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1.0 Introduction
Boundary value problems of partial differential equa-

tions are very often solved by the method of «separation
»of variables or Fourier method. The method can be used

without any difflculty in homogenous problems, that is,
in prohlems where de differential equation and the bounda-
ry conditions are homogenous. ~10st of the textbooks con-
centrate their attention on such problems and for the in-
homogenous case they merely' suggest using an integral
transform procedure. Nevertheless the Fourier method may
be extented to treat the inhomogenous problems. A recent
text by Tolstov (see reference 1), treats the case when
the differential equation is not homogenous but not the
case when the boundary conditions are also inhomogenous.
Kaplan (see reference 2), in his Advanced Calculus treats
relatively simple cases of inhomogenous boundary condi-
tions.

A general case with inhomogenous boundary conditions
has been treated in a paper in the ~~~E~~1_2f_~EJ2H~9:_~~-
~h~i~e (see reference 3), on vibration of beams with ti-

me-dependent boundary conditions. 'I'he method is valid not
only for vibration of beams but also for other types of
inhomogenous problems.

The objec'tof this pape r is to exhibit and apply the
method to some particular problems. We will explain the
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method using the problem of vibration of beams but we
will also apply that general procedure for another type
of problem. This is done only for convenienoe when working -
the examples.

2.0 Method of solution

The theory of elasticity establishes that transverse
displaoements of a prismatioal beam are governed by the
partial differential equation

where

q(x)P(t)
fJA

W deflection of the beam.
x position along the beam; x = 0 is one end

and x = L is the othe r end of the beam.

P densi ty.

A oross-sectional area of the beam.

EI where E and I the YoungPA , are s mo-
dulus and the second moment of area of the
cross section of the beam respectively.

2a

q(x)p(t) = external load per unit length of beam.
When the load does not vary with time, p(t)=l.

The boundary conditions rnigth, for example be

tl(O,t) = fl (t)

tlx(O,t) = f2(t)

Vi ( L , t )= f3 (t )xx
W (L,t) = f

4
(t)

xxx

and the initial oonditions
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W(x,O) =WO(x)

Wt(x,O) = wO(x)
(3)

The gist of the method consists in assuming that the
solution will be given in two parts, one of which is la-
ter adjusted so as to simplify the boundary conditions
on the other. On this account we take

Now, if we substitue equation (4) into (1), (2) and (3)

we find that 't'(x,t ) must satisfy
2 a4~ a2"t q(x)p(t) 4 r 2 1a ---- + ~ = - E. lLa f. (t)g.v(x) +ax4 at PA 1= 1 1

s ," (t)g. (x)11 1

t"(O,t) fl (t) 4 f.(t)g.(O)- E. 11= 1 1

'"t (O,t) f2(t) - E. 1 f.(t)g~(O)
x 1= 1 1

'T. (L,t) f3(t) 4 f. (t)g ,II (L)- E. 1xx 1= 1 1

l' (L,t) f4 (t) 4 f. (t)g.'11(L)- E, 1xxx 1= 1 1

(6)

t(x,O) WO(x) 4 f. (O)g. (x) }- E. 11= 1 1 (7)•1t (x,O) WO(x) - E. 1 f~(O)g. (x)1= 1 1

Now comes the key of this method and that consists in
choosing the functions g.(x) in such a way as to reduce

1

"t'(O,t),"t (O,t), "T (l,t) and '( (L,t) to zero.x xx xxx

From equations (6) we can see that in order tc have
t(O,t), t (O,t), r (L,t) and""[ (L,t) equal to zero,x xx xxx
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we should choose the functions g. (x) under the following
l

16 conditions

gl (0)=1 g2(0) 0 g3(0)=0 g4 (0)=0

gi(O)=O g~(O) 1 g3 (0)'=0 g'(O)=O4
(8)

g" (L)=O g" (L)=O J g3' (L)=l g" (L)=O1 2 4
g'" (L)=O e: , (L)=O g3" (L)=O g'''(L)=l1 2 4

