

ANONYMOUS, AUTHENTIC, AND ACCOUNTABLE RESOURCE

MANAGEMENT BASED ON THE E-CASH PARADIGM

A Dissertation

by

TAK CHEUNG LAM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2008

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4276809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ANONYMOUS, AUTHENTIC, AND ACCOUNTABLE RESOURCE

MANAGEMENT BASED ON THE E-CASH PARADIGM

A Dissertation

by

TAK CHEUNG LAM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jyh-Charn (Steve) Liu
Committee Members, Sing-Hoi Sze
 Anxiao (Andrew) Jiang
 Bojan Popov
Head of Department, Valerie E. Taylor

May 2008

Major Subject: Computer Science

 iii

ABSTRACT

Anonymous, Authentic, and Accountable Resource Management based on the E-cash

Paradigm. (May 2008)

Tak Cheung Lam, B. S., The Chinese University of Hong Kong;

M. S., The Chinese University of Hong Kong

Chair of Advisory Committee: Dr. Jyh-Charn (Steve) Liu

The prevalence of digital information management in an open network has driven

the need to maintain balance between anonymity, authenticity and accountability (AAA).

Anonymity allows a principal to hide its identity from strangers before trust relationship

is established. Authenticity ensures the correct identity is engaged in the transaction even

though it is hidden. Accountability uncovers the hidden identity when misbehavior of the

principal is detected. The objective of this research is to develop an AAA management

framework for secure resource allocations. Most existing resource management schemes

are designed to manage one or two of the AAA attributes. How to provide high strength

protection to all attributes is an extremely challenging undertaking. Our study shows that

the electronic cash (E-cash) paradigm provides some important knowledge bases for this

purpose. Based on Chaum-Pederson’s general transferable E-cash model, we propose a

timed-zero-knowledge proof (TZKP) protocol, which greatly reduces storage spaces and

communication overheads for resource transfers, without compromising anonymity and

accountability. Based on Eng-Okamoto’s general divisible E-cash model, we propose a

 iv

hypercube-based divisibility framework, which provides a sophisticated and flexible way

to partition a chunk of resources, with different trade-offs in anonymity protection and

computational costs, when it is integrated with different sub-cube allocation schemes.

Based on the E-cash based resource management framework, we propose a privacy

preserving service oriented architecture (SOA), which allows the service providers and

consumers to exchange services without leaking their sensitive data. Simulation results

show that the secure resource management framework is highly practical for mission-

critical applications in large scale distributed information systems.

 v

DEDICATION

 To My Wife and Parents

 vi

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Dr. Jyh-Charn Liu, for his support,

guidance, encouragement, and trust. He is more a mentor than a mere advisor to me. He

set a high standard for me that really helped me become mature, both personally and

professionally. I would like to thank Dr. Sing-Hoi Sze, Dr. Bojan Popov, and Dr. Anxiao

Jiang for spending their valuable time and effort in serving on my committee. They gave

me very helpful suggestions on improving the quality of this dissertation. I would like to

thank Dr. Scott Pike also for his advice on my preliminary stage of research.

I would like to thank my labmates in the Real-time Distributed Systems Lab at

TAMU. I am greatly in debt to Cheng-Chung Tan and Pu Duan for their help in various

projects. I would like to thank Yong Xiong, Hong Lu, Ming Zhang, Chunhua Tang, Xu

Yang, Yiping Shen, Shengya Lin, Steven Chang, and Huajun Ying for their generosity in

sharing many ideas with me.

Last but not least, I appreciate my beloved wife, my parents and my sisters.

Without their love, patience, and support, I would not have finished my Ph.D study.

 vii

NOMENCLATURE

AAA Anonymity, Authenticity, Accountability

BC Binary Code

BRGC Binary Reflected Gray Code

CA Central Authority

DHT Distributed Hashing Table

DSI Double Spending Identification

DVS Delegation Key, Verification Key, Secret Share

GDA General Disposable Authentication

GDM General Divisibility Model

GTM General Transferability Model

MLBF Multi-Layer Bloom Filter

KDM Key Dependency Map

MSR Multi-Source Reusability

P2P Peer-to-Peer

RC Random Code

SH Secret Handshake

SOA Service Oriented Architecture

TAA Timed Access Authorization

TZKP Timed Zero-Knowledge Proof

XML Extensible Markup Language

 viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

NOMENCLATURE.. vii

TABLE OF CONTENTS .. viii

LIST OF FIGURES... xi

LIST OF TABLES .. xiii

I INTRODUCTION... 1

II E-CASH PARADIGM .. 6

 A. E-cash Basic Operations .. 6
 B. E-cash High Level Construct .. 8
 1. Blind signature schemes .. 8
 2. Zero-knowledge proof (ZKP) protocols .. 9
 3. Secret sharing schemes... 11
 C. E-cash Design Space .. 12
 1. Linkability ... 12
 2. Traceability .. 14
 3. Transferability .. 14
 4. Divisibility.. 15
 5. Token revocation ... 16
 D. E-cash Based Resource Management Framework 16

III TRANSFERABILITY MANAGEMENT... 19

 A. Timed Zero-Knowledge Proof (TZKP) Protocol 22
 1. System overview ... 22
 2. General disposable authentication (GDA) model 25
 3. TAA generation: session time authorization 28
 4. TAA transfer: multi-source reusability (MSR) 31

 ix

 Page

 B. Security Analysis ... 36
 1. Accountability .. 37
 2. Anonymity.. 38
 3. Authenticity ... 39
 C. Complexity Analysis ... 42
 D. Experimental Results ... 45
 E. Related Work ... 49
 F. Summary ... 51

IV DIVISBILITY MANAGEMENT ... 53

 A. Hypercube Based Divisibility Management 55
 1. System overview ... 61
 2. Hypercube based token and credential ... 63
 3. Key dependency map (KDM) .. 65
 B. Cryptographic Constraint Analysis ... 70
 1. Authenticity.. 72
 2. Accountability ... 74
 3. Anonymity.. 76
 C. Cryptographic Constructs and Sub-cube Allocation Schemes 76
 1. Scheme I ... 77
 2. Scheme II.. 79
 D. Experimental Results ... 85
 E. Summary .. 89

V PRIVACY PRESERVING SERVICE ORIENTED ARCHITECTURE (SOA) 91

 A. System Overview ... 95
 B. Basic Operations ... 98
 1. P2P network: CHORD ... 98
 2. Multi-layer Bloom filter (MLBF) .. 99
 3. Secret handshake (SH) protocol ... 100
 C. Protocol Details ... 106
 1. System initialization phase... 106
 2. Service discovery phase .. 107
 3. Service transaction phase .. 118
 D. Experimental Results ... 119
 1. Average hop count .. 120
 2. Average runtime per hop ... 121
 E. Summary .. 123

VI SUMMARY .. 125

 x

 Page

REFERENCES.. 128

APPENDIX A: ANONYMITY GUARANTEE WITH THREE VERTICES.......... 141

APPENDIX B: SECURITY ANALYSIS FOR SECRET HANDSHAKE 144

APPENDIX C: XML AND XPATH DATA SET ... 151

VITA ... 156

 xi

LIST OF FIGURES

FIGURE Page

 1 AAA relationship in the E-cash paradigm. .. 7

 2 High level constructs of E-cash system.. 9

 3 E-cash design space.. 13

 4 E-cash based resource management framework. 17

 5 Service model and adversary behaviors. .. 23

 6 Same-source transfers – a double transfer.. 33

 7 Multi-source transfers – not a double transfer. .. 34

 8 Prior-knowledge graph analysis for TZKP. ... 40

 9 Runtimes of withdrawal and transfer in TZKP. ... 48

 10 Message sizes of withdrawal and transfer in TZKP................................... 49

 11 Dependency graph of a 2-dimensional hypercube, G2. 56

 12 Usable vertices under (a) BC scheme (b) BRGC scheme. 60

 13 System architecture for hypercube-based resource management............... 61

 14 Key dependency map (KDM). ... 67

 15 Pseudocode for key dependency map (KDM). .. 69

 16 High level view of key dependency map (KDM). 70

 17 Cryptographic constraints for authenticity (A1). 73

 18 Cryptographic constraints for anonymity and accountability (A2, A3). 75

 19 Vertex marking scheme for susceptible vertices with respect to p = 0××.. 81

 xii

FIGURE Page

 20 Pseudocode of anonymity hazard test (AHT) .. 85

 21 Pseudocode of the simulation program for fragmentation. 88

 22 Anonymity hazard ratio.. 89

 23 Fragmentation ratio (caused by anonymity hazards). 89

 24 System architecture for reservation based SOA... 96

 25 Mapping XML document to CHORD key... 109

 26 Add service description. ... 110

 27 Mapping from XPath to CHORD key.. 115

 28 Matching service request.. 116

 29 Average hop count for returning all results.. 121

 30 Anonymity hazard impossible with 3 vertices. .. 142

 xiii

LIST OF TABLES

TABLE Page

 1 General disposable authentication (GDA) ... 25

 2 Complexity analysis for TZKP. ... 43

 3 Runtime and message size of withdrawal. ... 47

 4 Runtime of the i-th transfer. ... 47

 5 Message size of the i-th transfer... 47

 6 Upper bounds on credential storage size.. 47

 7 Allocation list for Q3 in BC and BRGC schemes. 59

 8 General disposable authentication (GDA). .. 62

 9 Input/output of key dependency map (KDM). ... 72

 10 Anonymity hazard scenario in G3.. 83

 11 Fragmentation scenario when Q1 is requested... 84

 12 Secret handshake protocol with reusable tokens. 103

 13 Scenario for adding service description. .. 110

 14 Computations for the next CHORD key. ... 115

 15 Scenario for matching service request. .. 116

 16 Average hop count for returning all results.. 120

 17 Average runtime of our secret handshake protocols 122

 18 Average message size of our secret handshake protocols.......................... 122

 19 Total Runtime for different number of nodes .. 123

 1

I. INTRODUCTION

 The prevalence of digital information management in an open network has driven

a new level of expectation on security and privacy protection. One of the key issues is to

maintain the fragile balance between anonymity, authenticity, and accountability (AAA).

In a hostile environment, a principal may want to remain its identity anonymous when it

communicates with strangers. In the mean, the principal also wants to guarantee that the

stranger is a valid user with an authentic identity to take part in the communications. An

authentic identity needs to be unveiled to account for misbehaviors from the ill-minded

adversary in the group. Balance of the AAA strengths calls for a holistic design strategy

in large-scale, distributed information systems. One must carefully adjust the strengths

between the three management arms to yield the highest productivity for mission-critical

applications.

 The objective of this research is to develop secure resource allocations in an open

network based on the AAA management criteria. Different from tangible resources

which can be transferred physically, allocation of digital resources is essentially an

exchange of authentication messages which claim the ownership of the resources. AAA

management allows an anonymous principal to prove the ownership of its resources, and

at the same time, it allows identification of the principal who transfers the ownership

which has been transferred to others, via replay of authentication messages. One solution

This dissertation follows the style of IEEE Transactions on Networking.

 2

approach is to relay all messages via a trusted server but then the trusted server becomes

a single point of failure because any malfunctions of the trusted server will cease all

system activities immediately. We will show that with proper enhancements on the

electronic cash (E-cash) framework, one can manage the AAA attributes for resource

allocations with minimum interventions from the trusted server.

 E-cash was originally designed to support secure, anonymous transactions and

culprit identifications for digital currency duplications. Distinguished from other digital

payment systems, E-cash requires no centralized supervisions in the transaction phase.

The elegant cryptographic constructs of E-cash provide important knowledge bases for

the designs of secure resource allocations. Based on the E-cash framework, a principal

can transfer the ownership of its resource (or money) to another principal. During the

transfer, the transferring principal needs to show the proof of ownership. At the same

time, the proof must not leak its user identity to the receiving principal unless a double-

transfer violation occurs. A double-transfer violation occurs when a principal duplicates

the proof of ownership and transfers them to different principals. The design of E-cash

ensures that the user identity of the double-transfer violator can be deciphered from the

proofs after-the-fact. In this dissertation, we investigated two major topics related to E-

cash based resource allocation: transferability management and divisibility management.

 Transferability is a fundamental need for secure resource allocations but it is also

proven a costly operation under the general transferability model (GTM) [1]. We

proposed a timed zero-knowledge proof (TZKP) protocol which drastically reduces the

storage size and the communication overheads from O(n) to constant, where n is the total

 3

number of transfers occurred in the system. We will show that, by proper incorporation

of session time into GTM, a principal can regularly discard the outdated log files,

without losing track of potential double-transfer offenders. In contrast, original GTM

requires the log files to be kept forever in order to guarantee accountability of double-

transfer offenders. We will also show that, by distinguishing the multi-source condition

from the same-source condition, and including them as a deciphering trigger in GTM, a

principal can reuse a single token to exercise unlimited number of legitimate transfers,

without leaking its user identity. In contrast, original GTM requires the principal to

withdraw a new (dummy) token for each transfer in order to guarantee anonymity for the

transferring principal. Since withdrawal is typically the most expensive operation in E-

cash systems, the proposed reusable token significantly reduces the system overheads for

E-cash based resource allocations.

Divisibility is useful to manage a chunk of resources using minimum number of

tokens. A principal can use a single token to generate the ownership proofs for different

divisions from the resource chuck, instead of using one token for each atomic unit of the

chunk. We proposed a hypercube-based divisibility framework, which expands the

number of possible divisibility configurations from O(2m+1) to O(3m), in contrast to the

tree-based framework of the general divisibility model (GDM) [2], where m is the

number of bits to represent an atomic unit of the resource chunk. We analyzed the

cryptographic constraints to maintain the AAA balance in the hypercube-based

divisibility framework, and derived a scheme which yields better performance by a

relaxed anonymity constraint. Simulation results show that my scheme assures

 4

anonymity at a small extra cost of fragmentation (< 2%) under an unrestrictive sub-cube

allocation scheme. Moreover, such a small cost can further be eliminated (0%) when

restrictive sub-cube allocation schemes, such as binary code (BC) and binary reflected

gray code (BRGC), are used to distribute resources [3]. It suggests that with proper

adjustments to both the divisible tokens and resource allocation rules, highly secure and

efficient resource management schemes can be developed based on one integrated

framework.

Based on the above secure resource management solutions, we proposed a

privacy-preserving framework for the reservation-based service oriented architecture

(SOA). In the proposed system, a registered service consumer can reserve services

(resources) from the service provider. The service consumer can choose to transfer the

service reservation to another consumer. The service provider provides service to

anyone who can present a valid service reservation. Although the E-cash paradigm

paved a solid foundation for the protection of user identity in the above scenario, there is

a missing link is on the privacy protection of inquiry and service contents during service

discovery. To bridge this gap, we interfaced the E-cash based resource management

framework with a peer-to-peer (P2P) system, CHORD [4], and extended its lookup

protocol with the multi-layer Bloom filter (MLBF) [5], so that the service consumer can

query other peer nodes for wanted services while those peer nodes do not have

knowledge on both the inquiry and service contents. Such a privacy protection is

important for collaborations between competing parties in a hostile environment. In

addition, we proposed a secret handshake (SH) protocol to control the release of

 5

sensitive information to anonymous party based on different qualifications, trust levels,

capabilities, rights, or privileges represented by the group. The proposed SH protocol

allows two anonymous principals to use their SH tokens to authenticate each other

whether or not they belong to the same group. If they belong to the identical group, they

are able to establish a common secret key for further transaction actions. Otherwise, they

are not able to recognize the group identity of one another. The proposed protocol allows

reuse of the SH token in different transactions without leaking information of the user

identity. In contrast, the existing work which uses 2 pairing operations requires the

withdrawal of a new SH token for each transaction in order to guarantee anonymity [6].

And the existing work [7] which supports reuse of token requires 6 pairing operation [8].

Our protocol provides a light-weight group authentication mechanism to filter strangers

from different groups before proceeding to the more sophisticated authentications for the

transaction phase in resource allocations. Preliminary experimental results show that the

proposed secure resource management framework is highly practical for mission-critical

applications in large scale distributed information systems.

The following sections of this dissertation are organized as follows. Section II

introduces the background of the E-cash paradigm and its unified framework for secure

resource allocations. Sections III and IV explain the transferability management and the

divisibility management for secure resource allocations, respectively. Section V presents

the reservation-based SOA in a P2P environment. Section VI provides a summary of the

research work.

 6

II. E-CASH PARADIGM

 Electronic cash, or E-cash, was first proposed by Chaum in [9] to support secure

anonymous transactions. Distinguished from other electronic payment systems, E-cash

does not require online supervisions from the trusted third party during the transaction

phase. Therefore, it is usually regarded as the off-line payment model. Although E-cash

has not been broadly deployed to replace the paper-based currency, mainly due to non-

technical concerns [10], its elegant cryptographic constructs for off-line authentications

and privacy protection have offered important knowledge bases for the development of

large-scale critical applications at different clearance levels. Examples include, but not

limited to, electronic voting [11], population survey [12], collaborations with competing

parties [13], role based information sharing [14], and mobile agent tracking system [15].

In this section we will introduce the E-cash paradigm and based on it to develop a secure

resource management framework.

A. E-cash Basic Operations

The basic operations in the E-cash paradigm are depicted in Fig. 1. In its original

form, a principal needs to register an account from the bank. Then, the bank will assign

an identity (account number) to the principal and maintain the records of the principal. A

registered principal can withdraw some tokens from the bank. Each token has a unique

serial number signed by the bank. The serial number is associated with the encrypted

 7

identity of the principal and some secrets for proving the ownership of the token. The

principal (payer) can spend the token to another principal (payee). The spent token is an

encrypted form of the token called the credential. The payee verifies the credential and

deposits the credential to the bank. The credentials received by the payees or deposited

to the bank cannot be associated with the payer’s identity unless the payer spends the

same token again to another transaction. This is called the double spending offense. The

double spending identification (DSI) system can decipher the identity of double spending

offender from the involved credentials. From the above description, the E-cash paradigm

demonstrated a harmonic AAA balance between three types of principals: the payer can

stay anonymous; the payee can assure the transaction made by the payer is authentic; the

bank can assure that double spending offense is accountable. This simple AAA model is

the foundation of our secure resource management framework in subsequent discussions.

Fig. 1: AAA relationship in the E-cash paradigm.

 8

B. E-cash High Level Construct

E-cash involves a myriad of cryptographic tools which interlocked relationship is

carefully exercised to satisfy the AAA requirement simultaneously. In this section, we

will introduce three cryptographic primitives commonly used by E-cash constructs: blind

signature schemes [9, 16-21], zero-knowledge proof (ZKP) protocols [22-27], and secret

sharing schemes [28-35]. A high level construct is described in Fig. 2.

1. Blind signature schemes

Blind signature schemes [9] allow the bank to sign a message without knowing

the exact message contents. In E-cash, the signed message refers to the serial number of

the token. Therefore, the bank is not able to associate the serial number from deposited

credential with the principal’s identity from the withdrawal record. A simple example of

blind signature scheme is described as follows. Let (e, n) and (d, p, q) be the RSA public

keys and private keys of the bank respectively. The principal wants to receive the bank’s

signature on message M without letting the bank know the plaintext of M.

BLIND: The principal randomly generates an integer r and send re⋅M mod n to the bank.

SIGN: The bank sends the signature (re⋅M mod n)d mod n = r⋅Md mod n to the principal.

UNBLIND: The principal retrieves the signature by ((r⋅Md mod n)/r) mod n = Md mod n.

VERIFY: The bank’s signature on M is correct if (Md mod n)e mod n = M.

 9

Fig. 2: High level constructs of E-cash system.

In the above simple example, the bank has no knowledge on the signed message

M, because it does not know the random number r. In E-cash systems, the bank does not

know the signed serial number of the token but it also needs to guarantee that the signed

serial number is associated with the encrypted identity of the principal. It requires more

advanced schemes such as randomized blind signature [36]. Advanced blind signature

schemes induce severe overheads for the withdrawal operations in most E-cash schemes.

In this dissertation, instead of designing efficient blind signatures for E-cash, our scheme

minimizes the number of withdrawal operations needed to reduce the system overheads.

2. Zero-knowledge proof (ZKP) protocol

 Zero-knowledge proof (ZKP) protocols [22] allow a principle (prover) to prove

to another principal (verifier) that the presented message is associated with some secrets

 10

under certain constraints but not allowing the verifier to know the secrets. In E-cash, the

presented message refers to the serial number of the token, which is associated with the

encrypted identity of the principal and some secrets for the principal to prove the token’s

ownership. It guarantees that the identity of the principal cannot be deciphered from the

credential. A simple example of ZKP protocol is described as follows. Let (e, n) and (d,

p, q) be the RSA public keys and private keys of the payer. The payer presents the public

keys to the payee and wants to prove that it knows the private counterparts.

WITNESS: The payer publishes (e, n) to the payee.

CHALLENGE: The payee randomly generates a message M and sends it to the payer.

RESPONSE: The payer signs M and returns the signature Md mod n to the payee.

VERIFY: It is proven that the payer knows (d, p, q) if (Md mod n)e mod n = M.

In the above simple example, adversaries cannot pretend to know the private part

by replaying the response because the challenge M is unpredictable. This challenge-and-

response approach of ZKP is broadly used in E-cash systems. First, the payer presents

the serial number of token to the payee. Then, the payee sends back a random challenge

to the payer. The payer needs to sign the challenge message by the secrets of the token to

give the response. Different from the simple example, the payee can verify the response

message using the public parameters from the bank, instead of the individual public keys

of the payer. It guarantees that no individual public keys can be linked to two payments

of the same payer. Another difference is that typical ZKP protocols aim to protect secrets

unconditionally while ZKP protocols used in E-cash systems need to decipher the secrets

 11

(identity) on double-spending offense. Therefore, ZKP protocols used in E-cash systems

are usually integrated with secret sharing schemes.

3. Secret sharing scheme

 Secret sharing schemes [28] allows a secret message to be encrypted in multiple

secret shares. A (k, n) secret sharing scheme guarantees that any k out of n secret shares

can be used to reconstruct the secret message while fewer than k secret shares cannot. In

E-cash systems, the secret message refers to the identity of the payer. The payer needs to

produce one secret share to the payee. If the payer doubly spends the token and produces

multiple secret shares, its identity can be involuntarily deciphered from the secret shares

when their credentials are deposited to the bank. A simple example of a secret sharing is

described as follows. Let (a0, …, ak-1) be the secret message to be encrypted in the (k, n)

secret sharing scheme:

f(x) = a0 + a1⋅x + a2⋅x2 + … + ak-1⋅ xk-1 (2.1)

SECRET SHARING: Compute the i th secret share (xi, f(xi)), for some xi, i = 0, …, n -1.

SECRET RECOVERY: Use any k secret shares to construct k polynomials by (2.1). The

secret message (a0, …, ak-1) can be recovered by interpolations of the k polynomials.

 In this above simple example, the secret message is selected by the payer. On the

other hand, E-cash systems have to enforce the payer to use its secret identity to produce

the secret shares so that double spending offenses are accountable. Thus, secret sharing

schemes in E-cash systems are usually integrated with ZKP, as we have mentioned in the

 12

previous section. As we will see in subsequent discussions, the integrated constructs of

secret sharing scheme and ZKP protocol form strong bonding among the AAA attributes

for secure resource management.

C. E-cash Design Space

 Numerous E-cash branches were proposed in the past two decades with different

emphasis on linkability, traceability, transferability, divisibility, and token revocation, as

depicted in Fig. 3. In this section, we will give a brief introduction to various branches

and discuss their relationship. These branches inspired a very rich design space for

mission-critical applications with similar AAA needs.

1. Linkability

Two credentials are linkable to a principal if the principal can determine whether

or not both the credentials are produced by the same payer while the principal does not

necessarily knowing the payer’s identity. Two credentials involved in a double spending

need to be linkable in order to enable DSI operations. Thus, linkability is usually used to

describe the credentials without involved in a double spending offense.

Linkability can further be classified into multi-token linking, same-token linking,

and sub-token linking. Multi-token linking is the case when the linkable credentials are

produced by different tokens. It is useful to defense against misbehaviors such as money

 13

laundering [37]. Same-token linking refers to the case when the linkable credentials are

produced by the same token. A special case known as forward linkability occurs when a

credential revisits the same payer after a series of transfers which is proven inevitable in

the off-line model [1]. Sub-token linking refers to the case when the linkable credentials

represent sub-values of a divisible token. Sub-token linking appears in most divisible E-

cash schemes [2, 38-40] with the exceptions of [41, 42].

Fig. 3: E-cash design space.

 14

2. Traceability

A credential is traceable to a principal if the principal can associate the credential

with the withdrawal records of the token which generated this credential. Similar to the

linkability, traceability is usually used to describe the credentials without involved in a

double spending offense.

Traceability can further be categorized into coin tracing and owner tracing. Coin

tracing refers to the case when a principal other than the payer can tell the serial number

of the credential before the token is spent. It is necessary to create a token revocation list

�[46]. Owner tracing refers to the case when a principal other than the payer can tell the

payer’s identity after the token is spent. It directly implies that the credential is linkable

to the principal. Owner tracing is usually enabled by a trusted third party other than the

bank to catch the misbehaviors in addition to double spending. Typically, the bank needs

to use some public parameters of the trusted third party to create the token, and the bank

needs the trusted third party to use it private keys to decipher the identity of the offender

from the credential.

