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1.0 Introduction

Boundary value problems of partial differential equa-
tions are very often solved by the method of <<separation
of variables>> or lFourier method. The method can be used
without any difficulty in homogenous problems, that is,
in prohlems where de differential equation and the bounda-
ry conditions are homogenous. Most of the textbooks con-
centrate their attention on such problems and for the in-
homogenous case they merely suggest using an integral
transform procedure. Nevertheless the Fourier method may
be extented to treat the inhomogenous problems. A recent
text by Tolstov (see reference l), treats the case when
the ditferential equation is not homogenous but not the
case when the boundary conditions are also inhomogenous.
Kaplan (see retference 2), in his Advanced Calculus treats
relatively simple cases of inhomogenous boundary condi-
tions.

A general case with inhomogenous boundary conditions
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me-dependent boundary conditions. The method is valid not
only for vibration of beams but also for other types of
inhomogenous problems.

The object of this paper is to exhipbit and apply the

method to some particular problems. We will explain the



method using

the problem of vibration of beams but we

will also apply that general procedure for another type

of problem. This is done only for convenience when working

the examples.

2.0 Method of solution

The theory of elasticity establishes that transverse

displacements of a prismatical beam are goverred by the

partial differential equation

2ot o2 _ a(x)p(t) (1)
sxA et2 PA
where
= deflection of the beam.
X = position along the beamj x = O is one end
and x = L is the other end of the beam.
P = density.
A = cross-sectional area of the beam.
2 EI 4
a” = 5p where B and I are the Young s mo-
dulus and the second moment of area of the
cross section of the beam respectively.
q(x)p(t) = external load per unit length of beam.

When the load does not vary with time, p(t)=1.

The boundary conditions migth, for example be

W
X

W(0,t) = fl(t)

wx(o,t) = fz(t)
? (2)

WXX(L,t)= fB(t)

o (Lot) = £, ()

and the initial conditions



w(x,O) =Wofx) (3)
Wt(x,O) = wO(x)
The gist of the method consists in assuming that the
solution will be given in two parts, one of which is la-
ter adjusted so as to simplify the boundary conditions

on the other. On this account we take
_ 4
W(x,t) = Tlx,t) + 27 ) £,(t)g; (x) . (4)

Now, if we substitue equation (4) into (1), (2) and (3)
we find that T(x,t) must satisfy

o AT o2T  ax)p(t)
a + =
4 0t PA

fi”(t)gi(x)] (5)

- Z§=l[§2fi(t)giv(x) e
ox

7(0,1) = £,(t) - 1%, £, (1), (0)

T (0,1) = £,(8) =2, _; £, (¢)g](0)

> (6)

7, (Lyt) = £5() - 24| £ (+)g/ (L)

4 1z
T (Lot) = £,(8) =I5, £, (t)g," (L)

T(x,0) = Wy(x) - 2%_, £ (0)g,(x)

T,(x,0) = Wo(x) = 5, £](0)g; (x)

Now comes the key of this method and that consists in
choosing the functions gi(x) in such a way as to reduce

¢(0,t), TQ(O,t), Zix(l,t) and ?;XX(L,t) to zero.

From equations (6) we can see that in order tc have
T(0,t), Z;(O,t), 'Zxx(L,t) and 'Zxxx(L,t) equal to zero,



we should choose the functions gi(x) under the following

16 conditions

N
g, (0)=1 5 ,(0) =0 3 g(0)-0 ;g (0)=0
gi(o)=0 3 gé(O) =1 3 gg(O)'=O 3 g&(0)=0

> (8)
g7 (L)=0 g, (L)=0 5 857 (L)=1 gli’(L)=O

g1 "(L)=0 ; gé”(L)=O 3 837 7(L)=0 g4‘"(L)=lJ

We can notice that each column in equations (8) gives
us four conditions for each function gi(x) and since
derivatives of the fourth‘order of gi(x) are involved
in equation (5), in order to satisfy these conditions we

will choose polynomials of fifth degree in x, like the

following:
gl(x) = a +bx+ clx2 + dlx3 + e1x4 ¥ flx5
82(x) = a2 + b2x + 02x2 + d2x3 + e2x4 + f2x5
> (9)
g3(x) = a3 + byx + 03x2 + d3x3 + e3x4 + f3x5
84(x) = a4 + b4x + c4x2 + d4x3 + 64X4 + f1x5J

The procedure of finding the polynomials gi(x) is
reduced now to solving systems of four equations. It could
happen however, that the number of unknowns is hore that
the number of equationsy in those cases we should make
zero the coefficient of the term of highest degree in x
and also, if necessary, the coefficient of the term of
second highest degree in the original system of equations.

