENT

Io212-Io183 20050030.8 10674475.1 29425586.5 0 DIFFERENT

Table 4.13: Difference in means for response profits of Inventory Models. 31 days
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case a significantly higher mean to the others. So, the four policies: P11, P12, P21, P22, will

be considered in the rest of this chapter, in order to plan a correct policy.

As in the other periods, the high level of initial inventories (2000, 1000 and 2000), produces

the higher values of profits. It is important to consider that there will be some periods where

there are no inventory, so, it is necessary to select the best possible combination of policies.

Figure 4.7, represents the possible interaction between the factors: policy, and Io. It is possible

to appreciate that for 31 days, the policy P11 or also, P12, could provide a good performance

for the profits, followed by policy P22.

Figure 4.7: Interaction of Policy and Io. Response Profits. 31 periods.
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Policy P13 produces a reduction in profits in general, as it can be seen in the figure 4.7, so, this

policy should not be considered. This implies that it is not good to take cars with complete

capacity in the first period.

4.1.7 Algorithm of the HOMINV

The policies corresponding to P11, P12, P22 and P21, are included in a final algorithm ex-

plained in the figure 4.8. The designed Algorithm, combines the schemes S1, S2, and models,

M1 and M2, that generates the four policies explained before, P11, P12, P21, and P22. The

optimal solution will give the orders, inventory holding quantities from one day to the other,

transportation quantities, costs and the final profits. In order to organize the heuristic, it is

necessary to define initial inventories,and read the respective demands. Every policy will pro-

duce a list of solutions, and the best of every one, will permit a comparison to find the best

possible solution. The heuristic is designed in the program R, and it will provide an alternative

to find an optimal solution, after defining initial inventories, and after knowing the respective

demands.

4.1.8 Example - HOMINV applied to the real case of combustible inven-
tory management.

The Model HOMINV will be applied to the real case of combustible inventory management.

The company provided, besides the demands, their inventory quantities management for the

period of January, in order to do comparisons between the proposal and the current manage-

ment of the company. In summary:

– Data: Daily sales of three kind of fuel of one service station: Corriente, Extra and Diesel.

– Period: November 1, 2014 to January 31, 2015.

– Horizon time of planning: The 31 days of January 2015. The month of January will be

used to compare results between the proposal and the real.
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Figure 4.8: Model HOMINV.
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– Results: orders, inventories, transportation quantities, profits, and costs.

Alternative

As it was shown, it is important to have an initial inventories amount, in order to have a most

optimum level. But if the industry must buy the product in the horizon time of planning, then

what can be done?

The algorithm HOMINV was applied for the 31 days of the January month of 2015, in order

to plan the inventory management for the three combustible of this gas station. In first place,

it will be applied for zero 0 inventories. After reading the demands, the proposed algorithm

provides the profits about $29′341.414, but it is not a correct policy, because the orders must

be sent daily, which is not factible. In this case, it will be recommended that the company

should do first a planning of 15 days and do a periodic review, as real values of demand be

kept. The first 15 days will be considered with no inventory, and in the other half of the month

(16 days), the initial inventory is the final of the first. The requirements of final inventory at

the first 15 days reduces considerably the profits.

When the algorithm of HOMINV is used, the maximum possible profits is $ − 792.168.6 for

the 15 days, but for the 16 days, when Inventory has the initial quantities: 1000, 330, 220, for

fuels Corriente, Extra and Diesel, respectively, and finishing with no inventories, the profits

are $24′261.771, 8 so, the total profit would be $23′469.603, 2 approximately, for the month

of January.

But, in order to do a validation of the algorithm, a comparison with real values is going to be

estimated.

Comparison to the current situation of the combustible data.

Assume the planning of the scenario: 31 days, and the actual conditions of Initial Invento-

ries of January for the company, which are to have: Io=(4300, 1000, 2150), (Io4,1,2), for

Corriente, Extra and Diesel fuel respectively.
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– With the initial inventories as the company had in the first day of january (Io4,1,2),

which they must buy before, the best profits found with the algorithm HOMINV, has an

amount simulated of $80′246.612.

