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Summary

In this paper joint mean and variance beta regression models are proposed.

The proposed models are fitted applying Bayesian methodology and assum-

ing normal prior distribution for the regression parameters. An analysis of

structural and real data is included, assuming the proposed model, together

with a comparison of the result obtained assuming joint modeling of the

mean and precision parameters.
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1 Introduction

In this paper, we analyze situations where the observations are associated

with the beta distribution. The beta distribution defined in equation (1),

has applications in uncertainty or random variation of a probability, fraction

or prevalence, among others. Thus, this distribution has many applications in

areas such as financial sciences or social sciences as education, where random

variables are continuous in a bounded interval which is isomorphic to the

interval [0, 1]. To mention an example, in studies of the quality of education,

a number from 0 to 5 (or any other positive integer bounds) is assigned

as a measure of performance for the evaluation of school subjects as math,

language, arts, natural sciences or any other scholar area. In these cases, the

measure assigned to each student can be expressed as a number from zero

to one. Thus, it can be assumed that the level of student performance is a

random variable with beta distribution.

The beta p, q distribution function, defined by equation (1) can be re-

parametrized as a function of the mean and the so called dispersion parameter

as in equation (4), or as function of the mean and variance taking into account

equations (5) and (6). This characterization of the beta distribution can be

more appropriate. In the first re-parametrization, making φ = p+ q we may

see that p = µφ, q = φ(1 − µ) and σ2 = µ(1−µ)
φ+1

. In this case, φ can be

interpreted as a precision parameter in the sense that, for fixed values of µ,

larger values of φ correspond to smaller values of the variance of Y . This

reparametrization presented in Ferrari and Cribari-Neto (2004), was already

proposed in the literature, for example in Jorgensen (1997) or in Cepeda

(2001, pg 63).
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In this case, the mean and dispersion parameters can be modeled as func-

tions of explanatory variables, given that behavior of these parameters can

be explained explanatory variables. To cite a few examples, the educational

level of mothers could influence students school performance; land concentra-

tion can be explained by random variables associated with social and political

factors or the proportion of income spent monthly could be explained by the

number of persons in the household. At the same time, we can assume that

the dispersion parameter changes as a function of the same or other random

variables. With these ideas, Bayesian regression, with joint modeling of the

mean and dispersion parameters, was initially proposed by Cepeda (2001,

pg. 63), under the framework of joint modeling in the biparametric expo-

nential family (see Cepeda and Gamerman 2001, 2005). After that, Ferrari

and Cribari-Neto (2004) proposed classical beta regression models, assuming

that the dispersion parameter is constant through the rank of the explana-

tory variables. Further works have been published by Smithson and Verkuilen

(2006), Simas et al. (2010) and, Cepeda-Cuervo and Achcar (2010), the lat-

ter proposing nonlinear beta regression in the context of Double Generalized

Nonlinear Models. The beta regression models were extended in Cepeda et

al.(2011), assuming that the observation are spatially correlated.

The rest of the paper is organized as follows: Section 2 includes general

concepts on beta distribution. Section 3, presents the joint mean and variance

beta regression models. Section 4, provides an analysis of the structural data

assuming nonlinear and logistic regression models. Section 5, presents the

results of the “language performance” data.
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2 Beta Distribution

A random variable Y has beta distribution if its density function is given by

f(y|p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1I(0,1)(y) (1)

where p > 0, q > 0 and Γ(.) denotes the gamma function. The mean and

variance of Y , µ = E(Y ) and σ2 = V ar(Y ), are given by

µ =
p

p+ q
(2)

σ2 =
p q

(p+ q)2(p+ q + 1)
(3)