Again, if some of the constants a. bi,...,fi, do not



appear in the system of equations, we should set them e-—
qual to zero also.

It is worthy to notice that the computation of gi(x)
is only necessary when the corresponding fi(t) does not
vanish.

Once the polynomials gi(x) have been found we can

say that the problem has been reduced to

4 2 '
a2’ a7’ T + ) T= Q(X)P(t) _ 24 [azfi(t)gilv(x)+f;'(t)gi(x)]

ex4 6t2 PA i=1
"1
T (0,t) = 0 3 Zx(o,t) =0
Te(Lot) = 0 3 Topy(Drt) = 0 ! (10)
Ux,0) = Wy(x) = 23 £, (0)g (x)
T, (x,0) = W (x) = 1, £(0)g,(x)

Arriving at this state is really the aim of the method
and in fact, as we can see, the time-dependence has been
removed from the boundary conditions.

From that state on, the classical methods for free or
forced vibrations can be used. However, we will complete
the solution of the problem explaining its next stages.

A solution of (5) will be of the form

(¢3)
Txyt) = 21 X1 (11)

where

X, = Xn(x) and T = Tn(t)

and we assume that the functions Xn will be orthogonal
with respect to the interval (O,L): as indeed happens
when the ends of the beams are fixed or free or simply

supported or restarined against translation or rotation



by linear springs. The fact the functions Xn are ortho-
gonal implies we can expand the functions gq(x), gi(x)

iv . . . . .
and g (x) in series of functions Xn using expansion

formulas:
_ w00
a(x) = 2n=l ann
6]
g;(x) =z 7, G X (12)
iv © ¥
€y (x) = a1 Gin n
where the constants Qn, Gin’ Gin are given by the ex-
pressions -
(1 L
Q = | J a(x)X dx J X£ ax
n n
0 0 |
\ \
\
g L
G. = f g (X)X d.x f X dx ’ i=1,occ,4
in n
L O kO 4
rLiv (L, ] (13)
~ = | fer (x)X dx J XS dx| , i=l,...,4
G. i n
in 0 LO J

Then, let us substitute equations (11) and (12) in equa-

tion (5)

2 .00 iv ® i p(t) 00
a1 X T, + zn=l XnTn g Zn=1 Qan -

(0]

. 4 2 m 1 ,
z:i=1 - fi(t) Zn=l Gian + fi (t)zn=1 Gian

which can also be written

o .\4 Pl
£(6)G X+ 2T £10(4)a, X

£ ® Na2xiVn yx poey 2254
1 n n nn i=1

n=



—P—(‘E')_Q,T ]___O

PA nn

Now, since the series is xero, the generating term w
will be also equal to zero and after we divide that term

by XnTn’ the variables are separated
a ‘x'n" + 'T—n— + a% g4 —————fi(t)oin + 4 il___(_f_)_c_l_f_l

b T i=1" T el

n n n N

or
iV , 0, ~ L4
X p(t)Qn i a fi(t)Gin fi(t)Gin

& X T Tear ~ T i=1 T ¥ T
n n n n n

From this last equation we can get the equations governing

Xn and Tn in the classical way

iv
n

2 4 -
a®X " = A K =0 (14)

L 2 ~ A
p(t)a, T g R 0C £17(6)0

n _\4
oaT. - o~ Li=1 T T - )n
n n n n
(15)
The genral solution of equation (14) is
- b oos oD% ¢ B gin Anx + C cosh 2BX 4+ D sinh Ay
n n Va n Va n Va n Va

where the constants An, Bn’ Cn’ Dn and An are given
by the boundary conditions (10). These will determine a
countably infinite set of eigenvalues, An -

Also, once we Kknow Xn’ we will be able to compute the
value of the constants Qn, Gin and Gin which will be

used in solving (15).