3. Transferability

An E-cash scheme is transferable if the received money, privileges, resources, or

assets represented by a credential can further be spent to other principals without having

to deposit it to the bank first. A number of transferable schemes are proposed [1, 43, 44].

 15

A non-transferable scheme can be transformed into a transferable scheme by the general

technique proposed in [1]. By using this technique, the payer needs to spend a (dummy)

transfer token in each transfer, and the same transfer token cannot be reused in the next

transfer, or otherwise, the payer’s identity is traceable from the credentials produced by

the same transfer token. As a result, the payer needs to withdraw many transfer tokens in

order to execute multiple transfers, causing unnecessarily high system overheads. In this

dissertation, we will explain how to mitigate these withdrawal overheads by constructing

a reusable transfer token and discuss the impacts on the traceability and linkability.

4. Divisibility

An E-cash scheme is divisible if a token can be spent for multiple times in such a

way that each credential produced from it represents a subdivision of money, privileges,

resources, or assets. Each subdivision is weighted by a value. Double spending occurs if

the total values spent exceed the permitted quota. Typically, divisible E-cash schemes

are either coupon-based [37, 39, 41, 45] or tree-based [2, 38, 40, 42]. In coupon-based

schemes, the values of subdivisions are uniformly distributed. In contrast, in tree-based

schemes, a tree node at level i of the tree represents 1/2i of the allowed quota value. In

this dissertation, we developed a hypercube-based divisible scheme which supports more

subdivision configurations than tree-based schemes. We will show that owner tracing is

possible, although unlikely, in the hypercube-based scheme when an unrestrictive sub-

cube allocation scheme is used. We will also show that the chance of owner tracing can

 16

be dropped to zero if the hypercube-based scheme is integrated with some other well-

known sub-cube allocation schemes.

5. Token revocation

When a token is revoked, the permitted quota of the token will drop to zero, and

no more transfer made by the token is allowed. Revocable schemes usually require coin-

tracing ability to black list the revoked serial numbers [46, 47]. In this dissertation, We

will discuss the use of session time to invalidate an expired token for E-cash schemes

without coin-tracing ability.

D. E-cash Based Resource Management Framework

An E-cash based resource management framework is shown in Fig. 4. It contains

three major types of principals, the central authority (CA), resource owner, and resource

consumer, and five major operations, withdrawal, allocation, transfer, consumption, and

DSI. The CA and resource owner are assumed well-known to the resource consumers.

In Fig. 4, the resource owner possesses a chunk of resources represented by the

hypercube G4 = ××××, where × denotes the “don’t care” bit. The resource owner wants

to allocate the access rights for parts of its resources, represented by the sub-cubes, to the

resource consumers. In order to participate to resource allocations/transfers, the resource

consumers U0, U1, U0’ and U1’ first withdraw some tokens from the CA. On the requests

 17

of U0 and U0’, the resource owner allocates sub-cubes 0××× and 1××× to U0 and U0’,

respectively. U0 transfers sub-cubes 0×0× and 0×10 to U1 and U1’, respectively, and lets

itself consume the sub-cube 0×11 from the resource owner. Finally, U1 and U1’ consume

sub-cubes 0×0× and 0×10 from the resource owner, respectively.

 So far none of the hypercube nodes is transferred or consumed more than once.

Thus, the resource access provided by 0××× = {0×0×, 0×10, 0×11} is completed at the

resource owner’s site after U1 and U1’ finish their consumptions. Ideally, the credentials

produced by these consumers should be untraceable and unlinkable. However, a double

spending occurs when U0’ consumes the sub-cube 11×× from the resource owner while

it transfers the sub-cube 1×1× to U1’ because the sub-cube 111× = {1110, 1111} is used

twice. The DSI system must assure identification of U0’. Optionally, token revocation

can be used to prevent further violations of this resource consumer.

Fig. 4: E-cash based resource management framework.

 18

 The E-cash paradigm provided solid knowledge bases for the designs of secure

resource management in a hostile peer-to-peer environment. However, directly applying

E-cash may not be the most efficient mean to secure distributed systems, because it was

originally designed for monetary applications only. In this dissertation we will adjust the

E-cash algorithm to secure resource allocations with improved efficiency and flexibility.

 19

III. TRANSFERABILITY MANAGEMENT

Transferability is important for resource management to switch the ownership for

digital resources, assets or privileges from one principal to another principal. The E-cash

paradigm provides elegant cryptographic constructs for transferability management but it

induces serious system overheads under Chaum-Pedersen’s general transferability model

(GTM) [1, 48]. To make E-cash applicable to secure resource management, we proposed

timed zero knowledge proof (TZKP) protocol for session-based access control of shared

resources in an open environment. The main idea is to manipulate the anonymity control

variables in Eng-Okamoto’s general disposable authentication (GDA) model1 [2] so that

session time and source of transfer can be embedded into GDA as one of the decipher

conditions. As a result, resource access authorizations assigned for different sessions (or

transferred from distinct sources) can be managed independently by a single reusable

token without compromising the anonymity requirement. At the same time, the

credentials which have passed the current session can be safely discarded without

weakening the accountability requirement. Our scheme maintains the AAA balance with

a reduced number of tokens withdrawn and a reduced number of credentials stored. They

are both reduced from O(n) to constant where n is the number of transfer operations.

1 The GDA model in this dissertation refers to the general construct of disposable authentication
in the second part of [2], but not the specific construct in first part of [2] or the specific construct
in [49].

 20

 One of the most critical concepts in our scheme is the timed access authorization

(TAA). TAA is granted by the service provider to the service consumer when the service

consumer requests a reservation of services (resources). It contains the service provider’s

signature on three messages: (i) the scheduled time for service redemption, (ii) the public

part of the consumer’s token, and (iii) the description of services. The consumer needs to

present a valid TAA and the public part of its token in order to redeem services from the

service provider at scheduled session. Coupling of session time and token in TAA allows

the service provider to save storage by discarding the credentials associated with expired

TAAs. In contrast, traditional schemes need to maintain credentials indefinitely to catch

the service consumers from using aged tokens to redeem services. However, an improper

use of TAA may lead to anonymity breaching of service consumers. We will show that

our scheme can prevent adversaries from misusing expired credentials intentionally

stored at the service provider. Our scheme guarantees the accountability for the service

provider with reduced system overheads but not sacrificing the anonymity of honest

service consumers.

Another critical concern is about the TAA transfers among service consumers. In

additional to the original TAA issued from the service provider, a service consumer must

be able to use its own token to receive and pass on the TAA to another service consumer.

Different parts of the token is used for receiving and passing on the TAA. The TAA and

the credentials produced by all service consumers who transferred this TAA are together

called the cascaded credential. The cumulative size of the cascaded credential after each

transfer is proven inevitable [1] thus there is no room to reduce bandwidth and storage in

 21

this direction. On the other hand, the cost of token withdrawal per transfer operation can

be significantly reduced by using the multi-source reusability (MSR) condition proposed

in this section. Based on the MSR condition, the service consumer can transfer a number

of TAAs anonymously without withdrawing a new token provided that these transfers do

not constitute a double-transfer of TAA. A double-transfer happens when the number of

TAAs passed on is more than received by the service consumer. The concept of double-

transfer is mixed together with double-spending (reuse) of token in GTM. The main idea

of MSR is to distinguish these two concepts and reflect their difference in the anonymity

control variables of GDA. As a result, anonymity of rule-abiding service consumers can

be guaranteed with much fewer withdrawal operations owing to the reusability of tokens.

At the same time, we will show that accountability for double-transfer offense is assured

in our scheme even under attacks from a series of colluders.

The rest of this section is organized as follows. Section A explains the protocol

details for session-based management and the MSR condition. Sections B and C present

security and complexity analysis. Section D delivers simulation results to demonstrate

the applicability. Run time for token withdrawal and service redemption are within the

range of seconds, making it highly practical to the secure access control of large scale

Internet resources. Section E introduces the related work. Section F provides a summary

of this section.

 22

A. Timed Zero-Knowledge Proof (TZKP) Protocol

TZKP is designed for AAA management of shared resources at reduced system

overheads comparing with the GDA model. TZKP consists of two major cryptographic

modifications to the GDA model. The first one allows the service provider to issue TAA

based on a signed session time bundled with the public data of the requester’s token. The

second one allows the service consumer to transfer numerous TAAs it received to other

consumers by using the same token it possesses, and still assures the anonymity. In this

section, we will introduce the system architecture for AAA resource management and

then explain the details for the two modifications on the GDA model.

1. System overview

The system architecture depicted in Fig. 5 is similar to the one we have discussed

in Fig. 4. However, in this section we emphasize on the transferability management

while divisibility will be discussed in the next section. Following the generic architecture

for shared resource access, there are three types of principals: the central authority (CA),

the service provider, and the service consumer. The CA is responsible for issuing tokens

to service consumers, while the service provider is responsible for issuing TAAs to

service consumers, and rendering services to service consumers at authorized session

time. The service consumer can choose to redeem services by using its TAA, or transfer

it to other service consumers.

 23

Fig. 5: Service model and adversary behaviors.

A consumer needs to first withdraw a token from the CA before it can request a

TAA from the service provider, transfer TAAs to other consumers, and redeem services

from the service provider. The consumer needs to use its token and TAA for transfer and

service redemption. Having a token withdrawn from the CA, the consumer can initiate a

service request by presenting the public part of its token, and the requested session time

to access resources. The service provider grants the request by generating a TAA, which

includes the signature on the bundled session time and the public data of the consumer’s

token. Then, the consumer can use the TAA to redeem the services directly, or transfers

the TAA to another consumer, i.e., transfer of a TAA from the grantor to the grantee.

Transferability of TAA is highly desirable because it allows the creations of hierarchical

distribution architecture for resource access privileges. It is consistent with the current

practice in the large scale experimental facilities, such as DETER�[54]. By using TZKP,

TAA becomes void once it passes the scheduled time. The service provider can safely

 24

discard the credentials which have passed the current session without affecting its ability

to detect double-transfer for future sessions. Except for minor operational differences the

same authentication process is applicable to both service redemption and TAA transfer.

Informally, we can consider service redemption as a TAA transferred back to the service

provider. Unless explicit clarification is necessary, we only discuss TAA transfer in the

remaining discussions.

TZKP is designed for rule-abiding consumers to manage access credits securely,

while staying anonymous during operations. From the resource management viewpoints,

it is easy to add TZKP to the existing resource sharing rules because it imposes virtually

no restriction on how resources are reserved. The service provider simply stops issuing

TAA when the reserved resources in a session time reach a target level. And redemption

of services will be made to any principal who presents a valid credential, together with a

valid TAA. For simplicity, we assume that the service provider has a free-run system

clock. The time period of a session can range between minutes to hours for the shared

resources because the computers often need to be reconfigured for various consumers.

From the cryptographic analysis viewpoints, which are the focus of this paper, two main

concerns need to be addressed. First, consumers may attempt to doubly transfer TAA in

a session. Second, the service provider may attempt to decipher the consumers’ identities

by collecting an infinite number of redeemed session credentials even though no double-

transfer of TAA in any session. we will show that neither of the two offenses can occur

to TZKP, and the security properties of GDA are preserved within each session at

reduced system costs.

 25

2. General disposable authentication (GDA) model

The GDA model proposed by Eng-Okamoto in [2] is a versatile security control

model which is compatible with various ZKP protocols designed for E-cash [36, 49-52].

In this section, we will explain the GDA basics needed to develop the TZKP protocol.

The essence of GDA is summarized in Table 1, following the conventions defined in [2].

Table 1: General disposable authentication (GDA).

AAA Requirements Information Needed Remarks

verify m = f(x) VU1: X, (E, Y) X = F(x, r) = F’(m, r),

Y = D(m, r, x, E), and

m = f(x) iff G(m, X, E, Y) = “yes”

decipher x DU1: (E, Y), r r = symmetric key to

encrypt/decrypt x

 DU2: (E, Y), (E’, Y’) (2, k) secret shares created by (x, r)

Keep x secret Neither DU1 nor DU2

available

r = symmetric key to

encrypt/decrypt x

 26

In the GDA model, a prover U can prove that it possesses x, which satisfies m =

f(x) for certain constraint f(⋅), without letting the verifier V know x, where x contains the

registered identity of U. To perform the proof, U has to withdraw a token from the CA:

 TK = (W, K), (3.1)

where

 W = (b-signCA(m, X), m, X), (3.2)

and

K = (b-sign’CA(x, r), x, r). (3.3)

W and K, represent the public and private parts of TK, respectively. m is a unique

message co-produced by U and the CA. m will be given to the verifier during the proof.

b-signCA(⋅) and b-sign’CA(⋅) are blind signatures �[9] of the CA. f(⋅) is a one-way function.

r is a message randomly selected by U. The public counterpart of r is denoted by

 X = F(x, r) = F’(m, r). (3.4)

F(⋅) and F’(⋅) are one-way functions. For a given token TK, the proof is done via

the three-move protocol: U first sends W to V. V replies a randomly generated challenge

message E. U must generate a response message,

 Y = D(m, x, r, E), (3.5)

where D(⋅) is the prover function. The messages resulted from the above are collectively

called the credential,

 CT = (W, E, Y), (3.6)

and m = f(x) can be verified if the signature in (3.2) is valid, and (3.7) is satisfied:

 G(m, X, E, Y) = “yes”, (3.7)

 27

where G(⋅) is the verifier function. x is decipherable if and only if either of the following

conditions holds:

DU1: (E, Y) and r are available, for Y produced from (x, r).

DU2: (E, Y) and (E’, Y’) are available where Y and Y’ are produced from the same

 (x, r) and E ≠ E’.

The deciphering condition DU1 is based on the fact that r is a symmetric key that

encrypts/decrypts x to/from (E, Y), and DU2 is based on the (2, k) secret sharing scheme

�[28], where k is an integer greater then two. DU2 is an important condition for the TZKP

protocol design. Given the above facts, anonymity control of service consumers can be

implemented by a simple time-stamping method: U first withdraws a token TK from the

CA. From TK, U sends m to the service provider as the request to schedule a session for

service redemption. The service provider grants a session time t to U by a TAA message:

 TAA = (signSP(t, m), t), (3.8)

where signSP(⋅) denotes the digital signature signed by the service provider. If the service

provider provides various types of services, the type of services will also be included in

the signature, which is not shown in (3.8) for simplicity. Later, when U wants to redeem

the services, it adds TAA to the first move of protocol, and executes the second and the

third moves as usual. Besides verifications in the original protocol, the service provider

also needs to verify signSP(t, m) at session t. The main weakness of this scheme is that

TK cannot be reused for different sessions. The proposed TZKP allows reuse of a token

with protected anonymity for rule-abiding consumers so that the number of withdrawals

of new tokens can be drastically reduced.

 28

3. TAA generation: session time authorization

TAA contains a service provider’s signature on the public part of the requesting

consumer and the session time t authorized for the consumer to redeem the services. The

consumer who is granted the TAA is eligible to use its token to redeem the services once

within the period described by t. Requesting service redemption more than once within

the period t will lead to double-spending of the token in GDA. The consumer’s identity

will be involuntarily deciphered from the involved credentials. The credentials stored at

the service provider can be discarded after t because the redemption of the same TAA

requested after t will be rejected by the service provider. In contrast, without the notion

of time in GDA (or t = ∞), the service provider will need to store credentials indefinitely

to assure identification of possible service consumer who tries to redeem the same TAA

again in the future.

Now, we expand the scenario to consider a service consumer who is granted two

TAAs bundled with sessions, t1 and t2, respectively. In GDA, the consumer will need to

use two tokens to receive these two TAAs. Otherwise, when the consumer passes these

TAAs to others, the same token will be used to create the credentials which by definition

is a double-spending of token. If the service provider intentionally stores the expired

credential after t1 (t1 < t2), then the service provider is able to decipher the consumer’s

identity after collecting another credential at t2. The anonymity of service consumer is

compromised because it never commits a double-transfer violation. To assure anonymity

 29

of rule-abiding service consumers using GDA, a new token must be withdrawn from the

CA for each TAA being granted, making unnecessarily high system overheads.

One of the design goals of TZKP, in addition to the reduced credential storage at

the service provider, is to allow proper reuse of token for redeeming services at different

sessions so that the number of withdrawals can be greatly reduced. The challenging issue

is how to do it without sacrificing the anonymity of rule-abiding service consumers and

accountability on double-transfer of TAA. TZKP considers the signed session time t as

an additional decipherability control variable so that the deciphering condition on the

identity of service consumer depends not only on whether the token is reused (doubly

spent) but also whether the reuse refers to the same TAA (doubly transferred).

Recalled the GDA described in the previous section, X and its private counterpart

(x, r) are control variables co-produced by the CA and the consumer in the withdrawal

protocol. x, which contains the consumer’s identity, can be deciphered if a token is spent

twice. Since X is determined at withdrawal, if a token is spent twice, the same X must be

used to produce the two credentials, or otherwise the verification in (3.7) will fail. To

make the token reusable for multiple sessions, TZKP takes X out of the token from the

withdrawal protocol. The consumer must produce a new X value (using the same x but

different r) together with the service provider for each requested session t so that each

jointly produced value of X can be used one time only in the requested session, without

causing deciphering of x. By producing different values of X for different sessions, the

consumer does not need to withdraw new tokens. On the other hand, since t and X are

bundled together by the service provider’s signature, redeeming services within t more

 30

than once implies that (t, X) is used more than once to produce credentials. As a result,

the consumer’s identity can be deciphered from the two credentials, just like the original

GDA model. The new definition of the modified token TK = (W, K) in TZKP is:

 W = (b-signCA(m), m), (3.9)

and

K = (b-sign’CA(x), x), (3.10)

where the modified parameter is denoted by bold face. In contrast to (3.2) and (3.3), X

and r are separated2 from W and K, respectively. Now U is free to select different values

of r and X after withdrawal of TK. Each time when U requests a session t from the

service provider, U presents a unique X value and the message m from its token in the

request. The service provider authorizes session t by signing a TAA message

 TAA = (signSP(t, m, X), t). (3.11)

 Note the difference of (3.11) and (3.8) that X is included in TAA but not in TAA.

When U redeems the services, it sends (TAA, W, X) in the first round of the three-move

protocol and then executes the second and the third moves as usual. X is now an element

of the modified credential

 CT = (W, X, E, Y). (3.12)

2 One technique for such separations is to set r to be some publicly known constant value in
withdrawal, and let the consumer choose its own r value during transfer. For example, r = 1
when �[36] is plugged in to GDA in �[2].

 31

 The modification from E to E will be discussed in (3.21) later. The verifications

on CT are identical to those in the time-stamping approach introduced in section 3.2.1,

except that correctness of (t, m, X) is checked by

 signSP(t, m, X) and b-signCA(m), (3.13)

instead of

signSP(t, m) and b-signCA(m, X). (3.14)

Anonymity of U is guaranteed provided that CT and CT’ are produced by the

same token TK in distinct sessions. Although W and W’ have identical m, TAA and

TAA’ have distinct values of (t, X) and (t’, X’). The same value of m implies that CT and

CT’ are produced by the same token but the distinct values of (t, X) and (t’, X’) imply

that the reuse of the token does not constitute a double-transfer of TAA because they are

produced from different sessions. Since X and X’ are produced from (x, r) and (x, r’),

respectively, it implies that (E, Y) and (E’, Y’) are produced from distinct values of (x, r)

and (x, r’). Based on DU2, x cannot be deciphered from CT and CT’.

It is straightforward to show that x can be deciphered when U doubly transfers a

TAA in the same session. Therefore, it will not be discussed further.

4. TAA transfer: multi-source reusability (MSR)

For transfer of TAA, one could apply the GTM model to the GDA model, which

suggests that a cascaded credential contains:

(i) A TAA message signed by the service provider,

 32

(ii) The credentials produced by all consumers in the previous transfers of this TAA, and

(iii) The credential produced in the current transfer.

From (3.6) and (3.8), the cascaded credential in GDA is

KCi = (TAA, CT1, CT2, …, CTi) (3.15)

where CTj is the credential produced from Uj to Uj+1, and Ui and Ui+1 are the grantor and

grantee in the current transfer respectively. As a general procedure to add transferability,

Ui sends KCi-1 and Wi in the first round of the three-move protocol. In the second round,

Ui+1 produces the challenge message as the hash value of its token public data, instead of

a random number:

Ei = H(Wi+1), (3.16)

where H(⋅) denotes a collision-resistant one-way hash function. In the third round of the

protocol, Ui sends the response to Ui+1 as usual. Then, Ui+1 needs to

(i) verify TAA and each credential in KCi, and

(ii) verify the linkage between each adjacent credential pair in KCi by (3.16).

This step assures that all credentials on the cascaded credential can be verified

for the said transfer. However, the weakness of this general approach is that the grantor

needs to consume its token in each transfer because any reuse of token in GDA may

compromise the anonymity of the grantor. We raise similar questions as in the earlier

discussions:

• When does a reuse (double-spending) of token constitute a double-transfer of TAA?

• Can the consumer’s identity be deciphered from credentials produced by the reuse of

a token when no TAA is doubly transferred?

 33

To answer these questions we propose the MSR condition which decides whether

or not a reuse of token constitutes a double-transfer of TAA. Knowing their differences,

we modify (3.16) and the cascaded credential format in (3.15) so that withdrawal of new

token can be eliminated when each received TAA is transferred once only. Anonymity

of the consumer needs to be protected in this case because the total amount of privileges

carried by the received TAAs does not increase, i.e., no double-transfer. Based on MSR,

deciphering condition on the consumer’s identity is not only determined by the session

time, as discussed in the precious section, but also determined by where the TAA comes

from, i.e., the source of the TAA. The modified cascaded credential becomes:

KCi = (TAA, CT1, CT2, …, CTi). (3.17)

Despite the similarity between (3.15) and (3.17), one must note that X1 is signed

in TAA, but not in TAA. Xj is contained in Wj of CTj, but not in Wj of CTj. Given two

cascaded credentials resulted from the double-transfers of TAA, the identity of consumer

who made double-transfers can be deciphered based on DU2, using the two credentials

positioned right after their longest common prefix. For the scenario depicted in Fig. 6,

the identity of the double-transfer offender UC can be deciphered from CTC and CT’C.

Fig. 6: Same-source transfers – a double transfer.

 34

(a)

(b)

��

��

�� �� �� ��

�	

� �
� �
� �
� �
� �
� �

� �

� �
� �

� �
� �
� �

�

(c)

Fig. 7: Multi-source transfers – not a double transfer.

Fig. 7a to Fig. 7c depict several scenarios that do not constitute a double-transfer.

In Fig. 7a, UC needs to use its token to transfer TAAs from two distinct sources but such

a transfer pattern does not inflate the access privileges of TAAs, and thus the identity of

UC should be protected. In Fig. 7b, the two TAAs transferred from the same origin are

 35

meant for distinct sessions and the identity of UC should be protected. Note that same-

source transfers are different from same-grantor transfers as depicted in Fig. 7b, where

UC receives two TAAs from the same grantor but they are meant for distinct session

times (TAA ≠ TAA’). Same-source transfers are also different from same-TAA transfer,

as depicted in Fig. 7c, where UC may not realize that it is transferring the same (copy of)

TAA. UC does not constitute a double-transfer offense in this case but UA does. The

cryptographic constructs should allow deciphering of the identity of UA but not UC. We

achieve this, we define the notions of same-source and multi-source transfers as follows:

Definition 3.1: Two TAAs transferred from UC, to UD and UF, are from the same-source

if, and only if

KCD = (TAA, CT1, …, CT i, CT C), (3.18)

and

KCF = (TAA’, CT’1, .., CT’j, CT’C) (3.19)

have the common prefix

(TAA, CT 1, …, CT i) = (TAA’, CT’ 1, …, CT’i), (3.20)

for i ≤ j without loss of generality. Otherwise, they are from the multi-source.

In summary, same-source transfer pattern constitutes a double-transfer violation

while multi-source transfer pattern does not. A consumer should be allowed to reuse its

token to make multi-source transfers with protected anonymity. Based on the analysis,

we revise the three-move ZKP protocol so that the same-source transfers will guarantee

identification of the double-transfer violator but the multi-source transfers will assure the

consumer staying anonymous.

 36

We attack this problem based on similar technique similar we discussed in last

subsection via adjustments of X in GDA. A major difference between MSR enforcement

and TAA issuance is that Xi cannot be signed by the service provider when the TAA is

transferred from Ui to Ui+1. To overcome this, Xi is bundled with the grantor’s challenge

message Ei-1 as follows:

Ei = H(Yi-1, Wi+1, Xi+1). (3.21)

where Y0 = 0 by default. Now, for Ui to engage in multiple (multi-source) transfers with

protected anonymity, Ui needs to choose different values of ri (and hence Xi) to produce

its challenge message when Ui receives TAAs from different sources. When Ui passes on

its TAAs, it can use different values of ri to produce its responses. The anonymity of Ui

is protected because x cannot be deciphered by DU2. On the contrary, if Ui offenses in

multiple (same-source) transfers, it will be forced to use the same value of ri (and hence

Xi) when it passes on the TAAs. Otherwise, verifications in (3.21) will fail. The identity

of Ui can be deciphered based on DU2, just like the GDA model.

