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Medelĺın, Colombia

2017





For my parents and friends.





Acknowledgements

I would like to thank those persons who made this research possible, worthwhile and enjoyable. A
special note to Juan David Velásquez and Patricia Jaramillo who support and guide the work.





Abstract

Nowadays, optimization is begun to be use in different fields, e.g. preference algorithms. These
new challenges need a robustness meta heuristics to solve them. Supernova meta heuristic that
emules the descent behavior of the gradients and share the same weakness of them. They get stuck
planar regions and hardly find the needle minimum. The main objective of this works is to im-
prove the performance of the original version of supernova for the problematic topologies mention
above. First, a review of how to these problems are solved in the literature is presented. Second,
A criterion to determine planar regions is described . Third, a strategy to choose the parameters
agree with the topology of the function is implemented. Supernova 2.0 was tested using the set
of benchmarks functions proposed in CEC2013. The new version is significantly better than the
original version, no significantly better than SPSO2011 and significantly inferior with SADE. Al-
though, the results are applied to Supernova, most of the strategies can be applied to other methods.
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1. INTRODUCTION

“All men have stars, but they are not the
same things for different people. For some,
who are travelers, the stars are guides. For
others they are no more than little lights in
the sky. For others, who are scholars, they
are problems... But all these stars are
silent.”
–Antoine de Saint-Exupery, the Little

Prince

Metaheuristics are direct methods for optimization that do not need derivatives. Nowadays,
real-world optimization problems are more difficult because there are shorter times to solve them.
Moreover, models and solutions need more accuracy; e.i. more variables and interaction among
them and values closer to the optimal point (Rothlauf, 2011). Classic methods of optimization, as
gradient methods, are not enough to solve all optimization problems (Himmelblau, 1972). There-
fore, new strategies have been developed. They do not use the derivative information and evaluate
directly the objective function. The first direct methods implemented were systematic searches
over feasible space. Step by step, the methods evolved to become more and more effective algo-
rithms until arriving to artificial intelligence (Corne, Dorigo, & Glover, 1999). These new methods
were called heuristics, metaheuristics and hyper-heuristics. They work, but they cannot guaran-
tee an optimal solution. All these methods search directly over feasible region following different
inspirations, for example, natural phenomena. (Olariu & Zomaya, 2006; Gendreau & Potvin, 2010).

Metaheuristics simulate part of an inspirational phenomenon to get some features, which guide
the search according to with these particular characteristics. A good example for a bioinspired
metaheuristic is ants. The manner that ants use to communicate among them inspired one algo-
rithm for combinatorial optimization. Ants mark the path towards feed with pheromones. Shortest
paths have more pheromone and become the most popular increasing its use by other individuals.
In addition, the algorithm uses a similar idea to find new paths and improving the current path.
Starting with an incomplete solution, the path is marked with pheromone until found the shortest
way. This means; optimal combination (Talbi, 2009). There are diverse phenomena that inspiring
the heuristics, but the common factor among them the phenomena improve or order something,
for example; Evolution improve a population (Yang, 2010).

Supernovae are a complex phenomenon composed by different interactions, e.g. thermodynam-
ics, kinetics, among others. Focusing in the movement among the particles expelled by the star,
a reduction of the phenomenon for this work will be: impulse and gravity. The initial force gives
to the particles a random velocity and direction, e.i., impulse. Other bodies around attract these
particles to add them. Initially, the explosion breaks the equilibrium, after a while, the different
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interactions between the stellar material and the environment arrive at an equilibrium state again
(Lieddle, 2003). We use the concept of improvement implicit on the way to the new equilibrium
to idealize a search in a previous work. The trajectory followed by the particles is modified by the
heavier bodies changing the initial direction given by the explosion. Most of the particles will be
attracted to other bigger and closer bodies around the explosion. An analogy between the opti-
mization process and supernovae could be: the valleys or local minimums are the heavier bodies.
The mass will be the value of the objective function, and particles are the solutions that become
attracted those minimums.

The proposed reduction of the phenomenon has two important parts, impulse and gravity force.
Both have been inspired another metaheuristics as: gravitational local search (GLSA)(Webster &
Bernhard, 2003), big-bang big-crunch (BBBC) (Erol & Eksin, 2006), gravitational search (GSA)
(Rashedi, Nezamabadi-pour, & Saryazdi, 2009) and central force optimization (CFO) (Formato,
2007). These four methods differ each other; the first one is a local method while the others are
global. BBBC uses integer variables and calculates an inertial mass point; CFO is deterministic
and GSA is stochastic. Other method inspired in central force is electromagnetic algorithm, it is
similar to GSA.

Following this idea, we proposed a novel metaheuristic called Supernova (Mesa, 2010). It is
a new approach based on the gravity analogy and inspired in the supernova phenomenon. Our
methodology shows the following advantages:

• The method can find a solution with smaller objective function in the case of minimization
and fewer calls to objective function for different kind of functions.

• It is robust for high dimensional problems convex, quasi-convex, smoothness slopes and high
rugosity functions.

• The range of the parameters is known and easy to tune.

Moreover, supernova is a new metaheuristic that has still been developed. When this research
began the methodology was immature and had some weakness as: handle of constraints, unsuc-
cessful performance in planar regions and needle minima, control and tune of parameters, high
computational costs, among others. We focus to solve two of them: The performance over planar
search regions and needle minimum, and the computation cost. Although, there are many ways
to improve metaheuristics, the main focus of this work is: how the control and selection of the
parameters can increase the effectiveness over the kind of regions mention above. In addition, we
proposed different manner of initialization and scaled functions as tools to increase the exploration
of the metaheuristic. So, the main goal of this work is to present a research proposal propose a
method to improve the performance of Supernove in planar regions.

This chapter is organized as follows. In Section 2, we present the previous and related works. In
Section 3, we discuss the problem. In Section 4, we present the requirements to solve the problem,
hypothesis, objectives and contributions to this research. In last section, we describe the content
of the complete text.

1.1 SUPERNOVA: The previous work

In a previous research, we propose a metaheuristic inspired in supernovae (Mesa, 2010). In this
section, a brief summary of the process and results we obtain in the previous work is presented.
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Initially, the basic concepts of the metaheuristics are described. Afterward, the implementation
of the algorithm from previous work. In the third part, we discuss about the convergence of
the algorithm. Finally, the performance and similarity of supernova metaheuristic and another
metaheuristics like GSA is discussed.

1.1.1 Supernova Methodology

Supernovae are a very complex phenomenon; it includes aspects to be analyzed from areas such as
thermodynamics, quantum mechanics, etc. If we simulate the entire process of supernovae, surely
to solve the algorithm we would require more effort than the required to find a solution for the
problem itself. Then, our approach only focus on a subset of the phenomenon. When the star
explodes, it ejects particles around it. The particles move until achieving an equilibrium as the
initial status previous to explosion. The system has a high level of energy that is better distributed
after particles are in balance another time out of the star (Lieddle, 2003).

Figure 1.1: Sequence followed by the algorithm
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Figure 1.2: Forces actuating over a single particle.

Usually, a metaheuristic can be divided into four main generic steps: initial population, evalua-
tion, selection, operations(gravity and impulse) and new population. Each step of this sequence is
different for each method, i.e. each search process varies from one to one according to the approach.
In the Figure 1.1, we present the sequence for the proposed algorithm inspired by supernovae. Note
that a particle is equivalent to a solution vector. Particles have a property: the mass. Mass is the
value of this mass can be the value of the objective function or a scaled value of this function.

The main difference of the proposed algorithm with others metaheuristics is in the operations
step. We simplify and idealize the real phenomenon recreating a simple dynamics to control the
interaction of the particles in the macro physic part (expel and repel). The movement of the
particles is proposed as a strategy for exploring the search space. Thus, only two forces are used
in our heuristic: the attraction force generated by the gravity, and the impulse force caused by
the explosion of the star (Torn & Zilinskas, 1989; Wolpert & Macready, 1997; Zanakis & Evans,
1981). Accordingly, the algorithm achieves a combination of exploration and exploitation, which
is necessary for global optimization (Torn & Zilinskas, 1989). In order to exploit the best regions
found, the strategy is restarted with a smaller impulse. Solutions (particles) have a value of objective
function (mass), and the distance between solutions can be calculated. Then, a set of solutions
moves to agree with gravitational force and impulse, starting with a random explosion. In the
supernova phenomenon, the magnitudes are huger compared with typical optimization applications,
so, the constants for gravity and impulse are parameters of the metaheuristic.

For the proposed algorithm, we have K particles in each iteration. In Figure 1.2, we analyze
the displacement of the particle k assuming that other particles remain static. Black points in
Figure 1.2 represent the trajectory of the analyzed particle, whereas white points represent the
other particles. In Figure 1.2(a), we show the displacements caused by the impulse and attraction
forces with particles 1 and 2. The displacement ik of the particle k caused by the impulse force is:

ik = F ·mk · vk · dk (1.1)

where F is a constant parameter for the impulse force; dk is the current direction; mk is the
mass and vk is the velocity. The displacement caused by the attraction force between particles k
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and i, aki, is calculated as (see Figure 1.2(a)):

akj = G ·mk ·mj ·
(
r2kj
)−1 · ukj (1.2)

where G denotes the gravitational constant, rkj denotes the distance between particles k and j ,
and ukj denotes a unitary vector in the same direction between particles k and j. Thus, the net
displacement ∆k is calculated using the displacements caused by the attraction forces among all
particles and the inertia:

∆k = ik +

K∑
j=1
j 6=k

akj , ∀k (1.3)

Thus, the next position of the particle is calculated as the current position plus the new vector
of displacement, as show in Figure 1.2(b). Equations 1.1, 1.2 and 1.3 are the equations of the
phenomenon, which are very similar to those raised for the metaheuristic.

1.1.2 Algorithm description

In the Algorithm 1, we present the pseudocode of the metaheuristic proposed and called Supernova.
We are interested solving problems of the type:

minf(x) (1.4)

s.t. LB ≤ x ≤ UB (1.5)

where x is a vector of N×1 components and f(·) is a bounded real-valued and continuous function,
such that f : <n → <. The solution for this problem is the global minimum.

Definition 1.1.1. Let x* a vector space <n and f(·) a function such that f : <n → <. x* is the
global minimum if and only if f(x*) ≤ f(x) for the entire domain of f(·).

There is not an optimization method that guarantees to find global minimum, there are strate-
gies to increase the probability to find global minimum (Torn & Zilinskas, 1989). In the proposed
algorithm, we defined a vector xG such that f(x*) ≤ f(xG) ≤ f(x). Notice that xG is an approxi-
mation to global minimum.

Now, we define some notation used in the algorithm. We have a population with K particles.
The particle k in the iteration t has the following properties: a current position, xk for iteration
t; a previous position, pk is xk at t− 1 iteration; a next position, sk is xk at t+ 1; a mass, mk; a
unitary direction, dk; and a velocity, vk; mk, dk and vk are particular for iteration t. In addition,
nkt denotes the best point visited by the particle k until the iteration t; This is a memory vector
to control, but it is not used to calculate the next point as in particle swarm optimization (PSO)
method. Supernova iterates over t = 1, · · · , T , where T is the maximum number of iterations. Also,
the proposed algorithm has a mechanism of restarts that operates between r = 1, · · · , R, where R
is the maximum number of restarts.
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Algorithm 1 supernova pseudocode

Require: T , R, λ0, x0, K, α, η, G, F , f(·)
1: t← 1;r ← 0;λ← λ0
2: while t ≤ T and r ≤ R do
3: if t 6= 1 then x0 ← arg min1≤k≤Kf (nk) end if
4: for k = 1 to K do
5: vk ← runif(K); dk ← 2 · runif(N)− 1; dk ← dk

‖dk‖
6: sk ← x0 + λ · vk · dk
7: if t = 1 then nk ← arg min{f(x0), f(sk)}end if
8: end for
9: f∗ ← min1≤k≤Kf(sk)

10: Restart ← FALSE
11: while Restart=FALSE or t ≤ T or r ≤ R do
12: for k = 1 to K do
13: pk ← xk; xk ← sk
14: end for
15: for i = 1 to K do
16: for j = 1 to K do rij ← ‖xi − xj‖ end for
17: end for
18: for k = 1 to K do
19: mk ← f(xk) + 1− f∗;
20: nk ← arg min{f(nk), f(pk), f(xk)}
21: dk ← pk−xk

‖pk−xk‖
22: for i = 1 to K do uik ← xi−xk

‖xi−xk‖ end for

23: hk ←
∑K

i=1
i 6=k

G ·m−1k ·m
−1
i ·

[
1− rik ·

(∑K
j=1
j 6=k

rjk

)−1]
· uk

24: sk ← xk +m−1k · vk · dk + hk
25: end for
26: x∗ ← arg min1≤k≤Kf (sk) ; f∗ ← f (x∗)
27: if t = 1 or f∗ ≤ f (xG) then
28: xG ← x∗; r ← 0
29: else
30: r ← r + 1
31: end if
32: if r > η · T then Restart ← TRUE end if
33: t← t+ 1
34: end while
35: t← 1; λ← λ

α
36: end while
37: return xG;f(xG)

Initialization

For the first iteration (t = 1) we simulate an explosion with randomness. In this case, the particles
are ejected from a center (x0) with an initial velocity vk such that 0 ≤ vk ≤ 1 and uniformly
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distributed (See algorithm 1, line 5), whereas the direction dk (line 5) is an unitary random vector.
The distance of the particle from the center is given by the expression vk ·λ. Where λ is a parameter
that indicates a new the search space smaller than the initial one (see Line 6).

The initial position sk of each expelled particle is a random solution inside of the hyper-sphere
with center x0 and radius λ (line 6); x0 represents the location of the star before it explodes and
the initial value is the limits of the variables or a parameter defined by the user.

Function evaluation

In the developed methodology, the value of objective function evaluated in xk is assimilated as the
mass mk of the particle in equations (1.1 to1.3) with mk > 0. Thus, for function minimization or
maximization, we use m−1k as the mass of particle k, where:

mk = f(xk) + 1−minf(xk) (1.6)

Previous transformation guarantees values greater or equal than one. In line 19, we use f∗ to
denote the minimum of f(·) which is calculated in the line 9. Notice that equation 1.6 is linearly
and dynamically scaled to guarantee a mass with a minimum value of 1. It was introduced to
avoid the division by zero without the modification of the mass interactions that can be induced
by amounts near to zero. The value of one increases exploration of the search. Although there are
another functions that can be used to scale the objective function(Bäck, 1996). The proposed scale
does not introduce any modification over the function’s topology. i.e., scale does not introduce an
extra bias over search; this allowing us to know the real behavior of the metaheuristic developed.

Selection

The proposed algorithm is elitist. The selection, in this case, is associated with memory. The best
solution for each particle is saved in the matrix nk. For the first iteration, nk and pk are initialized
using x0. The next iteration will be changed with solutions that are strictly better than the saved
solution. At the end of the process we will choose the best solution for all the particles evaluated.

Operations

For the proposed metaheuristic, the new population is calculated. the displacement is computed
for each particle using equation 1.3. In line 1, dk is the unitary vector in direction from the
previous position to the current position of the particle k. In line 22, the unitary vector in the
direction of points i and k , uik, is calculated. In line 23, we calculate the next displacement caused
for all attraction forces (see equation 1.2). However, the straightforward use of equation 1.2 is
not possible due to the magnitude of the values used for measuring masses and distances in the
real phenomenon are not comparable with optimization problems, e.g. the order of magnitude of
gravitational constant is 10−11. Thus, we replace (r2ki)

−1 in equation (1.2) for a new expression
aki in equation 1.7 to guarantee a bigger influence for near particles and lower influence for high
distances between particles as in the gravity fields, without the problem of division by zero for close
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particles:

aki = G ·mk ·mi ·

1− rki ·

 K∑
j=1
j 6=k

rjk


−1 · uk (1.7)

Note that the variation introduced in equation (1.2) implies a change between a real measure
and a weighting between zero and one. This modification causes change in the magnitude of the
calculated vectors, which generates an asymmetry in the interaction. This asymmetry helps to the
exploitation process because it reduces the evaluation of repeated points that might be produced
by central force. Indeed, equation (1.7) is the most noticeable difference with other approaches
inspired by gravitational force. Moreover, this internal procedure is different from other methods
such as PSO. While in PSO the strategy focuses on, “Follow the leader”, here attraction force
throw best solution is smaller than throw wrost.

Restart

In heuristic methods, it is well known that the initial exploration usually is insufficient for certain
multimodal regions because there are no enough focus to find the best point (Kirkpatrick, Gelatt,
& Vecchi, 1983). When algorithm restarts, a search in a smaller region around the best point found
begins, improving the accuracy. When the algorithm reaches η · T iterations without improving
the current optimum (see line 31), the algorithm is restarted (line 32), and a new set of particles
is created. The parameter η is a constant between 0 and 1. For this time, the radius of the hyper-
sphere containing the initial particles is reduced (line 35). Then, the best point found until the
current iteration (line 11) is used as the initial point (line 3), and a new explosion occurs (line 4).

Stop criterion

The iterative process finishes when the maximum number of iterations T and restarts R are reached
as many other metaheuristics (Talbi, 2009). For last part of test, we include a stop when the
algorithm achieves an error equal to 10−9.