Many random variables can be assumed to have beta distribution. For ex-

ample, income inequality or land distribution when measured using the Gini

index proposed by Atkinson(1970), and the performance of students in sub-

jects such as mathematics, natural sciences or literature. In the latter case,

if performance X takes values within the interval (a, b), the random vari-

able Y = (X − a)/(b − a) can be assumed to have beta distribution. This

performance can be explained by household socioeconomic variables, hav-

ing fundamental impact on the student cognitive achievement. For example,

the level of student achievement is closely related to the educational level of

their parents and the number of hours devoted to study a subject. Thus,

the beta regression model could be appropriate to explain the behavior of

school performance as a function of associated factors. In these applications

however, the reparametrization of the beta distribution given in (4) could

be more appropriate. In the first, doing φ = p + q we can see that p = µφ,

q = φ(1 − µ) and σ2 = µ(1−µ)
φ+1

. Hence, φ can be interpreted as a precision
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parameter in the sense that, for fixed values of µ, larger values of φ corre-

spond to smaller values of the variance of Y . This reparametrizacion that

is presented in Ferrari and Cribari-Neto (2004), had already appeared in the

literature, for example in Jorgensen (1997) or in Cepeda (2001). With this

reparametrization, the density of the beta distribution (1) can be rewritten

as

f(y|α, β) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1I(0,1)(y) (4)

In this case, the mean and dispersion parameters can be modeled as func-

tion of explanatory variables, for example, as was proposed in Cepeda(2001),

given that changes in the precision parameter can be explained by explana-

tory variables, such as mothers educational level in the case of the student’s

school performance.

The beta distribution given in (1) can also be reparametrized as a function

of the mean and variance, with

p =
(1− µ)µ2 − µσ2

σ2
(5)

q =
(1− µ)[µ− µ2 − σ2]

σ2
(6)

Although writing (1) as a function of µ and σ2 can result in a complex

expression, joint modeling of the mean and variance can be easily achieved

applying the Bayesian methodology proposed in Cepeda(2001), and Cepeda

and Gamerman (2005). Sometimes, joint modeling of the mean and variance

could be more appropriate than the joint modeling of the mean and the so
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called dispersion parameter, given that parameters of the regression models

would be more easily interpreted.

3 Joint Mean and Variance Beta Regression

Models

With the reparametrization of the beta distribution as a function of µ and

φ, we can define a double generalized beta regression model as proposed in

Cepeda (2001). In that research, joint modeling of the mean and dispersion

parameters in the beta regression model and a Bayesian methodology to

fit the parameters of the proposed model, was defined. Under a general

framework, a random sample Yi ∼ Beta(pi, qi), i = 1, 2, . . . , n, was assumed,

where both, mean and precision parameters, are modeled as a function of

explanatory variables. That is,

logit(µ) = xt
iβ (7)

log(φ) = ztiγ (8)

where β = (β0, β1, ..., βk) and γ = (γ0, γ1, . . . , γp) are the vectors of the mean

and dispersion regression models and, xi and zi are the vectors of the mean

and dispersion explanatory variables, at the i-th observation, respectively.

Afther Cepeda’s work, Ferrari and Cribari-Neto (2004) proposed the same

reparametrization of the beta distribution, µ = p/(p + q) and φ = p + q. In

that paper, they assumed that g(µi) = xt
iβ, where g is a strictly monotonic

and twice differentiable real valued link function defined in the interval (0, 1),

assuming that the dispersion parameter is constant. Although they consider
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many possible link functions, in the applications they take the logit link

function, given that the mean can be interpreted as a function of the odds

ratio. The joint mean and dispersion beta regression models proposed by

Cepeda(2001), was later studied by Smithson and Verkuilen (2006) and Simas

et al. (2010), under a classical perspective. At the same time, a nonlinear

beta regression was proposed by Cepeda and Achcar (2010), assuming a

nonlinear mean model given by (9) and a dispersion model given by (8), in

the context of Double Generalized Nonlinear Models. This model was applied

to the schooling rate data analysis in Colombia, for the period ranging from

1991 to 2003.

µi =
β0

1+β1 exp(β2xi)
(9)

In this paper, we propose joint mean and variance beta regression models,

with the mean modeled as linear or nonlinear function of the parameters, as in

(7) or (9), and the variance modeled as a function of the explanatory variables

(10), where g is a monotonic and two time differentiable real function, that

take into account the positivity of the variance.

g(σ2
i ) = zi

tγ (10)

The results of fitting the mean and variance beta regression models are

easily interpretable: the mean fitted models have the usual interpretation,

but the fitted variance model is easily interpreted directly from data behavior.

