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On the instability of nonlinear functional
differential equations of fifth order

Cemil Tunç1,a

Abstract. The author gives sufficient conditions for non-existence of peri-
odic solutions of two higher order nonlinear delay differential systems. Our
technical approach is based on the construction of two suitable Lyapunov type
functionals. An example is given to illustrate the obtained results. The main
results here improve recent results found on the topic in the literature from
the case of without delay to the delay case.
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Resumen. El autor presenta condiciones suficientes para la existencia de
soluciones periódicas de dos ecuaciones diferenciales con retraso de alto orden.
El enfoque técnico se fundamenta en la construcción de funcionales de Lya-
punov adecuados. Un ejemplo ilustra los resultados obtenidos. El resultado
principal presentado en este art́ıculo mejora un resultado reciente en el tema
de pasar el caso sin atraso al caso con atraso.
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1. Introduction

Qualitative properties of solutions to scalar differential equations and systems
of differential equations of fifth order have been studied by many authors; see for
example the references of this article such as Ezeilo [1, 2, 3], Ezeilo and Tejumola
[4], Li and Duan [7], Li and Yu [8], Sadek [9], Sun and Hou [10], Tejumola [11],
Tunç [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], Tunç and Ateş [23], Tunç and
Erdoğan [25], Tunç and Karta [26], Tunç and Şevli [24] and their references.
However, most of these publications only consider instability of solutions and
non-existence of periodic solutions for scalar or system of differential equations
of fifth order without delay. In this article, we investigate non-existence of
periodic solutions for two systems of differential equations of fifth order with
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constant delay. This article is motivated by the references of this paper, [1-3],
[5], [7, 8, 9, 10, 11, 13, 12, 14, 15, 16, 17, 19, 18, 20, 21, 22, 23, 25, 26, 24], and
that can be found in the literature.

We consider delay differential systems of fifth order

X(5) + Φ1(
...
X)X(4) + Φ2(Ẍ)

...
X + Φ3(X, Ẋ, Ẍ)Ẍ

+ Φ4(Ẋ) + Φ5(X(t− τ)) = 0 (1)

and

X(5)+AX(4) + Ψ2(Ẍ)
...
X + Ψ3(Ẋ)Ẍ

+ Ψ4(Ẋ) + Ψ5(X(t− τ)) = 0, (2)

respectively, where X ∈ <n, t ∈ <+,<+ = [0,∞), τ ∈ <, τ > 0 with t− τ ≥ 0,
A is a constant n × n-symmetric matrix, Φ1,Φ2,Φ3,Ψ2 and Ψ3 are n × n-
symmetric continuous matrix functions, Φ4 : <n → <n,Φ5 : <n → <n,Ψ4 :
<n → <n,Ψ5 : <n → <n with Φ4(0) = Φ5(0) = Ψ4(0) = Ψ5(0) = 0 are
continuous functions. The continuity of the matrix functions Φ1,Φ2,Φ3,Ψ2,Ψ3

and the vector functions Φ4,Φ5,Ψ4,Ψ5 guarantees the existence of the solutions
of Eq. (1) and Eq. (2). The assumptions Φ4(0) = Φ5(0) = Ψ4(0) = Ψ5(0) = 0
imply that both of Eq. (1) and Eq. (2) have the zero solution X(t) ≡ 0.
In addition, we assume that the matrix functions Φ1,Φ2,Φ3,Ψ2,Ψ3 and the
vector functions Φ4,Φ5,Ψ4,Ψ5 satisfy the Lipschitz condition with respect to
their respective arguments. This fact guarantees the uniqueness of solutions of
Eq. (1) and Eq. (2).

Let the symbols JΦ1
(W ), JΦ2

(Z), JΦ4
(Y ), JΦ5

(X), JΨ2
(Z), JΨ3

(Y ), JΨ4
(Y )

and JΨ5
(X) represent the Jacobian matrices corresponding to Φ1, Φ2, Φ4, Φ5,

Ψ2 Ψ3, Ψ4 and Ψ5, respectively. Throughout this paper, we assume that these
Jacobian matrices exist and are continuous and symmetric.