1.1.3 Testing

After implementation, we started to evaluate supernova dividing the test in three parts. In the first
part, we evaluated parameters, function of the algorithm, and synergy between strategies of the
metaheuristic. In the second part, some functions were rotated and translated to obtain different
configuration of the problem to check the robustness. Finally, in the third part, Supernova was
compared against another metaheuristics well known for validating the performance of proposed
metaheuristic. This section is divided in four parts: the right behavior of the metaheuristic and rec-
ommended values for the parameters, performance for specific functions configurations, description
of benchmark functions, and results.

Convergence analysis

Subsequently, we describe briefly the results found by supernova algorithm used to evaluate the
convergence, consists in three functions: Sphere, Rosenbrock and Ackley for two dimensions (cor-
responding to benchmark functions f1, f5 and f10 from test detailed by (Yao, Liu, & Lin, 1999)).
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For each test function, we plot the mean and deviation against the number of calls to objective
function. Figure 1.3 presents the results; part (a) shows the convergence for each function without
the restart part; restart strategy drew in part (b). Finally, the complete algorithm convergence is in
part (c) of the Figure 1.3 from those graphics. Then, we conclude that both strategies (movement
and restart) present an asymptotic behavior and have synergy, which improves the performance of
each one of the parts.

Besides the test described above, we made an empirical test to determine the robustness to initial
solution, rotation, asymmetry and dimensions. For this, we transform the three test functions with
the aim of reaching asymmetry and negative values for the global minimum in each case. From the
results, we could conclude that supernova algorithm is not sensitive to initial solution (complete
test reported in (Mesa, 2010)). The increase of dimensions is proportional to minimum quality
for Rosenbrock function while for Sphere and Ackley functions the results are similar until 100
dimensions. Supernova is not sensitive to asymmetric functions or negative ones.

Moreover, from this part on the test, we conclude about computational effort from computational
time; the parts of the search that increase the computational time, in order of importance, are:
dimensions, particles, iterations, and restarts. We obtain an average time of 15.3452 seconds for
the optimization of a problem with 30 dimensions in a processor 3.40 GHz and a RAM memory of
2 GB.

Recommended values for the parameters

After the initial test of convergence presented before, we made an experimental design to determine
the best set of parameters to use with the algorithm. For this, we optimize the set of benchmark
functions proposed by De Jong (1975), and an extra multimodal function called Ackley function
(the complete set of functions used to parameterize corresponds to the functions f1, f5, f10, f6, f7
and f14 of the Table 1.1).

Supernova has seven parameters. The constants F and G that tell the search how much gravity
or impulse use for the search; this means, for F > G the search increases the amount of the impulse
and decreases the importance of gravity for the movement strategy. Iterations (T ) and restarts
(R) limit how long the search is. The number of particles (K) is the size of search population.
And finally, initial radius of the hyper-sphere for generating the particles (λ0) and the factor for
reducing the radius of the hyper-sphere in each restart (α) define the intensity of the exploitation.
For a higher α the radius of the hyper-sphere decrease faster than for a small one. This couple is
closely related with the original size within the search region.

We varied the parameters in specific ranges, for F and G, the range is [1, 10] with a gap of 0.1 for
each function. For this couple of parameters, we obtained that: both parameters work better when
they are equal. Moreover, the most of the functions got a good minimum with F = G between 1
and 5. For T we used values between [100, 600] vary each 100 while for restarts we tested between
[10, 100] vary each 10. A good configuration, in general, was T = 100 and R ≤ 50. And K was
tested between [10, 100] each 10, and we found a big reduction of the minimum from 30 particles
until 60 particles. From 60 to 100 the reduction was smaller. So the best configuration for the
number of particles is between 30 and 60. In this case, we took 50 to compare with the other
metaheuristics.

The last two parameters are: the initial radius of the hyper-sphere (λ0) and the factor for
reducing the radius of the hyper-sphere in each restart (α). We tested λ0 between [10, 1000]
covering the size of the region of each 100 function and α between [1.1, 1.5], agree with the initial
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Figure 1.3: Convergence graphic.
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idea, those parameters were related with the size of the region, we found that the optimal set for this
parameter depends of size of search region and big regions needs big (λ0). For small search spaces
less 30 units or huge spaces over 200 units. For small regions, the most general set of parameters
was λ0 = 30; for big regions, we use λ0 = 600 and α = 1.1 or α = 1.5 for small and big region
respectively. For the sake of brevity, complete results are not reported here, but those parameters
recommendations were used for the complete test described and analyzed in next sections.

1.1.4 Experimental setup

Initially, the convergence and a general parameter values was tested. Afterwards, supernova re-
sults was compared with other two well-know metaheuristics as: DE and PSO. First, we describe
benchmark functions. In the next part, we describe briefly DE and PSO algorithms. Finally, the
results are described.

Benchmark functions

The twenty three functions set was used. This benchmark functions was proposed by Yao et al.
(1999); for now on we refer to this test as Yao’s test. In Table 1.1, the equation of each function, the
range of the search space, the number of dimensions (N) and the optimal value for each function are
presented. This set of functions has several characteristics, unimodal, multimodal, high dimensions,
low dimensions; which provides a lot information about the metaheuristic performance. Those
benchmark functions could classify as: the first four functions and 6th one are high dimensional and
unimodal functions. The 5th is multimodal for a high number of dimensions (Shang & Qiu, 2006).
Seventh is a noisy function. The functions 8th to 13th are high dimensional and multimodal functions
and remaining functions are low dimensional and multimodal functions. Yao’s test has functions
with well-known features that allow a better understanding of the behavior of any metaheuristic
and its parameters.

However, the functions mentioned above are not hard enough and there are another functions
that could be interesting to prove the real potential of the proposed algorithm. Then, in the second
part, we test the supernova with 25 extra functions from CEC’s special session for real parameter
celebrated in 2005 (Suganthan, Hansen, Liang, Deb, Chen, Auger, & Tiwari, 2005); for now on we
refer to this test as CEC’s test. Each function was run for 10 dimensions. This functions set has
the first five functions are shifted unimodal functions. The next seven functions (6th to 12th) are
shifted multimodal functions. 13th and 14th are extended function. The other functions are hybrid
functions.

Algorithms descriptions and parameters used for the test

The result was compared with DE and PSO. Both are classical metaheuristics developed for non-
linear optimization. The performances of both algorithms are well-known and widely used. Com-
parison can show supernova’s strengths and weakness and helps to improve the algorithm.

DE is an evolutionary algorithm; the main general steps for evolutionary metaheuristics are used
in this method: initialization, mutation, crossover and selection and has two basic parameters F and
CR called amplification factor and crossover constant. In this case, we compare with a traditional
version called “Rand/1/exp” (Price, 1996). This version has not self adapted parameters for the
initial test. Parameters reported for both benchmark sets were F = 0.5 and CR = 0.9. The
stop criterion for Yao’s test was maximum iterations, for CEC’s 2005 was maximum iterations

12



Table 1.1: Benchmark function set

f (N) limits minimum

f1(x) =
∑N
i=1 x

2
i 30 [−500, 500]N 0

f2(x) =
∑N
i=1 |xi|+

∏N
i=1 |xi| 30 [−10, 10]N 0

f3(x) =
∑N
i=1 (

∑i
j=1 xj)

2 30 [−100, 100]N 0

f4(x) = maxi{|xi| , 1 ≤ i ≤ 30} 30 [−100, 100]N 0

f5(x) =
∑N−1
i=1 [100(xi+1)]x

2
i 30 [−100, 100]N 0

f6(x) =
∑N
i=1 (bxi + 0.5c)2 30 [−100, 100]N 0

f7(x) =
∑N
i=1 i(x

4
i ) + random[0, 1) 30 [−1.28, 1.28]N 0

f8(x) =
∑N
i=1 [xi sin(

√
|xi|)] 30 [−500, 500]N -12569,5

f9(x) =
∑N−1
i=1 [x2i − 10 cos(2πxi + 10)] 30 [−5.12, 5.12]N 0

f10(x) = −20 · exp(−0.2
√

1
n
·
n∑
i=1

x2i )− exp(
1
n
·
n∑
i=1

cos(2πxi)) + 20 + exp(1) 30 [−32, 32]N 0

f11(x) =
1

4000

∑N
i=1 x

2
i −

∏N
i=1 cos(

xi√
i
) + 1 30 [−600, 600]N 0

f12(x) =
π
N
{10 sin2(πy1) +

∑N−1
i=1 (yi − 1)2 × [1 + sin2(3πyi+1)]

30 [−50, 50]N 0
+(yN − 1)2}+

∑N
i=1 u(xi, 5, 100, 4)

f13(x) = 0.1{10 sin2(π3x1) +
∑N−1
i=1 (yi − 1)2[1 + 10 sin2(πyi + 1)]

30 [−50, 50]N 0
+(yN − 1)2}+

∑N
i=1 u(xi, 10, 100, 4)

para las funciones f12 y f13

u (xi, a, k,m) =


k (xi − a)m , xi > a

0, −a ≤ xi ≤ a

k (−xi − a)m , xi < −a

 yi = 1 + 1
4
(xi + 1)

f14(x) = [ 1
500

+
∑25
j=1

1
j+

∑N
i=1(xi−ai,j)

6 ] 2 [−65.5, 65.5]N ≈ 1

f15(x) =
∑11
i=1

[
ai −

x1(b21+bix2)
b2i+bix3+x4

]2
4 [−5, 5]N ≈ 3.075× 10−4

f16(x) = 4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42 2 [−5, 5]N 1.0316285

f17(x) =
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 10][0, 15] 0.398

f18(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]
2 [−2, 2]N 3

×
[
30 + (2x1 − 3x2)

2 (18− 32x1 + 12x21 + 48x2 − 30x1x2 + 27x22
)]

f19(x) = −
∑4
i=1 ci exp

[
−
∑3
j=1 aij (xj − pij)

2
]

3 [0, 1]N -3.86

f20(x) = −
∑4
i=1 ci exp

[
−
∑6
j=1 aij (xj − pij)

2
]

6 [−100, 100]N -3.32

f21(x) =
∑5
i=1

[
(x− ai) (x− ai)T + ci

]−1
4 [0, 10]N -10

f22(x) =
∑7
i=1

[
(x− ai) (x− ai)T + ci

]−1
4 [0, 10]N -10

f23(x) =
∑9
i=1

[
(x− ai) (x− ai)T + ci

]−1
4 [0, 10]N -10

and a minimum error 10−9. The numerical results for comparison are available at (Brest, Greiner,
Boskovic, Mernik, & Zumer, 2006; Derrac, Garćıa, Molina, & Herrera, 2011).

The version of PSO used to compare the algorithm is the one proposed by Kennedy and Eberhart
(Mirjalili & Hashim, 2010), inspired in swarm behavior. “Follow the leader” is the main idea. PSO
uses velocity, leadership to guide the search; the individuals are going behind the best individual.
The parameters reported for Yao’s test were c1 = 2 and c2 = 2 while for the set of CEC’s 2005, the
parameters were c1 = 2.8 and c2 = 1.3. The stop criterion for the initial benchmark function set
was a number of iterations. A second one was a number of iterations to achieve a error of 10−9. The
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numerical results for comparison are available at (Mirjalili & Hashim, 2010; Derrac et al., 2011).
Finally, parameters for supernova were G = F = 3, λ0 = “the limits of search space”, α = 1.2
and T = 100 the stop criterion was a number of restarts for both benchmark function sets. In the
second set, a limit for error was added.

For both function sets, we summarize 50 independent runs. In the first set, we report the mean
f∗ and the standard deviation (σ) for the fifty runs and the number of function calls (FO) (see
Table 1.2). FO has not changed for each function in the different independent runs. In the second
test, we report mean f∗ for each algorithm to compare them statistical (see Table 1.3).

Statistical tests are necessary to compare metaheuristics. Nonparametric tests are recommended
(Derrac et al., 2011). Initially; we compare the means for the three algorithm as a unique set using
Friedman’s test. The hypotheses are H0 : f∗snova = f∗DE = f∗PSO and Ha : f∗i 6= f∗i′ for at least
one of the algorithms. For both tests, the rank for ties was calculated as the average.

In Table 1.4, the first three columns show the Friedman ranks, the following two columns present
FF Friedman statistical value and the p-value, which are more conservative statistical values. In
the next columns FID statistical value proposed by Iman y Davenport (Derrac et al., 2011); this
statistical value accepts higher differences, which is desired in this case. In the Friedman statistical,
in both cases, H0 is rejected while FID there is a significant difference only for Yao’s test. This
means that there is a performance difference between algorithms for Yao’s test, and is similar for
CEC’s test.

So far, we know that there is a difference between performances. However, there is not statistical
evidence to confirm which one is better or similar to another. Wilcoxon’s test is a nonparametric
pair-wise test that allows to know if one algorithm is significantly better than another. Wilcoxon’s
rank for the test is calculated. The ranges for the Wilcoxon’s test are calculated by subtracting
both means of the algorithms; in this case, it was always in the following order: Supernova-the
algorithm to compare. Thus, for negative ranges, supernova is better than the other algorithm,
because the supernova algorithm gives a smaller value than the other algorithm. Besides, we take
an one-tailed test, because we want to know which one is strictly better (Sheskin, 2003; Derrac
et al., 2011).

In Table 1.5, rows are for different tests, Yao’s and CEC’s. Columns are for pair the first are
for supernova Vs. DE and the second for supernova Vs. PSO. For each pair we can show positive
ranks negative ranks and the limit for a significant level of α = 0.05; these values are taken from
table A.5 (Sheskin, 2003). The ranks are calculated using the means presented in Table 1.3. The
Hypotheses for the test were H0 : f∗snova = f∗i and Ha : f∗snova < f∗i where i is DE or PSO. The
limit present in Table 1.5 is the maximum value for min (R+,R-), if the minimum is greater than
this value, we can not reject H0. According to with the results, we can conclude that there is not
a significant difference between supernova and DE. And supernova is significant better than PSO.

1.2 Comparison with other heuristics based on gravitational force

Supernova was inspired on star crafts; BBBC was based on big-bang big-crunch theory. GLSA,
GSA and CFO methodologies were developed from the idea of gravitational fields and kinetic in
movement of the particles. In all these approaches, gravity law is the fundamental key of the search.
That foundation gives to the methods some general advantages. Initially, the search made a fast
mapping of the function to focus in the important areas found in the first iterations of the algorithm.
The heuristics are sensitive to function’s slope. Therefore, a target search, as in a gradient method,
exploits the region. Each approach has its own strategy that emphasized these or other particular
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Table 1.2: Results and comparison for benchmark functions, Supernova, DE and PSO.
f

S
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er
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ov
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f
∗
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es
t

f
∗

σ
f
∗
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es

t

f 1
9
7
2

6
.3

×
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1
.0
x
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2
8

1
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x
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Table 1.3: Results and comparison for benchmark functions, CEC 2005, between Supernova, DE
and PSO. 10 dimension and 50 independent runs

f Error Supernova Error DE Error PSO

f1 2.49× 10−06 8.26× 10−09 1.23× 10−04

f2 4.41× 10−04 8.18× 10−09 2.60× 10−02

f3 5.27× 1005 9.94× 1000 5.17× 1004

f4 6.58× 10−01 8.35× 10−09 2.49× 1000

f5 2.39× 1001 8.51× 10−09 4.10× 1002

f6 3.77× 1001 8.39× 10−09 7.31× 1002

f7 2.46× 1002 1.27× 1003 2.68× 1001

f8 2.03× 1001 2.04× 1001 2.04× 1001

f9 1.38× 1001 8.15× 10−09 1.44× 1001

f10 2.28× 1001 1.12× 1001 1.40× 1001

f11 7.99× 1000 2.07× 1000 5.59× 1000

f12 3.25× 1001 6.31× 1001 6.36× 1002

f13 1.30× 1000 6.40× 1001 1.50× 1000

f14 3.71× 1000 3.16× 1000 3.30× 1000

f15 3.40× 1002 2.94× 1002 3.40× 1002

f16 7.45× 1001 1.13× 1002 1.33× 1002

f17 2.49× 1002 1.31× 1002 1.50× 1002

f18 8.96× 1002 4.48× 1002 8.51× 1002

f19 8.92× 1002 4.34× 1002 8.50× 1002

f20 8.83× 1002 4.19× 1002 8.51× 1002

f21 1.55× 1001 5.42× 1002 9.14× 1002

f22 7.53× 1002 7.72× 1002 8.07× 1002

f23 2.35× 1001 5.82× 1002 1.03× 1003

f24 4.43× 1002 2.02× 1002 4.12× 1002

f25 4.49× 1002 1.74× 1003 5.10× 1002

Table 1.4: Results for Friedman test for Supernova, DE and PSO

Supernova DE PSO FF P-value FID P-value

Rank Yao’s test 1.833 1.595 2.667 21.357 4.89 × 10−07 20,69 6.76 × 10−07

Rank CEC’s test 2,060 1,500 2.440 11.2 1.03 × 10−4 0.576 0.566
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Table 1.5: Results for Wilcoxon’s test for Supernova, DE and PSO

Benchmark functions
snova-DE snova-PSO

R + R- Limit for α = 0.05
and one-tailed

R+ R- Limit for α = 0.05
and one-tailed

Yao’s test 100.5 52.5 41 36.5 194.5 67

CEC’s test 220 105 100 89 211 91

Table 1.6: Comparison among algorithms based on gravity

Feature
Algorithm

GLSA BBBC GSA CFO Supernova

Type of search Local Global Global Global Global

Type of vari-
ables

Real Integer Real Real Real

Generation
of the initial
particles

Random Random Random Deterministic One point
or Random
points

Mass Objective
function

Objective
function

Objective
function

Objective
function

Scaled objec-
tive function

Strategy to find
the next parti-
cles

Gravity field
For 3 points

Mass center Gravity
Interaction
between
random
particles

Gravity
between
deterministic
interaction
particles

Gravity
and impulse
interaction
between
particles

advantages (Erol & Eksin, 2006; Webster & Bernhard, 2003; Rashedi et al., 2009; Formato,
2007). All this algorithms present similarities and differences, that we describe in this section.
The comparison be done in two parts, the principals parts of metaheuristic (objective function,
population, parameters, among others) and step by step for the basic algorithm of metaheuristic
from Figure 1.1.