For convenience, suppose that we substitute
= \'E
Ay (mnfa)/L

and after we use the boundary conditions (lO) to determi-
ne the m s for convenience, in (15) set

a.m2 = W L2.
n n

Then the general solution of (14) will be

mnX mnX mnX m X
X = A cos —— + B sin —— + C cosh —— + D sinh <
L n L n L n L

(16)

and (15) will become
g 2 . ~ ry
p(t)Qn o P fi(t)Gin %, 0 (t)cin
i i X T =
PAT_ n ; "
2
=Wn ’

pH)Q'n . 2 ~
—er - T " Biy (80, 4 200(8)G,, -
=wT.
n

In order to avoid a large handling of terms let us call

p(t)Q
n _ 4 2 ~ .. _
OA Zi=1(a £,(6)C; ) + £] (t)Gin} = P (%),
Thus we have the differential equation for Tn

1" 2 =
LU wnTn = Pn(t). (17)

This equation can be solved using the method of variation

of parameters which is applicable whenever we can solve



the reduced equationj in fact, the reduced equation

T + w°D = O
n nn

has two linearly independent solutions sin wnt and
cos wnt, so we try for Tn a solution of the following
form

T = vysin W t + v, cosw t (18)

where v and v the parameters, are functions of t.

1 2 ?
After we use the method of variation of parameters we

find for Tn a solution like this:

t
1 .
T = " f Pn(s) sin wn(t-s) ds (19)
As we know, this is only a particular solution of the
complete equation (17);3 €eneral solution is given by a-
dding to any particular solution of the complete equation
the general solution of the reduced equations in our case,

that is
T =E coswt+F sinw t +
n n n n n

t
#L S P (s) sin w (t-s) ds. (20)
n O
The solution of ’t(x,t) will be given then as the sum
from n=1 to n = o of the product of (16) and (20).
It remains only to compute the values of the constants

E, and F , which can be done by using conditions (7.

Indeed,
- g - -4
T(x,0) = £, EX =W (x) - £ | £, (0)g, (x).
T - 5% - -4 e
L (x,0) =27 F Xw = W(x)-z7  £:(0)g,(x).

A similar reasoning to that which led to equations (12)'



and (13) allows us to compute E and F_ from the

last two equations:

L
J [WO(X) -4 fi(O)gi(x)] X dx

E = 0
L
T X% dx
0 n
(21)
L [, p
of Wo(x) =27 fi(o)gi(x)] X dx
F =
n
L
2
wntof Xn dx

which finally completes the formal solution of the whole
problem since we have found T(x,t) and gi(x), and

thus, the two parts of aour solution.

3.0 Application of the method

~~ S~~~

with sources and variable end temperatures, where the

temperature’ u(x,t) satisfies

au 92u .
e k ——2 = q(x)p(t) ’ (1)
ox
u(0,t) = £, (¢) ,
(2)

u(Lyt) = £,(t),
u(x,0) =u,(x), 0 < x < L. (3)

Let us try a solution of the form

u(x,t) = (x,t) + 3¢

L £ (e (x). (4)

Substitution of (4) into (1), (2) and (3) gives

10



T (x,t) - kT (x5,4) = a(@)p(t) + £k, (t)g; (x)-£](t)g, (x]

i=1
(5)
T(0,4) = £,(t) - £5_,2, (t)g, (0) (6)
, (6)
2
UL,t) = £,(¢) - 27  f, (t)e; (L)
T(x,0) = u (x) - £]_, £, (0)g, (x) (7)
If we want conditions (6) to be homogenous we should
choose gi(x) such that
g,(0)=1 3 g (0)=0
1 2 (8)
g (L) =0 5 g,(1) =1

First degree polynomials in x are enough for this
example, SO gl(x) = a, + bx and g2(x) = a, + byX. Ap-
plication of conditions (8) gives

5= =t -{- (9)

= b

g,(x) =

With these polynomials the problem has been reduced to

T, (x,8) - kT (x,t) = alx)p(t) - £5_) £{(+)g;(x) (10)
T(0,t) = O (11)
T(L,t) =

Z2

7(x,0) = u (x) - £7_; £, (0)g, (x). (12)

Now we try for T(x,t) a solution of the form

@
Tx,t) = Looq X1, (13)
Therefore
@ ” fe 0] »e L2 #
zn=l XnTn -k L1 Xn Tn = q(x)p(t) Li=lfi(t)gi(xl

(14)



If we consider that q(x) and gi(x) can be expanded in

series of functions Xn by means of the expansidén formu-

las .
© ®
a(x) = =1 ann ’ gi(x) = Zoe1 Yty
where 1
S q(x)Xn dx
0
Q =
4 2
S X dx
0
L
df gi(x)Xn dx
G =
in L o ’
S X dx
0]

then we can write (14) in the folowing form:

