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Abstract
This thesis contributes to the understanding of the connection between the tonal conso-

nance phenomenon and the rules associated to the construction of musical pieces. It begins
from the tonal consonance properties of sounds and ends with the emergence of macrosco-
pic phenomena. The systems studied are: the marimba de chonta music, melodic lines of
Western music, and secco recitatives of operas. At the microscopic level, we show how tonal
consonance connects the timbre of marimba de chonta with traditional tunings and musical
practices. At this level, we also extended the traditional concept of interval size, and we used
chords as the unit of analysis for the harmony of secco recitatives. On the macroscopic level,
we found that the new representation of intervals, together with an entropy extremalization
principle, is suitable for approximately reproducing the selection of intervals in melodic lines.
Besides, a conserved macroscopic quantity emerges, which is empirically related to the mean
dissonance of a melodic line, hence connecting psychoacoustics with complexity.

Keywords: Consonance; marimba de chonta; melody; musical interval; entropy; sec-
co recitative; tuning.

Resumen
Esta tesis contribuye al entendimiento de la conección entre el fenómeno de la consonan-
cia tonal y las reglas asociadas a la construcción de piezas musicales. Ésta comienza desde
las propiedades de consonancia de los sonidos y termina con la emergencia de fenómenos
macroscópicos. Los sistemas estudiados son: música de marimba de chonta, líneas melódicas
de música occidental, y recitativos seccos de óperas. En el nivel microscópico, mostramos
cómo la consonancia tonal conecta el timbre de la marimba de chonta con las afinaciones
y prácticas musicales tradicionales. En éste nivel, también extendemos el concepto tradi-
cional de tamaño interválico, y usamos acordes como unidad de análisis para la armonía
de recitativos seccos. En el nivel macroscópico, encontramos que la nueva representación de
intervalos, junto con un principio de extremalización de la entropía, es apropiada para repro-
ducir aproximadamente la selección de intervalos en líneas melódicas. Además, una cantidad
macroscópica conservada emerge, la cual está empíricamente relacionada con la disonancia
promedio de una línea melódica, por tanto conectando psicoacústica con complejidad.

Palabras clave: Afinación, consonancia; entropía; intervalo musical; marimba de
chonta; melodía; recitativo secco.
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Introduction

Music is one of the most generalized, startling and puzzling creations of human beings.
The understanding of cognitive processes behind the conveying of musical information has
been studied since the time of the ancient Greeks, when Pythagoras found that two sounds
produced by vibrating strings of equal tension and density produce a pleasant sensation
when the ratio between their lengths goes as the ratio between two small natural numbers
[1, 2, 3]. Aaron Copland proposed four essential elements in music: rhythm, melody, harmony
and tone color. From his perspective, rhythm is connected with a physical motion, melody
with a mental emotion, harmony with an intellectual conception, and tone color with timbre
[4]. Each of these four characteristics is relevant in conveying musical information and can
be studied independently.

Musical information involves sensations, emotions, intellectual constructions and meaning,
and many authors associate the use of consonance with the communication process involved
[4, 5, 6, 7, 8, 9].From the perspective of the nature of tonality, consonance and dissonance
give rise to emotions through tension and relaxation due to the passage from satisfaction to
dissatisfaction, and again back to satisfaction [6]. From this perspective, conveying emotions
in music requires a broad exploration of consonance and dissonance.

At the most basic level, music can be described as being made of sounds that can be
combined either simultaneously or successively. From the perspective of complexity, a musical
piece is made of microscopic constituent elements assembled following sets of rules with
musical relevance, and as a whole it shows emergent phenomena that do not correspond
to the individual properties of the constituents. Hence, the issue of the definition, selection
and organization of the constituent elements in music, subject to formal rules and to the
creativity of the composers, is of utmost relevance.

Rules are present in musical pieces at several levels, from microscopic to macroscopic,
and order emerges at several hierarchical levels. This structure leads to the possibility of
considering different types of constituent elements.

From the physics point of view, Fourier analysis shows that a sound wave produced by a
musical instrument can be described as the superposition of several harmonic waves, each
one called a pure tone that is characterized by a single frequency, an amplitude, and a phase.
Hence, from this perspective, pure tones can be considered as the most basic microscopic
constituent elements of music.

From the psychoacoustics point of view, which connects the acoustical stimuli with the
auditory sensation [2], human beings cannot perceive the individual pure tones that compose
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a single sound produced by a musical instrument. Humans perceive the entire superposition
as a unit called a complex tone, which is characterized by a pitch1 that usually is strongly
related to the fundamental frequency2, a loudness, and a timbre. Loudness and timbre are
strongly associated with the amplitudes and frequencies of the pure tones in the superposi-
tion; it is the specific pattern of the spectrum. Furthermore, complex tones can be considered
as the most basic microscopic constituent elements of music in terms of psychoacoustics.

From the music point of view, the most important microscopic element is the musical
note. The musical note is commonly characterized by the combination of pitch, in the case
of definite pitch instruments, and rhythm figure (time duration).

Up to now, three different possible constituent elements emerge: pure tones, complex
tones, and musical notes. Combinations of two or more of these elements give rise to new
microscopic structures with higher levels of complexity and new properties. For example,
the combination of two or more complex tones constitute important microscopic structures
in music, such as musical intervals and chords. The combinations of complex tones exhibit
new properties, such as the perceived distance between pitches (musical interval size) and
the consonance level. At a higher level of complexity, motifs, musical phrases, and sections
can also be defined as constituent elements.

Many studies in psychoacoustics have studied perceptual features associated with the
consonance properties of complex tones, and how these properties can be used in order to
produce musical scales for a particular type of musical instrument. In this process, timbre
becomes one of the most relevant features to take into account.

The perception of timbre is strongly connected to the spectrum of the complex tones [1],
and the phenomenon of consonance also depends on the features of the spectrum. Therefore,
the consonance approach connects the physical properties of a musical instrument with the
selection of a set of elements to be used in the composition of a musical piece.

This approach, based exclusively on the physical properties of sound, is independent of
the cultural context of the listeners, and is formally known as tonal or sensory consonance
[10].

Regarding the rules used for composing musical pieces, at the most basic level we have
those involved in the selection of the collection of pitches that constitute a specific tuning. As
we mention above, while these rules are strongly related with the consonance phenomenon,
they are also related with musical practices, as with transposition. At a higher level of
complexity, we find composition rules, such as the suppression of the tritone and the parallel
fifths in most Western music of the Baroque period [11], and the organization of sections in
the sonata form of the Classical period [12, pp.787-788].

The work of connecting different levels of complexity in music has been tackled using seve-
ral strategies. One of the most important approaches involves the use of statistical methods

1In the case of definite pitch musical instruments such as strings, pipes, and marimbas, as opposed to
indefinite pitch instruments as drums and cymbals.

2Lowest frequency pure tone in the superposition.
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to study how musical elements are selected and organized in a musical piece.
This thesis contributes to the understanding of the connection between different levels of

complexity in music, specifically to the relation between the tonal consonance properties of
musical intervals, and their use in music. This connection can be considered as natural in
most Western music, in the sense that many rules found in harmony and melody are related
with the size and location in the register of musical intervals; properties that are strongly
connected with the tonal consonance phenomena.

Chapter 1 presents previous works about the tonal consonance phenomenon, the relation
of consonance with the tuning of a musical instrument through the concept of the musical in-
terval, and the macroscopic phenomena associated with the organization of musical intervals
in a musical score.

Chapter 2 defines the relation between the musical practices found in the marimba de
chonta music and the tonal consonance phenomenon associated with the timbre of this ins-
trument. The marimba de chonta music, traditional chants and dances from the south pacific
region of Colombia and the Esmeraldas province of Ecuador were inscribed by UNESCO in
the “Intangible Cultural Heritage of Humanity” list [13, 14, 15, 16]. Despite this, many as-
pects of the tunings and the musical practices associated with the marimba chonta remain
poorly understood [13, 17]. The lack of information concerning this traditional music has
led to its endangerment of disappearance, because of the influence of Western music and the
introduction of the diatonic 12-tone equal-tempered marimbas in the territories. In order to
collect musical samples, this research included an expedition to the Pacific coast of Colom-
bia, with the participation of the author of this thesis, musicians and researchers from the
Conservatory of Music, the Department of Physics, and the School of Cinema and Media
Arts of the Universidad Nacional de Colombia. This thesis contributes to the understanding
of the tunings and musical practices of the marimba de chonta music. The research shows
that these two aspects are strongly connected, and that this relation is fundamental for
the correct conservation of this music, which is absolutely different from Western marimba
music.

Chapter 3 presents the relation between the consonance phenomenon in music and the
emergence of macroscopic properties in musical pieces, which are connected to the selection
made by composers of musical intervals. The first part of this chapter develops a represen-
tation that uses the fundamental frequencies of pitches in order to extend the concept of
musical interval size. The traditional concept of interval size captures relevant information
about musical features, but misses information concerning the locations of intervals in the
register (an important feature to measure the level of tonal consonance [2, 18]) and about
musical processes such as transposition [12, p. 860]. The second part of this chapter con-
tains an application to a set of melodic lines, finding that the representation developed is
suitable for reproducing approximately the final selection of musical intervals, as well as for
describing musical features such as the asymmetry in the use of ascending and descending
intervals, and transposition processes.



4

Chapter 4 contains results obtained in an internship of one month carried out by the author
at the Bariloche Atomic Centre and the Balseiro Institute in Argentina, under the advice of
Professor Damian Zanette. This chapter defines chords as constitutive elements and explores
organizational properties of secco recitatives from eight operas. Most of the information about
the use of harmony in secco recitatives has been lost [19], and currently any information about
this matter is highly relevant. One of the main goals of the internship was the construction of
the database, which was produced manually by extracting and analyzing each chord from the
musical scores. The results obtained in this chapter show that the methodology developed
leads to new information related to the harmony of the secco recitatives, that should be
relevant for future studies. As an important remark, the results of this chapter constitute an
exploration beyond the main objectives of this thesis.



1. Tonal consonance, scales, and musical
intervals

1.1. Tonal consonance
This chapter presents basic concepts about tonal consonance, the models developed by

Sethares and Vassilakis to quantify the dissonance level, the relation between the tonal
consonance theory and musical intervals, and finally the statistical analysis of the use of
intervals in musical pieces.

1.1.1. Some basic concepts

In certain range of fundamental frequencies, 20 Hz to 20 KHz, and with changes of pressure
in the air ∆P/Patm between 2×10−10 and 2×10−4, sound waves can excite the human brain-
ear system [3, p. 190].

There are many musical instruments in which the sound produced, a complex tone, can
be characterized by the superposition of a set of sinusoidal waves, each one with a particular
frequency of oscillation, amplitude, and phase. Each single sinusoidal component of the set
is called a partial [1, p. 56] or a pure tone [1, p. 147], the lowest frequency of the set is called
the fundamental frequency, and the remaining frequencies are called overtones [1, p. 56]. In
many cases the overtones turn out to be very nearly integer multiples of the fundamental
frequency, for this case the fundamental frequency and the overtones are called harmonics,
in such a way that the first harmonic corresponds to the fundamental frequency, the second
harmonic to the first overtone, and so on [1, p. 56]. If the frequencies of the overtones do
not correspond to integer multiples of the fundamental frequency, this phenomenon is called
inharmonicity.

1.1.2. Pythagoras’ postulate about consonance

Pythagoras (5th century BC) found that two sounds emitted by strings of equal tension
and density, with the ratio between lengths Li and Lj related by two natural numbers n
and m produce a pleasant sensation when these numbers are small [3]. Then, in the 17th
century, Galileo Galilei found that the Pythagoras postulate can expressed in terms of an
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small natural numbers ratio between the fundamental frequencies of the two sounds fi and
fj. The Pythagoras’ postulate can expressed using the fundamental frequencies as [1, 2, 20]:

Li
Lj

= fj
fi

= n

m
(1-1)

This consonance phenomenon is present in melody, harmony, timbre, and musical tuning
[2, 20, 21], and many authors have related consonance with conveying sophisticated musical
information as emotions and meaning [4, 5, 6, 7]. From the perspective of the nature of tona-
lity, consonance and dissonance give rise to emotions through the succession of tension and
relaxation [5] in passages from satisfaction to dissatisfaction and back again to satisfaction
[6, 8].

1.1.3. Roughness and tonal consonance
In 19th century Helmholtz found that the amount of partials shared by two sounds plays an

important role in their total consonance level [3, 22]. He found that the degree of consonance
of pairs of pure tones is related to the beats or shocks produced by fluctuations in the
peak intensity, occurring at the frequency difference of the pure tunes [22]; specifically, the
perception of high levels of dissonance is related with the perception of roughness due to
rapid beats [20].

The superposition of two pure tones with different frequencies fi = ωi
2π and fj = ωj

2π ,
amplitudes ai and aj, and phases ϕi and ϕj is [23]

aicos(ωit+ ϕi) + ajcos(ωjt+ ϕj) =
(ai + aj)cos(ω+t+ ϕ+)cos(ω−t+ ϕ−) + (aj − ai)sin(ω+t+ ϕ+)sin(ω−t+ ϕ−)

ω+ = ωi + ωj
2 ; ω− = ωi − ωj

2 ; ϕ+ = ϕi + ϕj
2 ; ϕ− = ϕi − ϕj

2 .

(1-2)

The resulting wave has a rapid frequency fi+fj
2 modulated by a slow frequency |fi − fj|.

Figure 1-1 shows the superposition of two sinusoidal waves of equal amplitudes, and with
frequencies f1 = 220Hz (blue) and f2 = 240Hz (red). The two waves begin with the same
phase at the time 0 seconds. The rapid frequency is 230Hz, and the slow one is 20Hz.

If the frequencies fi and fj are close (fj = fi±∆f) and the conditions: |ωi−ωj| � ωi+ωj
and |fi − fj| / 15Hz are satisfied, our ear-brain system perceived an average frequency
(fi + fj)/2 with an amplitude oscillating at a frequency |fi − fj| [24]. This phenomenon
is known as real beats. An example is the superposition of two pure tones with frequencies
440Hz and = 442Hz.

If we have two frequencies that are not close between them, the ear-brain system can
distinguish the two sounds independently. However, in some cases (for example the superpo-
sition of two pure tones with frequencies 440Hz and = 882Hz) our ear-brain system can not
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Figure 1-1.: Superposition of two sine waves f1 = 220Hz (blue) and f2 = 240Hz (red)

perceive the beats related with the frequency difference, even so a beat is perceive (in the
example this beat has a frequency of 2Hz). This phenomenon is called virtual beats or second
order beats [2, 24], they result from the neural processing [2], and they are related with the
non-tuning of the corresponding musical interval (in the example the musical interval is the
octave in which f2/f1 = 2) [24].

Beats can also be heard when the pure tones are presented separately to our ears, these
phenomena are called binaural beats [1, 24].

How far the frequencies must be to produce beats, and how they are related with the level
of consonance depends, not only on the frequency difference, but also on the actual values of
such frequencies, commonly measured using the center frequency (f1 + f2)/2 [2] which takes
into account the mean location in the register.

In the study of Reinier Plomp and Willem Levelt about the level of consonance of pure
tones [18], they found that, fixing a pure tone (with a frequency called base frequency) and
moving the another one in the register, there is a transition range between consonance and
dissonance related with a critical bandwidth that depends on the frequency difference of the
corresponding pure tones. If the frequency difference is greater than a critical band, they
sound consonant but if the frequency difference is smaller than a critical band, they sound
dissonant [1].

This approach to consonance using the roughness produced by the superposition of sounds
is known as tonal or sensory, because it is based on the physical properties of the stimulus
independently of cultural conventions [10].
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but the roughness remains [25]. Finally the roughness sensation disappear, the two sounds
are perceived independently, and the dissonance level decreases. Notice that the peak of
maximum dissonance tends to move to higher frequency differences when the base frequency
increases.

It is important to mention that the tonal consonance approach (associated to the rough-
ness) corresponds to a particular way to understand the consonance, which not necessary
corresponds to the meaning of this concept given in music through history [26, 27].

1.1.5. Effect of the amplitude
Since human ear is insensitive to phase for most combinations of harmonic vibrations [28],

then the tonal consonance can be considered as phase independent, however the amplitude
of sound waves contribute to the perception of loudness associated to the sonorous stimulus.
Sethares proposed a seminal model that includes the amplitude contribution in the measure
of the dissonance level. [21, 25, 29]. For the superposition of two pure tones of frequencies fi
and fj, with amplitudes ai and aj, respectively, the dissonance level δ is

δ = amaxamin
[
e−b1s(fmax−fmin) − e−b2s(fmax−fmin)

]
, (1-5)

with fmax = max(fi, fj), fmin = min(fi, fj), amax = max(ai, aj), amin = min(ai, aj), b1 =
3.5, b2 = 5.75, and s = 0.24/(0.0207fmin + 18.96).

This model (first Sethares model) produces good results when the amplitudes of the two
pure tones have similar values, however the dissonance contribution is to small when the
amplitudes differ considerable.

Vassilakis modified this model by including the dependence of roughness on intensity, the
amplitude fluctuation degree, and amplitude fluctuation rate [30, pp. 197-198],[31].

δ = (0.5)[(amax)(amin)]0.1
[ 2amin
amax + amin

]3.11 [
e−b1s(fmax−fmin) − e−b2s(fmax−fmin)

]
, (1-6)

This model improves the predicted dissonance when the amplitudes of the two pure tones
differ significantly.

Sethares proposed another model (second Sethares model), which takes into account that
the amplitude of the beating is given by the minimum of the two amplitudes, and that the
loudness of the roughness is proportional to the loudness of the beating [32].

δ = lmin
[
e−b1s(fmax−fmin) − e−b2s(fmax−fmin)

]
, (1-7)

where lmin is the minimum loudness between the loudnesses produced by the two pure
tones.

As the dissonance level is dimensionless, the amplitudes and the loudness must also be
dimensionless.
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1.1.6. Measurement of loudness
The loudness l is a subjective attribute of sound that depends strongly on pressure [1],

however the frequency of the stimulus also contribute.

Sound pressure level

The sound intensity I corresponds to the sound power per unit of area, with units in the SI
system of [Watt/m2]. The lower limit for human perception of intensity is 10−12[Watt/m2]
and the upper limit (pain limit) is 1[Watt/m2] [2]. Commonly, the intensity is measured
using a logarithmic scale. The sound intensity level IL can be express using a reference
sound intensity I0 as:

IL = 10× log I
I0
, (1-8)

and the units of IL are the decibels [dB] and normally the reference sound intensity I0 is
taken as the hearing threshold 10−12[Watt/m2] (in this case IL = 0dB).

In order to study stationary waves which energy flux is zero and the intensity can not be
defined using equation (1-8), the variations of pressure ∆p have been used as the relevant
quantity, and defined as [2]:

SPL = 20× log
(

∆p
∆pref

)
. (1-9)

Numerically, the last equation expresses the same as equation (1-8), however their meaning
differ. The sound pressure level (SPL) has units of [dBspl], and the hearing threshold ∆pref
in the case of air is approximately 2× 10−5[N/m2] [2].

Equal loudness curves

The psychological perception of loudness does not correspond directly to measurement of
physical intensity. Figure 1-3 shows equal loudness curves, it is possible to appreciate that,
in order to produce the same sensation of loudness in the low frequencies of the human
perception range, we need more intensity than in the middle range. Notice that there is a
minima between 3000Hz and 4000Hz.

The region of greatest sensitivity for human hearing (3000Hz - 4000Hz) can be explained
by resonance properties of the auditory canal[33]. Modeling the auditory canal as a closed
cylindrical tube, the pressure variation (indicated as ∆p in Figure 1-4) is minimum at the
open end, and it reaches a maximum at the closed end. Figure 1-4 shows the first two
modes of vibration of the auditory canal modeled as a closed tube. The auditory canal has
a length of approximately 2.4 cm. Calculating the corresponding fundamental frequency
associated to a length of L′ = 2.4 cm, and using the velocity of sound in the air as vs =
344 m/s, a fundamental frequency f = vs/(4L′) ≈ 3.7KHz is obtained, which corresponds
approximately to the location of the minima in the equal loudness curves (see Figure 1-3).
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Figure 1-4.: Auditory canal anatomy modeled as a cylindrical closed tube [34].

where Z and Z ′ are constants.
Since the sones provides a linear scale for the perceived loudness, then this unit is useful

to measure the loudness contribution to dissonance in the second Sethares model.

The Sethares approximation for loudness

In order to measure loudness, Sethares proposed a simple approximation based on Stevens
Law [35] and the definition of sone for N > 1, given by (1-11). For a sinusoidal wave of
amplitude a, the loudness N is approximately [32, p. 346].

l = 1
162SPL/10, (1-13)

where SPL is the sound pressure level given by equation (1-9) with ∆p = a/
√

2 [32, p.
346].

This approximation does not include the dependence of loudness with the frequency given
by the equal loudness curves, but it gives a simple relation between the loudness and the
amplitude: l ≈ coa

0.60, (co constant) [37]. With this approximation lmin in (1-7) is found to
be proportional to the minimum value between a0.60

i and a0.60
j .

Figure 1-5 shows the loudness in phons as a function of the frequency for different values of
the SPL. The loudness has been measured using the equal loudness curves (continuous lines)
and the Sethares approximation (dashed lines). The range of frequencies (20Hz− 6000Hz)
of Figure 1-5 corresponds to the range most frequently used in music. Notice that the
approximation is better for high values of loudness. Besides, as this approximation is based
in equation (1-11), constructed for LN > 40 in the case of 1KHz, the values of loudness for
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Dissonance level of pairs of complex tones with the same timbre

Lets superpose two complex tones F and G with the same timbre. Each has m partials at
frequencies f1, f2, ..., fm, (with f1 < f2 < ... < fm), and g1, g2, ..., gm, (with g1 < g2 < ... <

gm). The number of partials is the same for the two sounds because we are considering the
same timbre. If the pitch of the sound G is higher than the pitch of sound F , then there is
a relation between the fundamental frequencies of the two sounds given by g1/f1 = α, with
α > 1. Since the relative distances between the partial of sound F are equal to the relative
distances between the partial of sound G, then there is also a relation for the overtones given
by gx/fx = α, with x = 2, 3, ...,m. In the case of the amplitudes, since timbre is assumed
to be the same, then amplitudes a1, a2, ..., am (or the loudnesses in the case of the second
model of Sethares) of the sounds F and G can be taken as the same.

The total dissonance of the superposition of the two complex tones DF (α) with the same
timbre is given by [21, 25]

DF (α) = DF +DαF +
m∑
i=1

m∑
j=1

δ (fi, αfi, xi, xj) , (1-15)

where DF and DαF correspond to the total dissonance associated with the timbre of each
individual complex tone, and the last term is due to the total dissonance generated by the
interaction between the partials of the two complex tones. This equation can be used to
identify the local minima of dissonance by scanning all possible values of α for the pair
of fundamental frequencies f1 and g1. Usually the lowest fundamental frequency is taken
as fixed, and the highest one varies changing the values of α. Fixing one base frequency,
in the case of equal amplitudes for the fundamental frequency and the overtones, and for
a normalized scale of dissonance in the interval [0, 1], the first Sethares model and the
Vassilakis model predict the same results; additionally, if the Sethares approximation for
loudness is used in the second Sethares model, then the three models are equivalent. Figure
1-6 shows the total dissonance DF (α) (normalized to 1) as a function of the ratio of the
fundamental frequencies α, and for six different base frequencies. The model used was the
first Sethares model. This figure shows that the location of the minima is in agreement with
the Pythagoras postulate in the sense that the location of the minima can be expressed
in terms of two small natural numbers: 2/1 = 2.00, 3/2 = 1.50, 4/3 ≈ 1.33, 5/3 ≈ 1.67,
5/4 = 1.25, 6/5 = 1.20, 7/4 = 1.75, 7/5 = 1.40, 7/6 ≈ 1.17. Besides, Figure 1-6 shows
that the dissonance level of two complex tones with the same fundamental frequency ratio
α, depends on the location in the register of the complex tones, specifically lower registers
(characterized by lower base frequencies) tends to be more dissonant, this phenomena is a
well-known feature in music [2, 18].
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1.2. Musical scales, tuning and musical interval size
One of the most accepted approaches to the understanding of musical tunings and scales

is based on consonance [27]. For several musical tunings the set of sounds is chosen in such
a way as to yield a large number of consonant combinations when two or more elements
are sounded together. Using this approach, Sethares posted that the best acoustical tuning
of a musical instrument must be inferred from the local minima of dissonance associated
to its timbre [21, 25, 32]. As it was explained above, considering the spectrum as the most
important contribution to the perception of the timbre, a set of the minima of dissonance can
be used in order to tune a musical instrument, in such a way that it produces the greatest
number of consonance combinations of pairs of pitches [21, 29, 30, 32, 38].

In traditional Western Music, approximately before the second half of the 18th century, the
most used tunings were the just and the Pythagorean. These tunings use one fundamental
frequency as reference, and a set of fractions, given in the form of equation (1-1), in order to
construct the other pitches. Nowadays the most used tuning is the 12-tone equal-tempered
(12-TET), this tuning differs from the just and the Pythagorean in the sense that it does not
verify the Pythagorean rule, as the frequency relation between pitches does not take rational
values. Instead, the 12-TET is based on the division of a musical interval called the octave,
that corresponds to a fraction of fundamental frequencies of 2, into equal “parts” in such a
way that all semitones result to be equivalent.

1.2.1. Musical intervals

A musical interval is constituted by two pitches that belong to the same musical scale.
If the two pitches sound simultaneously, then the interval is called harmonic; if the pitches
sound successively, then the interval is called melodic. In the case of melodic intervals, there
are three different possible cases: If the first pitch has a fundamental frequency smaller than
the one of the second, then the interval is called ascending; if the first pitch has a fundamental
frequency larger than the one of the second, then the interval is called descending; finally, if
the both pitches have the same fundamental frequency, then the interval is called unison.

The size of a musical interval is defined as the distance in pitches between two of them
[12], for example Figure 1-8 shows a music keyboard in which the size of the musical interval
L in semitones is the number of steps between two keys. In this way we have the same music
interval size between keys 1 and 7, and between keys 2 and 8 (size L = 6 in both cases).

1.2.2. Just, Pythagorean, and 12-TET scales

For the just scale, the relations between pitches are based in the major triads of a major
scale called tonic, subdominant and dominant. Each one of these chords have a frequency
relation between their successive pitches given by: 4 : 5 : 6. Powers of these fractions are used
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Figure 1-8.: Music keyboard. Each key has been numbered starting from the pitch C.

to construct all possible frequency relations between pitches starting from the fundamental
frequency of reference.

For the Pythagorean scale, the fractions 3/2 (musical interval called fifth) and 4/3 (musical
interval called fourth) are used to construct all possible relations between pitches multiplying
powers of these fractions by the fundamental frequency of reference [1, 39].

For the 12-TET scale the fundamental frequencies are related by

fi = f0
12
√

2i, i ∈ Z, (1-18)

where f0 is a reference fundamental frequency for constructing the others ones, and de-
termines the tuning inside a particular musical scale, in most cases the reference frequency
is taken as 440 Hz.

Table 1-1 summarizes the most common fundamental frequency ratios associated to the
different musical intervals inside the octave for the just, Pythagorean, and 12-TET scales.
Each fraction corresponds to a particular musical interval size. Notice that the just scale is
the most appropriated for a harmonic timbre, in the sense that it uses many fractions that
can be expressed in terms of two small natural numbers located at the minima of dissonance
associated to the harmonic spectrum (see Figure 1-6). Besides, notice that for the just,
Pythagorean, and 12-TET scales, each musical interval size L corresponds to a particular
fundamental frequency ratio α. As each α can be produced using different locations in the
register (see Figure 1-6), then the musical interval size is not enough to determine the level
of dissonance because this quantity does not distinguish the location in the register of the
pitches.

In the 12-TET scale, the partition of the octave in 12 equal parts generates the known
names for pitches: A, A] or B[, B, C or or B], C] or D[, D, D] or E[, E, F or E], F] or
G[, G, and G] or A[. Notice that in this scale the sharps (]) and the flats ([) are equivalent
because the partition has been created using equal parts, this feature is called enharmonic
equivalence. This equivalence has the advantage that a musical piece can be played starting
from different pitches without changing the fundamental frequency ratios of the intervals in
the original location. Moving the same set of intervals of a musical piece to another location
in the register conserving the same chronological order of occurrence, is a musical process
called transposition. Up to now we have considered the partition of the octave in 12 pitches,
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Scale

Just Pythagorean 12-TET

Interval name Size (semitones) n m n/m n m n/m fj/fi

Unison 0 1 1 1.000 1 1 1.000 1

Minor second 1 16 15 1.067 2187 2048 1.068 21/12

Major second 2 9 8 1.125 9 8 1.125 22/12

Minor third 3 6 5 1.200 32 27 1.185 23/12

Major third 4 5 4 1.250 81 64 1.266 24/12

Fourth 5 4 3 1.333 4 3 1.333 25/12

Tritone 6 45 32 1.406 729 512 1.424 26/12

Fifth 7 3 2 1.500 3 2 1.500 27/12

Minor sixth 8 8 5 1.600 6561 4096 1.602 28/12

Major sixth 9 5 3 1.667 27 16 1.688 29/12

Minor seventh 10 16 9 1.778 16 9 1.778 210/12

Major seventh 11 15 8 1.875 243 128 1.898 211/12

Octave 12 2 1 2.000 2 1 2.000 2

Table 1-1.: Frequency ratios used for generating the Pythagorean, the just, and the 12-TET scales. Interval
size up to one octave (12 semitones). The frequency ratios for the just and the Pythagorean
scales come from the Pythagorean rule: fj/fi = n/m. For all scales, the frequency ratios
corresponding to intervals larger than one octave are obtained by multiplying the corresponding
ratio of the previous octave by 2.

however intervals larger than the octave can be generated multiplying or dividing by powers
of 2 the fundamental frequencies of the 12 pitches inside the octave. An interesting property
emerges in this process, in the sense that the human being tends to appreciate in a similar
way the pitches that differ in one or more octaves, this phenomenon is called chroma [2, p.
188] For this reason, the name of pitches differing by one or more octaves is the same. In
the case of intervals larger than the octave, the chroma property of pitches states that the
consonance values of these intervals can be measured by displacing the highest pitch to the
next lower octave until the resulting interval is smaller than or equal to one octave [2, p.
188].

In the just and the Pythagorean scales, since the flats are not completely equivalent to the
sharps, the transposition process affects the fundamental frequency ratios of the intervals;
for this reason, the 12-TET scale is the most used scale in nowadays. This is an example in
which the predicted minima of dissonance for an harmonic spectrum, that are largely took
into account by the just scale, are sacrificed in order to facilitate a musical process, in this
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case the transposition.
There are many instruments tuned in the 12-TET that produced all the 12 pitches. The

scale constituted by the 12 pitches is known as chromatic [12, p. 164]. However, in some
cases there are musical instruments, also tuned in the 12-TET, that do not produce the 12
pitches, instead of this they produce a set of them. A common set is the one generated by
the 7 pitches: C, D, E, F, G, A, and B, that produces a major scale on C, or a minor natural
scale on A. This set of pitches, in the corresponding order, constitutes a diatonic scale [12,
p. 231]. Transposing this sequence of intervals (conserving the order) to another initial pitch
leads to another diatonic scales.

1.2.3. Equal temperament and isotonic scales

In some cases the octave is not divided into 12 equal parts, as in the 12-TET. Instead of
this, the octave can be divided in a different number, this scales are known as N -TET, with
N the number of parts of the division. For a N -TET scale the fundamental frequencies are
related by

fi = f0
N
√

2i, i ∈ Z, (1-19)

where f0 is the reference fundamental frequency. Typically, the N -TET scales assumes the
octave as the interval to be partitioned, in this thesis we will follow this convention. In the
case that the partition is carried out using a different musical interval P , these scales are
known as isotonic [40]

fi = f0
N
√
P i, i ∈ Z, (1-20)

with f0 the reference fundamental frequency.
The partition of an isotonic scale using N parts is known as equi-N tonic, for example for

N = 5 the name of the scale is equi-pentatonic, for N = 6 equi-hexatonic, and for N = 7
equi-heptatonic [40, 41].

1.3. Statistical analysis of musical intervals
Many quantitative analyses in music have been carried out using different elements as

building blocks, or “units of context,” which allow the message of a musical piece to be
apprehensible at different time scales [42]. Common choices for these “units of context” are
single pitches (ignoring or taking into account the chroma properties [43, 44]), single musical
notes (i.e., pitch and rhythm values), pairs of pitches or musical intervals (either harmonic
or melodic), triplets of pitches between contiguous notes, and chords [42, 43, 44, 45, 46, 47,
48, 49, 50].
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Güngör Gündüz and Ufuk Gündüz concerning the evolution of the entropy associated to the
transitions between pitches during the progress of a melody. This study found that entropy
increases up to a limiting value, which is smaller than the entropy of a random melody [62].
David Huron carried out a study of nearly 10,000 Western musical themes, finding that the
average melodic interval size is slightly smaller in pieces written in a minor mode than in
those written in a major mode. This result was interpreted by the author as a relation bet-
ween sadness and small values for the average melodic interval size [47]. Huron also found
that themes in a minor mode have slightly lower pitches on average in comparison with
major ones [53], which suggests that the sizes of intervals and their locations in the register
are important for conveying musical information.



2. Interplay between practices and
tuning in the marimba de chonta
music

2.1. On the Marimba de chonta
In the Pacific Coast of Colombia and Ecuador there is a marimba with bars made of

the timber from a palm called Chonta (Bactris jauari), and tubular resonators made of
a Bambuseae called Guadua (Guadua angustifolia) (Figure 2-1). This marimba is called
marimba de chonta and provides the melodic and harmonic contour for a traditional music
of African descent.

Figure 2-1.: Marimba de chonta image: Bars made of Chonta and tubular resonators made of Guadua.

“The marimba music, traditional chants and dances from the Colombia South Pacific
region and Esmeraldas Province of Ecuador” were inscribed by UNESCO in the list of
Intangible Cultural Heritage of Humanity [13, 14, 15, 16].

Some instrument makers of the marimba de chonta use ancestral techniques for empirically
tuning the instrument, resulting in tunings that do not conform to Western musical scales
[13, 17, 40]. These tunings and the musical practices associated with this marimba remain
largely unknown, and they are currently at risk of disappearing [13, 17]. In the Pacific coast of
Colombia, the marimba de chonta with a traditional tuning is called “traditional marimba”.

Traditional marimbas are played by one or two musicians, each using two percussion
mallets that, commonly, simultaneously hit two different bars [17, 40, 63, 64, 65]. There are
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reports of the existence of several tunings [17, 40, 63] related to the voice of female singers of
a particular territory [63], and with some features as for example the presence of low octaves
and neutral thirds (neutral thirds are musical intervals between minor and major thirds)
[40, 41].

The tunings of traditional marimbas do not follow any specific mathematical progres-
sion conserving musical intervals; however, the averages of the distance in cents between
successive pairs of bars suggest the presence of equi-heptatonic scales [40, 41]. It has to be
stressed that this tendency does not mean that these marimbas are equi-heptatonic, but that
distances between pairs of successive bars meander around average values consistent with
equi-heptatonic scales. Deviations in the tuning with respect to mathematical successions
are also present in music of other cultures around the world, for example in the tuning of
the gamelan, with deviations respect to equi-penthatonic scales [66].

The harmonic structure of this music can be summarized in geometrical schemes that con-
tain the rules to play two bars simultaneously (harmonic interval) over a base that usually
contains seven pitches that repeat periodically−−in a similar way to the octaves in a diatonic
scale. In the case of seven pitches, there are two possible ways for grouping them: by discar-
ding one bar, leading to a hexatonic scale; or discarding two bars, producing a pentatonic
scale [17, 40, 63].

Figure 2-2 shows the harmony rules for the hexatonic and pentatonic scales: white bars are
the discarded bars, and bars identified with grey or black colors can be played simultaneously
when they have the same color. The largest harmonic interval used has six bars between the
two sounded bars [63].

In this traditional music, female singers lead and the marimba interpreters have to accom-
pany them finding out the best location in the register to play the corresponding succession
of harmonic intervals. Since the harmony rules presented in Figure 2-2 are independent of
the selection of the initial bar for any succession of harmonic intervals, then this practice
corresponds to a transposition principle that preserves the same relative geometrical distan-
ces without conserving the same musical intervals [17, 40, 63, 67]. This practice is not well
understood because transposition processes that keep the same relative geometrical distan-
ces must be carried out over isotonic scales, as for example the equi-heptatonic one, which
is not the case of the traditional marimba. Instead, the tuning in which a musical piece is
played in a traditional marimba just depends on the selection of the initial bar.

2.2. Methods

This section contains the theoretical and experimental procedures used to produce the
dissonance level curves for the marimba de chonta, make the statistical analysis for the
musical pieces, and compare the results obtained in this study with those from a previous
one.
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Figure 2-2.: Hexatonic (up) and Pentatonic (down) scales generated by an equi-heptatonic traditional
marimba. Large bars and small bars indicate two different groups of seven bars. White bars
are not used in each scale. Grey and black bars constitute two different harmonic families.

2.2.1. Theoretical

Measure of the dissonance level and tuning

We use three models to measure dissonance levels: The first Sethares model (equation
(1-5)), the Vassilakis model (equation (1-6)), and the second Sethares model (equation (1-7)).
The normalized amplitudes anorm have been used in all cases. The approximation 1-13 was
used to measure loudness in the second Sethares model; with this approximation lmin is
found to be proportional to the minimum value between two amplitudes a0.60

1 and a0.60
2 .

Normalized loudness (lnorm), can be measured using the normalized amplitudes, leading to
lnorm = l/lmax = (a/amax)0.60 = (anorm)0.60.

In this work we measure the tuning of several marimbas de chonta using the ratio between
the fundamental frequencies of pairs of bars. This quantity was selected in order to describe
the consonance properties of the tunings, as the dissonance curves are presented traditionally
using this frequency ratio.

For all cases, the frequency ratio α was measured with an uncertainty ∆α given by

∆α = |α|
(

∆f1

f1
+ ∆f2

f2

)
, (2-1)

where f1 and f2 are the fundamental frequencies measured with uncertainties ∆f1 and
∆f2, respectively.
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Determination of the fundamental frequency for the Miñana study

In order to compare the results from this study with those from a previous one carried out
in 1990 by Carlos Miñana [40], including 9 traditional marimbas made between 1950 and
1986, the fundamental frequency of each bar was obtained for all the marimbas as follows:
Miñana produced a score with the approximate pitches associated with each marimba bar,
including their corresponding increment or decrement in cents with respect to the 12-TET
scale with A=440 Hz. Miñana measured with an uncertainty of ±2.5 cents.

The approximate fundamental frequencies (fReal) produced by these marimbas were found
from the fundamental frequencies in the 12-TET scale (fTemp), and using the relation between
the number of cents e and the corresponding frequency ratio r: fReal ≈ r ·fTemp; r = ce, where
c refers to a cent (c = 21/1200) [2, pp. 194-195]. Appendix A contains the score as presented
by Miñana [40]. The marimbas presented in the study carried out by Miñana are identified
with the subindex “M”, the marimbas from the present study remain without subindex.

2.2.2. Experimental
In order to obtain evidence about the musical practices related to the traditional marimba,

as well as about the tunings produced by instrument makers, an expedition to the heart of
the marimba de chonta territories was carried out in 2015. The expedition was composed
by musicians and researchers from the Conservatory of Music, the Department of Physics,
and the School of Cinema and Media Arts of Universidad Nacional de Colombia. During
the expedition the researchers interviewed instrument makers, female singers, and marimba
de chonta interpreters, as well as music teachers from local schools. Additionally, the team
attended several presentations by local musical groups.

Selection of the marimbas

This study includes 10 traditional marimbas, each one constructed by a different recognized
instrument maker, and one diatonic marimba de chonta tuned in the 12-TET. Table 2-1
shows the instrument makers and the main features of the selected marimbas. Marimbas 1,
2, 3, 4, 6, 9, and 11 were made between 2014 and 2015. The remaining ones are undated and
presumably old instruments; however, these marimbas are currently in use, and a common
practice is to repair these instruments due to their natural fragility and the harsh conditions
of use.

Procedure for the analysis of pitch and timbre

For all marimbas the sound of each bar with its respective resonator were recorded; in all
cases the bars were struck in the geometrical center in agreement with the common style
of traditional musicians. The microphone was located approximately at 40 cm directly over
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Marimba number Maker Place Bars Kind

1 Baudilio Cuama Buenaventura 22 Diatonic 12-TET
2 Baudilio Cuama Buenaventura 16 Traditional
3 Jhon Jairo Cortés Tumaco 24 Traditional
4 Francisco Tenorio Tumaco 24 Traditional
5 Juan E. Sinisterra Tumaco 18 Traditional
6 Silvino Mina Guapi 20 Traditional
7 Dioselino Rodríguez Guapi 17 Traditional
8 Guillermo Ríos Guapi 17 Traditional
9 Genaro Torres Guapi 21 Traditional
10 José Torres Guapi 20 Traditional
11 Francisco Torres Guapi 24 Traditional

Table 2-1.: Description of each marimba recorded for this study, including identification number, instrument
maker, place, total number of bars, and tuning.

each bar, this direction was selected because it coincides with the position of the interpre-
ter. Marimbas 1, 2 were recorded using TASCAM DR44WL with Behringer C-2 condenser
microphone; marimbas 3, 4, 5, 6, 7, 9, 10 using ZOOM H6 handy recorder with X/Y microp-
hone; marimba 8 using RCA VR5320R-A; marimba 11 using a Sony Cyber-shot DSC-H100
camera. The sample rates were: 96 KHz for marimbas 1, 2; 48 KHz for marimbas 4, 5, 6,
9, 10; 44.1 KHz for marimbas 3, 7; 8 KHz for marimbas 8, 11. The spectrum was obtained
from samples covering at maximum the sound between the attack and the final release, and
avoiding external sound sources. The samples recorded for this study are included in the
“Audio Files 1”. A Fast Fourier Transform over a Hanning window was used for finding the
spectrum of each bar. The first 50 peaks with the largest amplitudes were identified, and
the fundamental and the first 10 overtones with the largest amplitudes were included in
the analysis. The sampling interval was determined from the average increment of the time
sequence [68], and the peaks were identified using the Local Maximum Method up to the
second nearest neighbors [69, 70]. For almost every bar, the fundamental frequency corres-
ponds to the peak with the largest amplitude; however, for the traditional marimbas of the
Torres family (marimbas 9, 10, and 11), some bars have overtones with larger amplitudes
than that of the fundamental. In the sample of 223 bars, the fundamental frequency was not
clearly identified for four bars (marked with “∗ ” in Table 2-2); these values were not used in
the analysis. For all bars of each marimba the amplitudes were normalized for the analysis.
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Procedure for the analysis of musical pieces

Seven musical pieces played by recognized traditional marimba musicians were recorded,
with one musician and two mallets for each marimba (a maximum of two pitches can be
sounded simultaneously in each musical piece). Musical scores with the closest transcrip-
tions to the 12-TET scale with A = 440Hz were generated. Traditional tunings do not
follow a 12-TET system; however, this procedure allows the identification of the approxima-
te size of harmonic intervals in order to measure their frequency of occurrence. The original
recordings and musical scores are provided in “Audio Files 2” and Appendix B, respectively.
The transcription of the musical scores was made by Kevin Pineda. In order to infer the most
frequent harmonic intervals in traditional music, the musical scores were used to measure
the probability of occurrence of each interval size. In order to distinguish between brief and
lengthy intervals, a second analysis was carried out taking into account the time duration
of each kind of interval, according to its size. The probability of occurrence was defined
as proportional to the sum of the duration of each interval of a given size. For u different
intervals with size z and Fz occurrences for each size the probability of a specific interval
size is pz = Tz/T , where Tz = t1z + t2z + ...+ tFz is the sum of the durations of all intervals
with size z and total time T = T1 + T2 + ... + Tu. If all intervals have the same duration in
a musical score, then the probability pz is equal to the probability of occurrence.

2.3. Results and Discussion

The first part of this section is devoted to the tuning of the marimbas. The second part pre-
sents the use of harmonic intervals in this music. The third part is related to the consonance
properties of the marimba de chonta.

2.3.1. Tunings

For all marimbas, the average frequency ratios r that result from the combination of all
bars at different distances, the minimum and maximum values, and the standard deviation
(σ) were found.

The distance s between bars is defined as the number of steps to reach the final bar starting
from the initial one; hence, adjacent bars have a distance of 1 step.