We consider the equivalent differential systems corresponding to Eq. (1)
and Eq. (2), respectively:

Ẋ = Ẏ , Ẏ = Z, Ż = W, Ẇ = U,

U̇ = −Φ1(W )U − Φ2(Z)W − Φ3(X,Y, Z)Z

− Φ4(Y )− Φ5(X) +

∫ t

t−τ
JΦ5(X(s))Y (s)ds (3)

and

Ẋ = Ẏ , Ẏ = Z, Ż = W, Ẇ = U,

U̇ = −AU −Ψ2(Z)W −Ψ3(Y )Z −Ψ4(Y )

−Ψ5(X) +

∫ t

t−τ
JΨ5(X(s))Y (s)ds, (4)

respectively.
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We prove here two new results on the non-existence of periodic solutions
of Eq. (1) and Eq. (2), respectively. The aim of this work is to improve the
results of Tejumola [11, Theorem 3, Theorem 5] when n = 1 and Tunç and Ateş
[23] from the cases of the without delay to the cases of with constant delay.
These are the novelty and originality of this article, and its contribution to the
literature.

It is clear that X,Y, Z,W and U represent X(t), Y (t), Z(t),W (t) and U(t)
respectively.

Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn). The symbol 〈X,Y 〉 repre-
sents the usual scalar product

∑n
i=1 xiyi for any pair X,Y in <n. In addition,

λi(A), (A = (aij)), (i, j = 1, 2, ..., n), are eigenvalues of n×n-symmetric matrix
A, and the matrix A = (aij) is said to be positive definite if and only if the
quadratic form XTAX is positive definite, where X ∈ <n and XT denotes the
transpose of X.

Consider the linear constant coefficient differential equation of fifth order:

x(5) + a1x
(4) + a2

...
x + a3ẍ+ a4ẋ+ a5x = 0, (5)

where a1, a2, ..., a5 are some real constants. It can be followed from Tejumola
[9] that if either of the hypotheses

(A1) a1 6= 0, sgn a1 = sgn a5, a3 sgn a1 < 0
and
(A2) a2 < 0, a4 > 0
holds, then Eq. (5) has no non-trivial periodic solutions of any period. In

addition, it should be noted that these odd and even subscripts features run
through the generalized criteria obtained for the non-linear equations studied
here.

We now consider only equations in which the right member does not depend
explicitly on the time:

dxi
dt

= Xi(x1, ..., xn), (i = 1, 2, ..., n),

where the functions Xi are defined and continuous in the region

‖x‖ < H, (H = constant).

We also require that the functions Xi have continuous partial derivatives
∂Xi

∂xj
, (i, j = 1, 2, ..., n), in the region ‖x‖ < H.

Theorem 1.1. (Krasovskii [6]) Let H̄0 be a closed region, and suppose that
for ‖x‖ ≤ H̄0, the function v(x) has a derivative dv

dt that is positive-definite in
the region v ≥ 0. Suppose further that the point x = 0 belongs to the closure
of the region v > 0. Then the null solution x = 0 of the differential equation
dxi

dt = Xi(x1, ..., xn) is unstable, and there is a trajectory x(x0, t) that converges
on the point x = 0 for t→ −∞,
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lim ‖x(x0, t)‖ = 0 for t→ −∞;

moreover, ‖x0‖ < H0.

2. Instability

We need the following lemma while proving our instability results.

Lemma 2.1. (Horn & Johnson [5]). Let A be a real symmetric n× n−matrix
and

a′ ≥ λi(A) ≥ a, (i = 1, 2, ..., n),

where a′ and a are some positive constants.

Then

a′〈X,X〉 ≥ 〈AX,X〉 ≥ a〈X,X〉

and

a′2〈X,X〉 ≥ 〈AX,AX〉 ≥ a2〈X,X〉.

