

Learning of Web Application
Frameworks based on Concerns,

Micro-Learning and Examples

Daniel Correa Botero

Universidad Nacional de Colombia

Facultad de minas, Departamento de ciencias de la computación y la decisión

Medellín, Colombia

2014

Learning of Web Application
Frameworks based on Concerns,

Micro-Learning and Examples

Daniel Correa Botero

Submitted in partial fulfillment of the requirements for the degree of:

Magister en Ingeniería de sistemas

Thesis Director:

Ph.D. Fernando Arango Isaza

Research Area:

Software Framework Understanding

Research Group:

Grupo de ingeniería de software

Universidad Nacional de Colombia

Facultad de minas, Departamento de ciencias de la computación y la decisión

Medellín, Colombia

2014

…To my mother, Mercedes

…To my future wife, Juliana

 Acknowledgments

This master thesis would not have been possible without the support of many people.

Many thanks to my thesis director, Ph.D. Fernando Arango Isaza, who spent a lot of time:

making revisions, creating ideas and helping me with this project. Many thanks to Ph.D.

Carlos Mario Jaramillo Zapata, who gave us excellent support: helping us to translate

some papers and giving us ideas and corrections. Many thanks to Ph.D. Gloria Lucia

Giraldo, who gave us support and allowed creating some experiments with her students.

Thanks to Ph.D. Carlos Jaime Franco, who gave us support during the entire project to

present some ideas in other countries. Thanks to Above & Beyond and BT your music is a

wonderful source of inspiration. Thanks to Sebastián Gomez my friend who give me

support. Thanks to Universidad Nacional de Colombia and Colciencias which provided

me with the financial means to complete this project and made possible to present some

chapters of this project in some conferences around the world. Many thanks to my

parents they support me in all moment and their love and dedication was essential to

complete this project. And finally, thanks to my sister, aunts, uncles, cousins, friends and

future wife who during the entire thesis were supporting me in everything and gave me

love.

Abstract IX

Abstract

Web Applications Frameworks (WAFs) have become very popular tools for developing

software applications. These tools lead to the implementation of a big amount of classes,

components, and libraries which support developers for saving costs, time, and effort.

Due to the big number of WAF elements, a developer needs to invest considerable effort

and time in order to understand the WAF usage. Some authors had proposed different

framework learning techniques, but these techniques focus on how to document or show

the framework information. Then, how to drive the framework learning is a developer task.

Commonly, developers follow a guide containing too much information, but in some cases

developers only need to learn an incomplete WAF usage. We define in this thesis a list of

WAF components, a list of web application concerns and a list of examples which create

a new learning technique. This technique will indicate -based on the developers‘

requirements- the specific elements they should know to develop their applications.

Saving time and acquiring WAF knowledge.

Keywords: software development, Micro-learning, web application frameworks,

framework comprehension, example-based learning.

X Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Resumen

Los frameworks de aplicación web -o WAFs por su sigla en inglés- se han convertido en

herramientas muy populares para el desarrollo de software web. Estas herramientas

poseen una gran cantidad de clases, componentes y librerías que apoyan el trabajo del

desarrollador; ahorrándole costos, tiempo y esfuerzo. Debido a la gran cantidad de

elementos que poseen los WAFs, los desarrolladores deben invertir mucho tiempo y

esfuerzo para entender cómo utilizarlos. Algunos autores han propuesto diferentes

técnicas para documentar y mostrar los elementos de los WAFs, pero como guiar el

aprendizaje de un WAF sigue siendo una tarea del desarrollador. En este trabajo,

definimos una lista de componentes de los WAF, una lista de intereses del desarrollo de

aplicaciones web, y una lista de ejemplos; que unidas crean una nueva técnica de

aprendizaje. Esta técnica indica a los desarrolladores –basados en sus necesidades-,

que elementos deben aprender para desarrollar sus aplicaciones. Ahorrando tiempo y

adquiriendo conocimiento en el desarrollo con WAFs.

Palabras clave: desarrollo de software, micro-aprendizaje, frameworks de aplicación

web, aprendizaje de frameworks, aprendizaje basado en ejemplos.

Content XI

Content

Page

Abstract... IX

List of figures... XIV

List of tables ... XV

Glossary .. XVII

Introduction ... 1
Thesis Relevance ... 1
State of the art .. 2
Research Problem .. 2
Solution .. 2
Laboratory case ... 4
Conclusions .. 5

1. State of the art .. 7
1.1 Framework Understanding ... 7

1.1.1 Frameworks .. 7
1.1.2 Studies on framework understanding .. 9
1.1.3 Techniques for framework understanding .. 11

1.2 WAFs ... 13
1.2.1 WAF studies .. 13

1.3 Summary ... 16

2. Research Problem .. 19
2.1 Open issues ... 19
2.2 Research questions ... 20
2.3 Thesis statement ... 21
2.4 Research hypothesis ... 21
2.5 Research goals .. 22
2.6 Summary ... 22

3. Solution ... 23
3.1 WAFs Components .. 23

3.1.1 Introduction ... 23
3.1.2 WAF learning environment .. 24
3.1.3 Establishing WAF Components and Micro-tasks 24
3.1.4 WAFs components summary .. 30

3.2 Web Application Concerns ... 31

XII Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

3.2.1 Introduction ..31
3.2.2 Developers Concerns ..31
3.2.3 Creating a new web application concern list ..33
3.2.4 Connecting concerns with components and micro-tasks36
3.2.5 Web application concerns summary ..41

3.3 Introducing the use of examples ...43
3.3.1 Introduction ..43
3.3.2 The use of examples..43
3.3.3 Creating a list of examples ...45
3.3.4 Use of examples summary...52

3.4 A new WAF learning technique ..53
3.4.1 Introduction ..53
3.4.2 Micro-learning and the definition of the new WAF learning technique ..54
3.4.3 DL Application..56
3.4.4 A new WAF learning technique summary ..61

4. Laboratory case ..63
4.1 Introduction ..63
4.2 Academic Quasi-Experiment ..63

4.2.1 Participants selection ...64
4.2.2 Pre-experiment evaluation ...65
4.2.3 Framework selection ..66
4.2.4 Pre-questionnaire ..66
4.2.5 Pre-experiment requirements ...67
4.2.6 Experiment description and treatments ..67
4.2.7 Macro-Task ..70
4.2.8 Post-questionnaire ...77

4.3 Data analysis ..77
4.3.1 Statistical relevance ...77
4.3.2 Background ...78
4.3.3 External Factors ...82
4.3.4 Overall satisfaction ..84
4.3.5 Development process ..86
4.3.6 Framework knowledge ...88
4.3.7 Objective measurement ...89

4.4 Validation threats ..90
4.5 Summary ..92

5. Conclusions ..93
5.1 Key Contributions ...94
5.2 Future work ..95

A. Appendix: Pre-experiment Subject Data ...97

B. Appendix: Pre-questionnaire ...99

C. Appendix: Pre-questionnaire answers .. 101

D. Appendix: Experiment Main Document ... 103

E. Appendix: Sql File ... 105

Content XIII

F. Appendix: Post-questionnaire ... 107

G. Appendix: Post-questionnaire answers .. 109

H. Appendix: Time Results ... 113

References ... 115

Content XIV

List of figures

Page
Figure 3-1: A representation of the WAF learning environment. 24

Figure 3-2: An example of Codeigniter components and micro-tasks identification. .. 25

Figure 3-3: A component with its specific micro-tasks... 26

Figure 3-4: A component on Codeigniter with its specific micro-tasks. 29

Figure 3-5: A concern connected with Codeigniter components and their specific

micro-tasks. 40

Figure 3-6: Example of concerns selection. .. 41

Figure 3-7: An example of Micro, meso and macro tasks over Codeigniter. 55

Figure 3-8: A proposed representation of the new WAF learning environment. 55

Figure 3-9: Home page of DL application. .. 57

Figure 3-10: Micro-tasks documentation view over DL application. 58

Figure 3-11: Meso-tasks view over DL application. ... 59

Figure 3-12: DL application admin panel. ... 60

Figure 4-1: Experiment protocol and phases. ... 68

Figure 4-2: Treatment A experiment environment. .. 69

Figure 4-3: Treatment B experiment environment. .. 69

Figure 4-4: Treatment C experiment environment. ... 70

Figure 4-5: Experiment class diagram. ... 71

Figure 4-6: A solution from a subject to the initial menu of the iteration 1. 72

Figure 4-7: A solution from a subject to the contact section of the iteration 1. 72

Figure 4-8: A solution from a subject to the iteration 2. ... 73

Figure 4-9: A solution from a subject to the delete coffee store message of iteration 3.

 74

Figure 4-10: A solution from a subject to the delete button of iteration 3. 75

Figure 4-11: A solution from a subject to the coffee store name link of iteration 4....... 76

Figure 4-12: A solution from a subject to the barista list display of iteration 4. 77

Figure 4-13: Number of subjects of each group who completed each iteration. 89

Content XV

List of tables

Page
Table 3-1: WAFs Components. .. 26

Table 3-2: Web application concerns list. ... 34

Table 3-3: Web application projects vs concerns. .. 36

Table 3-4: Concern List vs WAFs Components list. .. 37

Table 3-5: List of examples of each concern. ... 46

Table 4-1: Student grades group statistics. .. 65

Table 4-2: Baseline G1 vs. Experimental Group 2 Independent Samples Test. The first

column is the Levene‘s Test for Equality of Variances, showing a significance greater than

0.05 (0.221). The other three columns are the t-test for Equality of Means. Since we can

assume equal variances, the 2-tailed value of 0.573 allows us to conclude that there is no

statistically significant difference between the two conditions. .. 65

Table 4-3: Baseline G1 vs. Experimental Group 3 Independent Samples Test. The first

column is the Levene‘s Test for Equality of Variances, showing a significance greater than

0.05 (0.837). The other three columns are the t-test for Equality of Means. Since we can

assume equal variances, the 2-tailed value of 0.557 allows us to conclude that there is no

statistically significant difference between the two conditions. .. 66

Table 4-4: Summary of Background results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. ... 78

Table 4-5: Summary of Background results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. ... 79

Table 4-6: Summary of external factors results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. ... 82

Table 4-7: Summary of external factors results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. ... 83

Table 4-8: Summary of overall satisfaction results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. ... 84

Table 4-9: Summary of overall satisfaction results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. ... 84

XVI Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Table 4-10: Summary of development process results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. .. 86

Table 4-11: Summary of development process results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test. .. 87

Table 4-12: Framework knowledge questions and answers. All items were presented

as true-false statements. ... 88

Table 4-13: Framework knowledge group statistics. .. 88

Table 4-14: Iteration 1 completion time results (average per group). Units in minutes.

 89

Table 4-15: Number of iterations completion (average per group). 90

Table A-1: Student grades for all participating groups. Each column represents the

following courses: (I) Programming Fundamentals, (II) Data Structures, (III) Programming

Object Oriented, (IV) Software Engineering, (V) Databases I, (VI) Programming Logical

and Functional, and (VII) Requirements Engineering. ... 97

Table C-1: Pre-experiment questionnaire A results for Group 1 Baseline (G1) and

Experimental Group 2 (G2), each line representing the data of a single question for both

groups, with the corresponding means and standard deviation values. It includes the p-

value of the non-parametric significance Mann-Whitney-Wilcoxon test. 101

Table C-2: Pre-experiment questionnaire A results for Group 1 Baseline (G1) and

Experimental Group 3 (G3), each line representing the data of a single question for both

groups, with the corresponding means and standard deviation values. It includes the p-

value of the non-parametric significance Mann-Whitney-Wilcoxon test. 102

Table G-1: Post-experiment questionnaire results for Baseline (G1) and Experimental

Group 2 (G2), each line representing the data of a single question for both groups, with

corresponding means and standard deviation values. It includes the values of the non-

parametric significance Mann-Whitney-Wilcoxon test. ... 109

Table G-2: Post-experiment questionnaire results for Baseline (G1) and Experimental

Group 3 (G3), each line representing the data of a single question for both groups, with

corresponding means and standard deviation values. It includes the values of the non-

parametric significance Mann-Whitney-Wilcoxon test. ... 110

Table G-3: Post-experiment questionnaire framework knowledge items results for all

Groups. A value of 1 means the questions was correct, 0 incorrect, * the subject didn‘t

know the answer. .. 111

Table H-1: Iterations time results. Units in minutes. ... 113

Content XVII

Glossary

Abbreviation Term

AJAX

Acronym for Asyncronous Javascript And XML. A
group of interrelated web development methods used
on the client-side to create asynchronous web
applications.

CRM Acronym for Customer Relationship Management
CRUD Acronym for Create, Read, Update, and Delete.

CSS
Acronym for Cascading Style Sheets. A language used
to describe the style of document presentations in web
development.

ESWS Acronym for Empirical Studies With Students.
GUI Acronym for Graphical User Interface.
HTML Acronym for HyperText Markup Language.
MVC Acronym for Model-View-Controller

ORM
Acronym for Object-relational mapping. A software-
programming issue in linking object-oriented code with
relational databases.

PHP

Acronym for Hypertext PreProcessor. A general-
purpose server-side scripting language originally
designed for web development to produce dynamic
web pages.

URI Acronym for Uniform Resource Identifier.
WAF Web Application Framework.

Introduction

This introduction is developed with the intention to provide a short brief of each thesis

chapter, for an overview of the different topics discussed and the order they are treated.

Thesis Relevance

Web Application Frameworks (WAFs) are tools used by companies, governments,

universities and developers. Since WAFs are considered crucial for rapid web

development [1], several frameworks are available [55][59][60][61][62][63], and the topic

is subject of several researches and developments [2][3][4]. However, developers have to

invest considerable effort and time in order to work with these tools [13][74]. This is due to

the large quantity of components, classes, functions, libraries and elements that compose

them. Many times, developers have to rely in information and material found in the

internet, and sometimes that information is deprecated material or portraits wrong

solutions. This situation has a negative impact over the applications quality they have to

develop.

Currently, there are some methodologies proposing how to document and how to show

the framework documentation. However, these methodologies don‘t drive developer in

his/her learning process. That means developers have to select by themselves the

material they want to study, but sometimes, they select material that is not related with

their necessities. The reality is that developers don‘t need to understand everything about

the WAF; they only need to understand what is related with their software requirements.

For this reason, we decided to focus our research over the WAF learning environment,

aiming to identify and cover the learners‘ main issues to improve the WAF learning

experience. We developed a technique which allows learners to save time in the

developing of web applications and improve the acquired knowledge over the WAFs.

2 Introduction

State of the art

In chapter 1, we analyze and discuss the related work over framework understanding and

WAFs studies. In the first part ―Framework understanding‖ we discuss some crucial

learning statements and recommendations extracted from the literature, as follows: (i) a

minimal documentation that is task-oriented helps users to faster growth in learning; (ii)

examples are an effective learning strategy, especially for those beginning to learn a

framework; and (iii) an important area for framework documentation is ―how to use it‖.

The second part ―WAFs studies‖ shows some WAFs comparison studies, these studies

established some similarities between different WAFs. Those similarities support that

general WAF learning techniques can be uniformly applied to different WAFs. Besides,

some WAF security studies show the importance of integrating security over the entire

WAF learning, in order to create quality applications.