In Table 1.6 the main characteristics are described, providing a clear idea of similarities and
divergences of studied methods. In the first row, the type or search refers the scope of search,
local or global. The second row refers to the type of variables used for defining the optimization
problem: continuous, discrete or mixed. In the third row, each method, as Supernova, has an initial
set of particles. This set can be found randomly o deterministically. All methods have the analogy
with mass; the fourth row shows that mass is the goal function or its scaled. Each one has its own
particular strategy to calculate the next points to evaluate; the fifth row shows how the search path
for the different methods is found.

As all heuristic, the ones inspired by gravitational force uses parameters to control the search.
The size of particles’ set (K) and number of iteration (T ) are the common parameters. There are
other parameters to control the force of attraction, the focus of search or regulation for random
distributions, and they are different in each case. The differences in initial population objective,
function evaluation and selection are associated with the part and parameters, but the biggest
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Table 1.7: Comparison of new population functions among algorithms based on gravity

Metaheuristic New population function

BBBC si = xC + Rand (xC − λ,xC + λ), where xC is the mass center

CFO si = xi + νiq +
1

2
q2

K∑
i=1
i 6=j

U (mj −mi)
1+α

+ (rijdij) |rij |−β , where

α and β are parameters of the algorithm

GSA si = xi + νiq + Gq2
K∑
i=1
i 6=j

(
mi∑K

i=1mj

)2
rijdij

mi∑K
i=1mj

(rij + ε)
, where G and ε are

parameters of the algorithm

PSO si = xi + viωi + c1q (pi − xi) + c2q (g− xi), where c1, c2 andωi
are parameter of the algorithm

difference is focused on operation to found the new population. GLSA is a local algorithm and
comparison . In Table 1.7, the function of new population for each algorithm is shown. For each
one of them we used the notation of the the proposed algorithm. Each approach has its own idea
of gravity, the parameters and calculated values, by the by, in all methods based on gravity, the
function slope is found, like in a regular gradient. Only, gravitational heuristics use the mass idea
instead of derivate. As well as gradient methods, gravitational heuristics are not successful in total
planar regions, but find best minimums for descent functions.

1.3 Discussion

From the previous work, the results obtained for original version of supernova are promising. Of
course, this version needs to be improved, increasing their strengths. The future work presented
for master degree dissertation was divided in four main parts as follow:

• Improve the performances: computationally and quality for the 40% of unsuccessful test
functions present.

• Automatic chosen and control of the parameters.

• To formalize the method presented.

• Extend the metaheuristic to constrained, combinatorial and multiobjective optimization.

Each item of this list is ambitious; therefore, we focus this discussion and the next part of this work
in the first item: to improve the performance and particularly to improve quality in terms of min-
imizing the error of the 40% of unsuccessful functions (f5, f8, f12, f13, f14, f16, f17, f18, f21, f22, f23).
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When does supernova fail?

Initially, we analyzed the problems of each problematic function to determinate if there was a
common problem for all these functions. For all problematic function, except for f8, we just did
not achieve the minima. Function f8 is a no-convex, multimodal and separable function; for the
specific region, defined for this function, the minimum is prefect determinate, but outside of this
region there are better minima points. In this case, supernova founds a better minima, but outside
of the region. For this particular case, we penalized the function but the result was not good enough
(Coello, 2002). So, we take in account f8 as constrainted problem.

Mezura-Montes, Velázquez-Reyes, and Coello Coello (2006) classified the functions as separa-
ble or non-separable and unimodal or multimodal. In agreement with that classification, the 23
benchmark functions were categorized in the Table 1.8 (Karaboga & Akay, 2009; Mezura-Montes
et al., 2006; Shang & Qiu, 2006). There is not a unique classification that gathers all unsuc-
cessful functions. So, we have not a solid base to classify the problem with these mathematical
characteristics.

Table 1.8: Classification of the test functions.

Benchmark function proposed by Yao

Type of function
Separable Non-separable

Successful Unsuccessful Successful Unsuccessful

Unimodal f1, f4, f6, f7 f2, f3 f5(two dimensions)

Multimodal f8, f9 f14, f17 f10,f11,f15,f19,f20
f5extended, f12,f13,
f16,f18,f21,f22,f23

Benchmark function from CEC 2005

Type of function
Separable Non-separable

Successful Unsuccessful Successful Unsuccessful

Unimodal f1 f15 f9

Multimodal f2, f3, f4, f5
f8,f10,f11,f12,f13,f14, f6,f7, f17,f18,f19,f20,
f16,f21,f22,f23 f24,f25

Although in Table 1.8, we group the test functions following the proposal of Mezura-Montes
et al. (2006), there are other possible classifications based on the geometry of the landscape of
the functions. At this point, we found that the classification based on landscape geometry is very
difficult due to the impossibility of describe such features, as planar regions or needle minima, based
on the mathematical terms in the function. For example, the derivate is commonly used to describe
the function’s topology, but in many cases, it is not available or it is very difficult to calculate.
In agreement with the descriptions given for the functions, we can conclude that: Planar regions
and penalties (f5, f12, f13, f16, f17, f18) and Needle minimums (f5, f14, f21, f22, f23) are problematic
topologies for Supernova. When we arrive to this point the question was: why the planar region
and needle minimums are a big challenge for supernova?
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CD

Figure 1.4: Search Area A for a objective function f(x)

Why does supernova fail in needles minimums and planar regions?

Before to explain why supernova fails in the regions mentioned above, some basic concepts of global
optimization are defined.

Definition 1.3.1. A set A is called a search region if A = {x = (x1, . . . , xn) |l1 ≤ x1 ≤ u1, . . . , ln ≤
xn ≤ un} where li and ui, i = 1, . . . , n, are the lower and upper bounds of the variable i (Bäck,
1996).

Definition 1.3.2. A local minimum for the function f : Rn → R in the subregion N ⊆ A, with
N 6= ∅, is defined as f∗ : = (x∗) > −∞, such that f (x∗) ≤ f (x), ∀x ∈ N and x 6= x∗ (Torn &
Zilinskas, 1989). For example, the Figure 1.4 has three local minimums for the subregions B, C y
D.

Definition 1.3.3. A global minimum for the function f : Rn → R in the region A, with A 6= ∅ is
defined as f∗ : = (x∗) > −∞, such that f (x∗) ≤ f (x), ∀x ∈ A and x 6= x∗ (Bäck, 1996).

Definition 1.3.4. A local search algorithm is an iterative procedure that searches the point xkin
the neighborhood of x(k−1) such that f (xk) ≤ f

(
x(k−1)

)
. The sequence of points {xk} for k = 0

to k =∞ is called trajectory of points (Mohd, 2000).

Definition 1.3.5. The attracting region L for the point x∗ where occurs a local minimum for the
function f : Rn → R is defined as the region surrounding x∗ such that ∀x0 ∈ L, chosen randomly,
a local search algorithm starting at x0 arrives to x∗ in a finite number of iterations (Mohd, 2000;
Torn & Zilinskas, 1989; Hendrix & Toth, 2010). In other words, L is the region that provides
information about the location of x∗ . (See Figure 1.4 region B)

Definition 1.3.6. The point x∗ is a strong minimum of f (·) when f (x∗) < f (x), ∀x ∈ L (Yang,
2010). In other words, there is only one minimum point in the attraction region.

Definition 1.3.7. The point x∗ is a weak minimum when x∗ is not a strong minimum (Yang,
2010). In other words, there is more than one minimum point in the attraction region L.
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Needle minimums

A needle minimum is a difficult minimum to reach; often, it is defined as an abrupt change of
the behavior of the function in a small attraction region e.g., Attraction region B In Figure 1.4.
Usually, it is a strong minimum, and the slopes of the attraction region are big and have opposite
sign; although most of the time, the particular point has not a derivate.

Attraction region for the minimum in B gives to Supernova information to follow the search
like hill climbing methods. For K random points distributed uniformly over a specific area A, the
probability to find a specific point or area B as B|A in this case. The probability P (x|B) = KB

A .
It means that, for a small B the probability to find the a specific point of B is low, regularly near
to 0.

Planar regions

A planar region of a function is an area of weak minimum or minimums. This means that this
is a smooth function, with slopes near to 0, where the attraction region of the minimum has
little information about the location of the minimum. In this case, all methods would found
the attraction region, but the search process stops,but there is not convergence of the algorithm
because the information about descendent direction is poor. If we think about classical methods
based on gradients, if a gradient is zero or near to it; then, the algorithm has not direction to
follow. Supernova has similarities with hill climbing and gradient methods because all of them use
the information of the descendent slope like a drop of the water that needs the slope to flow; when
the slope information is not available, the drop will be stagnated in one point like the algorithm
actually does.

How the other metaheuristics have solved the problem with needle minimums and
planar regions

In the literature, the problem of planar regions is not considering in isolation. Usually, meta-
heuristics is improved in general. For global optimization often calling globalization or escaping
of local minimums (Bäck, 1996; Dasgupta, Das, Abraham, Member, & Biswas, 2009; Feoktistov,
2006b; Glover, Kelly, & Laguna, 1995b; Hinterding, Michalewicz, & Eiben, 1997; Hirsch, Meneses,
Pardalos, & Resende, 2006; Pant & Et, 2011; Yao et al., 1999). There are two kind of strategies to
improve the globalization: internals and externals. The internal strategies are parameters adapta-
tions, better exploration, among others; e.g, 1/5 mutation rule or evolutionary programming made
faster (Bäck, 1996; Hinterding et al., 1997; Yao et al., 1999); external strategies are hybrids, hyper
heuristics among others; e.g, DE-particle swarm optimization(PSO), C-GRAPS.

There are not particular strategies for particular characteristic because real-world problems have
not specific characteristics defined before the starting, like planar regions or needle minimums (Bäck,
1996; Torn & Zilinskas, 1989). Even though, there are some evidences and tries, for optimization
and other fields like dynamics systems stability, that show that if search has indicators of the
topology for the function then it is redirected to a better regions (Matallana, Blanco, & Bandoni,
2010; Mohd, 2000).

Although, there are evidences of the improvement of the other metaheuristics, it is important
to remind that: there are not guarantee of improvement of the performance of Supernova or any
other metaheuristic by the direct use of a global strategy, whether it is internal or external. For
each particular case is necessary to analyze the possible behavior of the original metaheuristic.
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Afterwards, the performance of the global strategy is implemented and validated. Also, there are
not specific modifications for the problem of planar regions and needle minimum (Bäck, 1996; Talbi,
2009; Torn & Zilinskas, 1989; Yang, 2010; Macready & Wolpert, 1996).

1.4 Hypothesis

It is possible to find a criterion to identify the planar regions and adapt the parameters and/or
strategies of the search improving the performance of supernova for planar regions without impairing
the current performance for another topologies.

1.5 Objectives

1.5.1 General objective

To design and to validate a new version of Supernova based on the development of a new strategy
specialized in planar regions, and a mechanism for switching between specialized algorithms for
descendent and planar regions, such that there is an improvement on the behavior for planar
regions without degenerating the current behavior for descendent regions.

1.5.2 Particular objectives

• To choose, modify or design a strategy for improving the search in planar regions.

• To define a criterion for determining when the function have a planar region.

• To design a process for tuning, control and change parameters and strategies for functions
planar regions reminding the current for descendent functions.

• To choose or generate a new set of benchmark functions with planar regions for testing
behavior of supernovae.

• To validate the behavior of new version of Supernova.

1.6 Contributions

This research contribute:

• Mesa, E., Velásquez J. D. and Jaramillo, P. Supernova utilizando secuencias de baja dis-
crepancia, Congreso latinoamericano de investigación de operaciones CLAIO 2012, Rio de
Janerio, septiembre 2012.

• Mesa, E., Velásquez, J. D. and Jaramillo, P. (2014). Nonlinear optimization in landscapes
with planar regions. In Terrazas, G., Otero, F. E. B., and Masegosa, A. D. (Eds.), Nature
Inspired Co-operative Strategies for Optimization (NICSO 2013), Vol. 512 of Studies in
Computational Intelligence, pp. 203-215. Springer International Publishing.

• Mesa, E.; Velásquez, J. D. and Jaramillo, P. (2014). A new self-adaptive PSO based on the
identification of planar regions, Evolutionary Computation (CEC), 2014 IEEE Congress on ,
vol., no., pp.1937,1943, 6-11 July 2014
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1.7 Methodology

Agree with requirements of the Section 4.1, we have three challenges to improve supernova algo-
rithm:

• Development a new strategy to optimize planar regions.

• Definition of a novel criterion to determine when a function has planar regions.

• Design a mechanism to switch between both strategies: the original one developed in the
master’s thesis and new one for planar regions.

Based on these challenges, we propose the following steps:

• The search and analyze of the strategies used for improving other metaheuristics with the
same problems of supernova.

• The selection or the redesign of the original strategies used by other metaheuristics, found in
the previous step, with the aim to incorporate them inside of the supernova algorithm.

• The design of a novel criterion to know when supernova is in a planar region; and the mech-
anism to switch between the original strategy and new strategy or strategies proposed to
improve the performance.

• The implementation of the strategies, criterion and mechanism described in the steps above.

• The testing of the strategies, switching mechanism and criterion with the aim of establishing
the functionality of the proposed improvement of the supernova algorithm. First each one
and after together.

• The validation of the complete method.
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2. OPERATIONS OF THE ORIGINAL SUPERNOVA ALGORITHM

“There are not more than five cardinal
tastes, yet combinations of them yield more
flavours than can ever be tasted.”

–Sun Tzu, The Art of War

Metaheuristics have internal parts called operations, e.g. Genetic algorithms uses three different
operations:crossover, mutation and selection. In other words, an operation is a basic unity with a
main objective in the strategy of the metaheuristic. Each metaheuristic has their own operations,
which make it be unique, but they are not always formalized for all metaheuristics (Bäck, 1996;
Talbi, 2009; Angeline, 1995).

The most known and analyzed operations are, of course, operations for evolutionary metaheuris-
tics paradigm. The operations for this metaheuristics are: Mutation, crossover and selections. For
each algorithm, each operation, has the same principal concept, but was developed and imple-
mented in different ways (Bäck, 1996). For example, crossover in genetic algorithms includes the
combination of distinct parts of the genes chain of an individual while in differential evolution, the
crossover and mutation are non-separable operations that combines randomly the components of
one individual between some individuals (Liu, Mernik, Hrnčič, & Črepinšek, 2013; Mezura-Montes
et al., 2006). Moreover, for same metaheuristics exist versions with have minimal changes inside
operations to get different targets.

The first heuristics and metaheuristics were developed in the 60s, but only until 80s, operations
of the metaheuristics become a study issue. The formalization of operations is important because
provides a common language that let compare and share the new develops (Yang, 2010). Supernova
is a metaheuristics on development, the concept proposed was tested and great results were found.
In this chapter, we propose to divide the metaheuristic in two new operations and the traditional
selection from evolutionary algorithms. Following we describe and analyze them theoretical.

The First section of this chapter is a background about operations for evolutionary algorithms
and swarm optimization. Afterwards, in the next section, we discuss the parameters in the algo-
rithms mentions above. In the third section, the operations of the original supernova algorithm are
described and analyzed. Finally, in the last section, we present some conclusion about operations
and how improved it.

2.1 Defined Operations

The evolutionary metaheuristics was inspired by the theory of evolution developed by Charles
Darwin and Lamarck. The cornerstone concept to these optimization methods was the adaptation
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for surviving in the environment. Genetic algorithms (GA) and evolutionary strategies (ES) were
developed from a unique concept and almost simultaneously by two different research groups in
United stated and Germany (Michalewicz & Schmidt, 2002; Bäck, 1996). Both metaheuristics have
the same inspiration, but work differently, e.g. GA was designed for combinatorial problems while
EA was designed for continuous problems. The development of this two sophisticated heuristics
beginning the first paradigm of the field called evolutionary algorithms. In the 80s, operations for
metaheuristics were separated and defined for formalizing the metaheuristics trying to normalize
the procedures.

Under the evolutionary paradigm, the following well-known metaheuristics are included: Genetic
Algorithm, Evolutionary Strategies, Evolutionary Programming and Differential Evolution. For all
algorithms mentioned above, there are three operations defined: mutation, crossover and selection.
Each of them came from evolutionary theory, but they are approached differently in each method
and new version. In this section, we will present and describe these three operations theoretically
from biology, the emulation of the concept and how they impact the algorithm. Moreover, how
these operations are related with the parameters of the algorithm. Furthermore, this description is
used as a framework for defining operations for another metaheuristics in the next sections of this
chapter, particularly: Supernova.

There are some common words for the algorithms of evolutionary paradigm as:

• Fitness function or quality function is the measure of individual’s adaptation. In optimization,
this is related with the objective function pointing which solutions are better than others.
This function could be the objective function itself or a modification (Bäck, 1996).

• Individual, in optimization, is a single solution for the optimization problem (Bäck, 1996).