For example, if the explanatory variable Z1 is associated to γ1 and γ1 > 0,

increasing behavior of Z1 is associated with increasing behavior of σ2. In
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the same way, the interpretation is applicable when the parameters of the

variance models are negative.

In the next sections, structured and real data sets are analyzed applying

joint mean and dispersion, and joint mean and dispersion beta regression

models to compare the performance of these models, according to the behav-

ior of the data.

4 Structural Data Analysis

In this section we present the results of the studies of a structural data set.

The aim is to fit joint nonlinear (logistic) mean and variance regression mod-

els and compare the results with the results obtained when joint nonlinear

(logistic) mean and dispersion models are fitted to the same data.

The data set, represented by black points in Figure 1, were generated

assuming as explanatory variable X that takes values from 1 to 13. Interest

variable Y , that increases with X , is assumed to have beta distribution.

Through X , Y it presents an increase variance.

4.1 Beta Nonlinear Regression

4.1.1 Joint nonlinear mean and variance beta regression models

In this section we assume that the observations come from the beta distri-

bution. Exactly, we assume that Yi ∼ Beta(p, q), i = 1, 2, . . . , n, where

µi = E(Yi) and σ2
i = Var(Yi), follow the models given by (9) and log(σ2

i ) =

γ0 + γ1xi, respectively. Assuming independent normal prior distribution for

the regression parameters, 5.000 samples of the posterior distribution were
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Figure 1: Systematic data (black points) and posterior fit mean model (con-

tinuous line), given by (9) .

generated, using WinBugs software, Spiegelhalter et al., (2002). The pos-

terior parameter estimates were obtained from the sample of the posterior

distribution taking an observation each five, after a burning of 1.000 observa-

tions. The posterior parameter estimates given by the mean of the posterior

samples are given in Table (1). For this model, the logarithm of the likeli-

hood function is given by 2logL = −346.230, and the value of the Deviance

Information Criterion (DIC) is equal to −336.916.

Figure 1, shows good agreement between data and the fit mean model.

The variance takes small values that increase with X , given that estimation

of γ1 is positive, following the general behavior of the data.
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Mean model Variance model

Parameters β0 β1 β2 γ0 γ1

mean 0.9073 6.12 -0.4456 -8.078 0.2572

s.d. 0.0171 0.2658 0.0169 0.3098 0.0408

Table 1: Parameter estimates of mean and variance regression parameters

4.1.2 Joint Nonlinear Mean and Precision Beta Regression Mod-

els

In this section, we assume that interest variable data comes from beta distri-

bution Yi ∼ Beta(p, q), i = 1, 2, . . . , n, where the mean model is given by (9)

and the dispersion model by log(φi) = γ0+γ1xi, for the purpose of comparing

variation in the posterior Bayesian summaries, obtained when nonlinear beta

regression models with joint modeling of the mean and dispersion parameters,

are fitted with results obtained in Section 4.1.1.

For this model, the posterior parameter estimates and the respective stan-

dard deviation, obtained by proceeding as in Section 4.1.1, and assuming the

same normal prior distribution function, are given in Table 2. In this case,

the 2logL = −340.602 and the DIC criterion value is equal to −331.080.

4.1.3 Model comparison

From Sections 4.1 and 4.2, it is possible to conclude that the beta nonlinear

regression model, with joint modeling of the mean and variance, has greater

likelihood value and smaller DIC value than the beta nonlinear regression

model with joint modeling of the mean and precision parameters. Thus,
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Mean model Precision model

Parameters β0 β1 β2 γ0 γ1

mean 0.9058 6.1120 -0.4463 6.7060 0.2876

s.d. 0.0172 0.2414 0.0168 -0.3259 0.0368

Table 2: Parameter estimates of joint mean and variance parameters

between these models, the first one is better to fit the proposed structural

data set.