Research Problem

In chapter 2, we identify some specific unsolved issues and challenges in the WAF

learning domain. The main issues are: (i) learning a new WAF continues being a difficult

task, (ii) good documentation is difficult to find and is often outdated, (iii) WAF novice

learners have to drive their own WAF learning –despite of their lack on WAF knowledge–,

and (iv) WAF documentation material is limited. Based on these issues we define a

thesis statement and later a thesis hypothesis, as follows: ―Providing novice WAF learners

with the new WAF learning technique reduces the time they need to reuse the WAF, and

increases their knowledge of the WAF‖. At the end of this section four research goals are

defined: (i) to guide learners WAF learning by their own concerns, (ii) to provide example

materials, (iii) to define a unique documentation pattern to different WAFs, and (iv) to

provide a learning tool.

Solution

Chapter 3 contains the main contributions of this thesis. Having identified the research

problems and the research goals, we define a series of strategies to better understand the

problems, to improve the WAF learning and to provide a solution.

Introduction 3

 Section 3.1 - WAF components. This section deals with the first issue: ―Learning a

new WAF continues being a difficult task‖. We initiate describing how nowadays the

WAF learning environment is. We state that WAF learning is difficult to achieve

because WAFs have many components. So, classifying and understanding how these

components work is the section main objective. Next, a study over six WAFs

(Codeigniter [55], Yii [59], Prado [60], MVC4 [61], Ruby on Rails [62] and Cakephp

[63]) was developed. In this study we identified a common list of WAF components.

These components are used to develop a wide range of applications in all WAFs.

Besides, we established a list of micro-tasks in order to learn how to use each

component in any WAF. These micro-tasks describe in a very low level how each

component is composed and what are the specific elements they use. Finally, we

represented over Codeigniter a specific component with their specific micro-tasks.

The main ideas of this chapter are: (i) to understand the WAF learning environment

and how WAFs are composed, (ii) to classify WAF main components, and (iii) to

define a list of micro-tasks which describe of components are composed and they

work.

 Section 3.2 - Web application concerns. This section deals with another issue:

―WAF novice learners have to drive their own WAF learning –despite of their lack on

WAF knowledge–‖. We initiate the section studying the reasons that motivate

developers to learn how to use a WAF. We highlighted some important issues, as

follows: (i) no matter the reason, the final goal for learning a WAF usage is to develop

specific web applications, (ii) when developers have different requirements they have

different learning interests or concerns, and (iii) a developer should focus in the WAF

material that supports his/her interests or concerns. Based on these statements the

author develops a new web application concern list and connects this list with the

WAF components and micro-tasks previously described. The main idea is to define a

simple way to filter the WAF material that is related with the developer concerns.

 Section 3.3 – Introducing the use of examples. This section deals with the last two

issues: ―good documentation is difficult to find and is often outdated‖ and ―WAF

documentation material is limited‖. We initiate the section by introducing the

importance of good examples. The use of examples have the following benefits: (i)

they can reduce the amount of typing required to complete a task, (ii) finding existing

4 Introduction

examples that match requirements, can serve as a base of code-reuse, and (iii) they

can portraits the WAF architecture and help to understand how the WAF components

and elements are connected. At the end we present a list examples connected with

the previous concerns.

 Section 3.4 – Defining the new WAF learning technique. In this section we present

the new WAF learning technique. In order to provide the learning path or the different

learning steps, we introduce micro-learning. Micro-learning highlight the point that no

matter how learning is conceptualized, in all cases there is the possibility of

considering the learning process in terms of micro, meso and macro tasks. Based on

this concept we state the learning steps in the new WAF learning technique: (i) in the

first step the learner extract his/her application requirements and select the web

application concerns related with his/her requirements, (ii) the corresponding micro-

tasks documentation to each component related with each concern is presented to the

learner, the learner has to read and follow this documentation in order to acquire WAF

knowledge and understand the WAF components, (iii) parallel to this, for each

concern a meso-task –example– documentation is also presented, the learner has to

read the micro-tasks and codify the meso-tasks in order to obtain more knowledge,

and (iv) the learner has to develop his/her own application –the macro-task–. At the

end of this section, we present the design of a web application to support the new

WAF learning technique. The main objectives of the application are: (i) provide a

mechanism to complete the micro and meso tasks –these must be completed by

senior WAF developers–, (ii) facilitate the access the learning material, (iii) establish a

mechanism to allow learners to select their concerns and present the specific learning

material to each of them.

Laboratory case

In chapter 4, we present a quasi-experiment developed with the intention to provide

statistical relevance to our main research hypothesis. In this experiment three groups are

defined, each group has its own treatment (see section 4.2.1). The first group baseline will

use the common WAF documentation materials –cookbooks–; the other two groups will

use material from the new learning technique –one group with the complete material,

Introduction 5

another group only with the meso-tasks material–. A complete data analysis is also

developed and the thesis hypothesis is confirmed.

Conclusions

In chapter 5, we present the conclusions of the research. We define a summary of the

thesis main ideas, highlighting the key contributions from this proposal –explaining in

detail each contribution–. At the end some future works are proposed.

6 Introduction

1. State of the art

This chapter is motivated by analyzing and discussing the related work over framework

learning. The first part ―Framework understanding‖ portraits some crucial learning

statements and recommendations extracted from the literature. These statements and

recommendations are discussed for framework in general –not applied specifically to

WAFs–.

The second part ―WAFs studies‖ has been focused specifically over WAFs. Due to the

lack of WAF learning studies, we collect literature about WAFs studies in general. These

studies portrait important ideas and elements to develop the new WAF learning

technique.

1.1 Framework Understanding

Over the past twenty years, a large range of candidate documentation techniques has

been proposed to support framework understanding, including patterns [15], example-

based learning [16], cookbooks [17], and visualizations [18]. Still, there is a lack of insight

into problems that limit the comprehension and reuse of software frameworks. There is no

true awareness of the impact these techniques have on framework understanding. As

such, a few studies were conducted and their results identify some concerns and basis for

future research [19]. This section will show some of these studies and some of the

documentation techniques proposed to support framework understanding. The relevant

ideas of each study are highlighted and are used as a base to the definition of the new

WAF learning technique.

1.1.1 Frameworks

The basic processes of the software engineering are: specification, design and

implementation, verification, validation and management [5]. A software developer needs

tools and knowledge to develop a design and implementation of a software product. In

8 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

recent years, frameworks have become very popular tools for software development.

They are powerful techniques for large-scale reuse helping developers to improve quality

and save costs and time [6][7]. Nowadays they are considering crucial for rapid web

development [8].

Types of Frameworks

One of the most used classifications for frameworks is Taligent classification [9]. In this

classification frameworks are grouped in three categories: application, domain and

support.

 Application frameworks: Application frameworks aim to provide the full range of

functionality typically needed in an application. This functionality usually involves

things like a GUI, documents, databases, etc.

 Domain frameworks: These frameworks can be helpful to implement programs for a

certain domain. The term domain framework is used to denote frameworks for specific

domains. An example of a domain is banking or alarm systems. Domain specific

software usually has to be tailored for a company or developed from scratch.

Frameworks can help reduce the amount of work that needs to be done to implement

such applications. This allows companies to make higher quality software for their

domain while reducing the time to market.

 Support frameworks: Support frameworks typically address very specific, computer

related domains such as memory management or file systems. Support for these

kinds of domains is necessary to simplify program development. Support frameworks

are typically used in conjunction with domain and/or application frameworks.

This research focus on learning of software development applied to a full range of

functionalities needed in an application. For this reason we focus on learning of

application frameworks. Being precisely, we‘ll focus in web application frameworks

(WAFs). One the most important fact is that the resultant product of a WAF is accessible

from internet –web application– [10] which makes them in powerful and important tools.

State of the art 9

1.1.2 Studies on framework understanding

The next studies provide relevant support to the thesis; each study provides important

elements to be considered:

 Kirk et al. conducted three case studies to study the problems encountered by

software developers when using a framework [14]. They identified general kinds of

questions such as finding out what features are provided by the framework and

understanding how classes communicate together in the presence of inversion of

control and subtle dependencies. The authors observed that different types of

documentation provided answers to a subset of the questions.

 Carroll et al. observed users reading documentation and found that the step-by-step

progress induced by traditional documentation such as detailed tutorials and

reference manuals was often interrupted by periods of self-initiated problem solving by

users [67]. Indeed, users ignored steps and complete sections that did not seem

related to real tasks, and they often made mistakes during their unsupervised

exploration. Because this active way of learning was not what the designer of

traditional documentation intended, Carroll et al. designed a new type of

documentation, the minimal manual, that is task-oriented and that helps the users

resolve errors.

 Robillard conducted a survey and qualitative interviews in a study of how Microsoft

developers learn APIs [68]. The study identified obstacles to API learning ability in

documentation such as the lack of code examples and the absence of task-oriented

documentation. Forward and Lethbridge conducted a survey with developers and

managers, and asked questions regarding the use and the characteristics or various

software documents [69]. According to the participants, the following properties of

software documentation were the most important: content (information in the

document), upto-dateness, availability, use of examples, and organization (sections,

subsections, index).

 Nykaza et al. performed a study over the desired and required content of the

documentation of a framework developed by a software organization [70]. The authors

observed that junior programmers with deep knowledge of the domain and senior

10 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

programmers with no knowledge of the domain had similar documentation needs

about the framework. The programmers preferred simple code examples that they

could copy and execute right away (as opposed to complex examples showing many

features at once) and a manual that had self-contained sections so users could refer

to it during their exploration (as opposed to manual that must be read from start to

finish).

 Jonhson [71] identified three important areas for framework documentation to

address: purpose, how to use, and design. He argued that the purpose of the

framework and its constituent parts should be stated so that developers may select

the correct parts for a task. While knowledge of how those parts are expected to

operate allows them to be employed correctly, a description of the underlying design

provides developers with an understanding of how to adapt and extend the framework

in a manner consistent with the existing structure.

 Schull et al. [16] presented an evaluation of the role that examples play in framework

reuse. Their study compared two approaches to framework reading and, eventually,

its documentation: example-based approach and hierarchical-based approach. Their

results suggested that examples are an effective learning strategy, especially for

those beginning to learn a framework. They also identified potential problems with an

example-based approach: finding the small pieces of required functionality in larger

examples; inconsistent organization and structure of examples; and lack of design

choice rationale in example documentation. They also discussed the possibility that

developers become too reliant on examples and do not understand the system at a

sufficient level of detail, as to implement it effectively from scratch, if necessary.

 Fayad et al [72] claimed that different alternatives could improve framework

understandability: (i) refining the framework‘s internal design, (ii) using methods that

can ensure a successful development and usage of frameworks, (iii) adhering to

standards for framework development, adaptation, and integration, and (iv) producing

comprehensible framework documentation. These guidelines are mainly preventive

and don‘t focus on the issue of reusability, posing merely as general advices.

State of the art 11

 Ho et al [73] paper presented a novel way of investigating the different philosophies

for framework documentation. The philosophies included minimalist, patterns-style

and extended javadoc (Jdoc) documentation. Using a survey of 90 intermediate users

engaged in Command and Adaptor design patterns coding work, the exploratory study

discovered that minimalist documentation has positive impacts in encouraging

knowledge acquisition, significantly in terms of the framework functional workings.

This concludes that documentation solutions with the minimalist principle can lead

intermediate users to faster growth in learning two of the design patterns.

1.1.3 Techniques for framework understanding

During the last years, different authors have proposed different framework documentation

techniques. The idea with these techniques is to produce and enhance the existing

documentation with other type of information that could be used for different learners.

These techniques try to represent the different framework processes and behaviors in

different ways that might help to using and understanding the framework. Next, a brief

summary of some proposal techniques are presented.

Cookbooks

Cookbooks are commonly used as a documentation technique for web-based framework

development. Cookbooks are designed to be carefully read by programmers as reference

manuals. Cookbooks also describe the entire framework composition.

 Confronting the challenge of communicating how to use the Model-View-Controller

framework in Smalltalk-80, Krasner and Pope [17] built an 18-page cookbook that

explained the purpose, structure, and implementation of the MVC framework. This

cookbook was designed to be read from beginning to end by programmers and could

also be used as a reference.

The problem with this technique is that developers have to read from beginning to end the

complete material. Commonly cookbooks are plenty of pages with a big amount of

information, and the reality is that developers don‘t need to understand all the material.

Therefore, most of them have a lack of examples; because they focus on describing in

great detail how the framework is designed.

12 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Hooks

 Froehlich et al.‘s hooks [73] focus on documenting the way a framework is used, not

the design of the framework. They are similar in intent to cookbook recipes but are

more structured in their natural language. The elements listed are: name,

requirement, type, area, uses, participants, changes, constraints, and comments.

Similar to cookbooks, hooks have a lack of good examples. The interesting point is their

suggestion about focusing on documenting the way a framework is used. A learning

material that shows how different elements of the framework are used and how these

elements are connected these elements could be so valuable to a better framework

understanding.

Patterns

 Jonhson‘s patterns [15] suggest documenting a framework by using a pattern

language. In this language, each pattern describes a recurrent problem in the domain

covered by the framework, and then describes how to solve that problem. Its main

goal is to teach how to use the framework, and then complement the task-oriented

information with explanations about how the framework works, for those willing to

know the details. This technique tries to strike a balance between prescriptive

information (how-to-do) with descriptive information (how-it-works) as to reach a larger

audience of different experience levels.

 Flores [19] presents an approach to guide the framework learning process. His study

presents DRIVER, a platform to teach how to use a framework in a collaborative

environment. In such platform, learners can search and rate available knowledge and

get recommendations for the best course of action. In this approach, learners should

decide by themselves—with no guidance based on their needs—on the way they want

to follow the documents.

Nowadays, WAFs present a lack of different documentation types. Commonly WAFs only

support developers learning with a cookbook or web tutorial. Similar to cookbooks and

hooks, patterns don‘t drive the developer in his/her learning; each means, developers

have to figure out how to use the documentation.

State of the art 13

Visualizations

 Jackson et al. [18] support the programmers in understanding the framework code by

providing animated visualizations of example programs interacting with the

framework. Commonly these visualizations show over class diagrams how the

different frameworks objects are connected and represented over the framework

architecture. However, a comparison with other methods is not provided.

The problem with the whole set of techniques is that even when each technique highlights

valuable insights; in real WAFs documentations they are not present. Also, there is a lack

of deeper studies about the validity of how each technique improves –or not– the

framework learning. Also, there is a lack of comparison studies between the techniques.

1.2 WAFs

As mention before there is a lack of WAF learning studies. However, we consider relevant

to collect and discuss what the recent researches are over WAFs. These researches can

highlight important issues, ideas and concerns that authors have nowadays. We expected

to find similarities between different WAFs that support the development of a unique

technique for WAF learning, which could be applied to different WAFs no matter the

programming language or the internal structure.

Web application frameworks

WAFs typically provide core functionality common to most web applications, such as user

session management, data persistence, and template systems. By using an appropriate

WAF, a developer can often save a significant amount of time building a web application.

Most WAFs (e.g. CakePHP, Spring, Prado, and Ruby on Rails) offer websites, forums,

blogs, plugins, bug fixes, and much more. But the large amount of information not

necessary means a good quality of WAF material for learning.

1.2.1 WAF studies

Over the past ten years, a large quantity of research in WAFs has been done due to its

importance for web development. Authors have focused their research in different areas

but mainly in: WAF tutorials, WAF comparisons and WAF security aspects. Each area

14 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

portraits relevant information to the thesis. At the end there is a summary which highlights

the main aspects we considered in this thesis.

Comparison studies

At first sight, each WAF seems to be independent and unique, but actually many of them

have much in common. In fact, several framework comparison studies show many

components and similarities between them.