• Genotype is the genetic material of the individual, in optimization is the solution vector. In
this case, the genotype could be the solution itself or a translation of the solution to certain
type of code. (Holland, 1992).

• Phenotype is a set of observable characteristic of an particular individual. In optimization,
this is an attribute of the individual is the solution vector itself. While genotype can be a
code, phenotype is the solution (Goldberg, 1989).

2.1.1 Mutation

In biology, mutation is a permanent modification in the DNA of the individual. Several alterations
to the genetic chain are possible: small or big changes, mutation to all body cells or just some cells,
etc. The metaheuristic’s operations are a simplification of the natural phenomena. In this work, we
will focus in hereditary mutation with phenotype changes. Theoretically, a mutation starts to be
stronger in a population when the new characteristics are positive for fitting into the environment.
For example, the passerine birds observed by Darwin in the Galapagos islands. Their beak’s form
and function were altered comparing with the new shape and of of the beak help to survive in the
unknown environment. New birds with the particular beak start to birth and survive better, then
these have more chances of reproduction, and the mutation is inheritance.

The algorithm is a very basic code for a mutation operation. There is a population xk−1 the
operation offers a new population after mutation.

The concept of mutation is introduced to evolutionary algorithms with the aim to increase
the exploration of the algorithm. The small changes in the solution let to the algorithm explore
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Algorithm 2 Mutation

Require: xk−1 , m, Γ
{m is a vector result from a mutation function}

1: sk ← xk + Γm
2: return sk {sk is new individuals for iteration k}

new areas. Traditionally, the mutation is considered directly proportional to exploration, then
the balance between exploration and exploitation is controlled by mutation level (Bäck, 1996).
Controlling exploration only with mutation is a concept that is being discussed. Recently, other
operations, like crossover, have been studied for knowing their influence in the exploration of the
algorithm.

2.1.2 Crossover

Genetic material is replicated generation by generation, and this process is called reproduction.
Biologically, It can be sexual, asexual or cloning. For metaheuristics, reproduction can be described
as a combination of solutions. For example, in GA the sexual reproduction is a rule to combine
two or more solutions called parents for obtaining a new solution.

Nowadays, the relation between crossover and exploration-exploitation balance is under study.
The crossover between solutions from opposite zones of the search area can be an exploration
strategy. Notice, there are different kinds of crossover each could be an exploration or exploitation
strategy associated with the implementation and parameters (Talbi, 2009).

2.1.3 Selection

Which individuals will be the parents of the next generation? Which characteristics of current
generation will have the next one? From biology focus, the nature selects the individuals by the
adaptation to the environment in terms of skill to survive to reproduce. For example, the color of
the beetles can be brown or green. If the a population that living in a old tree trunk, soon the brown
beetles will be the majority because brown color make them invisibles to the predators. While most
of the green beetles will be eaten by predators because they will be visible in their ecosystem, the
old tree trunk. Thus, adaptation to survive in the trunk is better for brown individuals because
brown beetles will be a live to reproduce. From metaheuristics, there is a fitness function and
this is the criterion to select the better individuals to reproduce. The selection can be elitist, i.e.
only the best individuals and them characteristics, agree to the fitness function, will be in the
next generation. However, selection can not be absolute elitist and trying to induce exploration in
certain parts of the algorithm. Usually, the selection has parameters that increases the exploration
for the first iterations and reduces it at the end of the running(Bäck, 1996).

There is a kind of selection in each metaheuristics, even for non evolutionary ones. Each algo-
rithm has criteria to determine which individual or individuals lead the search and which not. In
addition, the convergence of the algorithm is related with the elitism in the selection of the algo-
rithm. Only, elitist algorithms can guarantee the empirical convergence because elitism guarantee
the best individuals each iteration and improved each iteration until arrives to an asymptote like
an exponential function. i.e. any metaheuristic at least should remember the best solution ever
(Villalobos-Arias, Coello, & Hernández-Lerma, 2005).
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2.2 How parameters and operations are related

Ideally, parameters and operations work together to obtain the best performance of the algorithm.
Parameters are allocated inside operations to modify the operation from one limit of the operation
to the another. For example, Mutation from genetic algorithm try to introduce smalls changes
in the genetic chain. The parameter is a random roulette to determine how many individual are
muted, the extremes of the operation is no mutations at all or whole population is mutated. If
the mutation parameter increase more individuals are muted while the parameter decrease less
individual are muted. In Figure 2.1, we show how parameters affect population inside operation.

Figure 2.1: Parameter and operations

Indirectly, when parameters changes, the modifications in the search are observed in the balance
between exploration and exploitation of the algorithm. There is not a direct measure to determine
this balance, but theoretically there there are situation when increase exploration or exploitation
is needed.

2.3 Operations in supernova

In the first chapter, the original version of the algorithm was described as a two forces strategy:
gravity and impulse. Both emulate the kinetic movement of the supernova phenomenon. In this
section, we divide the complete strategy in two operations: gravity and impulse, described and
analyze them. Also, there is a third operation that is not clearly defined as both and it is selection.
Selection as operation was described in the previous section and conceptually is the same. In this
section, we will described the particular uses of this operation for Supernova.

2.3.1 Operation: Gravity

As we described in the first chapter, a simplification of the supernova phenomenon was emulated.
In this simplification, gravity force and impulse are the forces chosen. Gravity is an attraction
force. In the analogy, every solution has a mass which is related with objective function, i.e. the
best solution attracts the nearest solutions and exploits the region. While, the impulse follows the
initial direction increasing the exploration.

There are other algorithms that use the gravity force as an operation like: CFO, GSA, BBBC
and other metaheuristics described in the previous chapter. Although there is not a unique and
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formal definition, the main use of this operation is exploitation of the best solutions found. Each
algorithm gives a particular relevance to the mass and the distance for this operation. In Table
1.6, there are the equations for new population for three methods inspired by gravitation force.
GSA and CFO found an acceleration value from gravity. The original equation is modified with
an exponent that is a parameter (α), i.e. for α = 0 the acceleration or gravity influence for new
population is null. The distance is indirectly proportional to the mass in CFO. While in CFO there
is not a modification for the distance influence, there is for GSA. BBBC does not use the gravity
equation. The attraction between particles is calculated using the moment of inertia, which is a
weighted mean of the objective function value. The moment of inertia is the influence by the mass
(objective function value) and the distance between points, which is conceptually right with gravity
operation.

Like in the original equation of the gravity, for Supernova the gravitational interaction was the
weighted sum of the vector given by currently particles and the particles from population. The
individuals with the better values found to attract the others like in the real phenomenon. From
algorithm 1 the equation for the operation is:

hk =
K∑
i=1
i 6=k

G ·m−1k ·m
−1
i ·

1− rik ·

 K∑
j=1
j 6=k

rjk


−1 · uk (2.1)

The parameter is G. The distance and mass have the same influence, but the mass is scaled value
of the objective function to avoid the negative and null masses.

Algorithm 3 gravity operation

Require: x,f(·) , G
1: for i = 1 to K do uik ← xi−xk

‖xi−xk‖ end for

2: hk ←
∑K

i=1
i 6=k

G ·m−1k ·m
−1
i ·

[
1− rik ·

(∑K
j=1
j 6=k

rjk

)−1]
· uk

3: sk ← xk + hk
4: return xi;f(xG)

For a single iteration, the operation algorithm is shown in 3. An initial unitary vector is cal-
culated (See Line 1). Afterwards, a sum of whole masses is presented in Line 5. Finally, a new
population is found using gravity operation. From the algorithm proposed, the complexity of this
operation is O(n3).

2.3.2 Operation: Impulse

Impulse was described as a unitary vector in the direction followed by the particle i.e. the vector
that join the past iteration position and currently position. From supernova phenomenon, the
particles are eject from the center of the star, this trajectory is emulated for the operation impulse
and modified by the other particles (gravity operation). F ∗ dk = F ∗ pk−xk

‖pk−xk‖
Where F is the

parameter of the operation. pk are the solutions from previous iteration and xk are the current
solutions.

As in gravity operation, the initial unitary vector is found and a new impulse if found using the
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Algorithm 4 Impulse operation

Require: x,f(·) , F , p
1: dk ← pk−xk

‖pk−xk‖
2: ik ← F ·m−1k · vi · dk
3: sk ← xk + ik
4: return xi;f(xG)

unitary vector, mass and a velocity. The velocity is random for the algorithms presented in chapter
one. From the algorithm proposed for this operation, the complexity of this operation is O(n)

Conceptually, impulse is following the search direction and is about increase the exploration.
The impulse in the supernova strategy is clear and separable concept, but we found it immersed in
another metaheuristics as well in supernova. For example, the original PSO algorithm the search
direction is implicit and non separable from the velocity.

2.3.3 Operation: Selection

As we mention above, selection chooses, agree with some criteria, the best individuals of the
population. In the Algorithm 1, we described it as memory that saves the best solution for each
particle for previous iterations and restart. Although the concept of choosing the best solutions is
preserved, the way it is used is different. In the evolutionary paradigm, the selected individuals are
taken as parents while in supernova only the best individual is taken to restart the algorithm. Also,
selection operation in supernova metaheuristic provides the best solution found and it provides the
elitism that guarantees the asymptotic behaviour of the error. Note that, the name is the same,
but it is not identical operation for Supernova and Evolurtionary algorithms. For supernova is a
memory, while for GA selection is used for inheritation.

2.4 Conclusions

Supernova has three operation: Selection, impulse and gravity. Divide and define the operations
gives a important framework to analyze and modify the metaheuristics. In this case, selection is
a very know operation. Gravity is a operation that is not ready a formalized one, but supernova
and other approaches results from another metaheuristics indicates a promising operation. The
impulse is presented indirectly in other metaheuristics and can be included in other metaheuristics
to increment the exploration.
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3. LOW DISCREPANCY SEQUENCE START FOR SUPERNOVA

“ A thing appears random only through the
incompleteness of our knowledge”

–Spinoza, Ethics

Metaheuristics are direct methods. Therefore, the information found each iteration is related
with the performance itself. In the minimization case, a good information is defined as information
that maximizes of the probability to find the attracting region of the global minimum. The region
is unknown in advance, then for increasing the probability to find the attracting region of the
global minimum we need to try to cover every section for having as much information as possible.
However, continuous and unconstrained problems have infinite solutions, whereas the sample or the
size of the population used by population metaheuristics oscillates between forty and one hundred,
hence the importance of first population distribution. Often, metaheuristic methods use random
sampling to obtain the first set of solutions. This methodology, for initial sampling, is not perfectly
uniform due to the large void got because of small samples (Xuan Hoai, Quang Uy, McKay,
& Minh Tuan, 2007). The empty spaces can be, or not, relevant for the performance of the
metaheuristic in each problem, but the irrelevance of these groupings cannot be guaranteed.

The problem described above is common for different filds as: statistic, numerical methods,
among others. Some solutions have been proposed from these areas for example, stratified dis-
tribution, low discrepancy sequences and pool of solutions. These approaches have been applied
successfully to metaheuristics (Brooks, 1959; Omran, al Sharhan, Salman, & Clerc, 2013; Bäck,
1996). The pool of solutions has been used for evolutionary algorithms. The most important
advantage is the possibility to chose the best points from a really large sample, but it does not
guarantee the distribution over the search area covers whole spaces and found the attracting region.
Stratified distribution has been used for local methods reducing their iterations and evaluations to
the objective function. The main problem of this method is determining a right size of the grid for
the stratification. Low discrepancy sequences (LDS) are constructed for distributing the solutions
uniformly improving the performance of the search as in PSO (Omran et al., 2013). The main
problems with LDS are degeneration of distribution when the dimension increase and for some
sequences the computational effort is also a issue (Xuan Hoai et al., 2007).

Supernova is a metaheuristic inspired by stars. The proposed algorithm has similar behaviour
to other classic metaheuristics (See last chapter). Supernova follows three main steps from initial
random population: selection, gravity and impulse. The initial population, as we described above, is
important because it gives necessary information for guiding the search. From previous approaches
mentioned, we chose LDS as a good manner to improve the methodology. LDS is called quasi-
random and each sequence satisfy an inequality where discrepancy is lower that a relation between
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dimensions and population size (Knuth, 1998). For uniformly random distribution (URD) , there
are not limits in the discrepancy. Small and large samples estimated using URD present big holes
which are prevented using LDS.

Supernova initial sampling can be changed by LDS. The main objective of this chapter is propos-
ing a new version using LDS and analyze the effect of LDS for initial sampling in Supernova. First,
we introduces a brief review about LDS and propose the appropriate changes in the algorithm for
using it with LDS. Afterwards, we present a comparison of both versions (original and new one)
and parameters. Finally, we conclude about this new version, the advantages and problems.

3.1 Materials and methods

The main objective of this chapter is presenting the advantages of LDS for calculating initial
population and the implementation of the supernova algorithm using them. In this section, the LDS,
some antecedents of LDS and the algorithms are decribed. Finally, we describe the modification to
the original algorithm to adapt it for LDS.

3.1.1 Low discrepancy sequences

One of the most common uses of LDS is quasi-Monte Carlo (QMC) integration methods. These
sequences improve the performance of tradicional Monte Carlo (MC) as shown in (Papageorgiou &
Traub, 1997). The initial population of a metaheuristic can be compared with a small sampling of
large space for numerical integration. LDS is design to distribute a uniformly spread. Then, from
the construction, initial population generated by LDS gets information about whole search space,
reducing the risk to ignore regions that could be exploited for the algorithm.

LDS sequences are characterized by small discrepancies. For pseudo-random distributions, the

discrepancy is approximately logKN

K while the discrepancy for LDS is log logK0.5

K0.5 which is lower. In
other words, the distribution over the search space has less voids. Even so, there is a chance to
have empty spaces with important information, but the probability of to happen with LDS is lower
than with URD (Gentle, 2003; Knuth, 1998). Besides, the LDS grid is deterministic. Therefore,
the independent runs are unnecessary.

A basic definition of the discrepancy between k points in n dimension is:

Dn
k = sup

E

∣∣∣∣A(E; k)

k
− λ (E)

∣∣∣∣ (3.1)

Where tj is a number between 0 and 1 for each component n, E = [0, t1) × · · · × [0, tn) and
A(E; k) denotes the number of points that belongs to E. Additionally, λ correspondes to Lebesgue
measure(Papageorgiou & Traub, 1997). Then, A LDS is the sequence where the discrepancy

Dn
k < c(n) (log(k))

n

k ∀k > 1 where c is a constant and depends of dimensions. Based on previous
definitions, different LDS have been design (Niederreiter, 1992).

Van Der Corput sequence was the first LDS proposed. The strategy is divide the space in b
intervals. Also, this b intervals will be divided in another b subintervals and so on. In table 3.1,
the first ten elements of the sequence for base 2 and 3 are presented.

Halton, Faure and Sobol LDS are a generalization for higher number of dimensions of Van Der
Corput sequence. The Figure 3.1 shows the distribution for each sequence for a population with
10 individuals and two dimensions. For all these sequences, computational effort increases with

31



Table 3.1: First ten elements for Van Der Corput sequence with two different bases

base 1 2 3 4 5 6 7 8 9 10

2 1
2

1
4

3
4

1
8

3
8

5
8

7
8

1
16

3
16

5
16

3 1
3

2
3

1
9

4
9

7
9

2
9

5
9

8
9

1
27

4
27

Figure 3.1: First ten terms for Low discrepancy sequences and pseudorandom numbers
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Table 3.2: Benchmark functions

f Equation Range x∗ f∗

f1 =
∑N
i=1 x

2
i [−500, 500]

N
(0, 0) 0

f2 = −20 · exp(−0.2

√
1
N ·

N∑
i=1

x2i )− exp( 1
N ·

N∑
i=1

cos(2πxi)) + 20 + exp(1) [−32, 32]
N

(0, 0) 0

dimensions, which is one disadvantage of LDS. Halton LDS calculates a Van Der Corput sequence
for each each dimension. Each dimension uses a prime number as the base, i.e. the base is 2 for
first dimension, 3 for second dimension, etc. But there are some traces that when the dimensions
increase the sequence is degenerated and clusters around cero appeared. That is why Halton LDS
is recommended for problems with less than 7 dimensions (Sen, Samanta, & Reese, 2006).

Also, Sobol and Faure Sequences are generalization of Van Der Corput LDS, but those sequences
use one base for everything and incorporate some mechanism for sorting some elements. For Faure
sequence, each dimension uses the closest and higher prime number from dimension, i.e. dimension
50 Halton sequence uses the 50th prime number while Faure sequence uses 53 which is the closest
and higher prime number from 50. But, symmetry is a problem(see Figure 3.1). Sobol sequence
uses base 2 for every dimension but change the order for certain numbers preventing clusters and
degradation with dimension. In theory, the best LDS for metaheuristic is Sobol. In practice,
Omrand et al. and Xuan Hoai et al. shaw the Sobol LDS is the best for PSO algorithm (Omran
et al., 2013; Xuan Hoai et al., 2007).

3.1.2 Modification to original version

In the last chapter, We described the original version of supernova algorithm. Initial population is
calculated using URD. In the implementation process, some details should be changed. The use of
LDS affects the initial population calculation. The solutions of LDS are distribute over hypercube
with side=1 while supernova algorithm uses hypersphere with radius=1λ, where λ is a parameter of
supernova algorithm. For initial population and restart, we modify the implementation as follow:
first, we scaled the LDS to hypercube given by upper and lower borders for the objective function,
i.e. we define λ0 = UB − LB which guarantees that sequence will be distribute over complete
feasible area. Second, the center of each restart will be the best point found as in the original
algorithm and reduce η% of the original area. When the new center is asymmetric, the new area
will be limited for the original limits and the limits found for the reducing the area.