Q© », s 0 2 » _
£n=l[XnTn KX, - p(t)Qan R fi(t)Gian;] = g

which implies

— -5 -+t L £1(8)6 =0

T n n
n

or also

, r rd

e B L _ p(t)Qn P N
X~ KT KT KT i=1 i in~ M.
n n n n

This last equation shows the variables separated, hence:
° % A =0 (15)

p(t)Q, - zle £7(8)6, = P (t). (16)

T + AkT
n n

12



The general solution of(15) comes ln the form
t—4 1 A
Xn An sin x(A + Bn cos x(A , (17)

Applying conditions (11) we get

(n°7%)/1°  (n=1,2,3,....)

and
X = sin((nnx)/L) (18)
T4 4 n’n kT = P_(t) (19)
n L2 n n
The general solution for (19) is
T, = e'@tﬁgl'c +f eil._:_ksP o(8) ds] ) (20)

Now, if we apply condition (12) we will have

Eo) X7(0) =22 ¢ sinfE - u (x) - 22 £ (0)g, (x).
Therefore
2 L 2
C. =T é[uo(x) = Bf g £ (0)g. (x)] sin -—].:— dx

(21)

And that completes the solution.
Problem 2. Let us consider a particular example of

~ o~~~ T~

problem 1 and suppose then that
a(x)p(t) = 03 £,(t) =03 £,(t) = F(z)

uo(x) =0, O0< x < L.

With this data, let us etart computing Cn given by the
equation (21) in problem 1:

L y n
c, = - ———2Féo) J X sin 22X gy - ———-——————ZF(SN)I('I)
L 0
In order to compute Pn(s) we only need G2n because

13



fi(t) = 0, therefore

L
J xX dx N
¢ -0 __ (=1)™/en _ _ 2(<1)
2n L 5 L/2 nn i
L f X dx
0

Now Pn(s) is found to be

Pn(s) = P(t)Qn ~ 2= 1 f{(t)Gin = 2(-1n:F‘(s

i=
and from that

t WK nt Rk
df e O an(s)ds = gii%l-f K eF (s)ds
0
2y t  nlriks
. _(:L)_{ [Mr F(t)-—F(O)] 2%k [ e an F(s)ds},
nnL 0

With this values Tn becomes

n n‘lr‘kt t n.‘n‘ks
T (t) = ag:;—L-[LZF(t) - n?x’k @ f e U F(s)ds]
nnL

And the final solution will be

-

X 2 .o (=1)%].2 9 12
u(x,t) = $F(t) + —z Lol — o hL F(t) - n"nke
n‘n‘xt t  n*iks
f e ¥ F(s)ds‘l sin E%E

The next problem will be applications of MINDLIN and
GOODMAN’s procedure.

Problem 3. Let us consider a cantilever beam whose
free end is under the action of a cam producing vibra-—
tions with the following characteristics:

Boundary conditionss

W(0,t) = P sin kt ; WXX(O,t) =0 3 wx(L,t) =0

’

14



W(L,t) = O.
Initial conditions:
W(x,0) = 0 3
wt(x,O) = 0 .

My
|
| % The reason for these conditions
‘ T _, 1is that we are starting from the
X=0 X=Lg % position of equilibrium. Then
the problem is to solve
2 e4w 92w Q(X)P(t) 3
a § == oL .1)
ex4 ot
S
W(0,t) = P sin kt = fl(t)
Wxx(O,t) =0 = fz(t) ! (3.2)
WK(L,t) =0 = f3(t)
W(L,t) = 0 = f4(t>
Ww(x,0) = 0 (3.3)
Wt(x,0)=

According to the method and our given conditions, the

solution W(x,t) will be given in the form

W(x,t) = T(x,t) + Pogl(x) sin kt: (3.4)

then
e4w iv 1%
— =T"(x,t) + P g(x) sin kt ,
4 b'd o-1
ax
___92W =T’ (x,t) - k2P (x) sin kt
INCEERE D 081 ’

and substitution of these last two equations in(3,1) gi-

ves us

2

2 W W . “w -
a tx(x,t) +a Pogl(x) sin kt + ?.’t'(x,t)

2 NP 1€9) 16}
-k Pogl(x) sin kt = T .

By conditions (3.2),



T(0,t) + Pogl(O) sin kt = P_ sin kt
Ty (0st) + P g7(0) sin kt = O
T (L,T) + P g7 (L) sin kt = 0
= Q.