 Canales [11] project examined two WAFs: CakePHP and Symfony. The project

studied the structure, differences, and similarities of each framework and used that

knowledge to choose a framework to begin the development of an online language

placement exam template. At the end a framework was chosen, and the research

continued on that framework in the form of additional reading and tutorials. Finally, a

basic exam template prototype was developed.

 In Wang [12] thesis, was conducted a general comparison of four popular Java web

frameworks: Struts1.X, WebWork2.2X, Tapestry 4, JSF1.2. The main idea was to try

to help web developers or technique managers to gain a deep insight of these

frameworks through the comparison and therefore be able to choose the right

framework for their web applications. At the end an evaluation was established with

the pros and cons of different WAFs features and a general suggestion of web

application types that the four chosen Java web frameworks can effectively fit in.

 Plekhanova [65] report considered many factors in order to evaluate three different

WAFs. Based on the factors and the experience acquired, a set of seven evaluation

items was developed. These items were evaluated below on a scale of 1.00 (Poor) to

5.00 (Excellent). At the end Django received the highest weighted score of 4.05. Ruby

on Rails is second with 3.85 while CakePHP got 2.95.

 Björemo and Trninić [66] created a report which looked closer at some of WAFs

(CakePHP, Grails, Ruby on Rails, Stripes, Spring Roo and Wicket) to see what they

had to offer and how they did it. The frameworks were evaluated based on six criteria:

documentation and learning, convention over configuration, integrated development

environment, internationalization (localization), and user data input validation and

State of the art 15

testing. The conclusions were that there is no superior WAF and one should not learn

a new programming language just for using a recommended web framework.

The previous comparison studies shows WAFs have some similarities; these similarities

are used in a first study to better understand how WAFs are composed. This statement

allows us to perform a study for WAF learning that could be applied to different WAFs no

matter the programming language or the internal structure.

Security aspects

Nowadays, web applications contain many security vulnerabilities. Web applications are

also widely accessible and often serve as an interface to large amounts of sensitive data

stored in back-end databases. Due to these factors, web applications have attracted

much attention from cyber-criminals. Attackers commonly exploit web application

vulnerabilities to steal confidential information or to host malware [76]. Vulnerable WAFs

applications generate a risky impact over the entire application and their users.

Investigate how WAFs support –or not– web application security, what are the common

vulnerabilities and how to implement this information into the new WAF learning material

is the section main objective.

 Roberts-Morpeth and Ellman [75] report investigated whether a vulnerability found in

one web framework may be used to find a vulnerability in a different web framework.

To test this hypothesis, several open source applications were installed in a secure

test environment together with security analysis tools. Each one of the applications

were developed using a different software framework. The results show that a

vulnerability identified in one framework can often be used to find similar

vulnerabilities in other frameworks. Cross site scripting security issues are the most

likely to succeed when being applied to more than one framework.

 Robertson and Vigna [76] presented a framework for developing web applications

that, by construction, are invulnerable to server-side cross-site scripting and SQL

injection attacks. They demonstrated that all dynamic data that is contained in a

document generated by a web application must be subjected to sanitization. Similarly,

we show that all SQL queries must be executed in a safe manner.

16 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

 Scholte et al [77] Shows that web applications are also frequently targeted by attacks

such as XSS and SQL injection. They presented an empirical study of more than 7000

web application vulnerabilities and more than 70 web application development

frameworks with the aim of gaining deeper insights into how common web

vulnerabilities can be prevented. Their findings suggested that many SQL injection

and XSS could easily be prevented if web languages and frameworks would be able

to automatically enforce common data types such as integer, Boolean, and specific

types of strings such as e-mails and URLs.

 Jayaraman et al [79] described a new approach for enforcing request integrity –such

as: Cross-site-request forgeries (CSRF) and workflow violations– in a web application

and its implementation in a tool called Bayawak. Under their approach, the intended

request sequences of an application are specified as a security policy. And a

framework-level method enforces the security policy strictly and transparently without

requiring changes in the applications source code.

The recent research shows some concern in WAF security aspects. Many tools and

applications to prevent different attacks have been developed. But, the reality is even

when most WAFs have some components to prevent the common vulnerabilities like:

CSS attacks, SQL-injections, and CSRF; some applications continue being vulnerable.

The problem could be in the way some developers use WAFs components. This aspect

could be due to the developers‘ lack of knowledge on security aspects. Also, could be due

to the WAFs documentation, which presents big amount of information in which could be

difficult to find the proper components to prevent these attacks.

How to develop documentation easy to read that at the same time contains security

aspects, is one challenge of this thesis.

1.3 Summary

In the first part, some important studies on framework understanding have been done.

Besides, some techniques for framework understanding like: patterns, example-based

learning, cookbooks, and visualizations were analyzed. These studies highlight some

important aspects to this thesis: (i) a minimal documentation that is task-oriented helps

users to faster growth in learning; (ii) examples are an effective learning strategy,

State of the art 17

especially for those beginning to learn a framework; and (iii) an important area for

framework documentation is ―how to use it‖. It‘s important to highlight than even when

there are many framework documentation techniques proposed, most of these techniques

are not used in real WAFs documentations.

The second part shows most WAFs studies have been focused on: WAFs tutorials, WAFs

comparison and WAFs security aspects. The WAFs comparison studies shows some

similarities between different WAFs, these similarities support a study in WAF learning in

general that could be applied to different WAFs no matter the programming language or

the internal structure. The WAFs security studies show the importance that security has

nowadays. These studies shows that even most WAFs have components and elements to

prevent different attacks, some developers don‘t use them in their applications. Improve

security integration over the WAF learning appears as an important concern.

18 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

2. Research Problem

Learning of WAFs deals with a lot of aspects, but mainly, with understanding the WAF

elements and how to use them to develop different applications. In this chapter, several

open research issues are raised focusing on WAF understanding and opportunities for

improving the existing WAF learning techniques; and creating a new WAF learning

techniques are identified.

2.1 Open issues

From the state-of-the-art review presented in the previous chapters, a number of open

research issues arise. An insight of the most relevant ones follows, in order to focus the

scope of the work presented in this thesis:

 Learning a new WAF is difficult to achieve: learners have to invest considerable

effort and time in order to work with frameworks in general. This is due to the large

quantity of components, classes, functions, libraries and elements that compose

them. Frequently WAFs are considered very complex: (i) very abstract; (ii) plenty of

documentation, hundreds of pages that maybe you‘re not going to use; (iii) obscure, in

the sense that it usually hides existing dependencies and interactions between

classes [19]. In the case of novice developers, they lack the needed experience and

ignore what WAF facilities are available to them, so they do not know what to look for.

Another issue is each WAF defines its own documentation strategy, making difficult

for a new WAF leaner to find the proper documentation over different WAFs. These

problems makes learners spend considerable amount of effort to understand and

learn how to use a WAF.

 Good documentation is difficult to find and is often outdated: nowadays if a

learner wants to work with a specific WAF, he/she has two options: look for

documentation in the WAF official website, or look for documentation in other

20 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

websites. The first site usually provides a cookbook to work with, but maybe learners

want to access examples or to answer specific questions. The problem with other

websites is that they could show deprecated information, wrong examples and could

affect the learner software quality.

 How to drive the WAF learning is a learner task: the actual WAF documentation

methodologies don‘t drive developer/learner in his/her learning. It means developers

have to select by themselves the material they want to learn, but sometimes, they

select material that is not related with their necessities. The reality is that developers

don‘t need to understand all WAF usage; they only need to understand what is related

with their software requirements.

 WAF documentation material is limited: Currently, there are some methodologies

which proposed how to document and show a framework document [15][16][17][18].

But the reality is WAF creators only create cookbooks, despite of the other

methodologies that could be useful for different learners. Also, techniques for WAF

understanding are still not studied in detail.

2.2 Research questions

From the aforementioned open research issues, a few research questions revolve around

a major question that is considered central to the presented research work: How to

improve WAF learning? Those questions are listed next.

 Do WAFs share characteristics between them? What are the similarities between

different WAFs? Is it possible to establish a list of WAF common components? (see

section 3.1)

 What are the WAF learner goals? Where do they start? What do they look for? What

are the learners concerns? (see section 3.2)

 What kind of documentation materials could serve as a base to improve the WAF

learning? (see section 3.3)

 How to connect the learners concerns with the specific WAF material? How to drive

learners in their WAF learning? (see section 3.4)

Research Problem 21

2.3 Thesis statement

Based on the research challenges presented before (sections 2.1 and 2.2) and the state-

of-the-art review (Chapter 1), we state that:

“Providing a new WAF learning technique that focus on the specific learner concerns and

provide a specific learning material composed by micro documentation and examples will

allow WAF novice learners, to acquire WAF knowledge and develop their application in

less time than with the common learning materials”

What is meant by “a new learning technique”? A new method composed by different

steps and materials which helps a learner to drive their own learning.

What is meant by “micro-documentation”? A documentation of an atomic element of a

specific WAF (see section 3.1.3).

How the knowledge acquired by learners is measured? In chapter 4 a quasi-

experiment is developed. The knowledge acquired is measured when learners are

submitted to a post-questionnaire which contains some WAF questions.

Who are the novice WAF learners? Any developer who never had developed

applications by using a WAF.

How time is measured? In chapter 4 a quasi-experiment is developed. Time is

measured by the completion of different tasks. In which some learners are divided in

groups, some of them had to use the common learning materials and other the new

learning technique materials. At the end time is compared.

What are the “common learning materials”? Usually for WAF learning, WAFs only

provide a cookbook or a web tutorial plenty of documents that indicates how the WAF

works and how to use it.

2.4 Research hypothesis

The previous thesis statement could be redefined as the follow hypothesis:

H: Providing novice WAF learners with the new WAF learning technique reduces the time

they need to reuse the WAF, and increases their knowledge of the WAF.

22 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

2.5 Research goals

This thesis aims at contributing to the body of knowledge in software engineering.

Concretely, it strives to improve WAF learning for novice developers, by driving the

developer WAF learning and giving a specific learning material to him/her. This will be

achieved in four ways:

1. By guiding learners WAF learning by their own concerns: Before to start using the

learning material, a learner has to identify their own concerns. Then, he/she has selected

his/her related concerns and the specific related material is given to him/her.

2. By providing example materials: Each developer concern will have an associated

code-example that will serve as a base to develop his/her own applications and that will

serve as a base of code reuse and as a base to understand how the WAF components

are connected.

3. By defining a unique documentation pattern to different WAFs: by using the same

documentation strategy, developers can find a specific learning material over different

WAFs without spending too much effort.

4. By providing a learning tool: A web application tool will be developed in order to

facilitate the documentation completion and serve as a tool to drive the developer WAF

learning.

2.6 Summary

WAF learning is a complex task; we identified some specific issues and challenges in this

domain: (i) WAF learning continue being a difficult task, (ii) good documentation is difficult

to find and is often outdated, (iii) WAF novice learners has to conduct their own WAF

learning –despite of their lack on WAF knowledge–, and (iv) WAF documentation material

is limited.

Based on these issues four main goals were identified: (i) guiding learners WAF learning

by their own concerns, (ii) providing example materials, (iii) defining a unique

documentation pattern to different WAFs, and (iv) providing a learning tool. Later in

chapter 4 the author proposes to validate the proposed goals through developing of a

controlled (quasi-)experiment, performed in academic contexts.

3. Solution

This chapter contains the key contributions of this thesis. It defines the principal elements

that are used in the new WAF learning technique. Each section of this chapter tries to

resolve a research problem (see section 2.1). At the end all these elements are combined

into the new WAF learning technique (see section 3.4), as a whole it defines the path

novice learners should follow in order to learn to use a new WAF.

3.1 WAFs Components

3.1.1 Introduction

This section deals with the first issue: ―Learning a new WAF continues being a difficult

task‖. We initiate describing how nowadays the WAF learning environment is. We state

that WAF learning is difficult to achieve because WAFs have many components. So,

classifying and understanding how these components work is the section main objective.

Next, a study over six WAFs (Codeigniter [55], Yii [59], Prado [60], MVC4 [61], Ruby on

Rails [62] and Cakephp [63]) was developed. In this study we identify a common list of

WAF components. These components are used to develop a wide range of applications in

all WAFs. Besides, we establish a list of micro-tasks for learning how to use each

component. These micro-tasks described in a very low level how each component is

composed and what are the specific elements they use. Finally, we represent over

Codeigniter a specific component with their specific micro-tasks. The main ideas of this

chapter are: (i) to understand the WAF learning environment and how WAFs are

composed, (ii) to classify WAF main components, and (iii) to define a list of micro-tasks

which describe of components are composed and they work.

Establishing a list of WAFs main components and their micro-tasks, serves as a base to

define a unique documentation pattern to different WAFs.

24 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

3.1.2 WAF learning environment

Deep WAF knowledge is difficult to achieve because these tools have many components

and elements. Most WAFs have for example a role manager component –which allows

managing the application permissions–; an error handler component –which allows

capturing and displaying properly the information errors–, a route manager –which

establish the communication between the different framework layers–, and a cache

component, among others. These components are crucial to software reuse techniques,

but too many components are involved in complex WAF development technologies

[6][7][38].

In Figure 3.1 we use the so-called pre-conceptual schemas [39] for representing the

actual WAF learning environment. Sometimes, the only guidelines for developers are the

official documentation, regarding other knowledge bases from which they can extract

information. In other cases, developers are assigned to an expert developer or a partner

who guides him/her in the learning process. In such cases, time-usage and teaching-

based constraints leave the novice developers unguided.

Figure 3-1: A representation of the WAF learning environment.

By pointing the key components the developer have to look for—during WAF

understanding process—and by presenting the learning tasks associated with each

element, we expect to significantly improve the WAF learning process.

3.1.3 Establishing WAF Components and Micro-tasks

During the 2013, we built seven applications —e.g., currency converter, create-read-

update-delete (CRUD) facilities for several database management systems, a light course

WAF Components 25

application, data validations, and so on— in various WAFs (Codeigniter [55], Yii [59],

Prado [60], MVC4 [61], Ruby on Rails [62] and Cakephp [63]) in which we covered a

diverse set of concerns (described at section 3.2). No matter we use different WAF

components in order to build similar applications we recognize we are using the same

purpose-oriented components, such as: error handler, data validation, role manager,

ORM, AJAX, auto-code generators, and template manager, among others. Consequently,

the WAF facilities should be considered the same. Their differences were essentially

related to syntax and WAF functionalities.

After these studies, we decided to create a WAF generic components list. First, we

decided to use a unique name for similar components. For example, the component

responsible for establishing a device for accessing the methods or functions of a

controller (routes) in the Yii framework is called "URL Management," while in Codeigniter

is called "URI Routing." Instead of identifying those components by their proper names,

we decided to call that component "Route Manager". By looking to our list a developer

working with an unknown WAF can understand what components are shared by other

WAFs and what components are new.

Figure 3.2 shows an example of the done process. This was a piece of code of a login

system developed in Codeigniter WAF, in this piece of code were identified 4 key basic

micro-learning-tasks (for simplicity micro-tasks) that a developer should read and follow in

order learn how to develop his/her application, these micro-tasks are related with a

specific WAF generic components.

Figure 3-2: An example of Codeigniter components and micro-tasks identification.

26 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Based on the above statements we established 13 WAF main components [2]. Each

component has different micro-tasks (see example figure 3.3). These micro-tasks were

created based on our experience developing software applications in WAFs at the

university, and using WAFs for real projects; they defined at very low level the crucial

elements of each component and how they work. Table 3.1 includes WAF main

components, its description, and the associated micro-tasks.