Note that, in additional to Xi+1, Yi-1 is also added to the hash inputs of (3.21). We

will show next that including Yi-1 in this way is crucial to prevent the collusion attack

between consumers upon forgery of cascaded credential.

B. Security Analysis

The major equation changes from GDA to TZKP are (3.8) to (3.11) and (3.16) to

(3.21). The security analysis in this section will explain how such changes can guarantee

 37

accountability to double-transfer violators, anonymity of rule-abiding service consumers,

and authenticity of cascaded credentials under collusion attacks of malicious consumers.

1. Accountability

First, we will show that identification of double-transfer violators is guaranteed

in GDA. Then, we will show how it can be guaranteed in TZKP via a different way to

engage Xi. Suppose KCi is doubly transferred by Ui+1 in GDA. (mj, Xj), for j = 1, ..., i,

cannot be forged because b-signCA(mj, Xj) is a secure signature. (t, m1) cannot be forged

because it is signed by the service provider in (3.8). Based on this, and b-signCA(m1, X1),

(m1, X1) is guaranteed intact with the TAA. Let (mj, Xj) be intact. We want to show that

(mj+1, Xj+1) is also intact. In other words, if (mj+1, Xj+1) is used to receive a TAA, which

KCi guarantees that (mj, Xj) is intact, then Uj+1 is not able to compute another (m’j+1,

X’j+1) to transfer this TAA without failing any tests. The proof contains three parts. First,

given CTj = (Wj, Ej, Yj), Uj+1 is not able to compute another E’j such that (Wj, E’j, Y’j)

passes the test in (3.7). It is because Uj+1 has no knowledge on (xj, rj) to produce Y’j by

(3.5). Second, Uj+1 is not able to compute another m’j+1 to produce Ej, which passes the

test in (3.16). It is because H(⋅) is collision resistant. Third, Uj+1 is not able to compute

another X’j+1 which produces b-signCA(mj, Xj). It is because the signature is secure. Based

on the above arguments, and by mathematical induction, we conclude that Ui+1 must use

the same (mi+1, Xi+1), and so the same (xi+1, ri+1), in both double-transfer instants. As a

result, xi+1 can be involuntarily deciphered based on DU2.

 38

Next, we will apply similar arguments to TZKP. Suppose KCi is doubly

transferred by Ui+1. Instead of using b-signCA(mj, Xj) to guarantee the integrity of (mj, Xj)

as in GDA, the integrity of (m1, X1) with the TAA is guaranteed by the service provider’s

signature in (3.11) instead. Let (mj, Xj) be intact. We want to show that (mj+1, Xj+1) is also

intact. The proof has two parts. First, given that CTj = (Wj, Xj, Ej, Yj), Uj+1 is not able to

compute another E’j such that (Wj, Xj, E’j, Y’j) passes the test in (3.7). It is because Uj+1

has no knowledge on (xj, rj) to produce Y’j by (3.5). Second, Uj+1 is not able to compute

another (m’j+1, X’j+1) to produce Ej that passes the test in (3.21). It is because H(⋅) is

collision-resistant. Since the association between mj+1 and Xj+1 has been verified in this

step, there is no third step in this proof. Based on the similar arguments as in the proof

for GDA, Ui+1 must use the same (mi+1, Xi+1), and so the same (xi+1, ri+1), in both double-

transfer instants. Based on DU2, xi+1 can be involuntarily deciphered.

2. Anonymity

Next, we will discuss how Xi+1 in (3.21) can allow reuse of token for multi-

source transfers with protected anonymity. Suppose that Ui+1 uses the same token to

receive two TAAs from multi-source, which cascaded credentials are KCi and KC’i.

Since the same token is used, the same mi+1 value will also be used. But different values

of Ei and E’i can be used because Ui+1 can select different values of Xi+1 and X’i+1 to

produce them, i.e., using (mi+1, ri+1) to receive one TAA, and (mi+1, r’i+1) to receive the

other one. When Ui+1 passes on the two TAAs with KCi and KC’i, different ri+1 and r’i+1

 39

are used to produce CTi+1 and CT’i+1, respectively, so based on DU2, xi+1 cannot be

deciphered.

3. Authenticity

Finally, we explain why Yi-1 is needed in (3.21) to prevent credential forgery. So

far Xi is considered a random value selected by Ui when the TAA is transferred from Ui

to Ui+1. And Xi is bundled with Ei-1 of Ui-1, “before” it is used to produce CTi. As we

have just shown, the ability in tracing double-transferring violators is equivalent to that

of [1, 2] because they are identical except that integrity of Xi is protected by different

means: (3.8) to (3.11) and (3.16) to (3.21). Nevertheless, when collusion is considered,

CTi and KCi+1 can possibly be forged by a careful assignment of Xi before it is bundled

with Ei. Followings we describe how such a forgery attempt is possible without Yi-1 in

(3.21), and then prove how Yi-1 can prevent this from happening.

In this forgery attack, Ui and Ui+1 are colluders. First, Ui+1 sends the challenge Ei

= H(Wi+1, Xi+1) to Ui. Then, Ui arbitrarily selects Yi. Given the inverse function of G(⋅),

Ui derives an Xi which satisfies G(mi, Xi, Ei, Yi) = “yes”, where mi is from a valid token

of Ui. When Ui-1 transfers the TAA to Ui, Ui sends to Ui-1 the challenge message Ei-1 =

H(Wi, Xi) in the second round of the three-move protocol. Then, Ui-1 replies by Yi-1 as

usual. Now, Ui has all data available to forge a credential CTi = (Wi, Xi, Ei, Yi), and so the

cascaded credential KCi to Ui+1. Ui+1 can transfer KCi to Ui+2 without anomaly detected.

 40

Since Yi is selected by Ui arbitrarily without any encrypted data of its identity included,

any violations done by Ui will not be identified.

To prove that Yi-1 in (3.21) can prevent such a credential forgery under collusion

attacks, we introduce a prior-knowledge graph analysis as depicted in Fig. 8a - Fig. 8c.

��� ��� �

 ����

� ���

��� ��� �

 ����

� ���

��� ��� �

 ����

� ������

�

Fig. 8: Prior-knowledge graph analysis for TZKP.

 41

The arrow pointing from P to Q implies that the creation of Q requires the prior

knowledge of P. The solid line denotes the dependency when the three-move protocol is

executed in a rule-abiding way. The dotted line denotes the dependency when this is

executed based on forgery attempt. Derived from the dependency graph, we use the

dependency formula,

(P0, P1, …) � (Q0, Q1, …), (3.22)

to denote that the creations of all parameters in Q0, Q1, …, require the prior knowledge

of some parameters in P0, P1,…, where Pi and Qi are simply data in the three-move ZKP

protocol or themselves the dependency formulas. The dependencies are transitive, i.e.,

(P �V and V �Q) implies P � Q. (3.23)

Fig. 8a depicts the case when Yi-1 is removed from (3.21). CTi = (Wi, Xi Ei, Yi)

can be forged by creating parameters in the following sequence:

(((Wi+1�Xi+1) � Ei), Yi, Wi) �Xi . (3.24)

From (3.24), all parameters to forge CTi are available to Ui, if Ui+1 gives Ui the prior

knowledge of Wi+1 and Xi+1. Fig. 8b and Fig. 8c depict the cases when Yi-1 is included in

(3.21). In Fig. 8b, we only consider the collusion of Ui and Ui+1, where the sequence of

parameter creations is as follows:

(((((Yi-1,(Wi+1�Xi+1))�Ei), Yi, Wi)� Xi), Wi, Yi-2)�(Ei-1�Yi-1). (3.25)

From (3.25), a dependency loop (in bold lines of Fig. 8b) is formed, which means that

the creation of Yi-1 requires the prior knowledge of Yi-1, which has a contradiction. The

adversary has nowhere to initiate the malicious action, so the forgery attempt fails. Fig.

8c considers a series of colluders. The dependencies trace all the way back until some Xj,

 42

either j > 1 or j = 1. For j > 1, it means that Uj-1 is not a colluder, who computes Yj-1 from

Ei-1, and then closes the loop. For j = 1, no dependency loop is formed, but X1 is signed

by the service provider in TAA, so the forgery attempt fails again.

C. Complexity Analysis

The time and message size are measured based on three operations: withdrawal

of tokens, transfer of cascaded credentials and detection of double transfers as described

below:

Tw = the total computation time for withdrawals

Sw = the total communication message size for withdrawals

Tf = the total computation time for transfers

Sf = the total communication message size for transfers

Td = the total search time from the database

Sd = the total storage message size at the database

The analysis is based on the scenario that the service provider grants p TTAs to a

consumer. Each is legally transferred through the same set of q consumers before it is

redeemed from the service provider. Table 2 is the summary of the complexity analysis.

In GDA, since the reuse of a token is prohibited, the total number of withdrawals is the

total number of transfers in the system, we have

Tw = O(p⋅q) and Sw = O(p⋅q). (3.26)

 43

In TZKP, a consumer can reuse a token for any number of multi-source transfers.

So, only one withdrawal is required for each consumer, i.e.,

Tw = O(q) and Sw = O(q). (3.27)

Table 2: Complexity analysis for TZKP.

Metrics GDA TZKP TZKP

(Te/Tct = constant)

Tw , Sw O(p⋅q) O(q) O(1)

Tf , Sf O(p⋅q2)

(q unbounded)

O(p⋅q2)

(q < (Te / Tct)1/2)

O(p)

Td O(log p⋅q) O(log q) O(1)

Sd O(p⋅q) O(q) O(1)

For transfers of cascaded credentials the message size increases by one credential

after each transfer in GDA and TZKP. The growing size also increases the computation

time for the cascaded credentials. It is our desire to eliminate the cumulative overheads,

but this has been proven inevitable �[1]. Intuitive reason for this is that, every anonymous

consumer along a series of transfers can be potentially a double-transfer offender. When

the authorization is transferred, the consumer has to contribute part of its identity to the

authorization data before it is circulated back for central inspection for double-transfer.

 44

Therefore, regardless of the token, credential and protocol designs, the total transfers in

the system have the following complexity:

Tf = O(p⋅(1 + 2 +…+ q)) = O(p⋅q2) (3.28)

and

Sf = O(p⋅q2). (3.29)

In spite of the same complexity formula used in (3.28), it has subtly different

implications to GDA and TZKP. In GDA, q is unbounded because the authorization will

never expire, and it can be transferred indefinitely before service redemption. In contrast,

in TZKP, we have

q < Te/((1 + 2 + … + q)⋅Tct) < Te/(q⋅Tct) (3.30)

 � q < (Te/Tct)1/2, (3.31)

where Te denotes the period starting from the authorization is granted from the service

provider to the end of session, and Tct denotes the time required to verify one credential.

This is derived from the fact that after a bounded number of transfers, the total time on

cascaded credential verification in all transfers will exceed the allowed time for service

redemption, and so, q cannot grow indefinitely. If (Te/Tct) is a (small) constant, then our

solution is further optimized to:

Tw = O(1), Sw = O(1), (3.32)

and

Tf = O(p), Sf = O(p). (3.33)

To analyze the complexity for double-transfer detections, we consider that each

credential received by the provider is sorted in its database, and matching an incoming

 45

credential with n credentials in the database is based on the O(log n) time algorithm. To

guarantee identification of double-transfer offenders in GDA, the credentials cannot be

discarded once they are received. Therefore, we have

Sd = O(p⋅q), (3.34)

and

Td = O(log p⋅q). (3.35)

In TZKP, the credentials are kept only for one session of duration, and then they

can be discarded after the examination of double-transfer violations. Suppose that the p

TAAs are meant for p different sessions, we have

Sd = O(q), (3.36)

and

 Td = O(log q). (3.37)

Again, if (Te/Tct) is a constant, then it can be further optimized to:

Sd = O(1) (3.38)

and

Td = O(1). (3.39)

D. Experimental Results

We implemented TZKP protocol on top of the software architecture of CREAT

(Cybersecurity Remote Education Access Tool), which binary version for the Windows

operating system is available for download �[53]. By plugging Ferguson’s e-coin scheme

 46

[36] into GDA, with the modifications made to implement TAA and MSR in TZKP, we

implemented the CA, the service provider, and the service consumer modules, and tested

them on the DETER testbed [54]. As the system architecture depicted in Fig. 5, the CA

node issues tokens to the consumer nodes. The service provider node grants TAAs to the

consumer nodes. The consumer nodes request tokens from the CA, request TAAs from

the service provider, redeem services from the service provider at scheduled time, and

transfer the TAAs to other consumers. Key generation and other modular arithmetic are

computed by the big integer library [55]. SHA-1 is used for one-way computations. A

1024-bit RSA scheme is implemented for signature and other usages.

To measure the run-times and the message sizes of withdrawals and transfers, we

repeat each experiment by 1000 runs and take the average values. The CA node and the

consumer machines are both equipped with 2.0 GHz Intel Pentium-4 processors, but the

CA has 768M RAM, while the consumer has 512M. The simulation results are depicted

in Tables 3 to 6. 1024-bit RSA is considered the standard key strength for contemporary

technologies. Clearly, the runtime of TAA transfer increases linearly with the length of

the cascaded credential, but in real world practice a limit is commonly set on the number

of transfers due to the administrative boundary. The limitation is further affected by the

duration of session. As such, one can expect a small number of transfers in each session.

 47

Table 3: Runtime and message size of withdrawal.

Metrics Values

Total runtime (sec) 4.0

Computation time (sec) 3.5

Transmission time (sec) 0.5

Token size (KB) 1.76

Table 4: Runtime of the i-th transfer.

i 1 5 10 15

Time (sec) 1.7 7.2 12.9 19.1

Table 5: Message size of the i-th transfer.

i 1 5 10 15

Size (K bytes) 2.17 9.87 19.5 29.1

Table 6: Upper bounds on credential storage size.

Te 60 120 240 480

Size (K bytes) < 19.53 < 26.04 < 39.06 < 54.25

 48

One can use the traditional ZKP protocol to achieve similar security goals, but it

faces the following major drawbacks: (1) there is no hierarchical distribution of access

privileges, (2) each token can only be used for one-time access of the requested resource,

and (3) indefinite storage of credentials. In addition to storage overheads for credentials,

identification of double-transfer offender in traditional ZKP protocol also significantly

slows down with the number of spent tokens.

Other statistics on the runtime and message size of TZKP are depicted in Fig. 9

and Fig. 10. Experiments show that it takes about 4 seconds to withdraw a 1.7 KB token.

The runtimes to transfer a cascaded credential (sized from 2KB to 30KB) increases from

2 to 20 seconds when its length grows from 1 to 15, which is an extreme condition to test

the viability of the proposed scheme.

Fig. 9: Runtimes of withdrawal and transfer in TZKP.

 49

Fig. 10: Message sizes of withdrawal and transfer in TZKP.

E. Related Work

ZKP protocol was broadly investigated mostly in the contexts of cryptographic

constructs but there is rarely a cryptosystem which satisfies all requirements as in TZKP.

For example, concurrent ZKP [56] considers time management in ZKP. It ensures the

protections of “proof” and “zero-knowledge” when multiple ZKP instances are executed

sequentially or in parallel. To guarantee such protections, concurrent ZKP requires both

the prover and the verified to contribute some random numbers in each instance of the

ZKP protocol and verify the consistency of the exchanged data, which is similar to the

technique we adopted in TZKP. On the other hand, the hidden knowledge in concurrent

 50

ZKP is protected unconditionally. It does not revoke the hidden knowledge such as the

user identity on double-transfer violation events.

E-cash systems [1] consider anonymity protection of the rule-abiding users and

identification of double-transfer violators. Some E-cash systems support transferability

and divisibility which are useful features for secure resource management. Nevertheless,

E-cash does not have proper time management. As a result, each token can only be used

one-time and all credentials have to be stored indefinitely, leading to severe withdrawal

and storage overheads.

Uncloneable group identification [57] introduces the notion of time management

by associating session time with the random numbers engaged in the ZKP protocol. This

technique is similar to the one we used in TZKP. And it also guarantees the revocation

of anonymity on double spending events within the same session. However, uncloneable

group identification does not consider transfers of authorization further from the receiver

to another user. To do an authorization transfer, the user has to redeem the authorization

from the central authority first. In contrast, TZKP can keep transferring the authorization

from one another while the central authority remains offline.

Proxy signature [58-63] is useful for transfers of authorizations from one to

another without the online participation from the central authority. However, it usually

requires the individual public key from every intermediate consumer (proxy signer) for

signature verification. Verification of individual public keys could be expensive and may

induce linkability of identity information if each user is associated with one public key

 51

only. In contrast, TZKP only requires the users to verify the public key from the central

authority.

Group signature [64-69] is useful for verifying group membership without

knowing the individual identity. However, the signature is usually not transferable, and

the anonymity revocation is unconditionally controlled by the CA. In contrast TZKP

allows the peer nodes to transfer and verify the credentials without the prior knowledge

on the identity of each other, while it can still decipher the identities of double-transfer

violators.

F. Summary

In this section, we proposed a timed ZKP (TZKP) protocol on the basis of GDA

to support session-based access of computing resources for anonymous consumers. In

the classical GDM, a consumer can transfer its access authorization to another consumer

without notifying the service provider but each transfer instance requires a spending of

one consumer token, which contains the encrypted identity of the consumer, making this

desirable feature costly. To minimize the overhead to withdraw new tokens, we propose

the multi-source reusability (MSR) condition which allows a consumer to reuse its token

for multiple transactions with protected anonymity unless a double-transfer of access

authorization occurs. Furthermore, we propose the notion of timed access authorization

(TAA) so that the service provider can eliminate the need to store and keep track of the

spent tokens for double-transfer violation once their marked sessions are expired. TZKP

 52

protocol prevents the service provider from compromising the anonymity of an honest

consumer via misuse of expired spent tokens intentionally stored at the service provider,

while drastically reducing the system overhead by allowing proper reuse of a token in

different timed sessions. Implementation of TZKP is evaluated on the DETER testbed.

The running time for computers with modest resources was found to be quite reasonable.

The linkability of credentials deserves further investigations in the future. In the

current construct, the credentials created by the reuse of token are linkable because they

identical W. There is a tradeoff for the service consumer to choose fewer overheads with

more reuse of token or less linkability by withdrawing more tokens. A possible solution

to achieve unlinkability of credentials and reusability of token at the same time could be

plugging unlinkable E-cash schemes such as [70] into our secure resource management

framework. But the problem is that in the unlinkable scheme, W is not available to be an

input of H(⋅) to produce the challenge message E. One candidate to replace W is the data

used to detect double-spending in the unlinkable scheme because what we need is just to

make sure that some common value (linkable) to be used on double-transfer offense and

they could be different (unlinkable) on the rule-abiding case. Careful mapping from the

unlinkable scheme in [70] to the secure resource management framework and its security

analysis are needed in the future research.

 53

IV. DIVISIBILITY MANAGEMENT

Divisibility refers to the ability for stakeholders to divide the assets into portions

to render services. It is at the center of investigation for dispensing of electronic credits

in E-cash. It is also the main focus on optimal allocation of digital resources. However,

there is no discussion on the relationship between the two types of designs in literatures.

In this section, we will focus on the divisibility management of system resources and

user credits. In E-cash, an N-divisible token [38] allows a service consumer to engage

several transactions anonymously using the same token until the total spending amount

reaches the quota limit N. When using the N-divisible token to access computing

resources, the tracking scheme for spending records should be compatible with the

resource allocation protocols so that both the performance goals and the security goals

can be harmonized.

Existing N-divisible tokens are either coupon-based or tree-based. In the coupon-

based schemes [37, 39, 41, 45, 71], each credential produced by the token represents one

unit of spent assets. The spending patterns are simply monitored by counting the number

of credentials produced from the token. In a more sophisticated approach, a binary tree is

used to keep track of spending patterns [2, 38, 40, 42], where a node located at the level i

denotes 1/2i units of the total asset. In the second part of [2], Eng-Okamoto developed a

general divisibility model (GDM) which can transform the non-divisible token into its N-

divisible counterpart for a large class of E-cash schemes [36,50-52] based on the general

disposable authentication (GDA) model [2]. The work reported in this section does not

 54

consider the first part of [2], which is a specific disposable authentication scheme based

on Schnorr’s identification [52]. It also does not consider the scheme presented in [49],

which is a specific scheme prior to its development for divisibility.

In this section, we investigate how to design the hypercube based N-divisible

token for computing resource allocations based on the GDA framework. Instead of using

a tree as in [2], hypercube is chosen in this study because it is a widely used data

structure for allocation of computing resources [3, 72, 73]. Being a superset of various

data structures such as tree, mesh, and star, it spots some interesting insights on the

interplay between the cryptographic constructs and the resource allocation rules. First,

hypercube is a more flexible data structure that expands the possible divisibility

configurations from O(2n+1) to O(3n), comparing with the binary tree, where n is the bit

length to represent an atomic unit of assets. However, the expanded divisibility

configurations also create the new type of shared-node double-transfer violation pattern,

in addition to the traditional same-node and route-node violation patterns. Tracking of

the new violation type makes the analysis much more complicated than the tree based

solutions. Therefore, we devised a hypercube dependency graph to track the spending

patterns using both the top-down and bottom-up dependency analysis techniques. In

contrast, only the latter approach is used for the tree based solution in GDA. From the

analysis, we found that unrestricted sub-cube allocation schemes might cause leaking of

identity, even without double-transfer offenses, unless a costly solution is considered.

Such a leaking of identity information is called anonymity hazard. We found that

anonymity hazard can be detected and avoided at small extra cost of fragmentation (<

 55

2% in our simulation), without any restrictions on the sub-cube allocation schemes.

Furthermore, two commonly used sub-cube allocation schemes are found to be immune

(0%) from anonymity hazard because of their more restrictive allocation rules.

The rest of this section is organized as follows. Section A explains the details of

the hypercube-based divisibility management framework. Section B analyzes the

cryptographic constraints needed to assure the AAA requirements. Section C compares

two cryptographic constructs to demonstrate the tradeoffs between security strength and

performance cost when different sub-cube allocation rules are used. Section D presents

the simulation results. Section E gives a summary of this section.

A. Hypercube Based Divisibility Management

An n-dimensional hypercube Qn has 2n nodes, and each node is connected to n

neighbors. Each sub-cube is uniquely represented by an n-bit ternary string p = p(1) p(2)

… p(n), where p(i) ∈{0,×,1}, and “×” denotes a “don’t care” bit. The number of don’t care

bit(s) in p is also the dimension of the sub-cube p, dim(p). The shortest distance between

sub-cubes p and q can be measured by their hypercube distance:

() () () ()

1

1, if and ,
(,)

0, otherwise

n
j i j j j

j
jj

s p q p q
d p q s

s=

= ≠ ≠ ×�
= � =�
� (4.1)

d(p, q) = 0 implies that p and q share some common node(s), and thus, committing both

p and q will lead to double spending violation on their shared node(s).

 56

Definition 4.1: A dependency graph G = (V, E) is a directed graph, on which an edge (p,

q) ∈ E if, and only if, dim(p) = dim(q) + 1 and h(p, q) = 1, where p, q ∈ V are vertices of

G, and h(p, q) is the Hamming distance [74] between p and q over the alphabets {0,×,1}.

p is the parent of q if (p, q) ∈ E. Similar nomenclatures follow the convention of tree.

Gn represents the dependency between all permissible sub-cube configurations of

Qn. To avoid ambiguity in subsequent discussions, we use “node” to describe an atomic

node in Qn and “vertex” to describe a node in Gn. Fig. 11 depicts the dependency graph

of Q2, where each vertex represents a sub-cube that can be derived from Q2. A vertex on

Gn is marked when a corresponding sub-cube is allocated by its corresponding token. A

double spending violation occurs if any leaf vertex is allocated twice in two sub-cube

allocations.

)dim(pi = in
in C −2

××

0× ×0 ×1 1×

00 01 10 11

Fig. 11: Dependency graph of a 2-dimensional hypercube, G2.

 57

Note that the shadowed area highlights a binary tree embedded into G2, implying

that hypercube based N-divisible token is required to handle more complicated security

conditions than its tree based counterpart. From the example in Fig. 11, it shows that

three types of double spending violations, same-node violation, route-node violation, and

shared-node violation, can occur to the hypercube based system. A same-node violation

occurs if a vertex is spent twice. A route-node violation occurs if both a vertex and its

ancestor/descendant vertex are spent. A shared-node violation occurs when two vertices,

with no ancestor-descendant relationship but sharing one or more leaf vertices, are spent.

The same-node and route-node violations were studied in tree based schemes but shared-

node violation is a new type of violation identified in this work to be addressed.

Now, we outline some basic issues in resource allocations. Minimizing sub-cube

fragmentation and locating the largest set of useable sub-cubes is the focus of many sub-

cube allocation schemes. Compact representations of Boolean expressions are important

to achieve performance goals but it may cause unintended double spending. For instance

(0×, ×0) represents three nodes (00, 01, 10) and this is considered a legal allocation when

they are allocated to one user. Nevertheless, spending both (0×) and (×0) terms in E-cash

constitutes a double spending offense because node (00) is involved in two transactions.