Present study

For the marimbas of the present study, the fundamental frequency found for each bar
coupled to its respective resonator is shown in Table 2-2.
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Fundamental frequency (Hz)
Bar Marimba 1 Marimba 2 Marimba 3 Marimba 4 Marimba 5 Marimba 6
1 131.62 ± 0.59 270.85 ± 0.98 184.70 ± 0.48 167.91 ± 0.78 158.66 ± 0.55 171.93 ± 0.38
2 145.93 ± 0.63 305.01 ± 1.26 204.74 ± 0.43 188.53 ± 0.81 170.82 ± 0.54 175.40 ± 0.58
3 165.23 ± 0.54 341.11 ± 0.86 223.41 ± 0.58 209.54 ± 0.82 190.35 ± 0.81 200.89 ± 0.41
4 175.38 ± 0.53 367.60 ± 1.06 251.43 ± 0.65 219.15 ± 1.07 214.15 ± 0.69 221.17 ± 0.57
5 197.31 ± 0.50 409.85 ± 1.27 282.56 ± 1.02 241.62 ± 1.47 229.48 ± 1.32 250.50 ± 0.53
6 220.47 ± 0.43 450.50 ± 1.10 309.48 ± 1.18 275.01 ± 0.86 259.31 ± 0.91 267.41 ± 0.48
7 247.30 ± 0.43 496.49 ± 1.48 334.65 ± 0.97 298.57 ± 1.08 294.34 ± 1.58 292.42 ± 0.70
8 261.68 ± 0.41 536.73 ± 1.61 367.40 ± 0.95 331.03 ± 1.55 316.90 ± 1.04 334.85 ± 0.75
9 293.58 ± 0.58 609.06 ± 1.05 413.15 ± 1.68 369.93 ± 1.68 349.58 ± 0.71 360.21 ± 0.65
10 330.00 ± 0.45 687.68 ± 1.55 451.49 ± 1.28 413.35 ± 1.24 394.01 ± 0.85 387.14 ± 0.59
11 351.58 ± 0.52 747.17 ± 1.10 500.13 ± 1.05 440.39 ± 1.39 430.19 ± 0.84 438.80 ± 0.65
12 393.69 ± 0.51 818.48 ± 1.07 542.98 ± 1.32 486.81 ± 2.06 472.91 ± 0.93 481.43 ± 0.62
13 439.43 ± 0.50 910.90 ± 1.22 634.07 ± 1.29 539.29 ± 1.42 535.00 ± 1.42 518.89 ± 0.73
14 495.44 ± 0.47 994.77 ± 1.53 672.32 ± 1.57 585.53 ± 1.66 582.64 ± 1.02 580.70 ± 0.83
15 523.24 ± 0.57 1080.37± 1.30 740.70 ± 1.76 644.27 ± 1.82 650.65 ± 1.43 654.80 ± 0.93
16 588.65 ± 0.60 1240.32± 1.19 838.27 ± 1.98 737.47 ± 1.80 702.45 ± 1.53 705.79 ± 1.10
17 660.86 ± 0.54 —— 896.38 ± 2.28 813.44 ± 1.74 798.79 ± 1.51 783.34 ± 1.06
18 700.72 ± 0.45 —— 989.25 ± 1.71 876.62 ± 1.98 871.50 ± 2.25 859.39 ± 1.23
19 791.14 ± 0.42 —— 1128.03± 2.14 986.17 ± 3.22 —— 928.18 ± 1.18
20 878.25 ± 0.40 —— 1248.11± 3.30 1131.23 ± 2.42 —— 1011.77 ± 1.34
21 985.22 ± 0.49 —— 1342.93± 3.09 1224.65 ± 3.22 —— ——
22 1044.23 ± 0.54 —— 1448.71± 3.29 1338.57 ± 3.36 —— ——
23 —— —— 1663.24± 4.04 1472.77 ± 4.36 —— ——
24 —— —— 1767.66± 4.58 1643.50 ± 4.83 —— ——

Fundamental frequency (Hz)
Bar Marimba 7 Marimba 8 Marimba 9 Marimba 10 Marimba 11
1 190.21 ± 1.79 145.71 ± 0.79 191.01 ± 1.68 130.00 ± 4.67* 169.39 ± 3.85*
2 210.60 ± 1.35 167.24 ± 0.80 205.53 ± 1.12 123.35 ± 2.68 143.81 ± 2.05*
3 226.28 ± 1.38 180.60 ± 0.84 227.84 ± 1.22 128.76 ± 3.39 209.20 ± 3.61*
4 249.61 ± 1.56 195.12 ± 0.84 247.56 ± 1.63 148.30 ± 3.09 153.34 ± 2.19
5 270.62 ± 1.37 207.33 ± 0.84 272.75 ± 0.99 147.50 ± 1.76 163.50 ± 2.82
6 305.05 ± 1.66 229.89 ± 0.85 287.25 ± 2.14 169.88 ± 1.57 184.31 ± 2.49
7 332.30 ± 1.33 252.85 ± 0.86 313.55 ± 2.75 187.36 ± 1.40 198.21 ± 1.38
8 365.02 ± 2.40 285.65 ± 0.88 349.14 ± 1.75 207.35 ± 0.56 207.13 ± 0.80
9 396.51 ± 1.42 315.69 ± 0.91 379.01 ± 2.92 219.98 ± 0.93 215.10 ± 1.47
10 449.56 ± 1.35 355.90 ± 0.85 409.60 ± 2.41 243.93 ± 0.58 233.14 ± 1.67
11 479.41 ± 1.53 390.45 ± 0.86 462.12 ± 2.16 262.04 ± 0.74 263.92 ± 2.75
12 543.40 ± 1.63 429.08 ± 0.94 495.17 ± 3.99 294.23 ± 0.78 283.19 ± 5.06
13 600.83 ± 1.39 477.37 ± 0.90 539.33 ± 2.43 311.65 ± 1.61 299.34 ± 1.64
14 655.81 ± 1.74 515.07 ± 0.87 603.41 ± 2.04 356.91 ± 0.76 312.88 ± 1.44
15 719.59 ± 2.50 572.42 ± 0.87 636.04 ± 2.65 381.38 ± 0.97 358.66 ± 1.52
16 800.23 ± 1.45 648.36 ± 0.89 722.67 ± 3.04 428.30 ± 1.37 378.97 ± 0.91
17 910.42 ± 1.50 722.11 ± 0.92 755.61 ± 2.33 475.78 ± 1.03 412.29 ± 0.82
18 —— —— 874.57 ± 2.97 528.51 ± 1.18 431.40 ± 1.59
19 —— —— 935.74 ± 2.35 563.27 ± 1.20 481.15 ± 1.69
20 —— —— 1057.87± 2.08 608.65 ± 1.16 527.56 ± 1.88
21 —— —— 1121.73± 3.17 —— 556.13 ± 2.28
22 —— —— —— —— 609.91 ± 2.54
23 —— —— —— —— 657.09 ± 2.30
24 —— —— —— —— 716.08 ± 2.28

Table 2-2.: Fundamental frequencies produced by each bar with its corresponding resonator. The uncer-
tainty corresponds to one half of the distance between adjacent frequencies in the FFT analysis.
The mark “∗” refers to unconfident values for the fundamental frequencies.
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The 12-TET marimba was found to be tuned in a major diatonic tempered scale over C
with the traditional reference A=440 Hz. Figure 2-3(a) shows the structure of tones and
semitones found for the diatonic 12-TET marimba at different distances s. For example,
adjacent bars present minor and major seconds, bars separated by a distance of 2 steps
present minor and major thirds, and bars separated by a distance of 7 steps always produce
octaves. Notice that the probability of finding a minor second, a major seventh or a tritone is
small, a natural consequence of the structure of the major diatonic tempered scale. For this
marimba, the average value of the frequency ratios at different distances (see Marimba 1 in
Table 2-3) corresponds to the average between the frequency ratios of the musical intervals
belonging to the 12-TET scale. For example, for s = 1 the average value 1.104 results from
the average for the minor seconds, with a frequency ratio of 21/12, and major seconds, with a
frequency ratio of 22/12. Hence, for the 12-TET marimba the information about the average
and the standard deviations σ values for each s is trivial, in the sense that this information
only exhibits the internal structure of tones and semitones. However, in the case of the
traditional marimbas, since the transposition practice allows to start a musical piece at any
bar of the marimba, then this type of analysis shows the tolerance of the tuning for using
this practice.

The tunings of the traditional marimbas of the present study were not found to follow a
mathematical rule. Instead, the frequency ratios of pairs of bars separated the same distance
s, were found to be distributed around the average frequency ratios. Figures 2-3(b),(c)
show, for marimbas 2 and 5, the probability to find a particular frequency ratio generated by
pairs of bars separated by different relative distances s. The average values r are indicated
by dotted lines, and the ranges indicated as r ±∆ represent uncertainties that contain the
total deviation with respect to the average values.

In the traditional marimbas of the present study, three different behaviors of the average
frequency ratios of the musical intervals were found: 7 marimbas, numbered from 2 up to
8, follow an equi-heptatonic scale, marimbas 9 and 10 follow an equi-octatonic scale, and
the marimba number 11 follows an equi-enneatonic scale. This behavior was found for the
averages, and it does not mean that these marimbas have isotonic tunings.

The marimbas with equi-heptatonic averages fulfill the condition that the average fre-
quency ratio associated with two bars separated a distance s is rs/7

7 , with r7 the average
ratio of the fundamental frequencies for bars separated by a distance of 7 steps. Hence, kno-
wing the value of r7 for each marimba allows predicting the other average values. For the
marimbas with equi-heptatonic averages, the values of r7 follow 1.957 ≤ r7 ≤ 2.043, with an
average r7 = 1.998±0.011. The information about the frequency ratios generated at different
distances in the case of the marimbas with equi-heptatonic averages is shown in Table 2-3.

The marimbas with equi-octatonic averages fulfill the condition rs/8
8 (r8 = 2.042 ± 0.022

and r8 = 2.078 ± 0.026); and the marimba number 11 follows an equi-enneatonic scale in
the averages rs/9

9 , with r9 = 1.990 ± 0.026. In the case of these marimbas, r8 and r9 refer
to the average ratios of the fundamental frequencies for bars separated by a distance of 8
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and 9 steps, respectively. As in the previous case, knowing the values of r8 and r9 for each
marimba allows predicting the other average values.

The information about the frequency ratios generated at different distances for the ma-
rimbas with equi-octatonic and equi-enneatonic averages is showed in Table 2-4. These ma-
rimbas were made by members of the Torres family, who also made three of the marimbas
studied by Miñana (marimbas 1M , 2M , 5M).

The theoretical equi-heptatonic, equi-octatonic and equi-enneatonic scales constructed
using r7, r8 and r9 are presented in Table 2-6. The predicted values have less than 1.00%
relative error (R.E.) with respect to the empirical values shown in Tables 2-3 and 2-4.

Up to now, we have modeled with isotonic scales the relations between the average fre-
quency ratios generated by bars separated by the same distance. The deviations with respect
to the average values can be considered as contained inside an uncertainty (represented by
“±∆” in Figure 2-3). The use of uncertainties is useful in this case because the dispersion
of the data inside each uncertainty does not follow any specific pattern, and it presents va-
riations for different traditional marimbas, and even between different distances in the same
traditional marimba. Despite of this, some features can be concluded:

Taking ∆ = σ, approximately 67% of the frequency ratios are contained. Taking ∆ = 2σ,
approximately 97%. In order to take into account the mean intrinsic uncertainty associated
to the measurement of each individual frequency ratio (equation (2-1)), a total uncertainty
(T.U.) ∆ = 2σ + ∆Avg. can be considered as representative in order to capture most of
the data. The values of the T.U. can be related with the average values r using a R.E. The
mean R.E. associated to the traditional marimbas with equi-heptatonic averages is 5.3%. In
the case of the traditional marimbas with equi-octatonic and equi-enneatonic averages, the
mean R.E. is 7.1% and 7.7%, respectively. For all marimbas, the values of ∆Avg., T.U., and
R.E. associated to each distance between bars are presented in Tables 2-3 and 2-4.

Summarizing, for the traditional marimbas with equi-heptatonic, equi-octatonic, and equi-
enneatonic averages, most frequency ratios of musical intervals are contained inside the
ranges r ± 0.053r, r ± 0.071r, and r ± 0.077r, respectively, with r following isotonic scales.

The data presented in Tables 2-3 and 2-4 are also presented in units of cents at Appendix
C.

Miñana study

For the traditional marimbas studied by Miñana, the average values for the frequency
ratios of bars separated by the same geometrical distance are consistent with equi-heptatonic
scales, stressing that this is only a tendency in the averages and does not mean that these
marimbas are tuned using an equi-heptatonic scale.

Figure 2-3(d) shows, for the case of the marimba 3M , the probability to find a particular
frequency ratio generated by pairs of bars separated by different relative distances s. The
average values r are indicated by dotted lines, and the ranges indicated as r ±∆ represent
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The values of ∆Avg., T.U., and R.E. associated to each distance between bars are presented
in Table 2-5.

The data presented in Table 2-5 is also presented in units of cents at Appendix C.

Marimba number - Present study
s 1 2 3 4 5

1

Min±∆Min 1.056 ± 0.002 1.078 ± 0.006 1.060 ± 0.005 1.046 ± 0.009 1.072 ± 0.010
Max±∆Max 1.132 ± 0.009 1.148 ± 0.002 1.168 ± 0.005 1.147 ± 0.006 1.137 ± 0.005
Avg.±∆Avg. 1.104 ± 0.004 1.107 ± 0.005 1.104 ± 0.006 1.105 ± 0.007 1.106 ± 0.007

σ 0.029 0.021 0.028 0.024 0.023
T. U. (R. E. %) 0.061 (5.57%) 0.048 (4.31%) 0.061 (5.54%) 0.056 (5.06%) 0.052 (4.74%)

2

Min±∆Min 1.187 ± 0.004 1.186 ± 0.003 1.161 ± 0.006 1.153 ± 0.012 1.188 ± 0.009
Max±∆Max 1.263 ± 0.002 1.281 ± 0.007 1.268 ± 0.005 1.290 ± 0.006 1.283 ± 0.014
Avg.±∆Avg. 1.221 ± 0.004 1.220 ± 0.005 1.219 ± 0.006 1.218 ± 0.008 1.225 ± 0.007

σ 0.032 0.027 0.032 0.036 0.024
T. U. (R. E. %) 0.069 (5.64%) 0.060 (4.92%) 0.069 (5.70%) 0.079 (6.52%) 0.056 (4.56%)

3

Min±∆Min 1.320 ± 0.001 1.310 ± 0.008 1.284 ± 0.005 1.282 ± 0.013 1.313 ± 0.006
Max±∆Max 1.410 ± 0.007 1.392 ± 0.006 1.404 ± 0.007 1.397 ± 0.007 1.381 ± 0.012
Avg.±∆Avg. 1.347 ± 0.004 1.346 ± 0.006 1.345 ± 0.007 1.343 ± 0.009 1.355 ± 0.008

σ 0.028 0.025 0.030 0.033 0.018
T. U. (R. E. %) 0.061 (4.53%) 0.056 (4.15%) 0.068 (5.02%) 0.075 (5.62%) 0.043 (3.18%)

4

Min±∆Min 1.414 ± 0.002 1.446 ± 0.004 1.414 ± 0.006 1.417 ± 0.008 1.446 ± 0.013
Max±∆Max 1.512 ± 0.002 1.526 ± 0.007 1.544 ± 0.007 1.534 ± 0.007 1.546 ± 0.015
Avg.±∆Avg. 1.489 ± 0.005 1.488 ± 0.007 1.485 ± 0.008 1.486 ± 0.010 1.499 ± 0.009

σ 0.027 0.030 0.035 0.036 0.028
T. U. (R. E. %) 0.058 (3.89%) 0.067 (4.51%) 0.077 (5.20%) 0.083 (5.56%) 0.064 (4.30%)

5

Min±∆Min 1.580 ± 0.002 1.571 ± 0.005 1.560 ± 0.006 1.559 ± 0.009 1.607 ± 0.012
Max±∆Max 1.695 ± 0.010 1.697 ± 0.007 1.726 ± 0.008 1.756 ± 0.009 1.723 ± 0.015
Avg.±∆Avg. 1.642 ± 0.005 1.643 ± 0.008 1.639 ± 0.008 1.646 ± 0.011 1.661 ± 0.010

σ 0.046 0.040 0.042 0.050 0.035
T. U. (R. E. %) 0.097 (5.88%) 0.087 (5.27%) 0.092 (5.64%) 0.112 (6.78%) 0.080 (4.84%)

6

Min±∆Min 1.773 ± 0.002 1.760 ± 0.013 1.728 ± 0.008 1.742 ± 0.013 1.783 ± 0.008
Max±∆Max 1.893 ± 0.005 1.871 ± 0.010 1.895 ± 0.009 1.932 ± 0.010 1.875 ± 0.014
Avg.±∆Avg. 1.814 ± 0.006 1.815 ± 0.008 1.810 ± 0.009 1.816 ± 0.012 1.840 ± 0.011

σ 0.049 0.035 0.042 0.054 0.024
T. U. (R. E. %) 0.103 (5.70%) 0.079 (4.33%) 0.093 (5.12%) 0.120 (6.58%) 0.059 (3.22%)

7

Min±∆Min 1.988 ± 0.012 1.982 ± 0.013 1.922 ± 0.012 1.946 ± 0.015 1.979 ± 0.014
Max±∆Max 2.012 ± 0.013 2.036 ± 0.005 2.077 ± 0.009 2.098 ± 0.010 2.070 ± 0.008
Avg.±∆Avg. 1.999 ± 0.006 2.011 ± 0.009 1.998 ± 0.010 2.004 ± 0.013 2.031 ± 0.012

σ 0.007 0.018 0.036 0.047 0.030
T. U. (R. E. %) 0.021 (1.03%) 0.045 (2.24%) 0.083 (4.17%) 0.107 (5.35%) 0.071 (3.52%)

Marimba number - Present study
s 6 7 8 Avg.*1

1

Min±∆Min 1.020 ± 0.006 1.066 ± 0.007 1.063 ± 0.009 1.058 ± 0.007
Max±∆Max 1.145 ± 0.006 1.138 ± 0.004 1.148 ± 0.012 1.147 ± 0.006
Avg.±∆Avg. 1.098 ± 0.004 1.103 ± 0.009 1.105 ± 0.007 1.104 ± 0.006

σ 0.031 0.022 0.023 0.025
T. U. (R. E. %) 0.067 (6.06%) 0.052 (4.75%) 0.052 (4.70%) 0.055 (5.02%)

2

Min±∆Min 1.156 ± 0.004 1.185 ± 0.015 1.148 ± 0.010 1.168 ± 0.008
Max±∆Max 1.262 ± 0.004 1.265 ± 0.006 1.262 ± 0.004 1.273 ± 0.006
Avg.±∆Avg. 1.211 ± 0.004 1.214 ± 0.010 1.218 ± 0.007 1.218 ± 0.007

σ 0.034 0.023 0.034 0.030
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T. U. (R. E. %) 0.072 (5.92%) 0.057 (4.70%) 0.076 (6.25%) 0.067 (5.51%)

3

Min±∆Min 1.286 ± 0.006 1.285 ± 0.015 1.240 ± 0.011 1.286 ± 0.009
Max±∆Max 1.428 ± 0.008 1.388 ± 0.006 1.408 ± 0.008 1.400 ± 0.008
Avg.±∆Avg. 1.334 ± 0.005 1.336 ± 0.011 1.342 ± 0.008 1.343 ± 0.008

σ 0.032 0.029 0.047 0.031
T. U. (R. E. %) 0.069 (5.17%) 0.069 (5.14%) 0.103 (7.66%) 0.069 (5.13%)

4

Min±∆Min 1.417 ± 0.004 1.423 ± 0.021 1.375 ± 0.012 1.420 ± 0.010
Max±∆Max 1.525 ± 0.008 1.515 ± 0.009 1.548 ± 0.009 1.534 ± 0.009
Avg.±∆Avg. 1.470 ± 0.005 1.472 ± 0.012 1.479 ± 0.009 1.482 ± 0.009

σ 0.033 0.027 0.055 0.035
T. U. (R. E. %) 0.072 (4.91%) 0.067 (4.57%) 0.119 (8.03%) 0.079 (5.30%)

5

Min±∆Min 1.545 ± 0.004 1.572 ± 0.014 1.512 ± 0.012 1.561 ± 0.009
Max±∆Max 1.691 ± 0.005 1.675 ± 0.008 1.717 ± 0.011 1.712 ± 0.009
Avg.±∆Avg. 1.616 ± 0.006 1.625 ± 0.014 1.638 ± 0.010 1.638 ± 0.009

σ 0.048 0.037 0.061 0.045
T. U. (R. E. %) 0.102 (6.34%) 0.087 (5.37%) 0.132 (8.04%) 0.099 (6.04%)

6

Min±∆Min 1.701 ± 0.008 1.733 ± 0.023 1.708 ± 0.013 1.736 ± 0.012
Max±∆Max 1.909 ± 0.011 1.899 ± 0.009 1.888 ± 0.010 1.895 ± 0.010
Avg.±∆Avg. 1.783 ± 0.006 1.790 ± 0.015 1.813 ± 0.011 1.810 ± 0.010

σ 0.050 0.045 0.060 0.044
T. U. (R. E. %) 0.106 (5.92%) 0.105 (5.85%) 0.131 (7.23%) 0.099 (5.46%)

7

Min±∆Min 1.922 ± 0.007 1.883 ± 0.019 1.888 ± 0.015 1.932 ± 0.013
Max±∆Max 2.054 ± 0.011 2.025 ± 0.009 2.077 ± 0.012 2.062 ± 0.009
Avg.±∆Avg. 1.964 ± 0.007 1.968 ± 0.017 2.009 ± 0.012 1.998 ± 0.011

σ 0.039 0.047 0.058 0.039
T. U. (R. E. %) 0.084 (4.30%) 0.111 (5.62%) 0.127 (6.34%) 0.090 (4.50%)

Table 2-3.: Minimum, maximum, average, standard deviation, total uncertainty, and relative error of the
frequency ratio for pairs of bars separated by different distances in the diatonic 12-TET marim-
ba, and the traditional marimbas with equi-heptatonic averages recorded in the present study.
“s” is the distance between bars in steps The symbol, “σ” is the standard deviation, “Avg.”
refers to the average, “Avg.*1” refers to the average of the traditional marimbas 2, 3, 4, 5, 6, 7,
and 8, “T. U.” is the total uncertainty, and “R. E.” corresponds to the “T. U.” value expressed
as a relative error.
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Marimba number - Present study
s 9 10 Avg.*2 11

1

Min±∆Min 1.046 ± 0.008 0.995 ± 0.033 1.020 ± 0.020 1.038 ± 0.011
Max±∆Max 1.157 ± 0.008 1.152 ± 0.054 1.155 ± 0.031 1.146 ± 0.010
Avg.±∆Avg. 1.093 ± 0.011 1.093 ± 0.015 1.093 ± 0.013 1.081 ± 0.014

σ 0.031 0.041 0.036 0.031
T. U. (R. E. %) 0.073 (6.65%) 0.097 (8.87%) 0.085 (7.76%) 0.077 (7.13%)

2

Min±∆Min 1.150 ± 0.014 1.145 ± 0.034 1.148 ± 0.024 1.085 ± 0.015
Max±∆Max 1.238 ± 0.007 1.270 ± 0.025 1.254 ± 0.016 1.227 ± 0.021
Avg.±∆Avg. 1.197 ± 0.012 1.199 ± 0.015 1.198 ± 0.014 1.168 ± 0.015

σ 0.023 0.035 0.029 0.042
T. U. (R. E. %) 0.057 (4.80%) 0.085 (7.08%) 0.071 (5.94%) 0.100 (8.53%)

3

Min±∆Min 1.252 ± 0.008 1.196 ± 0.040 1.224 ± 0.024 1.167 ± 0.024
Max±∆Max 1.400 ± 0.007 1.406 ± 0.021 1.403 ± 0.014 1.318 ± 0.009
Avg.±∆Avg. 1.308 ± 0.014 1.313 ± 0.016 1.310 ± 0.015 1.259 ± 0.016

σ 0.038 0.053 0.046 0.046
T. U. (R. E. %) 0.089 (6.81%) 0.123 (9.33%) 0.106 (8.07%) 0.107 (8.51%)

4

Min±∆Min 1.376 ± 0.019 1.377 ± 0.043 1.377 ± 0.031 1.265 ± 0.026
Max±∆Max 1.485 ± 0.009 1.527 ± 0.011 1.506 ± 0.010 1.414 ± 0.011
Avg.±∆Avg. 1.431 ± 0.015 1.445 ± 0.017 1.438 ± 0.016 1.355 ± 0.017

σ 0.036 0.039 0.038 0.034
T. U. (R. E. %) 0.087 (6.07%) 0.095 (6.58%) 0.091 (6.33%) 0.085 (6.28%)

5

Min±∆Min 1.502 ± 0.014 1.483 ± 0.037 1.493 ± 0.026 1.403 ± 0.030
Max±∆Max 1.663 ± 0.010 1.696 ± 0.013 1.680 ± 0.011 1.538 ± 0.012
Avg.±∆Avg. 1.559 ± 0.017 1.585 ± 0.019 1.572 ± 0.018 1.464 ± 0.019

σ 0.044 0.058 0.051 0.041
T. U. (R. E. %) 0.105 (6.72%) 0.134 (8.45%) 0.119 (7.60%) 0.100 (6.84%)

6

Min±∆Min 1.635 ± 0.013 1.645 ± 0.038 1.640 ± 0.025 1.510 ± 0.019
Max±∆Max 1.766 ± 0.020 1.816 ± 0.009 1.791 ± 0.015 1.686 ± 0.014
Avg.±∆Avg. 1.708 ± 0.018 1.734 ± 0.021 1.721 ± 0.019 1.585 ± 0.021

σ 0.045 0.052 0.049 0.059
T. U. (R. E. %) 0.109 (6.39%) 0.125 (7.22%) 0.117 (6.81%) 0.140 (8.82%)

7

Min±∆Min 1.798 ± 0.020 1.767 ± 0.042 1.782 ± 0.031 1.579 ± 0.018
Max±∆Max 1.961 ± 0.013 2.017 ± 0.010 1.989 ± 0.011 1.777 ± 0.015
Avg.±∆Avg. 1.866 ± 0.020 1.900 ± 0.024 1.883 ± 0.022 1.712 ± 0.023

σ 0.046 0.076 0.061 0.060
T. U. (R. E. %) 0.111 (5.95%) 0.176 (9.27%) 0.144 (7.62%) 0.142 (8.32%)

8

Min±∆Min 1.977 ± 0.016 1.977 ± 0.048 1.977 ± 0.032 1.698 ± 0.031
Max±∆Max 2.136 ± 0.021 2.167 ± 0.010 2.152 ± 0.016 1.949 ± 0.017
Avg.±∆Avg. 2.042 ± 0.022 2.078 ± 0.026 2.060 ± 0.024 1.846 ± 0.025

σ 0.056 0.064 0.060 0.060
T. U. (R. E. %) 0.134 (6.56%) 0.154 (7.41%) 0.144 (6.99%) 0.144 (7.81%)

9

Min±∆Min — — — 1.912 ± 0.018
Max±∆Max — — — 2.100 ± 0.017
Avg.±∆Avg. — — — 1.990 ± 0.026

σ — — — 0.057
T. U. (R. E. %) — — — 0.141 (7.06%)

Table 2-4.: Minimum, maximum, average, standard deviation, total uncertainty, and relative error of the
frequency ratio for pairs of bars separated by different distances in the traditional marimbas
with equi-octatonic and equi-enneatonic averages recorded in the present study. “s” is the
distance between bars in steps. The symbol, “σ” is the standard deviation, “Avg.” refers to the
average, “Avg.*2” refers to the average of the traditional marimbas 9 and 10, “T. U.” is the
total uncertainty, and “R. E.” corresponds to the “T. U.” value expressed as a relative error.
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Marimba number - Miñana study
s 1M 2M 3M 4M 5M

1

Min±∆Min 1.041 ± 0.003 1.059 ± 0.003 1.081 ± 0.003 1.081 ± 0.003 1.066 ± 0.003
Max±∆Max 1.162 ± 0.003 1.155 ± 0.003 1.136 ± 0.003 1.116 ± 0.003 1.129 ± 0.003
Avg.±∆Avg. 1.105 ± 0.003 1.103 ± 0.003 1.098 ± 0.003 1.100 ± 0.003 1.096 ± 0.003

σ 0.031 0.029 0.015 0.008 0.015
T. U. (R. E. %) 0.064 (5.83%) 0.061 (5.49%) 0.033 (3.00%) 0.020 (1.81%) 0.032 (2.95%)

2

Min±∆Min 1.179 ± 0.003 1.189 ± 0.003 1.179 ± 0.003 1.189 ± 0.003 1.142 ± 0.003
Max±∆Max 1.297 ± 0.004 1.275 ± 0.004 1.235 ± 0.004 1.231 ± 0.004 1.238 ± 0.004
Avg.±∆Avg. 1.217 ± 0.004 1.218 ± 0.004 1.207 ± 0.003 1.209 ± 0.003 1.203 ± 0.003

σ 0.029 0.028 0.018 0.011 0.025
T. U. (R. E. %) 0.062 (5.06%) 0.059 (4.83%) 0.039 (3.25%) 0.025 (2.10%) 0.054 (4.49%)

3

Min±∆Min 1.320 ± 0.004 1.267 ± 0.004 1.293 ± 0.004 1.304 ± 0.004 1.238 ± 0.004
Max±∆Max 1.418 ± 0.004 1.406 ± 0.004 1.350 ± 0.004 1.358 ± 0.004 1.358 ± 0.004
Avg.±∆Avg. 1.345 ± 0.004 1.340 ± 0.004 1.326 ± 0.004 1.329 ± 0.004 1.322 ± 0.004

σ 0.029 0.039 0.031 0.014 0.032
T. U. (R. E. %) 0.061 (4.56%) 0.082 (6.15%) 0.066 (4.97%) 0.032 (2.40%) 0.067 (5.08%)

4

Min±∆Min 1.414 ± 0.004 1.456 ± 0.004 1.418 ± 0.004 1.431 ± 0.004 1.358 ± 0.004
Max±∆Max 1.597 ± 0.005 1.516 ± 0.004 1.507 ± 0.004 1.498 ± 0.004 1.481 ± 0.004
Avg.±∆Avg. 1.483 ± 0.004 1.482 ± 0.004 1.458 ± 0.004 1.461 ± 0.004 1.456 ± 0.004

σ 0.048 0.023 0.022 0.017 0.032
T. U. (R. E. %) 0.100 (6.76%) 0.050 (3.40%) 0.049 (3.35%) 0.037 (2.55%) 0.067 (4.62%)

5

Min±∆Min 1.569 ± 0.005 1.569 ± 0.005 1.560 ± 0.005 1.578 ± 0.005 1.533 ± 0.004
Max±∆Max 1.711 ± 0.005 1.682 ± 0.005 1.643 ± 0.005 1.639 ± 0.005 1.634 ± 0.005
Avg.±∆Avg. 1.631 ± 0.005 1.632 ± 0.005 1.603 ± 0.005 1.605 ± 0.005 1.603 ± 0.005

σ 0.042 0.041 0.026 0.017 0.028
T. U. (R. E. %) 0.089 (5.45%) 0.087 (5.35%) 0.057 (3.58%) 0.038 (2.40%) 0.060 (3.76%)

6

Min±∆Min 1.741 ± 0.005 1.751 ± 0.005 1.721 ± 0.005 1.731 ± 0.005 1.682 ± 0.005
Max±∆Max 1.910 ± 0.006 1.866 ± 0.005 1.787 ± 0.005 1.792 ± 0.005 1.803 ± 0.005
Avg.±∆Avg. 1.798 ± 0.005 1.799 ± 0.005 1.763 ± 0.005 1.764 ± 0.005 1.760 ± 0.005

σ 0.054 0.041 0.021 0.019 0.034
T. U. (R. E. %) 0.113 (6.27%) 0.087 (4.86%) 0.048 (2.72%) 0.043 (2.43%) 0.072 (4.12%)

7

Min±∆Min 1.888 ± 0.005 1.910 ± 0.006 1.904 ± 0.005 1.899 ± 0.005 1.834 ± 0.005
Max±∆Max 2.125 ± 0.006 2.047 ± 0.006 1.966 ± 0.006 1.966 ± 0.006 1.988 ± 0.006
Avg.±∆Avg. 1.976 ± 0.006 1.976 ± 0.006 1.935 ± 0.006 1.939 ± 0.006 1.934 ± 0.006

σ 0.066 0.051 0.019 0.023 0.042
T. U. (R. E. %) 0.137 (6.95%) 0.108 (5.46%) 0.044 (2.27%) 0.051 (2.65%) 0.091 (4.68%)

Marimba number - Miñana study
s 6M 7M 8M 9M Avg.*

1

Min±∆Min 1.041 ± 0.003 1.066 ± 0.003 1.063 ± 0.003 1.047 ± 0.003 1.061 ± 0.003
Max±∆Max 1.122 ± 0.003 1.149 ± 0.003 1.149 ± 0.003 1.169 ± 0.003 1.143 ± 0.003
Avg.±∆Avg. 1.091 ± 0.003 1.102 ± 0.003 1.097 ± 0.003 1.095 ± 0.003 1.098 ± 0.003

σ 0.026 0.019 0.022 0.028 0.021
T. U. (R. E. %) 0.054 (4.99%) 0.041 (3.75%) 0.047 (4.28%) 0.059 (5.42%) 0.046 (4.17%)

2

Min±∆Min 1.110 ± 0.003 1.159 ± 0.003 1.149 ± 0.003 1.110 ± 0.003 1.156 ± 0.003
Max±∆Max 1.253 ± 0.004 1.253 ± 0.004 1.264 ± 0.004 1.264 ± 0.004 1.256 ± 0.004
Avg.±∆Avg. 1.194 ± 0.003 1.214 ± 0.004 1.203 ± 0.003 1.200 ± 0.003 1.207 ± 0.003

σ 0.039 0.022 0.031 0.034 0.026
T. U. (R. E. %) 0.082 (6.87%) 0.048 (3.92%) 0.066 (5.45%) 0.072 (6.02%) 0.056 (4.66%)

3

Min±∆Min 1.176 ± 0.003 1.293 ± 0.004 1.264 ± 0.004 1.217 ± 0.004 1.264 ± 0.004
Max±∆Max 1.398 ± 0.004 1.382 ± 0.004 1.374 ± 0.004 1.410 ± 0.004 1.384 ± 0.004
Avg.±∆Avg. 1.308 ± 0.004 1.335 ± 0.004 1.324 ± 0.004 1.314 ± 0.004 1.327 ± 0.004

σ 0.054 0.025 0.034 0.046 0.034
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T. U. (R. E. %) 0.113 (8.61%) 0.054 (4.04%) 0.073 (5.50%) 0.095 (7.23%) 0.071 (5.38%)

4

Min±∆Min 1.312 ± 0.004 1.414 ± 0.004 1.374 ± 0.004 1.320 ± 0.004 1.389 ± 0.004
Max±∆Max 1.516 ± 0.004 1.524 ± 0.004 1.529 ± 0.004 1.556 ± 0.004 1.525 ± 0.004
Avg.±∆Avg. 1.440 ± 0.004 1.471 ± 0.004 1.455 ± 0.004 1.443 ± 0.004 1.461 ± 0.004

σ 0.052 0.033 0.043 0.061 0.037
T. U. (R. E. %) 0.108 (7.52%) 0.070 (4.76%) 0.091 (6.24%) 0.126 (8.7%) 0.078 (5.31%)

5

Min±∆Min 1.473 ± 0.004 1.551 ± 0.004 1.529 ± 0.004 1.464 ± 0.004 1.536 ± 0.004
Max±∆Max 1.662 ± 0.005 1.682 ± 0.005 1.696 ± 0.005 1.682 ± 0.005 1.670 ± 0.005
Avg.±∆Avg. 1.585 ± 0.005 1.619 ± 0.005 1.596 ± 0.005 1.586 ± 0.005 1.607 ± 0.005

σ 0.054 0.036 0.050 0.068 0.040
T. U. (R. E. %) 0.112 (7.09%) 0.076 (4.69%) 0.104 (6.50%) 0.140 (8.84%) 0.085 (5.29%)

6

Min±∆Min 1.643 ± 0.005 1.716 ± 0.005 1.662 ± 0.005 1.606 ± 0.005 1.695 ± 0.005
Max±∆Max 1.845 ± 0.005 1.861 ± 0.005 1.845 ± 0.005 1.855 ± 0.005 1.840 ± 0.005
Avg.±∆Avg. 1.742 ± 0.005 1.784 ± 0.005 1.753 ± 0.005 1.745 ± 0.005 1.767 ± 0.005

σ 0.056 0.044 0.053 0.081 0.045
T. U. (R. E. %) 0.117 (6.74%) 0.094 (5.26%) 0.110 (6.29%) 0.167 (9.59%) 0.095 (5.36%)

7

Min±∆Min 1.782 ± 0.005 1.866 ± 0.005 1.861 ± 0.005 1.751 ± 0.005 1.855 ± 0.005
Max±∆Max 2.012 ± 0.006 2.041 ± 0.006 1.994 ± 0.006 2.053 ± 0.006 2.021 ± 0.006
Avg.±∆Avg. 1.909 ± 0.006 1.965 ± 0.006 1.923 ± 0.006 1.923 ± 0.006 1.942 ± 0.006

σ 0.067 0.049 0.042 0.088 0.050
T. U. (R. E. %) 0.139 (7.26%) 0.105 (5.32%) 0.090 (4.68%) 0.181 (9.39%) 0.105 (5.41%)

Table 2-5.: Minimum, maximum, average, standard deviation, total uncertainty, and relative error of the
frequency ratio for pairs of bars separated by different distances in the traditional marimbas
recorded by Miñana. “s” is the distance between bars in steps The symbol, “σ” is the standard
deviation, “Avg.” refers to the average, “T. U.” is the total uncertainty, “R. E.” corresponds to
the “T. U.” value expressed as a relative error, and “Avg.*” refers to the average of all marimbas.

s Marimba number - Present study
1 2 3 4 5 6 7 8 Avg.*1 9 10 Avg.*2 11

1 1.104 1.105 1.104 1.104 1.107 1.101 1.102 1.105 1.104 1.093 1.096 1.095 1.079
2 1.219 1.221 1.219 1.220 1.224 1.213 1.213 1.221 1.219 1.195 1.201 1.198 1.165
3 1.346 1.349 1.345 1.347 1.355 1.336 1.336 1.348 1.345 1.307 1.316 1.311 1.258
4 1.486 1.491 1.485 1.488 1.499 1.471 1.472 1.490 1.485 1.429 1.442 1.435 1.358
5 1.640 1.647 1.639 1.643 1.659 1.620 1.622 1.646 1.639 1.563 1.580 1.571 1.466
6 1.811 1.820 1.810 1.814 1.836 1.784 1.786 1.818 1.810 1.709 1.731 1.720 1.582
7 1.999 2.011 1.998 2.004 2.031 1.964 1.968 2.009 1.998 1.868 1.897 1.882 1.708
8 — — — — — — — — — 2.042 2.078 2.060 1.844
9 — — — — — — — — — — — — 1.990

Table 2-6.: Theoretical equi-heptatonic, equi-octatonic, and equi-enneatonic scales for the traditional ma-
rimbas recorded for the present study. “s” is the distance between bars in steps. “Avg.*1” refers
to the theoretical scale constructed for the average of the average values from the marimbas
2,3,4,5,6,7 and 8. “Avg.*2” refers to the theoretical scale constructed for the average of the
averages values of the marimbas 9 and 10. In all cases, the values predicted by the theoretical
scales have a relative error ≤ 1.00 % with respect to the experimental values presented in Table
2-3.
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s
Marimba number - Miñana study

1M 2M 3M 4M 5M 6M 7M 8M 9M Avg.*

1 1.102 1.102 1.099 1.099 1.099 1.097 1.101 1.098 1.098 1.099

2 1.215 1.215 1.208 1.208 1.207 1.203 1.213 1.205 1.205 1.209

3 1.339 1.339 1.327 1.328 1.327 1.319 1.336 1.323 1.323 1.329

4 1.476 1.476 1.458 1.460 1.458 1.447 1.471 1.453 1.453 1.461

5 1.627 1.627 1.602 1.605 1.602 1.587 1.620 1.595 1.595 1.607

6 1.793 1.793 1.761 1.764 1.760 1.740 1.784 1.751 1.751 1.766

7 1.976 1.976 1.935 1.939 1.934 1.909 1.965 1.923 1.923 1.942

Table 2-7.: Theoretical equi-heptatonic scales for the traditional marimbas recorded by Miñana. “s” is the
distance between bars in steps. “Avg.*” refers to the theoretical scale constructed for the average
of the average values from the marimbas 1M , 2M , 3M , 4M , 5M , 6M , 7M , 8M , and 9M . In all
cases, the values predicted by the theoretical scales have a relative error ≤ 1.00 % with respect
to the experimental values presented in Table 2-5.

Discussion about tunings

Based on the interviews with the instrument makers, the systematic deviations in the
frequency ratios found in the traditional marimbas might be due to the variations in the voice
preferences of female singers in a region or territory. Since in each territory there are several
singers that are accompanied by musicians playing the same marimba, then it is impossible
to define only one fundamental frequency as a reference to construct the scale. Hence, the
marimbas are constructed by adjusting the tuning as close as possible to the different vocal
preferences, but trying to preserve an isotonic tendency in order to approximately preserve
the transposition practice keeping geometrical distances.

The results of this section show that traditional tunings have changed with time in the
last three decades, losing the low octaves feature in favor of octaves usually closer to the
just interval. This change may be the result of the influence of Western music, which is
characterized by the just octave. It has been argued that the globalization of Western music,
and the commercial value of new genres that combine local rhythms and timbres, have led
to a broad use of 12-TET marimbas de chonta, modifying the taste of African descendants
in the Pacific Coast of Colombia [64]. Frequently the traditional marimbas are referred to as
“badly made marimbas” or “wrongly tuned marimbas”. The most important cultural event of
music from this region, the Petronio Alvarez Festival [64], promoted the use of chromatic and
diatonic 12-TET marimbas for several years. It was not until 2015 that the festival opened a
category for music played with traditional marimbas. It is a common practice of the Ministry
of Culture of Colombia to supply the music schools with 12-TET marimbas, where music is
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taught using the logics of diatonic and chromatic scales with tones and semitones.

2.3.2. Use of harmonic intervals in the musical practices

Statistical study

According to Miñana [13], neutral thirds are among the most used harmonic intervals
in this traditional music. Frequency ratios covering the region of the thirds are commonly
generated using distances of 2 and 3 steps between bars (see Tables 2-3, 2-4, and 2-5.). In
order to check the frequency of use of intervals, their probability of occurrence was obtained
for seven performances of traditional marimba pieces by applying the procedure described
in the Methods section. If one of the most used intervals is the neutral third, then minor
and major thirds are expected to occur with high probability in the scores.

Table 2-8 shows the probability of occurrence of each harmonic interval, and the proba-
bility of occurrence proportional to the total time of duration. Intervals between 3 and 4
semitones are present with high probability in all pieces. Intervals containing sizes between
the fourths and fifths, in most cases generated by pairs of bars separated by a distance of 3
and 4 steps, are also frequent in some pieces; and those intervals near to the sixths, in most
cases generated by 5 steps, appear less frequently in performances. The region of the seconds,
generated by a distance of 1 step, is completely avoided in all musical pieces, and intervals
larger than one octave are almost absent. The region of the sevenths, in most cases generated
by a distance of 6 steps, is avoided in all pieces with the exception of one, where it has a
small incidence, and the region of the octaves is used with small probability of occurrence.

In
te

rv
al Probability

Frequency of occurrence Total duration
Musical piece Musical piece

1 2 3 4 5 6 7 Avg. 1 2 3 4 5 6 7 Avg.
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.24 0.59 0.53 0.13 0.55 0.23 0.55 0.40 0.19 0.60 0.52 0.13 0.56 0.23 0.54 0.39
4 0.08 0.41 0.47 0.12 0.44 0.26 0.37 0.31 0.08 0.40 0.48 0.12 0.43 0.26 0.35 0.30
5 0.23 0.00 0.00 0.30 0.00 0.34 0.07 0.13 0.26 0.00 0.00 0.33 0.00 0.34 0.07 0.14
6 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.01
7 0.07 0.00 0.00 0.17 0.01 0.15 0.00 0.06 0.05 0.00 0.00 0.20 0.00 0.15 0.00 0.06
8 0.21 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.17 0.00 0.00 0.02 0.00 0.00 0.00 0.03
9 0.13 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.20 0.00 0.00 0.02 0.00 0.00 0.00 0.03

10 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.12 0.00 0.00 0.00 0.02
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.05 0.00 0.00 0.07 0.00 0.02 0.00 0.02 0.04 0.00 0.00 0.06 0.00 0.02 0.00 0.02

>12 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

Table 2-8.: Probability of occurrence of harmonic intervals as a function of their size in semitones. Interval
in semitones. “Avg.” refers to the average of the seven musical pieces. The probability has been
taken to be proportional to the frequency of occurrence and to the total time of duration of
each size of harmonic interval.
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Geometrical schemes analysis

The geometrical schemes shown in Figure 2-2 can be applied for the traditional marimbas
with equi-heptatonic averages, the most common ones found in the present study, and in
the studies of Miñana. From these schemes it is possible to infer that the harmonic intervals
with distances of 1 and 6 steps between bars are the least frequent.

Table 2-9 shows the total number of different combinations of pairs of bars generating
the same distance between them for different marimba sizes. Notice that, independently of
the type of scale (hexatonic or pentatonic), the adjacent bars and pairs of bars separated by
6 steps are highly uncommon, this is due to the harmony rules of the geometrical schemes
and incidence of the discarded bars, the so called “bad bars”. In the marimbas with equi-
heptatonic averages, the regions of adjacent bars and 6 steps distance correspond to intervals
around the seconds (frequency ratios between or near to the range [1.06, 1.12]) and the
sevenths (frequency ratios between or near to the range [1.78, 1.89]) (see Tables 2-3 and
2-5).

For the same distance between bars, the marimbas of the Torres family analyzed in the
present study (marimbas 9, 10, and 11) have lower values in the tunings in comparison with
the other ones (see Tables 2-3 and 2-4), this feature is more evident for larger distances than
for smaller ones (a natural consequence of the presence of equi-octatonic and equi-enneatonic

Marimba size (bars)

14 15 16 17 18 19 20 21 22 23 24

D
is
ta
nc

e
(s
te
ps
)

1 1 2 2 2 2 2 2 2 3 3 3

H
ex
at
on

ic

2 9 10 10 11 11 12 13 14 15 15 16
3 4 5 5 6 7 7 7 7 8 8 9
4 5 6 6 6 6 7 7 8 9 9 9
5 6 7 7 8 9 10 11 11 12 12 13
6 2 2 2 2 2 2 2 3 3 3 3
7 6 7 7 8 9 10 11 12 13 13 14

D
is
ta
nc

e
(s
te
ps
)

1 2 2 2 2 2 2 3 3 3 3 3

P
en
ta
to
ni
c

2 3 4 4 4 4 4 5 5 6 6 6
3 5 5 6 6 7 8 8 8 8 9 9
4 4 5 6 6 6 6 7 7 8 9 9
5 3 3 3 3 4 4 5 5 5 5 5
6 1 1 1 1 1 2 2 2 2 2 2
7 5 6 7 7 8 9 10 10 11 12 12

Table 2-9.: Total number of different combinations of pairs of bars generating the same distance between
them for different marimba sizes (from 14 bars up to 24 bars).
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scales). For marimbas 9 and 10 (see Table 2-4), intervals near to the sevenths and the octaves
are better generated using 7 and 8 steps, respectively. For marimba 11 (see Table 2-4), the
same intervals are better generated using 8 and 9 steps, respectively.

Discussion about the use of harmonic intervals

From the statistical analysis as well as from the analysis of the geometrical schemes, it is
possible to infer that regions around the seconds and the sevenths seem to be deliberately
avoided in this music. Since octaves present a small probability of occurrence in the statistical
analysis (in average over all the musical pieces, octaves are 2% of all intervals), we infer that
the most used region of the traditional marimba music is between the thirds and the sixths
(Table 2-8). For the traditional marimbas of the present study following equi-heptatonic
averages, and from the study by Miñana, this region is generated using bars separated
between 2 and 5 steps; from the average values of the minima and maxima of both studies,
this region is approximately between 1.16 ≤ α ≤ 1.72.