Figure 3-3: A component with its specific micro-tasks.

Table 3-1: WAFs Components.

Component Description Micro-Tasks

Superclass model

It provides a list of useful
methods, functions and
variables can be used by
models for extension purposes.

- Identify what functions are available
- Identify how to create model classes and what
functions should be override
- Identify how to create new class functions
- Identify how to call attributes and functions classes

Components

- Superclass model

- Superclass Controller

- Route Manager

- Error Handler

- Template Manager

- Database Manager

- Role Manager

- Data Validation

- Helper

- Cache

- ORM

- Automatic code generator

- Tester

- Identify how to create

controller classes and what

functions should be override.

- Identify how to call model

classes.

- Identify how to call libraries

or plugins.

- Identify how to call views.

- Identify how to receive data

from views.

- Identify how to do redirects.

Micro-Tasks

WAF Components 27

Component Description Micro-Tasks

Superclass
Controller

It provides a list of useful
methods, functions and
variables can be used by
controllers for extension
purposes.

- Identify what functions are available
- Identify how to create controller classes and what
functions should be override
- Identify how to call model classes
- Identify how to call libraries or plugins
- Identify how to call views
- Identify how to do redirects
- Identify how the variables get, post, session, and
files are treated
- Identify how to receive and send data to views
- Identify how to show results by pages
- Identify how to manage different packages of
languages
- Identify how to show information depending on
user’s location
- Identify how to manage login and logout
- Identify how to upload files
- Identify how to design an application for desktop
and mobile

Route Manager
It establishes a device for
accessing controller methods
or functions

- Identify how URLs are and what means each part of
the URLs
- Identify how to send and receive data from URLs

Error Handler
It defines the way to catch and
show the errors.

- Identify what the sections to catch errors are
- Identify what the types of errors are
- Identify how to capture and show these errors

Database Class

It defines the way for
accessing, editing, or saving
information into the database
by using controllers and
objects.

- Identify how to connect to a specific database
- Identify how to add data to the database
- Identify how to delete data from the database
- Identify how to edit data from the database
- Identify how to filter data
- Identify how to select data from the database (even
information from various tables)
- Identify additional functions or functionalities

Template
Manager

Also called "template engine,"
it provides communication
bridges between controllers
and views and defines some
functions and special syntax in
both layers.

- Identify if a different syntax is used in the view layer
and how it works
- Identify how the communication between controller
and view layers is achieved
- Identify what functions are available
- Identify how the variables get, post, session, and
files are treated
- Identify how to create styles (css files) and where
are located

Role Manager

It provides a way to verify
whether or not a user is
granted to manipulate specific
resources, or whether he/she
is allowed to enter to specific
zones.

- Identify how to validate permissions in the
application
- Identify how to grant access to specific areas.
- Identify how to add types of roles

28 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Component Description Micro-Tasks

Data Validation

It defines how to validate that
information in objects or
variables is right. In some cases
this component is associated
with the model layer. Besides,
sometimes it defines a list of
functions or elements to check
the right type of variables.

- Identify how validations in control layer are treated
- Identify how validations in view layer are treated
- Identify how validations in model layer are treated
- Identify what kinds of validations are predefined
- Identify how to create new validation types

Cache

It defines a way of caching
webpages, in order to achieve
maximum performance and
improve the server load.

- Identify how to call cache
- Identify where cache is used

Helper

Helpers are collection of
functions in a particular
category. They are helpful for
doing tasks.
For example, some URL
Helpers support the link
creation and the element form
creation, among others.

- Identify what kinds of helpers exist
- Identify what facilities give each helper and how to
use them
- Identify how to create and connect a new helper or
library

Tester

It provides a device to test and
debug your applications, to
find possible bugs, with real
data or sample data. It allows
you to show debugged
information about the
contents of variables.

- Identify how to create unit tests
- Identify how to debug information

ORM

It defines a mapping between
objects and relational
databases. Some WAFs use
their own classes (or functions
in the model layer) and others
use ORM programs.

- Identify how the transformation among relational
databases and class objects is achieved
- Identify how various objects are gathered from
different classes
- Identify how one-one and many-many relations,
among others, are treated
- Identify how to call specific SQL statements

Automatic code
generator

It provides a way to
automatically generate code,
e.g. in some cases WAFs
provide a CRUD module
(create-read-update-delete).
This module usually works
adding information from a
form.

- Identify how to call and use auto-code generators.
- Identify what information is created and how to edit
it
- Identify how to delete that information

WAF Components 29

Representing one component on Codeigniter

The main WAF components depicted in the Table 3.1 can be exemplified by representing

an actual WAF. We selected Codeigniter for this purpose.

We extend the use of pre-conceptual schemas by using the so-called executable pre-

conceptual schemas [40] in order to represent our example.

Figure 3-4: A component on Codeigniter with its specific micro-tasks.

In Figure 3.4 we propose the representation of the Codeigniter "Error handler"

component. In this Figure we represent the component micro-tasks and documentation.

Besides, we provide some information to the developer about what he/she will find and

what he/she will need to use from that component. Such information could be used as a

starting point in order to acquire knowledge about how the component works and what

30 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

are its principal elements. Also, the representation provides a link to where to go for more

information.

An expert can pick up some information for completing the pre-conceptual schema, and

can provide such information to novice developers. Also, the use of executable pre-

conceptual schemas could be useful in order to create a functional application in which

the Meta model information is stored.

3.1.4 WAFs components summary

WAF learning is a complex task to achieve because these tools have many components.

These components seem to be very similar no matter the WAF a developer use. We

developed a research in which we built seven mini-applications covering a diverse set of

concerns (described at section 3.2) in six WAFs (Codeigniter, Yii, Prado, MVC4, Ruby on

Rails and Cakephp). After this process we establish that no matter we use different WAF

components in order to build similar applications we recognize we are using the same

purpose-oriented components. Consequently, the WAF facilities should be considered the

same. Their differences were essentially related to syntax, availability and WAF

functionalities. Finally, we establish a list of micro-tasks for learning how to use each

component. These micro-tasks described in a very low level how each component is

composed and what are the specific elements they use.

3.2 Web Application Concerns

3.2.1 Introduction

This section deals with another issue: ―WAF novice learners have to drive their own WAF

learning –despite of their lack on WAF knowledge–‖. We initiate the section studying the

reasons that motivate developers to learn how to use a WAF. Then, some important

issues are highlighted: (i) no matter the reason, the final goal for learning a WAF usage is

to develop specific web applications, (ii) when developers have different requirements

they have different learning interests or concerns, and (iii) a developer should focus in the

WAF material that supports his/her interests or concerns. Based on these statements the

author develops a new web application concern list and connects this list with the WAF

components and micro-tasks previously described (see section 3.1). The main idea is to

define a simple way to filter the WAF material that is related with the developer concerns.

3.2.2 Developers Concerns

Developers learn to use WAFs for different reason: developing a software project,

acquiring more knowledge, applying for a job position, accessing the training about tools

in organizations, etc. However, no matter the reason, the final goal for learning a WAF

usage is to develop specific web applications.

These specific web applications could be very different from one to another. For example:

 Developer A could be requested to develop a complex Customer Relationship

Management (CRM) system.

 Developer B could be requested to develop a simple static website.

 Developer C has to develop a simple under-construction home page.

The first application –CRM system– involves a lot of requirements, more than the other

applications. That means developer A has to acquire more WAF knowledge –reading and

accessing more WAF information– than the other developers. We could also recognize

that application B probably involves less data persistence and less database effort, and

finally probably application C only involves displaying information on screen (i.e.,

developer C is focused on a very specific concern). In other words, different developers

are driven by different interests or concerns.

32 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

This concept highlight a very important point: when developers have different

requirements they have different learning interests or concerns.

Consequently, if in the learning process, a developer should focus only in the WAF

material related with his/her interests or concerns, he could save time and effort in order

to learn the WAF and developing the web application.

How to identify web developers‘ main concerns is the main objective on this chapter.

Besides, how to connect these concerns with the specific WAF documentation is

described later in this section.

The use of Concerns

In the software development context, a concern is a particular goal, concept, or area of

interest. For example, the core requirements of a library borrow card processing system is

related to processing book transactions; while its system level concerns would be handle

logging, transaction integrity, authentication, security, performance, etc. [21].

This idea, of separation of concerns was since the beginning a characteristic of almost all

Web methodologies, like HDM [22], OOHDM [23], etc. At the beginning, this separation of

concerns was only applied to the design and implementation phases of the development

process. But, nowadays we can observe a clear tendency towards a separation of

concerns from the very beginning, i.e. during the requirements elicitation phase. It is

interesting to remark, that the use of different terminology for the same or similar concepts

made a comparison study difficult. We stress the need to standardize the terminology

used in Web methodologies [24].

Some authors use concerns to create metamodels of web applications [25][26]. Kong et al

[27] use separation of concerns to define perspectives of the different participants in the

web application development process. Like: business owners, web system users,

information architects, system architects, developers, and testers. Sousa et al [28] use

concerns in Aspect-Oriented Software Development (AOSD). They use them at various

levels of abstraction, from requirements (even to declare non-functional requirements like:

security and performance) to design artifacts. Brito et al [29] use them to refer to a matter

of interest which addresses a certain problem that is of importance to one or more

stakeholders, defining a concern as a property that the future system must provide.

Web Application Concerns 33

Based on this perspective, we could face the WAF learning by using separation of

concerns. Separation of Concerns (SoC) has been used in multiples software areas

during the last years, e.g., requirements specifications [30], framework architectures [27],

and aspect-oriented programming [31]. SoC is a basic principle of software engineering.

Derived from common sense, SoC essentially means that dealing successfully with

complex problems is only possible by dividing the complexity into sub-problems which can

be handled and solved separately from each other [32].

We use these separation of concerns connected to WAF components and micro-tasks,

giving a specific structure of the elements that a developer should learn for supporting the

application requirements.

3.2.3 Creating a new web application concern list

Some authors have defined different concern lists or methods to define concerns

[27][28][29][30], but in most cases the definition of these concerns is delegated to an

analyst. In other cases, the concern list is just a list of non-functional requirements or a list

of high level objectives like: immunity, integrity, precision, robustness, among others.

However, these concern lists are very general and are difficult to adapt to the specific

WAF components and elements that a developer should learn. So, based on the idea of

driving WAF learning through a concern list, we developed a new web application concern

list.

In order to develop this list, we analyzed more than 20 web projects that were develop by

computer science students in a course during 2012 and 2013. These projects are based

on real industry needs. We found similarities among each project requirements and we

grouped them in a concern list. In this analysis we registered how many projects required

a specific concern. Also, this analysis shows that no matter how different seems each

application from one another, they use similar concerns.

After this process, we define in Table 3.2, 29 concerns and we categorize them in

different groups [42]. At the beginning a developer has to recognize the specific

requirements for the project he/she is working on. After that, he/she has to carefully read

34 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

each concern and its specific description. Finally, he has to select the concerns which are

involved in his/her project requirements.

At the end of the section each concern will be connected to the specific components or

elements of a WAF. This generates a personalized learning guide.

Table 3-2: Web application concerns list.

Concern
(Times of

appearance on
projects)

Category We suggest to select this concern if:

1
Display
information on
screen (20)

User
Interface

You have to display information on a screen.

2
Stylized
screens (20)

User
Interface

Your screens have to be edited and stylized usually

through a CSS file. Sometimes WAFs are based on

prefabricated styles.

3

Tools and
accessories
for creating
views (20)

User
Interface

You have to create forms, tables, or other view

elements. (Some WAF support to create faster view

elements usually using front-end languages like html).

4
Routes and
navegability
(20)

User
Interface

You need to display a screen. Each application section

or link has a specific route. These routes and their

connections are very different from WAF to WAF.

5
Capture and
assign data
(20)

User
Interface

Your application involves creating forms, to capture

data, or to send data from a controller to a view.

6
Client-side
data validation
(20)

User
Interface

You need to do validation in client side like guarantee

not empty forms or specific type of data or validations

using AJAX. Besides, don't forget to revalidate in server-

side.

7
Upload files
(13)

Architecture
and data flow
control

You need to upload files like images, and documents,

among others.

8
Error handling
(20)

Architecture
and data flow
control

Your application generates client errors, or database

errors, or any kind of errors. It is important to know how

to treat them, how to capture them and show them.

9
Internationaliz
ation (3)

Architecture
and data flow
control

Your application requires multiple languages or to have

the screens texts centralized (which improves

maintainability).

10
Localization
(2)

Architecture
and data flow

The information displayed on your application screens

depends on user location (e.g., show a specific app to a

Web Application Concerns 35

Concern
(Times of

appearance on
projects)

Category We suggest to select this concern if:

control user on US and another to a user in UK).

11 Caching (3)
Architecture
and data flow
control

Performance is a very important requirement. Some

WAF use caching systems to have pre-storage of the

information.

12 Testing (7)
Architecture
and data flow
control

You need to know how to debug the application

information or to apply some test.

13 Portability (7)
Architecture
and data flow
control

You need to develop a version of your application for

desktops and another for mobiles.

14
Data Selection
(20)

Data
modeling and
persistence

You need to extract data from a class model (usually

connected to a table of your database).

15
Data Selection
with pagination
(19)

Data
modeling and
persistence

You need to extract data by pages from a class model

(usually connected to a table of your database).

16
Data selection
using filters
(20)

Data
modeling and
persistence

You need to select filtered data (usually using specific

searches).

17
Multiple data
selection (20)

Data
modeling and
persistence

You need to extract data from multiple class model

(usually connected to various table of your database).

18
Data storage
(20)

Data
modeling and
persistence

You need to save data from a class model (usually save

data on your database).

19
Data editing
(19)

Data
modeling and
persistence

You need to edit data from a class model (usually

update data your database).

20
Deleting Data
(14)

Data
modeling and
persistence

You need to delete data a class model (usually delete

data your database).

21
Creating
model
functions (20)

Data
modeling and
persistence

You need to create specific functions for your classes.

22
Model-side
data validation
(20)

Data
modeling and
persistence

You need to apply model-side validations.

23
Authentication
(20)

Security
You need a login in your application.

24
Authorization
(20)

Security

You need to grant access to different areas in your

application.

25
Control data in
session (20)

Security

You need a login, a shopping cart or other functionality

that require control data in session.

26
Controller-side
data validation

Security Your application require validate data (usually additional

36 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Concern
(Times of

appearance on
projects)

Category We suggest to select this concern if:

(20) data that data from models).

27
Coupling
modules (14)

Modules and
extensions

You need to couple a specific module in your application

(some WAFs have websites plenty of specific modules

like calendars, pdf generation, transformation to csv and

much more). You have to search if the module you need

is available or you have to develop it.

28
Creating
modules (14)

Modules and
extensions

You need to create a new module in your application.

29
Auto-
generated
code (14)

Modules and
extensions

Your WAF offers the possibility to auto-generate a

CRUD (create-read-update-delete) of a class model.

Table 3-3: Web application projects vs concerns.

Table 3.3 shows the different projects and how was collected the information. A cross in

the table indicates the concern was present in the project.

3.2.4 Connecting concerns with components and micro-tasks

As we see in sections 3.2.1, 3.2.2 and 3.2.3 developers should focus only in the WAF

material related with their concerns. A method to define and filter the WAF material is

connecting the web application concerns to the specific WAF components and their tasks.