– The real values for the company in the same month of January, are $39′682.382, 19.

When we replace the orders provided for the algorithm HOMINV, as if they were or-

dered in this month, we calculate the formulas of effective sold quantities, the inventory

balance for every day, the costs, by adding the orders to the holding quantities and trans-

portation, the profits, according to the found effective sales, and, the profits that the com-

pany could get, were $74′219.641, 50. That would be saving around $34.537.259, 31

(87% of the real). A part of the solution is shown in table 4.14, the rest in the appendix

D.

Day Demand Ord Cost Invent Inco Profit

1 1096.9 0.0 225693.2 3203.1 8729908.7 8504215.5

2 1120.8 0.0 146722.6 2082.4 8920343.7 8773621.1

3 1049.4 0.0 72780.3 1032.9 8352349.7 8279569.4

4 845.8 0.0 13187.6 187.2 6731457.2 6718269.6

5 886.9 1783.5 12642653.0 1083.7 7058709.0 -5583944.0

6 896.6 0.0 13187.6 187.2 7135886.6 7122699.0

7 931.7 1877.4 13307676.8 1132.8 7415235.5 -5892441.2

. . .

Table 4.14: Best policy 31 days (Io4,1,2)

The policy provides orders for all the three products (Appendix D), but at the end of the

planning horizon it returns zero inventories in the last day.

In this solution (Appendix D) it can be seen that the orders are not sent in all the periods.

For Corriente fuel, the orders are sent in 13 days, for Extra Fuel, only one day, the day 21 of

January. Also, for Diesel, orders are sent only 7 days in the month. The solution shows the

cost, and profits for every day, and at the end, the number of cars.
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Restriction of final inventories in HOMINV

A second scenario is run, with a restriction of final inventories in order to begin the next pe-

riod. When the simulated orders and demands are used, the simulated profits were $59′343.789,

but, when the orders are used in real situation, and the effective sales are recalculated, the prof-

its are $68.034.045, 77, the amount saved is $28.351.663, 58 (71% of real amount, $39′682.382, 19).

The complete plan is shown in the appendix E.

If we take into account the exact final inventories that the company had at the end of January,

the profits are $51.254.540, 05 with the same orders except in the last day, these are saving

nearly 12 million of pesos, (29% of real amount, $39′682.382, 19). But leaving the same

amounts in the final inventory that the company had, it is not optimal, because these are quan-

tities that are above 200% of the daily demands for every product, so it is not recommended,

it only shows that the algorithm has a logical result, but the best form to do the inventory

management is saving less inventories than what they had.

This results provides elements to say that the algorithm HOMINV has so much advantages,

and that could be a good alternative to use, for these, and many other industries with the same

frame of systems.

4.2 Multiproduct Inventory Model 2: Stochastic-Optimization

Multiproduct Inventory Model (SOMINV)

Here, the inventory policy is based on the same variables and parameters than the previous

model HOMINV. The purpose is also searching for maximizing profits, according to the same

model formulated in previous section (4.1, 4.2, 4.3, 4.4). But as a novel approach, I propose

to use the predictive Student-t distribution in order to simulate random variable associated to

the demand, according to the same Bayesian Regression Model (BRM) exposed in chapter 2.

These are the general characteristics of the model SOMINV:
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– The predictive distribution of the demand can be used to simulate, and after, the de-

mand values can be replaced in the constraints and the objective function of the model,

estimating these equations in a frequency (nsim) of times.

– The objective function can be calculated as an expected value, because it is a linear

combination of the demands, which are random variables. The expected value of a sum

of random variables, is the sum of the expected values of all the random variables, in

this case, the demands.

4.2.1 Inventory Model

The general model has the same mathematical formulation as before (4.1, 4.2, 4.3, 4.4). The

process to estimate it changes, by using simulation.

Maximize E[z] =
∑k

i=1
∑T

t=1
{
pi ∗ min(yit, xit + Ii(t−1))

}
−

(∑k
i=1

∑T
t=1 cixit

+
∑k

i=1
∑T

t=1 hi(Iit) +
∑T

t=1 Ctr ∗Carst)

Subject to

An Inventory Balance Constraint, for the i-th product, the t-th period.