2.3.3. Theoretical dissonance level curves
In this subsection the theoretical dissonance curves associated with the sound emitters of

the marimba de chonta are presented. In all cases the dissonance scale is taken between 0
and 1.

Isolated bars

In the tuning process, some makers construct the bars before the resonators and test the
tuning within sets of three, four, or five adjacent bars. In order to analyze this procedure,
the dissonance curve for an isolated bar was obtained theoretically. The range used by the
instrument makers to test the tuning include fundamental frequency ratios up to α = 1.53,
which is the maximum value among the average of the maxima found for 5 successive bars
(4 steps) in both studies (see Tables 2-3, 2-4, and 2-5).

Assuming that the main contributions to the vibration of a bar with free ends come from
the transverse modes, then the allowed frequencies (in Hz) are [71, p. 62], [72, p. 922]:

fn = πK
8B2

√
E

ρ

[
3.0112, 52, 72, ..., (2n+ 1)2

]
, n ∈ N, n ≥ 2, (2-2)

where E is Young’s modulus, ρ is the density of the material, B is the length of the bar,
and K is the radius of gyration of the cross section. The fundamental frequency f1 is given by
[πK
√
E(3.0112)]/(8B2√ρ), and the first five overtones are given approximately by {2.758f1,

5.405f1, 8.934f1, 13.346f1, 18.641f1} [71, p. 63], [73, p. 85], [21].
Up to know, we have suppose that the bar has a constant cross section, that it is ho-

mogeneous, untwisted (the principal axes of elasticity of all sections are equally directed in
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space), and that its axis corresponds to a straight line [74, p. 53]. The specific shape of the
bar is taken into account in the fundamental frequency through the parameters B and K.
For the case of a rectangular cross section K =W/

√
12, withW the width of the bar [71, p.

53]. In our analysis it was not necessary to assume a specific shape for the bar, because this
information does not change the location of the overtones with respect to the fundamental
frequency.

This theoretical model has been used in previous analyses, as for example for the gamelan
bars in order to approximate the modes of vibration [66]. Figure 2-4(a) presents the dis-
sonance curve for this case inside one octave, taking equal values of the amplitudes for the
fundamental and the overtones in order to appreciate the contributions of all overtones, in
agreement with the procedure carried out by Sethares [21, 25, 32]. This curve was reported
by Sethares [21] in order to expose that if the tuning of instruments is carried out accor-
ding to the consonance properties of their timbre, then bar instruments must be tuned in a
different way than instruments with harmonic timbre, such as strings and pipes.

Local minima of dissonance were found at α = 1.26, 1.40 and 1.49, as illustrated in Figure
2-4(a). The minimum at α = 1.40 does not correspond to any average in the experimental
tunings (see Tables 2-3, 2-4, and 2-5). The minimum at α = 1.49 (close to the just fifth
and the 12-TET fifth) is near the average value for the distance of 4 steps in the case of
the equi-heptatonic marimbas in the present study (α ≈ 1.48), and slightly farther from
the average for the marimbas studied by Miñana (α ≈ 1.46). The minimum located at 1.26
is broader than the other minima and covers the region around the thirds and the fourths
(1.16 < α < 1.37, grey box in Figure 2-4(a)). The minimum at 1.26 is less dissonant than
the ones found in the same region for the case of a harmonic spectrum (Figure 2-4(a)), and
it is placed in an important range of use of harmonic intervals in traditional marimba music
(see 3, 4, 5 semitones in Table 2-8).

Figure 2-4(b) shows the differentiation of the dissonance level DF (α) with respect to
the α parameter, dDF (α)/dα, illustrating effects due to the shapes of local minima. In the
region of the thirds and the fourths the level of dissonance for bars changes smoothly when
compared to the curve for emitters with harmonic spectrum.

Bars and resonators

In order to include effects due to the tubular resonator located under each bar, it is modeled
as a cylindrical closed pipe having the same fundamental frequency as the bar. Since closed
pipes only produce odd harmonics [71], the first thirteen overtones for the bar-resonator
system used in the analysis are {2.758f1, 3.000f1, 5.000f1, 5.405f1, 7.000f1, 8.934f1, 9.000f1,
11.000f1, 13.000f1, 13.346f1, 15.000f1, 17.000f1, 18.641f1}.

The amplitudes for the partials are assumed to diminish as an = a0(0.16)exp[(−1/5)(n−
2.758)], where n is the ratio of the frequency of the corresponding overtone to the fundamental
(n = 2.758, 3.000, 5.000, ...), and a0 is the amplitude for the fundamental. Figure 2-5 shows
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2.3.4. Experimental dissonance level curves for the marimbas of the
present study

The experimental analysis uses the recordings of the sound produced by each bar coupled
with its resonator. The fundamental and the first 10 overtones with the largest amplitudes
were found for the marimbas of the present study; this is shown graphically for all bars of
each marimba in Figures 2-7 to 2-17.

Figure 2-18 shows, for each marimba, the average normalized amplitude as a function
of the ratio between the frequency of the corresponding overtone and the fundamental fre-
quency. The amplitude has been averaged over all the bars of a particular marimba. Traditio-
nal marimbas 2, 3, 4, 5, 9, 10, and 11 exhibit a common pattern in the spectrum. Specifically,
there are important incidences of overtones around 2.4 < n < 3.0 and 4.6 < n < 5.5, indi-
cating that these regions group the main contributions coming from the overtones produced
by the different bars and resonators of these marimbas. The normalized amplitudes obtained
from superposition of the samples from these marimbas are shown in Figure 2-19; the most
important overtones are located near n = 2.7 ± 0.2, 5.0 ± 0.2, and 5.4 ± 0.2. The values of
these overtones are consistent inside the uncertainties with those from the theoretical model
of the first and the second transverse modes of a bar free to vibrate at both ends and the
second mode of a closed pipe. Other modes are absent or have low amplitudes in almost
all cases, such as the unexpected peaks located at n = 2.0 that we associate with the first
overtone of broken resonators functioning as open pipes.

Figure 2-7.: Normalized amplitude of the Marimba 1 for the first 10 overtones produced by each bar with
its corresponding resonator. The first bar of each marimba corresponds to the lowest frequency
and the last bar to the highest one.
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Figure 2-8.: Normalized amplitude of the Marimba 2 for the first 10 overtones produced by each bar with
its corresponding resonator. The first bar of each marimba corresponds to the lowest frequency
and the last bar to the highest one.

Figure 2-9.: Normalized amplitude of the Marimba 3 for the first 10 overtones produced by each bar with
its corresponding resonator. The first bar of each marimba corresponds to the lowest frequency
and the last bar to the highest one.



47

Figure 2-10.: Normalized amplitude of the Marimba 4 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.

Figure 2-11.: Normalized amplitude of the Marimba 5 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.



48

Figure 2-12.: Normalized amplitude of the Marimba 6 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.

Figure 2-13.: Normalized amplitude of the Marimba 7 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.
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Figure 2-14.: Normalized amplitude of the Marimba 8 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.

Figure 2-15.: Normalized amplitude of the Marimba 9 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.
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Figure 2-16.: Normalized amplitude of the Marimba 10 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.

Figure 2-17.: Normalized amplitude of the Marimba 11 for the first 10 overtones produced by each bar
with its corresponding resonator. The first bar of each marimba corresponds to the lowest
frequency and the last bar to the highest one.
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2.3.5. The transposition practice

The transposition of a musical piece involves rewriting a composition in a different key, a
practice that is common when accommodating different voice ranges [12]. Since in an equal
tempered scale the frequency ratios are preserved, the dissonance sequence in a transposi-
tion process remains almost unchanged conserving similar tension-relaxation sequences. In
the isotonic scales, the transposition process keeps the same frequency ratios for the same
geometrical distances. In traditional marimbas the average frequency ratios are the ones that
follow isotonic scales, with deviations with respect to the mean, suggesting that similar suc-
cessive dissonance changes can be preserved if the regions with large changes in dissonance
are avoided.

Up to now, the dissonance curves have been constructed over a fixed value for one of the
fundamental frequencies (300 Hz). In general, the form of the dissonance curves is similar
for different values of the fixed fundamental frequency. For example, Figures 2-21(a),(c)
show the dissonance curves, for the experimental spectrum shown in Figure 2-19, in the case
of the Vassilakis and the second Sethares models. The set of fundamental frequencies was
obtained using the ratio 1.104, coming from the average ratios of the fundamental frequencies
found for adjacent bars of the equi-heptatonic traditional marimbas of the present study (see
Table 2-3). Hence this figure represents the dissonance curves starting from different bars
of the marimba. This figure also shows that the same musical interval played in a lower part
of the register tends to be more dissonant than when played in a higher part, a well-known
property of musical intervals [2, 18].

In the performance of a musical piece on a traditional marimba different simultaneous
pairs of bars are hit to construct successive dissonance levels. Since the melodic motion is
produced using bars near to each other [40], this practice results in jumps between diffe-
rent dissonance curves near to each other (see Figures 2-21(b),(d)). In the region of the
dissonance curves of traditional marimbas that excludes the seconds, the sevenths, and the
octaves, transitions or jumps made between near or adjacent dissonance curves lead to small
changes in the dissonance sequences. For example, for the traditional marimbas consistent
with the spectrum shown in Figure 2-19, Figures 2-21(b),(d) show that the most dissonant
elements in this music are usually due to intervals with a distance of 2 steps, and the most
consonant are usually due to intervals with distances of 4 or 5 steps. These features do not
change significantly due to jumps between near or adjacent dissonance curves.

A different situation occurs for 6, 7, and 8 step distances in the equi-heptatonic, equi-
octatonic, and equi-enneatonic scales, respectively, in which narrow peaks can lead to changes
from consonant to dissonant values for small changes in α, or vice-versa, especially in the
region of sevenths.

Regarding the transposition process, the bar used to start the performance of a piece
determines the initial dissonance curve for the sequence of steps. If two initial bars, associated
to a transposition process, are adjacent or close to each other, then the same sequence of
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Up to now n = 2.758, 5.000, and 5.405 have been used as representative values for the
overtones n = 2.7 ± 0.2, 5.0 ± 0.2, and 5.4 ± 0.2. We explore the effect of selecting other
values inside the uncertainties of these overtones in Figures 2-22 to 2-31, and the results
show that the two narrow local minima of dissonance move inside the region of the sevenths,
the octaves, intervals larger than the octaves, and eventually can reach the region of the
major sixths (that are not specially used in this music), however, even for these cases, the
broad minimum of dissonance in the most important region of use of the marimba de chonta
is preserved.

Figure 2-22.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.7, 5.0, and 5.4

Figure 2-23.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.5, 4.8, and 5.2
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Figure 2-24.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.9, 5.2, and 5.6

Figure 2-25.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.5, 5.2, and 5.6
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Figure 2-26.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.9, 4.8, and 5.2

Figure 2-27.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.9, 4.8, and 5.6
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Figure 2-28.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.5, 4.8, and 5.6

Figure 2-29.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.9, 5.0, and 5.2
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Figure 2-30.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.8, 4.9, and 5.3

Figure 2-31.: Dissonance level DF (α) as a function of the ratio of the fundamental frequencies α. Dissonan-
ce curves produced using the first and the second Sethares model (model 1 and 2 respectively),
and the Vassilakis model. The overtones selected have a ratio between the frequency of the
overtone and the frequency of the fundamental given by 2.6, 5.1, and 5.5



3. Generalization of the interval size and
its application to melody

This chapter is organized as follows. The first section presents the microscopic representa-
tion of intervals and describes how to construct their macroscopic observables. The second
section describes how to measure levels of tonal consonance using the representation propo-
sed. The third section introduces macroscopic observables in melody. The fourth and the fifth
sections present an application to real melodic lines and a statistical model that reproduces
the main experimental findings, and the final section presents conclusions.

3.1. Microscopic representation and macroscopic
observables of intervals

This section presents the microscopic representation of musical intervals using physical
quantities, the expected values of the relevant quantities, the mathematical description of
transposition processes in this representation, and an analysis of distinguishability of musical
intervals.

3.1.1. Interval size and its relation to the fundamental frequency of
pitches

Many musical systems employ discrete sets of sounds produced by musical instruments,
which are usually grouped into musical scales. Two well-known scales based on the Pytha-
goras rule are the just and the Pythagorean [1, 2].

Ordering the R pitches produced by a musical instrument tuned to a particular musical
scale from the lowest to the highest fundamental frequency leads to a collection of pitches
{f1, f2, ..., fi, ..., fR} with f1 < f2 <, ... < fi < ... < fR. The interval size L associated to a
pair of pitches fi and fj is defined for many musical scales as L ≡ L(fi, fj) = j − i. The
magnitude of L determines the plain distance between pitches, and its sign is meaningful
for successive pitches, distinguishing the chronological order of their appearances. Intervals
with the same size L can be produced in different locations of the register, and this quantity
can be considered as degenerated with a value that is equal to the total number of such
intervals. For complex tones, such as the sounds produced by musical instruments that can
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be described as a superposition of several pure tones, Plomp and Levelt found that an interval
with a given frequency ratio fj/fi might be more or less consonant depending on its location
in the register [18]. In many musical cases, there is a one-to-one correspondence between L
and fj/fi, for example in an equal-tempered system.

The Pythagoras rule can be expressed as the frequency difference

fj − fi = [(n−m)/(n+m)](fj + fi), (3-1)

where for the just and Pythagorean scales the quantity (n−m)/(n+m) depends on the
size of the interval L (see Figure 3-1).

The 12-tone equal-tempered (12-TET) scale belongs to the equal tempered system, and has
been widely utilized in Western tonal music. This system is based on a different mathematical
rule, fi = f1

h
√

2i, where h is a natural number (h = 12 for the 12-TET) and f1 is a reference
frequency. In this system, the frequency ratio is given by

fj/fi = h
√

2j−i = h
√

2L, (3-2)

and an equivalent expression to (3-1) is

fj − fi = 2L/h − 1
2L/h + 1(fj + fi). (3-3)

Equation (3-3) approximately holds for the just and Pythagorean scales, taking (n−m)/(n+
m) = (2L/b − 1)/(2L/b + 1) and using the most common values of n and m related to each
musical interval size L in the just and Pythagorean scales (see Table 1-1) [1], then for a
register with 88 pitches the obtained fit parameters are as follows:

In the just scale, b = 12.0040± 6.8× 10−3 with a determination coefficient R2 ≈ 1.

In the Pythagorean scale, b = 11.9767± 4.9× 10−3 with R2 ≈ 1.

In the 12-TET, b = 12.

The expression (2L/b − 1)/(2L/b + 1) can be written as a linear function of L in a broad
region: see Figure 3-1. The second-order term of the Taylor expansion around L = 0 vanishes,
and the first-order term leads to (2L/b − 1)/(2L/b + 1) ≈ cL, with c = (ln2)/(2b).

In many musical cases, the sizes of intervals are smaller than or equal to two octaves, such
as in the case of melodic intervals in typical melodic lines [9]. For the case that −24 ≤ L ≤ 24,
the fit parameters are given as follows:

For the just scale, c = 2.632 × 10−2 ± 1.52 × 10−4 with a determination coefficient
R2 = 0.998.

For the Pythagorean scale, c = 2.642× 10−2 ± 1.55× 10−4 with R2 = 0.998.
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3.1.2. Expected values with musical meaning
Let us suppose that in a musical piece, the probability associated to the frequency of

occurrence of each interval of size L is known to be {p
L
} with ∑L pL = 1. If the probability

p
L
is related to simultaneous pitches, then L can be defined as |L| ≡ |L(fi, fj)| = |j − i|.
Probability distributions (PDs) allow us to obtain macroscopic quantities related to spe-

cific properties of musical pieces. For example, the average magnitude of the interval size is
given by

〈|L|〉 =
Lmax∑

L=Lmin
|L|p

L
. (3-5)

Frequently, different musical instruments have different registers. However, equation (3-5)
does not capture this information, for example in a transposition process that moves a set
of intervals from one part of the register to another. The expected value of the frequency
difference captures information about the locations of intervals in the register:

〈|fj − fi|〉 = |fj1 − fi1|+ |fj2 − fi2|+ ...+ |fjN − fiN |
N

=

∑
i′,j′ |fj′ − fi′ |

∣∣∣
Lmin

+...+∑
i′′,j′′ |fj′′ − fi′′ |

∣∣∣
Lmax

N

=
N
Lmin
〈|fj′ − fi′|〉Lmin

N
+ ...+

N
Lmin
〈|fj′′ − fi′′|〉Lmax

N
,

(3-6)

where N is the total number of intervals, ∑i′,j′ |fj′ − fi′ |
∣∣∣
Lmin

+... + ∑
i′′,j′′ |fj′′ − fi′′ |

∣∣∣
Lmax

is
the sum of the frequency differences of intervals grouped by their size, and N

Lmin
, ..., N

Lmax

are the total numbers of intervals of each size L. Taking p
L

= N
L
/N as the probability of

finding an interval of size L, the expected value is

〈|fj − fi|〉 =
Lmax∑

L=Lmin
〈|fj′ − fi′|〉LpL , (3-7)

where 〈|fj′ − fi′ |〉L is the mean value of the frequency differences for a set of intervals of size
L. The linear approximation leads to

〈|fj − fi|〉 ≈ 2c
Lmax∑

L=Lmin
|L|〈X〉

L
p
L

= 2c
Lmax∑

L=Lmin
|L|p

L
, (3-8)

where L = L〈X〉
L
is an effective size containing information about the contribution of

the average location in the register. Equation (3-8) can be considered as an extension of
equation (3-5) when the average position in the register of each type of interval size 〈X〉

L
is
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taken into account. Notice that if all intervals have the same average position in the register
X
C
, then the expected value |〈fj − fi〉| is proportional to the expected value 〈|L|〉, being

given by 〈|fj − fi|〉 ≈ 2cX
C
〈|L|〉. Equation (3-8) shows that the expected value associated

to the frequency differences takes into account the mean location in the register of intervals.
However, the diversity of locations in the register for the same interval does not contribute
to the expression (3-8). A quantity that takes into account this diversity can be constructed
from equation (3-4) as

f 2
j − f 2

i = (fj − fi)(fj + fi) ≈ 4cL
(
fj + fi

2

)2

= 4cLX2. (3-9)

From the physics perspective, this quantity is proportional to the difference in the average
energy densities εj − εi for two harmonic waves with equal amplitudes a propagating in a
medium with density ρ [75]:

εj − εi = 2π2ρa(f 2
j − f 2

i ) . (3-10)

The expected value of the quantity f 2
j − f 2

i in equation (3-9) can be written as

〈|f 2
j − f 2

i |〉 =
Lmax∑

L=Lmin
〈|f 2

j′ − f 2
i′|〉LpL ≈ 4c

Lmax∑
L=Lmin

|L|〈X2〉
L
p
L

= 4c
Lmax∑

L=Lmin
|L|

(
〈X〉2

L
+ σ2

L

)
p
L

= 4c
Lmax∑

L=Lmin
|L|p

L
,

(3-11)

where the term σ
L

2 represents the dispersion of the intervals of size L in the register
(measured as a variance) with respect to the average position 〈X〉

L
, and L = L

(
〈X〉2

L
+ σ2

L

)
is an effective size that takes into account the contribution of the average location of intervals
in the register as well as their dispersion. Equation (3-11) can be considered as an extension
of equation (3-8), when the contribution from the dispersion in the locations of the intervals
is taken into account. In the case of just one possible location in the register for each kind of
interval of size L, σ

L
2 = 0. In addition, if the average positions in the register for intervals

of different sizes are close to each other and they are located around the position X
C
, then

the first-order term of the Taylor expansion around X
C
leads to 〈X〉2

L
≈ 2X

C
〈X〉

L
−X2

C
≈

X
C
〈X〉

L
. Hence, these approximations lead to 〈|f 2

j − f 2
i |〉 ≈ 2X

C
〈|fj − fi|〉.

3.1.3. Transposition process
In a transposition process, the set of probabilities {p

L
} remains unvaried when the location

of the intervals in the register is moved from the original one 〈X〉O
L
to a new one 〈X〉N

L
. These

locations are related as
〈X〉N

L
= w〈X〉O

L
; w = fN/fO, (3-12)
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where fO refers to any fundamental frequency in the original location, fN is the corresponding
frequency in the new location, and w is the interval of the transposition. While the observable
〈|L|〉 remains unchanged after the transposition process, 〈|fj − fi|〉 changes as follows:

〈|fj − fi|〉N = w〈|fj′ − fi′ |〉O, (3-13)

where 〈|fj − fi|〉O and 〈|fj − fi|〉N denote to the expected values in the original and new
locations of the register, respectively.

In the case of an observable 〈|f 2
j − f 2

i |〉, the variance in the new location (σ2
L
)N changes

with respect to the variance in the original location (σ2
L
)O by the square of the interval of

the corresponding transposition w2,

(σ2
L
)N = w2[(σ2

L
)O]. (3-14)

Because 〈X〉2
L
also scales with w2, in a transposition process the ratio 〈X〉2

L
/σ2

L
remains

unchanged, and the expected value 〈|f 2
j − f 2

i |〉 scales as

〈|f 2
j − f 2

i |〉N = w2〈|f 2
j′ − f 2

i′|〉O, (3-15)

where 〈|f 2
j − f 2

i |〉O and 〈|f 2
j − f 2

i |〉N are the expected values in the original and new
locations, respectively.

3.1.4. Distinguishability of pairs of pitches

So far, it has been shown that the quantities fj − fi and f 2
j − f 2

i distinguish between
intervals of the same size in different locations in the register (equations (3-4) and (3-9)). In
order to understand whether the values of the quantities fj − fi and f 2

j − f 2
i can be used to

distinguish each possible pair of pitches in the just, Pythagorean, and 12-TET musical scales,
the general problem of distinguishability is treated here, including intervals of different sizes.

Figure 3-2 illustrates the dependence of fj − fi and f 2
j − f 2

i on the magnitude of the
interval size |L| for the 12-TET scale tuned with A = 440Hz. Considering the orders of
magnitude of the values and the relative separations between branches, this figure indicates
that the quantity f 2

j − f 2
i has a better resolution than fj − fi for distinguishing intervals of

equal size in different locations of the register.
The general distinguishability problem for pairs of pitches can be formulated independently

of the musical scale and the particular tuning as follows: If two pairs of different pitches
{fi, fj} and {fr, fs} produce the same frequency difference or the same difference in the
squares of the frequencies, then

fj−fi = fs−fr ; f 2
j −f 2

i = f 2
s −f 2

r ; for fj > fi(i.e. j > i) and fs > fr(i.e. s > r). (3-16)
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ratios (1 ≤ s− r ≤ Lmax ; 1 ≤ j − i ≤ Lmax ; 1 ≤ |i− r| < Lmax) are generated in order to
find the number of times that the degeneracy equations ((3-18) and (3-19)) are satisfied as
a function of the precision in the decimal places. This procedure is equivalent to checking if
for each possible α ratio, the following equations are verified

α1 ±∆α1 − 1
α2 ±∆α2 − 1 = α3 ±∆α3 ; α2

1 ±∆α2
1 − 1

α2
2 ±∆α2

2 − 1 = α2
3 ±∆α2

3. (3-20)

Assuming equal uncertainties for the three ratios, ∆α1 = ∆α2 = ∆α3 = ∆α, given
by the number of decimal places d, this is ∆α = (1 × 10−d)/2, , and using the property
∆(α2) ≈ 2α∆α, then the previous equations can be rewritten as:

α1 − 1±∆α
α2 − 1±∆α = α3 ±∆α ; α2

1 − 1± 2α1∆α
α2

2 − 1± 2α2∆α = α2
3 ± 2α3∆α. (3-21)

The minimum and the maximum values that can take the fractions in the previous equa-
tions, for the frequency differences (minα,maxα) and for the difference in the squares of the
frequencies (minα2 ,maxα2) are given by:

Minimum values:

minα = α1 − 1−∆α
α2 − 1 + ∆α ; minα2 = α2

1 − 1− 2α1∆α
α2

2 − 1 + 2α2∆α (3-22)

Maximum values:

maxα = α1 − 1 + ∆α
α2 − 1−∆α ; maxα2 = α2

1 − 1 + 2α1∆α
α2

2 − 1− 2α2∆α (3-23)

For the frequency difference, if at least one value of α in the interval [α3 −∆α, α3 + ∆α]
is also in the interval [minα,maxα], or vice versa, then the degeneracy equation is satisfied
for the corresponding values α1, α2, and α3 with a particular uncertainty ∆α.

For the difference in the squares of the frequencies, if at least one value in the interval
[α2

3− 2α3∆α, α2
3 + 2α3∆α] is comprehended in the interval [minα2 ,maxα2 ] or vice versa, the

degeneracy equation is satisfied.
The values of α for the Pythagorean, the just, and the 12-TET scales are calculated from

the values n/m and fj/fi presented in Table 1-1. For all scales, the α coefficients corres-
ponding to intervals larger than one octave are obtained by multiplying the corresponding
coefficient of the previous octave by 2.

Table 3-1 shows the number of combinations of α ratios satisfying the degeneracy equa-
tions as a function of the number of decimal places d used to measure these ratios (1 ≤ d ≤
10). Two possible situations are considered: intervals up to two octaves, for which is possible
to interpret the quantities fj − fi and f 2

j − f 2
i as proportional to the interval sizes; and the

case of all possible intervals on an 88-pitch musical instrument, such as a traditional piano.
For intervals with size L up to two octaves (Lmax = 24 semitones), the number of possible

combinations of the α and α2 ratios is 24 × 24 × 23 = 13248. For intervals with sizes up
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Scale
Up to 24 semitones Up to 87 semitones

fj − fi f 2
j − f 2

i fj − fi f 2
j − f 2

i

Just 52 for d ≥ 4 2 for d ≥ 5 208 for d ≥ 4 5 for d ≥ 8
Pythagorean 8 for d ≥ 4 0 for d ≥ 5 47 for d ≥ 5 2 for d ≥ 8

12-TET 0 for d ≥ 5 0 for d ≥ 4 0 for d ≥ 5 0 for d ≥ 8

Table 3-1.: Number of combinations of the α ratios that satisfy the degeneracy equations (3-18) and (3-19),
as a function of their precision given in terms of the utilized number of decimal places d. Results
for 1 ≤ d ≤ 10.

to 87 semitones (corresponding to an 88-pitch musical instrument) the number of possible
combinations is 87× 87× 86 = 650934.

In the 12-TET scale, the quantity fj − fi distinguishes each pair of different pitches when
the degeneracy is lifted by rounding the value of the α ratio to d ≥ 5 for the 24 and 87
semitones cases. The quantity f 2

j − f 2
i lifts the degeneracy for d ≥ 4 in the case of 24

semitones, and for d ≥ 8 in the case of 87 semitones (see Table 3-1). In the Pythagorean
scale, the degeneracy of the quantity f 2

j − f 2
i can only be lifted for the 24 semitones case,

taking d ≥ 5, and the degeneracy of fj − fi cannot be lifted with up to 10 decimal places
(d = 10) (see Table 3-1). In the just scale, the degeneracy remains up to d = 10 for both
quantities and in both cases (24 and 87 semitones) (see Table 3-1).

In some cases, the degeneracy equations are satisfied independently of the precision used
to measure the α ratios. For example, in the case of the quantity f 2

j − f 2
i for the just scale,

the combination of α(s−r) = 5/3 and α(j−i) = 5/4 produces α(i−r) = 16/9, i.e., the major
thirds (5/3) produce equal values to major sixths (5/4) when the lowest pitches of each of
these intervals generate minor sevenths (16/9). Whenever it is possible to lift the degeneracy,
this can be achieved by controlling the level of distinguishability between pairs of pitches
through the selection of the precision of the α ratios, determined by the uncertainty ∆α.
This can be done using the uncertainty in the measurement of the frequencies ∆f and the
squares of the frequencies ∆f 2 in order to construct the quantities fj − fi and f 2

j − f 2
i .

Defining α = (fj ± ∆fj)/(fi ± ∆fi), with fj > fi (i.e. α > 1), the uncertainty for the
quotient is

∆α = α

(
∆fj
fj

+ ∆fi
fi

)
. (3-24)

Assuming equal uncertainty values for the frequencies ∆fi = ∆fj = ∆f :

∆α = α

(
1
fj

+ 1
fi

)
∆f, (3-25)
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then
∆f = ∆αfjfi

α(fj + fi)
. (3-26)

Equation (3-26) relates the uncertainty in the measure of the α ratios (∆α) with the
uncertainty in the measure of the frequency ∆f .

For the case of the square of the frequencies: α2 = [f 2
j ± ∆(f 2

j )]/[f 2
i ± ∆(f 2

i )]; fj > fi,
α > 1, and using the property ∆(α2) ≈ 2α∆α we have:

∆(α2) = 2α∆α = α2
[

∆(f 2
j )

f 2
j

+ ∆(f 2
i )

f 2
i

]
. (3-27)

Assuming equal uncertainty values for the squares of the frequencies: ∆(f 2
i ) = ∆(f 2

j ) =
∆f 2, then

∆α = α

2

(
1
f 2
j

+ 1
f 2
i

)
∆f 2, (3-28)

and finally:

∆f 2 =
2∆αf 2

j f
2
i

α(f 2
j + f 2

i ) . (3-29)

As an example, to distinguish each possible pair of pitches in a range of up to 24 semitones
(1 ≤ α ≤ 4) in the 12-TET scale, the quantity f 2

j − f 2
i must be measured with a precision

in f 2, i.e., ∆f 2, that is consistent with an uncertainty ∆α = 5 × 10−5, corresponding to
rounding α to 4 decimal places.

3.2. Connection with tonal consonance
This section shows the connection between the representation of musical intervals pre-

viously presented and the tonal consonance formalism.

3.2.1. Measuring the dissonance levels of intervals
Musical instruments produce complex tones composed of pure tones. The dissonance level

D of two simultaneous complex tones with the same timbre, as in the case of a harmonic
interval, can be calculated using models as for example the Sethares or the Vassilakis ones.
Taking into account the contributions of all individual dissonances δ generated from all
possible combinations of pure tones in the superposition of the spectra.

As it was explained in Chapter 1, the frequency difference has been utilized to determine
the dissonance levels of pairs of pure tones being sounded together [18, 21, 25, 30, 31, 32].

Figure 3-3 presents the dissonance curves generated using the Vassilakis model (equation
(1-6)) for the intervals within the octave in the case of the 12-TET scale. This figure has
been generated fixing a particular frequency ratio α and then varying the value of the
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A1 A2 A3 γ1 (Hz) γ2 (Hz) R2

In
te

rv
al

si
ze

(s
em

it
on

es
)

1 1.6528 ± 0.0230 0.2087 ± 0.0018 0.1493 ± 0.0004 41.5591 ± 0.4704 723.8846 ± 9.1151 0.9972
2 1.5586 ± 0.0193 0.2818 ± 0.0042 0.0595 ± 0.0003 49.2216 ± 0.6564 435.4327 ± 6.2571 0.9977
3 1.7258 ± 0.0171 0.2461 ± 0.0046 0.0866 ± 0.0002 42.2367 ± 0.4526 276.1143 ± 3.9790 0.9988
4 1.6806 ± 0.0177 0.2182 ± 0.0051 0.0740 ± 0.0002 44.5340 ± 0.5252 284.3376 ± 5.1389 0.9985
5 1.6461 ± 0.0172 0.2037 ± 0.0052 0.0414 ± 0.0002 46.3160 ± 0.5511 290.0944 ± 5.6755 0.9986
6 1.5680 ± 0.0174 0.1350 ± 0.0031 0.0714 ± 0.0002 47.7470 ± 0.5118 414.0880 ± 9.1128 0.9981
7 1.6566 ± 0.0146 0.1824 ± 0.0059 0.0226 ± 0.0001 43.7348 ± 0.4685 215.1966 ± 4.4173 0.9992
8 1.4392 ± 0.0170 0.1345 ± 0.0031 0.0533 ± 0.0002 50.1781 ± 0.5704 424.4440 ± 9.2791 0.9983
9 1.4719 ± 0.0162 0.1750 ± 0.0044 0.0444 ± 0.0001 45.1189 ± 0.5146 260.5915 ± 4.6645 0.9991
10 1.3545 ± 0.0182 0.1550 ± 0.0031 0.0397 ± 0.0002 48.0988 ± 0.5862 375.0375 ± 6.6909 0.9987
11 1.3514 ± 0.0171 0.1045 ± 0.0015 0.0523 ± 0.0002 48.2632 ± 0.4694 601.3901 ± 11.1094 0.9986
12 1.5831 ± 0.0107 0.1117 ± 0.0044 0.0006 ± 0.0001 42.1740 ± 0.3228 174.6484 ± 3.6890 0.9998

Table 3-2.: Fitting parameters and determination coefficients R2 for the dissonance curves of musical in-
terval sizes inside the octave. The fit parameters correspond to the function (3-30).

3.2.2. Expected values of the dissonance levels associated to intervals
Suppose that in a musical piece the probability associated to the frequency of occurrence

of each harmonic interval size L is known, as {p
L
} with ∑L pL = 1. The average dissonance

associated to harmonic intervals can be defined as

〈D〉 = 1
H

∑
j

Dj, (3-31)

where H is the total number of harmonic intervals in the musical score. Grouping by
intervals of equal size, as in equation (3-6), we have that

〈D〉 =

∑
iDi

∣∣∣
Lmin

+...+∑
i′ Di′

∣∣∣
Lmax

N
= NLmin〈D〉Lmin

N
+ ...+ NLmax〈D〉Lmax

N
, (3-32)

and taking p
Li

= N
Li
/N as the probability of finding an interval of size Li the expected

value of dissonance in a musical piece owing to the contribution of harmonic intervals is

〈D〉 =
Lmax∑

L=Lmin
〈D〉

L
p
L
. (3-33)

If all harmonic intervals have the same timbre and D can be expressed as in equation
(3-30), then the average dissonance for each kind of interval size 〈D〉L can be approximately
obtained by expanding equation (3-30) in a Taylor series around the mean position in the
register

First order approximation

Taking the first order approximation around a point q:
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D = F (X) ≈ F (q) + F ′(q)(X − q). (3-34)

If we have M musical intervals of equal size L in the musical piece, then we can take q as
the mean position in the register 〈X〉 = (1/M)∑M

e=1 Xe, then

D = F (X) ≈ F (〈X〉) +XF ′(〈X〉)− 〈X〉F ′(〈X〉). (3-35)

The mean dissonance level is given by 〈D〉 = (1/M)∑M
y=1 Dy, then taking the average of

the contribution of all musical intervals we have

〈D〉 ≈ F (〈X〉) 1
M

M∑
y=1

1 + F ′(〈X〉) 1
M

M∑
z=1

Xz + 〈X〉F ′(〈X〉) 1
M

M∑
w=1

1 (3-36)

thus

〈D〉 ≈ F (〈X〉) + 〈X〉F ′(〈X〉)− 〈X〉F ′(〈X〉) = F (〈X〉). (3-37)

As there are different musical interval sizes L, for each one we have

〈D〉L ≈ F (〈X〉L). (3-38)

Second order approximation

In the second order approximation, we have and additional contribution

D = F (X) ≈ F (q) +XF ′(q)− qF ′(q) + 1
2(X − q)2F ′′(q). (3-39)

Taking q as the mean location in the register 〈X〉, and taking the average value of the
dissonance level 〈D〉 as in the case of the first order approximation, then

〈D〉 ≈ F (〈X〉) + 1
2F
′′(〈X〉) 1

M

M∑
y=1

(
X2 − 2X〈X〉+ 〈X〉2

)
y

(3-40)

thus

〈D〉 ≈ F (〈X〉) + 1
2F
′′(〈X〉) 1

M

M∑
y=1

X2
y − 〈X〉F ′′(〈X〉)

1
M

M∑
z=1

Xz + 1
2〈X〉

2F ′′(〈X〉) 1
M

M∑
w=1

1.

(3-41)
Since (1/M)∑M

z=1 Xz = 〈X〉, then

〈D〉 ≈ F (〈X〉) + 1
2F
′′(〈X〉) 1

M

M∑
y=1

X2
y −

1
2〈X〉

2F ′′(〈X〉). (3-42)
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Finally, since (1/M)∑M
y=1 X

2
y = 〈X2〉 and the expression for the variance is σ2 = 〈X2〉 −

〈X〉2, then

〈D〉 ≈ F (〈X〉) + 1
2σ

2F ′′(〈X〉). (3-43)

As there are different musical interval sizes L, for each one we have

〈D〉L ≈ F (〈X〉L) + 1
2σ

2
LF
′′(〈X〉L). (3-44)

The first term in equation (3-44) indicates that the mean location in the register for each
kind of interval size 〈X〉L corresponds to the most important contribution to measuring the
mean dissonance. The second term in equation (3-44) indicates that the dispersion of each
interval size σ2

L is necessary to more precisely measure the mean dissonance 〈D〉.
To summarize, by knowing 〈X〉L and the set of probabilities {p

L
} it is possible to measure

L, the expected value of 〈|fj − fi|〉, and approximate the mean dissonance level 〈D〉. On the
other hand, by knowing 〈X〉L, σ2

L, and {pL} it is possible to measure L, the expected value
〈|f 2

j − f 2
i |〉, and the mean dissonance level 〈D〉 with greater precision.

3.3. Melody and expected values of melodic intervals
This section presents some concepts about melody, and the expected values associated to

the asymmetry in the use of ascending and descending intervals in melodic lines.

3.3.1. Concerning melody
Melody is defined in the New Grove Dictionary of Music and Musicians as “pitched sounds

arranged in musical time in accordance with given cultural conventions and constraints”
[12]. A definition that encompasses music and speech was given by Aniruddh Patel as “an
organized sequence of pitches that conveys a rich variety of information to a listener” [9].

So far, the sign of the interval size L has not been considered, as pitches in harmonic
intervals are played simultaneously. However, in the case of melody, pitches are ordered
chronologically (melodic intervals). For fi = fi(t) and fj = fj(t+ 1), there are three possible
cases: if fj > fi then L = j − i > 0 (ascending interval), if fj < fi then L = j − i < 0 (des-
cending interval), and if fi = fj then L = 0 (unison). Therefore, the sign of L distinguishes
the chronological order of a pair of pitches.

For the case of the quantities fj− fi and f 2
j − f 2

i , the following notation will be employed:
if {tz} represents a collection of times, at each of which one pitch is played in a melody
(without rests), then the quantities ft(z+1) − ftz ≡ ft+1 − ft and f 2

t(z+1)
− f 2

tz ≡ f 2
t+1 − f 2

t

symbolize melodic intervals, with the sign distinguishing between ascending (ft+1 > ft) and
descending (ft+1 < ft) intervals.
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The case of fj > fi and fs > fr was analyzed in the section on the distinguishability of
pairs of pitches, which corresponds to ascending intervals, and it was shown that the case
with fj < fi and fs < fr, which corresponds here to descending intervals, was shown to be
equivalent (see equation (3-16)).

3.3.2. Expected values of melodic intervals

In the case of melody, there are three kinds of melodic intervals, ascending, descending,
and unisons, and the normalization constraint may be stated as p̃a + p̃d + p̃u = 1, where p̃a
is the probability of ascending intervals, p̃d is the probability of descending ones, and p̃u is
the probability of unisons. The average magnitude of the melodic interval size contains the
contributions of positive, negative, and zero values of L in the sum, L ∈ [Lmin, Lmax], and
the expression (3-5) remains unaltered. The average magnitude of the melodic interval size
taking into account the mean location in the register 〈X〉L and the dispersion σ2

L leads to the
same expressions given previously (equations (3-8) and (3-11)). However, now these contain
the contributions of the ascending, descending, and unison intervals. These expected values
include the average magnitude of the melodic intervals, but do not discriminate between
ascending and descending intervals. The average magnitudes of ascending and descending
intervals, 〈L>0〉 and 〈L<0〉, respectively, can be measured by

〈L>0〉 = 1
p̃a

Lmax∑
L=1

Lp
L

; 〈L<0〉 = 1
p̃d

−1∑
L=Lmin

Lp
L
, (3-45)

where the ratio pi/p̃a (pi/p̃d) refers to the probability of the occurrence of an interval of
size Li in the ascending (descending) intervals of a musical piece.

The asymmetry in the total number of intervals is p̃a− p̃d, and the asymmetry between the
average magnitudes of ascending and descending intervals can be obtained as 〈L>0〉+ 〈L<0〉,
where 〈L<0〉 < 0. Because the existing literature reports that in many cultures large melodic
intervals are more likely to ascend than small ones, and that melodies tend to meander around
a central pitch range (See Figure 1-9), the quantity p̃a − p̃d is expected to be negative, and
the quantity 〈L>0〉 + 〈L<0〉 is expected to be positive, for melodic lines of several musical
pieces. See Figure 1-9.

The asymmetry in the average magnitudes of ascending and descending intervals, taking
into account the mean position in the register 〈X〉L and the dispersion of the intervals σ2

L,
can be measured using 〈(fj − fi)>0〉+ 〈(fj − fi)<0〉 and 〈(f 2

j − f 2
i )>0〉+ 〈(f 2

j − f 2
i )<0〉. These

expressions take the form
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〈(ft+1 − ft)>0〉+ 〈(ft′+1 − ft′)<0〉 = 1
p̃a

Lmax∑
L=1
〈fτ+1 − fτ 〉LpL + 1

p̃d

−1∑
L=Lmin

〈fτ ′+1 − fτ ′〉LpL

≈ 2c
 1
p̃a

Lmax∑
L=1

Lp
L

+ 1
p̃d

−1∑
L=Lmin

LpL


(3-46)

and

〈(f 2
t+1 − f 2

t )>0〉+ 〈(f 2
t′+1 − f 2

t′)<0〉 = 1
p̃a

Lmax∑
L=1
〈f 2
τ+1 − f 2

τ 〉LpL + 1
p̃d

−1∑
L=Lmin

〈f 2
τ ′+1 − f 2

τ ′〉LpL

≈ 4c
 1
p̃a

Lmax∑
L=1

Lp
L

+ 1
p̃d

−1∑
L=Lmin

LpL

 .
(3-47)

Traditionally, consonance properties have been associated with simultaneous sounds. Ho-
wever, in music theory, consonance sensations have also been related to successive sounds [11].
It has been observed that musicians tend to transpose their knowledge about the consonance
levels of harmonic intervals to judge melodic ones [20]. In addition, a possible mechanism
for the creation of consonance sensations in the case of successive pitches is the short-term
persistence of pitch in auditoriums [20]. Therefore, the connection between tonal consonance
and simultaneous pitches made in the previous section can be assumed to hold for successi-
ve pitches, at least in the case of musicians. For this case, the expression (3-33) takes into
account the contributions of ascending and descending intervals and melodic unisons.

For the consonance analysis of melodic intervals, the sign of L is irrelevant: only its mag-
nitude is important. Then, Figure 3-3 can be utilized for ascending intervals as well as
descending ones.

3.4. An application to melodic lines
This section shows the analysis of a set of melodic lines using the representation of musical

intervals proposed, the procedures followed to obtain their corresponding probability and
cumulative distributions, and the corresponding results.

3.4.1. Selection of melodic lines
Twenty melodic lines from seven vocal and instrumental masterpieces of the Baroque and

Classical periods were analyzed. The base data was taken from [39]. The selected pieces
contain melodic lines characterized by their considerable length, internal coherence, and rich
variety of instruments and registers. The collection of pieces is as follows:
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Brandenburg Concerto No. 3 in G Major BWV 1048. Johann Sebastian Bach: Polypho-
nic concerto for 11 musical instruments (three violins, three violas, three cellos, violone,
and harpsichord).

Missa Super Dixit Maria. Hans Leo Hassler: Polyphonic composition for four voices
(soprano, contralto, tenor, and bass).

First movement of the Partita in A Minor BWV 1013. Johann Sebastian Bach: This
piece has just one melodic line for a flute.

Piccolo Concerto RV444. Antonio Vivaldi (arrangement by Gustav Anderson): We
selected the piccolo melodic line, owing to its rich melodic content.

Sonata KV 545. Wolfgang Amadeus Mozart: We selected the melodic line for the right
hand of this piano sonata, assuming that it drives the melodic content.

Suite No. 1 in G Major BWV 1007 and Suite No. 2 in D Minor BWV 1008. Johann
Sebastian Bach: The melodic lines of these pieces written for cello contain mainly
successive pitches. In the cases of the few simultaneous pitches, the continuation of the
melodic lines was assumed in the direction of the highest pitch.

3.4.2. Procedure to obtain the probability and the cumulative
distributions

The PDs for the quantities ft+1 − ft and f 2
t+1 − f 2

t were obtained for each melodic line
in order to gather information concerning the selections of melodic intervals made by the
composers. The procedure for the analysis of melodic lines was as follows:

The simplified MIDI files were generated from scores [49]. Only successive pitches
without rests between them were considered.

The MIDI information was transformed into frequencies using the 12-TET scale with
A = 440Hz.

The PDs were obtained in three different cases:

- Case 1: |ft+1−ft| and |f 2
t+1−f 2

t | not distinguishing between ascending and descending
intervals. The complementary cumulative distribution (CCD) was also obtained.

- Case 2: |ft+1 − ft| and |f 2
t+1 − f 2

t | for two different sets of intervals: ascending and
unisons, and descending and unisons. The CCD was also obtained for each set.

- Case 3: f 2
t+1 − f 2

t for the set of ascending, descending, and unison intervals together.
In this case, the sign of the descending intervals was considered as negative. The reason
for only using the quantity f 2

t+1 − f 2
t is the quality of the experimental fits obtained
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in the two previous analyses for both quantities, and even more relevantly that the
distinguishability analysis shows that f 2

t+1 − f 2
t has the best resolution properties for

the case of 24 semitones in the 12-TET scale, which is the relevant range for melodic
intervals in the analyzed melodic lines. The CCD was employed for the branch of the
PD that contains the ascending intervals, and the cumulative distribution (CD) was
utilized for the branch that contains the descending intervals.

Some clarifications are required in order to implement the sketch described above.

Because the number of melodic intervals in the studied melodic lines is at most one
order of magnitude larger than the total number of possible pairs of successive pitches
generated by the same ambitus (the range between the lowest and highest pitches)
of the original melodic line, the PDs were constructed using histograms, in order to
capture significant probabilities. Table 3-3 shows the number of intervals of each me-
lodic line, the number of ascending intervals, descending ones, and unisons, and the
corresponding ambitus.

As the number of possible melodic intervals for any melodic line is finite, independently
of its length, the bin width in the histograms will be moderately dependent on the
number of melodic intervals. This condition is satisfied by the Sturges criterion [76],
and thus this criterion was used to determine the bin width.