Project/Concern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Totto x

MaderApp x x x x x x x x x x x x x x x x x x x

Gestor de fondo emp x

HMRO x

Terebotero x

Supergas x

Agenda x

Calculadora Credit x

Vmaxcoffee x

TierraCafetera x

Inteinsa x

SGI x

Credistore x x x x x x x x x x x x x x x x x x x

Licores x

Hoteles x

Joyeria x

Juegos x

Distrieggs x

Empleos en la red x

Frameworkg x

Total 20 20 20 20 20 20 13 20 3 2 3 7 7 20 19 20 20 20 19 14 20 20 20 20 20 20 14 14 14

Web Application Concerns 37

This connection gives the possibility to know for each concern what are the specific

components and micro-tasks related to start the personalized learning process, allowing

filter information that is not relevant for some developers.

Table 3.4 exhibits the common connection between the lists. The connection is not an

ultimate one; a senior WAF developer could make adjustments as he/she considers.

Later, the main idea is a senior WAF developer define the proper documentation to each

micro-task for a specific WAF (this documentation could be a link to website, forum or

blog; could be a video or a specific explanation text). Later, a real example is developed.

We need to emphasize that one concern could be related to a specific task or multiple

tasks, of one or multiple components.

Table 3-4: Concern List vs WAFs Components list.

Component Micro-Task
 # of related
Concerns

Superclass
model

Identify what functions are available
14, 15, 16, 17, 18,

19, 20, 21

Identify how to create model classes and
what functions should be override

14, 15, 16, 17, 18,
19, 20, 21

Identify how to create new class functions 21

Identify how to call attributes and functions
classes

14, 15, 16, 17, 18,
19, 20, 21

Superclass
Controller

Identify what functions are available 1

Identify how to create controller classes and
what functions should be override

1

Identify how to call model classes
14, 15, 16, 17, 18,

19, 20, 21

Identify how to call libraries or plugins 27, 28

Identify how to call views 1

Identify how to do redirects 8, 23, 24

Identify how the variables get, post, session,
and files are treated

5, 23, 25

Identify how to receive and send data to
views

5, 7

Identify how to show results by pages 15

Identify how to manage different packages
of languages

9

Identify how to show information depending
on user‘s location

10

Identify how to manage login and logout 23

Identify how to upload files 7

38 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Component Micro-Task
 # of related
Concerns

Identify how to design an application for
desktop and mobile

13

Route Manager

Identify how URLs are and what means each
part of the URLs

4

Identify how to send and receive data from
URLs

4

Error Handler

Identify what the sections to catch errors are 8

Identify what the types of errors are 8

Identify how to capture and show these
errors

8

Database Class

Identify how to connect to a specific
database

14, 15, 16, 17, 18,
19, 20

Identify how to add data to the database 18

Identify how to delete data from the
database

20

Identify how to edit data from the database 19

Identify how to filter data 16

Identify how to select data from the
database (even information from various
tables)

14, 15, 16, 17

Identify additional functions or functionalities --

Template
Manager

Identify if a different syntax is used in the
view layer and how it works

1

Identify how the communication between
controller and view layers is achieved

1, 5, 7

Identify what functions are available 1

Identify how the variables get, post, session,
and files are treated

5

Identify how to create styles (css files) and
where are located

2

Role Manager

Identify how to validate permissions in the
application

24

Identify how to grant access to specific
areas.

24

Identify how to add types of roles 24

Data Validation

Identify how validations in control layer are
treated

26

Identify how validations in view layer are
treated

6

Identify how validations in model layer are
treated

22

Identify what kinds of validations are
predefined

6

Identify how to create new validation types --

Cache
Identify how to call cache 11

Identify where cache is used 11

Web Application Concerns 39

Component Micro-Task
 # of related
Concerns

Helper

Identify what kinds of helpers exist 3, 27

Identify what facilities give each helper and
how to use them

3, 27

Identify how to create and connect a new
helper or library

28

Tester
Identify how to create unit tests 12

Identify how to debug information 12

ORM

Identify how the transformation among
relational databases and class objects is
achieved

14, 15, 16, 17, 18,
19, 20

Identify how various objects are gathered
from different classes

17

Identify how one-one and many-many
relations, among others, are treated

17

Identify how to call specific SQL statements --

Automatic code
generator

Identify how to call and use auto-code
generators.

29

Identify what information is created and how
to edit it

29

Identify how to delete that information 29

These lists also give a perspective of the components all developers should take

advantage of. If a WAFs first-time user read the concern list, he/she could find crucial

concerns unknown to him/her (e.g., internationalization, caching, and portability, among

others). This means that if he/she implements these concerns at the beginning of the

development; the final application would have more quality.

The final step, given the learning tasks, is to associate the specific learning material for

each micro-task in a specific WAF. As these associations are very different for each WAF,

and are out of our scope, we suggest this process should be done by a senior WAF

developer –we design a laboratory case with real material on Codeigniter at chapter 4- .

Additionally, we developed a web application capable to register these associations (see

section 3.4.3).

Figure 3.5 is developed by using an executable pre-conceptual schema [40]. In this figure,

we show an example about how concerns, components and micro-tasks are connected. If

a developer is only interested on capturing and fixing errors, he/she has to read and learn

micro-tasks documentation. If a developer is interested on the error handling concern,

40 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

he/she could be also interested on others concerns like: ―display information on screen‖ or

maybe ―Client-side data validation‖, which increase the number of components and micro-

tasks he/she has to analyze and learn.

Figure 3-5: A concern connected with Codeigniter components and their specific

micro-tasks.

Selecting concerns examples

Suppose that a developer is requested to build an application module by using a new

WAF. After the requirements elicitation process, the following requirements list is

presented:

 The application has to extract the real estate information from the main database.

 Only admin users—already created in the database—can access the real estate

information. Then, a login system is required.

 Admin can filter real estate information ordered by name, location or type.

Web Application Concerns 41

We assume the requested developer should select the concerns listed in Figure 3.6.

Similar to Figure 3.5, each concern of Figure 3.6 will be connected to its related

components and tasks –as specified in table 3.4–. Concerns of the Figure 3.6 support

developers as personalized learning guides, i.e., before starting the learning process,

developers can discard some documentation unrelated to his/her needs.

Figure 3-6: Example of concerns selection.

3.2.5 Web application concerns summary

Nowadays, separation of concerns has been applied to different phases of the

development process. This concept essentially means that dealing with complex

problems is only possible by dividing the complexity into sub-problems. WAF learning

could be considered as a complex problem, so we decided to use this concept to face this

problem. We analyzed some web applications projects in order to find the common

developers concerns. This analysis showed that no matter how different seems each

application from one another, they use similar concerns. After this process we developed

a new web application concern list. The main idea is developers have different

requirements which mean they have different learning interests or concerns. So, if at the

begging they identify what are their specific related concerns, they could find the specific

WAF material that is related with their requirements. Finally, we connected web

application concerns list with WAF components list and their micro-tasks. This connection

gives the possibility to know for each concern what are the specific components and

micro-tasks related to start the personalized learning process.

42 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

3.3 Introducing the use of examples

3.3.1 Introduction

This section deals with the last two issues: ―good documentation is difficult to find and is

often outdated‖ and ―WAF documentation material is limited‖. We initiate the section by

introducing the importance of good examples. We establish some benefices of their

incorporation into the new WAF learning technique; finally, we present a list examples

connected with the previous concerns.

3.3.2 The use of examples

Related work

Some authors have emphasized the evolutionary importance of learning by observing

and/or imitating what other people do, say, or write. Some of them agree it would be

impossible (not to mention quite dangerous) for a human being to discover by one's own

experience the vast amounts of knowledge that our ancestors developed over thousands

of years. It is much more efficient to borrow this knowledge from others and reorganize it

to fit in with one's existing knowledge and use it to one's own purposes [33].

Research on studying worked examples has consistently shown that for novice learners,

instruction that relies more heavily on studying worked examples than on problem solving

is more effective for learning, as well as more efficient in that better learning outcomes are

often reached with less investment of time and effort during acquisition [34][35].

In the software area, besides of being useful for learning, providing examples have some

others positive benefits:

 The use of examples can reduce the amount of typing required to complete a task, or

ensure that the details of the code are correct [36].

 Finding existing applications that match requirements, and subsequently can be used

as prototypes, would reduce the cost of many software projects [37].

However, it is difficult for developers to find appropriate code examples [37][45].

Sometimes they find wrong or deprecated material and solutions. Besides, examples

44 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

alone are not sufficient for the effective learning of application frameworks. First, although

examples may contain concrete solutions that are useful to developers, they do not

explicitly explain how the demonstrated solutions are provided by the framework [7].

A real scenario of the use of examples

The primary goal of web developers is to deliver high-quality software efficiently and in the

least amount of time whenever possible [43]. But as we see in the previous chapters, the

learning process is difficult and time-consuming. The different framework documentation

techniques require that the developer puts much effort to browse and find the good

documentation [44].

Let‘s check this real scenario:

A person asked this question ―how to pass id in controller from form action using

Codeigniter‖ in StackOverFlow website [46]. These kind of websites are plenty of good

people who try to answer others questions. So, there is another person who answered

with the next code:

<form class=”addinvestmentform” action=”<?php echo

base_url();?>index.php/ctl_dbcont/input_investment” name=”application”

method=”post” >

<input type=”hidden” name=”my_id” value=”<?php echo $id; ?>”/>

</form>

The previous answer was checked as the useful answer.

Now, imagine that there is a developer called ―Juan‖ who has a similar requirement. By

using Google, Juan has a probability of finding the previous link. And he could use that

example as a base for his projects.

However, the previous code doesn‘t have good quality. The official documentation

recommends using:

echo form_open('ctl_dbcont/input_investment ');

Instead of:

<form class=”addinvestmentform” action=”<?php echo

base_url();?>index.php/ctl_dbcont/input_investment” name=”application”

method=”post” >

Introducing the use of examples 45

The reason is simple: the first code will automatically insert a hidden CSRF field in your

forms (that protects you application against CSRF hacking [47]). The second one doesn‘t

have this protection.

This is not fault of the person who answered the question. Because, these specific details

are not known by all developers, but this case shows that is difficult to know if an example

(that doesn‘t belong to the WAF official website) is of good quality or not.

There are other real scenarios like finding wrong solutions or deprecated solutions which

could affect the software quality.

3.3.3 Creating a list of examples

Commonly examples are transversal to the WAF architecture, a simple ―hello world‖

example could cross through different WAF layers and components. These examples are

useful to identify the relationship between different components. Due to examples

characteristics and based on the previous statements, we decided to create a list of

examples that we consider useful for WAF learning. These examples are connected to

web application concerns (described at section 3.2). Each concern has associated an

example, gluing together the components and micro-tasks. As a bonus, these exercises

provide a source of code reuse.

Table 3.5 exhibits the list of the proposed examples. Each concern has associated one

example. Even when the example description is the same for all WAFs, each example

has its own solution in a specific WAF –due to the different WAFs syntax and their own

elements–. Similar to micro-tasks, these examples must be codified by senior WAF

developers. Table 3.5 shows:

 Concern: the name of the concern involved.

 Description: a brief description of the example.

 Elements to be coded: a list of elements that a senior WAF developer has to

implement in order to develop a functional example in a specific WAF.

 Name: the name of the mini-application or example.

 Base: the name of the base example. Some examples use a previous example as a

base and redefined it.

46 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Conventions:

 [C:test] indicates to create a controller with name ‗test‘.

 [V:test] indicates to create a view with name ‗test‘.

 [M:test] indicates to create a model with name ‗test‘.

 [F:test] indicates to create a file with name ‗test‘.

 [C:test_2] <- [C:test] indicates to copy the content of controller ‗test‘ into controller

‗test_2‘.

Table 3-5: List of examples of each concern.

Concern Description Elements to be coded Name/Base

Display
information on
screen

This is a hello
world example
that is composed
by 3 views and in
the second view
shows a
message
"welcome to the
app"

 [C:hello]

 [V:header] (Design it as you
consider).

 [V:hello] Put a message "welcome to
the app".

 [V:footer] (Design it as you consider).

Name:
hello_world

Stylized
screens

In this example
the senior WAF
developer
suggest some
style
modifications to a
3 simple views.

[C:hello_2] <- [C:hello]
[V:header_2] <- [V: header]

[V:hello_2] <- [V:hello]
[V:footer_2] <- [V: footer]

 [F:bootstrap.css] Implement
bootstrap CSS (or the default WAF
CSS).

 Decorate [V:header_2] [V:hello_2]
[V:footer_2] (Design it as you
consider).

Name: hello_2

Base: hello_world

Tools and
accessories
for creating
views

This example
explains how to
create the views
using the proper
WAF elements. In
this case how to
show a list of
people and a
form to add new
ones (the form
isn‘t functional).

 [C:people] Create a list of 5 people
(with just a name and an email).

 [V:people] Display the list of persons
(using WAF elements to create
tables) and create a form to add new
people (using WAF elements to
create forms). The form doesn‘t have
to be functional.

Name: people

Routes and
navigability

This example
explains how to
navigate between
different app
sections. In this
case between
home and about
sections.

[C:routes] <- [C:hello]
[V:routes] <- [V:hello]

 [V:routes] Create an additional text
"About Section" and implement a link
in this text to 'about section'.

 [V:about] Display short information
about the app developer (as you

Name: routes

Base: hello_world

Introducing the use of examples 47

Concern Description Elements to be coded Name/Base

want).

Capture and
data
assignment

This example
uses a simple
currency
converter in order
to explain how to
capture and
assign data. The
user enters an
amount and rate
and the app
simply executes a
multiplication.

 [V:currency] Create 2 inputs and 2
texts (amount – rate; ―Enter the
amount‖, ―Enter the rate‖
respectively) and a submit button
‗Send‘.

 [C:currency] Capture this
information by post in the proper
method and assign the result to the
[V:currency_res].

 [V:currency_res] show the result of
multiply the amount by rate.

 Try to use a method to prevent: SQL
injection and CSRF and XSS
attacks.

Name: currency

Client-side
data validation

Based on the
currency
converter, this
example adds a
client-side
validation.

[C:currency_client] <- [C:currency]
 [V:currency_client] <- [V:currency]

[V:currency_client_res] <-
[V:currency_res]

 [V:currency_client] Add client-side
validation and validate that amount
and rate inputs are required, are
numeric values and aren‘t negative
numbers.

Name:
currency_client

Base: currency

Upload files

This example
explains how to
upload PDF files
to the app
through a simple
form.

 [V:file] Create an input type file and a
submit button ‗Send‘.

 [C:file] Validate the file type (only
PDF files are allowed). Later upload
this file to a folder called uploads (or
the proper WAF uploads folder).

Name: file

Error handling

Based on the
currency
converter with the
server validation
‗currency_handlin
g‘, this example
adds a proper
way to catch the
errors and display
them.

[C:currency_handling] <-
[C:currency_server]

 [V:currency_handling] <-
[V:currency_server]

[V:currency_handling_res] <-
[V:currency_server_res]

 [C:currency_handling] Eliminate the
alert ‗Error‘. In the case of one
controller validation fails over
capture the error and show the error
in [V:message] (or use the proper
WAF view error mechanism) also
shows [V:currency_handling]
repopulating the previous data
(amount - rate).

Name:
currency_handlin
g

Base:
currency_server

Internationaliz
ation

This example
explains how to
manage different
language
packages. If a
user clicks

 [C:international]

 [V:international] Display 2 hyperlink
texts (‗English‘ and ‗Spanish‘) each
hyperlink call a method of
[C:international] and send different
vars by GET (‗en‘ – ‗spa‘,

Name:
international

48 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Concern Description Elements to be coded Name/Base

‗English‘ it will be
displayed a
message:
―Welcome this is
an English text‖.
And it the user
clicks ‗Spanish‘ it
will be displayed
a message:
―Bienvenido este
es un texto en
español‖.

respectively).