Figure 2, shows the behavior of variance as per joint mean and variance

modeling (continuous line) and the joint mean and precision models (dashed

line). Although in both cases variance increases with X , the general behavior

disagrees, given that when the variance is directly modeling the variance of

data behavior is better described, especially for smaller and bigger values of

X . However, the fitted mean models present smaller differences.

4.2 Beta Logistic Regression Models

In this section, we analyze the systematic data set applying the proposed

beta regression models, assuming joint modeling of the mean and variance

parameters, and the beta regression models assuming joint modeling of the

mean and dispersion parameters, but with logistic mean models in both

cases. From the posterior estimates of the parameters, the performance of

the models are compared to determine which model fits the data set better.
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Figure 2: Variance models comparison: variance from the joint mean and

variance model (continuous line) and variance from mean and precision mod-

els (dotted line)

4.2.1 Joint Mean and Variance Beta Regression Models

In this section, we assume that the interest variable follows beta distribution

Yi ∼ Beta(p, q), i = 1, 2, . . . , n, where the mean and variance models are

given by (11) and (12), respectively.

logit(µi) = β0 + β1xi and (11)

log(σ2
i ) = γ0 + γ1xi (12)

The posterior mean of the parameter samples and the respective standard

deviation are given in Table 3. For this model, 2logL = −320.016 and the

DIC criterion value is equal to −311.922. The fit mean and variance model

given by (11) and (12) are represented by continuous line in Figures 3 and 4.
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Mean model Variance model

Parameters β0 β1 γ0 γ1

mean -1.761 0.3764 -7.605 0.1847

s.d. 0.0417 0.0093 0.3059 0.0355

Table 3: Parameter estimates of joint mean and variance parameters for beta

regression models (11) and (12).

4.2.2 Joint Mean and Precision Beta Regression Models

In this section, we assume that the interest variable data comes from the

beta distribution Yi ∼ Beta(p, q), i = 1, 2, . . . , n, where the mean model

is given by (11) and the precision by log(φi) = γ0 + γ1xi. This, for the

purpose of comparing the posterior Bayesian summaries obtained fitting joint

mean and precision models with the posterior summaries obtained in Section

4.2.1, where joint mean and variance beta regression models were fitted. The

posterior inferences of the parameters were obtained as in the lather sections,

assuming the same independent normal prior distribution, and are given in

Table 4. For this model −2logL = 313.442 and the DIC value criterion is

equal to DIC = −305.304. The fit mean and variance obtained from (11)

and log(φi) = γ0 + γ1xi, are represented by dotted line in figures 3 and 4.

4.2.3 Models Comparison

Between the models fitted in Sections (4.2.1) and (4.2.2) it is possible to

conclude that the beta logistic regression model, with joint modeling of the

mean and variance, has greater likelihood value and smaller DIC value than
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Mean model Precision model

Parameters β0 β1 γ0 γ1

mean -1.779 0.3762 6.502 -0.3151

s.d. 0.0413 0.0101 0.3074 0.0374

Table 4: Posterior parameter estimates of joint mean and precision parame-

ters.

beta logistic regression model, with joint modeling of the mean and precision

parameters. Thus, this model is the one that best fit the proposed structural

data set.

Figure 3, shows the behavior of the fitted mean models for the joint mean

and variance modeling (continuous line) and for the joint mean and precision

models (dashed line). From this figure, it is clear that the joint mean and

variance model is the model that best fits this structural data set. This

conclusion may also be drawn from Figure (4), where the continuous line is a

better description of the variance data behavior. Although in both cases the

variance increases with X , the general behavior of the dotted line disagrees,

showing that, when the variance is directly modeled the variance of data

behavior is better described, particularly for smaller values of X .