T(L,t) + Pogl(L) sin kt
Therefore, if we want to have
T(0,t) = 0 3 T&x(o,t) =0 3 ?&(L,t) = 03 T(L,t) = O,
gl(x) should be chosen such that
= ” = & = =
g (0) =13 g/(0) =03 g(L)=0; g (L) =o0.
Suppose that we choose a third degree polynomial
2 3
81(1) =a + blx + o X+ dlx ’
" _ 2
gl(x) = b + 20X + 3dlx .
U} =
gl(x) 2c, + 6dlx .

Then by the prior conditions

a, =1 3 ¢, =0

1 1l 3
3 -1 -4.L
1+blL+dl =0 § b, = — 1
1 1 1
ks
b. +3d.12 =0 3 b, =3d12
1 1 1 1"
and 3
> l+d1L 3
34,1 = ——— 3 2d.L° =1
1 1
L
1 3
ds—g' ;b'—'-_o
1o : 2L

3 1 3
gl(x)=l-—2—Lx+2—L§'x .

Now that we know gl(x) equation (3.5) becomes

3
2 iv " C12p o] o 3X X .
a 't‘x(x,t) + 'tt(x,t) k Po(l oL + 2113)8111 kt +

16



i Q(xZi(t> (3.6)

On the other hand, conditions (3.3) applied to (3.4)

gives us
©Ux,0) = 0 ,
T(xo)+k1>(1-—3-’£+x3)-o
t? o 2L 2L3 Sl

Summing up the work that we have done so far, the problem
has been reduced to solve equation (3.6) and the condi-
tions for (x,t) that we got from (3.2) and (3.3),
that is (3.6) and

I
o

T(0,t) = 0 3 'rxx(o,t) = (3.7)
'tx(L,t) =03 T(L,t)=0
a0l 0 3 (3.8)

3
(x O) " - kP (1 x 3)

This, of course, is a problem of forced motion but the

time-dependence has been removed from the boundary condi-

tions.

Now let us try a solution of the form
. 00 .
TUx,t) =2~ X (x)7 (%) (3.9)

This and the fact that gl(x) and q(x) can be expanded
in series of the orthogonal functions, gives us the fol-

lowing results

3
3x X @®
gl(x) - (- ar * ;;30 B zn=l Glan (3.10)
LB
a(x) = gt Y, 8

where, as we know, G o and Qn are given by formulas

(13) in section 1.0.

As it is explained in section 2.0, substitution of

17



(3.9) and (3.10) in (3.6) will lead us to a solution for
Xn like the following

_ A ; A ; A
Xn = An cos v; X + Bn sin V; X + Cn sinh V; X

A
+ Dn cosh V;-x . (3.11)

Conditions (3.7) imply

x(0)=0 § Xx"(0)=o0
n n (3.12)
Xn(L) =0 3 Xn(L) =0.
So, let us compute X ’ and X" :
n n
And from conditions (3.12)
, A +2Dn =0 3 A =-D (1)
-A ) 4 A p -0y -A -4 =0 (ii)
a n P n n
A =0 s D = 0.
n n
AL AL _
B sin Ta * C, senh Ta~ 0 (iii)
AL AL .
B cos T2+ G, cosh T = 0 (iv)
or
AL Kl AL . AL
Cn sinh V; cos v; = Cn cosh V; sin V;
or
AL AL
tanh V; = tan.v; . (3.13)

So in order to find A we have to solve the trascenden-
tal equation (3.13) and then we will find the ratio be-

tween B and C_ by equation (iii) or (iv). Let



us call, for simplicity

4 AL/Va .

Then equation (3.14) becomes

tan m = tanh m .
n n

It could be shown that this equation has an infinite

(3.14)

number of roots m and let us suppose that they have

been computed, then
sin m
n

Cn = -Bn sinh m °
n

Therefore, except for a constant, the general solution of

Xn will be
m X m
X = sinh m_s8in —— =~ sin m_ sinh (3.15)
n n n
L L
Now that we know Xn(x) we can compute the coefficient
Glnz
L L 3x x
f gl(x)X dx f (1 T + -—3-)X dx
a _ 0 _ 0 2L _ 2
1n L - L - . .
T % ax I Xi . mn(31nh m - sin mn)
0 0