In the third case, when ascending and descending PDs were combined in the same
distribution for the quantity f 2

t+1−f 2
t , the bin width was taken as the average of those

obtained separately using the Sturges criterion for ascending and descending distribu-
tions. The average bins were symmetrically located to the left and right, starting from
the point f 2

t+1 − f 2
t = 0.

In the experimental analysis, the contribution of unisons in the histograms is important
for ascending intervals as well as descending ones, with different right-hand and left-
hand limits at 0. In addition, if we attempt to split the unisons into the ascending and
descending parts, this procedure reduces the determination coefficient R2 of the fits for
the histograms to an exponential function [39]. Hence, all unisons were included in the
ascending part as well as the descending one, and then a correction of this double count
was carried out in the procedure to obtain the expected values. In the histograms, the
descending intervals are contained inside the bins labeled from 1 to N/2 (from left to
right), and the ascending ones inside those labeled from N/2 + 1 to N (from left to
right). Hence, all unisons have been taken into account inside the bin labeled N/2 as
well as that labelled N/2 + 1. Note that N is an even number.
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Intervals Ascending Descending Unisons p̃u p̃a − p̃d Ambitus(Hz)

T
.

B
.

C
.

Violin 1 3076 1253 1467 356 0.1157 -0.0696 Min. 195.997
Max. 1244.507

Violin 2 2589 1111 1124 354 0.1367 -0.0050 Min. 195.997
Max. 1174.659

Violin 3 2404 989 1050 365 0.1518 -0.0254 Min. 195.997
Max. 1174.659

Viola 1 2641 1022 1100 519 0.1965 -0.0295 Min. 146.832
Max. 698.456

Viola 2 2527 973 1037 517 0.2046 -0.0253 Min. 146.832
Max. 659.255

Viola 3 2429 922 985 522 0.2149 -0.0259 Min. 130.812
Max. 659.255

Cello 1 2138 895 1040 203 0.0949 -0.0678 Min. 65.406
Max. 329.627

Cello 2 2134 893 1038 203 0.0951 -0.0679 Min. 65.406
Max. 329.627

Cello 3 2132 890 1040 202 0.0947 -0.0704 Min. 65.406
Max. 329.627

Violone 2120 849 942 329 0.1552 -0.0439 Min. 32.703
Max. 164.813

Harpsichord 2120 849 942 329 0.1552 -0.0439 Min. 65.406
Max. 329.627

M
.

D
.

M
.

Soprano 1768 608 789 371 0.2098 -0.1024 Min. 261.625
Max. 698.456

Contralto 2170 818 912 440 0.2028 -0.0433 Min. 174.614
Max. 523.251

Tenor 2215 866 931 418 0.1887 -0.0293 Min. 164.813
Max. 349.228

Bass 1773 725 778 270 0.1523 -0.0299 Min. 97.998
Max. 293.664

P
.

M
.

Suite 1 3695 1749 1856 90 0.0244 -0.0290 Min. 65.406
Max. 391.995

Suite 2 3601 1713 1829 59 0.0164 -0.0322 Min. 65.406
Max. 391.995

Mozart sonata 3991 1613 2141 237 0.0594 -0.1323 Min. 195.997
Max. 1864.655

First mov. Partita 1020 472 546 2 0.0020 -0.0725 Min. 293.664
Max. 1760.000

Piccolo concerto 2740 1314 1195 231 0.0843 0.0434 Min. 698.456
Max. 2793.825

Table 3-3.: Total number of melodic intervals, ambitus, and asymmetry between the number of ascending
and descending intervals for each melodic line. T. B. C. refers to the third Brandenburg concerto,
M. D. M. to the Missa Dixit Maria, and P. M. to a piece or movement. Intervals: Total number of
melodic intervals. Ascending: Number of ascending intervals. Descending: Number of descending
intervals. Unisons: Number of unisons. p̃u: Probability of unisons in the melodic line. p̃a −
p̃d: Asymmetry in the total number of intervals given in terms of the difference between the
probabilities of ascending p̃a and descending p̃d intervals. Ambitus: Range between the lowest
and the highest pitches of the melodic line.
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3.4.3. Experimental results and analysis
For the first and the second cases, the histograms and CCD for both quantities (|ft+1−ft|

and |f 2
t+1−f 2

t |) fit to exponential functions. Table 3-4 shows, for each melodic line in the first
and the second case, the determination coefficient R2 for the fits to exponential functions in
histograms and CCD. The average R2 of the CCD is R2 ≈ 0.99, with a standard deviation
(SD) of ≈ 0.01. Usually, the cumulative probability associated to the unison in the CCD is
larger than the value predicted by the exponential behavior. This is not surprising, as the
value 0 is degenerated, and represents more than one possible pair of pitches. For histograms,
the highest R2 is for the quantity |f 2

t+1 − f 2
t | with ascending and descending intervals taken

separately. For ascending intervals, R2 = 0.987 with SD = 0.009, and for descending ones
R2 = 0.986 with SD = 0.016.

For the third case, with the left and right branches of the PD combined in the same
histogram, the PD can be written as

P (ε) =

F
H
+ e
−ε/GH+ for ε > 0

FH
− e

ε/GH− for ε < 0
, (3-48)

where the notation ε emphasizes that these distributions are constructed over bins.
In the case of the cumulative distributions, the CCD and CD conserve the same functional

form of the PD (as the PDs are exponential):

P (f 2
t+1 − f 2

t ) =

F
C
+ e
−(f2

t+1−f
2
t )/GC

+ for (f 2
t+1 − f 2

t ) > 0
FC
− e

(f2
t+1−f

2
t )/GC

− for (f 2
t+1 − f 2

t ) < 0
. (3-49)

Table 3-5 contains the values of FH
+ , F

H
− , G

H
+ , G

H
− , F

C
+ , F

C
− , G

C
+, G

C
−, and R2 for the fits.

These PDs resemble the asymmetric Laplace PD, with different amplitudes for positive and
negative branches leading to a discontinuity at the origin (Figure 3-4) [77].
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qk coming from the degeneration of the kth bin, and N is the number of bins in the ambitus
with N/2 bins for each branch (ascending and descending). The PD qk has been formally
related to the probability associated with the number of distinguishable subcategories in the
category k, representing its degeneracy [79].

The minimization of the relative entropy under constraints will be useful to describe the
form of the PD, as will be explained in the next section.

12-TET scale
Exponential Power law

R2 R2

T. B. C.

Violin 1 + 0.9026 0.9792
Violin 1 - 0.9026 0.9792
Violin 2 + 0.9145 0.9753
Violin 2 - 0.9145 0.9753
Violin 3 + 0.9080 0.9771
Violin 3 - 0.9080 0.9771
Viola 1 + 0.9232 0.9656
Viola 1 - 0.9232 0.9656
Viola 2 + 0.9275 0.9637
Viola 2 - 0.9275 0.9637
Viola 3 + 0.9263 0.9644
Viola 3 - 0.9263 0.9644
Cello 1 + 0.9708 0.9712
Cello 1 - 0.9708 0.9712
Cello 2 + 0.9708 0.9712
Cello 2 - 0.9708 0.9712
Cello 3 + 0.9708 0.9712
Cello 3 - 0.9708 0.9712

Violone + 0.9349 0.9691
Violone - 0.9349 0.9691

Harpsichord + 0.9349 0.9691
Harpsichord - 0.9349 0.9691

M. D. M.

Soprano + 0.9308 0.9334
Soprano - 0.9308 0.9334

Contralto + 0.9536 0.9332
Contralto - 0.9536 0.9332

Tenor + 0.9505 0.9064
Tenor - 0.9505 0.9064
Bass + 0.9536 0.9344
Bass - 0.9536 0.9344

P. M.

Suite 1 + 0.9709 0.9811
Suite 1 - 0.9709 0.9811
Suite 2 + 0.9099 0.9778
Suite 2 - 0.9099 0.9778

Mozart sonata + 0.8488 0.9831
Mozart sonata - 0.8488 0.9831

First mov. Partita + 0.8966 0.9736
First mov. Partita - 0.8966 0.9736
Piccolo concerto + 0.9724 0.9626
Piccolo concerto - 0.9724 0.9626

Average 0.934 0.963

Table 3-6.: Determination coefficient R2 for the fit of the bin degeneracy distribution to a power law and
to an exponential function. The exponential function has the form: P = C′exp(−|ε|/D′), and
the power law function has the form: P = E ′|ε|F ′ , where P is the probability and ε refers to the
quantity f2

t+1 − f2
t measure in bins. The bin width was taken as the average of those obtained

separately using the Sturges criterion for ascending and descending distributions. C′, D′, E ′ and
F ′ are the parameters of the fit. T. B. C. refers to the third Brandenburg concerto, M. D. M.
to the Missa Dixit Maria, and P. M. to a piece or movement.
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3.5. A statistical model for melodic lines

This section shows the Shannon entropy evolution in time for each melodic line, a statistical
model based on the minimization of the Kullback-Leibler divergence that reproduce the
main features of the experimental results, and the connection between the parameters of the
statistical model with the transposition processes, the asymmetry between ascending and
descending intervals, and the mean dissonance level of the studied melodic lines.

3.5.1. Entropy evolution in melodic lines

Assuming that each possible melodic interval generated from the ambitus of a melodic line
corresponds to a possible state, an analysis of the entropy evolution in the progression of
the melodic line can be performed in a similar manner as in the work by G. Gündüz and U.
Gündüz [62]. For the A different pitches inside the ambitus of a melodic line, the number of
different melodic intervals is A2. Following [62] we use the Shannon entropy

S (bits) = −
M∑
m=1

pmlog2pm, (3-51)

where M refers to the final melodic interval appearing in the progression of the melodic line,
and pm is the probability that the interval m has already appeared in the sequence. The final
Shannon entropy Sf is reached when M is equal to the total number of melodic intervals in
the melodic line.

Figure 3-7(a) illustrates the Shannon entropy evolution for some of the analyzed melodic
lines. The remaining ones exhibit similar behavior. Figure 3-7(b) illustrates the Shannon
entropy evolution of the melodic lines for the soprano of the Missa Super Dixit Maria and
the Suite No. 2 BWV 1008, with their corresponding random melodies constructed using the
same ambitus. The maximum Shannon entropy Smax corresponds to the maximum possible
value of the Shannon entropy in a long random melodic line with the same ambitus as the
original one, namely Smax = log2(A2).

Figures 3-7(a) and 3-7(b) show that the Shannon entropy increases with each new me-
lodic interval in the progression until it reaches a limiting value, which is smaller than the
Shannon entropy of a random melodic line with the same ambitus. Some fluctuations appear
in this process. However, the Shannon entropy tends to be stabilized at the final section of
the melodic line. This result is similar to the findings of G. Gündüz and U. Gündüz analyzing
the entropy evolution associated to the connectivity of pitches in different melodies [62].

For each melodic line, Table 3-7 presents the final Shannon entropy Sf , the maximum
Shannon entropy reached by the melodic line S∗max, and the maximum Shannon entropy
generated by the ambitus of the corresponding melodic line Smax.
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Melodic line Sf S∗max Smax
λ1(×10−5)[
Hz−2

] λ2(×10−7)[
Hz−2

] 〈D〉
(×10−1)

〈D〉∗

(×10−1)
Violin 1 7.358 7.378 10.089 0.550 -1.870 1.282 1.278
Violin 2 7.213 7.234 10.000 0.570 -0.189 1.215 1.211
Violin 3 7.253 7.285 10.000 0.660 -0.895 1.242 1.240
Viola 1 6.941 6.953 9.615 1.330 -1.860 1.339 1.333
Viola 2 6.935 6.944 9.510 1.500 -1.280 1.381 1.375
Viola 3 7.022 7.053 9.716 1.540 -2.200 1.364 1.357
?Cello 1 6.888 6.904 9.716 6.300 -18.700 2.795 2.788
?Cello 2 6.884 6.899 9.716 6.400 -17.200 2.797 2.790
?Cello 3 6.862 6.879 9.716 6.500 -15.100 2.816 2.812
Violone 6.779 6.796 9.716 30.000 -34.000 4.900 4.917

?Harpsichord 6.779 6.796 9.716 7.400 -4.200 2.596 2.598
Soprano 5.055 5.082 8.340 1.940 -2.850 1.470 1.470
Contralto 5.247 5.313 8.644 3.250 -6.800 1.591 1.591
Tenor 5.443 5.491 7.615 5.100 -6.500 1.893 1.893
Bass 5.723 5.787 8.644 7.300 6.450 2.219 2.218

?Suite 1 7.069 7.073 10.000 3.500 -5.100 2.528 2.509
?Suite 2 7.235 7.248 10.000 3.700 -5.800 2.653 2.631

Mozart sonata 6.923 6.935 10.644 0.490 -1.520 1.353 1.357
First mov. Partita 7.145 7.145 10.000 0.295 -1.760 1.293 1.294
?Piccolo concerto 7.087 7.182 9.288 0.056 0.175 0.749 0.747

Table 3-7.: For each melodic line: Final Shannon entropy Sf , maximum Shannon entropy reached S∗max,
maximum Shannon entropy generated by the ambitus of the corresponding melodic line Smax,
Lagrange multipliers λ1 and λ2, mean dissonance level 〈D〉, and mean dissonance level appro-
ximated using the Taylor expansion up to second order (equation (3-44)) 〈D〉∗. Melodic lines
marked with “?” do not satisfy a linear relation between λ1 and 〈D〉.

where the quantity −p̃u|εN/2| corrects the double counting of unisons.
The asymmetry in the magnitudes of ascending and descending intervals is the final cons-

traint. This asymmetry is present in the difference between the coefficients for the left and
right branches in equations (3-48) and (3-49). Using histograms, the best estimate that we
can obtain for the expression (3-47) is

〈ε>0 〉+ 〈ε<0〉 = 1
p̃d

N/2∑
k=1

pkεk + 1
p̃a

N∑
k=N/2+1

pkεk + |εN/2|
(
p̃u
p̃d
− p̃u
p̃a

)
, (3-54)

where the quantity |εN/2|
(
p̃u
p̃d
− p̃u

p̃a

)
removes the contribution from unisons.

Table 3-8 contains the values of the quantities shown in equations (3-11) and (3-47)
and their corresponding approximations using histograms through the equations (3-53) and
(3-54).
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Minimizing the relative entropy subject to the constraints (3-52), (3-53), and (3-54) (in a
similar procedure to that shown in [77]) produces the following PD:

pk =



(p̃d + p̃u)qke
(
−λ1|εk|−

λ2
p̃d
εk

)
N/2∑
m=1

[
qme

(
−λ1|εm|−

λ2
p̃d
εm

)] for k ∈ [1, N/2]

(p̃a + p̃u)qke(−λ1|εk|−
λ2
p̃a
εk)

N∑
m=N

2 +1

[
qme

(−λ1|εm|−
λ2
p̃a
εm)

] for k ∈ [N2 + 1, N ],

(3-55)

where λ1 and λ2 are the Lagrange multipliers for the constraints (3-53) and (3-54), respec-
tively. Appendix D contains the detailed procedure of the minimization.

The values of λ1 and λ2 were obtained using the expected values 〈|ε|〉 and 〈ε〉 from the
histograms of the empirical distributions for the selected melodic lines, and allowing the
relative error between the expected values from the statistical model and those from the real
data to be smaller than 1.0 %. Table 3-8 contains the expected values used in the statistical
model, and Table 3-7 presents the values of the Lagrange multipliers generated from them.
While the values of λ1 are positive, those of λ2 can be positive or negative, exhibiting possible
asymmetries in the use of ascending and descending intervals. In addition, λ1 is between one
and two orders of magnitude larger than λ2.

Figure 3-5(b) presents a comparison between the statistical model and the empirical
results in the case of Suite No. 2 BWV 1008. Some differences between the empirical data
and the results from the statistical model are expected, because there are patterns in real
melodic lines that cannot be captured by this simple model.

The CCD (ascending branch) and CD (descending branch) can be utilized to compare
different melodic lines that are either experimental or obtained from the statistical model.
The CCD and CD were obtained from the histograms produced by the statistical model,
randomly distributing the probability assigned to a bin between all the possible melodic
intervals inside it, which were generated using the ambitus of the corresponding melodic
line. Because p̃u is known, the probability assigned to 0 inside the bins containing unisons
was taken as p̃u, and the remaining probability of the bin was distributed randomly in the
other possible melodic intervals. Figure 3-8 depicts the CCD and CD for the empirical data
and the corresponding results from the statistical model for most melodic lines. In this figure,
and taking into account the values in Table 3-7, the following features can be inferred:

1. Different registers of musical instruments and human voices can be distinguished using
the Lagrange multiplier λ1, allowing, for example, to discriminate between the same melodic
line played in different parts of the register (a transposition). An example of a transposition is
given in the Brandenburg Concerto No. 3 BWV 1048 by J. S. Bach, in which the harpsichord
plays the same melodic line as the violone but transposed one octave higher (the fundamental
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frequency ratio of the transposition is equal to 2): while the entropy evolution of these melodic
lines is the same, there is a change in the exponential decay parameters, characterized by the
values of the Lagrange multipliers (see Table 3-7), and the numerical values of the expected
values are related as

〈|ε|〉Harpsichord = 22〈|ε|〉V iolone
〈|f 2

t+1 − f 2
t |〉Harpsichord = 22〈|f 2

t+1 − f 2
t |〉V iolone

[〈ε>0 〉+ 〈ε<0〉]Harpsichord = 22 [〈ε>0 〉+ 〈ε<0〉]V iolone[
〈(f 2

t+1 − f 2
t )>0〉+ 〈(f 2

t′+1 − f 2
t′)<0〉

]
Harpsichord

= 22
[
〈(f 2

t+1 − f 2
t )>0〉+ 〈(f 2

t′+1 − f 2
t′)<0〉

]
V iolone

,

(3-56)

in agreement with the properties derived above for transposition processes (equation (3-15)).
2. With respect to the quantitative results of the model, the orders of magnitude of the fit

parameters of the statistical model are in agreement with the corresponding results of the
experimental fits. For each melodic line, Table 3-9 contains the fit parameters to disconti-
nuous asymmetric Laplace distributions, generated from the statistical model results. The
average relative error in the histograms for the amplitude of the exponential distributions
is 17.1 %, and that for the decay coefficient is 20.6 %. In the cases of the CD and CCD,
the average relative errors of the amplitude and the decay coefficient are 7.2 % and 11.8 %,
respectively. Table 3-10 contains the values of these errors for each melodic line.

3. In most cases (90 % of the melodic lines), the constraint (3-54) takes positive values
(corresponding to negative values of λ2), and p̃a − p̃d takes negative values (see Table 3-3).
This behavior is consistent with the asymmetry represented in Figure 1-9, in the sense that
the magnitudes of ascending intervals are expected to be larger than those of descending
ones, and the total number of descending intervals must be larger than that of ascending
ones. Negative values of p̃a − p̃d and λ2 lead to different decay coefficients and different
intercept points with the ordinate axis for the ascending and descending branches, which
can be observed in the experimental fits of the CD and CCD through the comparison of
the corresponding coefficients, FC

+ < FC
− and GC

+ > GC
− (see Table 3-5). Figure 3-4 was

created with the purpose of magnifying these particular asymmetries: P1 > P2 and α1 > α2

(implying that λ2 < 0). The two exceptions are the Piccolo Concerto RV444 of Antonio
Vivaldi, where λ2 > 0 and p̃a− p̃d > 0, and the melodic line of the tenor voice in Missa Super
Dixit Maria, where λ2 > 0 and p̃a − p̃d < 0.

4. Because the difference between λ1 and λ2 is between one and two orders of magnitude
(i.e., the decay coefficients have the same order of magnitude), and the bin width selection
affects the measure of the decay parameters, the asymmetry in the values of the decay
coefficients is better observed in the cumulative distributions than in the histograms.

5. Because in Figure 3-4 the limit P1 of the CD (constructed for descending intervals) when
f 2
t+1 − f 2

t → 0− represents the probability of a value slightly smaller than 0, and in the CCD
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Relative error ( %)
Cumulatives Histograms
FC
± GC

± FH
± GH

±

T. B. C.

Violin 1 + 4.87 7.93 0.42 0.17
Violin 1 - 7.85 11.71 7.08 8.41
Violin 2 + 2.59 5.13 2.48 2.45
Violin 2 - 3.38 14.26 9.84 12.21
Violin 3 + 2.16 9.03 2.60 3.42
Violin 3 - 5.30 26.28 13.28 15.33
Viola 1 + 5.25 3.82 1.59 3.21
Viola 1 - 7.35 10.37 4.17 4.95
Viola 2 + 2.13 2.33 13.78 21.28
Viola 2 - 1.76 14.55 18.16 23.93
Viola 3 + 1.07 1.23 18.77 30.12
Viola 3 - 2.68 17.45 23.24 31.87
Cello 1 + 2.98 15.92 16.86 23.12
Cello 1 - 2.98 18.15 20.92 27.57
Cello 2 + 4.14 15.97 16.16 21.99
Cello 2 - 3.37 16.40 20.22 26.44
Cello 3 + 0.46 14.10 16.30 22.00
Cello 3 - 3.82 20.52 22.41 30.00
Violone + 0.83 8.78 17.84 24.47
Violone - 6.57 27.12 31.53 46.37

Harpsichord + 3.10 11.51 17.78 24.38
Harpsichord - 8.89 30.99 34.01 48.75

M. D. M.

Soprano + 14.20 13.60 19.19 21.17
Soprano - 14.06 7.29 41.85 37.17

Contralto + 15.06 10.96 10.91 12.52
Contralto - 14.29 2.67 24.75 24.29
Tenor + 12.46 12.09 19.23 21.45
Tenor - 12.93 10.37 23.41 24.42
Bass + 11.01 1.62 16.22 17.44
Bass - 8.76 1.38 14.69 15.38

P. M.

Suite 1 + 13.40 15.24 17.62 19.17
Suite 1 - 13.16 15.68 21.87 22.82
Suite 2 + 12.67 13.94 18.48 19.79
Suite 2 - 7.75 8.57 22.14 22.76

Mozart sonata + 11.27 21.05 15.37 17.87
Mozart sonata - 12.79 3.03 11.82 12.56

First mov. Partita + 3.45 2.03 32.20 30.17
First mov. Partita - 4.42 11.56 3.48 4.51
Piccolo concerto + 12.24 6.80 26.65 26.95
Piccolo concerto - 8.96 9.46 16.45 19.15

Average 7.16 11.77 17.14 20.55

Table 3-10.: Relative error of the fit parameters for the statistical model with respect to those of the real
melodic lines. The sign “+” identifies the ascending intervals and the sign “-” the descending
ones. FC

± , GC
±, FH

± , and GH
± are the fit parameters for cumulative distributions and histograms.

For melodic lines with the sign “+” the fit parameters are FC
+ , GC

+, FH
+ , and GH

+ . For melodic
lines with the sign “-” the fit parameters are FC

− , GC
−, FH

− , and GH
− . R2 is the determination

coefficient. Bin: Bin width of each histogram in Hz2.
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3.5.3. Transposition processes and mean dissonance level of melodic
lines

As explained in the section on melody, tonal consonance properties can be formally associa-
ted to melodic intervals in the case of musicians. Because the musical instruments analyzed
in this study use vibrating strings and air columns, the main consonance properties may
be captured using the model of the harmonic spectrum presented in the tonal consonance
section.

For each melodic line, the mean dissonance level 〈D〉 was measured using the curves shown
in Figure 3-3 for intervals inside the octave, and the chroma properties of pitch for intervals
wider than one octave. Table 3-7 lists the values of the mean dissonance 〈D〉 and their
corresponding approximations 〈D〉∗ using 〈X〉L and σ2

L in equation (3-44). Comparing 〈D〉∗
with 〈D〉, the observed relative error is less than 1.0 % for all melodic lines.

From the results in Table 3-7, melodic lines tend to be more dissonant for instruments with
lower registers, which is a well-known phenomenon in music theory [2]. An interesting case is
that of transposition, as the same melodic lines played in different parts of the register have
different dissonance levels. For example, the melodic line of the violone in the Brandenburg
Concerto BWV 1048 is perceived as more dissonant than that of the harpsichord.

Low registers are associated with small values of L, and therefore of 〈|f 2
t+1 − f 2

t |〉 and
consequently also 〈|ε|〉. For all melodic lines, a power law relation was observed between the
quantity 〈|ε|〉 and the Lagrange multiplier λ1 (see Figure 3-9(a)):

λ1 = A〈|ε|〉B, (3-57)

where the magnitude of A is 9.423× 10−1± 9.76× 10−2, and B = −1.033± (1.26× 10−2),
with R2 = 0.998. If B is taken as −1, then A is dimensionless. Low values of 〈|ε|〉 correspond
to high values of λ1, and vice versa, and λ1 scales in a transposition process as

λN1 ≈ ω2BλO1 , (3-58)

where λO1 and λN1 denote the first Lagrange multiplier in the original and new locations of
the register, respectively. For the transposition between the violone and the harpsichord,
λHarpsichord1 ≈ ω2(−1.033)λV iolone1 , with a 3 % relative error (see Table 3-7).

For 13 of the melodic lines studied, a linear relation was observed between the mean
dissonance levels of melodic lines and the first Lagrange multiplier (see Figure 3-9(b)):

〈D〉 = C + Dλ1, (3-59)

where C = 1.122 × 10−1 ± 1.7 × 10−3 and D = (1236.29 ± 19.81)Hz2, with R2 = 0.997.
The Lagrange multiplier λ1 locates the approximate region of exponential decay, and for
these 13 melodic lines this geometrical parameter can be employed as an indicator of the
mean dissonance properties. Strong exponential decays correspond to low registers with





4. The statistical analysis of chords in
secco recitatives

The results presented in this chapter constitute an exploration beyond the main objectives
of this thesis. The analysis of harmonic sequences of secco recitatives of eight operas was
done. Frequently, secco recitatives were written using figured bass or functional notation,
however in this analysis editions with an explicit realization of the chords was selected in
order to avoid ambiguities. The analyses were made in two directions: the statistical analysis
of chords, and the statistical analysis of transitions between chords. Additionally, an analysis
of the co-occurrence of chords in different secco recitatives of the same opera is made.

4.1. On the secco recitative
The recitative is a vocal style which imitates the inflections of the human voice when

speaking. In the opera it normally fulfills the function of transferring the action of one aria
to another [12, p. 718]. During the 17th century this spoken style was opened in different
directions, one of them was the secco recitative, which was not regularly integrated to the
opera until the 18th century [12, p. 718]. This type of recitative is constituted by a continuous
bass that accompanies the voice, which is interpreted by a keyboard instrument such as a
harpsichord or a pianoforte. Sometimes the keyboard and the voice are accompanied by a
cello that performs the bass line.

The secco recitative flourished mainly in 18th century opera, while in the 19th century
it was mainly used in the Rossini operas [80], [81, pp. 1-6], [12, pp. 718-719]. Much of the
information on how recitatives were accompanied is little known since there are few sources
that talk about this [19].

During the 18th century, the Italian opera was one of the most representative sources of
secco recitatives [12, p. 718]. Typical Italian recitatives of this century were organized using
the following harmonic schemes [81, pp. 1-6]:

Secondary dominant chains (as for example V/V).

Chains interlocking the I-IV-V-I progressions, for which the cadence V-I is used as the
progression I-IV of the next sequence.
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Juxtaposition of major/minor harmonies between tonalities with relative keys between
them [12, p. 453].

4.2. Secco recitatives selection
In order to analyze a set of secco recitatives of different composers, a selection of eight

operas was done from editions with an explicit realization of the chords. Each opera contains
several secco recitatives, Table 4-1 contains the information of the operas. The appendix
section contains the secco recitatives analyzed for each opera with their corresponding page
ranges and number of bars.

ID Opera Composer Source/Editor Recitatives Appendix
1 The Coronation of Poppea C. Monteverdi (1567-1643) Leningrad: Muzyka (imslp) [82] 17 E
2 Acis and Galatea F. Handel (1685-1759) Friedrich Chrysander (imslp) [83] 7 F
3 The Marriage of Hercules and Hebe C. Gluck (1714-1787) Breitkopf und Härtel [84] 12 G
4 Mithridates, King of Pontus W. A. Mozart (1756-1791) Mozarteum [85], Serie V [86] 19 H
5 Apollo and Hyacinthus W. A. Mozart (1756-1791) Mozarteum [85] 10 I
6 The marriage of Figaro W. A. Mozart (1756-1791) Dover Publications, Inc. [87] 27 J
7 Cinderella G. Rossini (1792-1868) Ricordi (imslp) [88] 15 K
8 The Barber of Seville G. Rossini (1792-1868) Dover Publications, Inc. [89] 17 L

Table 4-1.: Selected operas containing secco recitatives. Information about the composer, edition, source,
number of recitatives analyzed, and the corresponding appendix containing the detailed list of
chords.

4.3. Methodology for the extraction of chords
Chords were extracted manually from the score of the continuo. In order to determine the

points in the score in which the chords must be analyzed, the natural beats of the bar were
used as the minimum unit of time to follow the harmony, for example, in a measure of 4/4,
the quarter note was considered as the minimum unit of time to report the chords. Although
the natural beats of the bar were used as the minimum unit of time, it does not means that
a new chord appears every minimum unit of time, only the occurrence of new sounds located
in the natural beats of the bar contribute to the appearance of new chords. In some few
cases, there is not bar in some parts of the recitatives, for these cases the quarter note was
used as the minimum temporal unit to follow the harmony.

Each chord was coded between the different types of chords with structure by thirds. This
choice is based in the harmonic structure used at that time and the geographical location.

The chords were coded using four features:

1. Root of the chord: 12 different pitches were considered. The musical scale was assumed
to be the 12-TET, for which flats and sharps are equivalent (enharmonic equivalence).
The standard notation for the pitch is the set of letters from A to G.
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2. Triad: Three types were considered: Major, Minor, and Diminished. This election is
based on the structure of the chords used in that period of time.

3. Alterations of the triad: Triads can contain sevenths or can appear without the fifth
(-5). The sevenths were identified among major (7Ma), minor (7m), or diminished
(7o). Combinations of sevenths with or without the fifth (for example 7m,-5) were also
distinguished. In some few cases, it was not possible to characterize chords with any of
the alterations (or any of the combinations of alterations) proposed. In the statistical
analysis, these few cases where all unified in a category called “other”. If a triad is not
altered, the number “0” is used to describe this case.

4. Inversion of the chords: For chords without sevenths, the root position and the in-
versions were considered. The root position, and the first and second inversions were
identified, using the standard notation 53, 63, and 64, respectively. For the chords with
sevenths, the root position and three inversions were considered. The root position,
and the first, second and third inversions were identified using the standard notation
7, 65, 43, and 2, respectively. For the diminished chords with diminished seventh, since
this chord is invariant against inversions, it was always considered in the root position
(7) on the bass note.

Table 4-2 summarizes the categories taken into account in the chord analysis. The notation
“0 0 0 0” (this means “0” in all categories) was used to represent the occurrence of a rest.

Root Triad Alteration Inversion
A Major 0 53

A], B[ Minor 7m 63
B Diminished 7o 64

C, B] 7Ma 7
C], D[ -5 65

D 7m,-5 43
D], E[ 7o,-5 2

E 7Ma,-5
F, E] Other
F], G[

G
G], A[

Table 4-2.: Categories to classify the properties of a chord by thirds.

The complete list of chords for each selected recitative of each opera is showed in the
appendixes E, F, G, H, I, J, K, and L.

In some cases, it was necessary to analyze the pitch of the voice in order to determine the
nature of the chord. In other cases, there were some chords reported in places that do not
correspond to the natural beats of the bar, for example to take correctly into account the
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Opera e b c d R2

1 0.0012 ± 0.0004 -0.1519 ± 0.0044 0.0612 ± 0.0158 0.2785 ± 0.0549 0.9848
2 -0.0518 ± 0.0964 -0.8977 ± 6.6151×102 3.0602×103 ± 9.8862×106 4.3728 ± 5.6062 0.9293
3 -0.0041 ± 0.0008 -0.1190 ± 0.0071 0.6489 ± 0.1477 1.3704 ± 0.1050 0.9808
4 -0.0045 ± 0.0014 -0.0587 ± 0.0022 0.0434 ± 0.0116 0.6420 ± 0.1441 0.9913
5 0.0002 ± 0.0006 -0.0682 ± 0.0014 0.0233 ± 0.0066 0.2680 ± 0.0660 0.9939
6 0.0006 ± 0.0008 -0.1239 ± 0.0037 0.0506 ± 0.0157 0.2983 ± 0.0742 0.9889
7 0.0042 ± 0.0009 -0.1537 ± 0.0058 -0.0020 ± 0.0145 -0.0110 ± 0.0825 0.9829
8 0.0021 ± 0.0009 -0.1170 ± 0.0027 -0.0193 ± 0.0054 -0.1906 ± 0.0611 0.9936

All -0.0002 ± 0.0001 -0.0784 ± 0.0006 0.0574 ± 0.0032 0.4521 ± 0.0168 0.9969

Table 4-3.: Fit parameters e, b, c, d, and determination coefficient R2 for the rank distribution of chords
of each opera and the superposition of all of them.

describes the frequency of occurrence n(r) against rank r, for the case of the statistics of
musical notes in some musical compositions, which is given by [42]:

n(r) = 1
(a′ + b′r)z , (4-2)

with a′, b′, and z the fitting parameters coming from experimental data. Taking e = 0,
it is possible to appreciate that the parameter b in equation (4-1) changes if the frequency
of occurrence is measured instead of the probability. In this sense, this parameter contains
information about the total number of chords.

Simon’s model (with two additional conditions) can produce a similar form for the fre-
quency of occurrence given by equation (4-2). In language, Simon’s model considers that the
probability of occurrence of a word is proportional to its previous number of occurrences,
the words that have not been used are added to the text with a constant rate [42, 90]. One of
the conditions added to Simon’s model is that the rate of appearance of new words changes
with the length of the text [91]. The other condition is that there is a maximum number of
occurrences for a single word [42]. Future analysis can be performed in order to considering
an analogy between a word in a text and a chord in a musical composition, and to explore
the possibility that this type of process can also be used to reproduce experimental data, as
in the case of the secco recitatives harmony.

In the case of the opera No2, the limited number of chords that appear in the secco
recitatives of the musical score does not allow a good statistical description of the system,
this can be observed in Figure 4-2, and from the fit error values for the parameters a, b, c
and d, and from the R2 of the fit.

4.5. Analysis of roots
PDs for the root of the chords of each opera were made for the three types of triads

considered. The PDs were constructed using numbers to represent each root. The distance
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between adjacent roots was considered as a fifth, this election is based on the relatedness of
different chords in the musical context, in the sense that for the circle of fifths the distance
between adjacent musical keys differs only in terms of one pitch class [9, pp. 250-252].

For each root of a chord, the corresponding number assigned is: F] −→ 1, C] −→ 2, G] −→ 3,
D] −→ 4, A] −→ 5, F→ 6, C−→ 7, G−→ 8, D−→ 9, A−→ 10, E−→ 11, and B−→ 12.

This election was made in order to put the root C in the center of the graphic because
this is one of the most used in the secco recitatives.

Figures 4-10, 4-11, and 4-12 show the PD for the roots of the major, minor, and dimi-
nished chords in the the secco recitatives.

Major chords tend to follow a sinusoidal function of the form

P (x) = a′′ + b′′sin

[
π

(
x− c′′

d′′

)]
, (4-3)

where x refers to the root of the chord, P (x) refers to the probability of occurrence of a
given root x, and a′′, b′′, c′′, and d′′ refer to the fit parameters of each opera. Table 4-4 shows
the fit parameters for each opera and the superposition of all of them, and the corresponding
determination coefficient R2 of each fit.

Figure 4-10 shows that major chords tend to be organized around a tonal center (near to
C, G, or D) with smooth variations when we move away from it. From the probability values
showed in Figure 4-11, it is possible to observe that, in almost all operas, the minor chords
have significant less occurrences than major ones, an exception to this behavior is found
at the operas No 1 and No 2. For the minor chords, the most probable roots are displaced
with respect to the roots of the major chords, in this case roots are near G, D, and A. The
relative large occurrence of A minor in some operas can be explained because this chord is
the relative minor of C major, and the relative minor of a key is highly used in the tonal
music harmony, since C major and A minor are close in the psychological distance between
keys [9, p. 252].

Figure 4-12 shows that diminished chords have very small probabilities of occurrence in
comparison with major and minor chords. Besides, the roots of these chords are far (in the
circle of fifths) from the roots of the major and minor chords.

4.6. Transitions between roots
For each secco recitative, the transitions between the roots of the chords were studied.

The rests were omitted in all cases. Figure 4-13 shows the way in which the transitions were
measured in clockwise direction, for example a typical cadence V-I starting in the root G
and finishing in the root C corresponds to 5 steps (measured in semitones).

Since the incidence of diminished triads in the secco recitatives is low (see Figure 4-12),
then most transitions between chords can be classified in one of the following combinations:
major-major, major-minor, minor-major, and minor-minor.
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Figure 4-13.: The 12 pitches of the chromatic scale, and the transitions between them in clockwise direction.

Figures 4-14 to 4-17 show the probability to find a particular transition of roots in the
operas studied and in their superposition, for the four transitions proposed.

In the major-major case, the most important contributions are those from transitions
between the same root, frequently made using the inversions of the chord, and the transitions
of five semitones between roots. Transitions of 2 semitones are also important. In the case of
transitions containing the tonic chord (I), a 5 semitones step corresponds to the progression
tonic-subdominant (I-IV) or dominant-tonic (V-I). Transitions of 2 semitones can occur in
progressions between chords with functions of subdominant and dominant, as for example
IV-V.

In the major-minor case, most transitions correspond to 5 semitones. In the case of
transitions containing the tonic chord (i), a 5 semitones step is frequently related to pro-
gressions of the form dominant-tonic (V-i). In the opera No8, this feature is absent, as most
relevant transition correspond to 11 semitones, however this transition has a very small pro-
bability in the opera. In some operas, the 9 semitones transition also has some importance,
this transition (in the major-minor case) corresponds to chords related by a relative relation,
that is characterized by the transition between two chords in different modes, and with roots
related as follows: the minor chord must have a root three semitones below the root of the
major chord (9 steps starting from the major chord in Figure 4-13). Two keys with a relative
relation between them have the particularity that they have the same pitch classes [9, pp.
251-252].

In the minor-major case, most transitions correspond to 2 semitones. Transitions of 2
semitones can occur in progressions between chords with functions of subdominant and
dominant, as for example iv-V. The contribution of 0 semitones is also important, this last
transition corresponds to chords related by a parallel relation, that is characterized by the
transition between two chords in different modes, but with the same root: one in minor mode
and the other one in major mode (or vice versa). In a perceptual space with a psychological
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Major-major Major-minor Minor-major Minor-Minor Diminished-Minor
T
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) 0 1 0 0 0 0

1 2 0 0 0 1
2 0 0 3 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 90 26 0 1 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 1 0 0 0
10 0 0 0 0 0
11 1 0 0 0 0
12 0 0 0 0 0

Table 4-5.: Number of final transitions in the secco recitatives according to the jump of the root in semi-
tones, and the type of transition: major-major, major-minor, minor-major, minor-minor, and
diminished-minor.

transitions between two chords in root position separated by 5 semitones between them
(measuring the distance in agreement with Figure 4-13) correspond to the dominant-tonic
movements (V-I or V-i), and they are consistent with the perfect authentic and imperfect
authentic cadences [12, p. 119]. These types of transitions correspond to a strong cadence,
commonly found in the closure of musical pieces.

Inversions Number
53→ 53 83
7→ 53 24
63→ 53 7
65→ 53 6
2→ 53 4
53→ 63 2
2→ 63 1

Table 4-6.: Number of final transitions in the secco recitatives according to their inversions.

4.8. Transitions between basses
The frequency of occurrence of the transitions between the lowest pitches of each chord

(basses) were studied. Since most final transitions are used with closure purposes with a
movement of 5 semitones between two chords in the root position, then the final transition
of each secco recitative was not taken into account in this analysis in order to avoid redundant
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information.
Since the bass of each chord can be located up or down with respect to the bass of the

previous chord, we assume that the jump of the bass corresponds to the minimum distance
between the ascending and the descending transition (taking into account the most frequent
movements found in the secco recitatives). This decision corresponds to measuring the distan-
ce in Figure 4-13 in the clockwise and counterclockwise directions, and to take the minimum
distance between both directions. As a consequence of this procedure, the maximum possible
distance between basses corresponds to 6 semitones. Figure 4-18 shows, for each opera and
the superposition of all of them, the probability of occurrence according to the transition
between basses measured in semitones. One of the most important contributions is the 0, 1,
and 2 semitones, suggesting that the composers tend to minimize the bass movement. An
extreme example of this behavior is found in the opera No3, for which the location of the
bass remains fixed in many transitions.

Another important contribution to the transition between basses is for 5 semitones. For
the case of transitions containing the tonic chord, a 5 semitones step in the basses is related
to progressions of the form tonic-subdominant (I-IV and i-iv) and dominant-tonic (V-I and
V-i) with the chords in root position. Another possibility is the transition between the same
chord in root position and in the second inversion, for example I-I64, IV-IV64, and V-V64.

4.9. Betweenness centrality in secco recitatives networks
In this section we use graph theory in order to represent each individual secco recitative

of an opera as a cluster in an indirect binary network. A clique is a complete subgraph
in which all links are present, and all nodes are adjacent, this is the hardest definition of a
cluster [92, p. 102]. The different chords used in each recitative are represented as nodes, and
the links between them represent the occurrence of these chords in a same secco recitative.
Figure 4-19 represents two recitatives for which only one chord is common between them.
The size of nodes is proportional to the Freeman betweenness centrality CB, but conserving
a minimum size for the nodes in the case of CB = 0. For a given node xi, the centrality CB
is defined as [93]

CB(xi) =
N∑
j=1

N∑
k=1

gjk(xi)
gjk

; j 6= k 6= i; j < k, (4-4)

where gjk represents the total number of shortest paths from node j to note k, and gjk
represents the number of those paths that contain the node xi.

This particular centrality measure captures information about the chords with more oc-
currences in different recitatives of the same opera, because in the case of a node xi′ that
only belong to one cluster CB(xi′) = 0 all shortest paths gjk(xi′) do not include the node xi′ .

The Freeman betweenness centrality can be normalized using the maximum possible cen-
trality of a node in a graph with n nodes, this is





118

Figure 4-19.: Representation of two secco recitatives as clusters in a network. The nodes correspond to
different chords, and the links between them to the occurrence of two of these chords inside
a same recitative.

Figure 4-20.: Graph of the opera the Coronation of Poppea with clusters representing different secco re-
citatives. The nodes correspond to different chords, and the links between them to the co-
occurrence of two of these chords inside a same secco recitative.
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Figure 4-21.: Graph of the opera Acis and Galatea with clusters representing different secco recitatives.
The nodes correspond to different chords, and the links between them to the co-occurrence
of two of these chords inside a same secco recitative.

Figure 4-22.: Graph of the opera the Marriage of Hercules and Hebe with clusters representing different
secco recitatives. The nodes correspond to different chords, and the links between them to
the co-occurrence of two of these chords inside a same secco recitative.
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Figure 4-23.: Graph of the opera Mithridates, King of Pontus with clusters representing different secco
recitatives. The nodes correspond to different chords, and the links between them to the
co-occurrence of two of these chords inside a same secco recitative.

Figure 4-24.: Graph of the opera Apollo and Hyacinthus with clusters representing different secco reci-
tatives. The nodes correspond to different chords, and the links between them to the co-
occurrence of two of these chords inside a same secco recitative.
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Figure 4-25.: Graph of the opera the marriage of Figaro with clusters representing different secco recitatives.
The nodes correspond to different chords, and the links between them to the co-occurrence
of two of these chords inside a same secco recitative.

Figure 4-26.: Graph of the opera Cinderella with clusters representing different secco recitatives. The nodes
correspond to different chords, and the links between them to the co-occurrence of two of
these chords inside a same secco recitative.
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Figure 4-27.: Graph of the opera the Barber of Seville with clusters representing different secco recitatives.
The nodes correspond to different chords, and the links between them to the co-occurrence
of two of these chords inside a same secco recitative.

centrality CB and normalized betweenness centrality C ′B. Nodes have been ordered from the
highest to the lowest values of CB (and hence C ′B). In 7 of the 8 operas, the five nodes with
the greatest values of Freeman betweenness centrality always include the major triads of the
roots C, G, D. The exception to this behavior is the opera No2, for which the nodes associated
to the root C do not appear between the ones with the highest values of CB. For all operas,
the nodes with the highest values of CB correspond to chords with major or minor triads in
root position (53) or first inversion (63), however an interesting phenomenon occurs in opera
No2, for which a diminished chord appears as the second node with highest betweenness
centrality, indicating that harmony in the secco recitatives of this opera is different of the
other ones.