New version of supernova(SLDS) follows the Algorithm 1 excepting line 5 which changes as we
described above. After, we use the method proposed in (Mesa, Velasquez, & Jaramillo, 2015) for
developed and implementation of metaheuristics. This method has three main steps: verification,
parametrization and validation. For the sake of brevity, we describe briefly the test and present
the results for each step.

Verification

The algorithm was implemented using the LDS version from R-package called ”randtoolbox”
(Christophe & Petr, 2015). We implemented two version with Halton LDS and another with Sobol
and called them as H-SLDS and S-SLDS. This initial implementation was tested for 2 well-known
benchmark functions: Sphere(f1) and Ackley’s (f2) functions(See Table 3.2).
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Table 3.3: Parameters used for SLDS

function
Parameters

K T R F G λ0 α η

f1 50 100 50 4 4 500 1.5 0.15
f2 50 100 50 4 4 32 1.2 0.15

Table 3.4: Parameters used for SLDS

Dimensions f
H-SLDS S-SLDS

f∗ σ F.C f∗ σ F.C

2
f1 0 0 224 0 0 224
f2 0 0 226 0 0 214

10
f1 6.16× 10−30 0 214 1.10× 10−46 1.05× 10−23 224
f2 0 1.19× 10−15 226 0 0 224

20
f1 1.32× 10−29 1.32× 10−29 214 2.04× 10−29 4.52× 10−15 224
f2 0 6.72× 10−16 226 0 0 224

30
f1 1.96× 10−29 1.96× 10−29 214 7.70× 10−28 2.77× 10−14 224
f2 3.55× 10−15 3.98× 10−14 226 0 0 224

Parametrization

We use the same experimental design proposed in the Section 1.1.3 and the best parameters for
two well-known benchmark functions was chosen and translate to prevent problems with symmetry
and sobol LDS (See Table 3.2). The new optimal points are: for f1, x

∗ = [450.1, 450.1] and f∗ = 0
and for f2, x

∗ = [−20.1,−20.1] and f∗ = 0.

Validation

With translated benchmark functions, we compare the result for 2, 10, 20 and 30 dimensions, the
minimum (f∗), deviation (σ) and objective function calls (F.C.). In the Table 3.4, The columns are
for SLDS with Halton and Sobol LDS. The rows are for functions and dimensions. For functions
f1 andf2, the best minimum is for S-LDS. However, deviation for f1 is worst for S-LDS. Further,
the performance is better for S-SLDS.

3.2 Results

The new version S-SLDS was compared with the previous results for benchmark function proposed
in CEC2005. The parameters and other algorithms are described in the Section ??. In the table3.5,
we summarized the mean of the error for original supernova, PSO, and DE for the test and the
result for S-SLDS. It is important to remind that S-SLDS is deterministic then only one run is
needed.

The initial hypothesises are H0 : f∗snova = f∗DE = f∗PSO = f∗S−LDS and Ha : f∗i 6= f∗i′ for at
least one of the algorithms. For both tests, the rank for ties was calculated as the average. In the
Table 3.6, the results for the Friedman’s test is shown. The P-values are inferior to 0.5, therefore
the H0 is rejected.
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Table 3.5: Results and comparison for benchmark functions, CEC 2005, between Supernova, DE,
PSO and S-SLDS. 10 dimension and 50 independent runs except for S-SLDS

f Error Supernova Error DE Error PSO Error S-SLDS

f1 2.49× 10−06 8.26× 10−09 1.23× 10−04 5.27× 10−07

f2 4.41× 10−04 8.18× 10−09 2.60× 10−02 5.63× 10−05

f3 5.27× 1005 9.94× 1000 5.17× 1004 6.26× 1000

f4 6.58× 10−01 8.35× 10−09 2.49× 1000 1.22× 10−03

f5 2.39× 1001 8.51× 10−09 4.10× 1002 2.17× 1001

f6 3.77× 1001 8.39× 10−09 7.31× 1002 7.28× 1000

f7 2.46× 1002 1.27× 1003 2.68× 1001 1.59× 1003

f8 2.03× 1001 2.04× 1001 2.04× 1001 2.02× 1001

f9 1.38× 1001 8.15× 10−09 1.44× 1001 4.15× 1000

f10 2.28× 1001 1.12× 1001 1.40× 1001 1.19× 1001

f11 7.99× 1000 2.07× 1000 5.59× 1000 3.39× 1000

f12 3.25× 1001 6.31× 1001 6.36× 1002 8.30× 10−03

f13 1.30× 1000 6.40× 1001 1.50× 1000 2.59× 10−01

f14 3.71× 1000 3.16× 1000 3.30× 1000 3.44× 1000

f15 3.40× 1002 2.94× 1002 3.40× 1002 6.56× 1001

f16 7.45× 1001 1.13× 1002 1.33× 1002 1.34× 1002

f17 2.49× 1002 1.31× 1002 1.50× 1002 1.51× 1002

f18 8.96× 1002 4.48× 1002 8.51× 1002 9.83× 1002

f19 8.92× 1002 4.34× 1002 8.50× 1002 8.00× 1002

f20 8.83× 1002 4.19× 1002 8.51× 1002 8.00× 1002

f21 1.55× 1001 5.42× 1002 9.14× 1002 1.31× 1002

f22 7.53× 1002 7.72× 1002 8.07× 1002 7.63× 1002

f23 2.35× 1001 5.82× 1002 1.03× 1003 5.47× 1002

f24 4.43× 1002 2.02× 1002 4.12× 1002 2.00× 1002

f25 4.49× 1002 1.74× 1003 5.10× 1002 1.80× 1003

Table 3.6: Results for Friedman test for S-SLDS,Supernova, DE and PSO

Supernova DE PSO S-SLDS FF P-value FID P-value

Rank CEC’s test 2.76 1.94 3.22 2.04 13.67 1.59 × 10−03 5.3484 2.20 × 10−03
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Table 3.7: Results for Wilcoxon’s test for S-SLDS, Supernova, DE and PSO

Algorithms Values

S-SLDS-DE

R+ 157

R- 168

Limit for α = 0.05 and one-
tailed

100

S-SLDS-PSO

R+ 254

R- 71

Limit for α = 0.05 and one-
tailed

100

S-SLDS-Snova

R+ 206

R- 119

Limit for α = 0.05 and one-
tailed

100

Now, we know the means are different for at least one algorithm. Compare each algorithm with
S-SLDS with Wilcoxon’s test (See Table 3.7) we found that S-SLDS is significant better that PSO
and there is not significant difference with the previous version and DE. Even so, the difference
with previous version are bigger than with DE.

3.3 Conclusions

The initial population distribution helps to improve the performance of the metaheuristic in general.
It is an strategy for globalization, but is not particularly good for a particular type of problem like
planar regions. Although, it is a interesting improvement for the methodology lost the focus
in planar regions. Therefore, We present this part of the search because forward the version of
supernova algorithm will be LDS version.

The ongoing work for distribution of initial population will be the change of LDS sequence for
tailored nets and/or grids that does not degenerate with dimensions and reduced the computational
effort.

36



4. A CRITERION TO IDENTIFY PLANAR REGIONS1

“ Would you tell me, please, which way I
ought to go from here?” “That depends a
good deal on where you want to get to,” said
the Cat. “I don’t much care where –” said
Alice. “Then it doesn’t matter which way
you go,” said the Cat.”

– Lewis Carroll, Alice in Wonderland

Each type of objective function has a unique topology with different features. One of this
features is flat regions. A characteristic of flat regions is small gradients (approximately zero), i.e.
the value of the objective function for entire flat region is equal or similar. Several metaheuristics
use the differences of the value of objective function between solutions to find a descent direction.
Therefore, the information provides by flat regions with the aim of guiding the search is not good
enough for determining a clear descent direction. Then, it makes that algorithm get stuck there
(Coello, 2005; Törn, Ali, & Viitanen, 1999; Pant & Et, 2011).

In the literature, the problem of flat regions is not consider in isolation. Often, it is approached
as a component of the improvement for global optimization for all kind of functions. There is not
a solution to improve functions with a flat regions because there are no information in advance to
determine if the function has planar regions. Furthermore, there is not a clear idea of the specific
characteristics of this region that can be problematic or not for the different algorithms. But, there
are benchmark functions that are traditionally problematic and can be consider functions with flat
regions. In addition, there is information available about how algorithms work in this functions
and how the algorithm has been changed for improving the performance in these functions(Torn &
Zilinskas, 1989; Schwefel, 1993; Talbi, 2009; Yao et al., 1999).

The improvement of the algorithm are related with the appropriate balance between exploration
and exploration of the metaheuristic. There are different approaches for improving metaheuristics
and they are: modification of the parameters and operators and switching between algorithms
automatically (Talbi, 2009; Yang, 2010). When Parameters change, the search also change. In this
sense, the problem of optimization of objective function with flat regions can be solved by setting
the appropriate values for the parameters of the particular metaheuristic (Kramer, 2008).

The presence of large flat regions is not detectable in advance because of there is not available
information, as we mentioned before. However, there is information that is being ignore. Several

1A preliminar version of this chapter was published on: Mesa, E., Velásquez, J. D. and Jaramillo, P. (2014).
Nonlinear optimization in landscapes with planar regions. In Terrazas, G., Otero, F. E. B., and Masegosa, A. D.
(Eds.), Nature Inspired Co-operative Strategies for Optimization (NICSO 2013), Vol. 512 of Studies in Computational
Intelligence, pp. 203-215. Springer International Publishing.
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metaheuristics use a population to search, but they only use the information of the best, some
random individuals and/or worst solutions found. Statistics of the value of objective function can
be useful for detecting some features of the topology. In this sense, the first objective of this chapter
is present a general criterion to identify when there is a problematic flat region in the objective
function using the statistics given by population in general. The second one is: to determine the
characteristics that can be described as problematic according to the statistic calculated for identify
the flat region.

This chapter is organized as follows: in Section 2, we describe the problem of flat regions. In
Section 3, we present the developed of a criterion to identify when the objective function has
a planar region and if it is can be problematic. In Section 4, we describe a hybrid optimization
methodology that switches, between both Supernova and Monte Carlo, using the proposed criterion
as parameter control. Furthermore, the test and results are discussed.

4.1 The problem with planar regions

Previous section describes why the optimization of a function that has flat regions can be a problem.
In this section, we define what is a flat region for this work. Also, we discuss why this kind of
feature is a problem in global optimization and, finally, exemplify the problem using well-known
benchmark functions.

4.1.1 The problem with planar regions

A strictly definition of complete flat region, according with definitions of Section 1.3, is: a region
L ∈ A, with L 6= ∅, such that ∀x ∈ L, f (x) = c ∈ R, and all points x ∈ L are weak minimums. This
implies that Of (x) = 0, x ∈ L. However, in this work, we consider that the attracting region L for
the point x∗ is a flat or planar region whenf (x∗) ≤ f (x), ∀x ∈ L and‖f (x) − f (x∗)‖ ≤ δ where
δ is an arbitrary quantity near to zero. δ is a small constant that representes the possible amount
between complete planar regions, gradient=0, and a region that can be problematic because of
small gradients. This implies that Of (x) ≈ 0 inside of the attracting region and f (·) is a smooth
function with slopes near to zero or zero. Where the attraction region of the minimum has poor
information about its location or there are several minimums in the neighborhood. We refer to
the initial definition of flat region as a pure planar region and the second definition as a relaxed or
non-pure planar region. From this point forward, we will refer to non-pure planar region as planar
region.

Classical local optimization based on gradients is not able to optimize functions with the optimal
point located in flat regions because the algorithms have not direction to follow. Usually, direct
methods based on population emulate the gradient methods, to direct the search using the infor-
mation of the descendent slope like the water’s drop that needs the slope to flow; when the slope
information is not available, the drop will be stagnated in one point like the algorithms actually
does.

Several metaheuristics have problems for finding the global optimum of a function when such
point is located inside of a large flat region, due to: first, there is insufficient information for
determining descent directions that is required for guiding the exploratory phase of the algorithm.
Second, the local search algorithm would find points with f (xk) ≈ f

(
x(k−1)

)
every where. Then,

the trajectory of visited points seems to be erratic or random and there is not a clear convergence
(Talbi, 2009). Third, the absence of good candidate solutions for being used in the exploitation
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(a) Sphere (b) Rosenbrock (c) Rastrigin

(d) Foxholes (e) Branin

Figure 4.1: Benchmark Functions

phase of the used metaheuristic. Thus, metaheuristics presents questionable advantages over pure
random optimization when the optimized function has the global optimum inside of a large planar
region.

Rarely, we will have a complete planar region for the objective function. Usually, we have a
mixture between planar regions and non-planar regions. There is not a unique mathematical crite-
rion to determine when this mixture can be problematic for an algorithm, but we have benchmark
functions that are problematic. And they can be consider as functions with large planar regions
evaluating their topologies.

4.1.2 Benchmark functions with planar regions

In most relevant literature, commonly benchmark functions are classified in terms of roughness,
smoothness, analytic proprieties and/or quantity of minimums, but there is not a classification
based on the presence or absence of problematic planar regions. However, several well-known
benchmark functions are difficult to optimize due to the presence of large flat regions (Shang &
Qiu, 2006; De Jong, 1975; Schwefel, 1993). In Table 4.1 and Figure 4.1, we present five classical
functions. Three of them have planar regions.

Functions f1 and f3, from Table 4.1, are descendent functions, the other functions present
planar regions (see Figure 4.1). In Figure 4.1, we presented the three-dimensional plots and two-
dimensional contours of these functions; where we can see the planar regions like bananas for
functions f2 and f5 and like a foxhole for f4. Note that there is not a complete planar in any
function, there is a mixture between types of regions with a lot of information about location
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Table 4.1: Benchmark functions: name, equation, minimum, and search region

Name Function Search Area minimum

Sphere f1(x) =
∑D

i=1 x
2
i [−500, 500]30 0

Rosenbrock f2(x) =
∑D−1

i=1 [100(xi+1)]x
2
i [−5.12, 5.12]2 0

Rastrigin f3(x) =
∑30

i=1 [x2i − 10 cos(2πxi + 10)] [−100, 100]30 0

Foxholes f4(x) =
[

1
500 +

∑25
j=1

1
j+
∑D
i=1(xi−ai,j)6

]
[−65.5, 65.5]2 ≈ 1

Branin f5(x) =
(
x2 − 5.1

(4π2)
x21 + 5

πx1 − 6
)2

[−5, 10][0, 15] 0.398

+10
(
1− 1

8π

)
cosx1 + 10

of minimum and zones with a pretty poor clues about minimum location. For these kind of
functions, the algorithm can get struck. All these three functions are described in the literature
like problematic functions (Shang & Qiu, 2006; De Jong, 1975; Schwefel, 1993).

4.2 A Criterion To Determine Problematic Planar Regions

In real-world problems, the geometrical configuration of the objective function is unknown and
the identification of a planar region is not a trivial problem. If the topology is identified, this
information can be used for tuning the parameters of the metaheuristic changing the exploration-
exploitation balance for improving the performance. Furthermore, this can be used for selecting
an alternative optimization method best suited for random search. In this Section, we propose an
empirical criterion for determining when the objective function has a planar region that can be a
problem for the optimizer.

4.2.1 Proposed empirical criterion

Usually, metaheuristic methods use the known values of objective function to guide the search
towards regions where it is possible to find a optimum. Evolutionary strategies (ES) uses the values
of objective function to calculate the fitness of the population for finding a next generation, which is
improved thanks to the knowledge of previous generation. Moreover, in particle swarm optimization
(PSO) algorithm, the values of objective function calculated for the current particles in the swarm
are used to calculate the next direction and magnitude of the displacement of each particle. Thus,
PSO uses an empirical descendent direction which is similar to the gradient techniques (Bäck, 1996;
Kennedy & Eberhart, 1995). In both cases, the similarity with gradient search imposes the same
weakness: problems with the performance in presence of large planar regions.

However, the information provided by the points already visited for the metaheuristic is not
used to extract important features of the objective function as smoothness, roughness and slopes.
For example, when f(xi) = c, with c ∈ R, for all xi belongs to the current population of a
population-based optimization algorithm, the standard deviation, mean and median of the asset
value’s f (xi) will be zero and c respectively, and this information would be used to determine when
the population is located inside a pure planar region.

But, what will happen with a scatter measures of objective function values when the region
has a large (non-pure) planar region with small descendent areas? Figure 4.2(a) shows the results.
Population has a small finite size (approximately 40 to 100). If function have a long flat region,
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Figure 4.2: Scatter of objective function values versus kinds of objective functions: planar regions
with descendent areas and purely descendent functions.
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Table 4.2: Criterion meaning

Rg Tc Meaning

Rg ≈ 0 Tc ≈ 0 Weak minimum zone.
Rg � 0 Tc ≈ 0 Descend function.
Rg � 0 Tc� 0 Mixture between weak and strong minimum zones.

most part of the population will have the same value for the objective function, then median will
be around this value. But the solutions out side of the flat region will affect the measures; this
affects mean but no the median. In this case, mean and median values will be different.