Notice that very good simplifications are obtained by u-

sing the identity (3.14). Our next task is to solve

the equation governing Tn, which is now
2

p(%)Q 2k“P sin kt
" WD = L 2

+ = -
n nn PA m (sinh m - sin m )
n n n

where
w2 = a2m4/L4.
n n

Its solution is given by (20) in section 2.0

our example it is

and for

19



T (t) = FE cosw t +F sinw t +
n n n n n

Lt [e(t)e 2k°P  sin ks
+ —'f L + T.o 5
Y0 eA m sinh m - sin mn)

}s1nwn(t-s)ds

where the coefficients En and Fn can be computed using

conditions (3.8) and formulas (21) in section 2.0. That

give us
E =0
n
d
- L 3x x3
S -—kPo(l - 5T + )Xndx
F = 0 2L
n L >
w_ [ XSdx
ny'mn
2kP
0

" mw (sinhm_ - sin m )
nn n n

One more step in this problem could be the substitu-
tion of the value of one of the integrals involving Tn ’

that is

g 1 ; .
J sin ks sin wn(t—s)ds = 2(wn81n kt - k sin wnt)

0 s = k

This substitution gives the following general solution

for Tn
o 2kPo(k sin kt - w sin wnt) Q ? .
- ¢+ p(s)sin w_(t-8)ds
toa (w2 -k2)(sinh m -sinm ) w AO, o
n''n n n n

(3.16)

So the general solution of this problem is

m x m x
W(x,t) = Zai sinh m_ sin —— - sin m_ sinh —= ]”
n=1 n 1L n

20



[-ZkP (k sin kt - w_sin w t) Q
o n n &

n

t
J p(s)sin wn(t—s)ds

l m (W2 —kz)(sinh m_ -sin m ) wnpA 0
n n n n
+P (1 - 3= —Ei) in kt (3.17)
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SOCIEDAD COLOMBIANA DE MATEMATICAS

El dia 8 de Febrero tuvo lugar la reunign de la Asamblea General
de la Sociedad Colombiana de Matematicas de Colombia,

Bajo la Presidencia del miembro Jaime Lesmes, Vice-presidente
Victor Albis, Vocales Yu Takeuchi, Alberto Medina, José Maria Mufioz, Se-
cretario, Tesorero Victor Hugo Prieto y Jefe de Publicaciones Rafael Ma-
rifio y la asistencia de 50 socios. A las 11 a.m. el Sefior Presidente decla-
ré instalada la asamblea; se discutié ef acta de la sesign anterior la cual
fué aprobada.

El sefior Presidente propuso a la discusién de la honorable Asam-
blea la creacion de filiales en aquellos departamentos donde sea conve-
niente segiin el ngmero de profesores y las facilidades de comunicacién e-
xistentes. Después de consideraciones en uno y otro aspecto se aprobé con
algunas modificaciones el proyecto que esta Sociedad envig a cada uno de
los socios con la debida anticipacion.

Se propuso también una modificacién en el valor de las cuotas que
los socios deben pagar a la Sociedad y la modificacién del sistema de co-
bros las cuales fueron aprobadas de la siguiente manera:

$ 100.00 Semestrales Socio Efectivo
$ 60.00 ’" »  Adjunto
$ 10.00 i 7" Estudiante

las cuales se deben cubriren los primeros 45 dias de cada semestre,

Luego se entr§ a elegir algunos miembros de la Junta Directiva,
pues la ausencia de los titulares habia dejado en interinidad el puesto de
algunos de los miembros de dicha mesa directiva y ademas se deseaba dar
representaciéon a los socios Adjuntos por lo cual se eligieron dos entre e-

llos de manera que la formacign definitiva del consejo directivo de la Socie-
dad Colombiana de Matematicas quedé constituida asj :

Presidente JAIME LESMES
Vicepresidente VICTOR ALBIS
Secretario Tesorero CAMILO RUBIANO
Vocales YU TAKEUCHI

CARLOS LEMOINE

LUZ DE CAMPOS
MARIO GUTIERREZ
ALBERTO MEDINA

Director de Publicaciones : JESUS HERNANDO PEREZ
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A correction on the paper “Some non maxima arithmetic groups”
by Nelo D. Allan
In the above mentioned article of the author which apeared in this

journal, Vol I, 1968, p. 21-28, it turns out that theorem 3 is not valid unless
A = p + 1. The proof of lemma 3 is incorrect.