A. Hypotheses

We assume there exist positive constants a1, a4 and a5, a
′
5 and a3(< 0)

such that the following conditions hold:

(C1) λi(Φ1(W )) ≥ a1, λi(Φ3(X,Y, Z)) ≤ a3, Φ4(0) = 0, Φ4(Y ) 6= 0 when
Y 6= 0, Φ5(0) = 0, Φ5(X) 6= 0 when X 6= 0.

(C2) The Jacobian matrices JΦ1
(W ), JΦ2

(Z), JΦ4
(Y ) and JΦ5

(X) exist and
are continuous and symmetric such that λi(JΦ4

(Y )) ≥ a4 and a′5 ≥
λi(JΦ5(X)) ≥ a5.

(C3) τ < min(−2a3
a′5

, 2a5
a′5

).

The first instability theorem of this paper is given below.

Theorem 2.2. If hypotheses (C1)−(C3) hold, then Eq. (1) has no non-trivial
periodic solution of any period.

Remark 2.3. There is no restriction on matrix function Φ2, except Φ2 is an
n× n− symmetric continuous matrix function.

We have here some equalities that play important role in the sequel.
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Lemma 2.4. We assume that Φ4(0) = 0. Then the following hold:

10)
d

dt

∫ 1

0

〈Φ1(σW )W,Z〉dσ = 〈Φ1(W )U,Z〉+

∫ 1

0

〈Φ1(σW )W,W 〉dσ.

20)
d

dt

∫ 1

0

〈σΦ2(σZ)Z,Z〉dσ = 〈Φ2(Z)W,Z〉.

30)
d

dt

∫ 1

0

〈Φ4(σY ), Y 〉dσ = 〈Φ4(Y ), Z〉dσ.

40)
d

dt

∫ 0

−τ

∫ t

t+s

‖Y (θ)‖2dθds = ‖Y ‖2τ −
∫ t

t−τ
‖Y (s)‖2ds.

Proof. First, we will give the proof of the equality 10).

It is clear that

d

dt

∫ 1

0

〈Φ1(σW )W,Z〉dσ =

∫ 1

0

〈Φ1(σW )W,W 〉dσ +

∫ 1

0

σ
∂

∂σ
〈Φ1(σW )U,Z〉dσ

+

∫ 1

0

〈Φ1(σW )U,Z〉dσ

= σ〈Φ1(σW )U,Z〉|10 +

∫ 1

0

〈Φ1(σW )W,W 〉dσ

= 〈Φ1(W )U,Z〉+

∫ 1

0

〈Φ1(σW )W,W 〉dσ.

This result completes the proof of the equality 10).

We now give the proof of 30).

It follows that

d

dt

∫ 1

0

〈Φ4(σY ), Y 〉dσ =

∫ 1

0

σ〈JΦ4(σY )Z, Y 〉dσ +

∫ 1

0

〈Φ4(σY ), Z〉dσ

=

∫ 1

0

σ〈JΦ4
(σY )Y,Z〉dσ +

∫ 1

0

〈Φ4(σY ), Z〉dσ

=

∫ 1

0

σ
∂

∂σ
〈Φ4(σY ), Z〉dσ +

∫ t

0

〈Φ4(σY ), Z〉dσ

= σ〈Φ4(σY )Z〉|10 = 〈Φ4(Y ), Z〉.

The proofs of the equalities 20) and 40) can be completed by following a similar
way given in Sadek [9], Tunç ([14], [15]) and Tunç and Ateş [23]. Therefore, we
omit the details.

Proof of Theorem 1. We define an auxiliary functional V0 = V0(X,Y, Z,W,U)
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by

V0 =

∫ 1

0

〈Φ1(σW )W,Z〉dσ +

∫ 1

0

〈σΦ2(σZ)Z,Z〉dσ − 1

2
〈W,W 〉

+

∫ 1

0

〈Φ4(σY ), Y 〉dσ + 〈Φ5(X), Y 〉+ 〈U,Z〉

− µ
∫ 0

−τ

∫ t

t+s

‖Y (θ)‖2dθds, (6)

where µ ∈ <, µ > 0 which will be chosen later.