Accordingly, what will happen when the function is strongly descendent? In Figure 4.2(b), a
descendent function is plotted. In this case, we could see that the difference between the mean
and median are zero or could be near to zero. That means, we could identify a large planar region
from the scatter measures sampled using the current population of the optimization algorithm.
We propose two measure of variability as indicators of problematic planar regions. For a set of
solutions, we calculate the range Rg, higher values indicate that there are a large variation in the
values of the samples. Thus, we divide Rg between the dimension of search space to have an average
of the change by one unit of this space. We define Rg as:

Rg =
f (x)max − f (x)min

‖ub− lb‖
(4.1)

Afterwards, for the same, we calculate the difference, Tc between mean and the median and
observe how the sampled are distributed. Low values indicate a well-distributed sample, which
implies homogeneity, and it is agree with descendent functions (See Figure 4.2(a) and 4.2(b)). We
define Tc as:

TC =
f (x)mean − f (x)median
f (x)max − f (x)min

· 100 (4.2)

In Table 4.2, we show the possible scenarios for both measures Rg and Tc. In both cases, we
normalized for a fair comparison between functions and have a range or frontiers to determine
when it is or not a problematic function. Until now we have a concept to recognize between
a planar region and non-planar region but it is not a criterion because there are not values to
determine when function is or not. Initially, when are Rg and Tc near to or differ from zero. To
use the criterion first we need to review that:

• The criterion identify between descendent region with small gradient and planar regions.

• The criterion could identify planar regions for high number of dimension.

• The criterion is not sensitive to the sample size used to calculate the criterion it means, the
population size.

• The values of Rg and Tc that must be consider problematic for the algorithm, in this case
PSO, and if it is the same for all problems and all dimensions.
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Table 4.3: Results for one-dimensional functions.

α fd fp
Rg Tc Rg Tc

1 9384.76 7.85% 26818.06 12.6%
0.5 4692.38 7.85% 13409.03 12.6%
0.1 938.48 7.85% 2681.80 12.6%
0.01 93.647 7.85% 268.18 12.6%
0.001 9.39 7.85% 26.81 12.6%

Table 4.4: Results for fd and fp as a multi-dimensional functions.

N fd fp
Rg Tc Rg Tc

1 9384.76 7.85% 26818.06 12.6%
2 15312.50 0.59% 39498.16 13.2%
10 51640.63 1.58% 109868.12 19.8%
30 139824.21 0.26% 298131.17 22.9%

4.2.2 Behavior and sensibility of the test for known functions

The criterion proposed is a new and novel approach to identify planar regions. With the aim of
analyzing the behavior of the proposed measures of variability, we conduce a test using two tailored
functions, a parabola

fd = αx2 (4.3)

and a piecewise function with a planar region (See Figure 4.3), defined as:

fp =


αx2 [−2, 2]
4α (−70, 2) ∪ (2, 70)

αx2 − 140αx + 4904α [−100,−70] ∪ [70, 100]
(4.4)

In both cases, α vary between [0.001, 1] and controls the value of the gradient of the function. In
other words, the parabola and the piecewise function with α = 0.001 will be flatter than the both
functions with α = 1. And x vary between [−100, 100]D where D is the dimension. The objective
of the first experiment is to determine the ranges of values for both measures, if the criterion can
identify between a planar region and descendent region with small gradients.

In Table 4.3 we present the calculated values for Rg and Tc for one-dimensional functions version
for different values of α. The sample used consists in 50 points obtained from the Sobol low
discrepancy sequence(LDS) (Gentle, 2003). For both one-dimensional functions we found that:
first, Rg is directly proportional to α and Tc is independent of the gradient, but changes between
both functions; this means that the criterion it is not sensitive to small values for gradient of
descendent functions for non-random points. Second, we can observe the difference between mean
and median that we described above with the values of Tc for both functions. Tc is bigger for fp
which means that fp is more planar than fd according with construction of the functions.

Next, we analyze whether the obtained results for one-dimensional functions are sensitive or not
to sample’s size. For this, we calculate Rg and Tc for different sample sizes and random points for
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(a) Results for RG (b) Results for TC

Figure 4.4: Values for the criterion using k numbers to evaluate the function. The numbers are
random with uniform distribution.
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Table 4.5: Criterion results for benchmark function

f1 f2 f3 f4 f5

Rg 3495605.47 60301.24 775.55 495.02 204.07
TC 0.26% 13.12% 0.67% 8.65% 12.06%

both functions. We consider sample sizes from 10 to 100 points every 10 points. For each sample
size, we realize 50 independent runs where the points used for calculating Rg and Tc are drawn
from a uniform distribution. Figure 4.3 shows the values of Rg and Tc for both test functions in
one-dimension; the mean of the value for criterion and the correspondent standard deviation are
shown. We found that Rg is more sensitive to small sample sizes than Tc and both criteria tend to
be constant for large sample sizes. Figure 4.4(b) shows a pretty clear difference between Tc for fd
which is smaller than Tc for fp. So, the minimal number of points recommended is 30.

Following, we analyze the behavior of the criterion when the number of variables (dimensions
of the problem) changes. In Table 4.4, we show the values of the proposed measures. These were
calculated for both test functions and for 1, 2, 10 and 30 dimensions. As in the first experiment, we
used a Sobol low discrepancy sequence for obtaining 50 solutions of the test functions. According to
the results, we can conclude that criterion is sensitive to the number of variable; which was expected
because with dimensions the difference between plans augment. Nevertheless, the difference Tc is
increase with number of dimensions which is positive. In other words, for high number of dimensions
the difference identified by the criterion between planar regions and non planar regions will be
stronger. However, the relationship between criterion values and dimension is unknown. Based on
the results, we did a polynomial regression and obtain that:

Tc ≥ 7.675(N)−0.588 (4.5)

We use the equation 4.5 to determine when it is a problematic planar region.

4.2.3 Behavior of the test for benchmark functions

In last sections, we explain the concepts and define the criterion. Now we will test it. Initially, we
choice three benchmark functions that present problematic weak minimums and two the descendent
functions as control functions. These functions, and correspondent, dimensions, search areas, and
minimums are presented in Table 4.1 and Figure 4.1. Table 4.5 shows the results; functions f1 and
f3 have not problematic planar region and the value of Tc are smaller than the other functions.
Rg in both cases is greater than zero. For the other function Tc is greater than the limit 7.6. The
criterion identify different function as planar o non planar regions.

4.3 Using criterion to select optimization method

In this Section, we applied the criterion to select between two different algorithms according with
balance between exploration and exploitation. The first one is Supernova (high exploitation) the
proposed algorithm in the latest version which is previous chapter version. The second one is
Monte Carlo (high exploration). The aim of this test is to show how this criterion can use to decide
about the optimization strategy. In this case, the criterion will switch between two algorithms,
Supernova and Monte Carlo sampling. Monte Carlo is a purely stochastic method that has been
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used for different applications and has not a sophisticated method inside. It uses the random
sampling to find the optimums, but it has been proved to be superior when the information about
localization of minimum is poor because it is exploring different regions (Yang, 2010). In this
approach, the proposed criterion is used to decide when use supernova or Monte Carlo sampling.
The sequence of the algorithm is shown in the Pseudocode 1.

Algorithm 5 Hybrid proposed Supernova-MC

1: Sk = randomx1, ..., xk
2: Evaluation of f(x) for Sk
3: Evaluation of Rg and Tc
4: if TC ≥ 7.675 (dimensions)−0.588 and Rg > 0 then
5: Use monte carlo algorithm
6: else
7: use Supernova algorithm
8: end if

4.3.1 Results for the Hybrid between Monte Carlo and Supernova

In this test, we used supernova implementation described in last chapter and our own implemen-
tation of the most simple version of the Monte Carlo methodology (Yang, 2010). The proposed
optimization methodology is used for optimizing the five functions presented in Table 4.1. In ad-
dition, we optimized other five functions from CEC’05 benchmark test, correspondent to functions
f11 to f15 for details see (Suganthan et al., 2005). The additional functions are for two and ten
dimensions. In step 3, the proposed criterion is evaluated using 50 random points drawn from a
uniform distribution. In step 4, we sample 12.000 random points drawn from a uniform distribution
and use as a result the best point found. In step 5, we run supernova with 50 iterations 6 restarts
and 40 individuals and stop criterion describe in chapter 1; we use the parameters described in last
chapter for supernova.

In Table 4.6, we present the results found by each algorithm (mean and standard deviation
for 50 independent runs) and the values for the criterion. The bold results are the ones taken by
the hybrid proposed. The results for functions f2 and f5 are pretty similar, but the deviation is
better in both cases. In terms of computational effort, supernova has a maximum of 300 calls to
objective function and a population of 40 individuals, but it has internal operations. Monte Carlo
has 20000 calls for 2 dimensions 200000 calls to the objective function without internal operations.
The characteristics of the processor are 2.9 Ghz intel i7 processor. For the complete set of function
for 2 dimensions, we have six functions with problematic planar areas, and four with non planar
areas. The first five we are sure that the topology that they have and the functions from CEC’05
are hybrids and rotated functions which makes difficult to determine the topology. Nevertheless,
criterion shows the problematic functions and let use the best strategy for the function. For 10
dimensions, function 4th are not available for 10 dimensions and Rosenbrock function change the
topology, it is multimodal and according with criterion it is not a problematic planar region.
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Table 4.6: Results of hybrid proposed for benchmark functions.

2 dimensions
Function Criterion Type of function Monte Carlo Supernova

Rg Tc Mean Desviation Mean desviation

f1 3495605.47 0.26% Non Planar 4,23E-01 3,85E-01 2,96E-08 5,60E-08
f2 60301.24 13.12% Planar 9,87E-04 1,25E-03 1,64E-03 3,18E-03
f3 775.55 0.67% Non Planar 6,53E-01 5,06E-01 6,70E-06 2,12E-05
f4 495.02 8.65% Planar 9,98E-01 4,03E-06 1,28E+00 5,17E-01
f5 204.07 12.06% Planar 1,00E+01 2,40E-09 1,00E+01 5,88E-07
f6 4.45 0.41% Non Planar 90.29 0,85E-00 90.01 2.44E-02
f7 4662.31 7.5% Planar -459.87 8,25E-02 458.67 3,83E-01
f8 1.11E05 104% Planar -127,59 2.3E-01 -125.67 2,12E00
f9 0.018 1.8% Planar 298.99 5,4E-01 289.99 5,47E01
f10 195.4 0.74% Non Planar 194.73 5.5E01 123.12 2.19E00

10 dimensions
Function Criterion Type of function Monte Carlo Supernova

Rg Tc Mean Desviation Mean desviation

f1 9.831E05 0.56% Non Planar 7,57E-02 5,35E-01 2,96E-08 5,60E-08
f2 2.335E13 1,79% Non Planar 9,87E-04 1,25E-03 1,64E-03 3,18E-03
f3 5.319E04 0.8887% Non Planar 6,53E-01 5,06E-01 6,70E-06 2,12E-05
f5 1.001E03 6.758% Planar 1,00E+01 2,40E-09 1,00E+01 5,88E-07
f6 10.53 0.94% Non Planar 9.746 0,85E-00 9.55E-01 2.44E-02
f7 1.127E06 3.34% Planar 48262.4 1.659E04 458.67 3,83E-01
f8 1.097E07 6.46% Planar 12.67 3.025E01 1,30 2,12E00
f9 0.4928 2.2577% Planar 21.491 7.177E01 3,71 5,47E01
f10 1740.72 1.824% Non Planar 622.064 2.042E01 3.40E02 2.19E00
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4.4 Conclusions

We conclude that the criterion proposed works successfully as a strategy to identify problematic
planar regions of functions with different dimensions, configurations and for different populations.
As a strategy of control, it levers the advantages for each algorithm agrees with the topology of the
function. It improves the individual behavior without any parameter change.

In this case, the main goal of this work was test de criterion as a successful method to improve the
performance of the algorithm. And the results for the proposed small benchmark set are enough to
determine the potential of the criterion as a general strategy to get good information from function.
The computational effort of the criterion proposed is small and it is a good way to learn how the
search strategy must to change, which is desirable. Nevertheless, this is the first approach to the
idea then it is immature yet. But now the criterion shows potential as a successful strategy for
hybrids and could be used for control and tuning parameters for different metaheuristics not only
supernova or Monte Carlo.
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5. DISCUSSION ABOUT THE RELATIONSHIP BETWEEN THE LEVEL
OF THE PARAMETERS AND DIVERSITY IN THE POPULATION

“The essential is to think that anything you
are doing has to become the occasion for
slashing. You must examine this well.”

– Miyamoto Musashi,Five Rings

Metaheuristics use parameters for adjusting the method to new problems, but the choice the
right set of parameters is an optimization problem itself. Each parameter has its own role inside
the strategy of search. Each one, alone or mixed with other parameters, increases or decreases
the intensity and diversity of the search around to the solutions found and selected. For example,
genetic algorithms use a crossover operator to increase or decrease the intensity of the search around
solutions chosen as parents and the number of the parents is the parameter for controlling it (Bäck,
1996).

The performance of a metaheuristic is related to the set of parameters. There is not a unique
method to choose the right set of parameters and guarantee the best performance of the meta-
heuristic for a particular problem. Often, parametrization uses empiric knowledge to adapt or
self-adapt each parameter for the different strategies. The contribution of each parameter is diffi-
cult to determine and depends on the problem and metaheuristic. In addition, the landscape of the
objective function is the best indicator for determining which balance is better, but it is unknown
in advance (Törn et al., 1999).

A parameter of the metaheuristics has three different characteristics: affectation level, range
and sensibility (Angeline, 1995; Kramer, 2008). Each characteristic influences the search in diverse
manners. Often, the sensibility and range are evaluated and validated in the original versions of
the metaheuristics which give us an idea about how they affect the search. However, the level of
affectation is described, but is not evaluated (Zambrano-Bigiarini, Clerc, & Rojas, 2013; Mezura-
Montes et al., 2006). There are studies about different values and range where the level is treated
indirectly. For example, when parameters change the level from one version to another. When a
parameter changes the level version by version, these tests show some traces about influence of the
parameter level in the balance of exploration and exploitation (Zaharie, 2002).

In this chapter, we focus on the influence level of the parameter because it is unknown. Agree
with Angeline (1995), Eiben, Hinterding, and Michalewicz (1999) there are two type of parameters,
external and internal, we focus on interal ones. For the internals, there are three kind of influence
levels. The first level is population level. This means that parameter affects all population, e.g. size
of population. The second level is individual level (solution level). In this case, the parameter affects
individual by individual, e.g. ω from the original version of particle swarm optimization (PSO).
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Where ω is a factor of the velocity of the individual and affects the whole solution (Eberhart &
Kennedy, 1995). Finally, component level this is the lowest one. In this case, the parameter could
influences or not each component of the solution individually, e.g. F for differential evolution
metaheuristic. Here, the parameter affect only some components of the solutions and not whole
individual (Storn & Price, 1997b). For this research, we use the classification of influence level of
internal parameter for study the relationship between influence level and balance of exploration
and exploitation.

The main goal of this chapter is shown how the level of the parameter affects search. The
analysis focuses on affectation level and if it changes how the search is affected. Also, how this
level changes can be introduced to control and tuning the parameters using the three variables:
Level, range and sensibility. Different version of three classical algorithms, PSO, DE and ES, are
compared and analized how the modification to the level of the parameter between version affects
balance between exploration and exploitation for both, method and problems.

This chapter is organized as follows. First, a brief summary about balance between exploration
and exploitation is presented. Afterwards, we describe the algorithms, their modifications and
parametrization, focussing in their exploration and exploitation strategies. Also, we present a
experimental design for determining the increasing and decreasing of search areas. Finally, we
analyse and discuss the results for different algorithms.

5.1 Exploration Vs. Exploitation

Each problem and method there is a right balance between exploration and exploitation. However,
this balance is unknown in advance and found it is an optimization problem by itself. In literature,
some authors use the words diversity and similarity as synonymous of exploration and exploitation
respectively (Črepinšek, Liu, & Mernik, 2013). Exploration or diversity is described as the amount
of new regions included in the search. While, exploitation or similarity is the increasing of the
research surrounded to a point found. That means diversity tries to avoid trap of local optimums
while similarity improves the quality of the optimal solution (Torn & Zilinskas, 1989).

Both, diversity and similarity, are opposite and linked with the neighbourhood. Multiobjective
paradigm has some measures of diversity. In this case, diversity try to guarantee the quality of
the Pareto front. Thinking about these measures we found some important topics (Zhou, Qu, Li,
Zhao, Suganthan, & Zhang, 2011):

• The diversity has two point of view solution x and the value of objective function f(x)

• Diversity measure can be from one point, a set of points a population or a subset of points.

• A measure of similarity can be defined as a close neighbourhood.

Definitions for exploration and exploitation in this work are:

Definition 5.1.1. Similarity of the Neighbourhood(SN) The similarity of of individual x with a
population or subset of this population P is denoted for a function d(·) such as SN(x) = d(x, P )
where x could be also f(x) and function d(·) can be a function of any attribute e.g. distance,
variances (Glover, Ching-Chung, & Dhir, 1995a).

Definition 5.1.2. Exploration If SN(x) > TH where TH is a threshold defined for the particular
case and be constant, variable or a function (Črepinšek et al., 2013).
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Definition 5.1.3. Exploitation If SN(x) ≤ THwhere TH is a threshold defined for the particular
case and be constant, variable or a function (Črepinšek et al., 2013).