No double spending occurs if the set of nodes are allocated using one of the following

three Boolean expressions: (0×, 10), (×0, 01), or (00, 01, 10), where redundant Boolean

terms in sub-cubes are eliminated to prevent incorrect marking of the double spending

patterns. Using node-by-node expression can avoid the anonymity protection issues but

it requires the highest computation overhead, and so not considered further.

 58

 Following the GDA framework, we design the hypercube based divisible tokens,

and derive the conditions to satisfy the AAA security constraints. Comparing with tree

based solutions, applying the hypercube to the GDA framework requires more advanced

analysis techniques because we need to track the new shared-node violation type also.

Shared-node violation can occur in data structure whose dependency graph contains a

multiple-child and multiple-parent structure. This situation is even more complicated for

hypercube because of its highly connected constructs. For the DSI subsystem to identify

offenders of all types of double spending violations, more information that can guarantee

deciphering of the principal’s identity under such conditions needs to be included in the

credentials. However, doing so may lead to anonymity hazard which is situation when

the principal’s identity can be deciphered from multiple instances of sub-cube allocations

even when no double spending occurs. An example will be given in Table 10.

Granted one could develop more sophisticated mathematical systems to eliminate

anonymity hazards but a much more practical solution approach is based on the sub-cube

allocation schemes because anonymity hazards can be recognized via simple rules. To

gain a more realistic understanding for such a tradeoff analysis, three sub-cube allocation

schemes, random code (RC), binary code (BC), and binary reflected gray code (BRGC)

[3] are analyzed and simulated in this study. We will show that anonymity hazards

appear in the rarely used RC but not to the widely adopted sub-cube allocation schemes,

BC and BRGC.

In RC, there is no restriction on which available sub-cube to use for the sub-cube

request. In BC and BRGC, the hypercube topology is reduced to a linear list based on

 59

the binary code and binary gray code order, respectively (see an example in Table 7). A

sub-cube request is matched with the first sub-cube configuration on the list in a linear

search order. In either case, to search for an available sub-cube Qk is equivalent to find 2k

consecutive free nodes from node i to node (i + 2k - 1) in their corresponding allocation

list. Their main difference is that, in BC, i needs to be a multiple of 2k, while in BRGC, i

only needs to be a multiple of 2k-1. For details of BC and BRGC, please refer to [3]�[3].

BC, BRGC, or other similar non-exhaustive sub-cube allocation schemes would

utilize a fraction of available sub-cubes as the example depicted in Fig. 12a and Fig. 12b,

where only highlighted vertices can be used in BC and BRGC, respectively. As shown in

Fig. 12a, the vertices that can be used in BC are the vertices that can be used in the tree-

based schemes. As shown in Fig. 12b, BRGC has more spending patterns than BC.

Table 7: Allocation list for Q3 in BC and BRGC schemes.

i 0 1 2 3 4 5 6 7

BC 000 001 010 011 100 101 110 111

BRGC 000 001 011 010 110 111 101 100

 60

Fig. 12: Usable vertices under (a) BC scheme (b) BRGC scheme.

 61

1. System overview

The hypercube based divisibility management framework is depicted in Fig. 13,

which is identical to the resource management framework depicted in Fig. 4. We repeat

the figure here to highlight details related to divisibility management only. For other

details, please refer to section II and section III.

Fig. 13: System architecture for hypercube-based resource management.

 In each transfer, the credential produced by the service consumers indicates the

ownership of a sub-cube p, where p is the relative address to be interpreted in a series of

credentials called cascaded credential. For the example in Fig. 13, 0×10 received by U’1

comprises of three parts: (i) resource owner’s signature on p1 = 0××× from the allocation

between the resource owner and U0, (ii) credential marked p2 = ×10 from the transfer of

 62

U0 and U1’, and (iii) credential marked p3 = × from the consumption between U1’ and the

resource owner. To keep track of spending patterns, the service consumer needs to select

certain data derived from the token to be exposed in the credential. The selection of data

is based on a dependency graph. Each vertex in the dependency graph is associated with

three data: secret share (E, Y), delegation key r, and verification key X. The definitions

and notations of these data follow the GDA model as described in Table 1 in section III.

We repeat the table here in Table 8 for convenience of discussions.

 Table 8: General disposable authentication (GDA).

AAA Requirements Information Needed Remarks

verify m = f(x) VU1: X, (E, Y) X = F(x, r) = F’(m, r),

Y = D(m, r, x, E), and

m = f(x) iff G(m, X, E, Y) = “yes”

decipher x DU1: (E, Y), r r = symmetric key to

encrypt/decrypt x

 DU2: (E, Y), (E’, Y’) (2, k) secret shares created by (x, r)

Keep x secret Neither DU1 nor DU2

available

r = symmetric key to

encrypt/decrypt x

 63

Using the three types of data associated with the dependency graph, we proposed

a key dependency map (KDM) to keep track of the correlation of the randomized key

pairs between different vertices. When the sub-cube Qx is transferred, a set of vertices

will be selected to have their secret shares or keys released in the credential. The set

includes the vertex which represents Qx, and other vertices for sub-cubes, say Qy, that is

subject to the double spending offenses. This way, if Qy is indeed spent in the future,

DSI can identify the offending patterns. The constraints to select the secret shares and

keys can be derived in a top-down or bottom-up fashion of the KDM, as it will become

clear in section B.

2. Hypercube based token and credential

Following the GDA framework, the token is of the following format:

TK = (m, x), (4.2)

Through the blind signature scheme �[9], the CA is not able to trace the identity of

the consumer by associating m or x with the withdrawal records. The information carried

by a token TK and the hypercube dependency graph (that contains the spending patterns)

should be integrated into the credential CT to enforce DSI, while protecting anonymity

of the token owner. Following the high level constructs of GDA, the format of credential

produced by hypercube based divisible tokens, in the transfer of a sub-cube p, is

CT = (p, m, DK(u(p)), VK(v(p)), VK(L), SS(s(p))). (4.3)

 64

DK(V) denotes the outputs produced from the publicly known function DK which

takes a set of vertices V in G as inputs and produces the delegation keys of V as outputs.

Similarly VK(V) and SS(V) denote the outputs from the publicly known functions VK and

SS, respectively, which produce the verification keys and secret shares of V as outputs.

DK(V), VK(V), and SS(V) are collectively called the DVS values. As it will become clear,

when p is used in a transfer, other sub-cubes also need to be considered in the generation

of DVS values. How to control the generations and exposures of DVS values to enforce

DSI and protect the anonymity of rule-abiding users is the focal issue in the hypercube

based divisibility management designs. Depending on the sub-cube usage patterns, some

DVS values need to be put as a part of the credential while others should be kept by the

token owner to avoid compromising the anonymity.

Exposure of DVS values is controlled by the constructs of u(p), v(p), s(p), and L

in (4.2), and their interdependency relationships. u(p), v(p), and s(p), collectively called

exposure functions, are publicly known functions that produce a set of vertices according

to the input vertex p. Selected prior to a transaction, L is a set of reference vertices to be

used for integrity check of credentials. Detailed constructs of the exposure functions and

L are given in section 3. In subsequent discussions, we will use the term “directly

exposed” to describe the keys included in the credentials, that is, DK(u(p)), VK(v(p)) and

VK(L) in (4.3), without using KDM. We will use the term “indirectly exposed” to

describe the keys derived from KDM, using the keys directly exposed from the

credentials as the inputs.

 65

Separating notations of vertex sets from their corresponding keys or secret shares

is convenient for subsequent analysis which requires set intersection, union and negation

operations. For example, to check whether or not the vertex p has both its delegation key

and secret share exposed in the credential is equivalent to check whether or not u(p) ∩

s(p) ≠ φ. Such a checking cannot be performed by the expression DK(u(p))∩SS(s(p)) ≠ φ

because the left-hand side and right-hand side of intersection are from different domains.

Similar to the classical tree based schemes, a hypercube based divisible scheme needs to

satisfy the following AAA requirements:

(A1) Authenticity: for any p being used for transfer/consumption, the condition m = f(x)

can be verified from the credentials of p without unveiling the plaintext of x.

(A2) Accountability: for any p and q, d(p, q) = 0, being used for transfer/consumption, x

can be deciphered from the credentials of p and q.

(A3) Anonymity: for all vertices being used for transfer/consumption, if it does not exist

p and q such that d(p, q) = 0, then x cannot be deciphered from their credentials.

 Next, we will show how to satisfy the three properties using KDM to create

details of the proposed divisible token, and proof of its correctness.

3. Key dependency map (KDM)

Recall that each vertex in Gn is associated with a delegation/verification key pair.

KDM is a function that keeps track of the one-way mapping relationship among the key

pairs of different vertices. When the sub-cube p is spent (assuming p ∈ s(p)), the keys of

 66

the vertices directly exposed in a credential (defined by u(p) and v(p)) will be used as the

inputs of KDM, so that the delegation keys of some other vertices that are susceptible to

double spending violation in the future can be indirectly exposed from the KDM outputs.

In this way, when q is spent later, the secret shares exposed from q (because q ∈ s(q)) in

the spending of q, together with its delegation key exposed from spending of p, can be

used to decipher the identity of the double spending offender using DU1. Furthermore, if

a vertex is spent twice its secret shares will be exposed twice on two different challenge

messages and the double spending offender can be identified using DU2.

KDM should avoid exposing the delegation keys of non-susceptible vertices to

prevent anonymity hazards. In order to supervise susceptible future spending, only some

susceptible vertices (with respect to p) need to have the delegation keys exposed because

d(p, q) = 0 ⇔ d(q, p) = 0. It does not matter whether dim(p) > dim(q) or dim(q) > dim(p).

For example in the top-down KDM, the keys of the vertex p can only be derived from

the keys of other vertices at dimensions higher than dim(p). We only need to expose the

delegation keys of susceptible vertices at dimensions lower than dim(p). Similarly, in the

bottom-up KDM, we only need to expose the delegation keys of susceptible vertices for

dimensions higher than dim(p). Exposure of keys for susceptible vertices are illustrated

in the shaded areas in Fig. 14a and Fig. 14b.

Let p be a vertex in Gn that represents the sub-cube being used to track a transfer

transaction. H is a publicly known collision-free one-way hash function. The symbol “||”

is a concatenation operator between two ternary strings. j = (n - dim(p)) is the number of

parents of p and (p1, …, pj) are the parents of p listed in ascending order. The ordering of

 67

vertices can be computed by substituting “×” by “2”, and order them as ternary numbers.

For example, the ternary number of “0×1” is 7 = 0⋅32 + 2⋅31 + 1⋅30, and for “×10” is 21 =

2⋅32 + 1⋅31 + 0⋅30.

p q

 leaf vertices of p

root

q′
q′′

G

p q

root

 leaf vertices of p

� �

��

q′

G

 (a) Bottom-up (b) Top-down

Fig. 14: Key dependency map (KDM).

The building block for top-down KDM is given by the following equations:

1
(|| ... || ||)

jp p pr H X X p= (4.4)

1
((,) || ... || (,) ||)

jp pH F m r F m r p′ ′= . (4.5)

 (4.4) follows the tree-based equation, rp = H(Xleft-child(p) || Xright-child(p)), proposed in

�[2], with the following differences: (i) The hypercube-based design takes the verification

keys from j parents (vs. 2 children) as inputs; (ii) An additional p is appended at the end

of hash input in (4.4) to distinguish the keys for the children of the root vertex; (iii) Top-

 68

down approach is used in contrast to the bottom-up approach used in �[2]. The bottom-up

is not efficient for the hypercube based design. The shared-node violation shown in Fig.

14 demonstrates this point. Let p be the vertex being used for transfer, and q be a vertex

susceptible to shared-node violation with p, where dim(p) = dim(q). Let q’ and q” be the

parent and the sibling of q. q’ must be susceptible to a shared-node violation, because the

leaf vertices shared by p and q will also be shared by p and q’, but this is not necessarily

true for q”. Since we cannot expose the keys for q’ (a susceptible vertex) in the bottom-

up KDM without exposing the delegation key for q” (a non-susceptible vertex), it shows

that the bottom-up approach is unsuitable for the hypercube-based design.

Next, we consider the top-down KDM approach. Let q’ be the child of q and is

susceptible to route-node/shared-node violation with p. This implies that all parents of q’

are also susceptible, because the leaf vertices shared by p and q’ will also be shared by p

and the parents of q’. To expose the delegation key of q’ (a susceptible vertex) by a top-

down KDM, we only need to expose the keys for the parents of q’. The parents of q’ are

also susceptible. Therefore, the top-down KDM is much more efficient than the bottom-

up approach. In the rest of discussions, only the top-down KDM is considered, unless

explicitly specified otherwise.

The pseudocode of KDM, based on (4.4) and (4.5), is depicted in Fig. 15, where

DKin and VKin are respectively the input collections of delegation keys and verification

keys. Starting from the ith dimension, the routine recursively invokes itself until the leaf

level is reached (i = 0). The process terminates at Line 05 of the last execution instance.

 69

At the end of the execution, KDM produces a collection of delegation and verification

keys denoted by DKout, VKout, respectively.

Fig. 15: Pseudocode for key dependency map (KDM).

By controlling which keys are available in (DKin, VKin), the consumer (prover)

can manage what the other consumer (verifier) can know about the produced keys in the

transfer. For example, given rroot (randomly generated by the prover prior to the ZKP

protocol), the set of delegation keys for all vertices in G, denoted by DKG, and the

corresponding set of verification keys, denoted by VKG, can be produced by KDM, when

KDM is invoked by (DKin, VKin, i) = ({rroot}, null, n). The consumer will directly expose

a selected subset of keys from DKG and VKG during transfer. A high level view of the

above key generation process for G2 is depicted in Fig. 16. The keys of the root are used

to compute the keys of q1 and q2, and then q5. Generation of keys for the rest of vertices

can be done in a similar fashion. Despite the similarity between Fig. 16 and the figure in

 70

�[2], the high connectivity in hypercube dependency graph makes the security analysis on

A1, A2, and A3 much more complicated than its tree based counterpart.

),(

)||(

11

11

qq

rootq

rmFX

qXHr

′=

=

),(

)||(

55

52|15

qq

qqq

rmFX

qXXHr

′=

=
5q 6q 7q 8q

),(

generatedrandomly is

rootroot

root

rmFX

r
′=root

1q 2q 3q 4q),(

)||(

22

22

qq

rootq

rmFX

qXHr

′=

=

Fig. 16: High level view of key dependency map (KDM).

C. Cryptographic Constraint Analysis

In this section, we analyze the cryptographic constrains for u(p), v(p), s(p) and L,

so that the exposure of keys and secret shares in the hypercube based credentials could

satisfy A1, A2, and A3, based on VU1, DU1, DU2, and KDM. The main concern of the

analysis is to evaluate the conditions for the exposure functions that would be subject to

anonymity hazards and the techniques to detect and prevent them from occurring in the

runtime. Recall that u(p), v(p), s(p), and L control the secret shares and keys directly

exposed from the credential of p in a particular spending instance. For the analysis of

 71

indirect exposures from multiple spending instances of p1, p2, …, pj, it is convenient to

represent them in terms of their KDM input/output. In particular, we denote

1 1| ,..., | ,...,(,)
j jKDM p p KDM p pDK VK (4.6)

as the final KDM output when it is invoked by the initial input,

(DK(u(p1) ∪� ∪ u(pj)), VK(v(p1) ∪�∪ v(pj) ∪ L), n)). (4.7)

Note that the KDM input in (4.7) can always start the KDM execution from level

n, regardless the dimensions of p1,…, pj. This is because that any unmatched parent-child

relationship that does not contribute to the key generation will be skipped by the loop at

Line 07 in Fig. 15, and then it will continue the matching by the recursive call of KDM

at Line 13 until it reaches the leaf level. The KDM output in (4.6) contains all delegation

and verification keys in Gn that can be derived from the credentials produced from the

transfers of p1, …, pj. Let DK-1 and VK-1 be the inverse functions of DK and VK. The

vertex sets for delegation keys and verification keys in (4.6) are respectively denoted by

uKDM({p1,…, pj}) = DK-1(
1| ,..., jKDM p pDK), (4.8)

and

vKDM({p1,…, pj}) = VK-1(
1| ,..., jKDM p pVK). (4.9)

Similar notations are described as follows: (i) replace the subscript KDM in (4.6),

(4.8) and (4.9) by KDM\L if L is removed from (4.7); (ii) replace the subscript KDM in

(4.6) by KDM\L,q if both L and q are removed from (4.7) for q ∈ (u(p1)∪� ∪u(pj)) ∪

(v(p1)∪�∪v(pj)). Some KDM results related to A1, A2, A3, and the key generation are

summarized in Table 9.

 72

Table 9: Input/output of key dependency map (KDM).

Key Generation A1 A2 A3

(,)in inDK VK ({ },)rootr null ((()), (()))DK u p VK v p 1

1

((() ... ()),

(() ... ()))
j

j

DK u p u p

VK v p v p L

∪ ∪

∪ ∪ ∪

(,)out outDK VK (,)G GDK VK
\ | \ |(,)KDM L p KDM L pDK VK

1 1| ,..., | ,...,(,)
j jKDM p p KDM p pDK VK

Outputs of

interest

,G G GDK VK VK⊆
\ |(()) () KDM L pVK p VK L VK= ∩�

1| ,..., jKDM p pDK

1. Authenticity

 The cryptographic constraints for A1 can be analyzed using the set diagram in

Fig. 17, which provides an excellent visual aid on the feasibility conditions for different

constraints to co-exist simultaneously. These conditions are derived from VU1, which

requires the integrity check on the secret share (E, Y), and its corresponding verification

key X. Therefore, it requires s(p) to be a non-empty set, so that at least one secret share is

exposed to prove the condition m = f(x). Moreover, it is required that

vKDM({p}) ⊇ s(p), (4.10)

so that every secret share exposed in a credential has the corresponding verification key

available for the integrity check. The integrity check for verification keys is much more

complicated than the GDA (in Table II), which only needs to examine one verification

key. In contrast, we need to check all verification keys in VK(vKDM({p})).

 73

L φ≠

()u p

()v p

()s p φ≠

\ ({ })KDM Lu p

()p�

G
({ })KDMu p

\ ({ })KDM Lv p

({ })KDMv p

Fig. 17: Cryptographic constraints for authenticity (A1).

For simplicity, here we first assume that VK(L) is authentic and we will explain

how to assure the authenticity shortly. To enable integrity check of VK(vKDM({p})) based

on VK(L), L needs to satisfy two constraints:

\() ({ })KDM Lp L v p φ= ∩ ≠� , (4.11)

and

\ ,() ({ }), () ()KDM L qp L v p q u p v p⊃ ∩ ∀ ∈ ∪� , (4.12)

(4.11) assures that some verification keys in VK(L) are compared against those

indirectly exposed by the KDM input (DK(u(p)), VK(v(p)), n). Since KDM is constructed

by one-way collision-free hash function, any forgery to its inputs DK(u(p)) and VK(v(p))

will lead to mismatched outputs for comparisons.

 74

 Moreover, (4.12) guarantees that no key in DK(u(p)) and VK(v(p)) is redundant

for comparisons. Otherwise, if removal of vertex q ∈ u(p) ∪ v(p) can still give the same

result as in (4.11), it implies that one might fail to validate the key of q. Knowing that L

is independent of p, VK(L) should be determined before sub-cube spending and remain

unchanged. Otherwise, if a consumer can use two different L’s, then he will be able to

use different r’s to produce secret shares in two spending instances of p. However, DU2

requires both secret shares to be produced by the same (x, r) pair so that x can be

deciphered on DSI. Therefore, the integrity check of VK(L) is to make sure that the same

collection of keys is used in different spending instances. To do this, two approaches

have been addressed in TZKP described in section III: (i) VK(L) has to be signed by the

CA when the token is withdrawn, and the signature is included as part of m in the token

T. (ii) VK(L) has to be included as part of the challenge E in the previous ZKP instance

for receiving payment. For further details and comparisons of these two approaches,

please refer to section III.

2. Accountability

 The cryptographic constraints for A2 and A3 are depicted in the set diagram of

Fig. 18. Different from the constraints for A1, this time we ought to manage the secret

shares and the keys for all combinations among 3n vertices in Gn. Such a management

scheme needs to keep track of all secret shares and keys exposed on the credential and

indirectly exposed by the KDM.

 75

({ })KDMu p′({ })KDMu p

({ , })KDMu p p′

()s p

q

1q 1q′

()s p′

G

Fig. 18: Cryptographic constraints for anonymity and accountability (A2, A3).

Consider two vertices p and p’ that were involved in double spending violations,

i.e., d(p, p’) = 0. DU1 and DU2 dictate that one of the following constraints holds:

DU1: ({ , }) (() ())KDMu p p s p s p φ′ ′∩ ∪ ≠ , (4.13)

or

DU2 : () ()s p s p φ′∩ ≠ . (4.14)

By (4.13) it implies that there exists at least one vertex whose delegation key is

indirectly exposed by KDM when p and p’ are spent. If its secret share is exposed the

identity of the double spending offender will be deciphered based on DU1. By (4.14) it

implies that at least one vertex q ∈ s(p) ∩ s(p’) has its secret share exposed twice when

both p and p’ are spent. As discussed in A1, the secret share of q are guaranteed to be

produced by the same delegation key so A2 is assured based on DU2.

 76

3. Anonymity

The cryptographic constraints for A3, which are complements of (4.13) and

(4.14) are given by:

DU1: 1 1
({ ,..., }) ()

t

KDM t jj
u p p s p φ

=

� �∩ ∪ =� 	

 �

, (4.15)

and

DU2 :
1

()
t

jj
s p φ

=
∩ = , (4.16)

where p1, …, pt are vertices without double spending violations. (4.15) and (4.16) can be

interpreted by using counter arguments of (4.13) and (4.14).

C. Cryptographic Constructs and Sub-cube Allocation Schemes

Constructs of the exposure functions, (u(p), v(p), s(p)), and L determine the AAA

properties. When they are used with sub-cube allocation schemes together, with the

performance overheads taken into consideration, we found that there exists an interesting

and important tradeoff between the security strength and performance cost. To examine

the balance between these factors, we propose two schemes for exposure functions and

L, in conjunction with their sub-cube allocation rules.

An important tradeoff issue is noted here for the design of hypercube based N-

divisible token. The first option (scheme I) is not using DU1 to track double spending

offenses, but this leads to high computation costs due to secret share generation and

 77

verification for DU2. The second option (scheme II) is using DU1, but with possible

anonymity hazards because exhaustive combinations of vertices {p1, p2, …, pt} in (4.21)

are not tracked. As such, a simple checking routine needs to be added to the sub-cube

allocation scheme to prevent their occurrences. Since simulation results show that sub-

cube fragmentation related to anonymity hazards is less than 2%, it is highly effective to

use sub-cube allocation rules to avoid anonymity hazards, rather than eliminating

anonymity hazards unconditionally.

1. Scheme I

The exposure functions and L in Scheme I are defined as follows:

s(p) = {leaf vertices of p}, (4.17)

v(p) = {leaf vertices of p}, (4.18)

u(p) = φ, (4.19)

L = {all leaf vertices in G}. (4.20)

It is relatively straightforward to see that (4.17) – (4.20) satisfy all constraints in (4.10) –

(4.16) but the number of secret shares that need to be exposed is equal to the number of

nodes being spent. Note that generation and verification of secret shares have the highest

computing costs in transfer protocol (assuming the computing H(⋅) is fast), making it a

high computing overhead design.

Through the following arguments we assert that it is difficult, if not impossible,

to find a more efficient alternative to Scheme I that can guarantee A3. First, we note that

 78

it is relatively easy to satisfy A1 and A2 because they only consider one or two vertices

each time. The analysis of A3 is complex because uKDM(⋅) in (4.15) is non-linear:

1 1
({ ,.., }) ({ })

t

KDM t KDM jj
u p p u p

=
⊇ ∪ . (4.21)

The inequality in (4.21) is caused by the multi-parent, multi-child structure in Gn.

It implies that delegation keys produced individually from p1,…, pt, might miss some

keys from those produced jointly. Losing track of these delegation keys will lead to

anonymity hazard based on DU1. We illustrate this by Fig. 18, from which q has two

parents, q1∈uKDM({p}) and 1q′ ∈uKDM({p’}), where d(p, p’) ≠ 0, d(q, p) ≠ 0 and d(q, p’) ≠

0. Spending p and p’ should not expose the delegation key of q, because q is not a

susceptible vertex. q ∉ uKDM({p}) because 1 ({ })KDMq v p′ ∉ . Similarly, q ∉ uKDM({p’})

because q1 ∉ vKDM({p’}). However, we have q ∈ uKDM({p, p’}) because both q1 and 1q′

are available when credentials of p and p’ are jointly considered. The delegation key of q

(exposed by credentials of p and p’) and its secret share (exposed by credential of q)

create an anonymity hazard based on DU1. This kind of anonymity hazard does not

occur to Scheme I, because the equality in (4.21) is assured by (4.19). On the other hand,

Scheme I can only use DU2 for DSI, which requires a large number of secret shares to

maintain A1 and A2.