Iit = max
{
0, Ii(t−1) + xit − yit

}
A capacity constraint,

xit ≤ Capi

A number of cars,

Carst =
∑k

i=1

⌈∣∣∣∣∣ 1
nc

⌈∣∣∣∣ xit
Capc

∣∣∣∣⌉∣∣∣∣∣⌉
And the random variable is the demand, yit, which will be derived from the Student-t predic-

tive distribution of BRM.
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4.2.2 Steps for Stochastic Inventory model-SOMINV

In this model, the predictive distribution of the demand is used for simulation, but also, the

percentiles of the distribution are used. The next procedure was followed:

– Simulate the demand N times, getting N vectors with T dimension, of predicted yi j.

– Estimate the previous policies, every N time simulated, obtaining the objective function.

– Repeat this process for different percentiles of the predictive distribution for the demand,

until finding the best structure. The percentiles are used to estimate the demands with

the Student-t distribution, that the Bayesian Regression Model uses, so, this will permit

to have different vectors as means for the simulation with same distribution. The process

will be, 1. Change percentile, 2. Forecast the Demands with BRM 3. Use previos values

as means to simulate N demands every period, 4. Obtain the mean of z for all periods,

T.

– Make a comparison with real values of sales and inventories left in the company. This

validation will be done for the percentiles used for the simulation.

4.2.3 Results of SOMINV

The results in this section will be based on the case of a fuel Station (the same case exposed

in the past sections).

It is important to remind that, as it was explained in the section of BRM, there was found a

percentile of the Student-t distribution, when the optimal value for every fuel was obtained,

with the criteria of minimum forecast MAPE. The table 4.15 shows the results when every

level of the BRM percentiles are changed, taking a low level in 20%, the optimum is the best

level found by the program of the model prediction of every product, for Corriente, 58%, for

Extra, 48.7%, and for Diesel 26.5%; and the high is 75%.

The initial Inventories are fixed in three levels: No inventories, I183 (1000, 80 and 300,

respectively, for Corriente, Extra, and Diesel), and I212 (2000, 1000 and 2000).
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Scenarios (Percentile, %) IO I183 I212

Low (20) 25110552 32315088 59363402

Optimum 29655282 37807851 63113560

High (75) 36207203 42795394 67420873

Table 4.15: Profits after changing percentile in three scenarios, for 31 days, with no final inventories.

Scenarios Low Optimum High

Mean of Profit 25448838.9 29781872.2 36061433.3

Sd of profit 337638.0 364928.1 571657.4

Table 4.16: Mean of simulated profits. Three percentile Simulation -Initial Inventory 0

The simulation means are very similar to the particular results, because the standard deviation

is not so high, it is just around 1.4% of the mean, 1.3%, 1.2%, 1.6% respectively.

The variability for these scenarios is higher.

Scenarios low Medium high

Mean of Profit 76355560.3 63404533.2 70153345.5

Sd of profit 4567661.7 17906348.2 17382167.7

Table 4.17: Three percentile simulation-Initial Inventories 4300, 1000, 2150

In a high level of inventories, when a validation with real data is estimated, the profits are

lower than the optimum level scenario, 23.237.977, 05$, leading to a worse scenario than

before with the most adequate prediction.

4.2.4 Synthesis of the chapter

– An Inventory dynamic model was proposed, in order to represent a system that is chang-

ing in time, but with a vectorial form to see it, and using some of the theorems and
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formulations to program an optimization process, described by authors as Wagner and

Whitin (1958), and Taha (2004).

– The algorithm HOMINV to solve the problem, is efficient when the demand is read

from another type of processes, and for different forms to fix the initial inventories. It

was shown a better performance for a real case studied, providing better profits than the

real.

– Solutions of the algorithm SOMINV lasts more than the HOMINV ones, and in order

to have practical solutions, it can be useful to use only the percentile, because it leads

to a good alternative solution. Besides this, a higher percentil scenario does not behave

better than the optimum solution found with the BRM.