Figure 4-28 shows the normalized Freeman betweenness centrality of each node C ′B ordered
in rank (from the highest to the lowest value) for each studied opera. There is a slow decay
for the operas No 3, 4, and 5, a moderate decay for the operas No 1 and 6, and a fast decay for
the operas No 2, 7, and 8. On one hand, a slow decay means that there are many chords that
appear in most secco recitatives of the opera. On the other hand, an strong decay indicates
that only a few chords are common to most secco recitatives of the opera, these few chords
are very important, in such a way that if they are removed, the harmony of the entire opera
is strongly affected.
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F] Diminished 0 63 72.27 0.0138
G Minor 0 63 62.67 0.0119
B Major 0 53 60.96 0.0116
C Minor 0 53 57.00 0.0109
A] Major 0 53 56.23 0.0107
E Minor 0 63 48.95 0.0093
D] Major 0 53 44.30 0.0084
C Major 0 63 36.79 0.0070
E Diminished 0 63 36.79 0.0070
A Minor 0 63 33.96 0.0065
G Minor 7m 7 31.30 0.0060
C] Diminished 0 63 27.30 0.0052
B Minor 0 53 27.24 0.0052
A] Major 0 63 26.43 0.0050
C Major -5 53 26.10 0.0050
B Diminished 0 63 23.95 0.0046
B Diminished 0 53 18.08 0.0034
C Major 7Ma 2 17.73 0.0034
D Minor 0 64 16.92 0.0032
A Major 7m 65 12.80 0.0024
A Minor Other 53 10.94 0.0021
D Major -5 53 10.53 0.0020
F Minor 0 63 9.25 0.0018
B Minor 0 63 9.09 0.0017
D Major 7m 7 9.09 0.0017
G Major -5 53 9.03 0.0017
G Major 7m 2 8.56 0.0016
A Minor 7m,-5 7 7.56 0.0014
G Major 7m,-5 7 6.82 0.0013
C] Diminished 0 53 5.60 0.0011
G] Major 0 53 5.47 0.0010
A Minor 7m 7 2.56 0.0005
A Major 7m,-5 7 2.22 0.0004
D Minor 7m,-5 7 0.00 0.0000
E Major 7m,-5 2 0.00 0.0000
A Major -5 63 0.00 0.0000
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A Major 7m,-5 65 0.00 0.0000
G Minor -5 53 0.00 0.0000
G Major Other 7 0.00 0.0000
E Major -5 63 0.00 0.0000
E Minor 7m 65 0.00 0.0000
D Minor Other 64 0.00 0.0000
G] Diminished 0 63 0.00 0.0000
G Major 7m,-5 2 0.00 0.0000
A Minor 0 64 0.00 0.0000
F Major 7Ma 43 0.00 0.0000
C Major 7m 43 0.00 0.0000
D Major Other 43 0.00 0.0000
A] Major 7Ma 2 0.00 0.0000
G] Major 0 63 0.00 0.0000
C Minor Other 53 0.00 0.0000
G Minor -5 63 0.00 0.0000
C Major 7Ma,-5 7 0.00 0.0000
E Major 7m 65 0.00 0.0000
C Major 7m,-5 7 0.00 0.0000
A Major Other 7 0.00 0.0000
D Major 7m 2 0.00 0.0000
E Minor 0 64 0.00 0.0000
B Minor -5 53 0.00 0.0000
D] Major 7Ma,-5 7 0.00 0.0000
C Minor 0 63 0.00 0.0000
A] Major 7Ma,-5 7 0.00 0.0000
G Minor 7m,-5 7 0.00 0.0000
D Minor -5 53 0.00 0.0000
D Major 7m,-5 63 0.00 0.0000
F] Diminished 7m 65 0.00 0.0000
C Minor 7m,-5 2 0.00 0.0000
A Minor 7m 2 0.00 0.0000
F Major 7Ma 2 0.00 0.0000
A] Major 7Ma,-5 53 0.00 0.0000
C Major 7m 65 0.00 0.0000
A] Diminished 0 53 0.00 0.0000
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C Major 7Ma 7 0.00 0.0000
D Minor 7m 65 0.00 0.0000
F Major -5 53 0.00 0.0000
B Major 0 63 0.00 0.0000
B Major 7m 2 0.00 0.0000
F Minor 0 53 0.00 0.0000
B Major Other 53 0.00 0.0000
C Major 0 64 0.00 0.0000
E Major -5 53 0.00 0.0000
F Major 7Ma 7 0.00 0.0000
D Major -5 63 0.00 0.0000
A Major -5 53 0.00 0.0000
F Minor 7m 7 0.00 0.0000
G] Diminished -5 53 0.00 0.0000
G] Diminished 7o,-5 7 0.00 0.0000
E Minor 7m 7 0.00 0.0000

Opera 2
Root Triad Alteration Inversion CB C ′B

G Minor 0 53 109.47 0.1840
F] Diminished 7o 7 47.72 0.0802
D Major 0 63 46.36 0.0779
F Major 0 53 44.40 0.0746
A Minor 0 53 43.13 0.0725
D Major 0 53 40.70 0.0684
A Major 0 63 18.19 0.0306
C Major 0 63 17.70 0.0297
E Major 0 2 16.67 0.0280
E Major 0 53 16.41 0.0276
D Minor 0 53 16.02 0.0269
A Major 0 53 14.27 0.0240
B Diminished 0 63 6.61 0.0111
C Major 0 53 6.61 0.0111
E Major 0 63 6.61 0.0111
G Major 0 63 5.83 0.0098
G Major 0 53 5.43 0.0091
C Minor 0 63 1.88 0.0032



127

A] Major 0 53 0.00 0.0000
C Major 0 2 0.00 0.0000
E Diminished 0 53 0.00 0.0000
G Major 0 2 0.00 0.0000
C] Diminished 7o 7 0.00 0.0000
D Minor 0 63 0.00 0.0000
E Major 7m 65 0.00 0.0000
F Diminished 0 63 0.00 0.0000
A Major 0 2 0.00 0.0000
G Minor 0 63 0.00 0.0000
A] Major 0 63 0.00 0.0000
D] Diminished 7o 7 0.00 0.0000
B Major 0 63 0.00 0.0000
B Major 0 65 0.00 0.0000
E Minor 0 53 0.00 0.0000
A Minor 0 63 0.00 0.0000
C Minor 0 53 0.00 0.0000
D Major 0 7 0.00 0.0000

Opera 3
Root Triad Alteration Inversion CB C ′B

C Major 0 53 303.08 0.0235
D Major 0 53 278.08 0.0216
A] Major 0 63 253.13 0.0197
G Major 0 53 246.60 0.0191
A Major 0 63 246.60 0.0191
C Major 0 63 221.02 0.0172
F Major 0 53 221.02 0.0172
D Major 0 63 217.59 0.0169
G Major 0 63 209.34 0.0163
D Major 7m 7 198.27 0.0154
C Major 7m 7 187.69 0.0146
D Major 7m 65 177.80 0.0138
A Major 0 53 171.96 0.0134
G Minor 0 53 168.71 0.0131
E Major 0 53 140.18 0.0109
A Major 7m 65 139.66 0.0108
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C Major 7m 65 135.31 0.0105
A] Major 0 53 128.04 0.0099
D] Major 0 53 122.37 0.0095
A Minor 0 63 115.98 0.0090
E Major 7m 7 115.98 0.0090
B Major 0 63 110.92 0.0086
F Major 7m 2 110.36 0.0086
G Major 7m 7 108.88 0.0085
A Major 7m 2 106.57 0.0083
A] Major 7m 65 102.45 0.0080
D Minor 0 63 101.29 0.0079
F Major 7m 7 96.77 0.0075
G Major 7m 2 92.90 0.0072
C Major -5 53 88.56 0.0069
G] Major 0 63 80.87 0.0063
F Major 0 63 80.50 0.0063
D Major -5 63 79.02 0.0061
B Major 7m 65 70.91 0.0055
A Minor 0 64 70.89 0.0055
D Minor 0 53 70.13 0.0054
E Major 0 63 69.83 0.0054
C] Diminished 7o 7 68.50 0.0053
C Major -5 63 66.15 0.0051
D Major 7m 2 59.49 0.0046
G Minor 0 63 57.73 0.0045
G Major 7m 65 49.76 0.0039
E Diminished 0 53 48.94 0.0038
E Diminished 7o 7 48.94 0.0038
D] Major 0 63 48.46 0.0038
F] Minor 0 53 46.46 0.0036
A] Major 7m,-5 7 42.18 0.0033
E Major 7m 65 40.42 0.0031
E Major 7m 2 39.27 0.0030
B Minor 0 63 39.27 0.0030
D Major 0 64 38.43 0.0030
A Major 7m 7 34.65 0.0027
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A] Major -5 63 34.04 0.0026
F] Major 7m 7 33.88 0.0026
D Diminished 7o 7 33.88 0.0026
C Minor 0 63 32.62 0.0025
F] Major 0 53 31.69 0.0025
E Major 7m 53 31.60 0.0025
F] Diminished 7o 7 29.21 0.0023
C Minor 0 53 20.71 0.0016
A] Major 7m 7 19.23 0.0015
F Minor 0 53 19.23 0.0015
F] Major 7m 2 19.20 0.0015
E Minor -5 53 17.34 0.0013
B Minor 0 53 15.88 0.0012
C] Major 0 63 15.45 0.0012
E Major Other 7 15.34 0.0012
A] Diminished 7o 7 14.66 0.0011
A Minor 0 53 14.66 0.0011
G Diminished 7o 7 14.66 0.0011
C Major 7m 2 13.74 0.0011
A Major 7m,-5 7 13.31 0.0010
C] Diminished 0 53 13.31 0.0010
B Major 0 53 13.31 0.0010
A Minor -5 63 11.75 0.0009
A Minor 7m,-5 2 11.75 0.0009
D] Diminished 7o 7 11.71 0.0009
E Minor 0 53 11.71 0.0009
C Minor 7m 65 11.00 0.0009
D Major 7m,-5 7 10.44 0.0008
G Major 7m 43 9.91 0.0008
D Major -5 53 9.90 0.0008
D Major 7m,-5 2 8.77 0.0007
C] Minor -5 53 4.80 0.0004
G Major 0 64 3.16 0.0002
D Diminished 0 53 1.32 0.0001
E Diminished 0 64 0.00 0.0000
E Major Other 2 0.00 0.0000
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A Major -5 53 0.00 0.0000
A Major Other 7 0.00 0.0000
A Diminished 7o 7 0.00 0.0000
B Major 7m 7 0.00 0.0000
A] Major 7Ma,-5 2 0.00 0.0000
F Major 7m 65 0.00 0.0000
B Diminished 0 53 0.00 0.0000
G Major 7m 63 0.00 0.0000
D Major 0 7 0.00 0.0000
D Major 0 2 0.00 0.0000
A Major 7m,-5 65 0.00 0.0000
B Minor 7m,-5 63 0.00 0.0000
E Major 0 64 0.00 0.0000
E Major 7m,-5 7 0.00 0.0000
A Diminished 0 63 0.00 0.0000
A] Major 7m,-5 65 0.00 0.0000
F Diminished 0 64 0.00 0.0000
G Minor -5 53 0.00 0.0000
F Major 0 64 0.00 0.0000
F Major 7m,-5 7 0.00 0.0000
C Major 7m,-5 65 0.00 0.0000
C Major 7m,-5 7 0.00 0.0000
G Minor 7m,-5 2 0.00 0.0000
F Diminished 0 63 0.00 0.0000
F Diminished 7o 7 0.00 0.0000
F] Minor -5 53 0.00 0.0000
C Minor -5 63 0.00 0.0000
E Diminished 7m 7 0.00 0.0000
B Diminished 0 64 0.00 0.0000
B Minor 7m,-5 2 0.00 0.0000
C] Major 7m 2 0.00 0.0000
C] Major 7m 7 0.00 0.0000
F] Diminished Other 64 0.00 0.0000
C Minor 7m 7 0.00 0.0000
C Minor Other 7 0.00 0.0000
E Diminished 0 63 0.00 0.0000
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D Minor -5 53 0.00 0.0000
B Diminished 7o 7 0.00 0.0000
C Major 7m,-5 2 0.00 0.0000
A Minor -5 53 0.00 0.0000
A Major -5 63 0.00 0.0000
E Major 0 2 0.00 0.0000
D] Minor -5 53 0.00 0.0000
C] Major 7m 65 0.00 0.0000
D Major 7Ma,-5 65 0.00 0.0000
G Major 0 2 0.00 0.0000
B Minor -5 63 0.00 0.0000
B Diminished 0 63 0.00 0.0000
D] Major -5 53 0.00 0.0000
D] Major 7m 2 0.00 0.0000
G Diminished 0 64 0.00 0.0000
D] Major 7m,-5 2 0.00 0.0000
D Minor 7m 7 0.00 0.0000
D Minor 0 64 0.00 0.0000
C Major 0 7 0.00 0.0000
D Major 7o 7 0.00 0.0000
F] Major 7m,-5 7 0.00 0.0000
G Major -5 63 0.00 0.0000
A Diminished 0 64 0.00 0.0000
D] Major 0 64 0.00 0.0000
D] Major -5 63 0.00 0.0000
A] Major -5 53 0.00 0.0000
D Diminished 0 64 0.00 0.0000
G Minor Other 53 0.00 0.0000
C Major Other 7 0.00 0.0000
G Minor -5 63 0.00 0.0000
G] Major 0 53 0.00 0.0000
C] Minor 0 53 0.00 0.0000
F] Minor 0 64 0.00 0.0000
F] Diminished 0 64 0.00 0.0000
C Major 0 64 0.00 0.0000
G Major 7m,-5 2 0.00 0.0000
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E Minor 0 63 0.00 0.0000
A] Minor 0 53 0.00 0.0000

Opera 4
Root Triad Alteration Inversion CB C ′B

B Major 0 63 60.75 0.0125
D Major 0 53 60.75 0.0125
G Major 0 53 54.49 0.0112
E Minor 0 53 49.37 0.0102
C Major 0 63 49.37 0.0102
A Minor 0 63 49.37 0.0102
C Major 0 53 46.43 0.0096
D Minor 0 53 45.73 0.0094
D Major 0 63 44.65 0.0092
D Minor 0 63 44.65 0.0092
C Major 7m 65 42.54 0.0088
A Major 0 63 40.43 0.0083
C] Diminished 0 63 39.97 0.0082
E Major 7m 2 39.97 0.0082
F Major 0 53 38.91 0.0080
A Major 0 53 36.91 0.0076
A] Major 0 63 35.47 0.0073
F] Minor 0 53 34.69 0.0072
G Major 0 63 33.58 0.0069
D Major 7m 65 33.47 0.0069
E Major 0 53 32.61 0.0067
B Major 7m 65 32.50 0.0067
A] Major 0 53 30.63 0.0063
F] Major 7m 2 30.41 0.0063
C] Major 0 63 30.11 0.0062
D] Major 0 53 29.18 0.0060
G Major 7m 2 28.26 0.0058
G Minor 0 63 27.84 0.0057
G Minor 0 53 26.01 0.0054
C Minor 0 63 24.59 0.0051
A Major 7m 65 24.58 0.0051
F] Major 0 53 24.22 0.0050
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B Minor 0 63 23.30 0.0048
A Minor 0 53 21.65 0.0045
F Minor 0 53 21.54 0.0044
E Major 0 63 20.51 0.0042
A] Major 7m 65 18.80 0.0039
C] Major 7m 65 17.77 0.0037
E Minor 0 63 16.59 0.0034
B Major 0 53 16.29 0.0034
F] Major 0 63 14.73 0.0030
B Diminished 0 63 14.47 0.0030
D Major 7m 2 14.11 0.0029
B Major 7m 2 11.60 0.0024
F Major 7m 2 10.82 0.0022
F Major 0 63 10.41 0.0021
G Major 7m 65 10.25 0.0021
A Major 7m 2 9.54 0.0020
C Minor 0 53 8.93 0.0018
C Major 7m 7 6.58 0.0014
A Major -5 53 6.04 0.0012
E Major 7m 65 5.63 0.0012
B Minor 0 53 5.24 0.0011
G] Major 0 53 5.09 0.0010
C Major 7m 2 4.54 0.0009
G] Major 7m 2 4.32 0.0009
F] Minor 0 63 4.00 0.0008
D Minor -5 53 4.00 0.0008
C Major -5 53 3.99 0.0008
E Major 7m 7 3.67 0.0008
D] Major 0 63 3.63 0.0007
A] Major 7m 7 3.31 0.0007
C] Minor 0 63 2.90 0.0006
F Major 7m 7 2.47 0.0005
A] Major -5 53 2.47 0.0005
D Major 7m,-5 7 2.35 0.0005
F] Major 7m 65 2.18 0.0004
C Diminished 7o 7 2.18 0.0004
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F Major 7Ma,-5 7 1.84 0.0004
C] Major 0 53 1.58 0.0003
G] Major 0 63 1.25 0.0003
G Major 7m 7 1.24 0.0003
F] Minor -5 53 0.88 0.0002
D Diminished 7o 7 0.75 0.0002
F] Diminished 7o 7 0.20 0.0000
C] Major -5 53 0.00 0.0000
C] Major 7m,-5 7 0.00 0.0000
A Major 7m 43 0.00 0.0000
F Major 7m 65 0.00 0.0000
F Minor 0 63 0.00 0.0000
A Diminished 7Ma 43 0.00 0.0000
F Diminished 7o 7 0.00 0.0000
D] Diminished 7o 7 0.00 0.0000
D Diminished 0 53 0.00 0.0000
D Minor 0 64 0.00 0.0000
C] Major 7m 2 0.00 0.0000
C Major 7m,-5 7 0.00 0.0000
E Minor 7m,-5 7 0.00 0.0000
A Major 7m 7 0.00 0.0000
D Major 7m 7 0.00 0.0000
D] Major -5 53 0.00 0.0000
D] Major 7m 7 0.00 0.0000
B Major 7m 43 0.00 0.0000
A] Major 7m 43 0.00 0.0000
G Major 7Ma,-5 7 0.00 0.0000
C] Diminished 7o 7 0.00 0.0000
E Minor -5 53 0.00 0.0000
D] Major 7Ma,-5 7 0.00 0.0000
E Major 7m,-5 7 0.00 0.0000
A Major 7m,-5 7 0.00 0.0000

Opera 5
Root Triad Alteration Inversion CB C ′B

D Major 0 63 68.98 0.0189
D Major 0 53 68.98 0.0189
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G Major 0 53 68.98 0.0189
C Major 0 63 68.98 0.0189
G Major 0 63 62.64 0.0171
A Major 0 63 59.35 0.0162
G Major 7m 2 59.35 0.0162
F Major 0 53 55.24 0.0151
A Minor 0 53 54.13 0.0148
C Major 0 53 53.40 0.0146
B Major 0 63 45.50 0.0124
E Minor 0 53 45.50 0.0124
G Minor 0 53 44.51 0.0122
A Major 7m 2 43.36 0.0119
A Major 0 53 43.36 0.0119
D Minor 0 53 40.13 0.0110
C Minor 0 53 38.24 0.0105
E Major 0 63 37.95 0.0104
C Minor 0 63 32.13 0.0088
E Major 0 53 30.71 0.0084
D Major 7m 2 28.20 0.0077
D Minor 0 63 24.99 0.0068
D Major 7m 65 22.47 0.0061
B Minor 0 63 21.96 0.0060
A] Major 0 53 20.75 0.0057
A Minor 0 63 19.35 0.0053
A] Major 0 63 19.29 0.0053
E Major 7m 2 18.43 0.0050
F Major 0 63 18.40 0.0050
B Major 0 53 12.94 0.0035
B Major 7m 2 12.94 0.0035
E Diminished 7o 7 12.78 0.0035
F Minor 0 53 12.78 0.0035
F Major 7m 2 12.78 0.0035
F] Major 0 53 12.32 0.0034
C] Major 0 63 12.32 0.0034
F Minor 0 63 11.58 0.0032
B Minor 0 53 10.91 0.0030
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F] Major 0 63 10.91 0.0030
E Minor 0 63 10.37 0.0028
A] Minor 0 63 9.97 0.0027
C Major 7m 65 9.97 0.0027
E Major 7m 65 9.21 0.0025
B Diminished 7o 7 9.21 0.0025
D] Diminished 7o 7 7.85 0.0021
F] Minor 0 53 7.42 0.0020
D] Major 0 63 7.10 0.0019
F] Diminished 7o 7 6.72 0.0018
F] Major 7m 65 5.75 0.0016
D Major 7m 7 5.75 0.0016
F] Major 7m 2 3.48 0.0010
C Major 7m 2 3.37 0.0009
G Minor 0 63 3.37 0.0009
F Diminished 0 64 0.00 0.0000
C] Major 0 53 0.00 0.0000
A Major 7m 65 0.00 0.0000
B Major 7m 7 0.00 0.0000
B Major 7m 65 0.00 0.0000
A Major 0 2 0.00 0.0000
G Major 7m 7 0.00 0.0000
C Minor 7m 65 0.00 0.0000
C] Major 7m 65 0.00 0.0000
D Major 7m,-5 7 0.00 0.0000
C] Major 7m 2 0.00 0.0000
F] Minor 0 63 0.00 0.0000
F] Major 0 2 0.00 0.0000
G Major 7m 65 0.00 0.0000
G Major 7m,-5 7 0.00 0.0000
C] Diminished 7o 7 0.00 0.0000
A] Minor 0 53 0.00 0.0000
A] Diminished 7o 7 0.00 0.0000
D] Minor 0 63 0.00 0.0000
C Major 7m,-5 2 0.00 0.0000
A] Major -5 53 0.00 0.0000



137

E Diminished 0 63 0.00 0.0000
G] Diminished 7o 7 0.00 0.0000
G] Major 0 63 0.00 0.0000
D Minor 7m,-5 2 0.00 0.0000
G] Major 7m,-5 53 0.00 0.0000
D] Major 0 53 0.00 0.0000
E Diminished 7o,-5 7 0.00 0.0000
E Major 7m 7 0.00 0.0000
G] Major 7m 2 0.00 0.0000
G] Major 0 53 0.00 0.0000
C] Minor 0 63 0.00 0.0000
A] Major 7m 2 0.00 0.0000
G] Diminished 0 64 0.00 0.0000

Opera 6
Root Triad Alteration Inversion CB C ′B

C Major 0 63 89.03 0.0348
D Major 0 63 88.82 0.0347
G Major 0 53 87.34 0.0342
A] Major 0 63 76.84 0.0301
F Major 0 53 74.88 0.0293
C Major 7m 65 70.64 0.0276
A Major 7m 2 63.98 0.0250
D Major 7m 65 62.89 0.0246
A Major 0 63 57.61 0.0225
G Major 0 63 56.97 0.0223
G Major 7m 2 54.47 0.0213
G Minor 0 53 37.61 0.0147
A] Major 0 53 36.94 0.0145
E Major 0 63 34.29 0.0134
A] Major 7m 65 29.93 0.0117
F Major 0 63 29.80 0.0117
C Major 0 53 28.75 0.0112
B Major 0 63 23.48 0.0092
B Major 7m 65 23.48 0.0092
F Major 7m 2 23.48 0.0092
D] Major 0 53 22.89 0.0090
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A Major 0 53 22.06 0.0086
F Minor 0 53 21.08 0.0082
A Minor 0 53 18.22 0.0071
C Minor 0 63 15.46 0.0060
D Minor 0 53 14.81 0.0058
A Major 7m 65 10.93 0.0043
E Minor 0 53 10.38 0.0041
D Major 0 53 9.59 0.0038
D Minor 0 63 9.04 0.0035
D] Major 0 63 8.65 0.0034
E Major 7m 65 6.66 0.0026
A Major 7m 7 6.58 0.0026
E Major 0 53 6.47 0.0025
G Minor 0 63 5.61 0.0022
F Major 7m 7 4.85 0.0019
G Major 7m 7 4.79 0.0019
F] Minor 0 53 3.23 0.0013
C Major 7m 7 3.17 0.0012
G Major 7m 65 2.39 0.0009
C] Major 0 63 2.39 0.0009
G] Major 0 63 2.12 0.0008
G Minor -5 53 1.36 0.0005
D] Major 7m 2 1.30 0.0005
B Major 7m 7 1.13 0.0004
E Major 7m 2 0.82 0.0003
A Minor 0 63 0.82 0.0003
C] Major 7m 65 0.00 0.0000
A Diminished 0 63 0.00 0.0000
A Diminished 0 53 0.00 0.0000
B Diminished 0 63 0.00 0.0000
E Minor 7m 7 0.00 0.0000
F Diminished 7o 7 0.00 0.0000
F Major 7m 65 0.00 0.0000
A Major 0 65 0.00 0.0000
F] Diminished 7o 7 0.00 0.0000
F] Diminished 0 63 0.00 0.0000
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C Major -5 53 0.00 0.0000
G] Diminished 0 63 0.00 0.0000
A Minor -5 53 0.00 0.0000
E Diminished 7o 7 0.00 0.0000
D] Major 7m 65 0.00 0.0000
G] Major 0 53 0.00 0.0000
G Major 0 2 0.00 0.0000
C Major 0 65 0.00 0.0000
B Minor -5 53 0.00 0.0000
B Major 7m 2 0.00 0.0000
D Major 7m 7 0.00 0.0000
D Major 7m 2 0.00 0.0000
A] Minor 0 63 0.00 0.0000
A Major 7m 43 0.00 0.0000
G Diminished 7o 7 0.00 0.0000
C Major 7m 2 0.00 0.0000

Opera 7
Root Triad Alteration Inversion CB C ′B

C Major 0 63 66.15 0.0519
D Major 0 63 66.15 0.0519
G Major 0 63 66.15 0.0519
F Major 0 53 66.15 0.0519
A] Major 0 63 66.15 0.0519
A Major 0 63 52.20 0.0409
F Major 0 63 50.35 0.0395
G Major 7m 2 25.34 0.0199
G Major 0 53 24.85 0.0195
D Major 0 53 14.66 0.0115
F Major 7m 7 9.79 0.0077
A Major 7m 2 8.74 0.0069
E Diminished 0 53 8.21 0.0064
D] Major 0 63 8.15 0.0064
C Major 0 53 8.12 0.0064
D] Major 0 53 8.09 0.0063
A] Major 7m 7 7.45 0.0058
E Major 7m 7 5.29 0.0041
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G] Major 0 63 5.29 0.0041
E Major 7m 2 5.29 0.0041
C Major 7m 43 5.09 0.0040
A Major 0 53 4.88 0.0038
F Major 7m 2 3.62 0.0028
E Major 0 63 3.33 0.0026
A Major -5 53 3.12 0.0024
G] Major 0 53 2.87 0.0022
C Major -5 53 1.90 0.0015
D Major 7m 2 1.59 0.0012
A] Major -5 53 1.14 0.0009
G Major 7m 7 1.00 0.0008
C Major 7m 65 1.00 0.0008
B Major 0 63 0.36 0.0003
E Major 0 53 0.36 0.0003
A Major 7m,-5 7 0.19 0.0002
G Major 0 7 0.00 0.0000
B Diminished 0 53 0.00 0.0000
B Diminished 0 64 0.00 0.0000
F] Diminished 0 53 0.00 0.0000
F Major 7m 65 0.00 0.0000
C] Diminished 0 53 0.00 0.0000
D Major 7m 65 0.00 0.0000
A Diminished 0 64 0.00 0.0000
A Major 7m 7 0.00 0.0000
F] Diminished 0 64 0.00 0.0000
E Diminished 0 63 0.00 0.0000
D Diminished 0 64 0.00 0.0000
D] Major -5 53 0.00 0.0000
D] Major 0 64 0.00 0.0000
D Major 7m 7 0.00 0.0000
A] Major 7m,-5 7 0.00 0.0000
F Major 0 64 0.00 0.0000
F Major 7m 43 0.00 0.0000

Opera 8
Root Triad Alteration Inversion CB C ′B
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G Major 0 53 29.31 0.0357
C Major 0 63 29.31 0.0357
D Major 0 63 29.31 0.0357
D Major 0 53 25.99 0.0317
A] Major 0 63 21.83 0.0266
G Major 0 63 15.12 0.0184
G] Major 0 63 14.55 0.0177
F Major 0 63 14.31 0.0174
A] Major 0 53 14.07 0.0172
A Major 0 63 11.71 0.0143
C Major 0 53 11.26 0.0137
F Major 0 53 11.26 0.0137
D] Major 0 53 8.09 0.0099
D] Major 0 63 7.36 0.0090
B Major 0 63 6.04 0.0074
E Major 0 53 6.04 0.0074
A Major 7m 2 5.67 0.0069
G Major 7m 2 5.43 0.0066
A Major 0 53 4.38 0.0053
C Major 7m 65 3.25 0.0040
B Major 0 53 1.73 0.0021
F Major 7m 2 1.60 0.0020
C Major 7m 7 1.20 0.0015
E Major 0 63 1.20 0.0015
A] Major 7m 7 0.44 0.0005
G Major 7m 65 0.27 0.0003
E Major 7m 2 0.21 0.0003
A] Major 7m 65 0.06 0.0001
C] Major 0 53 0.00 0.0000
C] Major 7m 7 0.00 0
G] Major 0 53 0.00 0
A] Major 7m 2 0.00 0
D Major 7m 65 0.00 0
B Major 7m 2 0.00 0
D] Major 7m 65 0.00 0
G Minor 0 63 0.00 0
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C Major 7m 2 0.00 0
B Major 7m 65 0.00 0
D Major 7m 2 0.00 0
F] Major 7m 2 0.00 0
F] Major 0 53 0.00 0
G] Major 7m 65 0.00 0

Table 4-7.: Nodes of each opera with their respective values of Freeman betweenness centrality CB and
normalized betweenness centrality C ′B . The nodes have been ordered from the highest to the
lowest betweenness centrality.



5. Conclusions

The conclusions are divided in those related with the results of each chapter of the research,
and the general conclusions.

On the practices and tuning in the marimba de chonta
music

We analyzed the theoretical and experimental spectra of the marimba de chonta in or-
der to understand the tuning and the musical practices carried out with this instrument.
The harmony employed in the marimba de chonta practices is based on relative geometri-
cal distances between bars, generating a transposition principle that keeps the geometrical
distances.

We find that the tunings of the musical intervals produced at different relative distances do
not follow any specific mathematical rule. Rather, the tunings are distributed around average
values that follow equi-heptatonic, equi-octatonic and equi-enneatonic scales. The average
values correspond to the averages of the frequency ratios between bars that are separated
by the same geometrical distance, while the deviation of the tunings with respect to the
average values are expressed in terms of an uncertainty. For traditional marimbas following
equi-heptatonic, equi-octatonic, and equi-enneatonic averages in the musical intervals, the
values of these uncertainties are approximately 5.3%, 7.1%, and 7.7% of relative error with
respect to the average values, respectively.

A comparison with a previous study carried out using data collected in the 1980’s, indicates
that the tuning of the marimba de chonta with musical intervals that follow equi-heptatonic
averages has changed. The average values that define the octaves move from low octaves,
with frequency ratios strictly smaller than 2.00, to octaves with frequency ratios close to
2.00. This quantitative mathematical analysis, together with the first-hand testimonies of
musicians and instrument makers, suggests that this change is due to the influence of Western
music.

One of the main approaches for understanding tuning is based on the acoustical properties
of the musical instrument: the tuning must be done in the positions of the local minima of
dissonance generated by the spectrum of the timbre of the musical instrument. We analyzed
the dissonance curves coming from the spectrum of the marimba de chonta using three
different dissonance-measuring models. We found that the tunings of the musical intervals
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approximately follow this principle, as the most used harmonic intervals are placed in a broad
minimum of dissonance. However, the sharp minima of dissonance, characterized by narrow
peaks, are located in regions with large variations in dissonance. These regions are avoided
in marimba de chonta music. As the transposition practice implies deviations in the tuning
of musical intervals, the use of these regions would lead to large changes in the dissonance
level that would modify the tension-relaxation sequences. This rational is reinforced by the
observed suppression of intervals close to the seconds in the musical practices of the marimba
de chonta, as they are placed in a region with a large slope peak with a maximum of
dissonance.

The main relevance of the broad minimum of dissonance is that two bars separated by a
specific geometric distance in two regions close to each other in the register, keeps similar le-
vels of dissonance. This feature allows the transposition of full arrays of intervals maintaining
the main harmonic and melodic information in the tension-relaxation sequences. A general
conclusion beyond the case of marimba de chonta music, is that if a transposition practice
involves deviations in the tuning of musical intervals, regions with large changes in the dis-
sonance level for small variations in the tuning must be avoided, even if they correspond to
minima of dissonance.

On the generalization of the interval size and its
application to melody

The concept of the musical interval size was extended using two physical quantities: the
difference between the fundamental frequencies of pitches and the difference in the squares
of the fundamental frequencies. We explored the characteristics of these quantities in three
different musical scales: the just, Pythagorean, and 12-TET. We found that both quantities
contain information on the size of the interval and its location in the register, owing to
the existence of a relationship between the construction rules of the scales and the sizes of
intervals, which becomes linear in the most relevant regime for utilization in music. These
quantities can be measured with different precision levels, allowing us in many cases to lift
a degeneracy associated with the traditional musical interval size concept, in the sense that
it cannot distinguish intervals of the same size located in different locations of the register.

The expected values of the two physical quantities were shown to be macroscopic quantities
that contain relevant musical information. Specifically, they correspond to a generalization
of the traditional mean musical interval size, as the expected values also take into account
the mean location and the dispersion of the intervals in the register.

A link between the theory of tonal consonance and the expected values of the two consi-
dered physical quantities was developed. Specifically, knowing the mean location of musical
intervals with a given size in the register, and the corresponding variance, it is possible to
measure both the expected values and the mean dissonance properties of a musical piece,
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owing to the use of musical intervals produced by an instrument with a particular timbre.
In order to verify the usefulness of this formalism, it was applied to melodies. The frequency

of occurrences of melodic intervals in 20 melodic lines from seven masterpieces of Western
tonal music was measured, and the probability distributions of both quantities were obtained.
In all cases we obtained non-continuous asymmetric Laplace distributions. In addition, the
entropy associated with the appearances of melodic intervals during the progression of a
melodic line increases up to a limiting value, which is smaller than the entropy of a random
composition. In order to explain these empirical findings, a statistical model based on the
minimization of the relative entropy under constraints was proposed for the difference in
the squares of the fundamental frequencies. Two constraints are associated with the number
of ascending, descending, and unison intervals, and the two other constraints correspond
to expected values arising from the average magnitude of the physical quantity, and the
asymmetry in the magnitudes of ascending and descending intervals. The model includes
two Lagrange multipliers. The first locates the region in the register where the melody is
played, giving information on musical processes such as transposition. The second captures
asymmetry patterns between ascending and descending intervals. For 13 of the 20 studied
melodic lines, the first Lagrange multiplier is related to the mean dissonance level of the
melodic line, connecting macroscopic statistical properties with psychoacoustic features of
the system.

The presented findings show that for the studied musical pieces the selection of melodic
intervals made by the composers, including their locations in the register, can be modeled
as a tight compromise between order and disorder, with a principle of entropy extremaliza-
tion constrained by macroscopic quantities with musical meanings, which embed microscopic
musical rules, as well as the composer’s preferences. While many complex systems exhibit
emergent properties associated to non-physical quantities, this work employs physical para-
meters to trace a connection between the properties of a musical piece as a whole, and the
psychoacoustic properties of its individual elements.

On the statistical analysis of chords in secco recitatives
The statistical analysis of secco recitatives from eight operas was carried out defining

chords as the constituent elements. Amongst the most interesting findings are: First, rank
distributions for the use of chords are similar to those reported for single musical notes,
second, roots of the major chords exhibit a sinusoidal behavior in a space in which adjacent
pitches are organized by fifths, third, the presence of an asymmetry in the transitions between
major and minor chords (and vice versa), and fourth, the transitions between the basses of the
chords suggests that composers tend to minimize the bass movement. From the exploration
using graphs, the rank distribution of the Freeman betweenness centrality describes the way
in which composers use chords inside the secco recitatives of an opera. Fast decays in this
distribution means that only few chords are common to most secco recitatives of the opera,
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indicating that these chords are essential for the harmony of the entire piece. On the other
hand, slow decays indicate that there are several chords that appear in many secco recitatives
of the opera. Fast decays were found for the operas Acis and Galatea, Cinderella, and the
Barber of Seville, moderate decays for The Coronation of Poppea and The Marriage of Figaro,
and slow decays for The Marriage of Hercules and Hebe, Mithridates, King of Pontus, and
Apollo and Hyacinthus. These results give new information about secco recitatives, which
interpretation practices were poorly registered at the time, and now days remain largely
unknown. Additionally, they show that the methodology developed allows to capture new
features about the harmony of musical pieces.

General conclusions
This study explored complexity in music at different scales, from a pure tone to complete

musical pieces.
The first issue is about the microscopic elements found in music. The course of this ex-

ploration involved the use of several representations for the constituent elements of musical
pieces. First there was one pure tone, then the superposition of two pure tones, followed by
complex tones made of many pure tones, and finally to sets of complex tones associated to
tunings, musical intervals and chords.

The second issue is the rules governing constituent elements of musical pieces. The rules
of music vary in nature; some come from the physical properties of sound and how we
perceive consonance and dissonance as pleasant or unpleasant sensations, and some come
from cultural constraints and the creativity of the composer. These rules define different
levels of complexity, from the main constituent elements defined below to the whole piece.

From the study of the marimba de chonta music, we found that the tunings of this tradi-
tional marimba music are different from those found in Western music, and that they cannot
be inferred by a simple exploration of the minima of dissonance without taking into account
the musical practices. One of the most relevant characteristics of the marimba de chonta
music is a transposition practice that keeps the same relative distance between bars. The
transposition practice allows the coupling of the marimba music with the vocal preferences
of female singers. An important result is the understanding that this practice and those that
define the pairs of bars that can be played simultaneously, are related to the consonance
properties of the marimba de chonta.

The marimba de chonta music is considered by UNESCO as a “Heritage of Humanity.” We
found that the low octaves of this music (intervals with mean fundamental frequency ratios
slightly smaller than 2.00), that were observed in previous studies, have been lost in favor
of octaves with mean frequency ratios close to 2.00, which implies a severe modification of
this music. Some results of this study are intended to be used in public policy making, as
currently some programs of the Colombian government are enhancing the risk of disappea-
rance of this music. Specifically, the Government promotes musical education in the regions
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where marimba de chonta music is present, the instruments provided are commonly tuned
using diatonic 12-TET marimbas, and the courses emphasize in the Western music theory
associated with tempered instruments. Additionally, the methodology used in this study can
compare an unknown marimba with a set of traditional marimbas, which has the potential
to prevent some alterations of the traditional tuning.

The study of melodic lines provides evidence of a connection between the mean dissonance
level associated with a melodic line, and a macroscopic quantity coming from the organiza-
tional features of a musical piece as a whole. The organizational features are captured in a
model that extremalizes entropy subject to microscopic and macroscopic constraints, which
approximately reproduces the final selection made by composers of musical intervals in the
melodic lines studied. The microscopic constraints are due to the tuning of the musical ins-
trument. The macroscopic constraints are related to the mean position and the dispersion
in the register of melodic intervals.

The study of the secco recitatives of eight operas shows that chords have similar orga-
nizational features than single musical notes. Besides, the roots of the major chords follow
a sinusoidal behavior, and the bass movement of the chords suggests that composers tend
to minimize the bass movement. Additionally, an asymmetry associated to the transitions
between major and minor chords (and vice versa) was found. Finally, from the exploration
using graphs, the rank distribution of the Freeman betweenness centrality was found to be
useful in order to capture the way in which composers use chords inside the secco recitatives
of an opera.

Two last statements:

The phenomenon of tonal consonance is present in timbre, tuning, and several rules at
different levels of complexity in music.

Understanding melody as a tension between order and disorder, where rules constraint
the system and the dynamics is ruled by the maximization of entropy, recalls the
tension between Will and Representation, as posted by Schopenhauer [6].
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Appendix A. Marimba de chonta tunings
by Carlos Miñana

∗In the analysis this pitch has been taken as A, ignoring the symbol “?”.
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Appendix B. Scores of the musical
pieces played in Marimba
de chonta

Musical piece No Musician
1

Dioselino Rodríguez
2
3
4
5
6 Genaro Torres
7 Francisco Torres
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Appendix C. Data in cents of the tuning
of the marimbas de chonta
in the Miñana study and
the present one
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Marimba number - Present study
s 1 2 3 4 5

1

Min±∆Min 95 ± 4 130 ± 9 101 ± 8 78 ± 15 120 ± 16
Max±∆Max 215 ± 13 239 ± 4 268 ± 8 238 ± 9 222 ± 7
Avg.±∆Avg. 171 ± 6 176 ± 8 171 ± 9 172 ± 12 174 ± 10

σ 45 33 43 38 36
T. U. 97 75 96 88 82

2

Min±∆Min 297 ± 6 295 ± 4 258 ± 9 247 ± 17 298 ± 13
Max±∆Max 404 ± 3 429 ± 9 411 ± 7 441 ± 8 431 ± 19
Avg.±∆Avg. 345 ± 6 345 ± 8 343 ± 9 342 ± 12 352 ± 10

σ 46 39 45 51 34
T. U. 98 85 99 113 79

3

Min±∆Min 480 ± 2 467 ± 11 433 ± 7 429 ± 18 471 ± 8
Max±∆Max 595 ± 8 573 ± 8 588 ± 8 579 ± 8 559 ± 16
Avg.±∆Avg. 515 ± 5 514 ± 8 513 ± 9 511 ± 12 525 ± 10

σ 37 32 39 43 22
T. U. 79 72 87 97 55

4

Min±∆Min 600 ± 3 638 ± 5 599 ± 8 603 ± 10 639 ± 16
Max±∆Max 716 ± 3 732 ± 8 752 ± 8 741 ± 8 755 ± 17
Avg.±∆Avg. 689 ± 5 688 ± 8 684 ± 9 685 ± 12 701 ± 10

σ 31 35 40 42 32
T. U. 67 78 90 96 75

5

Min±∆Min 792 ± 2 782 ± 6 770 ± 7 768 ± 10 821 ± 13
Max±∆Max 913 ± 11 916 ± 8 945 ± 8 975 ± 9 942 ± 15
Avg.±∆Avg. 859 ± 5 859 ± 8 855 ± 9 862 ± 12 879 ± 10

σ 48 42 44 53 37
T. U. 102 91 98 118 84

6

Min±∆Min 991 ± 2 978 ± 12 947 ± 8 960 ± 13 1001 ± 8
Max±∆Max 1105 ± 4 1084 ± 9 1106 ± 9 1140 ± 9 1088 ± 13
Avg.±∆Avg. 1031 ± 5 1032 ± 8 1027 ± 9 1033 ± 12 1056 ± 10

σ 47 34 40 51 23
T. U. 99 75 89 114 56

7

Min±∆Min 1190 ± 10 1184 ± 11 1131 ± 10 1153 ± 13 1182 ± 12
Max±∆Max 1210 ± 11 1231 ± 5 1266 ± 7 1282 ± 8 1259 ± 7
Avg.±∆Avg. 1199 ± 6 1209 ± 8 1198 ± 9 1203 ± 12 1227 ± 10

σ 6 15 32 41 25
T. U. 18 39 72 93 61

Marimba number - Present study
s 6 7 8 Avg.*1

1

Min±∆Min 35 ± 10 111 ± 11 105 ± 14 97 ± 12
Max±∆Max 235 ± 9 223 ± 6 238 ± 18 238 ± 9
Avg.±∆Avg. 162 ± 6 170 ± 15 174 ± 10 171 ± 10

σ 49 34 36 38
T. U. 105 82 81 87

2

Min±∆Min 251 ± 7 294 ± 22 239 ± 15 269 ± 12
Max±∆Max 403 ± 5 407 ± 9 402 ± 5 418 ± 9
Avg.±∆Avg. 331 ± 6 335 ± 15 342 ± 10 341 ± 10

σ 48 33 49 43
T. U. 103 81 108 95

3

Min±∆Min 436 ± 8 434 ± 20 372 ± 15 435 ± 12
Max±∆Max 617 ± 9 568 ± 7 592 ± 10 582 ± 10
Avg.±∆Avg. 499 ± 6 502 ± 15 509 ± 10 510 ± 10

σ 42 37 61 39
T. U. 90 89 133 89

4

Min±∆Min 604 ± 5 610 ± 25 551 ± 15 607 ± 12
Max±∆Max 730 ± 9 719 ± 10 757 ± 11 741 ± 10
Avg.±∆Avg. 667 ± 6 669 ± 15 678 ± 10 682 ± 10
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σ 39 32 65 41
T. U. 85 79 139 92

5

Min±∆Min 753 ± 5 783 ± 15 716 ± 14 771 ± 10
Max±∆Max 910 ± 5 893 ± 8 935 ± 11 931 ± 9
Avg.±∆Avg. 831 ± 6 840 ± 15 854 ± 10 854 ± 10

σ 52 39 65 47
T. U. 110 93 139 105

6

Min±∆Min 919 ± 8 952 ± 22 927 ± 14 955 ± 12
Max±∆Max 1119 ± 10 1110 ± 8 1100 ± 9 1107 ± 9
Avg.±∆Avg. 1001 ± 6 1007 ± 15 1030 ± 10 1027 ± 10

σ 48 43 58 42
T. U. 103 101 125 95

7

Min±∆Min 1131 ± 6 1095 ± 17 1100 ± 13 1140 ± 12
Max±∆Max 1246 ± 9 1222 ± 8 1265 ± 10 1253 ± 8
Avg.±∆Avg. 1169 ± 6 1172 ± 15 1208 ± 10 1198 ± 10

σ 34 41 50 34
T. U. 74 97 110 78

Table C-1.: Minimum, maximum, average, standard deviation, and total uncertainty of the frequency ratio
for pairs of bars separated by different distances in the diatonic 12-TET marimba, and the
traditional marimbas with equi-heptatonic averages, recorded in the present study. Data in
cents. “s” is the distance between bars in steps The symbol, “σ” is the standard deviation,
“Avg.” refers to the average, “Avg.*1” refers to the average of the traditional marimbas 2, 3, 4,
5, 6, 7, and 8, and “T. U.” is the total uncertainty.
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Marimba number - Present study
s 9 10 Avg.*2 11

1

Min±∆Min 77 ± 13 -9 ± 57 34 ± 34 65 ± 19
Max±∆Max 253 ± 11 245 ± 82 249 ± 46 236 ± 15
Avg.±∆Avg. 154 ± 18 155 ± 23 154 ± 20 134 ± 23

σ 49 65 57 50
T. U. 115 154 135 124

2

Min±∆Min 241 ± 21 235 ± 52 238 ± 37 142 ± 24
Max±∆Max 370 ± 10 414 ± 34 392 ± 22 354 ± 30
Avg.±∆Avg. 311 ± 18 314 ± 22 312 ± 20 268 ± 23

σ 33 50 42 63
T. U. 83 123 103 148

3

Min±∆Min 389 ± 11 309 ± 58 350 ± 34 267 ± 35
Max±∆Max 582 ± 9 590 ± 25 586 ± 17 478 ± 11
Avg.±∆Avg. 464 ± 18 471 ± 21 468 ± 19 398 ± 22

σ 50 71 60 63
T. U. 118 162 140 148

4

Min±∆Min 553 ± 24 554 ± 54 553 ± 39 407 ± 36
Max±∆Max 684 ± 10 732 ± 13 708 ± 11 599 ± 14
Avg.±∆Avg. 620 ± 18 637 ± 20 629 ± 19 526 ± 22

σ 44 47 45 43
T. U. 105 114 110 109

5

Min±∆Min 704 ± 16 683 ± 43 693 ± 30 586 ± 37
Max±∆Max 881 ± 11 914 ± 13 898 ± 12 746 ± 14
Avg.±∆Avg. 769 ± 18 797 ± 20 783 ± 19 660 ± 23

σ 49 63 56 48
T. U. 117 147 132 119

6

Min±∆Min 851 ± 13 861 ± 40 856 ± 27 714 ± 22
Max±∆Max 985 ± 20 1033 ± 9 1009 ± 14 904 ± 14
Avg.±∆Avg. 927 ± 18 953 ± 21 940 ± 19 797 ± 23

σ 46 52 49 65
T. U. 111 125 118 153

7

Min±∆Min 1015 ± 19 985 ± 41 1000 ± 30 790 ± 20
Max±∆Max 1166 ± 11 1215 ± 9 1191 ± 10 996 ± 15
Avg.±∆Avg. 1080 ± 18 1111 ± 21 1096 ± 20 930 ± 23

σ 42 70 56 60
T. U. 103 161 132 144

8

Min±∆Min 1180 ± 14 1180 ± 42 1180 ± 28 916 ± 31
Max±∆Max 1314 ± 17 1338 ± 8 1326 ± 13 1155 ± 15
Avg.±∆Avg. 1236 ± 18 1266 ± 22 1251 ± 20 1061 ± 23

σ 48 53 50 56
T. U. 114 128 121 135

9

Min±∆Min — — — 1122 ± 16
Max±∆Max — — — 1284 ± 14
Avg.±∆Avg. — — — 1191 ± 22

σ — — — 50
T. U. — — — 122

Table C-2.: Minimum, maximum, average, standard deviation, and total uncertainty of the frequency ratio
for pairs of bars separated by different distances in the traditional marimbas with equi-octatonic
and equi-enneatonic averages recorded in the present study. Data in cents. “s” is the distance
between bars in steps The symbol, “σ” is the standard deviation, “Avg.” refers to the average,
“Avg.*2” refers to the average of the traditional marimbas 9 and 10, and “T. U.” is the total
uncertainty.
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Marimba number - Miñana study
s 1M 2M 3M 4M 5M 6M 7M 8M 9M Avg.*

1

Min (±5 cents) 70 100 135 135 110 70 110 105 80 102
Max (±5 cents) 260 250 220 190 210 200 240 240 270 231
Avg. (±5 cents) 173 170 161 164 159 150 168 161 156 163

σ 48 45 23 13 23 41 30 35 44 34
T. U. 101 95 52 31 51 86 65 74 94 72

2

Min (±5 cents) 285 300 285 300 230 180 255 240 180 251
Max (±5 cents) 450 420 365 360 370 390 390 405 405 395
Avg. (±5 cents) 340 341 325 328 320 307 336 321 316 326

σ 41 39 26 16 36 57 31 45 50 38
T. U. 88 84 56 36 78 119 68 94 104 81

Min (±5 cents) 480 410 445 460 370 280 445 405 340 405
Max (±5 cents) 605 590 520 530 530 580 560 550 595 562
Avg. (±5 cents) 514 507 489 492 484 465 500 486 472 490

σ 37 51 41 18 41 72 32 45 60 44
T. U. 79 107 86 42 88 149 70 95 125 93

4

Min (±5 cents) 600 650 605 620 530 470 600 550 480 568
Max (±5 cents) 810 720 710 700 680 720 730 735 765 730
Avg. (±5 cents) 682 681 653 657 650 632 668 650 635 656

σ 56 27 26 20 38 63 39 51 73 43
T. U. 117 59 58 44 80 130 82 108 151 92

5

Min (±5 cents) 780 780 770 790 740 670 760 735 660 743
Max (±5 cents) 930 900 860 855 850 880 900 915 900 888
Avg. (±5 cents) 847 848 817 819 817 797 834 810 798 821

σ 45 44 29 18 30 59 38 54 74 43
T. U. 94 93 62 42 65 123 81 113 153 92

6

Min (±5 cents) 960 970 940 950 900 860 935 880 820 913
Max (±5 cents) 1120 1080 1005 1010 1020 1060 1075 1060 1070 1056
Avg. (±5 cents) 1016 1017 981 983 978 961 1002 972 963 986

σ 52 40 21 19 33 56 43 52 81 44
T. U. 109 84 47 42 71 117 91 109 167 93

7

Min (±5 cents) 1100 1120 1115 1110 1050 1000 1080 1075 970 1070
Max (±5 cents) 1305 1240 1170 1170 1190 1210 1235 1195 1245 1218
Avg. (±5 cents) 1179 1179 1143 1146 1142 1119 1170 1132 1132 1149

σ 58 45 17 20 38 60 44 38 79 44
T. U. 121 95 39 46 81 126 92 81 163 94

Table C-3.: Minimum, maximum, average, standard deviation and total uncertainty of the frequency ratio
for pairs of bars separated by different distances in the traditional marimbas recorded by
Miñana. Data in cents. “s” is the distance between bars in steps The symbol, “σ” is the
standard deviation, “Avg.” refers to the average, “T. U.” is the total uncertainty, and “Avg.*”
refers to the average of all marimbas.