 79

2. Scheme II

 The exposure functions and L in scheme II are defined as follows:

s(p) = {p}, (4.22)

v(p) = {p}, (4.23)

u(p) = {∀q | d(p, q) = 0, p ≠ q, dim(q) = dim(p)}, (4.24)

L = {all leaf vertices in G}. (4.25)

In contrast to scheme I, this scheme reduces the computation cost in the transfer

protocol by selecting (4.22) as a minimal set that contains p alone. By using the minimal

set of secret shares, we can guarantee the identification of same-node DSI violator, based

on DU2, and the rest of analysis on distinct vertices will focus on DU1 and its

complement.

By (4.22) – (4.23) and the constructs of KDM, we have ({ }) ()KDMv p v p⊇ = s(p),

and hence, (4.10) is satisfied. To show that (4.22) – (4.25) also satisfy (4.11) – (4.12) for

A1 and (4.13) – (4.14) for A2, we need to study their KDM outputs. (4.23) represents all

vertices susceptible to shared-node violation with p at dimension dim(p). Together with

(4.23), which contains p only, u(p)∪v(p) represents all vertices susceptible to shared-

node and same-node violations at dim(p). We show that

vKDM\L({p}) = {∀q | d(p, q) = 0, dim(q) ≤ dim(p)}, (4.26)

by considering the following vertex marking scheme:

(i) Initially all vertices unmarked;

(ii) Mark all descendants of p;

 80

(iii) Mark the unmarked parent(s) of the marked vertices if the unmarked parents are at

the dimension not greater than dim(p);

(iv) Repeat step (iii) until no more vertices can be marked.

The resulting collection of marked vertices are susceptible vertices at dimensions

lower than or equal to dim(p) as described in (4.26) because they share some leaf

vertices of p. Those marked vertices at dim(p), i.e., u(p)∪v(p) can use their keys to

compute the keys of other marked vertices by KDM, because the ancestor searching

process in step (iii) and (iv) guarantees that any marked vertex at dimension lower than

dim(p) has the delegation/verification keys of its parents available from other marked

vertices to produce its keys using (4.4). Fig. 19 depicts how the vertex marking scheme

works in G3.

Suppose p = 0×× is a vertex used for transfer. To evaluate vKDM({0××}), we first

mark all descendants of 0××, i.e., {00×, 01×, 0×0, 0×1, 000, 001, 010, 011}, and then we

mark all unmarked ancestors of these vertices at levels ≤ dim(p), i.e., {×00, ×01, ×10,

×11, 0××, ×0×, ×1×, ××0, ××1}. We can see that u(p) = {×0×, ×1×, ××0, ××1} and v(p) =

{0××} have formed all the dependencies that are required to compute the verification

keys of all marked vertices. The marked nodes are susceptible to double spending with p

at dimensions ≤ dim(p). Given vKDM\L(⋅) defined in (4.26), (4.11) holds because each

vertex p has at least one leaf vertex q at some dimension not greater than dim(p), that is

susceptible to double spending (equal dimension if p = q.) Furthermore, (4.12) also holds

because removing any vertex q from u(p)∪v(p) will prohibit the key computation of

 81

some leaf vertex shared by p and q. Since (4.22)-(4.25) satisfy (4.10)-(4.12), Scheme II

satisfies all cryptographic constraints for A1.

00×00× 0 1× 01×01× 10×1 0×10× 11×11× 1 1×0 0×

001 010 011 100 101 110 111000

0×× 0× × 0×× 1× ×1×× 1××

×××()s p∈ ()v p∈ ()u p∈

({ })KDMu p∈ ({ })KDMv p∈ ()p∈�

3G

Fig. 19: Vertex marking scheme for susceptible vertices with respect to p = 0××.

To show that (4.22)-(4.25) also satisfy the crypto constraints for A2, we need to

show that they satisfy either (4.13) or (4.14) for any vertices p and p’, where d(p, p’) = 0.

For the case of p = p’, it is straightforward that (4.14) is satisfied. For p ≠ p’, dim(p) ≥

dim(p’), we first show that

uKDM({p}) = {∀q | d(p, q) = 0, p ≠ q, dim(q) ≤ dim(p)}. (4.27)

 82

(4.26) and (4.27) are depicted in Fig. 19, by the highlighted vertices, and the set of

vertices with a dot marked inside, respectively. (4.26) and (4.27) are almost identical

except that {p} is excluded from (4.27). In (4.27), the vertices at dimension dim(p) are

contributed by (4.24), while those at dimensions lower than dim(p) are justified by the

vertex marking scheme we described before. Based on (4.27), we have

uKDM({p}) ∩ s(p’) = p’. (4.28)

In addition, based on (4.21) or uKDM({p, p’}) ⊇ uKDM({p}), we conclude that (4.13) is

satisfied for A2.

Table 10 depicts a spending configuration that can lead to anonymity hazards in

G3, where p1 = 1×0, p2 = 01×, p3 = ×01, and p4 = 000 are four vertices for transfers3.

Even though d(pi, pj) ≠ 0 for any distinct pair, by using their credentials, the delegation

key of 000 can be produced by (4.4), i.e., r000 = H(X00×|| X0×0|| X×00|| 000), because ×00 ∈

u(p1), 0×0 ∈ u(p2) and 00× ∈ u(p3). Using r000, and the secret share of 000 exposed from

s(p4) = {000}, the identity of this rule-abiding consumer can be deciphered by DU1.

3 We will show in Appendix that the minimum number of vertices to cause anonymity hazard in
Scheme II is four.

 83

Table 10: Anonymity hazard scenario in G3.

Spent vertex Exposure functions

p1 = 1×0 u(p1) = {10×, 11×, ××××00, ×10}

p2 = 01× u(p2) = {×10, ×11, 0××××0, 0×1}

p3 = ×01 u(p3) = {0×1, 1×1, 00××××, 10×}

p4 = 000 s(p4) = {000}

Scheme II is more efficient than Scheme I. However, it does not guarantee A3

unconditionally. It is designed to work with a sub-cube allocation scheme to detect and

avoid anonymity hazards before a sub-cube is spent or allocated. We propose a simple

anonymity hazard test (AHT) algorithm to test whether or not a vertex p of the requested

sub-cube size is subject to anonymity hazard with respect to previously spent vertices, so

that only hazard-free sub-cubes will be spent and allocated. When all available vertices

at the requested sub-cube size are subject to anonymity hazard, the request will need to

be divided into smaller requests, each of which will need to be served separately. This

type of fragmentation condition is caused by anonymity hazard, as the example depicted

in Table 11.

 84

Table 11: Fragmentation scenario when Q1 is requested.

Spent vertex Exposure functions

p1 = 1×0 u(p1) = {10×, 11×, ××××00, ×10}

p2 = 01× u(p2) = {×10, ×11, 0××××0, 0×1}

p3 = ×01 u(p3) = {0×1, 1×1, 00××××, 10×}

p4 = 111 s(p4) = {111}

In this example, p1 = 1×0, p2 = 01×, p3 = 000, and p4 = 111 are spent. If the next

sub-cube requested is a Q1 then the only available vertex of this size is ×01. As shown in

Table 10, an anonymity hazard will result from spending of ×01, after p1, p2, and p3 have

been spent but the anonymity hazard is eliminated when ×01 is divided into two smaller

sub-units {001, 101} for spending. The sub-cube fragmentation increases computation

and communication overheads. Fortunately, simulation results show that fragmentation

caused by anonymity hazard in Scheme II is negligible even when arbitrary sub-cube

allocation scheme is considered. The simulation further shows that no anonymity hazard

is detected when Scheme II is integrated with two popular sub-cube allocation schemes,

BC or BRGC.

 85

D. Experimental Results

The objective of this simulation is to evaluate the occurrences of anonymity

hazards and their fragmentation effects for BC, BRGC and RC. Before giving details of

the simulation program, we first explain the AHT algorithm as shown in Fig. 20.

In AHT, each vertex in G is represented by one of the four colors: white, black,

gray and red. Each vertex is initialized to white before any spending instance. A black

vertex implies that its verification key has been exposed from past spending instance(s).

A red vertex implies that both its verification key and the secret share of this vertex have

been exposed from past spending instance(s). A gray vertex implies that its delegation

and verification key are not exposed from past spending instance(s), but will be exposed

if the current spending instance succeeds.

Fig. 20: Pseudocode of anonymity hazard test (AHT).

 86

The algorithm returns TRUE when an anonymity hazard is detected at Lines 03

and 14 for the pending sub-cube spending. Line 03 is the case when the verification keys

or the delegation keys of all parents of p have been exposed from the past spending

instance(s). Thus, all parents are not white in Line 02. By (4.4) and (4.5), the delegation

key of p can be derived from these delegation keys or verification keys. Furthermore, by

(4.22), the secret share of p will be exposed if the current spending instance succeeds. If

both the delegation key and secret share of p are available, the identity can be deciphered

based on DU1. Line 14 handles the case when the algorithm attempts to turn a red vertex

q to gray. The algorithm attempts to change a vertex q to gray color when all parents of q

are not white (Line 08), which means the delegation key of q can be derived by (4.22) if

p is spent. Since q is originally red, its secret share was exposed from previous spending

instance. Given both the delegation key and the secret share of q available, the identity

can be deciphered based on DU1.

In Line 05, the originally uncolored vertices in u(p)∪v(p) are colored in gray by

definitions of u(p) and v(p), but colored vertices remain unchanged so that only gray

vertices need to be rolled back to the white color if p is found to be subject to anonymity

hazard (Line 14.) The loop from Lines 07 to 17 is to update the colors of vertices due to

Line 05. For the top-down KDM analysis, Line 05 computes the delegation keys and

verification keys for vertices at the dimensions lower than dim(p) in this loop. Let q be a

susceptible vertex in the loop. Line 08 checks if all parents of q are not white; and if they

are all not white, it means that the delegation key of q can be derived by (4.22) if p is

indeed spent. As a result, q needs to be marked gray if it is not colored before (Lines 09

 87

to 10). However, if q has been marked in red (Line 11), then anonymity hazard will

occur if p is spent. p needs to roll back to its original color (black or white) and all

vertices colored in gray during this test need to be rolled back to the white color (Lines

12 and 13) and an anonymity hazard condition needs to be reported (Line 14). If no

anonymity hazard is found after checking all q in the loop, then p can be spent without

causing any problem. Before returning FALSE (Line 20), p and all vertices colored in

gray need to mark their colors red and black (Lines 18 and 19), respectively.

The pseudo code of the simulation is given in Fig. 21 to measure occurrences of

anonymity hazard, and their fragmentation effects. The program starts by initializing all

leaf vertices in Gn as “not spent” in Line 01. Then it keeps generating sub-cube requests

of different sizes for spending, and finally it terminates at Line 25 when all leaf vertices

are marked “spent”.

Lines 02 to 03 randomly and uniformly generate a vertex p_tmp = 0, 1, …,3n-1.

The ternary representation of p_tmp is used to determine i = dim(p_tmp). In this way, the

probability in producing requests of extremely large/small sub-cubes is minimized. For

example, in G3 the probability to request the entire hypercube (the root vertex) is 1/33 =

1/27, while that for a sub-cube at dimensions 2, 1, and 0 from G3 are 6/27, 12/27, and

8/27, respectively. A request can be served only if one sub-cube of the same size can be

found from the unspent sub-cube pool based on the sub-cube allocation rule, such as BC,

BRGC, RC, and no anonymity hazard is detected. Otherwise, the request is discarded.

 88

��� �� � ��� � ��� ���� �!"#��$�% �&"' ��()� "�*+

��� �� ", ' - �. �/ � "� �� �� �)��-)���' - ����' � 0!"#��+�11��� �"� �. �"2 - 3 � �(

�0� (� ���% �, -)��-)#+

�4 � �� �!#�5 �"2 - 3 � ��' ���� � ��� � ��6 � (�- � �7 � , �&"' ��()� "�*��8 � "

�9 � / ' �' ���+

�: � � ", ��

�; � 2 (� ��8 � �6 2 ��� "��� ��' 6 � �' "�(6 8 � - � ��' �(� �� 6 ��� "�� � � �� 3 �� �(2 3 �6 2 3 � �)�� � , - � "(' "�+

�< � ��"' �(2 6 8 �)�� �(���8 � "

�= � ��)' ������ / - � "�� �' "� > ? @�6 � 2 (� , �3 . �� "' ". - �. �8 � A � �, #

��� / ' �' �����

��� � ", ��

��� , ' �� "' ". - �. �8 � A � �, ��� (�� �B @#�' "�)+

�0� ���B @�)� ((� (��8 � "�

�4 � - � �7 �� ����� � ��� � ��� ���$�' ��)�� (�&()� "�*+

�9 � � �(�

�: � ��)' ���� "' ". - �. �8 � A � �, +

�; � 2 (� ��8 � �6 2 ��� "��� ��' 6 � �' "�(6 8 � - � ��' ��", �� "' �8 � ��� � � �� 3 �� �(2 3 �6 2 3 � �)�� ��, - � "(' "�+

�< � ��"' �(2 6 8 �)�� �(�(��8 � "�

�= � ��)' ������ / - � "�� �' "� 6 � 2 (� , �3 . �� "' ". - �. �8 � A � �, #

��� � �(�

��� / ' �' ���+

��� � ", ��

�0� � ", ��

�4 � ��� ����� � ��� � ��� ���$�� �� �- � �7 � , �&()� "�*��8 � "�

�9 � �� �- "� �� ��8 � �)�' / �� - +

�: � � �(� / ' �' ���+ 11�"� ���(2 3 6 2 3 � ��� C 2 � (�

�; � � ", ��

Fig. 21: Pseudocode of the simulation program for fragmentation.

The simulation results for G4 to G10 are depicted in Fig. 22 and Fig. 23 based on

the average results of 1,000 runs of simulation instances. The anonymity hazard ratio is

measured by the number of AHT executions which return TRUE to the total number of

AHT executions in Line 12. The fragmentation ratio is the proportion of fragmentations

(caused by anonymity hazards) versus the total number of sub-cube requests in Line 07.

For RC, the anonymity hazard ratio increases in a linear fashion with the hypercube size

from G4 to G10. On the other hand, the fragmentation ratio decreases with the hypercube

size and is consistently lower than 2%. In contrast, anonymity hazard did not occur to

BC or BRGC in all simulation runs, and thus AHT is not needed for these two schemes.

 89

Anonymity Hazard Ratio

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

4 5 6 7 8 9 10

Dimension

R
at

e

Fig. 22: Anonymity hazard ratio.

Fragmentation Ratio

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

4 5 6 7 8 9 10

Dimension

R
at

e

Fig. 23: Fragmentation ratio (caused by anonymity hazards).

E. Summary

In this section, we investigated the relationship between N-divisible tokens, sub-

cube allocation schemes, and their integration. We demonstrated that a holistic security

 90

management system can be created by tailoring the N-divisible token framework of the

disposable authentication with different sub-cube allocation schemes. We developed the

analysis techniques to guarantee the AAA properties of hypercube based N-divisible

tokens. As expected, the most secure solution requires the highest computing cost. As an

alternative, we also show that one can achieve the same security management goals at

much lower computing costs by relaxing the anonymity protection rules and adding an

anonymity hazard checking routine before the sub-cube can be allocated. The anonymity

hazard checking routine is simple and reliable. Furthermore, simulation results show that

existing sub-cube allocation schemes binary code and binary gray code are immune from

anonymity hazards because of their restrictive allocation rules. Our study suggests that

with proper adjustment to both the N-divisible tokens and the resource allocation rules,

highly secure and efficient computing resource management schemes can be developed

based on one integrated framework.

 91

V. PRIVACY PRESERVING SERVICE ORIENTED ARCHITECTURE (SOA)

Service oriented architecture (SOA) is a software paradigm which links business

and computation resources on demand to achieve desired results for service consumers.

It promotes the reuse of computer resources at macro level (services) rather than micro

level (objects). The abstraction and reusability on the loosely coupled and interoperable

services help business respond timely and cost-effectively to changing market conditions

[75]. In this section, we will introduce a privacy preserving SOA framework to support

service reservation in a peer-to-peer (P2P) network.

Service reservation is useful for SOA to allow service providers more predictable

workload. It also allows service consumers to be more certain on availability of services.

For example, a service consumer wants to guarantee that all required service components

are reserved before the service components are used to construct new composite, higher-

level services. Nevertheless, service reservation may also cause a waste of resources if a

service consumer does not need the reserved services anymore. For example, the service

consumer reserves two similar services but only uses the better one based on the current

market condition. Therefore, a more advanced design should allow the service consumer

to transfer its service reservation to another service consumer, so that any consumer who

can present a valid service reservation can redeem the services from the service provider.

Clearly, the E-cash based resource management framework proposed in previous

sections paves a solid foundation for the reservation and transfer operations. However,

the E-cash paradigm has a missing link in service discovery to get service providers and

 92

service consumers know each other before they can start the service transactions. In this

section, we aim to bridge the gap by studying the service discovery in a P2P network.

Service discovery in SOA is typically achieved by service brokering [76], where

the service providers and service consumers need to register to the service broker(s), and

then the service broker serves as a directory to introduce the service consumer to service

provider, and then the service consumer and service provider can communicate directly

for transactions. Existing service discovery protocols such as UDDI [77], SSDS [78],

and Splendor [79], provide directory service through a collection of dedicated trusted

servers which locations are well-known. On the other hand, service discovery in P2P

networks require every peer node in the network to be the directory of other peer nodes,

and their locations may not be known in advance. Without using well-known trusted

servers, peer nodes are reluctant to release their sensitive information, such as work

requests, service capabilities, terms, and availability schedules. Leakage of the inquiry or

service offering may trigger rumors or market volatility. However, without releasing

enough information, they can hardly locate potential collaborators for business

transactions.

To solve this dilemma, our main idea is to allow users to progressively release

sensitive information for matching and verification, while not leaking the information to

unintended recipients upon failure of matching or verification. It is similar to the idea of

qualification verification which mutually verifies such information as the possessions of

goods, skills, and finance resources, while blocking speculators from accessing privilege

information exchanged between users. In particular, we focus on the privacy protection

 93

of service contents, group identities, and user identities through the multi-layer Bloom

filter (MLBF) and secret handshake (SH) protocol. Both cryptographic tools require no

centralized supervision during regular operations so they are useful for the P2P network.

In the proposed framework, users are interconnected by CHORD [80]. CHORD

is a ring-based P2P network that supports efficient posting and inquiries of services with

distributed hashing tables (DHTs) [81]. Nevertheless, the key space of CHORD is flat so

it does not inherently support service lookup of structural data such as XML. XML is the

de facto standard data format in SOA. Numerous works are proposed for the XML-based

service discovery in CHORD [82, 83] but they require all or part of the XML plaintext to

be kept in the directory nodes, leaving vulnerability for leaking sensitive information. To

provide better privacy protection, we hash the service contents by MLBF to generate the

location information on CHORD. Publications of hashed results protect the exact natures

of services while still allowing potential service consumers who can specify the related

service to locate matched service providers. At the same time, contents of inquires from

consumers are also protected because they are also hashed by MLBF.

Given that all service contents are published in their hashed forms, MLBF offers

reasonable protection from outsiders. But it does not protect the participants from insider

adversary who are determined to make broad surveys or scans of the business activities.

Furthermore, there is no way for matched participants to make risk-free, fair exchange of

information, unless they belong to the same group that implies a similar trusted level or

capabilities. As such, we only use MLBF to distribute the natures of available services.

After two users are matched, they need to execute an SH protocol to test whether or not

 94

they belong to the same group. If they are within the same group, they can execute the

transaction using the TZKP protocol to perform such functions as service reservations,

service redemptions, and transfers of reservations. Otherwise, if they belong to different

groups, the SH protocol guarantees that their group identities cannot be deciphered from

one another using their authentication messages.

Different from the original SH protocol [6], our scheme supports reusable tokens

which allow two users from the same group to authenticate each other without exposing

their user identities. In contrast, reusing a token in [6] will link authentication messages

of different transactions to the same user identity. Our protocol does not need to assign a

set of pseudonyms to the user, while the original SH requires the allocation of one-time

pseudonyms for each user. Our scheme only requires 2 pairing operations. On the other

hand, the scheme in [7] uses 6 pairing operations for the similar functions. Experimental

results show that our scheme takes 65 milliseconds for each SH operation. It provides a

light-weight authentication solution for screening of unknown users in secure resource

allocations.

The rest of this section will be organized as follows. Section A gives a system

overview. Section B explains the basic operations needed in the system. Section C

elaborates the protocol details of the system. Section D delivers the experiment results.

Section E gives a summary of this section.

 95

A. System Overview

In this section, we explain the system architecture of our privacy preserving SOA

framework. The system comprises of three major phases: system initialization, service

discovery, and service transaction. As shown in Fig. 24, the central authority (CA) only

participates in the system initialization phase. The peer nodes can operate autonomously

on the logical ring (CHORD) to look up target nodes in the service discovery phase, and

then communicate directly (point-to-point) with target nodes in the transaction phase.

In system initialization, the CA prepares the public-private parameters required

by the system. After that, the users can register from the CA. During registration, the CA

assigns a unique user identity and a group identity by issuing some tokens to the user.

The users will need to use these tokens to authenticate each other as a legitimate service

provider or service consumer during the service discovery and service transaction phases.

In service discovery, users search on the CHORD ring for other users who have

matched groups, service requests, and service descriptions. The user who joined the ring

can add the MLBF representation of its service descriptions onto the ring. Two types of

users can add their descriptions. The first type is the service provider who offers services.

The second type is the service consumer who reserved services and wants to transfer it to

another consumer. Both types of users want potential consumers to search their service

descriptions on the ring. The consumer searches the service descriptions by preparing an

MLBF representation of its service request and looks up on the ring. The lookup returns

the locations of providers who provide potentially matched services and the locations of

 96

consumers who transfer potentially matched service reservations. The consumer contacts

some of these locations to further match their groups by the SH protocol. The consumer

proceeds to the service transaction phase if they belong to the same group.

Fig. 24: System architecture for reservation based SOA.

 97

In service transaction, the matched service providers and consumers in service

discovery can use the TZKP protocol to take part in three protocols: service reservation,

reservation transfer, and service redemption. In service reservation, the service provider

issues a reservation credential (a.k.a. TAA in section III) to the consumer. It grants the

reservation credential holder the authorization to redeem the said service. In reservation

transfer, the service consumer can choose to give up the authorization and transfer it to

another consumer. In service redemption, the service provider offers service to the user

who can present the reservation credential, no matter who the user is.

Fig. 24b and Fig. 24c demonstrate an example for service discovery and service

transaction. Node U5 is a service consumer who reserved some services from the service

provider. Now, U5 wants to transfer its service reservation to others. It adds the service

description to the CHORD ring. We assume that the service description is added to the

node U4 in this example. Another service consumer U2 wants to search for services. It

prepares a service request and looks up on the CHORD ring. U2 finds that U4 stores a

potentially matched service description. U4 returns the location of U5 to U2. U2 contacts

U5 to check whether or not they belong to the same group. If they belong to the same

group, then they are willing to exchange their service description and service request, to

check whether or not they are matched. If they are matched, U5 transfers the reservation

to U2, and removes the service description from U4. Finally, U2 can redeem the service,

or transfer the reservation to other consumer.

 98

B. Basic Operations

The building blocks include CHORD, MLBF, and the SH protocol. CHORD

facilitates service lookup in a P2P network. MLBF protects the service descriptions and

requests for service lookups. SH protocol protects group identities of service providers

and service consumers who take part in the service lookup.

1. P2P network: CHORD

CHORD [80, 81] is a P2P network from which each node is ordered in a logical

ring modulo 2m. A node can add a key-value pair to another node and lookup the value

from the node using the key. The lookup protocol of CHORD is efficient, which requires

O(log n) hops only, where n is the number of nodes on the ring. We denote the location

of node A on the ring as LCA. The basic operations of CHORD are described as follows:

LOOKUP: Lookup refers to the mapping from the key to the node location. It maps key

k to the first node location equals to or follows k. This node is called the successor node

of k, denoted by successor(k). To speedup the lookup process, it uses a finger table up to

m entries. The i-th entry at node n stores s = successor(n+2i-1). Node n can skip all nodes

between its successor and the precedent of s if k is larger than the precedent of s.

ADD/RETRIEVE/DELETE VALUE: Lookup the node location by the key, and then add

the value to the node, or retrieve or delete the value from the node.

 99

JOIN/LEAVE/FAILURE OF NODE: Every node updates its finger table periodically to

reflect changes caused by join, leave, or failure of nodes. For join operation, some values

are migrated to the joined node from its precedent. For leave operation, all values are

moved from the leaving node to its successor. To handle the simultaneous failures, each

node keeps a successor list which stores the first r successors. If the immediate successor

does not respond, the node substitutes it with the second entry in the successor list.

2. Multi-layer Bloom filter (MLBF)

MLBF [84] is originally designed for space-efficient content-based routing in the

tree-based topology. It is an array of hash functions for heuristic membership testing for

data in hierarchical structures such as XML. To understand MLBF, we first introduce the

basic operations for baseline Bloom filter as follows:

INITIALIZATION: We prepare a vector v with m bits, initially all set to 0, then prepare k

hash functions, h1, h2, …, hk, each with range 1 to m. m the length of the Bloom filter.