5.2 The level of parameters and the probability of exploration in known metaheuris-
tics

The robustness of a metaheuristic is directed linked with parameters and how much the metaheuris-
tic can be ajusted to different problems, i.e. the flexibility of the metaheuristic which is a parameter
problem. Parametrization is a transversal problem for metaheuristics since 70s. Though, the differ-
ent approaches developed to solve this problem, there is not a perfect and unique method to do it.
In this section, we present a brief background of a few methods, the main differences between them
and focus on parameter level to compare the performance of the parameters in different levels.

5.2.1 how to control and tune the parameters for metaheuristics

Since first developes in the 70s, metaheuristics use parameters, but the analysis and novel approach
are focus only in the strategy. In 90s, some authors started to review the different paradigms for
metaheuristics and made a taxonomy for the two principal point of view for parameters: charac-
teristics of the parameters and how to define the parameters (Angeline, 1995; Eiben et al., 1999).
As we mention above the characteristic for each parameter was defined as: affectation level, range
and sensibility. The parametrization was focus on when the parameters are chosen and defined.
There are two moments: before to run the algorithm and inside the running. Both, characteristics
and parametrization, are applied for each algorithm and strategy focus on the parameters. For
example: 1

5 rule is a classical self-adaptation for ES. In this rule, the parameter changes the range
to increase the exploration after 5 iterations without improvement.

In Figure 5.1, we present the classification summarized by Kramer(2008) where describe the
methods to control and tune the parameters. For tuning, the setting of the parameters is doing
before the algorithm started. Otherwise, the setting of parameters in the controlling part is doing
when the algorithm is running. Each method has their own strategies. Tuning has 3: Ad hoc,
experimental design and evolutionary, and controlling has 4: again evolutionary, deterministic,
adapt and self-adapt.

• Ad Hoc: the parameters are chosen by expert judgement.

• Experimental design (DOE): a test for parameters is designed and agrees with statistics of
the test the best set of parameters is chosen.

• Evolutionary: Parameters are optimized by a metaheuristic.

• Deterministic: Parameters change inside the algorithm agree with iteration or time indepen-
dently of the behaviour.

• Adapt: parameters follow a rule to adapt, e.g. most part of stop criteria.

• self-adapt parameters change when there are some conditions like 1
5 rule.
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Figure 5.1: Classification for parametrization

5.2.2 PSO Vs. SPSO2011

In this section, we compare the original version of PSO and standar PSO proposed by Clerc in
2011 known as SPSO2011 (Zambrano-Bigiarini et al., 2013). Although the main differences are
described, we focus in the parameters of each method and how they affect the search for each
version.

From original PSO, the velocity equation is

vk ← ωvk + c1 ∗ u1(xG − xk) + c2 ∗ u2(nk − xk) (5.1)

where u1 and u2 are diagonal matrices n×n whose components are random numbers uniformly
distributed (∼ U(0, 1)). nk is the best solution found for each particle k and xG is the best solution
found for the algorithm in the previous iterations. In this case, the three parameters (ω ,c1 and c2)
affect the complete solution, i.e. the parameter ω modify the amplitude of the previous velocity.
The random vectors increase the exploration and avoid a complete deterministic scatter. The
Equation 5.1 correspond to the Line 18 of the Pseudocode 6

Six points of the algorithm have been described as problematic topics and there are several
strategies to try to solve those. We can divide them in three kinds. First, algorithm problems:
Stagnation, dimensional stagnation and rotation variant. Second, Computational effort: population
size. Third, exploration problems: local trap and scale problem. In sake of brevity, we only
presented few examples of proposed version of PSO. Some solutions for local trapped is boarded for
different versions like: comprehensive-learning PSO (CLPSO) (Liang, Qin, Suganthan, & Baskar,
2006) , LAPSO, the hybrid between differential evolution and PSO (DE-PSO), among others (Zhang
& Xie, 2003). Computational effort (hybrid particle swarm with differential evolution operator.,
2006) is improved by µ-PSO, coordinate PSO(cle, 2006; Chen, Huang, Jia, & Min, 2006).
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Algorithm 6 PSO pseudocode

Require: ω, cp, cg, K, T
1: t← 2;cp = cg ← 1.193;ω ← 0.721
2: v0 ← runif(1)
3: for k = 1 to K do
4: xk ← runif(N)
5: xG ← arg minf(xk)
6: vk ← ωv0 + c1 ∗ u1(xG − xk)
7: sk ← ωvk + xk
8: nk ← xk
9: end for

10: while t ≤ T do
11: xk ← sk
12: for k = 1 to K do
13: nk ← arg min{f(nk), f(xk)}
14: end for
15: if min{f(xk), ∀k} ≤ f (xG) then
16: xG ← arg min{f(xk), ∀k};
17: end if
18: vk % velocity of calculation agree with algorithm version.
19: sk ← ωvk + xk
20: t← t+ 1
21: end while
22: return xG;f(xG)

The standard versions of PSO, proposed by Clerc (Zambrano-Bigiarini et al., 2013; cle, 2006;
Zambrano-Bigiarini et al., 2013), summarize and analyze the best strategies for the problematic
function. The standard version used in this work is SPSO 2011 which is invariant to the rotation.
The main difference between both version of PSO (original PSO and SPSO2011) is the calculation
of new velocity (See Line 18). While original version uses the best solution found and the best
solution for each particle to calculate the new population, SPSO2011 asses a hypersphere1 based
on b random solutions. b is a new parameter include in this standard version and regularly are
three.

The main improvements of SPSO-2011 version are: random topology paradigm(here topology
are referring to neighborhood of the particles) and the change from the hyper-cube to hyper-sphere
(Zambrano-Bigiarini et al., 2013). The mixture of these improvements change Line 1 of Pseudocode
6. In this case, the velocity is calculated using random topology paradigm (cle, 2006). Also, Line
5 is changed by introducing a new term in the Eq. 5.1 given by

Gt
i =

bxti + c1u1 ⊗ (pti − xti) + c2u2 ⊗ (gti − xti)

b
(5.2)

Then, hyper-sphere Hi(Gt
i, ‖Gt

i − xti‖), where Gt
i is the center of hyper-sphere and the radius

of the hype-sphere is ‖Gt
i − xti‖

1The original version works with hypercube
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Figure 5.2: For given vector factors the probability square for next generation (a) show the vectors
for a solution xk and (b)the probable area for next generation solution or sk

In Line 5 of Pseudocode 6 the equation is modified from Equation 5.1 to Equation ?? while
Line 6 does not change. Thus, the version that we use to test and validate the proposed strategy
is SPSO-2011.

labelv2011v
(t+1)
i = ωv

(t)
i +Hi(Gt

i, ‖Gt
i − xti‖)− xti (5.3)

How parameters work in SPSO2011 and PSO

For the original PSO, new swarm is calculated as a vector sum and use three parameters. ω is the
parameter that scaled the velocity of the individual. ω is constant and its level is individual. If
ω < 1 the magnitude of the velocity is reduced in other case, the magnitude of this vector is equal
or bigger. The other two parameters, c1 and c2, are factors of the influence between local best and
global best found for the algorithm, both are individual level too. In Figure 5.2 part (a),we present
the vectors of the inertia and the influence of the best local and global multiplicand by parameter
factors. In the part (b) we represent a x′k that will be the next solution without random matrices
u1 and u2. The gray square in Figure 5.2 part (b) represent the area where the new individual
would be located randomly. The perturbation induced by this random matrices to the components
of the individuals increases the exploration of the algorithm.

In the last paragraphs, we described both versions of the PSO. The original version has same
weakness of a hill climb method, good to find the descent direction, but it gets tramp in local
minimal solutions. Furthermore, PSO is a central force algorithm, i.e. poor exploration for in-
tricate topologies (cle, 2006). SPSO2011 joins different develops from original version. The main
improvement is the invariance to rotation (Zambrano-Bigiarini et al., 2013). However, the changes
in the parameters modify the probability to find the attraction area to the global minimum. In
the first case, the probability will be distributed over vectors, and new population will be a factor
of the resultant vector. SPSO2011 version works with a hypersphere which is building from global
best solution ever, the best local solution and a random neighbor. This hypersphere is invariant to
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Figure 5.3: For given vector factors the probability sphere for next generation (a) show the vectors
for a solution xk and (b) the probable area for next generation solution or sk

the rotation, but also the distribution over the feasible area is bigger.

5.2.3 Differential evolution vs. Self-adaptive DE (SaDE)

In this section, we compare the original version of DE and a self-adaptive version. We discuss
how the strategies modify the behavior of the algorithm focusing in the parameters. The original
algorithm and the changes made for the new version are described. And how the differences between
original version and self-adaptive version lever to the control over the balance between exploration
and exploitation.

Differential Evolution

In 1996, DE was proposed by Storn and Price, as a new algorithm of the evolutionary paradigm
(Storn & Price, 1997a). Evolutionary metaheuristics have a structure: Evaluation of Objective
function, Selection, Operators (crossover and mutation) New population and start over until a
stop criterion. DE follows this structure, but operators are not complete independent as in other
algorithm of evolurtionary paradigm. i.e. There is one operation for crossover and mutation. As
PSO method, DE calculated a velocity that is a combination of both operators. In the Pseudocode
7, there is the basic structure of the algorithm (Feoktistov, 2006a).

The original version of DE propose the following equation for velocity (Line 11 of the Pseudocode
7):

v
(t+1)
i = x

(t)
best + F (xt2 − xt3) (5.4)

where x
(t)
best is the best solution found, xt2 and xt3 are two different solution chosen randomly, and

F is a parameter. And this equation is mutation operation for the metaheuristic. if a component
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Algorithm 7 DE pseudocode

Require: F , cr, K, T
1: t← 2;cr = 0.5;F = 0.9
2: for k = 1 to K do
3: xk ← runif(N)
4: end for
5: while t ≤ T do
6: xk ← sk
7: xbest ← arg min{f(xbest), f(xk)}
8: if min{f(xk),∀k} ≤ f (xG) then
9: xG ← arg min{f(xk), ∀k};

10: end if
11: vk % velocity of calculation agree with algorithm version.
12: sk % New population is the result of crossover and mutation
13: t← t+ 1
14: end while
15: return xG;f(xG)

uses or not the mutation (there is a change in the individual or not) is defined as crossover for
this algorithm. Then, new population are determined by the following equation (Line 12 of the
Pseudocode 7):

st+1
j,i =

{
vt+1
j,i if rand(1) < Cr or i = j

xtj,i else
(5.5)

where sub-index j denotes each component of the solution vector and Cr is a parameter called
crossover parameter. As we mention above, both operators are non separable as a individual
operators as in other algorithms as GA or ES. Then both parameter affect the general behavior.
In any case, we can construct the probability region. In this case, the probability of the new
population have specific points given by F and the Cr. In Figure 5.4, the gray points represent
the possible solutions for next generation from xi, which is the black point in Figure. The other
three points x1,x2, x3 are solutions from current generation and were chosen randomly. In the
algorithm, if F increase, the diversity in terms of distance between solutions increase and vice
versa. The another parameter Cr is a ratio between 0 and 1, when Cr = 0 there are only one
change in each indivitual while Cr = 1 all crossover are generated for all components. Both limits
for Cr reduce the exploration over search space changing the level of the parameter from component
to individual.

SaDE

Several approaches has been proposed from the original version of DE. These new versions are
different in the crossover and mutation. The principal advantage of this version (SaDE) is the self-
adaptation of the parameters. It was proposed by Qin and Suganthan in 2005 (Qin & Suganthan,
2005). This version combines two different versions of the mutation for the algorithm using a
learning process that control the parameters for the algorithm.

The original version of DE was called as: rand/1/bin. Rand means that solutions for the new

56



Figure 5.4: For given factors, possible solutions for the new population for original version of DE

population are chosen randomly. The number one means you must only have one vector F (xt2−xt3)
and bin denotes binomial crossover. In this case, the parameter for the crossover is chosen in
a tournament. There are another option which is exp in this case, the tournament, but also is
function of iterations. In this work we only use the versions bin. The most popular version are: the
original, best/1/bin, rand/2/bin best/2/bin. When the version is denoted with the word best, that
means a elitism strategy. While rand version uses 3 solutions chose randomly, best version uses the
best solution and x2 and x3. For the number 2, we use the whole five solutions chose randomly or
the best and 4 chose randomly.

SaDE use two operation of mutation, rand/1/bin and best/2/bin. Also, this version increase the
diversity with a random F , the parameter will be distribute normally with x = 0.5 and σ = 0.3 for
the range (0, 2]. The dynamical parameters allocated in the level of component made SADE one
of the best algorithms in terms of quality.

5.2.4 ES vs. CMA-ES

Genetic Algorithms and ES are the first approaches to population metaheuristics. Proposed in
Germany in the 60’s by Rechenberg and deeply modified in the 70’s by Schwefel (Beyer & Schwefel,
2002), ES is one of the most efficient and known metaheuristic. The original algorithm proposed
in the 60’s was individual algorithm, in the 70’s the population was proposed. The initials modifi-
cations of ES increase the exploration of the algorithm implemented a population. The population
evolved using two mechanisms mutations and crossover.

The parameters of the algorithm are: the number of children (λ) and the number of the parents
(µ), the operator comma(,) or plus (+) for the selection, σ and ξ are deviation and mean respectively
of a normal distribution and are linked with mutation operator. c is a constant factor to increase
or reduce the deviation σ agree with the successful of the mutation (Beyer & Schwefel, 2002).

ES

In the pseudocode 8, we present the version (µ+λ)-ES. The initial population is random and
uniformly distribute over search space. Afterwards, we apply mutation operator and later the
crossover. For the crossover, the parents are chosen using parents and children of the generation
because + operator. The original algorithm uses the randomly parents, some elitism was included
using the best i. Crossover have a lot versions, using the mean between both solutions using one
or another, among others. In Figure 5.5, the line pointed with crossover is the probably line for
a child between x1 and x2. Mutation is a ”perturbation” of the solution where x1 mutation is
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Algorithm 8 ES pseudocode (µ+λ)

Require: σ, ξ, λ, µ, T
1: t← 1;
2: xk = rand(n)∀k ∈ {1, ..., λ};
3: while t ≤ T do
4: f(xk)∀k ∈ {1, ..., λ};
5: xG = argmin(f(xk)∀k;
6: sk = xk +RandN(0, σ)∀k ∈ {1, ..., λ};
7: if f(xk) < f(sk) then
8: sk = xk;
9: end if

10: choose µ solutions randomly from parents chosen and previous children;
11: crossover λ to obtain solutions from the parents chosen;
12: select the best solutions for a final sk
13: xk = sk
14: end while
15: return xG;f(xG)

Figure 5.5: For given factors, possible solutions for the new solution of the population for (µ +
λ)-ES

x′1 = x1 + randN(0, σ). The new individual is part of the population if its fitness is better than
non mutate solution. the deviation σ changes, as we mention in the parameters description, with
the successful mutation. In figure 5.5, the gray circles around solutions are the probable are for new
individual after mutation. Then, the line and circles are the exploration area for next generation
solutions given x1 and x2.

CMA-ES

The version called CMA-ES changes the type of the random distribution used. The original version
of ES uses normal distribution while CMA-ES uses multivariate normal distribution, which is the
main difference. with this particular change, CMA-ES tries to emulate a gradient, using the
correlation matrix as the approximation of a kind of Hessian (Hansen, 2016). Parameters does not
change in quantity but in formate i.e. while in the original version we have a mean, CMA-ES use
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Figure 5.6: For given factors, possible solutions for the new solution of the population for (CMA-ES

a vector of means.
The changes mention above has a interesting results in terms of the next generation probability.

In Figure 5.6 part (a), the mutations is a perfect circle. In terms of geometry, the projection of
iso-density line changes in a multivariate normal distribution because there is not a unique mean
or deviation is a vector of them (see Figure 5.6 part (b)). The shape of the level for the same value
change from a circle to a ellipse where de axis directions are related with correlation. For a matrix
of low correlation(separable functions) the axis of iso-density ellipsoid will be parallel to the axis of
the variables. If variables are highly correlated the axis of the new ellipsoid emulate to a gradient
calculated by the Hessian (Bäck, 1996)(see Figure 5.6 part (c)). Most of the times, the parameters
introduced in this version, increase the area from the original circle, but the correlate matrix
introduce a indirect exploitation in the algorithm, which induces similarity into the population.
This is a particular case in the literature, where the parameters and strategy are mixed efficiently
to produce more exploration and exploitation.

5.3 Conclusions

Previously, we follow the most successful modifications for known metaherustics. Although, the
three metaheuristic described are different, there are some common point in the modifications.

• The parameters change level to increase the control of the balance between exploration and
exploitation.

• The improvement of the performance are related with the control and equilibrium of the
diversity and similarity.

• Theoretically it is clear how the parameter must to be control, if we know the objective
function. The objective function is unknown in advance. Then, parameters are controlled
randomly or as a function of the iterations using the concept of asymptotic behavior.
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6. SUPERNOVA 2.0

“ Would you tell me, please, which way I
ought to go from here?” “That depends a
good deal on where you want to get to,” said
the Cat. “I don’t much care where –” said
Alice. “Then it doesn’t matter which way
you go,” said the Cat.”

– Lewis Carroll, Alice in Wonderland

The past five chapters give a solid background to propose a new version of supernova. In the first
chapter, the weakness was described and the focus of this work was defined. In the second chapter
the three main operators, Selection, gravity and impulse, was characterized. In the third chapter, a
version with a LDS initialization was proposed as a general improvement for the algorithm. In the
fourth chapter, a criterion to identify planar regions is presented. Finally, in the fifth chapter, a
discussion about parameters their characteristics from other metaheuristics and their improvements
is reported. A new version of the algorithm Supernova, called Supernova 2.0, is proposed based on
the previous chapters. This version tries to reduce one of the weaknesses mentions in chapter one,
the planar regions. Self-adaptive parameters that follows a topology criterion and LDS start are
the main innovations developed for this new version. The results show a reduction of iterations for
some benchmark functions and minimum significantly lower than first version.