– The Bayesian Regression Model is the best alternative of forecasting models, for both,

univariate and multivariate data analyzed, but, another alternative, corresponds to a Mul-

tivariate Bayesian Dynamic Linear Model with seasonal and polynomial components,

designed by Petris in program R (Petris et al., 2009). The best prediction found with the

comparative algorithm designed in this Doctoral Thesis, can be read by the HOMINV, to

do the optimization process of the novel inventory model, because this inventory model

permits the input of a previous predicted demand, independent of the model.
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Chapter 5

Conclusions

This Doctoral Thesis proposes a novel model to do forecasts, using few data, and for short

term: a Bayesian Regression Model with Normal prior distribution and dynamic innovation

in prior parameters (BRM), designing the algorithm in the program R. It is compared to other

models with a simulation process, and it was applied to a real case of combustible demands

of a Colombian gas station, obtaining very good performance of this model.

A novel Inventory dynamic model (HOMINV) was also proposed, with efficient performance,

which optimization is based on a dynamic algorithm. The optimal solution for the inventory

model provides the quantities to order, store and transport in an appropriate time horizon for

the industry, by maximizing profits.

It is also developed a methodological proposal applied to an industry, with an experimental

design, to find the best form to make a correct Inventory policy, based on the results of the

designed Algorithm in R program, according to the initial conditions of the industry.

Another novel stochastic model was proposed (SOMINV), but the computational time is not

as fast as model HOMINV to provide solutions, and HOMINV provided good results for the

real case where it was applied. The proposed models, HOMINV and SOMINV, represent a

dynamic system that also use principles to program a dynamic optimization process, previ-

ously proposed by Wagner and Whitin (1958) or by Taha (2004), and it was designed in the
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program R.

The algorithm to propose the Inventory Management, was explained with detailed steps that

can be reproduced with different programs. It was shown to be efficient when it was applied

to different scenarios of initial inventories. It also, can read demands from different possi-

ble forecasts previously done. The performance demonstrated better profits compared to the

current situation of the combustible demand of the gas station in Colombia.

In the process of this research, a State of The art was built, where different variables, models,

advance techniques were studied, providing a base for the high advantages of the Bayesian

Models techniques to help with prediction. These techniques also can help with optimization

process, in especial, for the Dynamic Model of the Inventory Optimization proposed, helping

to the organization to face to the nowadays drastic variations.

Then, many of the variables involved with end of the supply chain, like demand, prices,

storage levels, among others, were studied.

A review of state-space models that have been analyzed and described in the thesis, men-

tioning Dynamic Linear Models, and also, the approach of some authors of the management

of Dynamics in Inventory problems (Wagner and Whitin, 1958; Taha, 2004; Ventura et al.,

2013), and also, theory Control. It was necessary to present theory about State Space repre-

sentations in the frame of Dynamic Bayesian Linear Models, proposed by West and Harrison

(1997), models that permit the updating system response, and prediction one step at a time.

Different authors have proposed indicators to do comparisons among these models and others

like bayesians, like MAD, RMSE, used in many historical works when a model is fitted to

time series data. Forecast MAPE values has not been so much explored, but bayesian authors

like Petris et al. (2009), use it as a criteria to choose one model or other to forecast.

It was necessary to compare among univariate and multivariate models in order to measure the

forecast capacity they had, with an adequate form to simulate time series data, with algorithms

that were designed in R. And, as it was proved, the univariate performance of the Bayesian

Regression Model, was one of the best for almost all the simulated cases, or real data. This
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output becomes input for the inventory model proposed, designed here for a multiproduct

system.

Different papers were written around this research, or with an associated analysis, the tittles

can be seen in the Appendix F.

5.1 Future lines

– The solutions of the Inventory Models like the proposed, can also be compared with

techniques as metaheuristics as Tabu, ACO, Genetic Algorithms, and also, a theory

Control technique can be proposed. In the Theory Control Line, it is possible to do

an extension of the proposed optimization shown in (Wang et al., 2005), where it is con-

sidered a minimization of deviations in relation to a required level, and a Kalman Filter

is a tool in order to proceed with the optimization of a Dynamic Linear Model with the

output It.