We can notice that each column in equations (8) gives
us four conditions for each function g. (x) and since

l

derivatives of the fourth order of g. (x) are involved
l

in equation (5), in order to satisfy theso conditions we
will choose polynDmials of fifth degree in x, like the
following:

gl (x) + blx + 2 dlx3 + e x4 + f x5al clx + 1 1

g2(x) + b2x + 2 + d2x3 e x4 + f x5a2 c2x + 2 2
(9) .

g3(x) + b3x + 2 d3x3 e x4 + f x5= a3 c3x + + 3 3

g4 (x) = a4 + 2 3 + e x4 ..b4x + c4x + d4x + f x)
4 1-

The procedure of finding the polynomials g. (x) is
l

reduced now to solving systems of four equations. It could
happen however, that the number of unknowns is more that
the number of equations; in those cases we should make
zero the coefficient of the term of highest degree in x
and also, if nece ssary, the coefficient of the term of
second highest degree in the original system of equations.
Again, if some of the constants b., ••• ,f.,

l l
do not
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appear in the system of equations, we should set them e-
qual to zero also.

It is worthy to notioethat the computation of g. (x)
1

is only necessary when the corresponding f. (t) does not
1

vanish.
Once the polynomials g. (x) have been found we can

1

say that the problem has been reduced to

1: (O,t) 0 l (O,t) 0
x

1: (1,t) 0 t"xx)1,t) 0 (10)xx

't(x,O) WO(x)
_ E4 f.(O)g.(x)i=l 1 1

•'tt(x,O) W (x) - E. 1 r(o)g. (x)
0 1= 1 1 •

Arriving at this state is really the aim of the method
and in fact, as we can see, the time-dependence has been
removed from the boundary conditions.

From that state on, the classical methods for free or
forced vibrations can be used. However, we will complete
the solution of the problem explaining its next stages.

A solution of ( 5) will be of the form

"'t:(x,t ) ECD X T (n.)n=l n n
where

X = X (x) and T = T (t)n n n n
and we assume that the functions X will be orthogonaln
with respect to the interval (0,1),( as indeed happens
when the ends of the beams are fixed or free or simply
supported or restarined against translation or rotation
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by linear springs. The fact the functions
gonal implies we can expand the functions
and giv(x) in series of functions X

n

X are ortho-n
q(x), g. (x)

1

using expansion
formulas:

q(x) Loo QnXnn=l

g. (x) Loo G. X (12)l. n=l In n

g~v(x) Loo G. X
1 n=l J.nn

-where the constants Qn' G. , G. are given by the ex-l.n l.n
pressions

G.
l.n

G.l.n

i=1,···,4

(13)
i=l, ... ,4

Then, let us substitute equations (11) and (12) in equa-
tion (5)

= pet) 1:00 Q X _
PA n=l n n

which can also be written

C . (t) L 00 1 G. X]1 n= an n
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Now, since the series is xero, the generating term w
will be also eQual to zero and after we divide that term
by X Tn' the variables are separated

n Xiv
2

T' ,
2

f. (t)G. f~'(t)G.
n n ~4 ~ a n [4 ~ ~na X + T + a i=l T + i=l T
n n n n

o

or
2 -a f. (t)G.~ ~n

Tn
+

r'(t)G.~ ~n
T
n

From this last eQuation we can get the eQuations governing
X and T in the classical wayn n

a2Xiv _ A4 x. = 0
n n n

2 -a f. (t)G.~ In
'1'
n

+

The genral solution of eQuation (14) is

An An An AnX = A cos ~X B sin ~aX + C cosh --X + D sinh '~aXn n va + n va n \fa n Va

where the constants A, B , C ,D and A are given
n n n n n

by the boundary conditions (10). These will determine a
countably infinite set of eigenvalues, An'

Also, once we know
value of the constants
used in solving (IS).