ADD ELEMENT: To add element a to v, we set v = v ∨ BF(a), where ∨ is the binary OR

operator, and BF(a) is an m-bit string with its positions, h1(a), h2(a), …, hk(a), set to 1,

and the rest of bits set to 0.

MATCH ELEMENT: To match element b with v we check the bits at the positions, h1(b),

h2(b), …, hk(b), in v. If any of them is 0, then b was not added. Otherwise, we conjecture

that b was added despite a certain probability that it was not. k and m are selected in such

a way that the false positive rate is acceptable.

 100

MLBF is constructed by multiple baseline Bloom Filters as described as follows:

INITIALIZATION: We prepare BF0, …, BFj and their vectors v0, …, vj. Then, we prepare

a vector t with n bits initially all set to 0, where n is the total length of the Bloom filters.

ADD DOCUMENT: To add an XML document D to t, we add all element names at level

i of D to vi with BFi, where root level = 1. In addition, we add all element names in D to

v0 with BF0. We compute MLBF(D) = v0 ||…|| vj, where “||” is the concatenation operator.

Then we set t = t ∨ MLBF(D) and reset all vi to be 0.

MATCH REQUEST: To match XPath T = “/a1/…/ap” with t, we compute ui as follows:

u0 = BF0(a1) ∨…∨ BF0(aj), for ai = an element name. (5.1)

jip

a

aaBF

u i

iii

i

≤<
=
=

�
�

�
�

�

=
for

operator wildcarda for

 nameelement an for

,0
,0

),(

 (5.2)

Let t = t1…tn and s = MLBFQ(T) = s1…sn = u0 ||…|| uj, where ti, si ={0,1}. If (t ∧ s) ⊗ s =

0, i.e., ti = 1 for all si = 1, then T potentially matches some documents added to t, where

∧ is binary AND operator, and ⊗ is binary XOR operator. Otherwise, this is a mismatch.

The false positive rate is decided by the BF sizes at each level and natures of D and T.

3. Secret handshake (SH) protocol

Among various group authentication schemes, secret handshake protocol [6, 7,

85-91] emphasizes on protection of group membership information. In its original form,

secret handshake protocol allows a group member to verify the membership of another

 101

member while non-members cannot determine or impersonate group membership from

their authentication messages. The authentication does not require supervisions from the

central authority (CA) but users need to receive some SH tokens from the CA to become

a member to be able to take part in secret handshakes. The SH token is derived from the

user identity and a group secret. The group secret is known by the central authority only.

Secret handshake protocol differs from other group authentication schemes that it does

not require group public key. It checks whether or not both users can compute a common

value using their tokens. A common value implies that their tokens are derived from the

same group secret, and hence, they are from the same group. In contrast, distinct values

do not expose any information that can link to the group membership of the users.

The proposed SH protocol is derived from the pairing-based SH protocol in [6].

Pairing-based cryptography is based on bilinear maps over groups of large prime order

[8]. In pairing-based cryptography, “groups” refers to groups in linear algebra which is

different from groups in SH protocol. G1 denotes an additive cyclic group of prime order

q. G2 denotes a multiplicative cyclic group of order q. G1 and G2 are selected in such a

way that the Discrete Logarithm Problem (DLP) �[8] is hard in both of them.

Definition 5.1: A pairing is a bilinear map e: G1 × G1 � G2 if, for any P, Q ∈ G1 and

any a, b ∈ Z*
q, we have e(a⋅P, b⋅Q) = e(a⋅P, Q)b = e(P, b⋅Q)a = e(P, Q)a⋅b and e(P,Q) =

e(Q, P) for ∀ P, Q ∈ G1.

A typical choice of G1 is a set of points on an elliptic curve. G2 is a multiplicative

cyclic group over integers. Our SH protocol uses Tate parings on supersingular elliptic

 102

curves because their computations of bilinear maps are efficient [92], provided that the

following problem is hard:

Definition 5.2 (Bilinear Diffie-Hellman (BDH) Assumption): Given P, a⋅P, b⋅P, c⋅P

for random a, b, c ∈ Z*q and P ∈ G1, it is not possible to compute e(P, P)a⋅b⋅c with a non-

negligible probability, i.e., it is hard to compute e(P, P)a⋅b⋅c.

Our protocol uses two hash functions H1 and H2. H1 maps a string with arbitrary

length to an element in G1, i.e., a point on a specific elliptic curve. H2 maps a string with

arbitrary length to a string with fixed length. “||” denotes a string concatenation operator.

The SH system comprises of a central authority (CA) and a collection of users.

The CA is responsible for setting up system parameters and issuing tokens for users to

prove the group membership. The CA sets up pairing parameters (q, G1, G2, e, H1, H2)

during system initialization. It also prepares a series of group secrets [g1, …, gn] to

represent different groups. The pairing parameters are published to the users whereas the

group secrets are known by the CA only. When user A joins group gA, A presents its user

identity, IDA, to the CA. Then the CA grants the group membership by issuing A a token,

KA, derived from gA and IDA. KA is the secret for A to prove its group membership to

other users, without exposing any information which can link to IDA. A cannot forge a

token to prove a group membership other than gA.

The group membership knowledge that can be observed from the authentication

messages is summarized in Table 12. As depicted in the table, A and B can authenticate

one another anonymously using their tokens if they are from the same group, gA = gB,

but they do not know the values of gA and gB. If A and B belong to different groups, or

 103

any of them belong to no group, they know gA ≠ gB only. A and B obtain no information

that can link to the values of gA and gB. Other users cannot perceive whether A and B

belong to the same group or not. In this section, we proposed a reusable SH token so that

users can use an SH token multiple times in different transactions, without exposing any

information that can link to the user identity.

Table 12: Secret handshake protocol with reusable tokens.

 A and B ∈ some group A or B ∉ any group Users other than A and B

Succeeds gA = gB Always Fails

Fails gA ≠ gB

Uncertain:

gA = gB ?

Our main idea is to let the user generate a secret random number in every secret

handshake. The user needs to multiply the random number to an elliptic curve point that

represents the user identity. The random number minimizes the correlation between the

authentication messages even though they are produced by reuse of a token. The simple

construct is more efficient than other reusable schemes with similar functions [6, 89].

Our protocol comprises of three phases: INITIALIZATION, JOIN GROUP, and SECRET

HANDSHAKE, as detailed below:

INITIALIZATION: The CA determines the pairing parameters (q, G1, G2, e, H1, H2) and

group secrets [g1,…, gn] given a security parameter 1k, where q is a large prime and gi ∈

Z*q. The CA publishes the pairing parameters while keeping the group secrets in private.

 104

JOIN GROUP: User A requests the CA to join group gA ∈ [g1,…, gn]. The CA verifies

A’s user identity, IDA, to decide whether A can join the group. The CA grants the group

membership to A by issuing a token gA⋅H1(IDA) ∈ G1. The token is a secret of A to prove

its membership in group gA to another user in the same group. A cannot deduce gA from

gA⋅H1(IDA) and H1(IDA) assuming that DLP is hard in G1. It is important for preventing

forgery of tokens.

SECRET HANDSHAKE: Users A and B use their tokens, KA = gA⋅H1(IDA) and KB =

gB⋅H1(IDB), to generate authentication messages to one another. A randomly generates

two non-zero integers, nA1 and sA1. nA1 prevents replay attacks as in [85]. sA1 minimizes

the correlations of authentication messages produced by the same token. Since using a

token multiple times will not create messages that can link to the user identity, the token

is reusable. B also randomly generates two non-zero integers, nB1 and sB1, for the same

purpose. Detailed interactions of our secret handshake protocol are described as follows:

(a) A � B: nA1, WA1 = sA1⋅H1(IDA)

(b) B: Compute VB,A = H2(U B,A || nA1 || nB1 || 0), U B,A = e(WA1, sB1⋅KB)

(c) B � A: nB1, WB1 = sB1⋅H1(IDB), VB,A

(d) A: Compute V’B,A = H2(U’B,A || nA1 || nB1 || 0), U’B,A = e(WB1, sA1⋅KA)

If VB,A = V’B,A, then A knows B belongs to the same group, i.e., gA = gB. Otherwise, B

belongs to a different group, i.e., gA ≠ gB or B belongs to no group.

(e) A � B: VA,B = H2(U’B,A || nA1 || nB1 || 1)

(f) B: Compute V’A,B = H2(U B,A || nA1 || nB1 || 1)

 105

If VA,B = V’A,B, B knows that A belongs to the same group. Otherwise, A belongs to a

different group, i.e., gA ≠ gB or A belongs to no group.

The protocol succeeds when VB,A = V’B,A and VA,B = V’A,B in steps (d) and (f). Based on

the BDH assumption, it succeeds if, and only if, gA = gB. Otherwise, if it fails, A and B

only know gA ≠ gB. Users other than A and B do not know whether gA = gB or not,

because they cannot compute V’B,A and V’A,B without KA and KB. A sketch of proof for

VB,A = V’B,A is shown in (5.3). The rest of proof for VA,B = V’A,B can be derived similarly.

A detailed security analysis of our SH protocol is given in Appendix B.

VB,A = H2(UB,A || nA1 || nB1 || 0)

= H2(e(WA1, sB1⋅KB) || nA1 || nB1 || 0)

= H2(e(sA1⋅H1(IDA), sB1⋅gB⋅H1(IDB)) || nA1 || nB1 || 0)

 = H2(e(sA1⋅gB⋅H1(IDA), sB1⋅H1(IDB)) || nA1 || nB1 || 0)

 = H2(e(sB1⋅H1(IDB), sA1⋅gB⋅H1(IDA)) || nA1 || nB1 || 0)

 = H2(e(WB1, sA1⋅KA) || nA1 || nB1 || 0) // if, and only if, gA = gB

 = H2(U’B,A || nA1 || nB1 || 0)

= V’B,A (5.3)

Our scheme simply adds a multiplication of the random number s to the elliptic

curve point W on top of the original secret handshake protocol [6]. Our protocol requires

2 pairing operations in steps (b) and (d), while other reusable schemes [6, 89] require

additional pairing operations or use a composite construct.

 106

C. Protocol Details

 In this section, we present the details of our privacy preserving SOA framework.

It contains three phases: system initialization, service discovery, and service transaction.

The protocol details in each phase are explained as follows.

1. System initialization phase

PARAMETER SETUP: The CA prepares the public and private parameters for CHORD,

MLBF, SH, and TZKP. Then, it publishes the public parameters and the following data:

(i) enckey(msg), deckey(msg): symmetric encryption and decryption functions where

key is a symmetric key and msg is the message to be encrypted or decrypted.

(ii) signpri(msg), verpub(msg): signature and verification functions where (pri, pub) is

the private-public key pair for signing or verifying the message msg.

(iii) mask: a t-bit binary string with k ones in it, where t is the total length of MLBF

and 2k is the ring size. mask will be used to map the MLBF key to the CHORD

key as we will discuss shortly.

REGISTRATION: The user requests the CA to issue a TZKP token and two SH tokens.

The first SH token contains a system-wise common group secret which indicates that the

user is a registered user. The second SH token contains a group secret that distinguishes

different user groups. We use K = SH1(A, B) and K = SH2(A, B) to denote the executions

 107

of SH protocol between nodes A and B using the first and the second tokens respectively.

If the SH protocol fails, K < 0. Otherwise, K is the common secret between A and B.

2. Service discovery phase

ADD SERVICE DESCRIPTION: Users who joined the ring can add service descriptions.

The first concern is to ensure that the user who added the service description is the only

one who can remove it. An intuitive approach is to record the LC of the node who adds it

and check the LC when the node removes it. This approach is good for a static setting

but not when the nodes are highly dynamic. We will show how to use the common secret

established by SH protocol to verify this authority even the location is changed.

The second concern is the mapping of service description, D, to the CHORD key.

An intuitive approach is to map MLBF(D) as the CHORD key. Nevertheless, MLBF(D)

typically needs thousands bits to achieve an acceptably low false positive rate, making

the ring extremely large. Although the lookup complexity does not increase with the ring

size but the number of nodes, the finger table size does. Moreover using an extremely

large ring costs many big integer operations which degrades the performance. To reduce

the ring size, we define a sampling function:

SAM(x, mask) = ci1ci2…cik, (5.4)

where ik is the position which bit is “1” in mask, and cik is the bit at position ik of x. For

example, if x = 10011, and mask = 11001, then i1, i2, i3 = 1, 2, 5, and the 1st, 2nd, 5th bits

of x will be extracted to form SAM(x, mask) = 101.

 108

In addition to the finger table and successor list, our scheme needs a service table

and a directory table in each node. The service table stores the information related to the

services this node will provide or transfer. In contrast, the directory table stores the data

related to the services which other nodes will provide or transfer. The protocol for node

A to add a service description D is described as follows:

Protocol: Add Service Description

(i) A computes the CHORD key SAM(MLBF(D), mask) to locate node B.

(ii) A and B compute K = SH1(A, B). Terminate if K < 0.

(iii) A sends to B the following messages:

MLBF(D), pub, signpri(MLBF(D)) (5.5)

These messages are needed by service reservations and transfers in the future.

(iv) A randomly generates R and sends encR(K) to B. R is needed by A to remove the

service description from the ring in the future.

The messages in (5.5) are came from A’s reservation credential if A is the service

consumer who wants to transfer the reservation. If A is a service provider, (pri, pub) is a

private-public key pair randomly generated by A. (pri, pub) will be used to authenticate

the service provider on redemption of services described by D. Different (pri, pub) key

pairs are used for different service descriptions to guarantee unlinkability of the service

provider. At the end of the protocol, the following entries are added to A’s service table:

D, K, R, pub. (5.6)

 109

If A is a service provider, then it also stores pri in this entry of service table. If A

is a service consumer, then it stores the TZKP cascaded credential that it used to receive

the service reservation. The following entries are added to B’s directory table:

MLBF(D), LCA, pub, signpri(MLBF(D)), K, encR(K) (5.7)

B only knows MLBF(D) but not D. Thus, it protects the contents of D from B, even B is

responsible for matching D with the requests from other nodes in the future.

Fig. 25 depicts the scenario from which node 5 wants to add the XML document

D to the ring. Node 5 adds the first level element a0, to BF1, the second level elements b0

and b1, to BF2, and the third level elements c0, c1, d0 and d1 to BF3. It adds all elements to

BF0. The output of each level is concatenated to become:

MLBF(D) = 0111 0101 0011 0111 (decimal: 30007) (5.8)

Then, node 5 samples the above result by the mask:

mask = 1000 0001 0011 0011 (5.9)

As shown by the bolded bits above, the sampled result is 011111, which decimal is 31.

Fig. 25: Mapping XML document to CHORD key

 110

Node 5 uses 31 as the key to locate the node to store 30007 as depicted in Fig. 26

and Table 13. First, node 5 checks that 31 is larger than its location 5. Thus, it looks up

its finger table. Since 31 is in between 5 + 16 = 21 and 5 + 32 = 37, node 5 forwards (5,

30007, …) to suc(21) = 32. Then, node 32 checks that the sampled result of 30007 is 31,

which is smaller than its location 32. It means node 32 is the node to store (5, 30007,…).

Node 32 does SH protocol with node 5, exchanges the data as in step (iii) and (iv) of the

protocol, and stores the data in its directory table.

Fig. 26: Add service description.

Table 13: Scenario for adding service description.

Form To Lookup Key Finger Table

5 5 31 > 5 suc(5+16) = 32

suc(5+32) = 38

(21 ≤ 31 ≤ 37)

5 32 31 ≤ 32 --

 111

DELETE SERVICE DESCRIPTION: Only the user who added the service description

can delete it. The authentication is done by checking the knowledge of R created in the

add service description protocol. Therefore, even if A changes its location, as long as it

has the knowledge of R, it can still prove the authority to remove the service description

from the ring. The protocol for node A to remove D from the ring is described as follows

Protocol: Delete Service Description

(i) A computes the CHORD key SAM(MLBF(D), mask) to locate node B.

(ii) A and B compute L = SH1(A, B). Terminate if L < 0.

(iii) A sends MLBF(D) to B.

(iv) B checks (MLBF(D), …, K, …) from its directory table and send EL(K) to A.

(v) A decrypts EL(K) and checks if K matches the entry in service table. If it does,

retrieve R and send EL(R) to B.

(vi) B decrypts EL(R) and checks whether ER(K) equals to the entry in its directory

table. If it does, delete the entry from the directory table.

At the end of the protocol, the following entries are removed from B’s directory table:

MLBF(D), LCA, pub, signpri(MLBF(D)), K, encR(K) (5.10)

SERVICE MATCHING: A registered user can post service request for service matching.

The first concern is on the matching of multiple results. In CHORD, lookup is a one-to-

one matching. On the contrary, XML-based query matches multiple service descriptions

resided in different nodes on the ring. For example, the service request denoted by 0101

matches all service descriptions represented by 0101, 0111, 1101, and 1111. An intuitive

approach is to rewrite the original request to all matched combinations. However, it will

 112

generate massive number of requests when many zeros are in the original request. An

alternative approach is to circulate the request around the ring and receive replies from

the nodes which have a match in their service tables. Yet, it generates as many requests

as the number of nodes. Thus, we extend CHORD’s lookup protocol to reach multiple

matched results. Our solution also circulates the request but we skip a large number of

nodes by using finger tables. The request is circulating around the successors of matched

key, e.g., suc(0101), suc(0111), suc(1101), and suc(1111) instead of circulating around

every node in the ring. The number of nodes visited can be reduced if there are common

successors. For example, it is likely that suc(0101) = suc(0111) because 0101 and 0111

are near in the ring. In order to derive the potentially matched CHORD keys from the

original request, we define the ⊕ operator as follows:

z = y ⊕ x, (5.11)

where the number of bits in x equals to the number of zeros in y, and z is obtained by

replacing the zero bits in y by the corresponding bits in x. For example, 0101 ⊕ 00 =

0101, 0101 ⊕ 01 = 0111, 0101 ⊕ 10 = 1101, and 0101 ⊕ 11 = 1111.

The second concern is about the number of results returned. A consumer may

receive an extremely large number of matched results if the request is too general, e.g.,

0000, which could crash the node unintentionally. A straightforward approach is to

hardcode the protocol to return the first k results. But then the node may not be able to

reach other matched results every time using the same request although the unreachable

results may be more useful. Therefore, we take a probabilistic approach that different k

results are returned each time. To avoid the request from circulating forever in the ring,

 113

we also keep track of a hop count to cease further searching of results, even fewer than k

results have been return. The protocol for node A to match a service request T on the ring

is described as follows.

Protocol: Service Matching

(i) A uses SAM(MLBFQ(T), mask) to locate node B.

(ii) A and B compute K = SH1(A, B). Terminate if K < 0.

(iii) A sends the following to B:

(LCA, MLBFQ(T), inc_count, result_count, hop_count)

result_count = max number of results to be returned

hop_count = max number of nodes to be visited.

inc_count = number of matched key tested so far

inc_count is initially 0 from the original requestor A.

(iv) B checks its directory table. For each table entry, if SAM(MLBF(D), mask) and

SAM(MLBFQ(T), mask) match and result_count > 0, then B sends the following

entries to LCA with probability = p:

MLBF(D), LC, pub, signpri(MLBF(D)), MLBFQ(T) (5.12)

For each result sent, B decreases result_count by one.

Terminate if hop_count = 0, or result_count = 0, or inc_count cannot be further

increased, i.e., 11…1.

(v) B increases inc_count by one and then locates suc(x) where x = SAM(MLBFQ(T),

mask) ⊕ inc_count.

(vi) B and suc(x) compute K = SH1(A, B). Terminate if K < 0.

 114

 (vii) B decreases hop_count by one and sends suc(x) the following messages:

(LCA, MLBFQ(T), result_count, hop_count, inc_count) (5.13)

LCA instead of LCB is used in the sent message so that the results will be sent to

the original requestor.

(viii) B and suc(x) repeat from (iv) as A and B did.

At the end of the protocol, A receives a collection of results which potentially match the

wanted services.

Fig. 27 depicts the scenario from which node 2 matches the service request T =

/a0/b0/c0 on the ring. The element names a0, b0, c0 are respectively added to BF1, BF2,

and BF3. All element names are added to BF0. The output of each level is concatenated:

MLBFQ(T) = 0111 0101 0001 0011 (decimal: 29971) (5.14)

Then, node 2 samples the result in (5.14) by the mask in (5.15):

mask = 1000 0001 0011 0011 (5.15)

As shown by the bolded bits above, the sampled result is 010111. As depicted in Table

14, by substituting the 0 bits in 010111 by 00, 01, 10 and 11, there are four keys derived

from the original request: 23, 31, 55, and 63 (in decimal). Instead of routing the request

from node 2 to suc(23), 2 to suc(31), 2 to suc(55), and 2 to suc(63), we forward the

request from 2 to suc(23), suc(23) to suc(31), suc(31) to suc(55), and suc(55) to suc(63).

The detailed steps are presented in Fig. 28 and Table 15.

 115

Fig. 27: Mapping from XPath to CHORD key.

Table 14: Computations for the next CHORD key.

Binary Decimal ⊕⊕⊕⊕ Representation

010111 23 23 ⊕ 0

011111 31 23 ⊕ 1

110111 55 23 ⊕ 2

111111 63 23 ⊕ 3

 116

Fig. 28: Matching service request.

Table 15: Scenario for matching service request.

From To Lookup Key Directory Table Finger Table
2 2 23⊕ 0=23 > 2 -- suc(2+16) = 20

suc(2+32) = 20
(18 ≤ 23 ≤ 34)

2 20 23⊕ 0=23 > 20 -- suc(20+2) = 32
suc(20+4) = 32
(22 ≤ 23 ≤ 24)

20 32 23⊕ 0=23 ≤ 32

23⊕ 1=31 ≤ 32

23⊕ 2 =55> 32

21, 23, 23, 25, 30, 31 suc(32+16)=49
suc(32+32)=2
(48 ≤ 55 ≤ 64)

32 49 23⊕ 2=55 > 49 -- suc(49+4)=53
suc(49+8)=0
(53 ≤ 55 ≤ 57)

49 53 23⊕ 2=55 > 53 -- suc(53+2)=0
suc(53+4)=0
(55 ≤ 55 ≤ 57)

53 0 23⊕ 2=55 ≤ 0+64

23⊕ 3=63 ≤ 0+64

54, 57, 59, 63 --

 117

First, node 2 checks that 23 is larger than its location. Thus, it looks up its finger

table. Since 23 is in between 2 + 16 = 18 and 2 + 32 = 34, node 2 forwards (2, 29971, 0,

…) to suc(18) = 20. Node 20 checks that the sampled result of 29971 is 23. 23 ⊕ 0 is

larger than its location so it looks up its finger table. Since 23 is in between 20 + 2 = 22

and 20 + 4 = 24, it forwards (2, 29971, 0, …) to suc(22) = 32.

Node 32 checks that the sampled result of 29971 is 23. 23 ⊕ 0 is smaller than its

location. Thus, it looks up its directory table and finds two entries match. The results are

returned to node 2. Next, it updates inc_count from 0 to 1, and computes 23 ⊕ 1 = 31. It

finds that suc(31) is node 32 itself thus it looks up its directory table and finds one entry

match. This entry was added by node 5 in the previous example so node 32 returns the

result (5, 30007, …) to node 2. Node 32 updates inc_count from 1 to 2, and computes 23

⊕ 2 = 55. Since 55 is in between 32 + 16 = 48 and 32 + 32 = 64, node 32 forwards (2,

29971, 2,…) to suc(48) = 49.

Similarly, the request is forwarded from node 49 to node 53 and then to node 0.

Node 0 checks that the sampled result of 29971 is 23. 23 ⊕ 2 = 55 is smaller than its

location 0 + 64 (the addition of 64 is needed if the sending node’s location is larger than

the receiving node’s location) so it looks up its directory table and finds no entry match.

Node 0 updates inc_count from 2 to 3 and computes 23 ⊕ 3 = 63. It finds that suc(63) is

node 0 itself. Thus, it looks up its directory table and finds one entry match. The result is

returned to node 2. At this point, node 0 cannot further increments inc_count. Thus, the

protocol is terminated.

 118

GROUP MATCHING: Using the LCs resulted from service matching, user A can contact

some of these locations and execute L = SH2(A, B). If B is in the same group, B will send

D to A. A does an exact matching of D and T. If they are matched (not only potentially

matched), then A and B can continue to the transaction phase for reservation of services

or transfer of reservation. L will be used as the symmetric key to build a secure channel

for the transaction phase. The secure channel will not be explicitly mentioned in the rest

of the discussions.

JOIN/LEAVE/FAILRE OF NODE: Identical to CHORD but the users located at the ends

of the broken ring will need to execute K = SH1(A,B) to verify their precedent and the

successor as registered users. In additional to the key-value pair, they also need to move

their service tables and directory tables to the precedent and the successor.