 [V:international_text] Depending on
each var previously selected,
[C:international] will be load a
different language file (that contains
vars with texts) and it will display
[V:international_text] with the proper
vars (NOT static text) with the texts
(―Welcome this an English text‖,
―Bienvenido este es un texto en
español‖, respectively).

Localization

This example
explains how to
manage the
users‘ locations.
It displays
different
information
depending of the
user location.

 [C:localization] Capture the location
where the user is.

 [V:localization] Display a message:
―You‘re in US‖ (if the user is in US)
or ―You‘re outside US‖ (if the user is
outside US).

Name:
localization

Caching

Based on user
selection, this
example explains
how to read a list
of users directly
from a cache file
instead of a
database.

[M:user] <- [M:user]
 [V:cache] <- [V:user_select]
[C:cache] <- [C:user_select]

 Create all items from notes 1 and 2*.

 [C:cache] extract all users from the
database and show them in
[V:cache]. But, if the information is
cached, discard read information
from the database and read it
directly from a cache file.

Name: Cache

Base: user_select

Testing

Based on user
selection, this
example explains
how to active the
debug system
and how to
display different
information like:
queries, memory
use, get and post
data, among
others.

[M:user] <- [M:user]
 [V:debug] <- [V:user_select]
[C:debug] <- [C:user_select]

 Create all items from notes 1 and 2*.

 [C:debug] extract all users from the
database and show them in
[V:debug]. Enable the debug system,
show the content of the variables
used, the queries, and the memory
used.

Name: test

Base: user_select

Portability

This example
explains how to
display different
views depending
of the user‘s
device (for
example if a user
is navigating
using a desktop
computer or a

 [C:portability] Detect if the user is
navigating in a desktop computer or
a tablet. If the user is navigating in a
desktop it‘ll display
[V:desktop_index] that is inside
subfolder ―page‖ and if the user is
coming from a tablet it‘ll display
[V:tablet_index] that is inside
subfolder ―tablet‖.

 Create two subfolders ―page‖,

Name: portability

Introducing the use of examples 49

Concern Description Elements to be coded Name/Base

tablet). ―tablet‖ (inside views root folder).

 [V:desktop_index] Display a
message ―Navigation from desktop‖.

 [V:tablet_index] Display a message
―Navigation from tablet‖.

Data Selection

This example
extracts all users
from the
database and
displays them.

 Create all items from notes 1 and 2*.

 [M:user]

 [C:user_select] extract all users from
the database and show them in
[V:user_select].

Name:
user_select

Data Selection
with
pagination

Based on user
selection, this
example displays
the users‘
information by
pages. 5 users by
each page.

[M:user] <- [M:user]
 [V:user_select_pags] <- [V:user_select]
[C:user_select_pags] <- [C:user_select]

 Create all items from notes 1 and 2*.

 Create at least 7 new users using
the database manager.

 [C:user_select_pags] extract the first
5 users from the database and show
them in [V:user_select_pags]. By
default the page app will be 1. So,
the controller has to capture the
page and depending of the page
display the proper users.

Name:
user_select_pags

Base: user_select

Data selection
usign filters

Based on the
user selection
this example
shows how to
extract all the
‗female‘ users
from the
database and
display them.

[M:user] <- [M:user]
 [V:user_select_filter] <- [V:user_select]
[C:user_select_filter] <- [C:user_select]

 Create all items from notes 1 and 2*.

 [C:user_select_filter] extract all the
female users from the database and
show them in [V:user_select_pags].

Name:
user_select_filter

Base: user_select

Multiple data
selection

This example
explains how to
select data from
multiples models.
It extracts all
information from
users and their
respective
quotations.

 Create all items from notes 1, 2, 3
and 4*.

 [M:user]

 [M:quotation]

 [C:multiple] extract all users with
their specific quotations from the
database and show them in
[V:multiple].

Name: multiple

Data storage

This example
explains how to
save data (a
user) at the
database.

 Create all items from notes 1 and 2*.

 [C:user_storage]

 [V:user_storage] that display a form
with input texts: name and email.
And select gender (‗male‘, ‗female‘).
After the a user completes and
sends the form, the app will assign
the data to [M:user] or/and use a
model function and it‘ll add the data
to the database.

Name:
user_storage

50 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Concern Description Elements to be coded Name/Base

Data editing

This example
explains how to
edit data. It
allows entering a
user id and after
that allows editing
the user selected.
Finally it updates
the user‘s
information at the
database.

 Create all items from notes 1 and 2*.

 [M:user]

 [V:choose_user] Display an input
text to collect the user ‗id‘ and a
submit button ‗Send‘.

 [C:user_update] When the submit
button is pressed this controller
displays another view
[V:user_update] that shows the
complete information of the user
previously selected. And allows
editing it.

 [V:message] Display a message
‗User successfully updated‘ when the
user is edited.

Name:
user_update

Deleting Data

This example
shows how to
delete a user
from the
database.

 Create all items from notes 1 and 2.

 [M:user]

 [V:user_delete] Display an input text
to collect the user ‗id‘ and a submit
button ‗Send‘. When the submit
button is pressed the user has to be
deleted from the database and a
success [V:message] is displayed.

Name:
user_delete

Creating
model
functions

This example
explains how to
create model
functions. In this
case it‘s created
a function
‗gender‘ which
returns the name
of the female
users.

 Create all items from notes 1 and 2*.

 [M:user] Create a function called
‗gender‘ that receives all users‘ info
and return the name of all female
persons.

 [C:gender] Collect all users‘ info.
Send this info to [M:user] and display
the female names at [V:gender].

Name: gender

Model-side
data validation

Based on the
user storage, this
example explains
how to manage
the model-side
validation. How to
validate if an
element is
required or is an
email, among
others.

[M:user] <- [M:user]
 [V:user_storage_validate] <-

[V:user_storage]
[C:user_storage_validate] <-

[C:user_storage]

 Create all items from notes 1 and 2*.

 [M:user] Create the proper functions
or methods to validate that name is
required, email is a proper email and
gender is ‗male‘ or ‗female‘
(implement this methods in the
controller if is suggested by the
WAF).

 [C:user_storage_validate] After the
form is send, if the validation fails,
the app will display a message
corresponding to the error in
[V:message]. After, it will display the
form [V:user_storage_validate]
repopulating with the previous data.

Name:
user_storage_vali
date

Base:
user_storage

Introducing the use of examples 51

Concern Description Elements to be coded Name/Base

If the validation is correct the app will
assign the data to [M:user] or/and
use a model function and it‘ll save
the data to the database.

Authentication

This example
shows a simple
login system.
Using an email
and a password.

 Create all items from notes 1 and 2.

 [V:login] Create a form with 2 inputs
‗email‘ and ‗password‘.

 [C:login] Collect the form information
and compared with the user table
(also it should be storage in
session). Finally it‘ll display a
message [V:message] logged in
completed.

 Try to use an encryption method for
the password.

Name: login

Authorization

This example
shows a
message
depending if a
user is logged or
not.

 [C:admin] If a user is logged and try
to access to this controller, it will
display a message [V:message]
―welcome to the admin section‖,
else, it will display ―unauthorized
access‖.

Name: admin

Control data in
session

This example
explains how to
add and control
data in session.
In this case how
to add and show
products to a
simple cart.

 [V:cart] Display two products:
‗product 1‘ – ‗product 2‘ (only the
name). Next to each product, display
a button ―Add to cart‖.

 [C:cart] When ‗Add to cart‘ is clicked
the product is added to session. The
products at session will be displayed
at the bottom of the view (if there
aren‘t products, it will show a text
‗there aren‘t products in the cart‘).

Name: cart

Controller-side
data validation

Based on the
currency
converter, this
example adds a
server-side
validation. If a
validation fails
over it displays a
simple ‗error‘
message.

[C:currency_server] <- [C:currency]
 [V:currency_server] <- [V:currency]

[V:currency_ server_res] <-
[V:currency_res]

 [C:currency_server] Apply some
validations: amount and rate inputs
are required, are numeric values and
aren‘t negative numbers. These
validations inside the controller. In
the case of one controller validation
fails over display an alert with the
message ‗Error‘.

Name:
currency_handlin
g

Base:
currency_server

Coupling
modules

This example
explains how to
connect a PDF
module to the
application.
Allowing
converting a text
to PDF.

 [V:pdf] Create a textarea
―description‖ and a submit button
‗Send‘.

 [C: pdf] look at WAF website or
forum for a PDF module or plugin
that allows converting an html text to
PDF. So, it will convert the
―description‖ text to PDF file and
finally the app will allow downloading

Name: pdf

52 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Concern Description Elements to be coded Name/Base

the PDF file.

Creating
modules

This example
shows how to
create a new XLS
module and how
to convert data
into XLS files.

 [F:xls] Create a module xls that
allows converting arrays of data into
XLS files.

 [C:xls] Create 10 users. Using the xls
module convert these users into a
XLS file.

Name: xls

Auto-
generated
code

This example
shows how to
create a complete
CRUD of users
using the WAF
tools.

 Create an example that shows how
to create a CRUD of client [M:user]
using the WAF tools.

Name: crud

*Notes:

1. Create a database test, inside create a table user with the columns id (int - autoincrement -

primary), name (varchar 100, not null), email (varchar 100, not null), gender (varchar 10, not

null) and password (varchar 100, not null).

Create a model [M:user] with the previous information if it‘s required.

2. Using your database manager (like phpmyadmin) create two users: (‗1‘, ‗Daniel‘,

‗dan@test.com‘, ‗male‘, ‗test567‘) - (‗2‘, ‗Sara‘, ‗sara@test.com‘, ‗female‘, ‗test568‘).

3. Create a table quotation with the columns id (int - autoincrement - primary), user (int, not

null), date_created (date, not null), description (varchar 10000, not null), total (varchar 100,

not null).

4. Using your database manager (like phpmyadmin) create two quotation (‗1‘, ‗1‘, ‗2014-03-03‘,

‗test test‘, ‗20 USD‘) - (‗2‘, ‗2‘, ‗2014-03-05‘, ‗test test test‘, ‗100 USD‘).

3.3.4 Use of examples summary

The use of examples have the following benefits: (i) they can reduce the amount of typing

required to complete a task, (ii) finding existing examples that match requirements, can

serve as a base of code-reuse, and (iii) they can portraits the WAF architecture and help

to understand how the WAF components and how the elements are connected. Based on

these statements we decided to incorporate examples in the new WAF learning

technique. Due to examples characteristics, we created a list of examples associated with

the previously defined concerns. At this point we have a list concerns which are

connected with WAF components and micro-tasks. Besides, is proposed a list of

examples for each concern. As micro-tasks associations, we suggest the example

codification process should be done by a senior WAF developer.

3.4 A new WAF learning technique

3.4.1 Introduction

In the previous sections of this chapter we have presented some crucial elements to

improve WAF learning: (i) at section 3.1, we analyzed different WAFs and we identified

WAFs common components and their associated micro-learning-tasks or micro-tasks.

With these elements, we have a complete panorama of the different elements that

developers may to learn to develop web applications with WAFs; (ii) at section 3.2, we

identified a list of common web application concerns, together with a connection of WAF

components and micro-tasks; and (iii) at section 3.3, we propose to improve the learning

material by defining a set specific examples (to be coded on each WAF) for each concern,

as companions of the related micro-learning-task.

Based on those concepts we define the learning steps in the new WAF learning

technique: (i) in the first step the learner extract his application requirements and select

the web application concerns related with his/her requirements; (ii) the corresponding

micro-tasks documentation to each component related with each concern is presented to

the learner, the learner has to read and follow this documentation in order to acquire WAF

knowledge and understand the WAF components; (iii) micro-learning-tasks are, however

not enough to acquire application level skills. Then, parallel to this, for each concern a

meso-task –example– documentation is also presented, the learner has to read the micro-

tasks and codify the meso-tasks in order to obtain more knowledge; and (iv) only after the

learner has deal with the micro-tasks and meso-tasks, he/she is ready to confront the

development of his/her own application –the macro-task–.

At the end of this section, we present the design of a web application to support the new

WAF learning technique. The main objectives of this application are: (i) provide a

mechanism to complete the micro and meso tasks –these should be completed by senior

WAF developers–, (ii) facilitate the access the learning material, (iii) establish a

mechanism to allow learners to select their concerns and present the specific learning

material to each of them.

54 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

3.4.2 Micro-learning and the definition of the new WAF learning
technique

No matter how learning is conceptualized, in all cases there is the possibility of

considering it in terms of micro, meso and macro aspects, levels or tasks [20]. This is the

main concept of Micro-learning. This division theory can be applied to all kind of areas.

Bruck et al [48] implemented micro-learning at the University of Innsbruck within a class of

philosophy for science. In this class, they developed an application of learning cards and

they integrated it in the PC screensavers. Also, they implemented a similar technology in

a governmental entity of the Republic of Austria. The goal of the implementation was to

drive training of public servants and thus help to improve the quality of governmental

services provided to the public. Watson [49] uses micro-learning to separate and create

different learning objects for different courses. Kovachev et al [50] use micro-learning in a

case of bilingual vocabulary learning.

Taking advantage of micro-learning characteristics and the new WAF learning elements

defined, we decided to separate the new WAF learning into micro, meso and macro tasks.

In this case, the micro-tasks correspond to the micro-tasks defined at section 3.1.3, the

meso-tasks correspond to the examples defined at section 3.3.3 and the macro-task

corresponds to the web application that the learner has to develop.

Commonly these micro-tasks could be developed in just a few of second or minutes; to

macro-tasks that could be developed in hours, days or months [20].

Figure 3.7 shows a real example of micro, meso and macro tasks division over

Codeigniter WAF for the proposed WAF learning.

In this figure, some texts are in Spanish. It‘s because we use some students whose native

language is Spanish, for developing the laboratory case that is described at chapter 4. It‘s

important to highlight that micro and meso tasks must be completed by a senior WAF

developer (later, we propose an application to complete these tasks). Macro-tasks are

global exercises application or simply the application that the WAF learner has to develop.

A new WAF learning technique 55

Figure 3-7: An example of Micro, meso and macro tasks over Codeigniter.

Figure 3-8: A proposed representation of the new WAF learning environment.

In Figure 3.8, we summarize the new WAF learning technique process. Developer first

step is to choose the specific WAF in which he/she wants to develop the application. The

second step is analyzing the application to develop and extract the requirements. Third,

he/she has to choose the concerns related to the application that support the previously

Micro Task Meso Task Macro Task

Description Identify how to call model classes
Create a hello world example composed by 3 views and in the second view shows a message "welcome to the

app"

Create an app that

allows managing the

grades of a course

Solution

The solution will be the

app developed by the

learner

56 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

requirements. Finally, he/she has to work with the specific elements: examples and

documentation tasks (previously filled by a senior WAF developer) in order to build the

application. In this case the micro tasks are the components micro-tasks, the meso tasks

are the concerns examples and finally the macro tasks is the application to be developed.

3.4.3 DL Application

Tasks documentation is a Senior WAF developer task. After this documentation is

completed, the WAF learner has to access to this information in order to complete the

application he/she has to develop, and to learn the WAF characteristics. In order to

improve these activities we developed a web application called ―DL application‖ or driving-

learning application. This application not only serves as a mechanism to complete these

tasks and display this information, but also, it gives a mechanism to drive the WAF

learning. Figure 3.9, 3.10 and 3.11 shows a real scenario using DL application. These

figures detail each step that a WAF learner has to take in order to develop a web

application over Codeigniter.