Clearly, V0(0, 0, 0, 0, 0) = 0.

Since ∂
∂σΦ4(σY ) = JΦ4(σY )Y and Φ4(0) = 0, then by an integration from

σ1 = 0 to σ1 = 1, we have

Φ4(Y ) =

∫ 1

0

JΦ4(σY )Y dσ1.

From the last equality and hypothesis (C2), it follows that

∫ 1

0

〈Φ4(σY ), Y 〉dσ =

∫ 1

0

∫ 1

0

〈σ1JΦ4
(σ1σ2Y )Y, Y 〉dσ2dσ1

≥
∫ 1

0

∫ 1

0

〈σ1a4Y, Y 〉dσ2dσ1 ≥
1

2
a4〈Y, Y 〉.

Then, it is obvious that

V0(0, ε, 0, 0, 0) ≥ 1

2
a4〈ε, ε〉 =

1

2
a4‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ <n.

Assume that (X,Y,X,W,U) is an arbitrary solution of system (3). Hence,
from (6) and (3) the time derivative of auxiliary functional V0 leads that

d

dt
V0 =

d

dt

∫ 1

0

〈Φ1(σW )W,Z〉dσ + 〈JΦ5
(X)Y, Y 〉+

d

dt

∫ 1

0

〈σΦ2(σZ)Z,Z〉dσ

− 〈Φ3(X,Y, Z)Z,Z〉+
d

dt

∫ 1

0

〈Φ4(σY ), Y 〉dσ − 〈Φ1(W )U,Z〉

− 〈Φ2(Z)W,Z〉 − 〈Φ4(Y ), Z〉+ 〈
∫ t

t−τ
JΦ5

(X(s))Y (s)ds, Z〉

− µ d
dt

∫ 0

−τ

∫ t

t+s

‖Y (θ)‖2dθds. (7)
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By Cauchy-Schwarz inequality in <n and hypothesis (C2), we have

〈
∫ t

t−τ
JΦ5

(X(s))Y (s)ds, Z〉 ≥ −‖Z‖‖
∫ t

t−τ
JΦ5

(X(s))Y (s)ds‖

≥ −‖Z‖
∫ t

t−τ
‖JΦ5(X(s))‖‖Y (s)‖ds

≥ −a′5‖Z‖
∫ t

t−τ
‖Y (s)‖ds

≥ −1

2
a′5τ‖Z‖2 −

1

2
a′5

∫ t

t−τ
‖Y (s)‖2ds.

Bringing together all the above estimates, in view of Lemma 1, Lemma 2 and
(7), by (C1) and (C2) we obtain

V̇0 ≥ 〈a5Y, Y 〉 − 〈a3Z,Z〉+

∫ 1

0

〈Φ1(σW )W,W 〉dσ

− µτ‖Y ‖2 − 1

2
a′5τ‖Z‖2 + (µ− 1

2
a′5)

∫ t

t−τ
‖Y (s)‖2ds.

Let µ = 1
2a
′
5. Then, it is clear that

V̇0 ≥ 〈(a5 − 2−1a′5τ)Y, Y 〉 − 〈(a3 + 2−1a′5τ)Z,Z〉

+

∫ 1

0

〈Φ1(σW )W,W 〉dσ.

Hypothesis (C3) implies that a5 − 2−1a′5τ > 0 and −a3 − 2−1a′5τ > 0. In
view of these inequalities and (C1), which guarantee that Φ1(W ) is positive
-definite, we have V̇0 ≥ 0.
Thus, the hypotheses of Theorem 1 imply that V̇0(t) ≥ 0 for all t ≥ 0, that is,
V̇0 is positive semi-definite. Finally, V̇0 = 0, (t ≥ 0), necessarily implies that
Y = 0 for all t ≥ 0, and Z = Ẏ = 0, W = Ÿ = 0, Ẇ =

...
Y = 0 for all t ≥ 0

so that
X = ξ, Y = Z = W = U = 0.