X , we will be able to oompute then
Q G and G ~hioh will ben' in in
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For convenience, suppose that we substitute

A = (m1[a)/L
n n

and after we use the boundary conditions (10) to determi-
ne the mn, for corwenience, in (15) set

2 2am = ....'L.
n n

Then the general solution of (14) will be

X
n

A
n

m X
cos ..2!.... + B

L n
mX mX mX

sin ..2!.... + C cosh ..2!.... + D sinh ..2!....
L n L nL

(16)

and (15) will become

,
or which is the same

rn ~ #

- .I. n - E. 11.=
2 )-a f. (t G.

1. 1n
2= w T •
n n

In order to avoid a large handling of terms let us call

Thus we have the differential equation for rr
n

This equation can be solved using the method of variation
of parameters which is applicable whenever we can solve

8



the reduced e~uation; in fact, the reduced equation
TIl +w2T = 0n n n

cos w t,n
forIll

so we try for T
n

sin w t and
n

a solution of the following
has two linearly independent solutions

Tn vlsin wnt + v2coswnt (18)
where VI and v2' the parameters, are functions of t.
After we use the method of variation of parameters we
find for T a solution like this:

n

T
n

1 t-- J P (s) sin w (t-s) dswn 0 n n

As we know, this is only a particular solution of the
complete equation (17);& general solution is given by a-
dding to any particular solution of the complete equation
the gene~al solution of the reduced equation; in our case,
that is

T E cos w t + F sin w t +n n n n n
1 t

+ -- Jwn 0
P (s) sin w (t-s) d.s, (20)
n n

The solution of ~(x,t) will be given then as the SUIll

from n = 1 to n = 00 of the product of (16) and (20).

E
n

Indeed,

It remains only to compute the values of the constants
and F, which can be done by using conditions (7).

n

"[(x,0) Leo E X = W (x) - ~ f. (O)g. (x},L. 1n=l n n 0 J.= J. J.

Loo • 4~(x,O) = F X w = Wo(x) - L. 1 f~(O)g. (x).n=l n n n J.= J. J.
A similar reasoning to that which led to equations (12)-



and (13 ) allows us to compute E and F from the
n n

last two equations:

J Gvo(x) - t1: 1 f. (O)g. (x)lX dxo l' 1.= 1. 1. j n
En

L
J X2 dxo n

) (wo (x ) - Etl fi (0 )gi (x~ Xn dx
F = .:::.....---------------n

w •
n

L
J X2 dxno

which finally completes thE formal solution of the whole
problem since we have found ~(x,t) and g. (x),

1.
and

thus, the two parts of aour solution.

3.0 Application of the method

Problem 1. Consider the one-dimensional heat flow--------
with sources and variable end temperatures, where the
temperature' u(x,t) satisfies

au--at

u(O,t) fl (t) ,
u(L, t ) f2(t),

u(x,O) =uO(x) , 0 < x <' L. 0)
Let us try a solution of the form

Substitution of (4) into (1), (2) and 0) gives
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'ft(x,t) - k"'t (x,t) q(x)p(t) + t ~f. (t)g. (x)-f~(t)g. (XJxx i=l 1. 1. 1. 1.

( 5)

t"(o,t) fl(t) - 2:~ If. (t)g. (0) ( 6)1.= 1. 1.
(6)

"t(L, t) = f2(t) - 2:~ If.(t)g. (L)1.= 1. 1.

T(x,O) u (x) - 2:~ If. (o)g. (x) (7)o 1.= 1. 1.