Appendix D. Minimization of the
relative entropy subject to
constraints

Extremalization process
In order to carry out the extremalization process of the quantity ∑N

k=1 pkln (pk/qk) subject
to constraints, with N an even number, we used the Lagrange multipliers method. In this
method, we want to know the extremes of a function f(p1, p2, ..., pN) subject to l constraints:
g1(p1, p2, ..., pN) = 0, g2(p1, p2, ..., pN) = 0,..., gl(p1, p2, ..., pN) = 0.

In our case:

f(p1, p2, ..., pN) =
N∑
k=1

pkln(pk/qk) (D-1)

g1(p1, p2, ..., pN) =
N/2∑
k=1

pk − (p̃d + p̃u) = 0 (D-2)

g2(p1, p2, ..., pN) =
N∑

k=N
2 +1

pk − (p̃a + p̃u) = 0 (D-3)

g3(p1, p2, ..., pN) =
N∑
k=1

pk|εk| − p̃u|εN/2| − 〈|ε|〉 = 0 (D-4)

g4(p1, p2, ..., pN) = 1
p̃d

N/2∑
k=1

pkεk + 1
p̃a

N∑
k=N

2 +1

pkεk + |εN/2|
(
p̃u
p̃d
− p̃u
p̃a

)
− 〈ε〉 = 0, (D-5)

with 〈ε〉 ≡ 〈ε>0 〉+ 〈ε<0〉 in equation (D-5).
Then, we construct the auxiliary function L containing the Lagrange multipliers λ−, λ+,

λ1, and λ2 (one per constraint):

L(p1, p2, ..., pN , λ−, λ+, λ1, λ2) = f(p1, p2, ..., pN) + (λ−)g1(p1, p2, ..., pN)+
(λ+)g2(p1, p2, ..., pN) + (λ1)g3(p1, p2, ..., pN) + (λ2)g4(p1, p2, ..., pN).

(D-6)
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In order to find the extremes, we have to solve the equations system for the set of N inde-
pendent probabilities pk and the Lagrange multipliers:

∂L

∂pk
= 0, (k ∈ [1, N ]); ∂L

∂λ−
= 0; ∂L

∂λ+
= 0; ∂L

∂λ1
= 0; ∂L

∂λ2
= 0. (D-7)

In the case of the differentiation with respect to the Lagrange multipliers, we obtain the
constraints:

∂L

∂λ−
= g1(p1, p2, ..., pN) = 0; ∂L

∂λ+
= g2(p1, p2, ..., pN) = 0;

∂L

∂λ1
= g3(p1, p2, ..., pN) = 0; ∂L

∂λ2
= g4(p1, p2, ..., pN) = 0.

(D-8)

In the case of the probabilities, ∂L
∂pk

= 0, we have:

L =
N∑
k=1

pkln

(
pk
qk

)
+ λ−

N/2∑
k=1

pk − (p̃d + p̃u)
+ λ+

 N∑
k=N

2 +1

pk − (p̃a + p̃u)

+

λ1

[
N∑
k=1

pk|εk| − p̃u|εN/2| − 〈|ε|〉
]

+

λ2

 1
p̃d

N/2∑
k=1

pkεk + 1
p̃a

N∑
k=N

2 +1

pkεk + |εN/2|
(
p̃u
p̃d
− p̃u
p̃a

)
− 〈ε〉

 ,
(D-9)

then

L =
N∑
k=1

[
pkln

(
pk
qk

)
+ λ1pk|εk|

]
+

N/2∑
k=1

(
λ−pk + λ2

p̃d
pkεk

)
+

N∑
k=N

2 +1

(
λ+pk + λ2

p̃a
pkεk

)
− λ−(p̃d + p̃u)− λ+(p̃a + p̃u)− λ1p̃u|εN/2|

−λ1〈|ε|〉 − λ2〈ε〉+ λ2|εN/2|
(
p̃u
p̃d
− p̃u
p̃a

)
.

(D-10)

Then, for k ∈ [1, N/2]

∂L

∂pk
= ln

(
pk
qk

)
+
(
pk
qk

)(
qk
pk

)
+ λ1|εk|+ λ− + λ2

p̃d
εk

= ln

(
pk
qk

)
+ λ1|εk|+

λ2

p̃d
εk + λ∗− = 0; λ∗− ≡ 1 + λ−.

(D-11)
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Now, for k ∈ [(N/2) + 1, N ]

∂L

∂pk
= ln

(
pk
qk

)
+
(
pk
qk

)(
qk
pk

)
+ λ1|εk|+ λ+ + λ2

p̃a
εk

= ln

(
pk
qk

)
+ λ1|εk|+

λ2

p̃a
εk + λ∗+ = 0; λ∗+ ≡ 1 + λ+.

(D-12)

Solving, we have:

pk =


qkexp

(
−λ1|εk| − λ2

p̃d
εk − λ∗−

)
for k ∈ [1, N/2]

qkexp
(
−λ1|εk| − λ2

p̃a
εk − λ∗+

)
for k ∈ [N2 + 1, N ].

(D-13)

Using the constraints g1(p1, p2, ..., pN) and g2(p1, p2, ..., pN), we obtain the quantities exp(−λ∗−)
and exp(−λ∗+).

Since

N/2∑
m=1

qmexp(−λ∗−)exp
(
−λ1|εm| −

λ2

p̃d
εk

)
= p̃d + p̃u, (D-14)

then

exp(−λ∗−) = p̃d + p̃u∑N/2
m=1 qmexp

(
−λ1|εm| − λ2

p̃d
εm
) for m ∈ [1, N/2], (D-15)

and since

N∑
m=N

2 +1

qmexp(−λ∗+)exp
(
−λ1|εm| −

λ2

p̃a
εm

)
= p̃a + p̃u, (D-16)

then

exp(−λ∗+) = p̃a + p̃u∑N
m=N

2 +1 qmexp
(
−λ1|εm| − λ2

p̃a
εm
) for m ∈ [(N/2) + 1, N ]. (D-17)

Finally, the probabilities pk are given by
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pk =



(p̃d + p̃u)qke
(
−λ1|εk|−

λ2
p̃d
εk

)
N/2∑
m=1

[
qme

(
−λ1|εm|−

λ2
p̃d
εm

)] for k ∈ [1, N/2]

(p̃a + p̃u)qke(−λ1|εk|−
λ2
p̃a
εk)

N∑
m=N

2 +1

[
qme

(−λ1|εm|−
λ2
p̃a
εm)

] for k ∈ [N2 + 1, N ].

(D-18)

The solution corresponds to a minimum
Now, in order to prove that the solution pk corresponds to a minimum, we suppose that

there is a Pk 6= pk that also satisfies the constraints, then

N/2∑
k=1

pk =
N/2∑
k=1

Pk = p̃d + p̃u (D-19)

N∑
k=N

2 +1

pk =
N∑

k=N
2 +1

Pk = p̃a + p̃u (D-20)

N∑
k=1

pk|εk| − p̃u|εN/2| =
N∑
k=1

Pk|εk| − p̃u|εN/2| = 〈|ε|〉 (D-21)

1
p̃d

N/2∑
k=1

pkεk + 1
p̃a

N∑
k=N

2 +1

pkεk + |εN/2|
(
p̃u
p̃d
− p̃u
p̃a

)

= 1
p̃d

N/2∑
k=1

Pkεk + 1
p̃a

N∑
k=N

2 +1

Pkεk + |εN/2|
(
p̃u
p̃d
− p̃u
p̃a

)
= 〈ε〉.

(D-22)

Now, we construct two functions D(pk, qk) and D(Pk, qk)

D(pk, qk) =
N∑
k=1

pnln

(
pk
qk

)
(D-23)

and

D(Pk, qk) =
N∑
k=1

Pkln

(
Pk
qk

)
. (D-24)

Next, if we show that the quantity D(Pk, qk) − D(pk, qk) is always greater or equal to 0
for all possible Pk that satisfy the constraints, then pk corresponds to a minimum, thus
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D(Pk, qk)−D(pk, qk) =
N∑
k=1

Pkln

(
Pk
qk

)
−

N∑
k=1

pkln

(
pk
qk

)

=
N∑
k=1

Pkln

(
Pk
qk

)
−

N/2∑
k=1

pkln

(
pk
qk

)
+

N∑
k=N

2 +1

pkln

(
pk
qk

) . (D-25)

Using equation (D-13), then

ln

(
pk
qk

)
=


−λ1|εk| − λ2

p̃d
εk − λ∗− for k ∈ [1, N/2]

−λ1|εk| − λ2
p̃a
εk − λ∗+ for k ∈ [N2 + 1, N ].

(D-26)

Thus

D(Pk, qk)−D(pk, qk) =
N∑
k=1

Pkln

(
Pk
qk

)
−

N/2∑
k=1

pk

(
λ1|εk| −

λ2

p̃d
εk − λ∗−

)

+
N∑

k=N
2 +1

pk

(
−λ1|εk| −

λ2

p̃a
εk − λ∗+

) (D-27)

.

=
N∑
k=1

Pkln

(
Pk
qk

)
−

−λ∗− N/2∑
k=1

pk − λ∗+
N∑

k=N
2 +1

pk − λ1

N∑
k=1

pk|εk|

−λ2

 1
p̃d

N/2∑
k=1

pkεk + 1
p̃a

N∑
k=N

2 +1

pkεk




(D-28)

=
N∑
k=1

Pkln

(
Pk
qk

)
−

− λ∗−(p̃d + p̃u)− λ∗+(p̃a + p̃u)− λ1
(
〈|ε|〉+ p̃u|εN/2|

)

−λ2

[
〈ε〉+ |εN/2|

(
p̃u
p̃d
− p̃u
p̃a

)]
(D-29)

Since Pk also satisfies the constraints, then

D(Pk, qk)−D(pk, qk) =
N∑
k=1

Pkln
(
Pk
qk

)−
−λ∗− N/2∑

k=1
Pk − λ∗+

N∑
k=N

2 +1

Pk

−λ1

N∑
k=1

Pk|εk| − λ2

 1
p̃d

N/2∑
k=1

Pkεk + 1
p̃a

N∑
k=N

2 +1

Pkεk


.

(D-30)
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=
N∑
k=1

Pkln
(
Pk
qk

)−
N/2∑
k=1

Pk

(
−λ1|εk| −

λ2

p̃d
εk − λ∗−

)

+
N∑

k=N
2 +1

Pk

(
−λ1|εk| −

λ2

p̃a
εk − λ∗+

). (D-31)

Using equation (D-26):

D(Pk, qk)−D(pk, qk) =
N∑
k=1

Pkln
(
Pk
qk

)− N∑
k=1

Pkln
(
pk
qk

)
=

N∑
k=1

Pk

ln(Pk
qk

)
− ln

(
pk
qk

) =
N∑
k=1

Pkln
(
Pk
pk

) (D-32)

Now, since Pk and pk do not satisfy a normalization constraint due to the double count of
unisons, then we can construct P ∗k and p∗k multiplying Pk and pk by a constant factor

N∑
k=1

Pk =
N∑
k=1

pk = p̃d + 2p̃u + p̃a = 1 + p̃u; (D-33)

P ∗k = Pk
1 + p̃u

; p∗k = pk
1 + p̃u

, (D-34)

then

N∑
k=1

P ∗k =
N∑
k=1

p∗k = 1. (D-35)

Thus

D(Pk, qk)−D(pk, qk) = (1 + p̃u)
N∑
k=1

Pk
1 + p̃u

ln

 Pk
1+p̃u
pk

1+p̃u


= (1 + p̃u)

N∑
k=1

P ∗k ln

(
P ∗k
p∗k

)
.

(D-36)

Since the quantities P ∗k and p∗k are normalized, then the quantity ∑N
k=1 P

∗
k ln(P ∗k /p∗k) co-

rresponds to a Kullback–Leibler divergence. One of the properties of this divergence is that
is always greater or equal to 0 (equal to 0 only in the case P ∗k = p∗k), and as (1 + p̃u) ≥ 1,
then

D(Pk, qk)−D(pk, qk) ≥ 0, (D-37)
showing that pk corresponds to a minimum.



Appendix E. The Coronation of Poppea
No1: Caro tetto caro tetto (pp.21-22, 11 bars)

Root Triad Alteration Inversion
A Minor 0 53
0 0 0 0
A Major 0 63
D Minor 0 53
G Minor 0 63

1A Major 0 53
E Major 0 63
A Major 0 53
F Major 0 63

2E Minor 0 63
2D Minor 0 63
3C Major 0 63
D Minor 7m,-5 7
B Diminished 0 63

4E Major 0 53
E Major 7m,-5 2
A Major 0 63
A Major -5 63
A Major 7m,-5 65

5D Minor 0 53
D Minor 0 53
G Minor -5 53
E Diminished 0 63
G Major 7m,-3 7
A Major 0 53

6D Minor 0 53
1Bar 3: The fifth of the chord is made by the voice.

2Bar 6: The root of the chord arrives late.
3Bar 7: The root of the chord arrives late.

4Bar 7: The fifth of the chord is made by the voice.
5Bar 9: The third of the chord is made by the voice previously.

6Bar 11: The chord is assumed as minor.

No2: Ma che veggio, infelice? (pp. 27-31, 48 bars)
Root Triad Alteration Inversion
A Minor 0 53
A Minor 0 53
E Major 0 63
E Major 0 63
A Minor 0 53
0 0 0 0
A Minor 0 53
G Major 0 63
C Major 0 53
F] Diminished 0 63
G Major -5 53
0 0 0 0
D Major 0 63
G Major 0 53
E Minor 0 53
C] Diminished 0 63
D Major 0 63
G Major 0 53
E Major -5 63

1A Minor 0 53
A Minor 0 53
F] Diminished 0 63

B Minor 0 53
G Major 0 63
C] Diminished 0 53
D Minor 0 53
D Minor 0 53
B[ Major 0 53
0 0 0 0
D Major 0 63
G Major 0 53
E Minor 7m 65
A Major 0 53
G Minor 7m 7

2D Minor -3 64
D Minor 0 53
C Major 0 53
C Major 0 53
A Minor 0 53
F Major 0 53
D Minor 0 63

3C] Diminished 0 63
D Minor 0 53
0 0 0 0
D Minor 0 53
D Minor 0 53
A Minor 0 53
E Major 0 63
F] Diminished 0 63
B Major 0 53
E Minor 0 53
A Minor 0 53
0 0 0 0

4G] Diminished 0 63
A Minor 0 53
A Minor 0 53
G] Diminished 0 63
G] Diminished 0 63
A Minor 0 53
0 0 0 0
A Minor 0 53
G] Diminished 0 63
0 0 0 0
A Minor 0 53
0 0 0 0
A Minor 0 53
F Major 0 63
E Major 0 63
F Major 0 63
E Major 0 63
F Major 0 63
E Major 0 63
A Minor 0 53
A Minor 0 53
D Minor 0 53
B Diminished 0 53
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F] Diminished 0 63
G Major -5 53
G Major 7m,-5 2
E Major 0 53
A Major 0 63
D Major 0 53
G Major 0 53
A Major 0 63
A Minor 0 64
A Minor 0 53
A Minor 0 53
A Minor 0 53
G] Diminished 0 63
A Minor 0 53
D Major 0 53
G Major 0 53
C Major 0 53
G] Diminished 0 63
A Minor 0 53

5E Major 0 53
A Minor 0 53
0 0 0 0

1Bar 7: The fifth of the chord is made by the voice.
2Bar 13: The note E is omitted in the analysis.

3Bar 18: The root of the chord arrives late.
4Bar 23: The root of the chord arrives late.
5Bar 48: The third of the chord arrives late.

No3: Camerata, camerata (pp. 32-34, 17 bars)
Root Triad Alteration Inversion
C Major 0 53
F Major 0 53
0 0 0 0
F Major 0 53
B[ Major 0 53
B[ Major 0 53
F Major 0 63
G Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
C Major 0 53
G Major 0 53
C Major 0 53
0 0 0 0
C Major 0 53
A Minor 0 53
A Minor 0 53
A Minor 0 53
E Major 0 53
E Major 0 63
A Major 0 53
A Minor 0 53
A Minor 0 53
A Minor 0 63
*G Minor 0 63
A Minor 0 53
A Minor 0 53
D Major 0 53
D Major 0 53
A Major 0 53
A Major 0 53
D Minor 0 53
*Bar 14: The root of the chord arrives late.

No4: Di pur di pur che il Prence (pp. 36-37, 25 bars)
Root Triad Alteration Inversion
G Major 0 53

C Major 0 53
C Major 0 53
C Major 0 53
A Minor 0 53
C Major 0 63
E Minor 0 53
A Minor 0 53
0 0 0 0
G Minor 0 53
D Minor 0 53
G Major 0 53
G Major 0 53
C Major 0 53
F Major 0 53

1G Major 0 53
C Major 0 53
F Major 0 53
B[ Major 0 53
G Minor 7m 7
G Minor 0 53
A Minor 0 53
D Minor 0 53
D Minor 0 53
G Major 0 53
G Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53
F Major 0 53
D Minor 0 53
A Minor 0 53
D Minor 0 53
D Major 0 53
G Major 0 63
F Major 0 63
G Major 0 53
G Major 0 53
C Major 0 53
A Minor 0 53
F Major 0 53
B[ Major 0 53
F] Diminished 0 63
G Minor 0 53
G Minor 0 53
D Major 0 53
D Major 0 53
G Minor 0 63

2D Major 0 53
G Major 0 53

1Bar 7: The third of the chord arrives late.
1Bar 25: The third of the chord arrives late.

No5: Signor, signor deh, non partire (pp.40-44, 49 bars)
Root Triad Alteration Inversion
D Minor 0 53
D Minor 0 53
A Major 0 63
D Minor 0 53
A Major 0 53
0 0 0 0

1A Major 0 53
A Major 7m 65
D Minor 0 53
D Minor 0 53
F Major 7Ma 43
B[ Major 0 53
F Major 0 63
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G Minor 7m 7
2G Minor 0 53
A Major 0 53
D Minor 0 53
D Minor 0 53
A Minor 0 53
0 0 0 0
F Major 0 53
B[ Major 0 53
C Major 0 53
F Major 0 53
0 0 0 0
D Major 0 63
D Major 0 63
G Minor 0 53
D Major 0 53
D Minor 0 53

3G Minor 0 63
A Minor 0 53
A Minor 0 53
A Minor 0 53
A Minor 0 53
G Minor 0 53
F Major 0 53
0 0 0 0
A Minor 0 53
C Major 7m 43
F Major 0 53
F Major 0 53
B[ Major 0 53
C Major 0 53
F Major 0 53
0 0 0 0
C Major 0 53
C Major 0 53

4F] Diminished 0 63
G Major 0 53
D Major 0 63
G Minor 0 53
D Major 7m,-3 43
G Minor 0 63

5A Major 0 53
0 0 0 0
E Major 0 63
A Minor 0 53
B[ Major 7Ma 2
G Minor 0 53
G Major 7m 2
E Major 0 53
E Major 0 53
B Diminished 0 63
B[ Major 0 63

6A[ Major 0 63
C Minor 0 53

7C Minor -3 53
A Major 7m,-5 7

8A Major 0 53
D Minor 0 53
D Minor 0 53
A Minor 0 53
C Major 7m 43

F Major 0 53
F Major 0 53
B[ Major 0 53
F Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53
0 0 0 0
C Major 0 53
G Minor 0 53
G Minor 0 53
G Minor 0 53
D Minor 0 53
D Minor 0 53
D Minor 0 53
A Minor 0 53
A Minor 0 53
E Minor 0 53
A Minor 0 53

1Bar 4: The chord is analyzed taking into account the notes of the
next beat of the bar.

2Bar 8: The note E is omitted in the analysis.
3Bar 15: The root of the chord arrives late.
4Bar 23: The root of the chord arrives late.
5Bar 26: The third of the chord arrives late.
6Bar 32: The root of the chord arrives late.

7Bar 32: The note D is omitted in the analysis.
8Bar 32: The fifth of the chord arrives late.

No6: Disprezzata Regina, Regina (pp. 65-68, 44 bars)
Root Triad Alteration Inversion
A Minor 0 53
A Minor 0 53
A Minor 0 53
A Minor 0 53
A Minor 0 53

1E Major 0 63
A Minor 0 53
0 0 0 0
A Minor 0 53
0 0 0 0
G Major 7m,-5 7
E Minor 0 63
0 0 0 0

2D Minor 0 63
E Minor 0 53
0 0 0 0
C Major 0 53
0 0 0 0
F Major 0 53
0 0 0 0
G Major 0 53
0 0 0 0
C Major 0 53
0 0 0 0
G Minor 0 63

3G Minor -5 63
4F] Diminished 0 63
G Major 0 53
D Major 0 63
G Major 0 53
G Major 0 53
C Major 0 53

5G Major 0 63
A Minor 0 53
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F Major 0 53
0 0 0 0
D Minor 0 63

6C] Diminished 0 63
D Major 0 53
D Major 0 53
B Minor 0 63
C Major 7Ma,-5 7
A Minor 0 63
B Minor 0 53
B Minor 0 53
D Minor 0 64

7A Minor -3 53
A Minor 0 53
G Major 0 53
D Major 0 53
B[ Major 0 63
B[ Major 0 63
E[ Major 0 53
C Minor 0 53
C Minor 0 53
D Major 0 53
0 0 0 0
G Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
F Major 0 53
E Major 0 53
0 0 0 0
E Major 0 63
E Major 0 63
E Major 7m 65
A Minor 0 53
D Major 7m 7
B Minor 0 63
D Major 0 53
E Major 0 53
C Major 0 53
C Major 7m,-5 7
F Major 0 53
G Major 0 53
C Major 0 53

1Bar 6: The third of the chord arrives late. Sustained note in A.
2Bar 10: The root of the chord arrives late.

3Bar 16: The note C is omitted in the analysis.
4Bar 16: The root of the chord arrives late.
5Bar 21: The third of the chord arrives late.
6Bar 24: The root of the chord arrives late.

7Bar 28: The note D is omitted in the analysis.

No7: Intanto il frequente cader (pp. 69-71, 28 bars)
Root Triad Alteration Inversion
B Major 0 53
B Major 0 53
D Major 0 53

1A Major 7m,-3 7
D Major -5 53
0 0 0 0
E Major 0 63
A Minor 0 53
A Minor 0 53
A Major 0 63
A Major 7m 65
D Major 0 53
D Major 7m 2
0 0 0 0
B Minor 0 53

0 0 0 0
2F] Diminished 0 63
F] Diminished 0 63
A Minor 0 53
E Minor 0 64
B Major 0 53
E Minor 0 53
0 0 0 0
C Major 0 53
0 0 0 0

3C Major 0 53
F Major 0 53
B[ Major 0 53
0 0 0 0
B[ Major 0 53
A Minor 0 53
0 0 0 0
C Major 0 53
C Major 0 53
G Major 0 63
A Minor 7m,-5 7
G Major -5 53
F Major 0 53
C Major 0 63
D Major -5 53

4D Major 7m 2
B Minor -5 53

5A Minor -5 53
G Major 0 53
C Major 0 53
0 0 0 0
C Major 0 53

6G Major 0 63
G Major 0 63
B Diminished 0 53
C Major -5 53
0 0 0 0
B[ Major 0 53
E[ Major 7Ma,-5 7
C Minor 0 63
C Minor 0 63
E[ Major 0 53
B[ Major 0 63
D Minor 0 53
D Minor 0 53
B[ Major 7Ma,-5 7
G Minor 0 63
B[ Major 7Ma,-5 7
G Minor 0 63
A Minor 7m,-5 7
A Minor 7m,-5 7
F Major 0 63
G Minor 7m,-5 7
E Diminished 0 63
G Minor 7m,-5 7
E Diminished 0 63
E Diminished 0 63
G Minor 0 53
D Minor 0 64

7A Major 0 53
D Minor -5 53
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1Bar 3: The note D is omitted in the analysis.
2Bar 9: The root of the chord arrives late.

3Bar 11: This chord is not in a beat of the bar.
4Bar 15: The third of the chord is made by the voice previously.

5Bar 16: The note D is omitted in the analysis.
6Bar 18: The third of the chord arrives late.
7Bar 28: The third of the chord arrives late.

No8: Se non ci fosse ne l’honor (+ Ecco la sconsolata
donna assunta) (pp.81-83, 29 bars)
Root Triad Alteration Inversion
D Major 0 53
D Major 0 53
G Major 0 53
G Major 0 53
C Major 0 53
A Minor 0 63
G Major 0 63
D Major 0 53
D Major 0 53
D Major 7m 7
D Major 7m,-5 63
G Major 0 53
C Major 0 53
A Minor 0 53
A Minor 0 53
E Minor 0 53
B Minor 0 63
B Minor 0 63
D Major 0 53
E Minor 0 53
A Minor 7m 7
F] Diminished 7m 65
*B Major 0 53
E Minor 0 53
C Minor 0 53
C Minor 0 53
C Minor 0 53
G Minor 0 53
C Minor 0 53
C Minor 7m,-5 2
F Minor 0 63
G Minor 0 53
C Minor 0 53
0 0 0 0
D Minor 0 53
D Minor 0 53
D Minor 0 53
D Minor 0 53
D Minor 0 53
D Minor 0 53
D Minor 0 53
A Minor 0 53
A Minor 0 53
A Minor 7m 2
F Major 0 53
F Major 7Ma 2
D Minor 0 53
0 0 0 0
C Major 0 53
C Major 7Ma 2
A Minor 0 53

*Bar 13: The third of the chord arrives late.

No9: Tu mi vai promettendo balsamo (pp. 87-88, 14 bars)
Root Triad Alteration Inversion
A Minor 0 53
A Minor 0 53
E Minor 0 53
E Minor 0 53
B Minor 0 53
B Minor 0 53
A Minor 0 53
G Major 0 63
B Diminished 0 63
E Minor 0 53
D Major 0 53

1A Major 7m 65
D Major -5 53
B Minor 0 53
G Major 0 63
A Minor 0 53
A Minor 0 53
G Major 0 53
E Major 0 63
A Minor 0 53
A Minor 7m 7

2B Major 0 53
E Minor 0 53

1Bar 8: The third of the chord arrives late.
2Bar 13: The third of the chord arrives late.

No10: Le porpore regali e le grandezze (pp. 96-97, 24 bars)
Root Triad Alteration Inversion
D Minor 0 53
D Minor 0 53
D Minor 0 53
A Minor 0 53
A Minor 0 53
B[ Major 7Ma,-5 53
G Minor 0 53
E Diminished 0 63
F Major 0 53
0 0 0 0
C Major 0 63
D Minor 0 53
C Major 0 53
C Major 7Ma 2
A Major 0 53
D Minor 0 53
E Major 0 53
A Minor 0 53
A Minor 0 53
F Major 0 53
0 0 0 0
F Major 0 53

1C Major 7m 65
F Major 0 53

2C Major 0 63
D Minor 0 53

3A Major 0 63
D Minor 0 53
A Minor 0 53
A Minor 0 53
A Minor 0 53
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A Minor 0 53
B[ Major 0 53
B[ Diminished 0 53
A Major 0 53
D Minor 0 63
G Minor 7m 7

4A Major 0 53
D Minor 0 53

1Bar 14: The third of the chord arrives late.
2Bar 16: The third of the chord arrives late.
3Bar 17: The third of the chord arrives late.
4Bar 23: The third of the chord arrives late.

No11: Son risoluto al fine (pp. 100-101, 19 bars)
Root Triad Alteration Inversion
G Major 0 53
G Major 0 53
C Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
D Major 0 53
D Major 0 53
E Minor 0 53
D Major 0 63
G Major 0 53
C Major 7Ma 7
*D Major 0 53
G Major 0 53
G Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53
F Major 0 53
0 0 0 0
F Major 0 53
C Major 0 53
A Minor 0 63
G Major 0 53
G Major 0 53
D Major 0 53
D Major 0 53
C] Diminished 0 53
D Major 0 53
0 0 0 0
D Major 0 53
G Major 0 53
C Major 0 53
A Minor 0 53
D Minor 7m 65
G Major 0 53
C Major -5 53
*Bar 8: The third of the chord arrives late.

No12: Solitudine amata, eremo (pp. 147-150, 48 bars)
Root Triad Alteration Inversion
D Minor 0 53
D Minor 0 53
A Major 0 63
D Minor 0 53
D Minor 0 53
D Minor 0 53
D Minor 0 53
C Major 0 53
C Major 0 53
C Major 0 53

C Major 0 53
C Major 0 53
G Minor 0 63
A Major 0 53
A Major 0 53
G Minor 0 63
G Major 0 63
C Major 0 53
A Major 0 63
D Minor 0 53
G Minor 0 63
A Minor 0 53
F Major 0 53
F Major 0 53
F Major -5 53
B Diminished 0 63
C Major 0 53
A Minor 0 53
F] Diminished 0 63
G Major 0 53
D Major 0 63

1D Major 0 63
G Major 0 53
A Major 0 53
A Major 0 53
G Major 0 53
A Major 7m,-5 7
D Minor 0 64

2A Major 0 53
D Minor 0 53
G Minor 0 53
G Minor 0 53
G Minor 0 53
F Major 0 53
E[ Major 0 53
E[ Major 0 53
3D Minor 0 53
4F Major 0 53
B[ Major 0 53
D Minor 0 53
G Minor 0 53
E[ Major 0 53
D Minor 0 53
F Major 0 53
F Major 0 53
D Minor 0 53
C Major 0 53
C Major 0 53
C Major 0 53
G Major 0 53
C Major 0 53
D Minor 0 53
G Major 0 53
C Major 0 53
G Major 0 53
D Minor 0 53
G Major 0 63
C Major 0 53
C Major 0 53
C Major 7Ma 2
F Major 0 63
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B[ Major 0 53
5C Major 0 53
F Major 0 63

1Bar 23: The third of the chord has been taken as D].
2Bar 25: The third of the chord arrives late.

3Bar 30: The fifth of the chord is made by the voice.
4Bar 31: The third of the chord arrives late.
5Bar 48: The third of the chord arrives late.

No13: Il comando tiranno (pp. 155-156, 26 bars)
Root Triad Alteration Inversion
E Minor 0 53
B Major 0 63
E Minor 0 53
B Major 0 53
B Major 0 53
B Major 7m 2
E Major 0 63
B Major 0 53
E Major 0 53
C Major 0 53
C Major 0 53
A Minor 0 53
F Major 0 53
F Major 0 53
C Major 0 53
F Major 0 63
G Major 7m,-5 7
E Minor 0 63
F Major 0 53
G Major 0 53
C Major -5 53
E[ Major 0 53
0 0 0 0
E[ Major 0 53
A[ Major 0 53
F Minor 0 53
C Minor 0 53
*F Minor 0 63
G Major 0 53
0 0 0 0
D Major 0 53
D Major 0 63
D Major 0 63
G Major 0 53
G Major 7m 2
E Major 0 53
E Major 0 63
E Major 0 63
A Minor 0 53
B Major -3 53
E Major 0 53
*Bar 18: The root of the chord arrives late.

No14: Nerone Non più, non più (pp. 158-159, 22 bars)
Root Triad Alteration Inversion
D Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
D Major 0 63
G Major 0 53
G Major 0 53
D Major 0 53
C Major 0 53
D Major 0 53
G Major 0 53

G Major 0 53
C Major 0 64

1G Major 0 63
C Major 0 53
0 0 0 0
D Minor 0 63
G Major 0 53
C Major 0 53
0 0 0 0
A Minor 0 53
A Minor 0 53
D Minor 0 53
A Major 0 63
D Minor 0 53
A Minor 0 53
E Major 0 63
A Minor 0 53
A Minor 0 63
E Major 0 53
E Major 0 53
E Major 0 63
A Minor 0 53
E Major -5 53
A Minor 0 53
F] Diminished 0 63
G Major 0 53

2D Major 0 63
G Major 0 53
G Major 0 53
E Minor 0 53
C] Diminished 0 63

3C] Diminished 0 63
D Major 0 53

1Bar 6: The third of the chord arrives late.
2Bar 19: The third of the chord arrives late.
3Bar 22: The root of the chord arrives late.

No15: Nutrice, nutrice (pp. 211-213, 26 bars)
Root Triad Alteration Inversion
C Major 0 53
F Major 0 53
0 0 0 0
F Major 0 53
F Major 0 53
C Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Major 0 53
0 0 0 0
D Minor 0 53
0 0 0 0
D Minor 0 53
D Minor 0 53
0 0 0 0
A Major 0 63
D Minor 0 53
0 0 0 0
C] Diminished 0 63
D Minor 0 63
D Minor 0 63
A Major 0 53
0 0 0 0
E Diminished 0 63
G Minor 0 53
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A Major 0 53
A Major 0 53
D Major 0 63
G Minor 0 53
A Major 0 53
D Major 0 53
0 0 0 0
D Major 0 53
G Major 0 53
A Minor 0 63
D Major 0 53
C Major 0 63
D Minor 0 63
E Major 0 53
A Minor 0 53
A Minor 0 53
G Major 0 53
F Major 0 53
D Minor 0 63
C Major 0 53
G Major 0 53
F Major 7Ma 7
*G Major 0 53
C Major 0 53

*Bar 26: The third of the chord arrives late.

No16: Andiam, andiam, a Ottavia homai (pp. 217-218, 18 bars)
Root Triad Alteration Inversion
D Major 0 53
G Major 0 63
F] Diminished 0 63
G Major 0 53
G Major 0 53
D Major 0 63
G Major 0 53
C] Diminished 0 63
C] Diminished 0 63
D Major -5 63
D Major 0 63
G Major 0 63
A Major -5 53
0 0 0 0
A Major 0 53
A Major 0 53
A Major 0 53
A Major 0 53
A Major 0 53
A Major 0 53
A Major 0 53
A Major 0 63
D Major 0 53
D Major 0 53
G Major 0 53
G Major 0 53
C Major 0 53
G Major 0 63
C Major 0 53
*D Major 0 53
G Major 0 53

*Bar 18: The third of the chord arrives late.

No17: Ma cheveggio, infelice? (pp. 242-246, 53 bars)
Root Triad Alteration Inversion
0 0 0 0
D Minor 0 53
0 0 0 0
D Minor 0 53

G Minor 0 53
A[ Major 0 53
D Major 0 63
G Major 0 53
E Minor 0 63
A Major 0 53
D Major -5 53
0 0 0 0
C Minor 0 53
C Minor 0 53
C Minor 0 53
C Minor 0 53
B Diminished 0 53
C Minor 0 53
F Minor 7m 7

1G Major 0 63
C Major 0 53
0 0 0 0
A Minor 0 53
G] Diminished -5 53
G] Diminished 7o,-5 7
E Major 0 63
A Minor 0 53
D Minor 0 63
0 0 0 0

2E Minor 0 53
0 0 0 0
A Minor 7m,-5 7
F Major 0 63
F Major 0 63
E Major 0 63
E Major 0 63
E Major 0 63
A Minor 0 53
D Major 0 63
D Major 0 63
G Major 0 53
E Minor 0 53
D Minor 0 63
D Minor 0 53

3E Major 0 53
A Minor 0 53
0 0 0 0
D Major 0 53
0 0 0 0
D Major 0 63
0 0 0 0
G Major 0 53
0 0 0 0
G Major 0 63
C Major 0 53
F Major 0 53
0 0 0 0
B[ Major 0 53
0 0 0 0
E[ Major 0 53
C Minor 0 53
G Minor 0 53
F Minor 7m 7

4G Major 0 53
C Major 0 53
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0 0 0 0
A Minor 0 53
A Minor 0 53
E Minor 7m 7
A Major 0 53
A Minor 0 53
A Minor 0 53
F Major 0 53
0 0 0 0
C Major 0 53
G Major 0 53
C Major 0 53
0 0 0 0
G Major 0 53
G Major 0 53
D Major 0 63
D Major 0 63
G Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
0 0 0 0
D Minor 0 53
A Major 0 53
0 0 0 0

5G Minor 7m 7
A Major 0 53

1Bar 13: The third of the chord arrives late.
2Bar 19: The third of the chord arrives late.
3Bar 29: The third of the chord arrives late.
4Bar 39: The third of the chord arrives late.

5Bar 53: This chord is not in a beat of the bar, however this has
been included in order to take into account the final cadence of the

recitative.



Appendix F. Acis and Galatea
No1: Stay, shepherd, stay! (p. 28, 6 bars)

Root Triad Alteration Inversion
B[ Major 0 53
C Major 0 2
E Diminished 0 53
F Major 0 53
A Major 0 63
D Minor 0 53
G Minor 0 53
A Major 0 53
D Minor 0 53

No2: Lo! here my love! (p. 32, 5 bars)
Root Triad Alteration Inversion
G Major 0 63
C Minor 0 63
F] Diminished 7o 7
G Minor 0 53
G Major 0 2
C Minor 0 63
D Major 0 53
G Minor 0 53

No3: Oh! didst thou (p. 35, 4 bars)
Root Triad Alteration Inversion
C Major 0 63
C] Diminished 7o 7
D Minor 0 53
D Minor 0 63
E Major 0 53
A Minor 0 53

No4: Whither, fairest, art thou (p. 70, 14 bars)
Root Triad Alteration Inversion
C Major 0 63
F Major 0 53
B Diminished 0 63
C Major 0 53
E Major 0 63
E Major 7m 65
F Diminished 0 63
A Major 0 63
A Major 0 2
D Major 0 63
*– – – –
G Minor 0 63
A Major 0 53
D Major 0 63
F] Diminished 7o 7
G Minor 0 53
B[ Major 0 63
E Major 0 2
D] Diminished 7o 7

E Major 0 53
A Minor 0 53

*Bars 8-14: These 7 bars do not have been consider in the analysis
because the recitative style clearly change in this part.

No5: His hideous love (p.78, 8 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 53
B Diminished 0 63
E Major 0 63
A Minor 0 53
D Major 0 63
G Major 0 53
C Major 0 53
D Major 0 53
G Major 0 53

No6: Cease, oh cease (p. 89, 7 bars)
Root Triad Alteration Inversion
B Major 0 63
B Major 0 65
E Minor 0 53
E Major 0 2
A Minor 0 63
F] Diminished 7o 7
G Minor 0 53
C Minor 0 53
D Major 0 53
G Minor 0 53

No7: Tis done (p. 111, 5 bars)
Root Triad Alteration Inversion
F Major 0 53
F Major 0 53
F] Diminished 7o 7
G Major 0 53
G Major 0 53
C Minor 0 63
D Major 0 7
G Minor 0 53



Appendix G. The Marriage of Hercules
and Hebe

No1: Odimi, Alcide! Ah Genitor (pp. 18-21, 55 bars)
Root Triad Alteration Inversion
D Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
D Major 7m 7
D Major 7m 7

1A Minor 0 64
1A Minor 0 63
D Major 7m 7
G Major 0 63

2G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 7m 65
G Major 7m 65
C Major 0 63
C Major 0 63
C Major 0 63
C Major 7m 65
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 0 53
G Major 7m 2
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
D Major -5 63
D] Diminished 7o 7
B Major 7m 65
E Minor 0 53
E Minor 0 53
E Major 7m 2
E Major 7m 2
A Major 0 63
A Major 0 63
A Major 0 63
A] Diminished 7o 7
E Diminished 0 64
A] Diminished 7o 7
A] Diminished 7o 7
A] Diminished 7o 7

3F] Major 0 53
F] Major 7m 7
B Minor 0 63

B Minor 0 63
B Minor 0 63
E Major 0 53

4E Major 7m 53
A Major 0 53
A Major 0 53
A Major 0 53

5E Major 7m,-3 2
B Minor 0 63
0 0 0 0

6E Major 0 53
A Major 0 53
A Major 0 53
A Major 7m 7
A Major 7m 7
A Major -5 53
A Major 7m 7
A Major 7m 7
A Major 7m,-5,9 7

7A Major 7m 7
D Major 0 63
D Major 0 63
D Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 53
G Major 0 53
E Major 7m 65
E Major 0 63
E Major 7m 65
A Minor 0 53
A Minor 0 53
A Minor 0 53
A Diminished 7o 7
0 0 0 0

8B Major 7m 7
C Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53
C Major 7m 7

9C Major 7m 7
F Major 0 63
F Major 0 63
F Major 0 63

10B[ Major 7Ma,-5 2
B[ Major 0 53
B[ Major 0 53
B[ Major 7m,-5 7
E[ Major 0 53
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E[ Major 0 53
0 0 0 0
F Major 0 53
B[ Major 0 53
B[ Major 0 53

11C Major 7m 65
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
G Major 7m 2
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 0 53
0 0 0 0

12G Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53
D Major 0 63
D Major 0 53
D Major 7m 65
G Major 0 53
G Major 0 53
C Major 0 63
C Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 63

13F Major 0 63
F Major 0 63
A Minor -5 63
F Major 7m 65
B[ Major 0 63
B[ Major 0 63
A Major 0 63
A Major 0 63
C] Diminished 7o 7
D Minor 0 53
D Minor 0 53
D Minor 0 53
D Diminished 7o 7
E Major 7m 2
0 0 0 0
E Major 7m 7
A Major 0 63
A Major 0 63
A Major 0 63
A Major 0 63
A Major 7m 65
D Major 0 53
D Major 7m 7
G Major 0 53
A Minor 7m,-5 2
G Major 0 53
G Diminished 7o 7
0 0 0 0

14A Major 7m 7

D Major 0 53
1Bar 3: Sustained note in D.

2Bar 4: The root note is done by the voice.
3Bar 16: The F\ is omitted.

4Bar 18: The seventh of the chord arrives late.
5Bar 19: Sustained note in A.

6Bar 20: The third of the chord arrives late.
7Bar 24: The fifth of the chord is done by the voice.

8Bar 29: The seventh of the chord arrives late.
9Bar 32: The third of the chord arrives late.

10Bar 33: The third of the chord is done by the voice.
11Bar 37: The seventh of the chord arrives late.

12Bar 41: The third of the chord arrives late.
13Bar 45: The root note is done by the voice.

14Bar 54: The seventh of the chord arrives late.