From the last estimate and system (3), we have Φ5(ξ) = 0, which necessarily
implies that ξ = 0 only since Φ5(0) = 0. Then, it is clear that

X = Y = Z = W = U = 0 for all t ≥ 0.

Hence, we can conclude that all Krasovskii’s properties hold (see, Krasovskii
[6] and Tunç and Ateş [23]). Therefore, the Lyapunov functional V0 satisfies
the hypothesis in Krasovskii [6] if the hypotheses of Theorem 1 hold. Thus,
the basic properties of the Lyapunov functional V0, which were verified above,
prove that system (3) have no non-trivial periodic solutions of any period. Since
system (3) is equivalent to Eq. (1), this completes the proof of Theorem 1.
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Example 2.5. Let n = 2. We choose the matrices Φ1,Φ 2 ,Φ3 and vectors Φ4

and Φ5 as the below:

Φ(W ) =

[
2 + (1 + w2

1)−1 1
1 2 + (1 + w2

1)−1

]
,

Φ2(Z) =

[
−2− z2

1 1
1 −2− z2

1

]
,

Φ3(X,Y, Z) =

[
−4− x2

1 − y2
1 − z2

1 1
1 −4− x2

1 − y2
1 − z2

1

]
,

Φ4(Y ) =

[
2y1 + arctan y1

2y2 + arctan y2

]
,Φ4(0) = 0,Φ4(ξi) 6= 0, ξ 6= 0,

Φ5(X) =

[
3x1 + arctanx1(t− τ)
3x2 + arctanx2(t− τ)

]
,Φ5(0) = 0.

It is obvious that

JΦ4
(Y ) =

[
2 + (1 + y2

1)−1 0
0 2 + (1 + y2

2)−1

]

and

JΦ5(X) =

[
3 + (1 + x2

1(t− τ))−1 0
0 3 + (1 + x2

2(t− τ))−1

]
.

By some trivial elementary operations, we can obtain the following relations:
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λ1(Φ1(W )) = 1 +
1

1 + w2
1

,

λ2(Φ1(W )) = 3 +
1

1 + w2
1

,

λi(Φ1(W )) ≥ 1 = a1,

λ1(Φ2(Z)) = −1− z2
1 ,

λ2(Φ2(Z)) = −3− z2
1 ,

λi(Φ2(Z)) < 0,

λ1(Φ3(Y )) = −3− x2
1 − y2

1 − z2
1 ,

λ2(Φ3(Y )) = −5− x2
1 − y2

1 − z2
1 ,

λi(Φ3(Y )) ≤ −3 = a3,

λ1(JΦ4
(Y )) = 2 +

1

1 + y2
1

,

λ2(JΦ4(Y )) = 2 +
1

1 + y2
2

,

λi(JΦ4
(Y )) ≥ 2 = a4,

λ1(JΦ5(X)) = 3 +
1

1 + x2
1(t− τ)

,

λ2(JΦ5(X)) = 3 +
1

1 + x2
2(t− τ)

,

a5 = 3 ≤λi(JΦ5(X)) ≤ 4 = a′5.

If

τ < min

(
−2a3

a′5
,

2a5

a′5

)
= min(

6

4
,

6

4
) =

3

2
,

then all the hypotheses of Theorem 1 hold. Hence, for the particular choices,
the corresponding differential equation has no non-trivial periodic solution of
any period.