Figure 3.9 shows the home page of DL application [51], in this view the WAF learner has

to select the WAF he/she wants to work with, and after he/she has to select the concerns

related with his/her needs (this figure shows information in Spanish because we

developed some material to be use by people native in this language). At the end this

figure shows 2 options ―Get examples‖ to get the proper meso tasks, and ―Get

Documentation‖ to get the proper micro-tasks.

A new WAF learning technique 57

Figure 3-9: Home page of DL application.

58 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Figure 3-10: Micro-tasks documentation view over DL application.

A new WAF learning technique 59

Spouse that the WAF learner only selected the first concern ―Display information on

screen‖, because, he/she only needs to develop an under construction web page. After he

selected this concern, he/she clicked over ―Get documentation‖ button. Then, the DL

application will display the micro-tasks associated with this concern. Figure 3.10 shows

the proper documentation displayed to the WAF learner. The learner will use this material

to better understand the different WAF elements involved in this concern.

Figure 3-11: Meso-tasks view over DL application.

60 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Finally, figure 3.11 shows the meso-task (or example) associated to the concern ―Display

information on screen‖. The main idea is the learner use those elements (micro and meso

tasks) to develop the required under construction web page.

The previous three figures show how the WAF learners drive their own learning. But also,

WAF senior developers require different elements to complete the WAF learning material.

Figure 3-12 shows the admin panel of the ―DL Application‖, inside this panel the WAF

senior developers are able to complete the micro and meso tasks for different WAFs.

Notice they require to login to access to this zone.

Figure 3-12: DL application admin panel.

A new WAF learning technique 61

3.4.4 A new WAF learning technique summary

This chapter defines the new WAF learning technique. By using the previous element

from the previous sections, we divided the learning technique into micro, meso and macro

tasks. The micro-tasks defined as the components micro-tasks; the meso-tasks defined

as the concern examples; and the macro-task defined as the application that the WAF

learner has to develop. We proposed a representation of the new WAF learning

environment which shows the new learning path.

Finally, this section describes a new web application called ―DL application‖ that allows

WAF senior developers to complete the different material and allows the WAF learner to

drive his/her learning. Besides, some figures of the real application are showed to provide

a real panorama performance of the learning application.

62 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

4. Laboratory case

4.1 Introduction

This chapter describes a quasi-experiment. This quasi-experiment is developed in order

to better-understand and to analyze the new WAF learning technique. The idea is to

obtain information about different aspects like:

 How learners adopt the new technique.

 How this technique improves –or not– the WAF learning.

This study was intended to provide evidence that the new WAF learning technique could

improve and drive the developers WAF learning. The principal hypothesis is that a novice

developer could save time by using the new WAF learning technique to develop an

application versus the common WAF learning techniques, specifically cookbooks or

official web tutorials. This experiment took groups of similar undergraduate students and

put them within a controller experimental environmental, they had to develop a set of

tasks by using a new web application framework –in this case Codeigniter–. The final

results support the hypothesis: a novice WAF developer saves time by using the new

WAF learning technique to develop an application in a new WAF.

To develop this laboratory case, we employed some aspects from Flores‘ Thesis [19]

specifically of his quasi-experiment description and design. He also used some groups of

students to analyze a framework learning environment. We adapted his quasi-experiment

to our own requirements.

4.2 Academic Quasi-Experiment

The use of empirical studies with students (ESWS) in software engineering helps

researchers gain insight into new or existing techniques and methods. However, due

mainly to concerns of external validity, these studies are often viewed skeptically by

64 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

researchers and practitioners. Empirical studies with professionals, which are widely

accepted by the above-mentioned also suffer from similar generalizability problems.

Therefore, just like any other empirical studies, ESWSs can be valuable to the industrial

and research communities if they are conducted in an adequate way, address appropriate

goals, do not overstate the generalizability of the results and take into account threats to

internal and external validity [52]. As ESWSs are often used to obtain preliminary

evidence in support of or against research hypothesis, this experiment was designed as

such. The independent experimental validation of claims is not as common in Software

Engineering as in other, more matured sciences. As such, the quasi-experiment here

detailed was designed to be performed in different locations, and by different researchers,

in order to enhance the ability to integrate the results obtained and allow further meta-

analysis on them.

4.2.1 Participants selection

The experiment subjects were 15 undergraduate students from System and informatics

engineering at the National University of Colombia –Sede Medellín–. They were part of

the eighth semester of this career, and they attended to an optional course on ―Design

and construction of software products‖. This course was about taking some previously

worked projects, and design and implement them into a real software product using php

language with simple code divisions –like MVC pattern– but without the use of WAFs. We

only took two classes of this course to elaborate the quasi-experiment. In the first class

students had to complete a pre-questionnaire –which only took 15 minutes–, in the

second class they had to develop the experiment –which took 2 hours–.

These subjects were divided into three groups; each group had its own characteristics.

 Group 1 (G1) –or baseline–: this group served as the control group. Its subjects

used the WAF official tutorial or cookbook to develop the experiment.

 Experimental Group 2 (G2): this group used a DL application section [54] that allows

only using meso-tasks or examples. Only a section of the new WAF learning material.

 Experimental Group 3 (G3): this group used a DL application section [54] that allows

using micro-tasks and meso-tasks. The complete new WAF learning material.

Laboratory case 65

4.2.2 Pre-experiment evaluation

For an experiment of this kind, it is important to assure that the subjects are similar and

that their base skills don‘t pose a significant threat to the validity of the results. Therefore,

they were scrutinized based on their academic track, by analyzing their grades on a

selected subset of courses. These courses were deemed relevant to the outcome of the

experiment, namely: (I) Programming Fundamentals, (II) Data Structures, (III)

Programming Object Oriented, (IV) Software Engineering, (V) Databases I, (VI)

Programming Logical and Functional, and (VII) Requirements Engineering. Their grades

can be found in Appendix A, Table A.1. An independent samples t-test was conducted to

compare the average students‘ grades (shown in Table 4.1) between the baseline (G1)

and other experimental groups (G2, G3) –grades were between 0 and 5–.

As shown in Table 4.2, there was no significant difference in the scores for the

Experimental Group 2 (M = 3.83, SD = 0.39) and Baseline Group 1 (M = 4.02, SD = 0.60)

conditions; p = 0.573, within a 95% confidence interval.

As shown in Table 4.3, there was no significant difference in the scores for the

Experimental Group 3 (M = 3.81, SD = 0.47) and Baseline Group 1 (M = 4.02, SD = 0.60)

conditions; p = 0.557, within a 95% confidence interval.

Table 4-1: Student grades group statistics.

Group N Mean Standard Deviation Standard Error Mean

G1 - Baseline 5 4,027 0,603 0,2697

G2 5 3,837 0,399 0,1785

G3 5 3,817 0,475 0,2123

Table 4-2: Baseline G1 vs. Experimental Group 2 Independent Samples Test. The

first column is the Levene‘s Test for Equality of Variances, showing a significance greater

than 0.05 (0.221). The other three columns are the t-test for Equality of Means. Since we

can assume equal variances, the 2-tailed value of 0.573 allows us to conclude that there

is no statistically significant difference between the two conditions.

G1 vs G2 Sig Levene T DF Sig. (2-tailed)

Eq. Var. Assumed 0,2219 0,5876 8 0,573

Eq. Var. Not Assumed 0,5876 6,9392 0,575

66 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Table 4-3: Baseline G1 vs. Experimental Group 3 Independent Samples Test. The

first column is the Levene‘s Test for Equality of Variances, showing a significance greater

than 0.05 (0.837). The other three columns are the t-test for Equality of Means. Since we

can assume equal variances, the 2-tailed value of 0.557 allows us to conclude that there

is no statistically significant difference between the two conditions.

G1 vs G3 Sig Levene T DF Sig. (2-tailed)

Eq. Var. Assumed 0,8377 0,6117 8 0,5577

Eq. Var. Not Assumed 0,6117 7,5841 0,5586

4.2.3 Framework selection

In order to select a WAF, we have to consider some aspects:

 Had to be unknown for all participants.

 The WAF official documentation had to be in Spanish (due to participants native

language) and available online.

 Had to be open-source.

 Had to be known for the authors, in order to complete the documentation.

Due to the previous research we developed at chapter 3, we had knowledge working with

six WAFs –Codeigniter, Yii, Prado, MVC4, Ruby on Rails and Cakephp–. We selected

Codeigniter due to the experience we have, and because this WAF fulfills all the above

requirements.

4.2.4 Pre-questionnaire

The first phase of the experiment was to hand out a questionnaire to the students. The

questionnaires were designed using a Likert scale [41]. This psychometric bipolar scaling

method contains a set of Likert items, or statements, which the respondent is asked to

evaluate according to any kind of subjective or objective criteria, thus measuring either

negative or positive response to the statement. For all the questionnaires in this

experiment (both pre- and post-), the Likert items had a five-point format: (1) strongly

disagree, (2) somewhat disagree, (3) neither agree nor disagree, (4) somewhat agree,

and (5) strongly agree.

Laboratory case 67

Pre-questionnaire content

The pre-experiment questionnaire was used to ascertain the students‘ background and

general profile in order to screen out possible differences amongst the students regarding

their basic skills. It also served to confirm the students‘ lack of acquaintance with

Codeigniter. All groups were submitted to this questionnaire (see Appendix B), whose

answers are detailed in Appendix C, and further analyses later in this chapter.

4.2.5 Pre-experiment requirements

To elaborate this experiment, we used a laboratory room at National University of

Colombia –Sede Medellín– faculty of Minas. Due to Codeigniter requirements, we pre-

installed in 15 computers three programs:

 WampServer 2.5 (a Windows web development environment) [53].

 Notepad++ 6.6.8 (a free source code editor) [54].

 Codeigniter 2.2.0 (an agile and open PHP web application framework) [55].

We moved Codeigniter folder to C:/wamp/www/ and rename the folder to my_app

c:/wamp/www/my_app/

4.2.6 Experiment description and treatments

This section describes the experiment phases and the group treatments. Figure 4.1

shows the experiment phases. The first phase was the group formation. Second, the

students were submitted to a pre-questionnaire to establish their initial state. Third, each

group was submitted to a different treatment and the students started to develop a set of

tasks. Finally, the students were submitted to a post-questionnaire to obtain some results.

68 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Figure 4-1: Experiment protocol and phases.

Experiment Setting

The experiment was conducted as in a laboratory classroom; we pre-installed some

programs listed at section 4.2.5. The students had very limited internet access in order to

minimize distractions (instant messaging, e-mail, etc.). Only the group 1 members had

access to Codeigniter online documentation, and groups 2 and 3 had access to DL

application.

Supervisors

During the experiment, three colleagues helped us as supervisors. Their main task was to

verify the students‘ tasks fulfillment. When a student finished a task, he/she raised his/her

hand and a supervisor approached to him/her. The supervisor verified if the task was

correctly fulfilled and finally took the time to complete each task (see tasks at section

4.2.7).

Laboratory case 69

Treatments

After the pre-questionnaires phase, the students were submitted to a treatment phase,

where each group was introduced to their own experiment environment.

Treatment A: this treatment only applied for Group 1 –or baseline–. Figure 4.2 represents

the learning path that the students had to follow to complete the tasks. They only used the

Codeigniter Spanish official documentation [56].

Figure 4-2: Treatment A experiment environment.

Treatment B: this treatment only applied for experimental Group 2. Figure 4.3 represents

the learning path that the students had to follow to complete the tasks. They used the DL

application but limited only to access to examples or meso-tasks [57].

Figure 4-3: Treatment B experiment environment.

70 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Treatment C: this treatment only applied for experimental Group 3. Figure 4.4 represents

the learning path that the students had to follow to complete the tasks. They used the

complete DL application, accessing micro and meso-tasks information [58].

Figure 4-4: Treatment C experiment environment.

4.2.7 Macro-Task

At this point, the subjects were ready to develop the main part of the experiment. The

macro-task was designed with the intention to develop a part of a big real application.

This macro-task was divided into 4 iterations, the main idea was students could

incrementally build this application, after each participant finished one iteration; a

supervisor verified the task and took the time the participant spent on its development.

Appendix D shows the main document which was delivered to all subjects. In this

document, the supervisor set the time when each subject completed each iteration.

The following text was presented to the students and was the introduction to the

experiment:

A software company required your services to develop an application to manage

information of different coffee stores around United States. After the software

requirements elicitation process, the company established the next features:

Laboratory case 71

Due to the quantity of time to develop the experiment –two hours-. And the lack of

experience working with WAFs and Codeigniter that all students had. We decided to

avoid that students implemented some security aspects.

Figure 4.5 shows a class diagram that represents the classes involved in the application.

Figure 4-5: Experiment class diagram.

Iteration 1

The first iteration was simple; the main idea was to develop two views, the initial view

displayed two options and the second view displayed information about the application

creator.

We consider experimental groups (G2 and G3) should select and learn the next two

concerns –it is important to highlight that the students had to select the concerns by

themselves as they considered–.

 Display information on screen

 Routes and navigability

The following text was presented to the students:

The initial menu has two options (Manage Coffee Stores and Contact). Besides, it

will display the software creator‟s information at „Contact‟ section.

Figures 4.6 and 4.7 show a solution from one subject to the iteration 1.

72 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Figure 4-6: A solution from a subject to the initial menu of the iteration 1.

Figure 4-7: A solution from a subject to the contact section of the iteration 1.

Iteration 2

The second iteration was more difficult; the main idea was to understand how the

mechanism to extract data from the database is and how to connect this data with the

Codeigniter model layer. Finally, display this information in a view.

We consider experimental groups (G2 and G3) should select and learn the next four

concerns.

 Display information on screen

 Routes and navigability

 Capture and data assignment

 Data Selection

Laboratory case 73

The following text was presented to the students:

All coffee stores will be displayed at „Manage Coffee Stores‟ section. It‟s required

to display the id, name, physical address, city and state of all coffee stores. Note:

there is a .sql file with the coffee stores information (see Appendix E).

Figure 4.8 shows a solution from one subject to the iteration 2.

Figure 4-8: A solution from a subject to the iteration 2.

74 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Iteration 3

The main idea of this iteration was to understand how the mechanism to delete data from

database works.

We consider experimental groups (G2 and G3) should select and learn the next four

concerns.

 Display information on screen

 Routes and navigability

 Capture and data assignment

 Deleting Data

The following text was presented to the students:

In the previous list each coffee store will have a delete button. When is pressed, it

will delete the coffee store in the database and will display a message “the coffee

store was successfully deleted”.

Figures 4.9 and 4.10 show a solution from one subject to the iteration 3.

Figure 4-9: A solution from a subject to the delete coffee store message of iteration 3.

Laboratory case 75

Figure 4-10: A solution from a subject to the delete button of iteration 3.

Iteration 4

In the last iteration, the students had to understand how to extract elements from a table

by using the proper filter mechanism and create a proper view to display them.

We consider experimental groups (G2 and G3) should select and learn the next four

concerns.

 Display information on screen

 Routes and navigability

 Capture and data assignment

 Data selection using filters

76 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

The following text was presented to the students:

Finally, in the previous list each coffee store name will have a link. When is

pressed the name, it will be displayed: a list of the baristas associated to the

coffee store selected (with their respective id, name, email and phone). Note:

there is a .sql file with the baristas information (see Appendix E).

Figures 4.11 and 4.12 show a solution from one subject to the iteration 4.