(6) to be homogenous we shouldIf we want condi tiona
choose g. (x) such that1.

gl (0) 1

gl (L) 0

First degree polynomials in x
example, so gl(x) = al + blx and
plication of conditions (8) gives

gl(X) = 1 - ~

g2(x) = f

o
(8)

1

are enough for this
g2(x) = a2 + b2x. Ap-

With these polynomials the problem has been reduced to

't"( 0, t ) = 0

ru., t ) = 0
(ri)

7:(x,O) u (x) - 2:~ 1 f. (O)g. (x).o 1.= 1. 1.
Now we try for T(x,t) a solution of the form

Therefore

(13 )

E:=l XnT~ - k E~l X~'Tn = q(x)p(t) - E~=lfi(t)gi(x).
(14)
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If we consider tha.t q (x) and g. (x) can be expanded in
1

series of functions X by means of the expansion formu-n
las

q(x) g. (x)
1

\",00 G X"n=l in n

where
L
J q(x)X dx

Q = o n
n L

J X2 dx
0 n

L
J g. (x)X dx

G.
o 1 n

= LIn ,
J x2 dxo n

then we can write (14) in the folowing form:

EClCl[X T' - kXu - p(t)Q X + E~ 1 r(t)G. x]n= n n n n n ~= 1 In nJ o

which implies
T' kX"
n n---X--

T n
n

or also'

This last equation shows the variables separated, hence:

X" + AXn n o

T' + AkTn n P (t). (16)n
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The general solution of (15) comes Ln the form

x = A sin x'{A+ B cos X'{A • (17)n n n
Applying conditions (11) we get

and
x = sin((nnx)/L)
n

2 2
T' + ~ kT = P (t)n L2 n n

The general solution for (19) is

T
n

Now, if we apply condition (12) we will have

~,O) C s1.·~ = (x) ",2 f (0) ()~n=l n ..L Uo - ~i=l i gi x •
Therefore

C
n

2
L

L 2 ~Jfu (x) - E. 1 f. (O)g.(x) sin nLnxdxOL 0 1.= 1. 1.

(21)

And that completes the solution.
fE2E1~~-?~Let us consider a particular example of

problem 1 and suppose then that

q(x)P(t) = 0; fl (t) = 0 f2(t) = F(t)

u (x) 0, 0 < x < L.o

With this data, let us etart computing
equation (21) in problem 1:

( ) L2F 0 J.x . nnx d2 S1.nL x
L 0

In order to compute P (s) we only needn

C given by the
n

Cn

G2n because
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0, therefore
L
J .xX dxo n

L
L J X2dxU n

Now P (s) is found to be
n

and from that

T (t)
n

u(x,t)

The next problem will be applications of MINDLIN and
GOODMAN's procedure.

rf221~~3. Let us consider a cantilever beam whose
free end is under the action of a cam producing vibra-
tions with the following characteristics:

Boundary conditions:

W(O,t) = P sin kt; W (O,t)o xx o W (L,t)x
o
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W(L,t) o.
Initial conditions:

"W
I
I
I

W(x,O) = 0 ;
Wt(x,O) = 0 •

'- -=_....1- _~
X

The reason for these conditions
is that we are starting from the
position of equilibrium. Then
the problem is to solve

2 a4W a2W q(x)P(t)a --+--= PAax4 at2

W(O,t) P sin kt fl (t)
0

W (O,t) ° f
2
(t)xx

W (L,t) ° f3 (t)
1(

W(L,t) = ° f
4

(t)

W(x,O) ° }Wt(x,O)= °

(3.1)

0.3)

According to the method and our given conditions, the
solution W(x,t) will be given in the form

then
4W .

_a_ = 't'V(x t)
4 x'ax

2
a W = 1:'/ f t )2 t'X,at

and substitution of these last two equations in(3.l) gi-
ves us

+ a2Pog~(x) sin kt +

-k2Pogl (x) sin kt

By conditions (3.2),

't;(x,t) -
q(x)p(t)

PA
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"t(O,t) + pogl(O) sin kt = P sin kt
0

'"t (O,t) + P glf(O) sin kt = 0
xx o 1
't.x(L,T)+ Pogi(L) sin kt = °r(L,t) + Pogl (L) sin kt = O.