B. Hypotheses
We assume there exist constants b1(> 0), b2(< 0), b3(< 0), b4(> 0), b5(>

0) and b′5(> 0) such that the following conditions hold:

(H1) λi(A) ≥ b1, λi(Ψ2(Z)) ≤ b2, λi(Ψ3(Y )) ≤ b3,Ψ4(0) = 0,Ψ4(Y ) 6= 0
when Y 6= 0, Ψ5(0) = 0, Ψ5(X) 6= 0 when X 6= 0.

(H2) The Jacobian matrices JΨ2(Z), JΨ3(Y ), JΨ4(Y ) and JΨ5(X), exist and
are continuous and symmetric such that λi(JΨ4

(Y )) ≥ b4) and b′5 ≥
λi(Ψ5(X)) ≥ b5.

(H3) τ < b4
2b′5

.
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The second instability theorem of this paper is given below.

Theorem 2.6. If hypotheses (H1)−(H3) hold, then Eq. (2) has no non-trivial
periodic solution of any period.

We have here some equalities that play important role in the proof of The-
orem 2.

Lemma 2.7. We assume that Ψ5(0) = 0. Then the following hold:

10)
d

dt

∫ 1

0

〈Ψ2(σZ)Z, Y 〉dσ = 〈Ψ2(Z)W,Y 〉+

∫ 1

0

〈Ψ2(σZ)Z,Z〉dσ.

20)
d

dt

∫ 1

0

〈σΨ3(σY )Y, Y 〉dσ = 〈Ψ3(Y )Z, Y 〉.

30)
d

dt

∫ 1

0

〈Ψ5(σX), X〉dσ = 〈Φ5(X), Y 〉.

Proof. We now give only the proof of 30).
It is obvious that

d

dt

∫ 1

0

〈Ψ5(σX), X〉dσ =

∫ 1

0

σ〈JΨ5(σX)Y,X〉dσ +

∫ 1

0

〈Ψ4(σX), Y 〉dσ

=

∫ 1

0

σ〈JΨ5(σX)X,Y 〉dσ +

∫ 1

0

〈Ψ5(σX), Y 〉dσ

=

∫ 1

0

σ
∂

∂σ
〈Ψ5(σX), Y 〉dσ +

∫ t

0

〈Ψ5(σX), Y 〉dσ

= σ〈Ψ5(σX)Y 〉|10 = 〈Ψ5(X), Y 〉.

The proofs of the equalities 10) and 20) can be easily done by following a similar
way given in Sadek [9], Tunç([14],[15]) and Tunç and Ateş [23]. Therefore, we
omit the details of the proofs.
Proof of Theorem 2. Define an auxiliary functional V1 = V1(X,Y, Z,W,U)
by

V1 = −
∫ 1

0

〈Ψ2(σZ)Z, Y 〉dσ − 〈U, Y 〉 −
∫ 1

0

〈σΨ3(σY )Y, Y 〉dσ

− d

dt

∫ 1

0

〈Ψ5(σX), X〉dσ − 〈AY,W 〉+
1

2
〈AZ,Z〉

+ 〈Z,W 〉 − λ
∫ 0

−τ

∫ t

t+s

‖Y (θ)‖2dθds. (8)

Then, by hypothesis (H1), we follow that

V1(0, 0, 0, 0, 0) = 0

and

V1(0, 0, ε, ε, 0) ≥ 1

2
(b1 + 1)‖ε‖2 > 0,
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where ε 6= 0, ε ∈ <n.
Differentiating the auxiliary functional V1 with respect to t along system

(4), from (8) we find

V̇1 = − d

dt

∫ 1

0

〈Ψ2(σZ)Z, Y 〉dσ − d

dt

∫ 1

0

〈σΨ3(σY )Y, Y 〉dσ

− d

dt

∫ 1

0

〈Ψ5(σX), X〉dσ − 〈Ψ2(Z)W,Y 〉

+ 〈Ψ3(Y )Z, Y 〉+ 〈Ψ4(Y ), Y 〉+ 〈Ψ5(X), Y 〉

+ 〈W,W 〉 − 〈
∫ t

t−τ
JΨ5

(X(s))Y (s)ds, Y 〉

− λτ‖Y ‖2 + λ

∫ t

t−τ
‖Y (θ)‖2dθ.