No2: Fermati, Acide! (pp. 32-35, 48 bars)
Root Triad Alteration Inversion
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
B[ Major 0 63
C Major 7m 2

1C Major 7m 2
C Major 7m 2
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
B[ Major 0 63
B[ Major 0 63
B[ Major 0 63
B[ Major 0 63
C Major 0 63
C Major -5 63
C Major 0 63
C Major 7m 65

2C Major 0 63
C Major 7m 65
C Major 7m 65
F Major 0 53
F Major 0 53
F Major 0 53
D Minor 0 63
G Major 7m 2
G Major 7m 2
C Major 0 63
F Major 0 53
0 0 0 0

3G Major 0 53
D Major 0 63
D Major 0 63
D Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
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G Major 0 63
B Diminished 0 53

4G Major 7m 63
C Major 0 53
C Major -5 53
C Major 0 53
A Minor 0 63
D Major 7m 2
0 0 0 0

5D Major 0 53
G Major 0 53

6D Major 0 64
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
E Major 7m 7
E Major 0 53
A Minor 0 63

7A Minor 0 63
A Minor 0 63
A Major 7m 65
D Major 0 53
D Major 0 53

8D Major 0 7
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 7m,-5 7
D Major 0 53
D Major 0 53
D Major 7m 2

9D Major 7m 2
D Major 0 2

10D Major 7m 2
G Major 0 63

11G Major 7m 65
C Major 0 53
C Major 0 53
D Major 7m 2
D Major 7m 2
0 0 0 0

12D Major 0 53
A Major 0 63
A Major 0 63
A Major 0 63

13A Major 7m 65
C] Diminished 0 53
A Major 7m 65
A Major 7m,-5 65
A Major 7m 65
D Major 0 63
D Major -5 63
D Major 0 63
D Major 0 63
D Major 7m 65
D Major 7m 65
G Major 0 53

14G Major 7m 2
C Major 0 63
C Major 7m 65

F Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
C Major 0 53
C Major 0 53

15C Major 7m 7
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
G Major 7m 2
G Major 7m 2
G Major 7m 2
C Major 0 63

16C Major 0 63
C Major 0 63
C Major 0 63
D Major 7m 2
D Major 7m,-5 2
D Major 7m 2
D Major 7m 2
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
B Minor 7m,-5 63
B Major 0 63
B Major 0 63
B Major 0 63
B Major 7m 65
E Major 0 53
E Major 0 53
E Major 7m 7

17E Major 7m 53
A Major 0 53
0 0 0 0
E Major 0 64

18B Major 0 53
E Major 0 53

1Bar 4: The fifth of the chord is made by the voice.
2Bar 9: The fifth of the chord is made by the voice.

3Bar 12: The root of the chord arrives late.
4Bar 16: The seventh of the chord arrives late.

5Bar 18: The third of the chord arrives late.
6Bar 19: Sustained note in G.

7Bar 21: The root of the chord is made by the voice, and it appears
previously.

8Bar 23: The fifth of the chord is made by the voice.
9Bar 26: The fifth of the chord is made by the voice, and it appears

previously.
10Bar 26: The third of the chord is made by the voice, and it arrives

late.
11Bar 27: The seventh of the chord arrives late.

12Bar 28: The third of the chord arrives late.
13Bar 30: The root of the chord is made by the voice.

14Bar 34: The third, the fifth and the seventh of the chord arrive late.
15Bar 37: The seventh of the chord arrives late.

16Bar 40: The fifth of the chord is made by the voice, and it arrives
late.

17Bar 47: The seventh of the chord arrives late.
18Bar 48: This chord is not in a beat of the bar, however this has
been included in order to take into account the cadential six-four.

No3: Giuno, gl’inganni tuoi (p. 42, 13 bars)
Root Triad Alteration Inversion
D Major 0 53

1D Major 0 53
D Major 0 53
D Major -5 53
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D Major 0 53
G Major 0 63
G Major 0 63
E Major 7m,-5 7
E Major 7m 7
E Major 7m 7
A Minor 0 63
A Minor 0 63
C Major 7m 7
C Major 0 53
C Major 7m 7
C Major 7m 7
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
D Major 7m,-5 2
D Major 7m 7
D Major 7m 7
D Major 7m,-5 7

2D Major 7m 7
3D Major 7m 7
G Minor 0 63
G Minor 0 63
G Minor 0 63

4B[ Major 0 53
C Minor 0 53
A Diminished 0 63
0 0 0 0

5D Major 0 53
G Minor 0 53

1Bar 1: The fifth of the chord is made by the voice, and it arrives late.
2Bar 11: The fifth of the chord is made by the voice.

3Bar 11: The seventh of the chord arrives late.
4Bar 12: The fifth of the chord arrives late.
5Bar 13: The third of the chord arrives late.

No4: Dove in queste (pp. 50-53, 46 bars)
Root Triad Alteration Inversion
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Major 0 63
C Major -5 63
C Major 0 63
C Major 0 63
C Major 7m 65
E Diminished 0 53
A Minor 0 64
E Diminished 7o 7
E Diminished 0 53
E Diminished 7o 7
C Major 7m 65
F Major 0 53
F Major 0 53
F Major 7m 2
0 0 0 0

1F Major 0 53

B[ Major 0 63
B[ Major 0 63
B[ Major 7m 65
B[ Major 7m,-5 65
B[ Major 7m 65
E[ Major 0 53
E[ Major 0 53
0 0 0 0

2D Major 0 53
A Major 0 63
A Major 7m 65
F Diminished 0 64
A Major 0 63
A Major 7m 65
D Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
G Minor 0 53
G Minor 0 53
G Minor 0 53
G Minor -5 53
G Major 7m 7
C Major 0 63
C Major 0 63
C Major 0 63
E Minor -5 53
C Major 0 63
E Diminished 0 53
C Major 7m 65

3C Major 7m 65
F Major 0 53
F Major 0 53
B[ Major 0 53
B[ Major 0 53
G Minor 0 63
0 0 0 0
F Major 0 64
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 7m,-5 7
F Major 7m,-5 7
B[ Major 0 63
B[ Major -5 63
B[ Major 0 63
C Major 7m 65
E Diminished 0 53
C Major 7m 65

4C Major 7m 65
C Major 7m 65
C Major 7m,-5 65
C Major 7m 65
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5C Major 7m 65
F Major 0 53
F Major 0 53
F Major 0 53
G Major 7m 2
0 0 0 0

6G Major 0 53
C Major 0 53
C Major -5 53
C Major 0 53
D Major 7m 2
D Major 7m 2
D Major 7m 2
D Major 7m 2
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
E Major 7m 65
E Major 0 63
E Major 7m 65
A Minor 0 63
C Major -5 53
A Minor 0 63
A Minor -5 63
C Major 7m 7
C Major 7m 7
C Major 7m,-5 7
C Major 7m 7
F Major 0 53
F Major 0 53
F Major 0 53
G Minor 7m,-5 2
D Major 7m 7
G Major 0 53
G Major 0 53
G Major 0 53
A Minor 7m,-5 2
E Major 7m 7

7E] Diminished 0 63
E Major 7m 53

8E Major 7m 53
A Major 0 53
A Major 0 53
A Major 0 53
A Major 0 53
A Major 7m 7
A Major 7m 7
A Major 7m 7
D Major 0 64
A Major 7m 7
A Major 7m 7
D Major 0 63
D Major 0 63
D Major 0 63
G Major 0 53
E] Diminished 7o 7
0 0 0 0

9F] Major 0 53

B Minor 0 53
1Bar 7: The third of the chord arrives late.

2Bar 11: The third of the chord arrives late.
3Bar 18: The seventh of the chord arrives late.

4Bar 25: The fifth of the chord is made by the voice.
5Bar 27: The seventh of the chord arrives late.

6Bar 29: The third of the chord arrives late.
7Bar 41: Sustained note in E.

8Bar 41: The seventh of the chord arrives late.
9Bar 46: The third of the chord arrives late.

No5: Poichè la legge (pp. 50-53, 46 bars)
Root Triad Alteration Inversion
A Major 0 63
C] Minor -5 53
A Major 0 63
D Major 0 63
D Major 0 63
D Major 0 63
D Major -5 63
D Major 0 63
D Major 0 63
D Major 7m 65
F] Minor -5 53
F] Diminished 7o 7
D Major 7m 65
G Major 0 63
G Major 0 63
G Major 7m 65
G Major 7m 65
C Major 0 53
0 0 0 0
G Major 0 64

1D Major 0 53
G Major 0 53

1Bar 6: This chord is not in a beat of the bar, however this has
been included in order to take into account the cadential six-four.

No6: Avversi fatirei (pp. 73-77, 67 bars)
Root Triad Alteration Inversion
B[ Major 0 53
B[ Major 0 53
B[ Major 7m,-5 7
B[ Major 7m 7
B[ Major 7m 7

1B[ Major 7m 7
E[ Major 0 53
E[ Major 0 53
E[ Major 0 53
C Minor -5 63
F Major 7m 2
E Diminished 7m 7
0 0 0 0

2F Major 0 53
C Major 0 63

3E Minor -5 53
C Major 0 63
C Major -5 63
E Diminished 7o 7
C Major 7m 65
F Major 0 53
F Major 0 53
F Major 0 53

4F Major 0 53
F Major 0 53
G Major 7m 43
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5G Major 7m 43
C Major 0 53
C Major 0 53

6B Diminished 0 64
C Major 0 53
C Major -5 53
C Major 7m 7
F Major 0 53
F Major 0 53
F Major 0 53
D Minor 0 63
D Minor 0 63
D Minor 0 63
B Diminished 0 64
E Major 0 53
E Major 0 53
E Major 0 53

7E Major 7m,-3 7
E Major 0 53
E Major 0 53
E Major 7m 7
E Major 0 53
A Minor 0 53
B Minor 7m,-5 2
D Major 0 63
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
A Major 7m 2
0 0 0 0

8A Major 0 53
D Major 0 53

9C Major 0 63
D Major 0 53
D Major 0 53
D Major 0 53
D Major 7m 7
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
E Major 7m 7
E Major 7m 7

10B Diminished 0 64
11E Major 7m 7
A Minor 0 63
A Minor 0 63
A Minor 0 63

12A Minor 0 63
B Major 0 63
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
A Major 0 63
A Major 0 63
A Major 0 63

A Major 0 63
A Major 0 63
F] Major 7m 7

13F] Major 7m 7
14F] Major 7m 7
B Major 0 53
B Major 0 53
C] Major 7m 2
0 0 0 0

15C] Major 7m 7
F] Minor 0 53
F] Minor 0 53
F] Minor 0 53
F] Diminished 7o 7
0 0 0 0

16F] Diminished 9 64
A Major 0 53
A Major 7m 7
A Major 7m,-5 7
D Major 0 63
D Major -5 63
D Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 7m 65
C Major 0 53
C Major -5 53
C Major 0 53
C Major 7m 7
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 7m 7
B[ Major 0 63

17B[ Major 0 63
D Diminished 7o 7
D Diminished 7o 7
B[ Major 0 63

18B[ Major 0 63
B[ Major 7m 65
B[ Major 7m 65
E[ Major 0 63
E[ Major 0 63
G Diminished 7o 7
A[ Major 0 63
C Minor 7m 7
A[ Major 0 63
C Minor 7m,-5,9 7
A[ Major 0 63
F Major 7m 7

19F Major 7m 7
B[ Major 0 63
B[ Major 0 63
B[ Major 7m 7
E[ Major 0 53
E[ Major 0 53
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F Major 7m 2
0 0 0 0

20F Major 0 53
D Major 0 63
D Major -5 63
D Major 0 63
D Major 7m 65
D Major 7m 65

21D Major 7m 65
G Minor 0 53
G Minor 0 53
G Minor 0 53
E Diminished 0 63
A Major 7m 2
D Major 0 63

22D Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
G Major 0 63
C Major 0 63
C Major 0 63
E Diminished 7o 7
E Diminished 0 53
E Diminished 7o 7
F Minor 0 53

23F Minor 0 53
F Major 7m 2
F Major 7m 2
F Major 7m 2
F Major 7m 2
B[ Major 0 63
B[ Major -5 63
B[ Major 0 63
C] Diminished 0 53
D Minor 0 53
D Minor -5 53
D Minor 0 53
D Minor -5 53
D Minor 0 53
D Minor 0 53
C Major 0 63
C Major -5 63
C Major 0 63
E Diminished 7o 7
E Diminished 0 53
F Major 0 53

24F Major 7m 7
B[ Major 0 53
B[ Major 0 53
B[ Diminished 7o 7
0 0 0 0

25C Major 0 53
F Major 0 53

1Bar 3: The seventh of the chord arrives late.
2Bar 5: The third of the chord arrives late.

3Bar 6: The third of the chord is made by the voice.
4Bar 8: The third and the fifth of the chord arrive late.

5Bar 9: The root of the chord arrives late.
6Bar 9: Sustained note in C.

7Bar 13: The voice is used to infer the harmony.
8Bar 20: The third of the chord arrives late.

9Bar 20: Sustained note in D.
10Bar 24: Sustained note in E.

11Bar 24: The seventh of the chord arrives late.
12Bar 25: The third of the chord arrives late.

13Bar 31: The fifth of the chord is made by the voice.
14Bar 31: The seventh of the chord arrives late.

15Bar 32: The third of the chord arrives late.
16Bar 34: The G] is omitted in the harmony analysis.
17Bar 43: The root of the chord is made by the voice.

18Bar 44: The fifth of the chord arrives late.

19Bar 48: The seventh of the chord arrives late.
20Bar 50: The third of the chord arrives late.
21Bar 53: The fifth of the chord arrives late.

22Bar 55: The root and the fifth of the chord arrive late.
23Bar 58: The third of the chord arrives late.

24Bar 65: The seventh of the chord arrives late.
25Bar 67: The third of the chord arrives late.

No7: Ah, madre, e che facesti? (pp. 90-92, 42 bars)
Root Triad Alteration Inversion
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Major 0 63
C Major 0 63
C Major 0 63
C Major 7m 65
E Diminished 0 53
C Major 7m 65

1C Major 7m 65
C Major 7m 65
A Minor 0 64
C Major 7m 65

2C Major 7m 65
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
B[ Major 0 63
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
A[ Major 0 63
A[ Major 0 63
G Major 0 63
B Diminished 7o 7
B Diminished 7o 7
B Diminished 7o 7
C Minor 0 63

3C Minor 0 63
C Minor 0 63
C Major 7m 2
C Major 7m,-5 2
C Major 7m 2
F Major 0 63

4F Major 0 63
F Major 0 63
A Minor -5 53
F Major 0 63
F Major 0 63
D Major 7m,-5 7
D Major 0 53
D Major 7m 7
G Minor 0 53
G Minor 0 53
A Major 0 63
A Major -5 63
A Major 0 63
A Major 0 63
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C] Diminished 7o 7
5C] Diminished 7o 7
A Major 7m 65
D Major 0 53
D Major 0 53

6D Major 0 53
E Major 7m 2
E Major 7m 2
E Major 7m 2
A Major 0 63
A Major 0 63
A Major 0 63
D Major 0 53
E Major 0 2
0 0 0 0

7E Major 0 53
B Major 0 63

8D] Minor -5 53
B Major 0 63
B Major 7m 65
B Major 7m 65
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
C] Major 0 63

9C] Major 0 63
C] Major 0 63
C] Major 0 63
C] Major 7m 65
F] Minor 0 53
F] Minor 0 53
F] Minor 0 53
F] Major 7m 2
F] Major 7m 2
F] Major 7m 2
F] Major 7m 2
E Diminished 7o 7
F] Major 7m 2
B Minor 0 63
B Minor 0 63
E Major 7m 2

10E Major 7m 2
E Major 7m 2

11E Major 7m 2
12A Major 7m 2
13D Major 2 65
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
0 0 0 0
D Major 0 64

14A Major 0 53
D Major 0 53
D Major 0 53
D Major 0 53
D Major 7m 7

15D Major 7m 7

G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 7m 7
C Major 0 63
C Major 7m 65
F Major 0 53
D Minor 0 63
G Major 0 2
0 0 0 0

16G Major 0 53
C Major 0 53

1Bar 3: The fifth of the chord arrives late.
2Bar 5: The seventh of the chord arrives late.

3Bar 11: The fifth of the chord is made by the voice.
4Bar 14: The root of the chord is made by the voice.

5Bar 18: The third of the chord is made by the voice, and it arrives
late.

6Bar 19: The fifth of the chord is made by the voice.
7Bar 22: The third of the chord arrives late.

8Bar 23: The chord is inferred from the neighboring notes.
9Bar 27: The fifth of the chord is made by the voice, and it arrives late.

10Bar 33: The third of the chord arrives late.
11Bar 34: The root of the chord arrives late.

12Bar 35: The seventh of the chord arrives late.
13Bar 35: The seventh of the chord arrives late.

14Bar 36: This chord is not in a beat of the bar, however this has
been included in order to take into account the cadential six-four.

15Bar 38: The seventh of the chord arrives late.
16Bar 42: The third of the chord arrives late.

No8: Vedi che a noi qui volge (pp. 100-101, 12 bars)
Root Triad Alteration Inversion
C Major 0 53
C Major -5 53
C Major 7m 7
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
F Major 0 63
B[ Major 0 63
B[ Major -5 63
B[ Major 7m 65
E[ Major 0 53
0 0 0 0

1F Major 7m,-5 7
D Major 0 63

2D Major 7m 65
G Minor 0 53

3G Minor 0 53
G Minor 0 53
G Major 0 63

4B Minor -5 63
B Diminished 0 63

5G Major 7m 43
6G Major 7m 43
G Major 0 64
C Minor 0 53
C Minor 0 53
D Major 7m 2
0 0 0 0
D Major 7m 7
G Minor 0 53

1Bar 6: The third of the chord arrives late.
2Bar 6: The root of the chord arrives late.

3Bar 7: The third and the fifth of the chord arrive late.
4Bar 8: The root and the third of the chord arrive late.
5Bar 8: The root and the third of the chord arrive late.

6Bar 9: The root of the chord is made by the voice.
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No9: Vana l’opra non fù (pp. 105-108, 48 bars)
Root Triad Alteration Inversion
E[ Major 0 53
E[ Major -5 53
E[ Major 0 53
E[ Major 0 53
F Major 7m 2
0 0 0 0

1F Major 0 53
B[ Major 0 53
D Diminished 7o 7

2D Diminished 7o 7
D Diminished 7o 7

3D Diminished 0 53
D Diminished 7o 7
B[ Major 7m 65
E[ Major 7m 2
E[ Major 7m 2
E[ Major 7m 2
E[ Major 7m 2
G Diminished 0 64
E[ Major 7m 2
E[ Major 7m,-5 2
E[ Major 7m 2
A[ Major 0 63

4A[ Major 0 63
A[ Major 0 63
A[ Major 0 63
A[ Major 0 63
F Major 0 53
F Major 0 53

5F Major 7m 7
B[ Major 0 63
B[ Major 0 63
B[ Major 0 63
D Minor 7m 7
D Major 0 63
D Major 0 63
F] Diminished 7o 7
D Major 7m 65
G Minor 0 53
G Minor 0 53
G Minor 0 53
A Major 7m 2
0 0 0 0
D Minor 0 64

6A Major 0 53
E Major 0 63
A Minor 0 63
A Minor 0 63
A Minor 0 63
D Major 0 53

7D Major 7m 7
G Major 0 53
G Major 0 53
G Major 7m 7
G Major 7m 7
C Major 0 53
C Major 0 53
C Major 0 53

8C Major 0 53

9C Major 0 7
C Major 0 53
C Major 7m 7
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
G Major 7m 2
G Major 7m 2
G Major 7m 2
G Major 7m 2
C Major 0 63
C Major -5 63
C Major 0 63
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
E Major 7m,-3 7
E Major 7m 7
E Major 7m 7
E Major 0 53
A Minor 0 63

10A Minor 0 63
A Minor 0 63

11A Minor 0 63
D Minor 0 53
D Minor 0 53
0 0 0 0

12E Major 0 53
B Major 0 63

13B Major 0 63
B Major 0 63
E Major 7m 2
E Major 7m 2
E Major 7m 2
D Major 7o 7
A Major 0 63

14A Major 0 63
F] Major 7m,-5 7
F] Major 7m,-5 7
F] Major 7m 7

15F] Major 7m 7
B Minor 0 63
B Minor 0 63
D Major 7m 65
D Major 0 63
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Major 0 63
F Major 0 53
0 0 0 0

16G Major 0 53
D Major 0 63
D Major 0 63
D Major 0 63
D Major -5 63
D Major 0 63
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D Major 7m 65
D Major 0 63
D Major 7m 65
D Major 7m 65
G Major 0 63
G Major -5 63
G Major 0 63
G Major 0 63
D] Diminished 7o 7
A Diminished 0 64
D] Diminished 7o 7
E Minor 0 53
E Minor 0 53
E Minor 0 53
E Minor 0 53
F] Major 7m 2
0 0 0 0

17F] Major 0 53
B Minor 0 53

1Bar 4: The third of the chord arrives late.
2Bar 5: The third and the fifth of the chord arrive late.
3Bar 6: The third and the fifth of the chord arrive late.

4Bar 10: The root of the chord is made by the voice, and it appears
previously.

5Bar 13: The E has been taken as E[.
6Bar 17: This chord is not in a beat of the bar, however this has
been included in order to take into account the cadential six-four.

7Bar 19: The fifth of the chord is made by the voice.
8Bar 21: The chord is inferred from the neighboring notes.

9Bar 22: The fifth of the chord is made by the voice.
10Bar 29: The root of the chord is made by the voice, and it appears

late.
11Bar 30: The fifth of the chord arrives late.
12Bar 31: The third of the chord arrives late.

13Bar 32: The fifth of the chord is made by the voice, and it appears
previously.

14Bar 34: The root of the chord is made by the voice, and it appears
late.

15Bar 35: The seventh of the chord arrives late.
16Bar 39: The third of the chord arrives late.
17Bar 48: The third of the chord arrives late.

No10: Ahimè! La Dea nemica (pp. 113-116, 52 bars)
Root Triad Alteration Inversion
B[ Major 0 53
B[ Major 0 53
B[ Major 7m,-5 7
B[ Major 7m,-5 7

1E[ Major 0 64
B[ Major 7m 7

2B[ Major 7m 7
E[ Major 0 63
E[ Major -5 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
E[ Major 0 63
A[ Major 0 63

3A[ Major 0 63
A[ Major 0 63
F Minor 0 53
F Minor 0 53
F Minor 0 53
F Minor 0 53

4F Major 7m 7
5F Major 7m 7
F Major 7m 7

6F Major 7m 7
B[ Major 0 63
B[ Major 0 63
B[ Major 0 63
B[ Major 0 63
C Minor 0 63
C Minor 7m 65
F Major 7m 2
0 0 0 0

7F Major 0 53
B[ Major 0 53

8B[ Major 0 53
B[ Major 0 53
B[ Major -5 53
B[ Major 0 53
E[ Major 0 64
B[ Major 0 53
B[ Major 7m 7

9B[ Major 7m 7
10B[ Major 7m 7
B[ Major 7m 7
E[ Major 0 53

11D Diminished 0 64
E[ Major 0 53
E[ Major 0 53
E[ Major 0 53
C Major 0 53
C Major 7m 7

12C Major 7m 7
C Major -5 53
C Major 0 53
F Minor 0 53
0 0 0 0

13G Major 0 53
D Major 0 63
D Major 7m 65
G Minor 0 53

14G Minor -3 53
G Minor 0 53
G Minor 0 53
A Major 0 63
A Major 0 63
C] Diminished 7o 7
C] Diminished 7o 7
C] Diminished 7o 7
A Major 7m 65
D Minor 0 53
D Minor 0 53
D Major 7m 2

15D Major 7m 2
D Major 7m 2

16C Major 7m,-3 7
D Major 7m 2
G Minor 0 63
G Minor -5 63
G Minor 0 63
G Major 7m 7
C Major 0 63



196

C Major 0 63
C Major 0 63
F Major 0 53
D Minor 0 63
0 0 0 0
A Minor 0 64

17E Major 0 53
B Major 0 63
B Major 0 63
B Major 0 63
B Major 7m 65

18B Major 7m 65
B Major 7m 65
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
E Major 0 53
C] Major 0 63
F] Minor 0 53
F] Minor 0 53
F] Minor 0 53
F] Minor 0 53
0 0 0 0

19G] Major 0 53
C] Minor 0 53
C] Minor 0 53
C] Minor 0 53
E Major 0 63
E Major 0 63
E Major 0 63
E Major 0 63
E Major 0 63
E Major 7m 65
E Major 7m 65
A Major 0 63
F] Minor 0 64
D Major -5 53
D Major 0 53

20D Major 7m 7
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Minor 0 63

21C Minor 0 63
C Minor 0 63
D Major 0 63
D Major 0 63
D Major 7m 65
G Minor 0 53
C Minor 0 53
C Minor 0 53
C Minor 0 53
0 0 0 0

22D Major 0 53
G Minor 0 53

1Bar 3: The root and the fifth of the chord arrive late.
2Bar 4: The seventh of the chord arrives late.

3Bar 8: The root of the chord is made by the voice, and it appears
previously.

4Bar 10: The fifth of the chord is made by the voice.
5Bar 11: The third of the chord is made by the voice, and it appears

previously.
6Bar 11: The seventh of the chord arrives late.

7Bar 14: The third of the chord arrives late.
8Bar 15: The third of the chord arrives late, and the fifth is made by

the voice.
9Bar 17: The seventh of the chord arrives late.

10Bar 17: The seventh of the chord is made by the voice.
11Bar 18: Sustained note in E[.

12Bar 21: The fifth of the chord is made by the voice.
13Bar 22: The third of the chord arrives late.

14Bar 24: The fifth of the chord is made by the voice, and it appears
late.

15Bar 28: The fifth of the chord is made by the voice, and it appears
late.

16Bar 29: The seventh of the chord is made by the voice.
17Bar 33: This chord is not in a beat of the bar, however this has
been included in order to take into account the cadential six-four.

18Bar 35: The seventh of the chord is made by the voice, and it
appears previously.

19Bar 40: The third of the chord arrives late.
20Bar 46: The fifth of the chord is made by the voice.

21Bar 48: The root of the chord arrives late.
22Bar 52: The third of the chord arrives late.

No11: Consorte, a tempo giungi (pp. 124-126, 33 bars)
Root Triad Alteration Inversion
G Major 0 53
G Major 0 53

1F] Diminished 0 64
G Major 0 53
G Major 0 53
C Major 0 64
G Major 0 53
G Major 7m 7
C Major 0 64
G Major 7m 7
C Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53

2F Major 7m 7
B[ Major 0 63
B[ Major 0 63
C Minor 7m 65
C Minor 0 63
F Major 7m 2
0 0 0 0

3F Major 0 53
C Major 0 63
F Major 0 53
F Major 0 53
F Major 0 53
B[ Major 0 63
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53

4F] Diminished 0 64
G Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Major 0 63
C Major 0 63
C Major 7m 65
C Major 7m 65
C Major 7m 65
F Major 0 53
F Major 0 53
F Major 0 53
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F Major 0 53
F Major 0 53
F Major 0 53
F Major 0 53
D Minor 0 63
G Major 7m 2
0 0 0 0

5G Major 0 53
C Major 0 53
C Major 0 53

6G Major 7m,-5 2
C Major 0 53
C Major 0 53
A Major 0 63
A Major 0 63
C] Diminished 7o 7

7C] Minor -5 53
C] Diminished 7o 7

8C] Diminished 7o 7
C] Diminished 7o 7
A Major 7m 65
D Major 0 63

9D Major 0 63
D Major 7m 65
G Major 7m 2
G Major 0 53
E Minor 0 63
A Major 7m 2
0 0 0 0

10A Major 0 53
D Major 0 53
D Major 0 53
G Minor 0 63

11G Minor 0 63
G Minor 0 63
C Minor 0 63
C Minor 0 63
C Minor 0 63

12G Major 0 53
F Major 0 53
F Major 7m 7

13B[ Minor 0 53
13B[ Minor 0 53
13B[ Minor 0 53
0 0 0 0

14C Major 0 53
F Major 0 53

1Bar 1: Sustained note in G.
2Bar 6: The seventh of the chord arrives late.

3Bar 8: The third of the chord arrives late.
4Bar 14: Sustained note in G.

5Bar 22: The third of the chord arrives late.
6Bar 23: Sustained note in C.

7Bar 25: The third of the chord is made by the voice, and it appears
previously and late.

8Bar 25: The third of the chord is made by the voice.
9Bar 26: The fifth of the chord arrives late.

10Bar 28: The third of the chord arrives late.
11Bar 29: The root of the chord is made by the voice, and it appears

previously and late.
12Bar 31: Sustained note in E[, the third of the chord is made by the

voice.
13Bar 32: One of the B is taken as B[.

14Bar 33: The third of the chord arrives late.

No12: Ora il nostro contento (p. 134, 12 bars)
Root Triad Alteration Inversion
F Major 0 53
F Major 0 53
F Major 0 53
B[ Major 0 63

B[ Major 0 63
B[ Major 0 63
B[ Major 7m 65
B[ Major 0 63
B[ Major 7m 65
1D Diminished 0 53
B[ Major 7m 65
B[ Major -5 63
B[ Major 7m 65
E[ Major 0 63
E[ Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53

2F Major 0 53
A Major 0 63
A Major 0 63
A Major 7m 65
D Major 0 53
D Major 0 53
D Major 0 53

3D Major 7m 7
G Major 0 53
G Major 0 53
G Major 0 53
0 0 0 0

4A Major 0 53
D Major 0 53

1Bar 5: The fifth of the chord is made by the voice.
2Bar 8: The third of the chord is made by the voice, and it appears

late.
3Bar 10: The seventh of the chord arrives late.

4Bar 12: The third of the chord arrives late.



Appendix H. Mithridates, King of
Pontus

No1: Vieni, signor (+ Se a me s’unisce Arbate) (pp.
16-20, 104 bars)
Root Triad Alteration Inversion
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 53
E Minor 0 63
B Major 7m 65
B Major 7m 65
E Minor 0 53
E Minor 0 53
F] Major 7m 2
F] Major 0 53
C] Major 0 63
C] Major 7m 65
F] Minor 0 53
B Major 0 63
E Major 0 53
E Major 0 53
B Minor 0 63
C] Major -5 53
C] Major 7m,-5 7
F] Minor 0 53
A Major 7m 43
D Major 0 53
B Minor 0 63
F] Major 7m 2
B Minor 0 63
D Major 7m 65
D Major 0 63
G Major 0 63
G Major 7m 65
C Major 0 53
C Major 7m 7
A Major 0 63
A Major 0 63
A Major 7m 65
D Minor 0 53
B[ Major 0 63
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 53
D Major 0 63
G Minor 0 53
C Major 0 63
F Major 0 53
F Major 0 53

D Minor 0 63
C] Diminished 0 63
D Minor 0 53
D Minor 0 53
E Major 7m 2
A Minor 0 63
B Major 0 63
B Major 7m 65
E Minor 0 53
A Minor 0 53
B Major 0 53
F] Major 0 63
B Minor 0 63
B Minor 0 63
D Major 0 63
G Major 0 63
A Major 0 63
A Major 7m 65
D Major 0 53
D Major 0 53
E Major 7m 2
E Major 0 53
A Major 0 63
B Major 7m 65
E Major 0 53
A Major 0 53
A Major -5 53
C] Major 0 63
F] Minor 0 53
F] Minor 0 53
D Major 0 63
C] Diminished 0 63
C] Diminished 0 63
D Major 0 53
D Major 0 53
G Major 0 53
E Minor 0 63
F] Major 0 53
F] Major 0 53
B Minor 0 63
B Minor 0 63
B Major 7m 65
E Minor 0 53
C Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
D Minor 0 63
D Minor 0 63
C Major 0 63
C] Diminished 0 63
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D Minor 0 53
D Major 7m 65
G Minor 0 53
C Major 0 63
F Major 0 53
A Major 7m 65
D Minor 0 53
D Minor 0 53
D Minor 0 53
E Major 0 53
A Minor 0 53
D Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
0 0 0 0
D Major 0 53
G Major 0 53
0 0 0 0

No2: Principe, che facemmo! (p.56, 5 bars)
Root Triad Alteration Inversion
C Major 0 63
C Major 7m 65
A Major 0 63
A Major 7m 65
D Minor 0 53
G Minor 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
*D Minor 0 53

*p. 38 of [86]: The orchestra play this chord.

No3: Un tale addio (pp. 62-63, 25 bars)
Root Triad Alteration Inversion
B[ Major 0 63
C Major 0 63
F Major 0 53
D Minor 0 63
A Major 0 63
D Minor 0 53
D Minor 0 53
E Major 7m 2
A Minor 0 63
A Minor 0 63
B Major 7m 65
E Minor 0 53
A Major 7m 65
D Major 0 53
G Major 0 53
C Major 0 53
0 0 0 0
D Major 0 53
A Major 0 63
A Major 7m 65
D Major 0 53
F] Major 7m 2
B Minor 0 63
B Minor 0 63
C] Major 0 63
F] Minor 0 53
F] Minor 0 53

A Major 7m 43
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
A Major 0 53

No4: Eccovi in un momento (p. 68, 22 bars)
Root Triad Alteration Inversion
F] Major 0 63
F] Major 7m 65
B Minor 0 53
C] Major 0 63
F] Minor 0 53
F] Minor 0 53
C] Diminished 0 63
D Major 0 53
D Major 0 53
G Major 0 53
E Minor 0 63
B Major 0 63
E Minor 0 53
E Major 7m 2
A Minor 0 63
C Major 0 63
F Major 0 63
F Major 7m 65
B[ Major 0 53
G Minor 0 63
D Major 0 53
G Minor 0 53
0 0 0 0
A Major 0 53
D Minor 0 53

No5: Tu mi rivedi, Arbate (+ Su la temuta destra) (pp.
89-91, 69 bars)
Root Triad Alteration Inversion
E Major 0 63
E Major 7m 65
A Major 0 53
D Major 0 63
G Major 0 53
G Major 0 53
E Minor 0 63
E Minor 0 63
F] Major 0 53
F] Major 0 53
B Minor 0 63
B Minor 0 63
C] Major 0 53
F] Minor 0 53
G] Major 7m 2
0 0 0 0
G] Major 0 53
C] Major 0 53
0 0 0 0
A Major 0 63
A Major 7m 65
D Major 0 53
G Major 0 53
0 0 0 0
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A Major 0 53
D Major 0 63
D Major 7m 65
B Major 0 63
B Major 7m 65
E Minor 0 53
F] Major 0 53
B Minor 0 53
E Minor 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
G Major 0 53
G Major 0 53
G Major 7m 7
E Major 0 63
A Minor 0 63
C Major 0 63
F Major 0 53
F Major 0 53
B[ Major 0 63
E[ Major 0 53
C Minor 0 63
B Diminished 0 63
C Minor 0 63
C Minor 0 63
D Major 7m 65
G Minor 0 53
0 0 0 0
A Major 0 53
D Minor 0 53
D Minor 0 53
E Major 0 63
A Minor 0 53
C Major 0 63
F Major 0 53
B[ Major 0 53
C Major 7m 2
0 0 0 0
C Major 0 53
F Major 0 53
0 0 0 0

No6: Teme Ismene a ragion (pp. 99-101, 55 bars)
Root Triad Alteration Inversion
A Major 0 63
D Minor 0 63
D Minor 0 63
E Major 7m 65
A Minor 0 53
B Major 0 63
E Minor 0 53
E Minor 0 53
F] Major 7m 2
F] Major 0 53
C] Major 0 63
F] Minor 0 53
F] Minor 0 53
G] Major 7m 2
C] Minor 0 63
C] Minor 0 63
D] Major 0 53
B Major 0 63
B Major 7m 65
E Major 0 53

E Major 0 53
E Major 7m 7
C] Major 0 63
F] Minor 0 53
F] Minor -5 53
D Major 0 63
D Major 0 63
*D Major 7m 65
B Major 0 63
B Major 7m 65
E Minor 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
G Major 0 53
G Major 0 53
G Major 0 53
C Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 0 63
D Major 0 63
G Minor 0 63
A Major 0 53
D Minor 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
B Major 0 63
E Minor 0 53
E Minor 0 53
F] Major 7m 2
B Minor 0 63
D Major 0 63
G Major 0 63
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
G Major 0 53

*Bar 22: The root of the chord is made by the voice.

No7: Questo è l’amor (pp. 115-116, 42 bars)
Root Triad Alteration Inversion
D Major 0 63
B Major 0 63
B Major 7m 65
E Minor 0 53
C Major 0 63
B Diminished 0 63
C Major -5 53
C Major 0 53
*D Minor 0 63
E Major 0 53
E Major 0 53
A Minor 0 63
A Minor 0 63
C Major 0 63
F Major 0 63
B[ Major 0 53
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C Major 7m 2
0 0 0 0
C Major 0 53
F Major 0 63
F Major 0 63
B[ Major 0 63
D Major 7m 2
G Minor 0 63
G Minor 0 63
0 0 0 0
A Major 0 53
B[ Major 0 63
B[ Major 0 63
E[ Major 0 53
A[ Major 0 53
F Minor 0 63
C Major 7m 65
F Minor 0 53
F Minor 0 53
G Major 7m 2
C Minor 0 63
A Diminished 7Ma 43
D Major 0 53
G Minor 0 63
A Major 0 63
A Major 7m 65
D Minor 0 53
G Minor 0 53
0 0 0 0
A Major 0 53
D Minor 0 53
0 0 0 0

*Bar 10: The root of the chord arrives late.

No8: Perfido, ascolta (+ Eccomi a’cenni tuoi + Respiro,
oh Dei!) (pp. 121-124, 77 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
E Major 0 63
A Minor 0 63
B Major 0 63
E Minor 0 53
D Major 0 63
G Major 0 53
C Major 0 63
C Major 0 63
F Major 7Ma,-5 7
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53
D Major 0 63
G Major 7m 2
G Major 7m 2
C] Diminished 0 63
D Minor 0 53
D Major 0 63
G Major 0 63
C Major 0 53
0 0 0 0
D Major 0 53
A Major 0 63
D Major 0 53
D Major 0 53

E Major 0 63
A Major 0 53
A Major -5 53
E] Diminished 7o 7
F] Minor 0 53
B Major 0 63
E Major 0 53
A Major 0 53
A Major 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Major 7m 7
E Major 0 53
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
A Major 0 63
A Major 0 63
A Major 7m 65
F] Major 0 63
B Minor 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
C Minor 0 63
F Major 7m 2
0 0 0 0
F Major 0 53
C Major 0 63
F Major 0 53
D Diminished 7o 7
E Major 7m 2
A Minor 0 63
C Diminished 7o 7
0 0 0 0
B Major 0 53
E Minor 0 53
G Major 0 63
C Major 0 63
F Major 0 53
D Minor 0 63
C] Diminished 0 63
D Major 0 53
D Major 0 53
D Major 7m 65
D Major 7m 65
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

No9: Che dirò? Che ascoltai? (+ Alla tua fede il padre
+ Oh giorno di dolore!) (pp. 130-133, 80 bars)
Root Triad Alteration Inversion
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
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G Major 7m 65
C Minor 0 53
D Major 0 63
G Minor 0 53
C Major 0 63
C Major 7m 65
A Major 0 63
D Minor 0 63
D Minor 0 63
E Major 0 53
E Major 0 53
B Diminished 0 63
C Major 0 53
C Major 0 53
D Major 0 63
B Major 0 63
B Major 7m 65
E Minor 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
C] Major 0 63
F] Minor 0 53
B Major 0 63
E Major 0 53
E Major 0 53
A Major 0 63
D Major 0 53
D Major 0 53
D Major 7m,-5 7
G Major 0 53
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
G Major 0 53
D] Diminished 7o 7
E Minor 0 53
E Major 7m 2
A Minor 0 63
C Major 7m 7
A Major 0 63
D Minor 0 53
D Minor -5 53

1D Minor -5 53
D Major 7m 65
G Minor 0 53
G Minor 0 53
D Diminished 0 53
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 63
B[ Major 0 63
G Major 0 63
C Minor 0 63
C Major 7m 65
F Minor 0 53
B[ Major 0 63
E[ Major 0 53

F Major 7m 2
B[ Major 0 63
D Major 0 63
G Minor 0 63
C Major 0 63
F Major 0 63
F Major 0 63
D Minor 0 64
C] Diminished 0 63
D Minor 0 63
E Major 7m 2
A Minor 0 63
D Major 0 63
G Major 0 53
B Major 0 63
E Minor 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
2G Major 0 53

1Bar 50: The G note has been omitted in the chord analysis.
2p. 91 of [86]: The orchestra play this chord.

No10: Qui, dove la vendetta (+ Sedete, o Prenci + Sig-
nor, son io + Inclita Ismene) (pp. 161-166)
Root Triad Alteration Inversion
A Major 0 63
D Major 0 63
G Major 0 53
G Major 0 53
C Major 0 63
E Major 7m 2
A Minor 0 63
B Major 0 63
E Minor 0 53
F] Major 0 53
B Minor 0 53
C] Major 7m 2
0 0 0 0
C] Major 0 53
F] Minor 0 53
C] Diminished 0 63
D Major 0 53
D Major 0 53
G Major 0 53
C Major 0 63
E Major 0 63
A Minor 0 53
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53
C Major -5 53
C Major 7m,-5 7
F Major 0 53
B[ Major 0 63
B[ Major 0 63
E[ Major 0 53
0 0 0 0
F Major 0 53
C Major 0 63
C Major 0 63
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F Major 0 53
0 0 0 0
G Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 53
E Minor 7m,-5 7
C] Diminished 0 63
D Major 0 53
E Major 7m 2
A Major 0 63
C] Major 0 63
F] Minor 0 63
G] Major 7m 2
C] Minor 0 63
F] Minor 0 53
G] Major 7m 2
0 0 0 0
G] Major 0 53
A Major 0 53
A Major 7m 7
F] Major 0 63
B Minor 0 53
B Major 7m 65
E Minor 0 53
C Major 0 63
B Diminished 0 63
C Major 0 53
C Major 0 53
C Major -5 53
C Major 7m,-5 7
F Major 0 53
A Major 0 63
D Minor 0 53
D Minor -5 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 53
B[ Major 7m 7
G Major 0 63
C Minor 0 53
F Minor 0 53
0 0 0 0
G Major 0 53
F] Diminished 7o 7
D Major 7m 65
G Minor 0 53
G Minor 0 63
A Major 0 53
D Minor 0 63
D Minor 0 63
E Major 0 53
A Minor 0 53
B Major 0 63
E Minor 0 53
E Minor 0 53

F] Major 7m 2
B Minor 0 63
C] Major 7m 65
F] Minor 0 53
B Major 0 63
E Major 0 53
G] Major 7m 2
C] Minor 0 63
C] Minor 0 63
E Major 0 63
A Major 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Major 0 53
E Major 7m 7
A Major -5 53
A Major 0 53
D Major 0 53
B Minor 0 63
E Major 7m 2
0 0 0 0
E Major 0 53
A Major 0 53
0 0 0 0

No11: Ah giacché son tradito (p. 174, 12 bars)
Root Triad Alteration Inversion
A Major 0 63
A Major 7m 65
D Major 0 53
D Major 7m 7
G Major 0 63
B Major 0 63
E Minor 0 63
E Minor 0 63
G Major 7m 65
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
G Major 0 53
0 0 0 0

No12: E credarai, Signor (pp. 179-182, 90 bars)
Root Triad Alteration Inversion
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 7m 7
B[ Major -5 53
D Major 0 63
D Major 7m 65
G Minor 0 53
G Minor 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
B[ Major 0 53
B[ Major 0 53
B[ Major 7m 7
E[ Major -5 53
E[ Major 0 53
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E[ Major 7m 7
C Major 0 63
C Major 7m 65
F Minor 0 53
F Minor 0 53
G Major 7m 2
C Minor 0 63
D Major 0 63
G Minor 0 53
C Major 7m 65
F Major 0 53
D Minor 0 63
C] Diminished 0 63
D Minor 0 53
G Minor 0 53
0 0 0 0
A Major 0 53
E Major 0 63
A Minor 0 63
A Minor 0 63
D Major 0 63
G Major 0 53
B Major 7m 65
E Minor 0 53
0 0 0 0
F] Major 0 53
C] Major 0 63
F] Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 53
G Major 7m 7
E Major 0 63
E Major 7m 65
A Minor 0 53
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
C Major 0 53
A Major 0 53
D Minor 0 63
D Major 7m 65
G Minor 0 53
B[ Major 0 63
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
C Minor 0 63
G Major 7m 2
C Minor 0 63
E[ Major 0 63
F Major 7m 7
F Major 7m 7
B[ Major -5 53
D Major 0 63
D Major 7m 65
G Minor 0 53
C Minor 0 53
0 0 0 0

D Major 0 53
A Major 0 63
D Minor 0 53
E Major 7m 2
A Minor 0 63
A Minor 0 63
B Major 0 63
B Major 7m 65
E Minor 0 53
F] Major 7m 2
B Minor 0 63
B Minor 0 63
C] Major 7m 65
F] Minor 0 53
F] Minor -5 53
D Major 0 63
D Major 7m 65
B Major 0 63
B Major 7m 65
E Minor 0 53
E Minor 0 53
B Diminished 0 63
C Major 0 53
D Major 0 63
G Major 0 53
C Major 0 63
E Major 7m 2
E Major 0 63
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Minor 0 53

No13: Sifare, per pietà (pp. 188-189, 29 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63

1F Major 0 53
D Minor 0 63
E Major 0 53
E Major 0 53
A Minor 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53
E Minor 0 63
B Major 7m 43
E Minor 0 53
F] Major 7m 2
B Major 0 63
B Major 0 63
C] Major 0 63
F] Minor 0 53
G] Major 7m 2
C] Minor 0 63
E Major 0 63
A Major 0 63
D Major 0 53
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G Major 0 53
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53

2D Major 0 53
1Bar 5: The E note has been omitted in the chord analysis.

2p. 189: This chord is played together with the orchestra.