Therefore, if we want to have

1:'(0, t) = 0 .; "t (0 , t) = 0 , 't(L,t):xx x
gl (x) should be chosen suoh that

gl(O) = 1 g~(O) = 0, gi(L) ..0, gl(L) = 0 •

Suppose that we choose a third degree polynomial
2 3..al + b1x + c1x + d1x ,

bl + 2clx + 3d1x2 ,
gl (x)

gi(x)
gil (x) =
1

Then by the prior conditions
al = 1 c1 .. 0

d L3 -1 - d L3
1 + blL + .. 0 b1 • 1

1 L
b1 + 3d L2 = 0 bl ...3d L2

1 1
and 3

3d L2 1 + d1L
2d L3

= , ..1
.1 L 1

dl
1 b =

3
.. 2L3

, 1 2L

) 313gl(x = 1 - 2L x + ~ x •
2L

0.5) becomes
3

3x x ). kt- 2L + -3 aa.n +
2L

Now that we know gl(x) equation
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q(x)p(t)
PA

On the other hand, conditions (3.3) applied to (3.4)

+ (3.6)

gives us
't(x,O)= 0 ,

( 3x X3)'tt(x,o) +kP 1 - - +- = O.o 2L 3
2L

Summing up the work that we have done so far, the problem
has been reduced to solve equation (3.6) and the condi-
tions for (x,t) that we got from (3.2) and (3.3),
that is (3.6) and

1:(0, t ) 0

't(x,o) = 0

1:" (x,O) = -t

"t (o,«) = 0
xx

~(L,t) = 0

kPo(l - ;~ + :>.}
}

(3.8)

This, of course, is a problem of forced motion but the
time-dependence has been removed from the boundary condi-
tions.

Now let us try a solution of the form

1:"(x t) = E 00 X (x) T (t) (3.9 ), n-1 n n

This and the fact that gl(x) and q(x) can be expanded
in series of the orthogonal functions, gives us the fol-
lOWing results

3
gl(x) = (1 _ 3x + !--)

2L 2L3
q (x ) == E <D Q X

n==l n n

Where, as we know, Gin
(13) in section 1.0.

and Q
n

are given by formulas

As it is explained in section 2.0, substitution of
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(3.9)and (3.10) in (3.6) will lead us to a solution for
X like the following
n

Conditions 0·7) imply

X (0) 0 , XI/(o) 0n n (3.12 )
X'(L) 0 , X (L) = 0n n

So, let us compute X' and X"
n n

And from conditions (3.12)

A + D = 0 , A = -D
"A2

n 2 n n n
-A +L D = 0 , -A - A = 0
a n a n n n

A = 0 , D = O.n n

B . "AL C senh"AL = 0n sa n va + n va
B "AL C "AL 0n cos va + n cosh va =

or
C ."AL "AL C "AL . "AL

n sLnh va cos va = n cosh va si n va

(iv)

or

tanh *" "AL
= tan va (3.13 )

So in order to find "A we have to solve the trascenden-
tal equation (3.13) and then we will find the ratio be-
tween Band C by equation (iii) or (iv); Let

n n
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us call, for simplicity

m = ALli a •n

Then equation (3.14) becomes

tan m = tanh m
n n

It could be shown that this equation has an infinite
number of roots m and let us suppose that they h&ve

n
been computed, then

C
n -Bn

sin m
n

sinh m
n

Therefore, except for a constant, the general solution of
X will be
n

X
n

sinh m
n

m x. na~n -- -
L

sin m
n

m x
sinh _n_

L

Now that we know X (x) we can compute the coefficient
n

GIn

L
J gl(x)X dxo n

L
J X2 dxo n

= 2
m (ainh m - sin m )n n n

Notice that very good simplifications are obtained by u-
sing the identity (3.14). Our next task is to solve
the equation governing Tn' which is now

w2T
p(t)Qn 2k2p sin kt

Til 0+ PA + m (sinh sin m )n n n m -n n n
where

w2 a
2

m4/L4•n n
Its solution is given by (20) in section 2.0 and for
our example it is



T (t) E cos w t + F sin w t +n n n n n
1 t [PCt)Qn 2k2p sin ks

mn»)sinwnCt-s)dS+-1 0

eA + m (sinh - sinwn 0 mn n

where the coefficients E andn
conditions (3.8) and formulas

F
n

(21)
can be computed using
in section 2.0. That

give us
E = 0n

and 3
~)X dx
2L.) n

F =n L
w 1X2dx
non

2kPo
= m w (sinh m - sin m )n n n n

One more step in this problem could be the substitu-
tion of the value of one of the integrals involving
that is