– Models like Neural Networks are not very related to this work, because they require a lot

of data, but these relatively new models: Generalized Additive Models (GAMs) could

be compared with the proposed here.

– Changes in the prior distribution of the parameters every period can be considered. Also,

a change in distribution of data could be proposed.

– Possible process to improve the optimization: Fix percentiles for the predictive Bayesian

distribution, simulate vectors of demands for every percentile, and find a maximum level

of the profits in the sample, using the limits of a confidence interval. The maximum

limit or bound of this interval could be the new Objective. This could also be possible

for simulated orders, instead of demands.

– This work is related with the new tendency of Operational Research, called Analytics,

because this has a connection established among: Statistical description, prediction,

simulation and optimization, involving many other lines of research.

163



5.2 Appendix
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Appendix A

Code of MDLM1 in program R

The program code to do the estimation of the MDLM1 is shown below.

Rcode-Linear Growth Model-Multivariate Bayesian Dynamic Linear Model-MDLM1

## R code, Multivariate DLM-Linear Growth with filtering####

mod <- dlmModPoly(2)

mod$FF <- mod$FF %x% diag(3)

mod$GG <- mod$GG %x% diag(3)

W2 <- mcovar #Covariance Matrix of data, as a seed.

W1=W2

mod$W <- bdiag(W1, W2)*0.01

V <- mcovar #Covariance Matrix of data

mod$V <- V

mod$m0 <- c(mean(serie3co[,1]),0,mean(serie3co[,2]),0,mean(serie3co[,3]),0)

mod$C0 <- diag(6) * 1e3

mod <- as.dlm(mod)

simuFilt <- dlmFilter(serie3co, mod)

forecasted=dlmForecast(simuFilt,periods)
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fore3=forecasted$f

sdev <- residuals(simuFilt)$sd

sdev2=sdev[1:periods,]

lwr <- rbind(simuFilt$f,fore3) + qnorm(0.25) * rbind(sdev,sdev2) #qnorm es negativo

upr <- rbind(simuFilt$f,fore3) - qnorm(0.25) * rbind(sdev,sdev2)
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Appendix B

Code of MDLM2 in program R

The program code to do the estimation of the MDLM2 is shown below.

Rcode-Linear Growth Model plus seasonal components-Multivariate Bayesian Dynamic Linear
Model-MDLM2

#####Seasonal and Linear Growth####

mod2=dlmModPoly(1)+dlmModSeas(7)

mod2$FF <- mod2$FF %x% diag(3)

mod2$GG <- mod2$GG %x% diag(3)

W1=diag(0,3)

W2 <- diag(rep(c(diag(mcovar)[1],mcovar[2],mcovar[3],diag(mcovar)[2],mcovar[6],diag(mcovar)[3]),3))

W2[1, 2] <- W2[2, 1] <- mcovar[2]

W2[4, 5] <- W2[5, 4] <- mcovar[3]

W2[5, 6] <- W2[6, 5] <- mcovar[6]

W2[10, 11] <- W2[11, 10] <- mcovar[2]

W2[11, 12] <- W2[12, 11] <- mcovar[3]

W2[16, 17] <- W2[17, 16] <- mcovar[6]
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W2[17, 18] <- W2[18, 17] <- mcovar[2]

mod2$W <- bdiag(W1, W2)*0.1

V <- mcovar #Covariance Matrix of data

mod2$V <- V

mod2$m0 <- c(colMeans(serie3co),rep(0,18))

mod2$C0 <- diag(21) * 1e2

mod2 <- as.dlm(mod2)

##

simuFilt2 <- dlmFilter(serie3co, mod2)

forecasted=dlmForecast(simuFilt2,periods)

fore3=forecasted$f

sdev <- residuals(simuFilt2)$sd

sdev2=sdev[1:periods,]

lwr <- rbind(simuFilt2$f,fore3) + qnorm(0.25) * rbind(sdev,sdev2) #qnorm es negativo

upr <- rbind(simuFilt2$f,fore3) - qnorm(0.25) * rbind(sdev,sdev2)