In each of the cases considered in this study, several chains were generated

starting from different initial values. All of them provided a rough indication

of convergence after a small transient period. Although, the joint mean and

variance regression models proved be more sensitive to initial values, these

models can be seen more appropriately in this data analysis. In general,
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Figure 3: Fit mean models given by 3. Mean and variance model (continuous

line). Mean and precision model (dotted line).
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Figure 4: Variance models comparison for logistic models: Joint mean and

variance modeling (continuous line) and Joint logistic and Precision models

(dotted line)
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these models can be formulated from a descriptive analysis of the data set.

For example, from the plot of this data set it is easy to conclude that the

mean follow a non nonlinear model and that the variance are increases with

X . Other usual behaviors may also be easily determined. For example, if

the variance decreases with X or if it increases to a real value c, after which

it is decreases. Thus, the joint mean and variance models should be taking

into account when data sets are analyzed applying nonlinear regression beta

models.

5 Application

In this section, we present the results of the analysis of a data set which

consists of the mean performance in Spanish of students in 31 departments

of Colombia, obtained from the Ministry of Education (MEN) and from Na-

tional Institute of Statistics (DANE), calculated from the National Household

and Population Census in 2005. The interest variable is the mean perfor-

mance “Performance” in Spanish of students in second grade of secondary

schools, and the explanatory variables are the level of unsatisfied basic needs

UBN and the percentage of teachers with postgraduate levels of educations.

The data behavior is presented in Figure 5. The first, shows that the

Spanish performance is a decreasing function of UNB and that the variance

is constant through UNB. The second, shows that performance is an increas-

ing function of PERC and that variance change with PERC, in increasing

manner.

Although we initially assumed joint mean and variance (dispersion) mod-
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Figure 5: Plots of performance in Spanish versus explanatory variables

eling, including all explanatory variables, we present the result of the beta

regression model with mean and variance models given by equations (13) and

(14), respectively, given that the DIC value of the second models was smaller

than the one for the first models.

logit(µ) = β0 + β1NBI + β2PER (13)

log(σ2) = γ0 + γ2PER (14)

Assuming normal prior distribution βi ∼ N(0, 102), i = 0, 1, 2 and γi ∼

N(0, 102), i = 0, 1, for the parameters, 10.000 samples of the posterior dis-

tribution were generated. The parameter estimates were obtained from the

posterior sample, after burning off the first of 1.000 samples. Parameter es-

timates and the corresponding standard deviations are given in Table 5. For

this model, 2logL = 205.323 and the DIC value is equal to −195.769. When

a beta regression model without explanatory variables in the variance model

is assumed, 2logL = 204.144, the DIC value is equal to −196.222.
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Mean model Variance model

DIC Parameters β0 β1 β2 γ0 γ1

-196.222 θ̂ 0.3132 -0.0025 0.0018 -8.425 -0.0306

s.d. 0.0357 5.023E-4 7.564E-4 0.8152 0.0269

-195.769 θ̂ 0.3026 -0.0023 0.0019 -9.287 -

s.s. 0.0316 607E-4 6.952E-4 0.2766 -

Table 5: Estimates of the parameters of the variance models

Table 5, includes the estimates of the mean and dispersion models given

by equations (13) and log(σ2) = γ0 + γ2NUM , respectively. With the same

prior distribution, the posterior parameter estimates obtained in this case are

given in Table . For this model, 2logL = 205.358 and the DIC value is equal

to −195.464. We also considered the model without explanatory variables in

the precision model, for which 2logL = 204.212 and the DIC value is equal

to −196.186

Mean model Precision model

DIC Parameters β0 β1 β2 γ0 γ1

-195.464 θ̂ 0.315 -0.0025 0.0017 7.022 0.0289

s.d. 0.0369 5.091E-4 7.686E-4 0.7897 0.0265

-196.186 θ̂ 0.3064 -0.0023 0.0018 7.881 -

s.d. 0.03172 4.73E-4 6.921E-4 0.2601 -

Table 6: Estimates of the parameters of the precision models
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This application shows how the joint mean and variance beta regression

models can be proposed easily from the data behavior. Shows also that the

proposed model fit the data better than the joint mean and precision models.

This result show the performance of the proposed models in the analyze this

type of data set.
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