Using the equalities given in Lemma 3 for V̇1, we obtain

V̇1 = 〈Ψ4(Y ), Y 〉 −
∫ 1

0

〈Ψ2(σZ)Z,Z〉dσ + 〈W,W 〉

− λτ‖Y ‖2 + λ

∫ t

t−τ
‖Y (θ)‖2dθ.

Meanwhile, by hypotheses (H1), (H2), ∂
∂σΨ4(σY ) = JΨ4

(σY )Y and Ψ4(0) = 0,
it is clear that

Ψ4(Y ) =

∫ 1

0

JΨ4(σ1Y )Y dσ1,

〈Ψ4(Y ), Y 〉 = 〈
∫ 1

0

JΨ4(σ1Y )Y dσ1, Y 〉 >≥
1

2
b4〈Y, Y 〉

and

−
∫ 1

0

〈Ψ2(σZ)Z,Z〉dσ ≥ −〈b2Z,Z〉.

In addition, by Cauchy-Schwarz inequality in <n and hypothesis (H2), it is
clear that

−〈
∫ t

t−τ
JΨ5

(X(s))Y (s)ds, Y 〉 ≥ −‖Y ‖‖
∫ t

t−τ
JΨ5

(X(s))Y (s)ds‖

≥ −‖Y ‖
∫ t

t−τ
‖JΨ5(X(s))‖‖Y (s)‖ds

≥ −b′5‖Y ‖
∫ t

t−τ
‖Y (s)‖ds

≥ −1

2
b′5τ‖Y ‖2 −

1

2
b′5

∫ t

t−τ
‖Y (s)‖2ds.
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Hence

V̇1 ≥
1

2
〈b4Y, Y 〉 − 〈b2Z,Z〉+ 〈W,W 〉

− 1

2
b′5τ‖Y ‖2 −

1

2
b′5

∫ t

t−τ
‖Y (s)‖2ds

− λτ‖Y ‖2 + λ

∫ t

t−τ
‖Y (θ)‖2dθ.

Let λ = 1
2b
′
5. Then, it is clear that

V̇1 ≥
1

2
〈(b4 − 2b′5τ)Y, Y 〉 − 〈b2Z,Z〉 − 〈W,W 〉 ≥ 0

by hypotheses (H1) and (H3) of Theorem 2. The rest of the proof is similar
to the proof of Theorem 1. Therefore, we omit the details of the proof.
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Bolet́ın de Matemáticas 24(2) 155-168 (2017)



On the instability of nonlinear functional differential equations of fifth order 167

[7] W.-J. Li and K.-C. Duan, Instability theorems for some nonlinear differ-
ential systems of fifth order, J. Xinjiang Univ. Natur. Sci. 17 (2000), no. 3,
1–5.

[8] W.-J. Li and Y. H. Yu, Instability theorems for some fourth-order and
fifth-order differential equations, J. Xinjiang Univ. Natur. Sci. 7 (1990),
no. 2, 7–10.

[9] A. I. Sadek, Instability results for certain systems of fourth and fifth order
differential equations, Appl. Math. Comput. 145 (2003), no. 2-3, 541–549.

[10] W. J. Sun and X. Hou, New results about instability of some fourth and
fifth order nonlinear systems, J. Xinjiang Univ. Natur. Sci. 16 (1999),
no. 4, 14–17.

[11] H. O. Tejumola, Integral conditions of existence and non-existence of peri-
odic solutions of some sixth and fifth order ordinary differential equations,
J. Nigerian Math. Soc. 31 (2012), 23–33.
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[22] , Instability of a fifth order non-linear vector delay differential equa-
tion with multiple deviating arguments, Politehn. Univ. Bucharest Sci.
Bull. Ser. A Appl. Math. Phys. 76 (2014), no. 1, 155–162.
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