#una

par(mfrow=c(3,1),cex=0.5)

plot(series3[,1], type=’o’, ylim=c(min(series3[,1])-80, max(series3[,1])+20),

main=’Real vs Adjusted-series1’)

lines(window(c(simuFilt2$f[,1],fore3[,1]), type=’o’, lty=2, pch=4),col=2,pch=4,lty=2,type=’o’)

lines(lwr[,1],col=’grey’)

lines(upr[,1],col=’grey’)

legend("bottomleft", inset = 0.05,

legend=c("Observed", "One-step-ahead forecast", "50\% prediction interval"),

pch=c(1,4,1), lty=c(1,2,1), col=c(1,2,’grey’), bty=’n’)

abline(v=n-periods,col=’blue’,lty=2, pch=4)

#dos

plot(series3[,2], type=’o’, ylim=c(min(series3[,2])-80, max(series3[,2])+20), xlab="", ylab="",main=’Real vs Adjusted-series2’)

lines(window(c(simuFilt2$f[,2],fore3[,2]), type=’o’, lty=2, pch=4),col=2,pch=4,lty=2,type=’o’)

lines(lwr[,2],col=’grey’)
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lines(upr[,2],col=’grey’)

legend("bottomleft", inset = 0.05,

legend=c("Observed", "One-step-ahead forecast", "50% prediction interval"),

pch=c(1,4,1), lty=c(1,2,1), col=c(1,2,’grey’), bty=’n’)

abline(v=n-periods,col=’blue’,lty=2, pch=4)

#tres

plot(series3[,3], type=’o’, ylim=c(min(series3[,3])-80, max(series3[,3])+20), xlab="", ylab="",main=’Real vs Adjusted-series3’)

lines(window(c(simuFilt2$f[,3],fore3[,3]), type=’o’, lty=2, pch=4),col=2,pch=4,lty=2,type=’o’)

lines(lwr[,3],col=’grey’)

lines(upr[,3],col=’grey’)

legend("bottomleft", inset = 0.05,

legend=c("Observed", "One-step-ahead forecast", "50\% prediction interval"),

pch=c(1,4,1), lty=c(1,2,1), col=c(1,2,’grey’), bty=’n’)

abline(v=n-periods,col=’blue’,lty=2, pch=4)

resid <- residuals(simuFilt2, type = "raw", sd = FALSE)

M1_aj=mean(abs(resid[,1])/series3[1:corte,1])

M2_aj=mean(abs(resid[,2])/series3[1:corte,2])

M3_aj=mean(abs(resid[,3])/series3[1:corte,3])

map_adjus=c(M1_aj,M2_aj,M3_aj)

M1_fo=mean(abs(fore3[,1]-series3[(b:n),1])/series3[(b:n),1])

M2_fo=mean(abs(fore3[,2]-series3[(b:n),2])/series3[(b:n),2])

M3_fo=mean(abs(fore3[,3]-series3[(b:n),3])/series3[(b:n),3])$
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Appendix C

Policy P22, (Io212), all products.
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Appendix D

Best Policy with no final inventory
restrictions

Policy to be compared with actual situation of the company.
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Appendix E

Best policy with final Inventory
restrictions.

Policy to be compared with actual situation of the company. A final inventory restriction is

added.
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Appendix F

Articles

– “Un modelo dinámico para el pronóstico de energía diaria”, in Revista Ingenieria Indus-

trial, Universidad del Bio Bio de Chile,

http : //revistas.ubiobio.cl/index.php/RI/article/view/9/9

– “Inventory planning with dynamic demand. A state of art review”, in Revista DYNA,

http : //www.revistas.unal.edu.co/index.php/dyna/article/view/42828

– “Métodos estadísticos clásicos y Bayesianos para el pronóstico de demanda. Un análisis

comparativo”, in Revista de la Facultad de Ciencias,

http : //revistas.unal.edu.co/index.php/r f c/article/view/49775

– “Inventory model using bayesian dynamic linear model for demand forecasting”, in Re-

vista Investigación y Desarrollo,

http : //revistas.uptc.edu.co/revistas/index.php/ingenieria_sogamoso/article/view/3937
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