3. Service transaction phase

SERVICE RESERVATION: Identical to TZKP except that pub is not well-known public-

key but received during the service matching phase. The reservation credential becomes

RS = (pub, signpri(MLBF(D)), signpri(W, X, T, MLBF(D)), T, MLBF(D)) (5.16)

RESERVATION TRANSFER: Identical to TZKP except that the consumer who transfers

the service reservation needs to remove its service description after the transfer.

SERVICE REDEMPTION: Identical to TZKP except that the consumer needs to verify

the service provider is the one who originally posted the service description. It can be

checked by sending a random string to the service provider. If the service provider can

 119

correctly sign the random string by the private key pri, then it is the one who originally

posted the service description.

D. Experimental Results

Matching of multiple results for service discovery in P2P networks is an open

problem [93]. It is easy to see that our protocol takes O(n) time to match all results in the

worst case, where n is the number of nodes on the ring. Nevertheless this complexity is

inevitable because the service consumer can always choose the request which returns all

services from all nodes. Thus, average run time is a more interesting attribute to study.

In this experiment, we evaluate the run time for the service matching protocol to

demonstrate its feasibility in a large-scale P2P environment. The run time is estimated

by multiplying the average number of hops required to match the services by the average

run time required to talk to a node one hop away and do the secret handshake. Note that

the average run time can be influenced by different distributions of nodes on the ring,

different natures of service descriptions and requests, and different networking quality.

The simulation does not cover all situations but provides a good reference to understand

the performance of the system in practice.

 120

1. Average hop count

In this simulation, we evaluate the average number of hops that a request needs

to route through for all potentially matched services. The average values are obtained by

1000 runs of the experiment on a 15-bit simulated CHORD ring. In each run, a certain

number of nodes are randomly distributed on the ring and a mask is randomly generated.

To demonstrate a more realistic XML workload, we select 45 XML documents from the

XML common business library (xCBL) [94] and add them to the ring. Then, we derive

77 XPaths (shown in Appendix C) from the 45 XML documents as the service requests.

We randomly select a node from the ring fire each request. The MLBF contains 8 layers.

Each layer contains 300 hash functions. Each hash function is a variant of SHA-1 [95] to

produce a 160-bit output. The 160-bit MLBF output is sampled by the mask into a 15-bit

key for lookup on the CHORD ring. The hop counts for different number of nodes on the

ring are shown in Table 16. It shows that for every 10 times increase nodes, the average

hop counts increases by 3 folds, when the number of nodes increases from 10 to 10000.

Such a relationship is shown in Fig. 29 by the log scales on both axes. In reality, we may

need fewer hop counts because we are interested in k results only but not all of them.

Table 16: Average hop count for returning all results.

Number of Nodes 10 100 1000 10000

Number of Hops 5 17 49 141

 121

log(10),
log(5)

log(100),
log(17)

log(1000),
log(49)

log(10000),
log(141)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

log (no. of nodes)

lo
g

(h
op

 c
ou

nt
s)

Fig. 29: Average hop count for returning all results.

2. Average runtime per hop

In this experiment, we evaluate the average run time needed by a node to talk

with a node one hop away and do secret handshake. We implemented the proposed SH

protocol in C++ with MIRACL library [96]. We run the protocol on an Intel Pentium-4

2-GHz processor with 256-Mbyte RAM under Windows XP environment. The bilinear

map e is Tate pairing. G1 is an additive group of points of a supersingular elliptic curve

with prime order q = 2159 + 217 + 1, and G2 is a multiplicative group of the finite field

F*q
2. The Tate pairing is computed based on the supersingular elliptic curve y2 = x3 + x.

The pairing parameters chosen above are based on [92] which deliver a security level

comparable to the 1024-bit RSA cryptography. We used the built-in hash function in the

MIRACL for H1. We used SHA-1 [95] for H2. Table 17 and Table 18 summarize the

 122

experimental results. We measure the average time and message size in 100 runs of

secret handshakes between two group members. Main computations are 2 pairing

operations, 2 elliptic curve point multiplications, H1 and H2. The pairing operations are

the most costly operations, but they consume 65 milliseconds only. Our protocol is more

efficient than the schemes in [7], which have similar functions but cost 6 pairing

operations. The total message size is smaller than 350 bytes which is compact enough

for most applications with reasonable bandwidth.

Table 17: Average runtime of our secret handshake protocols

 Pairing Computations Point Multiplications H1, H2 Total

Time (ms) 32.5 × 2 << 1 << 1 65

Table 18: Average message size of our secret handshake protocols

 nA1,nB1 WA1,WB1 VA,B,VB,A Total

Size (bytes) 40 bytes 256 bytes 40 bytes 336 bytes

 To evaluate the average run time for a node to reach another node one hop away,

we simulate a 15-bit CHORD ring with 14 nodes on 100Mb Ethernet. It takes about 2.4

milliseconds reach from one node to another node. Therefore, we estimate that each hop

count requires 65 + 2.4 = 67.4 milliseconds. Based on this estimation, we summarize the

total run times in Table 19 for different scenarios from Table 16.

 123

Table 19: Total Runtime for different number of nodes

Number of Nodes 10 100 1000 10000

Number of Hops 5 17 49 141

Avg. Run Time (s) 0.3 1.1 3.3 9.5

As shown above, our protocol returns all potentially matched services from 1000

nodes in fewer than 4 seconds, showing the practicality to be deployed in a large scale

P2P environment.

E. Summary

In this section, we propose a management framework for the privacy-preserved

service oriented architecture (SOA). Service providers and consumers first establish a

trust relationship in the peer-to-peer (P2P) network CHORD, before they are willing to

exchange sensitive data. The key challenge is to maintain the balance of security and

privacy in a distributed and dynamic P2P environment without centralized supervisions

during the regular operations. To achieve this, we propose to use multi-layer Bloom

filters (MLBF) to match service requests/descriptions without unveiling their contents

during the service discovery phase. We also propose to use secret handshake (SH)

protocol to match group membership between service providers and consumers without

unveiling their group identities on mismatched events. After service matching and group

matching, the two users can execute the transaction by the timed zero-knowledge proof

 124

(TZKP) protocol to perform such functions as service reservation, redemption, and

transfers of reservations, without unveiling their user identities under normal situations.

Integration of above cryptographic tools forms strong foundation of security and privacy

protection for the next generation communication model. Preliminary experimental

results show that our system is practical for a large P2P network.

 125

VI. SUMMARY

The objective of this research work is to develop an anonymous, authentic, and

accountable (AAA) management framework for secure resource allocations based on the

E-cash paradigm. While most existing resource management schemes emphasize on one

or two of the AAA attributes, E-cash provides solid knowledge bases to maintain fragile

balance between them. Nevertheless, since E-cash was originally designed for monetary

applications, directly applying E-cash to secure resource allocations may not be the most

efficient and effective way. Therefore, we proposed several management solutions to

tailor E-cash algorithms for secure resource management.

Transferability management is important for transferring of resource ownership

from principal to another principal. E-cash algorithms allow anonymous transfer without

centralized supervisions but the transfer operation is expensive under Chaum-Pederson’s

general transferability model (GTM). We proposed a timed zero-knowledge proof

(TZKP) protocol which drastically reduces the storage and communication overheads

needed in the traditional E-cash model. The key idea is manipulate the anonymity

control variables in Eng-Okamoto’s general disposable authentication (GDA) model so

that session time and source of transfer can be embedded into the cryptographic

construct as a deciphering condition of user identity. With proper adjustment on the

deciphering condition, the user can reuse a token for multiple legitimate transfers

without losing anonymity as in GTM. At the same time, the service provider can discard

expired credentials without sacrificing the accountability on double-transfer violators.

 126

Divisibility management allows a principal to organize a chunk of resources into

different divisions with minimum number of tokens. Traditional divisibility management

solutions use a binary tree to represent different subdivisions of the resources. We

proposed a hypercube based divisibility framework which supports much more flexible

divisibility configurations than Eng-Okamoto’s general divisibility model (GDM). The

flexibility in is traded from the overheads in tracking of a new type of double-transfer

violation called shared-node violation. We analyzed the cryptographic constraints and

found that it is very costly to guarantee all AAA constraints at the same time in the

hypercube-based scheme. However, using a slightly relaxed anonymity constraint, and

integrating the scheme with practically used resource allocation rules, we found that the

overheads can be significantly reduced.

Based on the above AAA management solutions, we proposed a privacy-

preserving service oriented architecture on the peer-to-peer (P2P) network. By TZKP

protocol, user identities can be protected in transaction phase. To offer privacy

protection in the service discovery phase, we extended CHORD’s lookup protocol to

enable XML query using the multi-layer Bloom filter (MLBF). The proposed solution

allows service consumers to query peer nodes for wanted services while the peer nodes

do not have the knowledge on both the query and service contents. In addition, we

proposed a new secret handshake (SH) protocol to screen strangers based on their

qualification, privileges, capabilities, or trust levels represented by their group, before

the ownership of resources is transferred to the unknown collaborators. SH protocol

allows two users to verify whether they belong to the same group while not leaking their

 127

group identities upon failure of verifications. Our protocol allows the user to reuse the

SH token for multiple secret handshake instances without linking the user identity. We

showed that our SH protocol is more efficient than existing schemes with similar

functions. Experimental results showed that E-cash based secure resource management

framework is practical for AAA management in the large-scale distributed network.

 128

REFERENCES

[1] D. Chaum and T. Pederson, “Transferred cash grows in size,” Advances in

Cryptology - EUROCRYPT '92, Balatonfüred, Hungary, May 1992, pp. 390 – 407.

[2] T. Eng and T. Okamoto, “Single-term divisible electronic coins,” Advances in

Cryptology - EUROCRYPT '94, Perugia, Italy, May 1994, pp. 311-323.

[3] M. Chen and K. G. Shin, “Subcube allocation and task migration in hypercube

machines,” IEEE Transactions on Computers, vol. 39, no. 9, pp. 1146-1155,

September 1990.

[4] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, F. Kaashoek, F. Dabek, and H.

Balakrishnan, “Chord: A scalable peer-to-peer lookup service for Internet

applications,” IEEE/ACM Transactions on Networking, vol. 11, pp. 17-32,

February 2003.

[5] G. Koloniari and E. Pitoura, “Filters for XML-based service discovery in pervasive

computing,” Computer Journal: Special Issue on Mobile and Pervasive

Computing, vol. 47, no. 4, pp. 461 – 474, 2004.

[6] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong, “Secret

handshakes from pairing-based key agreements,” IEEE Symposium on Security

and Privacy, Berkeley, CA, May 2003, pp.180-196.

[7] G. Ateniese and M. Blanton “Secret handshakes with dynamic and fuzzy

matching,” 14th Annual Network and Distributed System Security Symposium, San

Diego, CA, February 2007.

 129

[8] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic curves in cryptography,

Cambridge University Press, 1999, New York.

[9] D. Chaum. “Blind signatures for untraceable payments,” Advances in Cryptology –

CRYPTO’82, Santa Barbara, CA, USA, August 1983, pp. 199-203.

[10] M. Froomkin, “The unintended consequences of e-cash,” Computers, Freedom and

Privacy Conference, Burlingame, CA, March 1997.

[11] R. Y. Chan, J. C. Wong, and A. C. Chan, “Anonymous electronic voting with non-

transferable passes,” Proc. of the IFIP Tc11 15th Annual Working Conference on

Information Security for Global Information Infrastructures, Kluwer B.V.,

Deventer, The Netherlands, August 2000, pp. 331-340.

[12] K. B. Frikken and M. J. Atallah, “Privacy preserving electronic surveillance,”

Proc. of the 2003 ACM Workshop on Privacy in Electronic Society, WPES '03,

New York, 2003, pp. 45- 52.

[13] Y. Shen, T. C. Lam, J-C, Liu, and W. Zhao, “On the confidential auditing of

distributed computing systems,” 24th International Conference of Distributed

Computing Systems (ICDCS) 2004, Washington, DC, March 2004, pp. 600-607.

[14] G. Ahn, , B. Mohan, and S. Hong, “Towards secure information sharing using role-

based delegation,” Journal of Network and Computer Applications, vol. 30, no. 1,

pp. 42-59, Jan. 2007.

[15] T. C. Lam and V. K. Wei, A mobile agent clone detection system with itinerary

privacy,” IEEE 11th Int'l Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE-2002), Pittsburgh, PA, June 2002, pp.68 - 73.

 130

[16] D. Chaum, “Blind signature system,” Advances in Cryptology- CRYPTO'83, Santa

Barbara, CA, USA, August 1983, pp. 153.

[17] S. von Solms and D. Naccache, “On blind signatures and perfect crimes,”

Computers & Security, vol. 11, pp. 581-583, 1992.

[18] J. L. Camenisch, J.-M. Piveteau, and M.A. Stadler, “Blind signatures based on the

discrete logarithm problem,” Advances in Cryptology - EUROCRYPT'94, Perugia,

Italy, May 1994, pp. 428 – 432.

[19] M. Stadler, J.-M. Piveteau, and J. Camenisch, “Fair blind signatures,” Advances in

Cryptology - EUROCRYPT'95, St. Malo, France, May 1995, pp. 209-219.

[20] D. Pointcheval, and J. Stern, “New blind signatures equivalent to factorization

(extended abstract),” Proc of the 4th ACM conference on Computer and

Communications Security, Zurich, Switzerland, April 1997, pp.92-99.

[21] F. Zhang and K. Kim, “Efficient ID-based blind signature and proxy signature

from bilinear pairings,” Proc. of the 8th Australian Conference on Information

Security and Privacy (ACISP'03), Wollongong, Australia, July 2003, pp. 312-323.

[22] J-J Quisquater, L. C. Guillou, and T. A. Berson, “How to explain zero-knowledge

protocols to your children,” Advances in Cryptology - CRYPTO '89, Santa Barbara,

CA, USA, August 1989, pp. 628-631.

[23] U. Feige, A. Fiat, and A. Shamir, “Zero knowledge proofs of identity,” Journal of

Cryptology, vol. 1, no. 2, 1988, pp. 77-94.

[24] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge proof

systems,” Journal of Cryptology, vol. 7, no. 1, 1994, pp. 1-32.

 131

[25] M. Bellare, M. Jackobsson, and M. Yung, “Round-optimal zero-knowledge

arguments based on any one-way function,” Advances in Cryptology –

EUROCRYPT’97, Konstanz, Germany, May 1997, pp. 280-305.

[26] O. Goldreich and H. Krawczyk, “On the composite of zero knowledge proof

systems,” SIAM Journal on Computing, vol. 25, no. 1, 1996, pp. 162-192.

[27] Martin Tompa, “Zero knowledge interactive proofs of knowledge (a digest),” Proc

of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge,

Pacific Grove, CA, USA, March 1988, pp. 1 – 12.

[28] A. Shamir, “How to share a secret,” ACM Communications, vol. 22, no. 11, pp.

612 – 613, November 1979.

[29] G. R. Blakley, “Safeguarding cryptographic keys,” Proc of American Federation of

Information Processing Societies, vol. 48, pp. 313-317, 1979.

[30] G. R. Blakley and G. A. Kabatianski, “Linear algebra approach to secret sharing

schemes,” Error Control, Cryptology, and Speech Compression, vol. 829, pp. 33-

40, 1994.

[31] G. R. Blakley and G. A. Kabatianski, “On general perfect secret sharing schemes,”

Advances in Cryptology - CRYPTO'95, Santa Barbara, CA, August 1995, pp. 367-

371.

[32] M. Carpentieri, “A perfect threshold secret sharing scheme to identify cheaters,”

Designs, Codes and Cryptography, vol. 5, pp. 183-188, 1995.

[33] C. Dwork, “On verification in secret sharing,” Advances in Cryptology - CRYPTO

'91, Santa Barbara, CA, August 1992, pp. 114-128.

 132

[34] E. D. Karnin, J. W. Greene and M. E. Hellman, “On secret sharing systems,” IEEE

Transactions on Information Theory, vol. 29, pp. 35 – 41, 1983.

[35] M. Stadler, “Publicly verifiable secret sharing,” Advances in Cryptology -

EUROCRYPT'96, Zaragoza, Spain, May 1996, pp. 190-199.

[36] N. Ferguson, “Single term off-line coins,” Advances in Cryptology –

EUROCRYPT’93, Lofthus, Norway, May 1994, pp. 318-328.

[37] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Balancing accountability and

privacy using E-cash,” Security and Cryptography for Networks (SCN) 2006,

Maiori, Italy, September 2006, pp. 141-155.

[38] T. Okamoto and K. Ohta, “Universal electronic cash,” Advances in Cryptology -

CRYPTO’ 91, Santa Barbra, CA, USA, August 1991, pp. 324 – 337.

[39] N. Ferguson, “Extensions of single-term off-line coins,” Advances in Cryptology -

CRYPTO’ 93, Santa Barbra, CA, August 1993, pp. 292-301.

[40] A. Chan, Y. Frankel, and Y. Tsiounis, “Easy come – easy go divisible cash,”

Advances in Cryptology - EUROCRYPT’98, Helsinki, Finland, May 1998, pp. 561

– 575.

[41] T. Nakanishi, N. Haruna, and Y. Sugivama, “Unlinkable electronic coupon

protocol with anonymity controls,” Proc. of the 2nd International Workshop on

Information Security, Kuala Lumpur, Malaysia, November 1999, pp. 37 – 46.

[42] T. Nakarishi and Y. Sugiyama, “Unlinkable divisible electronic cash,” Proc. of the

3rd International Workshop on Information Security, Sydney, Australia, December

2000, pp. 121 – 134.

 133

[43] J. Byun, D. Lee, J. Lim, and C. Park, “Efficient transferable cash with group

signatures,” Proc. of the 4th International Conference on Information Security,

October 2001, pp. 462 – 474.

[44] J. Liu, S. Wong, and D. Wong, “A new transferable e-cash scheme,” Proc. of the

2nd International Conference on Applied Cryptography and Network Security

(ACNS) – Technical Track, Yellow Mountain, China, June 2004, pp. 408 – 415.

[45] T. C. Lam, "A note on the n-spendable extension of Ferguson's single term off-line

coins," Cryptology e-Print Archive, Report 2005/439, 2005.

[46] K. Wei, “More compact e-cash with efficient coin tracing.” Cryptology e-Print

Archive, Report 2005/439, 2005.

[47] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to

efficient revocation of anonymous credentials,” Advances in Cryptology -

CRYPTO’ 2002, Santa Barbara, CA, USA, August 2002, pp. 61 – 71.

[48] T. C. Lam and V. K. Wei, "Mobile agent clone detection using general transferable

e-cash", International Conference on Information Security (InforSecu '02),

Shanghai, China, June 2002.

[49] G. Tsudik and S. Xu, “Flexible framework for secret handshakes (multi-party

anonymous and un-observable authentication),” Cryptology e-Print Archive,

Report 2005/034, 2005.

[50] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” Advances in

Cryptology – CRYPTO’88, Santa Barbara, CA, USA, August 1989, pp. 319-327.

 134

[51] S. Brands, “Untraceable off-line cash in wallets with observers,” Advances in

Cryptology – CRYPTO’93, Santa Barbara, CA, August 1993, pp. 302-318.

[52] C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptology,

vol. 4, no. 3, pp. 161-174, 1991.

[53] (2006) TZKP Demo. [Online]. Available: http://rtds.cs.tamu.edu/tzkp.php

Accessed: May 2006

[54] T. Benzel, R. Braden, D. Kim, A. Joseph, C. Neuman, R. Ostrenga, S. Schwab, and

K. Sklower, “Design, deployment, and use of the DETER testbed,” Proc. of the

DETER Community Workshop on Cyber Security Experimentation and Test,

Boston, MA, August 2007.

[55] (2002) C. Tan, C# Big Integer Class. [Online].

Available: http://www.codeproject.com/csharp/biginteger.asp?target=biginteger

Accessed: May 2006

[56] C. Dwork, M. Naor, and A. Sahal, “Concurrent zero-knowledge,” In Proc. of the

30th Annual Symposium on Theory of Computing, Dallas, Texas, May 1998, pp.

409-418.

[57] I. Damgård, K. Dupont, and M. Perdersen, “Unclonable group identification,”

Cryptology e-Print Archive, Report 2005/170, 2005.

[58] Z. Tan and Z. Liu, “Provably secure delegation-by-certificate proxy signature

schemes,” In Proc. of the 3rd International Conference on Information Security,

Shanghai, China, November 2004, pp. 38-43.

 135

[59] M. Mambo, K. Usuda, and E. Okamoto. “Proxy signatures for delegating signing

operation,” Proc. of the 3rd ACM Conference on Computer and Communications

Security (CCS'96), New Delhi, India, March 1996, pp. 48-57.

[60] Z. Shao, “Proxy signature schemes based on factoring,” Information Processing

Letters, vol. 85, pp. 137-143, 2003.

[61] H.-M. Sun and B.-T. Hsieh. “On the security of some proxy signature schemes,”

Cryptology e-Print Archive, Report 2003/068, 2003.

[62] Guilin Wang, Feng Bao, Jianying Zhou, and Robert H. Deng, “Security analysis of

some proxy signatures,” Information Security and Cryptology, Seoul, Korea,

November 2003, pp. 305-319.

[63] Huaxiong Wang and Josef Pieprzyk, “Efficient one-time proxy signatures,”

ASIACRYPT 2003, Taipei, Taiwan, November 2003, pp. 507-522.

[64] J. Kiu, V. Wei, and D. Wong, “Linkable spontaneous anonymous group signature

for ad hoc groups (extended abstract).” Information Security and Privacy (ACISP),

Sydney, Australia, July 2004, 325-335.

[65] D. Chaum and E. van Heyst, “Group signatures,” Advances in Cryptology -

EUROCRYPT'91, Brighton, United Kingdom, April 1991, pp. 257-265.

[66] L. Chen and T. P. Pedersen, “New group signature schemes,” Advances in

Cryptology - EUROCRYPT'94, Perugua, Italy, May 1994, pp. 171-181.

[67] J. Camenisch, “Efficient and generalized group signatures,” Advances in

Cryptology - EUROCRYPT'97, Konstanz, Germany, May 1997, pp. 465-479.

 136

[68] W-B. Lee and C-C. Chang, “Efficient group signature scheme based on the

discrete logarithm,” IEE Proceedings Computer and Digital. Techniques, vol. 145,

no. 1, pp. 15-18, 1998.

[69] G. Ateniese and G. Tsudik, “Some open issues and new directions in group

signature schemes,” Financial Cryptography’ 99, Anguilla, British West Indies,

February 1999, pp. 196-211.

[70] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya and M.

Meyerovich, “How to win the clone wars: efficient periodic n-times anonymous

authentication,” Cryptology e-Print Archive, Report 2006/454, 2006.

[71] T. Okamoto and K. Ohta, “One-time zero-knowledge proof authentications and

their applications to untraceable electronic cash,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, vol. E81-

A, no. 1, pp. 2 - 10, 1998.

[72] P-J Chuang and N-F Tzeng, Dynamic processor allocation in hypercube

computers, ACM SIGARCH Computer Architecture News, vol. 18, no. 3, pp.40-49,

1990.

[73] C-H Huang, J-Y Juang, “A partial compaction scheme for processor allocation in

hypercube multiprocessors,” International Conference on Parallel Processing,

University Park, PA, August 1989, pp. 211-217.

[74] (1996) Hamming distance between ternary numbers. [Online].

Available: http://www.its.bldrdoc.gov/fs-1037/dir-017/_2529.htm

Accessed: May 2006

 137

[75] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Prentice

Hall, 2005, New York.

[76] (2004) M. Colan, Service-oriented architecture expands the vision of Web services.

[Online].

Available: http://www-128.ibm.com/developerworks/webservices/library/ws-

soaintro2/ Accessed: October 2007

[77] (2001) UDDI Technical White Paper. [Online].

Available: http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

Accessed: October 2007

[78] S. E. Czerwinsi, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz, “An

architecture for a secure service discovery service,” International Conference on

Mobile Computing and Networking, Seattle, WA, August 1999, pp. 24 – 35.

[79] F. Zhu, M. Mutka, and L. Ni, “Splendor: a secure, private, and location-aware

service discovery protocol supporting mobile services,” Proc. of the 1st IEEE

International Conference on Pervasive Computing and Communications, Fort

Worth, TX, March 2003, pp. 235-242.

[80] I. Stoica. R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, and H.

Balakrishnan, “Chord: a scalable peer-to-peer lookup service for Internet

applications,” Proc. of ACM SIGCOMM'01, San Diego, CA, August 2001, pp.

149-160.

 138

[81] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Looking

Up Data in P2P Systems,” Communications of the ACM, vol. 46, no. 2, pp. 43-48

2003.

[82] P. Rao and B. Moon, psiX: hierarchical distributed index for efficiently locating

XML data in peer-to-peer networks, Technical Report 05-10, Department of

Computer Science, The University of Arizona, 2005, Tucson, AZ.

[83] G. Koloniari and E. Pitoura, “Peer-to-Peer Management of XML Data: Issues and

Research Challenges.” SIGMOD Record, vol. 34, no. 2, 2005.

[84] G. Koloniari and E. Pitoura, “Filters for XML-based service discovery in pervasive

computing,” Computer Journal: Special Issue on Mobile and Pervasive

Computing, vol. 47, no. 4, pp. 461 – 474, 2004.