No14: Pera omai chi m’oltraggia (pp. 205-206, 41 bars)
Root Triad Alteration Inversion
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
E[ Major 0 53
C Minor 0 63
0 0 0 0
F Major 0 53
B[ Major 0 53
B[ Major 0 53
G Minor 0 63
D Major 0 63
G Minor 0 53
B[ Major 7m 65
E[ Major 0 53
A[ Major 0 63
C Major 7m 65
F Minor 0 53
G Major 0 53
C Minor 0 63
C Minor 0 63
D Major 0 53
G Minor 0 63
G Minor 0 63
A Major 0 53
D Minor 0 53
D Diminished 7o 7
0 0 0 0
E Major 0 53
B Major 0 63
B Major 7m 65
E Minor 0 53
F] Major 7m 2
B Minor 0 63
B Major 0 63
E Minor 0 53
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Minor 0 53

No15: Re crudel, Re spietato (+ Mio Re, t’affretta) (pp.
211-213, 59 bars)
Root Triad Alteration Inversion
B Major 0 63
B Major 7m 65
E Major 0 53
C] Major 7m 65
F] Minor 0 53
D Major 0 63

D Major 7m 65
B Major 0 63
E Minor 0 53
E Minor 0 53
C] Diminished 0 63
F] Major 7m 2
0 0 0 0
F] Major 0 53
B Minor 0 63
D Major 0 63
G Major 0 63
G Major 7m 65
C Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
G Minor 0 63
B[ Major 7m 43
E[ Major 0 53
C Minor 0 63
G Major 7m 2
C Minor 0 63
D Major 7m 2
G Minor 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
C Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
E Major 0 63
A Major 0 53
D Major 0 63
G Major 7Ma,-5 7
E Minor 0 63
F] Major 0 53
B Minor 0 63
C] Major 0 63
F] Minor 0 53
A Major 0 63
D Major 0 53
D Major 7m,-5 7
G Major 0 53
C Major 0 63
C Major 0 63
F Major 7Ma,-5 7
D Minor 0 63
E Major 0 53
A Minor 0 53
C] Diminished 7o 7
A Major 7m 65
D Minor 0 53
D Minor 0 53
E Major 7m 2
0 0 0 0
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E Major 0 53
A Minor 0 63
0 0 0 0

No16: Lagrime intempestive (p. 219, 8 bars)
Root Triad Alteration Inversion
G Major 0 53
F] Diminished 7o 7
D Major 7m 65
G Minor 0 53
A Major 7m 2
D Minor 0 63
C Major 0 63
C Major 7m 65
F Minor 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
*C Minor 0 53

*p. 219: This chord is played together with the orchestra.

No17: Che fai, Regina? (+ Che mi val questa vita) (pp.
228-229, 39 bars)
Root Triad Alteration Inversion
D Major 0 63
D Major 7m 65
B Major 0 63
E Minor 0 53
E Minor -5 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 0 63
E[ Major 7Ma,-5 7
C Minor 0 63
D Major 0 53
D Major 0 53
G Minor 0 63
G Minor 0 63
F Major 0 63
B[ Major 0 53
E[ Major 0 63
A[ Major 0 63
A[ Major 0 63
C Major 7m 65
F Minor 0 53
G Major 7m 2
C Minor 0 63
C Major 0 63
F Major 0 53
B[ Major 0 53
C Major 7m 2
0 0 0 0
C Major 0 53
F Major 0 53
0 0 0 0
B[ Major 0 63
B[ Major 0 63
C Major 7m 65
F Major 0 53
D Minor 0 63

C] Diminished 0 63
D Minor 0 53
E Major 7m 2
A Minor 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53

No18: Sorte crudel, stelle (+ Teco i patti, Farnace) (pp.
238-240, 56 bars)
Root Triad Alteration Inversion
C Major 0 63
A Major 0 63
A Major 7m 65
D Minor 0 53
D Minor 0 63
E Major 0 53
E Major 0 53
A Minor 0 63
C Major 0 63
F Major 0 53
F Major 0 53
C Minor 0 63
D Major 0 53
D Major 0 53
G Minor 0 63
C Major 0 63
F Major 0 53
F Major 0 53
G Major 7m 2
C Major 0 63
E Major 0 63
A Minor 0 63
A Minor 0 63
B Major 0 63
E Minor 0 53
C] Diminished 0 63
F] Major 7m 2
B Minor 0 63
D Major 0 63
G Major 0 63
A Major 7m 65
D Major 0 53
E Major 0 63
A Major 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Major 0 53
A Major 0 63
D Major 0 63
G Major 0 53
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53
0 0 0 0
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No19: Figlio, amico, non più (+ Ah vieni, o dolce +
Reo non si chiami) (pp. 255-258, 74 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
D Minor 0 63
C] Diminished 0 63
A Major 7m 65
D Minor 0 53
E Major 7m 65
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
F] Major 0 63
F] Major 7m 65
B Minor 0 63
C] Major 7m 65
F] Minor 0 53
B Major 7m 65
E Major 0 53
E Major 7m,-5 7
A Major 0 53
A Major 0 53
*A Major 0 53
A Major 7m,-5 7
D Major 0 53
E Major 0 63
E Major 0 63
E Major 7m 65
A Major 0 53
A Major 0 53
F] Minor 0 63
C] Major 0 63
C] Major 7m 65
F] Minor 0 53
D Major 0 63
G Major 0 53
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
E Major 7m 2
A Minor 0 63
A Minor 0 63
C Diminished 7o 7
0 0 0 0
B Major 0 53
C Major 0 53
C Major 7m 7
F Major 0 53
F Major 7m 7
B[ Major -5 53
B[ Major 0 53

D Major 0 63
G Major 0 53
0 0 0 0
A Major 0 53
E Major 0 63
A Minor 0 63
B Major 0 63
E Minor 0 53
F] Major 7m 2
B Minor 0 63
B Minor 0 63
E Minor 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
C] Major 0 63
F] Minor 0 53
B Major 0 63
E Major 0 53
A Major 0 53
D Major 0 53
0 0 0 0
E Major 0 53
A Major 0 53
0 0 0 0

*Bar 24: The fifth of the chord is made by the voice.



Appendix I. Apollo and Hyacinthus
No1: Amice! jam parata sunt omnia (pp. 7-9, 57 bars)
Root Triad Alteration Inversion
D Major 0 63
E Major 0 63
E Major 0 63
A Major 0 63
D Major 0 53
G Major 0 53
G Major 0 63
C Major 0 53
C Major 0 63
F Major 0 53
A Major 0 63
D Minor 0 53
G Major 0 63
C Major 0 53
F Major 0 53
E Major 0 53
E Major 0 63
A Minor 0 63
B Major 0 63
E Minor 0 53
D Major 0 63
G Major 0 53
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
A Major 0 63
F] Major 7m 65
B Minor 0 53
E] Diminished 0 64
0 0 0 0
C] Major 0 53
F] Major 0 63
B Minor 0 63
A Major 7m 65
D Major 0 53
D Major 7m 7
B Major 0 63
B Major 7m 7
E Minor 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53
D Major 7m 65
G Major 0 53
G Major 0 53
E Major 0 63
A Minor 0 53

A Minor 0 53
A Major 7m 2
D Minor 0 63
G Minor 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
E Major 0 63
A Minor 0 53
A Major 7m 65
D Minor 0 53
D Major 0 63
B Major 7m 65
E Minor 0 53
E Minor 0 53
A Major 0 2
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

No2: Heu me! Periimus! (pp. 18-19, 32 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 53
B Major 0 63
E Minor 0 53
E Minor 0 53
E Minor 0 63
A Minor 0 53
B Major 0 53
B Major 7m 2
E Minor 0 63
G Major 7m 7
A Minor 0 53
A Major 7m 2
D Minor 0 63
F] Diminished 7o 7
G Minor 0 53
A Major 0 63
A Major 0 63
D Minor 0 53
D Minor 0 63
F] Diminished 7o 7
G Major 7m 2
C Minor 0 63
E Diminished 7o 7
C Minor 7m 65
F Minor 0 53
F Major 7m 2
B[ Major 0 63
C Major 0 63
F Major 0 53
D Major 0 63
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D Major 0 63
G Major 0 53
C Major 0 63
F Major 0 63
F Major 0 63
B[ Major 0 63
C Major 0 63
F Major 0 53
D Major 7m 65
G Minor 0 53
0 0 0 0
A Major 0 53
D Major 0 53
0 0 0 0

No3: Ah nate! Vera loqueris (pp. 26-28, 62 bars)
Root Triad Alteration Inversion
G Major 0 63
G Major 7m 2
C Minor 0 63
C Major 0 53
A Major 0 63
D Minor 0 53
E Major 7m 65
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
F] Major 0 63
F] Major 7m 65
B Minor 0 53
B Minor 0 53
C] Major 7m 65
C] Major 7m 65
F] Minor 0 53
F] Major 7m 2
B Minor 0 63
E Minor 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
G Major 0 53
G Major 0 53
G Major 0 63
C Major 0 63
D Major 0 63
G Major 7m 2
C Major 0 63
D Major 7m,-5 7
D Major 7m 7
G Major 0 53
A Major 0 63
A Major 0 63
D Major 0 53
D Major 7m 2
G Major 0 63
C Minor 0 63
D Major 0 53
D Major 0 63
D Major 0 53
A Major 7m 2
0 0 0 0

A Major 0 53
E Major 0 63
E Major 7m 65
A Major 0 53
A Major 7m 2
0 0 0 0
D Major 0 63
C] Major 0 63
C] Major 7m 2
F] Minor 0 63
F] Major 7m 2
F] Major 0 2
B Minor 0 63
G Major 0 63
G Major 7m 65
C Major 0 53
G Major 0 53
C Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 53
B Diminished 7o 7
C Minor 0 53
A Major 0 63
D Major 0 63
E Major 0 63
E Major 0 63
A Major 0 63
B Major 0 63
E Major 0 53
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
A Major 0 53

No4: Amare num quid filia (pp. 33-34, 37 bars)
Root Triad Alteration Inversion
F Major 0 53
F Major 0 53
F Major 0 63
B[ Major 0 53
C Major 0 63
F Major 0 53
D Major 0 63
E Major 0 63
A Minor 0 53
A Major 7m 2
D Major 0 63
G Major 0 53
0 0 0 0
A Major 0 53
E Major 0 63
A Major 7m 2
D Major 0 63
C] Major 0 63
F] Major 7m 2
B Minor 0 63
*G Major 7m,-5 7
F] Major 0 53
F] Major 7m 2
F] Major 0 63
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B Minor 0 53
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
E Major 0 63
A Major 0 53
A Major 0 53
C] Diminished 7o 7
D Minor 0 53
D Major 0 63
G Major 0 63
G Major 0 63
C Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

*Bar 19: The third of the chord is made by the voice.

No5: Rex! de salute filii est actum (pp. 41-46, 117 bars)
Root Triad Alteration Inversion
B[ Major 0 53
B Diminished 7o 7
C Minor 0 53
C Minor 0 53
E Diminished 7o 7
F Minor 0 53
B[ Minor 0 63
C Major 0 53
C Major 0 63
F Minor 0 63
F Major 7m 2
B[ Minor 0 63
C Major 0 53
E Diminished 7o 7
C Major 7m 65
C Major 0 63
C Major 7m 65
F Minor 0 53
D Major 0 63
G Minor 0 53
G Major 0 63
C Minor 0 53
C Major 7m 2
F Minor 0 63
F Major 0 63
B[ Minor 0 53
C Major 7m 2
0 0 0 0
C Major 0 53
G Major 0 63
C Minor 0 53
B[ Diminished 7o 7
E Diminished 7o 7
C Major 7m 65
F Minor 0 53
F Major 7m 2
F Major 0 63
B[ Minor 0 53
E[ Minor 0 63

F Major 0 53
G Major 0 63
G Major 0 63
A Major 0 63
D Minor 0 53
G Minor 0 53
0 0 0 0
A Major 0 53
B Major 0 63
E Minor 0 53
E Major 7m 2
A Minor 0 63
G Major 0 63
C Major 0 53
A Major 0 63
A Major 0 63
D Major 0 53
D Major 0 63
E Major 0 63
E Major 7m 65
A Minor 0 53
A Major 0 63
D Minor 0 53
G Major 0 63
C Major 0 53
F Major 0 53
F Major 0 63
B[ Major 0 53
G Major 0 63
C Minor 0 53
*F Minor 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
G Minor 0 53
G Major 7m 2
G Major 7m 2
C Minor 0 63
F Minor 0 63
G Major 0 53
C Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53
G Major 0 63
C Major 0 63
C Major 0 63
F Major 0 53
F Major 0 63
B[ Major 0 53
C Major 7m 2
0 0 0 0
C Major 0 53
G Major 0 63
C Major 0 53
D Major 7m 2
0 0 0 0
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D Major 0 53
G Major 0 53
C Major 0 63
C Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
E Major 7m 65
A Major 0 53
B Major 0 63
E Major 0 53
E Major 0 63
A Minor 0 53
D Minor 0 63
E Major 0 53
C Major 0 53
C Major 0 53
A Major 0 63
D Minor 0 53
D Major 7m 2
G Minor 0 63
C Major 7m 2
C Major 7m,-5 2
F Major 0 63
F Major 0 63
G Major 0 63
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
E Major 0 63
A Major 0 63
B Major 0 63
E Major 0 53
E Major 0 63
A Major 0 53
A Major 0 63
D Major 0 53
F] Diminished 7o 7
G Minor 0 53
G Major 0 63
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
A Major 0 63
D Major 0 53
D Minor 0 53
G Minor 0 63
A Major 0 53
0 0 0 0

*Bar 52: The D has been omitted in the chord analysis.

No6: Heu! Numen! ecce! (pp. 49-51, 47 bars)
Root Triad Alteration Inversion
A Major 0 63
D Major 0 53
G Major 0 63
A Major 0 63
D Major 7m 2
G Minor 0 63
C Minor 0 63

D Major 0 53
G Minor 0 53
G Major 7m 2
C Minor 0 63
C Major 7m 2
F Minor 0 63
F Major 0 63
G Major 0 63
C Major 0 53
A Major 0 63
D Major 0 53
D Major 7m 2
G Major 0 63
C Minor 0 63
D Major 0 53
G Major 0 63
C Major 0 53
C Major 7m 2
F Major 0 63
B[ Major 0 53
C Major 7m 2
10 0 0 0
F Major 0 53
G Major 7m 2
C Minor 0 63
E Diminished 7o 7
C Major 7m 65
F Minor 0 53
F Major 7m 2
B[ Minor 0 63
B[ Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 53
B[ Major -5 53
G Minor 0 53
E Diminished 0 63
F Major 0 53
A[ Diminished 7o 7
A[ Diminished 7o 7
E[ Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Minor 0 53

2A[ Major 0 63
D Major 0 63
G Minor 0 63
G Minor 0 63
C Minor 0 63
D Major 0 53
0 0 0 0

1Bar 27: After the rest there is a scale that have not been included in
the analysis.

2Bar 42: The chord is inferred from the neighboring notes.

No7: Quocumque me converto (pp. 79-81, 60 bars)
Root Triad Alteration Inversion
C Minor 0 63
E Diminished 7o 7
C Major 7m 65
F Minor 0 53
F Major 7m 2
B[ Minor 0 63
C Major 0 63
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C Major 0 63
F Major 0 53
D Major 7m 65
G Minor 0 53
G Minor 0 53
G Major 7m 2
C Major 0 63
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
G Major 0 53
C Major 0 63
C Major 0 63
B Major 0 63
E Minor 0 53
C Major 0 53
C Major 0 53
D Minor 7m,-5 2
C Major 0 53
D Major 0 63
G Major 0 53
G Major 0 63
C Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
A[ Major 7m,-5 53
G Major 0 53
C Minor 0 63
D Major 0 63
G Minor 0 53
C Minor 0 53
0 0 0 0
D Major 0 53
E[ Major 0 53
E Diminished 7o 7
C Major 7m 65
E Diminished 7o,-5 7
C Major 0 63
F Minor 0 53
F Major 7m 2
B[ Minor 0 63
B[ Major 0 63
B[ Major 0 63
C Major 0 63
F Major 0 53
F] Diminished 7o 7
G Minor 0 53
G Major 7m 2
C Minor 0 63
C Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 53
A Major 0 63
D Minor 0 53
D Minor 0 53
D] Diminished 7o 7

E Minor 0 53
E Minor 0 63
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Minor 0 53

No8: Rex! me redire (p. 91, 6 bars)
Root Triad Alteration Inversion
A Major 0 53
A Major 0 63
D Major 0 53
D Major 0 63
G Major 0 53

No9: Funus et flore aemulo (p. 92, 2 bars)
Root Triad Alteration Inversion
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53

No10: Quid video? (pp. 92-95, 67 bars)
Root Triad Alteration Inversion
B Major 0 63
C] Major 0 63
F] Major 0 53
F] Major 0 53
B Minor 0 63
A Major 0 63
D Minor 0 63
G Major 7m 2
E Major 7m 7
C] Major 0 63
C] Major 0 63
F] Minor 0 53
G] Major 7m 2
0 0 0 0
G] Major 0 53
C] Minor 0 63
B Major 0 63
B Major 0 63
E Minor 0 53
E Major 7m 2
A Minor 0 63
D Major 0 63
G Minor 0 53
E[ Major 0 63
A Major 7m 2
0 0 0 0
A Major 0 53
B[ Major 0 53
B[ Major 0 53
B[ Major 0 63
E[ Major 0 63
B[ Major 7m 2
0 0 0 0
B[ Major 0 53
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G Major 0 63
C Minor 0 53
D Major 0 63
G Minor 0 53
G Minor 0 53
F Minor 0 63
G Major 0 53
G Major 0 63
G Major 0 63
A Major 0 63
D Major 0 53
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
A Major 0 53
*G] Diminished 0 64
A Major 0 53
D Major 0 63
D Major 0 63
D] Diminished 7o 7
E Minor 0 53
E Major 0 63
A Minor 0 53
A Major 7m 2
D Minor 0 63
C Major 0 63
F Major 0 53
G Major 0 63
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
A Major 0 63
D Major 0 63
E Major 0 63
E Major 0 63
A Major 0 53
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53
*Bar 46: Sustained note in A.



Appendix J. The marriage of Figaro
No1: Sag, was hast du denn da zu mes-sen (p. 30, 19 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
C Major 7m 65
A Major 0 63
0 0 0 0
A Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
0 0 0 0

No2: Wohlan denn, so hör (pp. 38-40, 40 bars)
Root Triad Alteration Inversion
C Major 0 63
A Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
0 0 0 0
C Major 7m 7
*F Major 0 53

Bar 40: *The recitative has been consider ended at this point. After
this point a different recitative style follows.

No3: Sie zögerten so lang (pp. 47-48, 22 bars)
Root Triad Alteration Inversion
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
C Major 0 63
E Major 0 63
C] Major 0 63
C] Major 7m 65
F] Minor 0 53
E Major 0 63

A Major 0 53
A Major 7m 65
D Major 0 53
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53
0 0 0 0

No4: Noch ist nicht alles verloren (p. 58, 14 bars)
Root Triad Alteration Inversion
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
E Major 0 63
A Major 0 53
B Major 0 63
B Major 7m 65
E Major 0 53
A Major 0 53
0 0 0 0
B Major 7m 7
E Major 0 53

No5: Fahr hin, du alte (pp. 66-68, 42 bars)
Root Triad Alteration Inversion
A Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
C Major 7m 65
A Major 0 63
D Minor 0 53
E Major 0 63
E Major 7m 65
A Major 7m 2
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
A Diminished 0 63
B[ Major 0 53
0 0 0 0

No6: Ich bin verloren! Keine Angst (pp. 76-80, 83 bars)
Root Triad Alteration Inversion
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0 0 0 0
F Major 0 63
0 0 0 0
A Diminished 0 53
D Major 0 63
D Major 7m 65
G Minor 0 53
G Major 7m 2
C Minor 0 63
B[ Major 0 63
0 0 0 0
E[ Major 0 53
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
G Minor 0 63
A Major 0 63
A Major 7m 65
D Minor 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B Diminished 0 63
C Major 0 63
D Major 7m 65
G Major 0 53
0 0 0 0
E Minor 7m 7
A Major 0 63
D Major 0 63
B Major 0 63
B Major 7m 65
E Major 0 53
A Major 0 63
E] Diminished 7o 7
F] Minor 0 53
E Major 0 63
A Major 0 53
A Major 7m 2
D Major 0 63
D Major 7m 65
G Major 7m 2
C Major 0 63
C Major 7m 65
A Major 0 63
D Minor 0 63
F Major 0 63
F Major 7m 65
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53

No7: Basilio, geschwind zu Figaro (pp. 95-96, 24 bars)
Root Triad Alteration Inversion
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63

D Major 0 63
D Major 7m 65
G Minor 0 53
A Major 0 63
A Major 0 65
D Minor 0 53
B Major 0 63
B Major 7m 65
E Minor 0 53
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 7m 7
D Major 0 53

No8: Was soll denn die Komödie? (pp. 100-101, 35 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
F Major 0 63
F Major 7m 2
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
A[ Major 0 63
C Major 0 63
C Major 7m 65
F Minor 0 53
G Major 0 63
C Major 0 53
B[ Major 0 63
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
C Major 0 63
D Major 7m 65
G Major 0 53
G Major 7m 65
C Major 0 53
0 0 0 0
D Major 0 53
G Major 0 53

No9: Er lE[e! Er le be! (pp. 104-105, 28 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
A Major 7m 65
D Minor 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
0 0 0 0
D Major 0 53
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G Major 0 53

No10: Komm nun, liE[e Susanna (pp. 121-125, 80 bars)
Root Triad Alteration Inversion
F Major 0 63
B[ Major 0 63
D Major 0 63
F] Diminished 7o 7
G Minor 0 53
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
0 0 0 0
*– – – –
F Major 0 53
B[ Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
A Major 0 63
A Major 7m 65
D Major 0 53
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 7m 2
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
G Major 7m 65
C Major 0 53
C Major 7m 65
F Major 0 53
B[ Major 0 63
0 0 0 0
B[ Major 0 53
F] Diminished 0 63
G Minor -5 53
D Major 0 63
G Major 0 53
G Major 7m 65
C Major 0 53
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53

*Bars 15-21: These 7 bars do not have been consider in the analysis
because the recitative style clearly change in this part.

No11: Ach, wie peinlich, Susanna (pp. 126-127, 29 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
0 0 0 0
C Major -5 53
G] Diminished 0 63
A Minor -5 53
E Major 0 63

A Minor 0 53
A Major 7m 2
D Major 0 63
G Major 0 53
G Major 7m 2
C Minor 0 63
E[ Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
E[ Major 0 63
0 0 0 0
F Major 7m 7
B[ Major 0 53

No12: Bravo, welch schöne Stimme (pp. 133-134, 25 bars)
Root Triad Alteration Inversion
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
C Major 0 63
C Major 7m 65
A Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 7m 2
C Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

No13: Ende nundiese Possen! (pp. 144-147, 87 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
B Major 0 63
B Major 7m 65
E Minor 0 53
D Major 0 63
G Major 0 53
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 7m 7
D Major 7m 65
G Minor 0 53
G Major 7m 2
C Minor 0 63
E Diminished 7o 7
F Minor 0 53
E[ Major 0 63
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E[ Major 7m 65
A[ Major 0 53
B[ Major 0 63
G Major 0 63
C Minor 0 63
D Major 0 63
D Major 7m 65
G Minor 0 53
0 0 0 0
A Major 7m 7
D Minor 0 53
B[ Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 7m 2
B[ Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 0 2
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 7m 7
C Major 0 53

No14: Also wollen Sie nicht öffnen? (p. 157, 21 bars)
Root Triad Alteration Inversion
C Major 0 63
C Major 0 65
A Major 0 63
A Major 0 63
A Major 7m 2
D Major 0 63
G Major 0 53
B Major 0 63
B Major 7m 65
E Minor 0 53
E Major 7m 2
A Minor 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53

No15: O sieh den kleinen (pp. 162-163, 36 bars)
Root Triad Alteration Inversion
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53

D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 7m 65
A Major 0 63
D Major 0 63
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 7m 2
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 53

No16: Sonderbare Verwirrung! (pp. 248-250, 48 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 53
B Major 0 63
B Major 7m 65
E Minor 0 53
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Minor 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
C Major 0 63
C Major 7m 65
F Minor 0 53
F Major 7m 2
E[ Major 0 63
D Major 0 63
B Major 0 63
E Major 7m 2
A Minor 0 63
D Minor 0 63
0 0 0 0
E Major 0 53
A Minor 0 53

No17: Und warum warst du mit mir heute (p.257, 18 bars)
Root Triad Alteration Inversion
A Major 0 63
A Major 7m 2
D Major 0 63
D Major 7m 65
G Major 0 53
0 0 0 0
B Minor -5 53
F Major 0 63
E Major 0 63
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E Major 7m 65
A Minor 0 53
B Major 7m 2
0 0 0 0
B Major 7m 7
C Major 0 53

No18: Der Prozeß ist entschieden (pp. 271-272, 38 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
E[ Major 7m 2
A[ Major 0 63
C Major 0 63
C Major 7m 65
F Minor 0 53
F Major 7m 2
D Major 7m 7
G Minor 0 63
A Major 0 63
D Major 7m 2
D Major 7m 65
G Minor 0 53
F Major 0 63
B[ Major 0 53
0 0 0 0
C Major 7m 7
F Major 0 53

No19: Sehn Sie, mein liEber (pp. 295-296, 32 bars)
Root Triad Alteration Inversion
F Major 0 63
B[ Major 0 63
D Major 0 63
D Major 7m 65
G Minor 0 53
0 0 0 0
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
G Minor 0 53
F Major 0 63
B[ Major 0 53
0 0 0 0
*– – – –
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
A[ Major 0 63
C Major 0 63
C Major 7m 65

F Minor 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53

*Bars 17-19: These 3 bars do not have been consider in the analysis
because the recitative style clearly change in this part.

No20: Ganz gewiß, gnäd’ger Herr (pp. 306-307, 25 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 7m 7
B[ Major 0 53
0 0 0 0
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
G Minor 0 53
G Major 7m 2
C Minor 0 63
F Major 7m 2
B[ Major 0 53

No21: Der Brief ist gefaltet, wie (p. 311, 11 bars)
Root Triad Alteration Inversion
C Major 0 63
F Major 0 53
G Major 7m 2
C Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
0 0 0 0
D Major 0 53
G Major 0 53
0 0 0 0

No22: Dies sind, gnädige Frau (pp. 315-318, 77 bars)
Root Triad Alteration Inversion
A Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
E[ Major 0 53
E[ Major 7m 2
A[ Major 0 63
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C Major 0 63
C Major 7m 65
F Minor 0 53
F Major 7m 2
B[ Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
C Major 0 63
C Major 7m 65
A Major 0 63
A Major 7m 65
D Major 0 53
G Major 0 63
B Major 0 63
B Major 7m 65
E Minor 0 53
D Major 0 63
G Major 0 53
A Major 7m 65
D Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53

No23: Barbarina, was suchst du? (pp. 341-343, 61 bars)
Root Triad Alteration Inversion
0 0 0 0
C Major 0 63
C Major 7m 65
F Minor 0 53
F Major 7m 2
B[ Minor 0 63
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
F Major 7m 2
B[ Major 0 63
B[ Major 0 63
E[ Major 0 53
0 0 0 0
G Minor -5 53
D[ Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
D Major 0 63
D Major 7m 65
G Major 0 53
A Major 7m 2

0 0 0 0
A Major 0 53
D Major 0 53
A Major 7m 43
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
D Major 7m 65
G Minor 0 53
G Diminished 7o 7
0 0 0 0
A Major 7m 7
D Major 0 53
B[ Major 0 53
C Major 0 63
C Major 7m 65
A Major 0 63
A Major 7m 2
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
0 0 0 0
D Major 0 53
G Major 0 53

No24: Im Pavillon zur Linken (pp. 349-351, 44 bars)
Root Triad Alteration Inversion
D Major 0 63
D Major 7m 65
G Major 0 53
G Major 7m 2
C Major 0 63
E Major 0 63
E Major 7m 65
A Minor 0 53
A Major 7m 2
D Major 0 63
0 0 0 0
G Major 7m 7
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
B[ Major 7m 65
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 0 63
G Major 7m 65
C Major 0 53
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
D Major 7m 65
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G Major 0 53
G Major 7m 2
C Major 0 63
C Major 7m 65
A Major 0 63
D Minor 0 63
F Major 0 63
B[ Major 0 53
C Major 7m 2
0 0 0 0
C Major 7m 7
F Major 0 53

No25: Ales ist richtig (p. 362, 2 bars)
Root Triad Alteration Inversion
C Major 0 63
C Major 7m 65
F Major 0 53
0 0 0 0

No26: Frau Gräfin, Marcellina sagt (p. 372, 21 bars)
Root Triad Alteration Inversion
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
D Major 0 63
D Major 7m 65
G Minor 0 53
G Major 7m 2
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 0 53
C Major 0 63
F Major 0 53
0 0 0 0
G Major 7m 7
C Major 0 53
0 0 0 0

No27: Schändliche, in solcher Weise (p. 378, 12 bars)
Root Triad Alteration Inversion
F Major 0 63
B[ Major 0 63
0 0 0 0
D Major 0 63
G Minor 0 53
G Major 7m 2
D Minor 0 63
E Major 0 63
E Major 7m 65
A Minor 0 53
D Minor 0 63
0 0 0 0
E Major 0 53
A Major 0 53



Appendix K. Cinderella
No1: Date for mezzo (pp. 125-126, 42 bars)

Root Triad Alteration Inversion
C Major 0 63
E Diminished 0 53
A Major 0 63
D Major 0 63
G Major 0 63
G Major 0 7
B Diminished 0 53
C Major 0 63
F Major 0 53
B Diminished 0 64
0 0 0 0
G Major 7m 7
C Major -5 53
C Major 0 63
F Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
0 0 0 0
G Major 7m 7
C Major -5 53
C Major 0 63
F Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 7m 7
C Major -5 53

No2: Sappiate che fra poco (pp. 150-151, 40 bars)
Root Triad Alteration Inversion
D Major 0 63
F] Diminished 0 53
G Major 0 63
C Major 0 63
E Diminished 0 53
F Major 0 63
F Major 7m 65
B[ Major 0 63
G Major 0 63
C Major 0 63
E Diminished 0 53
A Major 0 63
C] Diminished 0 53
D Major 0 63
D Major 7m 65
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53

G Major 7m 2
0 0 0 0
G Major 7m 7
C Major -5 53

No3: Non so che dir (pp. 182-183, 35 bars)
Root Triad Alteration Inversion
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
A Major 0 63
D Major 0 53
E Major 0 63
A Major 0 63
D Major 0 53
0 0 0 0
E Major 7m 7
A Major -5 53

No4: Allegrissimamente (pp.226-228, 58 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
A Major 7m 2
0 0 0 0
A Major 7m,-5 7
D Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
A Diminished 0 64
0 0 0 0
F Major 7m 7
B[ Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
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G Major 0 63
E Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
D Major 7m 2
0 0 0 0
D Major 0 53
G Major 0 53

No5: Grazie, vezzi (pp. 301-302, 33 bars)
Root Triad Alteration Inversion
A Major 0 63
D Major 0 63
G Major 0 53
C Major 0 53
E Diminished 0 53
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 7m 7
B[ Major -5 53

No6: Ma bravo (pp. 314-318, 89 bars)
Root Triad Alteration Inversion
C Major 0 53
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 53
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 7m 7
D Major 0 53
B[ Major 0 63
E[ Major 0 53
C Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
A[ Major 0 63
0 0 0 0
B[ Major 7m 7
B Major 0 63
E Major 0 53

A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
F] Diminished 0 64
0 0 0 0
D Major 0 53
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 7m 7
A Major -5 53

No7: Mi parche (pp. 497-501, 85 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
E Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
C Major 7m 43
F Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E Diminished 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 63
A[ Major 0 63
D Diminished 0 64
0 0 0 0
B[ Major 7m 7
E[ Major -5 53
C Major 0 63
F Major 0 53
F Major 0 63
B[ Major 0 63
E[ Major 0 64
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F Major 7m 2
0 0 0 0
F Major 7m 7
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
F Major 0 63
B[ Major 0 63
G Major 0 63
E Major 0 63
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 7m 7
A Major -5 53

No8: Ti sognianco (pp. 524-526, 60 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
A Major 7m 2
0 0 0 0
A Major 0 53
B[ Major 0 63
E[ Major 0 63
A[ Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
A[ Major 0 53
F Major 0 63
D Major 0 63
E Major 7m 2
0 0 0 0
E Major 7m 7
A Major 0 63
D Major 0 63
G Major 0 63
C Major 0 53
D Major 7m 2
0 0 0 0
D Major 0 53
G Major 0 63
C Major 0 63

D Major 7m 2
0 0 0 0
D Major 7m 7
E[ Major 0 53
E[ Major 0 63
A[ Major 0 53

No9: La notte (pp. 563-565, 51 bars)
Root Triad Alteration Inversion
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 63
F Major 0 53
F Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 63
B[ Major 0 63
G Major 0 63
E Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63
E Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 7m,-5 7
D Major 0 53

No10: Mi seconda il (p. 592, 15 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
C Major 0 53
A Major 0 63
D Major 0 53
E Major 7m 2
E Major 0 53
A Major -5 53

No11: Quanto sei (pp. 596-597, 38 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 63
B[ Major 0 63
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G Major 0 63
C Major 0 63
F Major 0 63
B[ Major 0 63
B[ Major 7m,-5 7
A Major 0 53

No12: Oh fa mal tempo (pp. 598-599, 13 bars)
Root Triad Alteration Inversion
B[ Major 0 63
E[ Major 0 63
F Major 0 53
F Major 7m 2
B[ Major 0 63
C Major 7m 43
F Major 0 53
D Major 0 63
B Major 0 63
E Major 0 53
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 7m 7
A Major -5 53

No13: Scusate amico (pp. 621-622, 26 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 53
C Major 0 63
D Major 0 53
D Major 0 63
G Major 0 63
C Major 0 53
C Major 7m 43
F Major 0 53
0 0 0 0
G Major 0 53
A[ Major 0 53
B[ Major 0 63
E[ Major 0 63
F Major 0 64
0 0 0 0
F Major 0 53
D Major 0 63
G Major 0 63
B[ Major 7m 7
E[ Major 0 63
F Major 7m 43
0 0 0 0
F Major 7m 7
B[ Major -5 53

No14: Dunque noi siam (pp. 701-702, 39 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 63

C Major 0 63
F Major 0 53
B[ Major 0 63
C Major 0 63
F Major 0 53
F Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
0 0 0 0
G Major 0 53
C Major -5 53

No15: La pillola (p. 718, 19 bars)
Root Triad Alteration Inversion
G Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 63
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 7m 7
A Major -5 53



Appendix L. The Barber of Seville
No1: Gente indiscreta! (pp. 52-53, 36 bars)

Root Triad Alteration Inversion
G Major 0 53
C Major 0 63
F Major 0 63
B[ Major 0 53
E[ Major 0 63
A[ Major 0 63
D[ Major 0 53
D[ Major 7m 7
B[ Major 0 63
E[ Major 0 63
C Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
0 0 0 0
D Major 0 53
G Major 0 53

No2: Ah ah! che bella vita (pp. 74-81, 185 bars)
Root Triad Alteration Inversion
C Major 0 53
C Major 7m 7
F Major 0 53
B[ Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
E Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
0 0 0 0
A Major 0 53
D Major 0 53

D Major 0 53
B Major 0 63
E Major 0 53
A Major 0 53
D Major 0 63
G Major 0 53
C Major 0 63
0 0 0 0
D Major 0 53
G Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 53
B[ Major 0 63
E[ Major 0 63
A[ Major 0 53
B[ Major 7m 2
0 0 0 0
B[ Major 0 53
E[ Major 0 53
E[ Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
A[ Major 0 63
A[ Major 0 53
B[ Major 7m 2
0 0 0 0
B[ Major 0 53
F Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
C Major 7m 65
F Major 0 53
D Major 0 63
*D Major 7m 65
G Major 0 53
B Major 0 63
E Major 0 53
A Major 0 63
B Major 0 63
E Major 0 53
A Major 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Major 0 53
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Bar 167: *The bass has been consider as F] instead of F.

No3: Oh cielo! (p. 83, 33 bars)
Root Triad Alteration Inversion
0 0 0 0
G Major 0 53
C Major 0 63
F Major 0 63
B[ Major 0 53
0 0 0 0
B[ Major 0 63
E[ Major 0 63
E[ Major 7m 65
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
D Major 0 53

No4: Evviva il mio padrone! (p. 111, 14 bars)
Root Triad Alteration Inversion
B Major 0 63
E Major 0 53
A Major 0 63
B Major 7m 2
0 0 0 0
B Major 0 53
E Major 0 53

No5: Sì, sì, la vincerò (pp. 123-127, 123 bars)
Root Triad Alteration Inversion
E Major 0 63
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 63
F Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
C Major 0 53
F Major 0 53
B[ Major 0 63
E[ Major 0 53
A[ Major 0 63
0 0 0 0
G Minor 0 63
F Major 0 63
B[ Major 0 63
E[ Major 0 53
A[ Major 0 63
A[ Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
C Major 7m 7
F Major 0 53
G Major 7m 2

0 0 0 0
G Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53
F Major 0 53
B[ Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
C Major 7m 2
0 0 0 0
C Major 0 53
F Major 0 53
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
C Major 7m 65
A Major 0 63
D Major 0 53
B Major 0 63
B Major 7m 65
E Major 0 53
A Major 0 63
D Major 0 53
G Major 0 53
0 0 0 0
A Major 0 53
E Major 0 63
A Major 0 63
D Major 0 53
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

No6: Ah! che ne dite? - Ma bravi! (pp. 139-141, 80 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
C Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 53
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 53
B[ Major 0 53
B[ Major 7m 7
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 63
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B[ Major 7m 65
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
C Major 0 63
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
A Major 0 63
D Major 0 53
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

No7: Ora mi sento meglio (pp. 153-154, 44 bars)
Root Triad Alteration Inversion
C Major 0 53
F Major 0 53
B[ Major 0 63
E[ Major 0 53
A[ Major 0 63
B[ Major 7m 65
E[ Major 0 53
A[ Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
F Major 7m 2
0 0 0 0
F Major 0 53
B[ Major 0 53

No8: Brontola quanto vuoi (p.175, 22 bars)
Root Triad Alteration Inversion
B[ Major 0 53
B[ Major 7m 7
G Major 0 63
G Major 7m 65
C Major 0 53
F Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53
A Major 0 63
D Major 0 53
G Major 0 53

C Major 0 63
F Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53

No9: Ma vedi il mio destino (p. 281, 19 bars)
Root Triad Alteration Inversion
B Major 0 63
E Major 0 53
A Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 63
0 0 0 0
C Major 0 53
F Major 0 53

No10: Insomma mio signore (pp. 290-293, 91 bars)
Root Triad Alteration Inversion
B[ Major 0 63
E[ Major 0 53
C Major 0 63
F Major 0 53
0 0 0 0
G Major 0 53
D Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
D Major 7m 65
G Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 53
G Major 0 63
C Major 0 63
C Major 7m 65
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
B Major 0 63
E Major 0 63
A Major 0 53
B Major 7m 2
0 0 0 0
B Major 0 53
E Major 0 53
E Major 0 53
A Major 0 63
D Major 0 63
B Major 0 63
E Major 0 53
A Major 0 63
B Major 0 63
E Major 0 53
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A Major 0 63
D Major 0 63
0 0 0 0
E Major 0 53
A Major 0 53

No11: Bella voce! (p. 308, 13 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 63
C Major 0 63
D Major 7m 2
0 0 0 0
D Major 0 53
G Major 0 53

No12: Bravo, signor barbiere (pp. 310-313, 90 bars)
Root Triad Alteration Inversion
G Major 0 53
C Major 0 63
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 53
A[ Major 0 63
B[ Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 53
B Major 0 63
E Major 0 53
F] Major 7m 2
0 0 0 0
F] Major 0 53
B Major 0 53
E Major 0 53
A Major 0 63
D Major 0 63
G Major 0 53
C Major 0 53
A Major 0 63
D Major 0 63
G Major 0 53
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53

No13: Ah! disgraziato me! - che vecchio sospettoso! (p. 359, 31 bars)
Root Triad Alteration Inversion
E[ Major 0 53
C Major 0 63
F Major 0 53

B[ Major 0 63
G Major 0 63
C Major 0 53
A Major 0 63
D Major 0 53
G Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53

No14: Dunque voi don Alonso (pp. 368-371, 96 bars)
Root Triad Alteration Inversion
D Major 0 63
G Major 0 53
G Major 7m 65
C Major 0 53
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
B Major 0 63
E Major 0 53
A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
B Major 0 63
E Major 0 53
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 63
G Major 0 53
C Major 0 53
F Major 0 63
B[ Major 0 53
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 63
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 53
0 0 0 0
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A Major 0 63
0 0 0 0
D Major 0 53
D Major 0 63
B Major 0 63
E Major 0 53
A Major 0 63
D Major 0 53
G Major 0 63
C Major 0 63
F Major 0 53
0 0 0 0
G Major 0 53
C Major 0 53

No15: Alfine eccoci qua (pp. 380-381, 39 bars)
Root Triad Alteration Inversion
C Major 0 63
F Major 0 53
B[ Major 0 53
E[ Major 0 53
A[ Major 0 63
A[ Major 7m 65
F Major 0 63
B[ Major 0 63
C Major 0 63
F Major 0 53
D Major 0 63
G Major 0 53
C Major 0 63
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
C Major 0 53

No16: Ah, disgraziati noi! (pp. 398-400, 65 bars)
Root Triad Alteration Inversion
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
0 0 0 0
C Major 0 53
F Major 0 53
F Major 0 53
B[ Major 0 63
G Major 0 63
C Major 0 63
C Major 0 63
F Major 0 53
B[ Major 0 63
E[ Major 0 63
A[ Major 0 63
B[ Major 0 63
C Major 0 63
A Major 0 63
B Major 0 63
E Major 0 53

A Major 0 63
D Major 0 53
E Major 7m 2
0 0 0 0
E Major 0 53
A Major 0 53

No17: Insomma, io ho tutti i torti! (pp. 420-421, 41 bars)
Root Triad Alteration Inversion
B[ Major 0 53
G Major 0 63
C Major 0 53
F Major 0 53
G Major 7m 2
0 0 0 0
G Major 0 53
D Major 0 63
B Major 0 63
E Major 0 53
A Major 0 53
0 0 0 0
B Major 0 53
E Major 0 53
A Major 0 63
D Major 0 63
G Major 0 53
A Major 7m 2
0 0 0 0
A Major 0 53
D Major 0 53



Products of the Thesis
The following products are associated with this thesis:

Audiovisual and radio program
Documentary film “Expedición marimba” (52 minutes), UNIMEDIOS, Universidad Na-
cional de Colombia. Link: https://www.youtube.com/watch?v=DQtetNlfDrA. Docu-
mentary film Director: Luis Eduardo Martínez. This documentary was nominated in
the India Catalina awards of 2018 in the category “Mejor Nuevo Creador”. This docu-
mentary was also selected in the “Muestra Internacional Documental de Bogotá 2018”
(MIDBO 2018).

Radio program “Música, física y marimba de chonta en el pacífico colombiano”. “Desde
la botica”, “UN radio”, Universidad Nacional de Colombia. Date: October 11, 2018.

Prices and Scholarships
First price in the contest Three Minute Thesis. Universidad Nacional de Colombia.
Title: “La consonancia como base para entender las afinaciones y prácticas de la música
de marimba de chonta del Pacífico Colombiano: Un patrimonio de la humanidad que
está desapareciendo”.

Scholarship given by the Centro Latinoamericano de Formación Interdisciplinaria (CEL-
FI) to participate in the “Taller sobre aplicaciones matemáticas y computacionales a la
música” carried out between November 14 and 18 of 2016 in the University of Buenos
Aires, Argentina.

Publications and publications in process
Article accepted for publication in an international indexed journal (based on the
research included in the Chapter 2 of this thesis):
- J. Useche, R. Hurtado, and F. Demmer. Interplay between musical practices and
tuning in the marimba de chonta music. Journal of New Music Research. Accepted
date: 9 September 2019. doi: http://dx.doi.org/10.1080/09298215.2019.1667399.
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Article published in an international indexed journal (based on the research included
in the Chapter 3 of this thesis):

- J. Useche and R. Hurtado. Melodies as Maximally Disordered Systems under Ma-
croscopic Constraints with Musical Meaning. Entropy, 21(5):532, 2019. doi: https:
//doi.org/10.3390/e21050532.

Participation as author in one of the chapters of a book based on topics of music,
mathematics and computation. The chapter refers to probability and statistics in music.
Publisher: Universidad Nacional de Quilmes. Editors: Pablo Amster and Bruno Mesz.
In process of publication.

Press releases
“La física y los sonidos de la marimba de chonta”. “El espectador”. Date: January 13,
2016.

“Sonidos de la marimba de chonta, al ritmo de la física”. “UN Periódico”. Date: Sep-
tember, 2015.

“Las voces de la marimba de chonta se niegan a desaparecer”. Author: Nibeth Adriana
Duarte. This article won the contest “Distintas maneras de narrar las Músicas de
marimba y los cantos tradicionales del Pacífico Sur” promoted by the Ministry of
Culture of Colombia. Date: November, 2015.

Participation in events and oral presentations
Participation in the Latin American Conference 2.0 on Complex Networks (LANET
2019) carried out in Cartagena, Colombia from August 5 to August 9, 2019. Title of
the oral contribution “Networks of melody: The complex use of tonal consonance in
music”.

Participation in the XX Conference on Nonequilibrium Statistical Mechanics and Non-
linear Physics (MEDYFINOL 2018) carried out in Santiago, Chile from December 3
to December 7, 2018. Oral contribution presented by Professor Rafael hurtado. Title:
“From microscopic to macroscopic rules in music and their connection with tonal con-
sonance”.

Participation in the XIV Latin AmericanWorkshop on Non Linear Phenomena (LAWNP),
held from September 21 to 25, 2015, in Cartagena de Indias, Colombia. Title of the
poster: “Link weight distribution in networks of musical melodic lines”.



232

Participation in the 1st Interdisciplinary Symposium on Social Network Analysis (IN-
TERACT), held in the Universidad de los Andes, Bogotá, on June 18 and 19, 2018.
Title of the poster: “Las notas amigas y las enemigas: teoremas de clusterización apli-
cados a relaciones signadas en música”.

Invited participant to the “Workshop Science, Art and Cognition” carried out from
December 10 to 15 of 2017 at the Centro Internacional de Ciencias, in the city of
Cuernavaca, Mexico. Title of the oral presentation: “The psychoacoustics of musical
intervals and the emergence of macroscopic quantities in melody”.

Participation as invited speaker in the conference: “Conexiones matemáticas: Mate-
máticas y música” held in March 14, 2018, in the Konrad Lorentz University, Bogotá,
Colombia.

Oral presentation in the “Taller sobre aplicaciones matemáticas y computacionales a la
música” carried out between November 14 and 18 of 2016 in the University of Buenos
Aires, Argentina. Title: “Las afinaciones y prácticas de la música de marimba de chonta
de la costa pacífica de Colombia preservan la consonancia tonal”.

Oral presentation carried out in the sound engineering program of the San Buenaven-
tura Unviersity held in May 2, 2016, in Bogotá, Colombia. Title: “Física musical”.

Oral presentation carried out in the Claustro de San Agustín of the city of Tunja,
Colombia. Title: “Del timbre de la marimba de chonta a la complejidad de las obras
clásicas”. Date: April 6, 2017. This presentation was promoted by the Bank of the
Republic of Colombia.

Musical instruments donated
Traditional marimba of 24 bars made by the maker Francisco Torres in Guapi, Colom-
bia. This marimba stay in the “Conservatorio de Música de la Universidad Nacional
de Colombia” for musical, pedagogical, and research purposes.
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