In the first section of this chapter, we present the modifications made to the original algorithm.
In the second section, we present the implementation of the algorithm and the first empirical
convergence tests. In the third section, we present the results of Supernova 2.0 for well-known
benchmark functions and the results of the same functions for two popular metaheuristics and
original version of Supernova. Finally, we discuss the results found.

6.1 Algorithm Modification

In this section, the modification made to the original algorithm is presented. The changes are de-
scribed for each operation mentioned in the second chapter: gravity, impulse and selection. Finally,
how parameters and modification of the operations can affect the balance between exploration and
exploitation of the algorithm is analyzed (Liu et al., 2013). For the gravity operation, the calcula-
tion of the distance was modified. For selection, a non-elitism procedure is proposed. Last but not
least meaning, the parameters are adapted for following the topology criterion proposed in chapter
4.
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Figure 6.1: comparison in a 10 individual populations between original gravity operation and new
version of gravity operation

6.1.1 Modification to Gravity operation

The original operations of Supernova, described in the Chapter 2, work properly for convex func-
tions, but not for planar regions as we described in Chapter 1. The original version of the operation
called gravity implies a high computational effort. The first modification to this operation is related
with reduction of the computational effort keeping the same performance of the operator.

The high computation effort is introduced by distance calculation in the original gravity opera-
tion. For this second version, the distance vectors are not calculated. Instead, inertial momentum
is calculated for the different particles involved. In Figure 6.1 part (a), we show the behavior of a
random population with original operation. Triangles represent the new population and x represent
the initial population. Also, in Figure 6.1 part (b), we present the identical population for new
same function and found the next population obtained by inertial momentum calculation. The
most important advantage of this change is the reduction of algorithm’s complexity from O(n3) to
O(n), without losing the diversity.

Algorithm 9 gravity operation

Require: x,f(·) , G
1: for i=1 to i=K do
2: Ri+1,i = xi+1 − xi
3: Ri,i+1 = −Ri+1,i

4: end for
5: hk ←

∑K
i=1
i 6=k

G ·mi ·Ri,1:k

6: sk ← xk + hk
7: return s

In the algorithm 9, the sequence of the new operation is presented. The unitary vector of
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distance calculated in the original version is replaced by the difference between solutions, which is
quite similar to inertial moment I = mr2. We do not use the square of the distance because when
the distances are less than 1 there is a distortion. The inertial moment is like a weight average
where mass is the weight. That means, bigger mass implicates that the inertial moment will be
near to this point. If the difference between the particles’ masses is very large, the moment of
inertia can be absorbed by a single particle which drastically reduces the exploration. For keeping
the exploration, we proposed to rank masses and use this ordered integer index to find the moment
of inertia. m = rankk(f(xk)

6.1.2 Modification to Selection

In the previous version, selection was a memory, i.e. a vector keeps the best solution found by
individual, which is important to guarantee an asymptotic behaviour for the error(Villalobos-Arias
et al., 2005). In this version, we propose a random parameter to keep the best solution found
for the individual or keep the new solution when this is worse than the best solution for the next
iteration. This kind of selection was proposed for ES(Bäck, 1996). The elitism is very important to
get the convergence to a particular solution, but when a unique best solution is used the algorithm
can arrive to a local minimum. In the original version, the best solution is used for each iteration
reducing the exploration of new regions.

6.1.3 Parameters

From previous version, we keep the parameters: size of population, number of iterations, number of
restarts, F and G and the new parameter to determine when keep the best solution or use the worst
that we call ω. Furthermore, the last three will be controlled by the topology of the region found
by the criterion described in Chapter 4. Notice that for planar regions, the exploration should be
increased. How parameters increase or reduce the exploration is discussed in chapter 5, and the
modifications to the Supernova algorithm’s parameters are shown in this section.

The criterion propose found two values from particles, the first one is:

Rg =
f (x)max − f (x)min

‖ub− lb‖
(6.1)

That is related with Range of objective function’s values. The second one is:

TC =
f (x)mean − f (x)median
f (x)max − f (x)min

· 100 (6.2)

This is the difference between the mean and median of the objective function’s values.

The Table 4.2 shows the possible scenarios for Rg and Tc for populations between 30 and 100
individuals. Agree with this criterion, the algorithm uses parameters for planar regions and other
parameters for convex functions. The next parameters are taken from the original parameters (See
Chapter1) and do not change for the different kind of topologies: population K = 50, restarts
R = 50, maximum iterations T = 500 and α = 1.1. The initial λ0 is the range of the variables. The
other two parameters and the new selection parameter change for planar or convex regions, and
start with the begining values: F = G = 1 and ω = 0.5. The criterion is described in the algorithm
5 the parameters will modify from the initial values to F = G = 2 and ω = 0.2 for non-planar
regions like sphere function and F = G = 0.5 ω = 0.8 for planar regions.
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The main modification for parameters is a level change. For planar regions, a new configuration
for the parameters is added. F and G are individual-level parameters for previous version of the
meta heuristic. From chapter 5 discussion, we propose to change both parameters from individual
to component level, i.e. the parameter will be used only in some component randomly chosen.
This increase the exploration of the algorithm. For example, we think in 2D function, when F
and G are individual-lever parameters the options for the new solution is a line while both are
component-level parameters the line become a square of solutions (See Figure 5.2).

6.2 Results

The error medians for the set of 28 benchmark function in 10 dimensions, known as a CEC 2013
test, are presented in Table 6.1. Each column is the result of a metaheuristic. SaDE and DE are
versions of differential evolution, which are the best results reported in the literature for the set of
benchmark functions chosen. And SaDE is included because this is the standard version of self-
adaptive algorithm of DE. The finest results for a similar algorithm are SPSO2011. SPSO2011 is a
standard version of PSO proposed by Clerc and the result are significantly better than the original
version of PSO. The results for Supernova and Supernova 2.0 are unedited while the results for
the other algorithms are from (Zambrano-Bigiarini et al., 2013; Qin & Li, 2013; Qin, Li, Pan, &
Xia, 2013) respectively. The algorithms were used for previous comparisons in this work. Between
the original Supernova proposed in 2010 and Supernova 2.0 there is a version which was presented
in the Chapter 3. This version is a deterministic version that works better than original version
presented in Chapter 1 and is the one used in this comparision.

For all algorithms, except supernova, the median is calculate from 50 independent runs. Su-
pernova is a unique value because it is deterministic algorithm. The parameters for each al-
gorithm are SaDE and snova 2.0 are self-adaptive, DE(K=50,CR=0.9 and F=0.5), SPSO2011
(K=40,informants:3, c1 = c2 = 0.5 + ln(2),ω = 1

2∗ln(2)) and Supernova (K=50,F = G = 4,α =

1.5,η = 0.15).
The initial hypothesis is H0 : f∗supernova2.0 = f∗DE = f∗SADE = f∗SPSO2011 = f∗Supernova and

Ha : f∗i 6= f∗i′ for at least one of the algorithms. To check this hypothesis, the Friedman’s test
will be used. For both tests, the rank for ties was calculated as the average. In the Table 3.6, the
result for the Friedman’s test is shown. The P-values are inferior to 0.5, then the H0 is rejected.
This means that at least one of the algorithm behaviour is different from others.

The initial hypothesises are H0 : f∗snova2.0 = f∗i and Ha : f∗i 6= f∗i′ where i is each algorithm,
in this case: Supernova, DE, SaDE, SPSO2011. The median of the i algorithms are compared with
the new version of Supernova called Supernova 2.0. The Wilcoxon test is non-parametric test to
determine if there is a significant difference between medians, for this test we choose one tailored
test and positive rank indicates a superior performance of the Supernova 2.0. In Table 6.3, the
rows are the positive and negative rank, the columns are the algorithms. In the last row the level
of the test for α = 0.01 is given. Agree with the level, we can conclude that medians from original
version and second version of supernova are significant different. The positive ranking is greater
which means that Supernova 2.0 is significantly better than Supernova. For SPSO2011 and Snova
2.0 the H0 is not rejected which means the performance is non significantly different. Finally for
DE and SaDE, the negative ranking is greater and the minimum is smaller than 101 which means
both algorithm have a better performance than Supernova 2.0.

The test was running in a processor intel core i7, 2.36 Ghz and 8 cores. The time depends of
the kind of objective function, the first functions are faster because the calculation of the objective
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Table 6.1: Results and comparison for benchmark functions, CEC 2013, between Supernova v.1,
v.2, DE and PSO. 10 dimension and 50 independent runs

f Error SPSO2011 Error DE Error CDE Error Supernova Error Supernova 2.0

f1 0.00× 10+00 1.00× 10−08 1.00× 10−08 1.23× 10+03 5.70× 10+02

f2 3.63× 10+04 2.85× 10+02 1.00× 10−08 3.59× 10+06 2.47× 10+06

f3 2.68× 10+05 3.11× 10−01 4.23× 10−03 1.07× 10+09 1.24× 10+09

f4 8.87× 10+03 1.92× 10+00 3.91× 10−07 2.58× 10+03 4.04× 10+03

f5 1.19× 10+03 1.00× 10−08 1.00× 10−08 1.58× 10+02 8.88× 10+01

f6 9.80× 10+00 7.10× 10−01 9.81× 10+00 6.23× 10+01 5.43× 10+01

f7 2.11× 10+01 8.41× 10−06 7.06× 10−03 6.21× 10+01 3.69× 10+01

f8 2.03× 10+01 2.04× 10+01 2.04× 10+01 2.01× 10+01 2.01× 10+01

f9 4.80× 10+00 1.03× 10+00 1.11× 10+00 6.53× 10+00 6.16× 10+00

f10 3.00× 10−01 4.92× 10−02 2.46× 10−02 6.30× 10+01 6.07× 10+01

f11 1.09× 10+01 9.95× 10−01 1.00× 10−08 6.23× 10+01 5.44× 10+01

f12 1.39× 10+01 6.96× 10+00 4.16× 10+00 6.79× 10+01 1.× 10+01

f13 2.08× 10+01 1.18× 10+01 4.87× 10+00 6.47× 10+01 3.22× 10+01

f14 8.34× 10+02 7.48× 10+01 1.00× 10−08 1.17× 10+03 1.04× 10+03

f15 7.74× 10+02 1.19× 10+03 7.41× 10+02 1.02× 10+03 7.02× 10+02

f16 5.00× 10−01 1.03× 10+00 1.11× 10+00 6.18× 10−01 5.88× 10−01

f17 1.89× 10+01 1.67× 10+01 1.01× 10+01 8.50× 10+01 6.14× 10+01

f18 1.78× 10+01 3.12× 10+01 2.28× 10+01 9.15× 10+01 5.24× 10+01

f19 9.00× 10−01 9.74× 10−01 3.94× 10−01 1.02× 10+01 1.38× 10+01

f20 3.40× 10+00 2.33× 10+00 2.20× 10+00 2.87× 10+00 3.57× 10+00

f21 4.00× 10+02 4.00× 10+02 4.00× 10+02 4.40× 10+02 4.20× 10+02

f22 9.06× 10+02 1.16× 10+02 8.84× 10+00 1.18× 10+03 5.02× 10+02

f23 9.10× 10+02 1.01× 10+03 6.59× 10+02 1.30× 10+03 6.50× 10+02

f24 2.14× 10+02 2.05× 10+02 2.00× 10+02 1.67× 10+02 1.94× 10+02

f25 2.09× 10+02 2.00× 10+02 2.00× 10+02 1.68× 10+02 1.55× 10+02

f26 2.00× 10+02 2.00× 10+02 1.06× 10+02 1.70× 10+02 1.69× 10+02

f27 3.36× 10+02 3.00× 10+02 3.00× 10+02 5.88× 10+02 4.54× 10+02

f28 3.00× 10+02 3.00× 10+02 3.00× 10+02 4.50× 10+02 5.12× 10+02
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Table 6.2: Results for Friedman test for Supernova 2.0, supernova, SaDE DE and PSO

Values

SPSO2011 3.05

DE 2.5

SADE 1.84

SUPERNOVA 4.14

SNOVA 2.0 3.4

FF 32.2071

P-value 1.85 × 10−07

FID 10.8981

P-value 1.74 × 10−06

Table 6.3: Results for Wilcoxon’s test for SPSO2011, DE, SaDE and supernova

Snova2.0-SPSO2011 Snova2.0-DE Snova2.0-SaDE Snova2.0-Supernova

Positive Ranking 158 78 43 307
Negative Ranking 248 328 363 99

Level for α = 0.01 one tailored=101

function are easy and make complex to the last function. Taking a model the funtion f8 for 10
dimenstion and 1000 iteration the average time was 3.87 seconds.

6.3 Conclusion

In this chapter, we presented a new version of Supernova using the criterion presented in chapter
four for identify planar regions and self-adapt the parameters of the new version called supernova
2.0. This criterion was used in PSO to control its parameters sucessfully. The criterion proposed use
a central tendecy statistic measures and works for population between 40 and 100. This criterion
is alredy published in the contributions presented in the Chapter 1.

In this Chapter, the Friedman’s and Wilcoxon’s testes showed that the results of Supernova 2.0
are significantly better than the original Supernova. This means that the new version of the algo-
rithm does not degenerate the performance of previous version of the algorithm. Furthermore, The
performance of Supernova 2.0 is similar to SPSO2011, which is a well-known and older algorithm.

Besides the numerical results, we focus in the analysis of exploration and exploitation balance
in the search, How they affect the search in planar regions and how parameters controlling this
balance. These thoughts are general understanding of the direct methods of optimization and can
be used for improving any metaheuristic. Furthermore, the criterion to identify a planar region can
be used for any metaheuristic or to choose a different metaheuristics or classical methods to start
new search. Finally, the self-adaptation of the parameters using the information about topology of
the goal function given by population can be extended to other methods.

For future work, the self-adaptation of the parameters can be improved. The metaheuritics can
be combined with classical methodologies to improve the result and guarantee the local minimum
using the criterion proposed.
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7. CONCLUSIONS

The six chapters of this work summarize the improvements made to Supernova. In chapter one,
the advantages and disadvantages found are listed and compared with other known metaheuristics.
Among the advantages, we found the few iterations necessary for descending convex functions,
and the quality of the answers found. The most marked disadvantages were the time spends for
problems with many variables and the performance of the algorithm in planar regions or needle
minimum. These problems are common with other optimization methods. When finished the
analysis of the first version of the algorithm, general objective was defined as:

“To design and to validate a new version of Supernova based on the development of
a new strategy specialized in planar regions, and a mechanism for switching between
specialized algorithms for descendent and planar regions, such that there is an improve-
ment on the behaviour for planar regions without degenerating the current behaviour
for descendent regions.”

The following five chapters record the advances made in the research until Supernova 2.0.
Often, the populations of metaheuristics have between one to hundred individuals because the

size of the population is related with computational. In many cases, the uniform distribution is
used to estimate the first population, but the spaces between points are large. For direct methods,
the points of the first population can bias the search to one area to another one. Then, the initial
population should be evenly as possible. Low discrepancy sequences are not random sequences,
but the constructions of this sequences guarantee a similar space between points even for small
population. In chapter three, the original version of the algorithm is compared with version with
LDS. The implementation with LDS is significantly better than previous version. However, there
is not significantly better for problematic functions.

A criterion to identify planar regions is one of the specific objectives. In chapter four, a general
criterion is presented; it uses the difference between measures of central tendency of the population
as an indicator to increase or decrease the diversity of the search. Regularly, the best solution,
worst and random solutions are used to guide the search. In this case, the measures of central
tendency take into account the information found for whole population for controlling parameters
for increasing or decreasing the diversity or intensity adapting the algorithm to the problem.

In chapter five, a discussion about how parameters can be self-adapted successfully is presented.
The examples are limited, but they help to understand how to improve known metaheuristics and
plan strategies for controlling parameters. The most common strategy is changing parameters
randomly when the search meets certain requirements, e.g. 1/5 rule. Also, in different new version
of the algorithm change the level of the parameters as manner improve the performance of the
metaheuristics.
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Finally, Supernova 2.0 is presented in chapter six. In this chapter, the progress of the research
is collected and summarized. From chapter two the operations of the new version are included. .
From chapter three the use of low discrepancy sequences to estimate initial population. the criterion
for controlling intensity and diversity of the search is implemented for this version. Also, Version
2.0 includes self-adaptation of the parameters. In conclusion, the version presented in chapter six is
a self-adapted metaheuristic that use the central tendency measures for controlling the parameters.
Supernova 2.0 was tested using the 28 benchmark functions from CEC2013 and compared with the
original version, SPSO2011, DE and SADE. In general, Supernova 2.0 was significantly better than
original version. There is no significantly difference with SPSO2011 and work significantly worse
that DE and SADE.

As future work, the advances achieved by this research are associated with supernova, but they
can be used to improve other methods. Also, the criterion can be used to choose methods in
different points of the search for example change to a gradient method. The process can be extent
to self-adapt the parameters of other metaheuristics. The computational efficiency of the method
can also be improved by parallelizing it. Also, the algorithm can be extended to combinatorial
problems. The statistic measures of the population can be explore and extended and included
inside the operation of other metaheuristics.
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