[85] Y. Zhang, W. Liu and W. Lou, “MASK: anonymous on-demand routing in mobile

ad hoc networks,” IEEE Transactions on Wireless Communications, vol. 5, no. 9,

pp.2376-2385, 2006.

[86] G. Liang and S. Chawathe, “Anonymous routing: a cross-layer coupling between

application and network layer,” Conference on Information Sciences and System,

Princeton University, NJ, March 2006, pp. 783 - 788.

[87] Y. Zhang, W. Liu, W. Lou and Y. Fang, “Anonymous handshakes in mobile ad

hoc networks,” IEEE Military Communications Conference, Monterey, CA,

October 2004, pp. 1193 – 1199.

 139

[88] S. Xu and M. Yung, “k-anonymous secret handshakes with reusable credentials,”

ACM Conference on Computer and Communications Security, Washington, D. C.,

October 2004, pp.158-167.

[89] G. Tsudik and S. Xu, “Flexible framework for secret handshakes (multi-party

anonymous and un-observable authentication),” Cryptology e-Print Archive,

Report 2005/034, 2005.

[90] S. Jarecki, J. Kim, and G. Tsudik, “Authentication for paranoids: multi-party secret

handshakes,” International Conference on Applied Cryptography and Network

Security, Singapore, June 2006, pp. 325 – 339.

[91] D. Vergnaud, “RSA-based secret handshakes,” International Workshop on Coding

and Cryptography, Bergen, Norway, March 2005, pp. 252-274.

[92] G. Frey, M. Muller, and H. G. Ruck, “The Tate pairing and the discrete logarithm

applied to elliptic curve cryptosystems.” IEEE Transactions on Information

Theory, vol. 45, no. 5, pp. 1717 – 1719, 1999.

[93] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and R. Morris, “On the

feasibility of peer-to-peer web indexing and search.” Proc of International

Workshop on Peer-to-Peer Systems, Berkley, CA, Feb 2003, pp. 207 -215.

[94] (2003) xCBL (XML Common Business Library). [Online].

Available: http://www.xcbl.org/ Accessed: October 2007

[95] (2001) US Secure Hash Algorithm 1 (SHA-1). [Online].

Available: http://tools.ietf.org/html/rfc3174 Accessed: October 2007

[96] (2007) Shamus Software Ltd, MIRACL Library. [Online].

 140

Available: http://www.shamus.ie/ Accessed: October 2007

 141

APPENDIX A: ANONYMITY GUARANTEE WITH THREE VERTICES

Following is a sketch of proof to show that the minimum number of vertices that

can constitute an anonymity hazard is four, regardless the hypercube size. Let p, q1, q2

are spent without causing double spending offense. We now show that anonymity hazard

is impossible by using these three vertices. Without loss of generality, we assume that n

> dim(q1) ≥ dim(q2) > dim(p) and the trivial case of vertices at the root level (n) is not

considered because spending a root vertex will cause double spending with any other

spent vertices. We also do not consider dim(q1) = dim(p) or dim(q2) = dim(p), because in

a top-down approach only vertices at dimension higher than dim(p) are useful to

compute the delegation key of p. Since d(p, q1) > 0 and d(p, q2) > 0, there is at least one

0/1 bit difference between the (p, q1) pair and between the (p, q2) pair. We assume that

the bit differences occur at the ith bit of the (p, q1) pair and the jth bit of the (p, q2) pair.

Fig. 30 depicts the case when dim(q2) < (n-1), so that every vertex at dim(q1)

contains at least two bits which are 0 or 1. Let p2 be an ancestor of p at dim(q2), whose ith

and jth bits are identical to those of p. Consider the path from p2 to p. The jth bit assures

that all vertices on this path are non-susceptible to q2, implying that none of them are in

uKDM({q2}) which contains vertices susceptible to q2. We extend this path to p1, which is

an ancestor of p at dim(q1) with its ith bit identical to that in p. Similarly, the ith bit

ensures that all vertices on the new path (from p1 to p) are not susceptible to q1, implying

that none of them are in uKDM({q1}). Each vertex on this path has at least one parent who

 142

is in neither uKDM({q1}) nor uKDM({q2}). Thus, the delegation key of p cannot be

computed and anonymity hazard can never occur in this case.

�

�

�

�

1q

2q

p

2p

1p

)()(22 qvqu ∪

)()(11 qvqu ∪

rootG

})({ 2quKDM

})({ 1quKDM

Fig. 30: Anonymity hazard impossible with 3 vertices.

Next, we consider the case when dim(q2) = (n-1). In this case, it also implies that

dim(q1) = (n-1). The only possible combinations of bit pair at the ith and the jth positions

of q1 and q2 are (0,×), (1,×), (×,0), and (×,1), because at dimension (n-1) every vertex

 143

contains only one bit which is not ×. Furthermore, (×,×) is not allowed, otherwise they

will cause a double spending offense with p. The only possible combinations of bit pair

at the ith and the jth positions of p are (0,0), (0,1), (1,0), and (1,1). Since d(q1, q2) > 0, the

combinations for q1 and q2 to co-exist could be {(0,×), (1,×)} or {(×,0), (×,1)}. In either

case, we cannot find any bit pair from (0,0), (0,1), (1,0), and (1,1), such that both d(p, q1)

> 0 and d(p, q2) > 0. Since this is impossible to construct a case for dim(q1) = dim(q2) =

(n-1), without causing double spending offense, this case is invalid.

 144

APPENDIX B: SECURITY ANALYSIS FOR SECRET HANDSHAKE

In this section, we will show that our SH protocol satisfies the following security

properties: group member impersonation resistant, group member detection resistant,

and unlinkability. To facilitate the proof, we first define the negligible function as below:

Definition B.1: A function ε(k) is negligible if for every positive polynomial p(.) and all

sufficiently large k, ε(k) < p(k)-1.

Group member impersonation happens when an adversary attempts to convince a

valid group member that it is also a legal group member. Based on the hardness of BDH

assumption, an adversary is unable to execute a successful impersonation in our protocol

without compromising any valid group member or obtaining knowledge of group secret

g. In other words, our protocol provides impersonation resistance that any polynomial-

time adversary only has negligible probability of cheating as a group member without

corrupting a member or knowing the group secret in the target group.

Group detection happens when an adversary attempts to learn whether a user is a

valid member of a target group by interacting with this user. Based on the hardness of

BDH assumption, an adversary cannot recognize the membership of a valid user in our

protocol without compromising other group members or knowing the group secret g. In

other words, our protocol provides group detection resistance that an adversary only has

probability p to recognize a target user’s group membership without corrupting any other

member or knowing the group secret g, where p is at most negligibly larger than 1/2.

 145

Unlinkable refer to the case when an eavesdropper cannot recognize whether or

not two secret handshake instances are performed by the same user. An adversary only

has probability p to decide whether or not two secret handshake instances are performed

by the same user in our protocol, where p is at most negligibly larger than 1/2.

1. Group member impersonation resistance

Suppose there is an adversary B who aims at impersonating members of a certain

group GT. B may communicate with legitimate users in GT, corrupt some valid users and

obtain their secrets. B picks a target user uT and wants to convince uT that B is a member

in GT. Group Member Impersonation Game (GMIG) for a randomized polynomial-time

adversary B is defined as follows:

(i) B communicates with users in GT on its own choice. B may compromise certain

user UC ⊆ U and obtain their secrets.

(ii) B selects a target user uT ⊄ UC, where uT ∈ GT.

(iii) B wants to convince uT that B ∈ GT.

B wins GMIG if B convinces uT that B is a valid member in GT, i.e., B responds

correctly to uT in the SH protocol. To prove our scheme is group member impersonation

resistant, we define the following probability:

GMIGB = Pr[B wins GMIG] (B.1)

When B does not compromise any valid user UC ∩ U, the above probability becomes:

φ=∩)|(UUB CGMIG = Pr[B wins GMIG | (UC ∩U) = ∅] (B.2)

 146

The proof needs to show that φ=∩)|(UUB CGMIG is negligible for any B in our scheme. The

proof is based on the group member impersonation resistance property in �[6]:

Theorem B.1 [6]: If BDH problem is hard to probabilistic polynomial time adversary B,

then φ=∩ *' GU
BAdvMIG is negligible.

φ=∩ *' GU
BAdvMIG defined in [6] represents φ=∩)|(UUB CGMIG defined in our scheme.

Corollary B.1: If the SH protocol in �[6] is group member impersonation resistant, then

our SH protocol also holds the property.

Proof B.1: Suppose B is the adversary. B needs to produce WB1 and V’B,A such that it can

convince A that VB,A = V’B,A. Since H2 is collision resistant, it requires B to produce WB1

and UB,A such that UB,A = U’B,A. B does not know sA1⋅KA because KA is kept secret by A,

and sA1 cannot be computed from WA1 based on the BDH assumption. Suppose B is able

to find UB,A = U’B,A = e(WB1, sA1⋅KA) with the knowledge of WB1 only. It implies that B

can also find e(H(IDB), gA⋅H(IDA)) with the knowledge of H(IDB) only. If B can do so,

then B can win GMIG in �[6], which contradicts to Theorem B.1. Therefore, our scheme

is group member impersonation resistant:

Theorem B.2: If the BDH problem is hard to probabilistic polynomial time adversary B,

then φ=∩)|(UUB CGMIG is negligible.

 147

2. Group member detection resistance

Suppose there is an adversary B who aims at identifying members of a certain

group GT. B may communicate with legitimate users in GT, compromise some valid

users, and obtain their secrets. B picks a target user uT and wants to decide whether uT ∈

GT. Suppose there is another random simulator r. If B aims at identifying members of

GT, it should distinguish between uT and r such that B can determine the identity of uT.

Group Member Detection Game (GMDG) for a randomized, polynomial-time adversary

B is defined as follows:

(i) B communicates with users of target group GT based on its own choice. B may

compromise certain user UC ⊆ U and obtain their secrets.

(ii) B selects a target user uT ⊄ UC, where uT∈ GT.

(iii) A random bit b ← {0, 1} is flipped.

(iv) There is another random simulator r.

(v) If b = 0, B interacts with uT. If b = 1, B interacts with a random simulator r.

(vi) B outputs a guess b’ for b.

B wins GMDG when b’ = b. To prove our scheme is group member detection resistant,

we define the following probability:

GMDGB = Pr[B wins GMDG] – 1/2 (B.3)

When B does not compromise any valid user UC ∩ U, the above probability becomes:

φ=∩)(| UUB CGMDG = Pr[B wins GMDG | (UC ∩ U)=∅] – 1/2 (B.4)

 148

The proof needs to show that φ=∩)(| UUB CGMDG is negligible for any B in our scheme. The

proof is based on the group member detection resistance property in �[6]:

Theorem B.3 �[6]: If BDH problem is hard to probabilistic polynomial time adversary B,

then φ=∩ *' GU
BAdvMDG is negligible.

φ=∩ *' GU
BAdvMDG defined in [6] represents φ=∩)(| UUB CGMDG defined in our scheme.

Corollary B.3: If the SH proposed in �[6] is group member detection resistance, then our

SH protocol also holds the property.

Proof B.3: Suppose B is an adversary. Suppose B can win GMDG in our scheme without

knowing sA. Then, B should be able to win GMDG in our scheme when sA is known also.

When sA is known, our scheme is identical to the scheme in [6], which implies that B can

win GMDG in �[6]. Nevertheless, it contradicts to Theorem B.3. Therefore, our scheme is

group member detection resistant:

Theorem B.4: If BDH problem is hard to probabilistic polynomial time adversary B,

then φ=∩)(| UUB CGMDG is negligible.

3. Unlinkability

Suppose there is an adversary B who aims at telling whether two executions of

secret handshake protocol correspond to a same user or not of a target group GT. B may

communicate with legitimate users of GT, compromise some valid users and obtain their

secrets. B picks a target user uT. Suppose there are two different executions of secret

 149

handshake. B attempts to tell whether the two executions correspond to the same target

user uT. Identity Linking Game (ILG) for a randomized, polynomial-time adversary B is

defined as follows:

(i) B communicates with users of target group GT based on its own choice. B may

compromise certain user UC ⊆ U and obtain their secrets.

(ii) B selects a target user uT ⊄ UC, where uT∈ GT.

(iii) A random bit b ← {0, 1} is flipped.

(iv) There are two executions of secret handshake protocol.

(v) If b = 0, the two executions are not both performed by uT. If b = 1, the two

executions are both performed by uT

(vi) B outputs a guess b’ for b.

B wins ILG when b’ = b. To prove that our scheme is unlinkable, we define the

following probability:

ILGB = Pr[B wins ILG] – 1/2 (B.5)

When B does not compromise any valid user UC ∩ U, the above property becomes:

φ=∩)(| UUB CILG = Pr[B wins ILG | (UC∩U) = ∅] – 1/2 (B.6)

The proof needs to show that φ=∩)(| UUB CILG is negligible for any B in our scheme. The

proof is based on the unlinkability property in �[6]:

Theorem B.5 �[6]: If BDH problem is hard to probabilistic polynomial time adversary B,

then the SH protocol in [6] is unlinkable.

 150

Corollary B.5: If SH protocol in �[6] is unlinkable, then our SH protocol also holds the

property.

Proof B.5: Our protocol generates elliptic curve point s⋅H1(ID) as the pseudonym

instead of assigned pseudonym “id” as in [6]. Based on the hardness of Elliptic Curve

Discrete Logarithm Problem (ECDLP) [8], probabilistic polynomial time adversary has

negligible probability to compute H1(ID) from s⋅H1(ID) without knowing s. Therefore,

the user can utilize one assigned pseudonym, ID, to generate a set of new pseudonyms as

si⋅H1(ID), where si are different random integers. The manipulated pseudonyms cannot

be used to link to the identity of the user. Therefore, our protocol is unlinkable.

Theorem B.6: If BDH problem is hard to probabilistic polynomial time adversary B,

then ILGA|(U
C∩U)=∅ is negligible.

 151

APPENDIX C: XML AND XPATH DATA SET

We derived 77 XPath expressions from 45 XML documents of xCBL to simulate

the average hop count needed in a 15-bit CHORD ring. The 77 XPaths are shown below:

/AccountCheckRequest/AccountCheckRequestHeader/AccountCheckRequestIssueDate

/AccountCheckRequest/ListOfAccountCheckRequestDetail/AccountCheckRequestDetail/AccountCheckRe

questBaseItemDetail/LineItemNum

/AdvanceShipmentNotice/ASNHeader/ASNOrderNumber/core:BuyerOrderNumber

/AdvanceShipmentNotice/ASNHeader/ASNParty/BuyerParty/core:PartyID/core:Ident

/ApplicationResponse/ApplicationResponseHeader/ApplicationResponseSender/core:PartyID/core:Ident

/ApplicationResponse/ApplicationResponseHeader/BusinessDocumentTypeCoded

/AvailabilityCheckRequest/AvailabilityCheckRequestHeader/SellerParty/core:PartyID/core:Ident

/AvailabilityCheckRequest/ListOfAvailabilityCheckRequestItemDetail/AvailabilityCheckRequestItemDetail/Li

neItemNum/core:BuyerLineItemNum

/AvailabilityCheckResult/AvailabilityCheckResultHeader/AvailabilityCheckResultID

/AvailabilityCheckResult/AvailabilityCheckResultHeader/BuyerParty/core:PartyID/core:Ident

/AvailabilityToPromise/AvailabilityToPromiseHeader/AvailabilityToPromisePurpose/AvailabilityToPromisePu

rposeCoded

/AvailabilityToPromise/AvailabilityToPromiseHeader/AvailabilityDeliveryOption/AvailabilityDeliveryOptionCo

ded

/AvailabilityToPromiseResponse/AvailabilityToPromiseResponseHeader/AvailabilityToPromiseRefernece/c

ore:RefNum

/AvailabilityToPromiseResponse/AvailabilityToPromiseResponseHeader/InitiatingParty/core:PartyID/core:Id

ent

/ChangeOrder/ChangeOrderHeader/ChangeOrderNumber/BuyerChangeOrderNumber

/ChangeOrder/ChangeOrderHeader/SellerParty/core:PartyID/core:Ident

/ErrorResponse/CategoryCoded

 152

/FXRateRequest/FXRateRequestHeader/Language/core:LanguageCoded

/FXRateResponse/FXRateResponseHeader/FXRateRequestID/core:RefNum

/FXRateResponse/ListOfFXRateResponseDetail/FXRateResponseDetail/ReferenceCurrency/core:Currenc

yCoded

/GetERPData/GetERPDataIssueDate

/GetERPData/ListOfKeyField/KeyField/KeyFieldName

/GetERPDataResponse/ReceiverParty/core:PartyID/core:Ident

/GetERPDataResponse/ErrorInfo/core:CompletionMsg/core:Language/core:LanguageCoded

/GetOrder/ListOfPOReferences/POReferences

/GoodsReceipt/GoodsReceiptHeader/GoodsReceiptParty/ShipFromParty/core:PartyID/core:Ident

/InventoryReport/ListOfInventoryReportDetail/InventoryReportDetail/TotalInventoryQuantity/core:UnitOfMea

surement/core:UOMCoded

/Invoice/InvoiceHeader/InvoiceLanguage/core:LanguageCoded/

/Invoice/InvoiceDetail/ListOfInvoiceItemDetail/InvoiceItemDetail/InvoiceBaseItemDetail/LineItemNum/core:B

uyerLineItemNum

/Invoice/InvoiceDetail/ListOfInvoiceItemDetail/InvoiceItemDetail/InvoiceBaseItemDetail/InvoicedQuantity/cor

e:UnitOfMeasurement/core:UOMCoded

/InvoiceResponse/InvoiceResponseHeader/InvoiceReference/core:RefNum

/InvoiceResponse/InvoiceResponseHeader/InvoiceParty/BuyerParty/core:PartyID/core:Ident

/Order/OrderHeader/OrderNumber/BuyerOrderNumber

/Order/OrderHeader/OrderParty/BuyerParty/core:PartyID/core:Ident

/OrderConfirmation/OrderConfirmationDetail/ListOfOrderConfirmationItemDetail/OrderConfirmationItemDet

ail/OrderConfirmationDetailReferences/PurchaseOrderReference/core:BuyerOrderNumber

/OrderConfirmation/OrderConfirmationDetail/ListOfOrderConfirmationItemDetail/ItemDetail/BaseItemDetail/

TotalQuantity/core:UnitOfMeasurement/core:UOMCoded

/OrderConfirmationResponse/OrderConfirmationResponseHeader/SellerOrderConfirmationReference/core:

RefNum

/OrderConfirmationResponse/OrderConfirmationResponseHeader/OrderConfirmationResponseParty/Buyer

Party/core:PartyID/core:Ident

/OrderRequest/OrderRequestHeader/OrderRequestCurrency/core:CurrencyCoded

 153

/OrderResponse/OrderResponseHeader/OrderResponseIssueDate

/OrderResponse/OrderResponseHeader/OrderResponseNumber/BuyerOrderResponseNumber

/OrderStatusRequest/OrderStatusRequestHeader/BuyerParty/core:PartyID/core:Ident

/OrderStatusRequest/ListOfOrderStatusRequestDetail/OrderStatusRequestDetail/OrderStatusReference/B

uyerReferenceNumber

/OrderStatusResult/OrderStatusResultHeader/BuyerParty/core:PartyID/core:Ident

/OrderStatusResult/ListOfOrderStatusResultDetail/OrderStatusResultDetail/OrderStatusResultReference/O

rderStatus/core:StatusEvent/core:StatusEventCoded

/PaymentRequest/PaymentRequestHeader/PayerParty/core:PartyID/core:Ident/

/PaymentRequest/PaymentRequestHeader/FinancialServicesParty/core:PartyID/core:Ident

/PaymentRequest/ListOfPaymentRequestDetail/PaymentRequestDetail/FinancialInstitutionDetail/core:Rece

ivingFinancialInstitution/core:AccountDetail/core:AccountName1

/PaymentRequest/ListOfPaymentRequestDetail/PaymentRequestDetail/PaymentRequestParty/PayeeParty/

core:PartyID/core:Ident

/PaymentRequestAcknowledgment/PaymentRequestAcknHeader/FinancialServicesParty/core:PartyID/core

:Ident

/PaymentRequestAcknowledgment/ListOfPaymentRequestAcknDetail/PaymentRequestAcknDetail/Paymen

tDocumentID/core:RefNum

/PaymentStatusRequest/PaymentStatusRequestHeader/FinancialServicesParty/core:PartyID/core:Ident

/PaymentStatusRequest/ListOfPaymentStatusRequestDetail/PaymentStatusRequestDetail/PaymentReque

stID/core:RefNum

/PaymentStatusResponse/PaymentStatusResponseHeader/PaymentStatusRequestID/core:RefNum

/PaymentStatusResponse/ListOfPaymentStatusResponseDetail/PaymentStatusResponseDetail/ListOfPay

mentException/PaymentException/PaymentExceptionCoded

/PlanningSchedule/PlanningScheduleHeader/ScheduleParty/SellerParty/core:PartyID/core:Ident

/PlanningSchedule/ListOfLocationGroupedPlanningDetail/LocationGroupedPlanningDetail/ListOfLocationPl

anningItemDetail/LocationPlanningItemDetail/BasePlanningDetail/LineItemNum/core:BuyerLineItemNum

/PlanningScheduleResponse/PlanningScheduleResponseHeader/BuyerParty/core:PartyID/core:Ident

 154

/PlanningScheduleResponse/ListOfLocationGroupedPlanningResponse/LocationGroupedPlanningRespons

e/LocationGroupedPlanningDetail/ListOfLocationPlanningItemDetail/LocationPlanningItemDetail/BasePlann

ingDetail/LineItemNum/core:BuyerLineItemNum

/PlanningScheduleResponse/ListOfLocationGroupedPlanningResponse/LocationGroupedPlanningRespons

e/LocationGroupedPlanningDetail/ListOfLocationPlanningItemDetail/ListOfScheduleDetail/ScheduleDetail/S

cheduleQuantities/core:QuantityCoded/core:UnitOfMeasurement/core:UOMCoded

/PriceCheckRequest/PriceCheckRequestHeader/BuyerParty/core:PartyID/core:Ident

/PriceCheckRequest/ListOfPriceCheckRequestItemDetail/PriceCheckRequestItemDetail/LineItemNum/core

:BuyerLineItemNum

/PriceCheckResult/PriceCheckResultHeader/ShipToParty/core:PartyID/core:Ident

/PriceCheckResult/ListOfPriceCheckResultItemDetail/PriceCheckResultItemDetail/ResultPrice/core:UnitPri

ce/core:UnitPriceValue

/Quote/QuoteHeader/QuoteParty/BuyerParty/core:PartyID/core:Ident

/RemittanceAdvice/RemittanceAdviceHeader/PaymentCurrency/core:CurrencyCoded

/RemittanceAdvice/RemittanceAdviceDetail/ListOfSubsidiary/Subsidiary/ListOfInvoicingDetail/InvoicingDeta

il/InvoicingDetailReference/core:PrimaryReference/core:RefNum

/RequestForQuotation/RequestQuoteHeader/QuoteParty/BuyerParty/core:PartyID/core:Ident

/Requisition/RequisitionHeader/RequisitionParty/RequisitionerParty/core:PartyID/core:Ident

/ShippingSchedule/ShippingScheduleHeader/ScheduleParty/ShipToParty/core:PartyID/core:Ident

/ShippingSchedule/ListOfLocationGroupedShippingDetail/LocationGroupedShippingDetail/ListOfLocationS

hippingItemDetail/LocationShippingItemDetailLocationShippingItemDetail/BaseShippingDetail/TotalQuantity

/core:UnitOfMeasurement/core:UOMCoded

/ShippingSchedule/ListOfLocationGroupedShippingDetail/LocationGroupedShippingDetail/ListOfLocationS

hippingItemDetail/ListOfShipScheduleDetail/ScheduleQuantities/core:QuantityCoded/core:UnitOfMeasurem

ent/core:UOMCoded

/ShippingScheduleResponse/ShippingScheduleResponseHeader/ResponseType/core:ResponseTypeCode

d

/ShippingScheduleResponse/ListOfLocationGroupedShippingResponse/LocationGroupedShippingRespons

e/LocationGroupedShippingDetail/ListOfLocationShippingItemDetail/LocationShippingItemDetail/ListOfShip

 155

ScheduleDetail/ShipScheduleDetail/ScheduleQuantities/core:QuantityCoded/core:UnitOfMeasurement/core

:UOMCoded

/TimeSeries/TimeSeriesHeader/Language/core:LanguageCoded

/TimeSeriesRequest/TimeSeriesRequestHeader/TimeSeriesParty

/TimeSeriesResponse/TimeSeriesResponseHeader/Language/core:LanguageCoded

 156

VITA

Name: Tak Cheung Lam

Address: 440 Dempsey Road, Unit 242, Milpitas, CA 95035

Email Address: brianlam@tamu.edu

Education: B.S., Information Engineering, The Chinese University of Hong
 Kong, 2000

 M.S., Information Engineering, The Chinese University of Hong
 Kong, 2002

 Ph.D., Computer Science, Texas A&M University, 2008