T ,
n

t
1 sin ks sin w (t-s)ds =o n

--~1~-2(W sin kt - k sin w t)
'('/2 k n n
n

This substitution gives the following general solution
for Tn

2kP (k sin kt -o
T = 2 2n m (w -k )(sinhn n

w sin w t)
n n

m -sin m )
n n

Q t
+ ---n_cf p(s)sin wn(t-S)ds

w pAn
(3.16)So the general solution of this problem is
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[

"2kP (k sin kt - w sin w t)o n n
(2 2m w -k )(sinh m -sin m )n n n n

Q t ]+ n_ J p(s)sin w (t-S)dS.wnPA 0 n

3
+ Po(l - ~~ + 2~3)Sin kt
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SDC/EDAD COLOMB/ANA DE MATEMAT/CAS

EI dia 8 de Febrero tuvo lugar la reunion de la Asamblea General
de la Sociedad Colombiana de Matematicas de Colombia.

Ba]o fa Presidencia del miembro Jaime Lesmes, Vice-presidente
Vfetor Albis, Vocales Yu Takeuchi, Alberto Medina, Jose Marfa Munoz, Se-
cretario, Tesorero Victor Hugo Prieto y Jefe de Publicaciones Rafael Ma-
rino y la asistencia de 50 scclos, A las 11 a.rn, el Senor Presidente decla-
ro instalada la asamblea; se discuti6 el acta de la sesi6n anterior la cual
fue aprobada,

EI senor Presidente propuso a la discusi6n de la honorable Asam-
blea la creaclon de filiales en aquellos departamentos donde sea conve-
niente seqiin el mimero de profesores y las facilidades de comunicaci6n e-
xistentes. Despues de consideraciones en uno y otro aspecto se aprob6 con
algunas modificaciones el proyecto que est a Sociedad envi6 a cada uno de
los socios con la debida anticipaci6n.

Se propuso tambien una modificaci6n en el valor de las cuotas que
los socios deben pagar a la Sociedad y la modificaci6n del sistema de co-
bros las cuales fueron aprobadas de fa siguiente manera:

$ 100.00 Semestrales Socio Efectivo
$ 60.00 " " Ad] unto
$ 10.00 1/ " Estudiante

las cuales se deben cubriren los primeros 45 dias de cada semestre,

Luego se entr6 a elegir algunos miembros de la Junta Directiva,
pues la ausencia de los titulares habra dejado en interinidad el puesto de
algunos de los miembros de dicha mesa directiva y adernas se deseaba dar
represertaclon a los socios Adjuntos por 10 cual se eligieron dos entre e-
1105 de manera que la formaci6n definitiva del conse]o directivo de la Socie-
dad Colombiana de r.1atematicas qued6 constituida asl :

Presidente JAIME LESr.1ES
Vicepresidente VICTOR ALBIS
Secretario Tesorero CAr.1ILO RUBIANO
Vocales YU TAKEUCHI

CARLOS LEMOINE
LUZ DE CAMPOS
r.1ARIO GUTIERREZ
ALBERTO r.1EDINA

Director de Publicaciones JESUS HERNANDO PEREZ
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A correction on the paper II Some non maxima arithmetic groups II

by Nelo D. Allan

In the above mentioned article of the author which apeared in this

journal, Vol II, 1968, p, 21-28, it turns out that theorem 3 is not valid unless

rJ.. = P + 1. The proof of lemma 3 is incorrect.