Figure 4-11: A solution from a subject to the coffee store name link of iteration 4.

Laboratory case 77

Figure 4-12: A solution from a subject to the barista list display of iteration 4.

4.2.8 Post-questionnaire

At the end of the experiment, the students were submitted to the post-questionnaire (see

Appendix F). The answers from all the participants are detailed in Appendix G and further

analyses later in this chapter.

4.3 Data analysis

As previously described, the subjects were submitted to a pre-questionnaire to screen out

possible background and basic skills deviations. During the experiment, the task

completion time was recorded by supervisors, and finally, a post-questionnaire collected

further data. This section presents a detailed analysis of the collected data in order to

provide evidence of the validity of the assumptions presented by this thesis. Firstly, it will

be shown that all groups have no significant background deviations and the acquaintance

of the Codeigniter framework is correctly assumed in some cases. Secondly, the analysis

will focus on comparing results between the Baseline (G1) and Experimental Groups (G2

and G3).

4.3.1 Statistical relevance

To provide statistical relevance in the analysis of the questionnaires items, the results are

interpreted as described next. Let the null hypothesis be denoted as H0, the alternative

hypothesis as H1, the baseline group as Gb, the experimental group as Ge and p the

78 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

probability estimator of wrongly rejecting the null hypothesis. Then, the alternative

hypothesis are either: (i) H1:Ge≠Gb, the experimental group differs from the baseline, (ii)

H1:Ge<Gb, the measure in the experimental group is lower than the baseline, or (iii)

H1:Ge>Gb, the measure in the experimental group is greater than the baseline. The

outcomes of the two treatments were compared for every answer using the non-

parametric, two-sample, rank-sum Wilcoxon-Mann-Whitney [64] test, with n1=5 and n2=5

–both experimental groups (G2 and G3) have 5 subjects–.

The significance level for all tests was set to 5%, so probability values of p ≤ 0.05 are

considered significant, and p ≤ 0.01 considered highly significant. The corresponding

alternative hypothesis are further detailed for each question, and a summary of the base

statistics and corresponding test values can be found in Appendices C and G.

4.3.2 Background

Although an objective comparison between the background of each group was already

performed using the subjects average grades in key courses (section 4.2.2), this section

rejects any subjective difference amongst the participants with respect to their basic skills.

Table 4-4: Summary of Background results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 2 Group 1

 𝑥 σ 𝑥 σ H1 p-value

Question 1 1,00 0,00 1,00 0,00 ≠ 1,000

Question 2 1,80 0,45 1,40 0,55 ≠ 0,524

Question 3 2,40 0,55 2,20 1,30 ≠ 0,683

Question 4 3,00 0,00 2,80 0,84 ≠ 0,444

Question 5 3,40 0,55 2,80 1,10 ≠ 0,643

Question 6 3,60 0,89 3,80 0,84 ≠ 0,921

Question 7 3,00 1,00 3,20 1,10 ≠ 0,810

Question 8 3,60 0,55 4,00 0,71 ≠ 0,643

Question 9 2,40 1,14 3,00 1,41 ≠ 0,460

Question 10 3,00 0,71 2,80 0,84 ≠ 0,881

Laboratory case 79

Table 4-5: Summary of Background results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 3 Group 1

 𝑥 σ 𝑥 σ H1 p-value

Question 1 1,00 0,00 1,00 0,00 ≠ 1,000

Question 2 1,20 0,45 1,40 0,55 ≠ 1,000

Question 3 2,20 1,30 2,20 1,30 ≠ 1,000

Question 4 2,80 0,45 2,80 0,84 ≠ 1,000

Question 5 3,80 0,45 2,80 1,10 ≠ 0,167

Question 6 4,00 0,71 3,80 0,84 ≠ 0,881

Question 7 2,60 0,89 3,20 1,10 ≠ 0,365

Question 8 4,00 0,71 4,00 0,71 ≠ 1,000

Question 9 3,00 1,22 3,00 1,41 ≠ 1,000

Question 10 3,00 0,00 2,80 0,84 ≠ 0,444

BG1 I have considerable experience developing in Codeigniter

Let H1:Ge2≠Gb, there was no significant difference (p = 1.000) in the scores for the

experimental group G2 (𝑥 = 1.00, = 0.00) and baseline G1 (𝑥 = 1.00, = 0.00)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

1.000) in the scores for the experimental group G3 (𝑥 = 1.00, = 0.00) and baseline G1

(𝑥 = 1.00, = 0.00) conditions, as seen in Table 4.5. As expected, the students didn‘t

have acquaintance working with Codeigniter. This was a mandatory condition to the

effective prosecution of the experiment goals.

BG2 I have considerable experience using frameworks

Let H1:Ge2≠Gb, there was no significant difference (p = 0.524) in the scores for the

experimental group G2 (𝑥 = 1.80, = 0.45) and baseline G1 (𝑥 = 1.40, = 0.55)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

1.000) in the scores for the experimental group G3 (𝑥 = 1.20, = 0.45) and baseline G1

(𝑥 = 1.40, = 0.55) conditions, as seen in Table 4.5. As expected, the students didn‘t

have acquaintance not only with Codeigniter but also working with frameworks. This was

a big challenge for novice WAF developers, due to their complete lack of knowledge with

the use of these tools.

80 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

BG3 I have considerable experience developing web application

Let H1:Ge2≠Gb, there was no significant difference (p = 0.683) in the scores for the

experimental group G2 (𝑥 = 2.40, = 0.55) and baseline G1 (𝑥 = 2.20, = 1.30)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

1.000) in the scores for the experimental group G3 (𝑥 = 2.20, = 1.30) and baseline G1

(𝑥 = 2.20, = 1.30) conditions, as seen in Table 4.5. Similar to BG1.2, this item shows a

low average. This result also serves to show the lack of experience developing web

application. Most students haven't worked in companies which makes them in useful

novice developers to develop the experiment.

BG4 I have considerable experience programming in PHP

Let H1:Ge2≠Gb, there was no significant difference (p = 0.444) in the scores for the

experimental group G2 (𝑥 = 3.00, = 0.00) and baseline G1 (𝑥 = 2.80, = 0.84)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

1.000) in the scores for the experimental group G3 (𝑥 = 2.80, = 0.45) and baseline G1

(𝑥 = 2.80, = 0.84) conditions, as seen in Table 4.5. This item discarded the PHP

language as a validation threat to the reliability of the experiment results. Although the

students had to work with PHP, the main idea was the students had to use the

Codeigniter components to develop the experiment tasks, which were detailed at the

different learning materials.

BG5 I have considerable experience using MySQL

Let H1:Ge2≠Gb, there was no significant difference (p = 0.643) in the scores for the

experimental group G2 (𝑥 = 3.40, = 0.55) and baseline G1 (𝑥 = 2.80, = 1.10)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

0.167) in the scores for the experimental group G3 (𝑥 = 3.80, = 0.45) and baseline G1

(𝑥 = 2.80, = 1.10) conditions, as seen in Table 4.5. To solve some tasks, the students

had to use SQL language or the proper Codeigniter functions. This item discarded this as

a possible threat to the validity of results.

BG6 I have considerable experience with object-oriented programming

Let H1:Ge2≠Gb, there was no significant difference (p = 0.921) in the scores for the

experimental group G2 (𝑥 = 3.60, = 0.89) and baseline G1 (𝑥 = 3.80, = 0.84)

Laboratory case 81

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

0.881) in the scores for the experimental group G3 (𝑥 = 4.00, = 0.71) and baseline G1

(𝑥 = 3.80, = 0.84) conditions, as seen in Table 4.5. Consistent with their academic track,

all groups exhibited a positive response. Object-oriented programming was a crucial

aspect in order to develop the experiment.

BG7 I have considerable experience with agile development methodologies

Let H1:Ge2≠Gb, there was no significant difference (p = 0.810) in the scores for the

experimental group G2 (𝑥 = 3.00, = 1.00) and baseline G1 (𝑥 = 3.20, = 1.10)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

0.365) in the scores for the experimental group G3 (𝑥 = 2.60, = 0.89) and baseline G1

(𝑥 = 3.20, = 1.10) conditions, as seen in Table 4.5. This item served as an evaluation of

the students‘ feelings towards the iterative development that would characterize the

experiment process. As such, the development methodology proved not to be an obstacle

throughout the experiment.

BG8 I have considerable experience with UML diagrams

Let H1:Ge2≠Gb, there was no significant difference (p = 0.643) in the scores for the

experimental group G2 (𝑥 = 3.60, = 0.55) and baseline G1 (𝑥 = 4.00, = 0.71)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

1.000) in the scores for the experimental group G3 (𝑥 = 4.00, = 0.71) and baseline G1

(𝑥 = 4.00, = 0.71) conditions, as seen in Table 4.5. Consistent with their academic track,

all groups exhibited a positive response. Even when UML diagrams were not presented to

the students, this element could be useful for some students in order to better-understand

the tables and classes they had to use.

BG9 I have considerable experience analyzing and specifying information systems

Let H1:Ge2≠Gb, there was no significant difference (p = 0.460) in the scores for the

experimental group G2 (𝑥 = 2.40, = 1.14) and baseline G1 (𝑥 = 3.00, = 1.41)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

1.000) in the scores for the experimental group G3 (𝑥 = 3.00, = 1.22) and baseline G1

(𝑥 = 3.00, = 1.41) conditions, as seen in Table 4.5. Almost since the beginning of their

82 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

academic track, the students engage in the analysis and specification of information

systems. The medium-low average results could be explained due to the lack of

experience working in real companies that most of the students presented. This item also

serves to remark the role of ‗novice developers‘ that students presented in the

experiment.

BG10 I have considerable experience analyzing and implementing databases

Let H1:Ge2≠Gb, there was no significant difference (p = 0.881) in the scores for the

experimental group G2 (𝑥 = 3.00, = 0.71) and baseline G1 (𝑥 = 2.80, = 0.84)

conditions, as seen in Table 4.4. Let H1:Ge3≠Gb, there was no significant difference (p =

0.444) in the scores for the experimental group G3 (𝑥 = 3.00, = 0.00) and baseline G1

(𝑥 = 2.80, = 0.84) conditions, as seen in Table 4.5. Similar to BG1.5, to solve some

tasks, the students had to implement a database and access it and modify it. The tasks

that involved this aspect were too simple which means a low acquaintance with working

with databases was enough. This item discarded this as a possible threat to the validity of

results.

4.3.3 External Factors

The experiment environment was an important concern. In a common working place there

are aspects out of control (inter-participants interaction, disturbances, noise, etc.), so the

main idea was to discard possible validation threatening environmental factors.

Table 4-6: Summary of external factors results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 2 Group 1

 𝑥 σ 𝑥 σ H1 p-value

External Factor 1 2,40 1,52 2,00 1,22 ≠ 0,643

External Factor 2 5,00 0,00 4,00 1,00 ≠ 0,167

External Factor 3 1,60 0,89 2,20 1,10 ≠ 0,524

Laboratory case 83

Table 4-7: Summary of external factors results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 3 Group 1

 𝑥 σ 𝑥 σ H1 p-value

External Factor 1 2,00 1,73 2,00 1,22 ≠ 0,921

External Factor 1 4,80 0,45 4,00 1,00 ≠ 0,286

External Factor 3 1,20 0,45 2,20 1,10 ≠ 0,167

EF1 I found the whole experience environment intimidating

Let H1:Ge2≠Gb, there was no significant difference (p = 0.643) in the scores for the

experimental group G2 (𝑥 = 2.40, = 1.52) and baseline G1 (𝑥 = 2.00, = 1.22)

conditions, as seen in Table 4.6. Let H1:Ge3≠Gb, there was no significant difference (p =

0.921) in the scores for the experimental group G3 (𝑥 = 2.00, = 1.73) and baseline G1

(𝑥 = 2.00, = 1.22) conditions, as seen in Table 4.7. Overall, the participants didn‘t found

the experience intimidating. This item served to discard this factor, as shown by the low

scores exhibited by all participants.

EF2 I enjoyed programming and trying to develop the application during the

experiment

Let H1:Ge2≠Gb, there was no significant difference (p = 0.167) in the scores for the

experimental group G2 (𝑥 = 5.00, = 0.00) and baseline G1 (𝑥 = 4.00, = 1.00)

conditions, as seen in Table 4.6. Let H1:Ge3≠Gb, there was no significant difference (p =

0.286) in the scores for the experimental group G3 (𝑥 = 4.80, = 0.45) and baseline G1

(𝑥 = 4.00, = 1.00) conditions, as seen in Table 4.7. This item measured the fun factor.

There was a common sense of a positive feeling towards the experiment so this factor

can be discarded as a threat to the whole experiment.

EF3 I felt distracted by other students during the experiment

Let H1:Ge2≠Gb, there was no significant difference (p = 0.524) in the scores for the

experimental group G2 (𝑥 = 1.60, = 0.89) and baseline G1 (𝑥 = 2.20, = 1.10)

conditions, as seen in Table 4.6. Let H1:Ge3≠Gb, there was no significant difference (p =

0.167) in the scores for the experimental group G3 (𝑥 = 1.20, = 0.45) and baseline G1

(𝑥 = 2.20, = 1.10) conditions, as seen in Table 4.7. In a familiar, non-intimidating setting,

84 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

it is easier to interact and to vocalize more, producing more noise and increasing the

disturbance level. This item served to discard this factor, as shown by the low scores

exhibited by all participants.

4.3.4 Overall satisfaction

This group of questions was intended to provide subjective validation to the thesis on an

overall scope, by questioning subjects on their performance, comfort and feel for the

presented learning environment and material.

Table 4-8: Summary of overall satisfaction results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 2 Group 1

 𝑥 σ 𝑥 σ H1 p-value

Overall Satisfaction 1 3,80 0,84 2,60 0,89 > 0,028

Overall Satisfaction 2 4,00 0,71 2,40 0,55 > 0,012

Overall Satisfaction 3 2,60 0,89 4,60 0,55 < 0,004

Overall Satisfaction 4 2,60 1,52 4,40 0,55 < 0,036

Table 4-9: Summary of overall satisfaction results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 3 Group 1

 𝑥 σ 𝑥 σ H1 p-value

Overall Satisfaction 1 4,20 0,84 2,60 0,89 > 0,028

Overall Satisfaction 2 4,20 1,10 2,40 0,55 > 0,024

Overall Satisfaction 3 2,20 1,10 4,60 0,55 < 0,004

Overall Satisfaction 4 2,00 1,00 4,40 0,55 < 0,004

OS1 I consider the time available to develop the experiment was adequate

Let H1:Ge2>Gb, there was a significant difference (p = 0.028) in the scores for the

experimental group G2 (𝑥 = 3.80, = 0.84) and baseline G1 (𝑥 = 2.60, = 0.89)

conditions, as seen in Table 4.8. Let H1:Ge3>Gb, there was a significant difference (p =

0.028) in the scores for the experimental group G3 (𝑥 = 4.20, = 0.84) and baseline G1

(𝑥 = 2.60, = 0.89) conditions, as seen in Table 4.9. This item could be analyzed as a

relation with the amount of tasks of each group finished. As experimental groups G2 and

Laboratory case 85

G3 were able to complete more tasks than Baseline G1 (see section 4.3.7), this aspect is

traduced in more satisfaction with the time available to develop the experiment.

Furthermore, G1 participants were able to complete fewer tasks which traduces in less

satisfaction with the time available to develop the experiment.

OS2 I consider the documentation available to be sufficient to develop the

experiment

Let H1:Ge2>Gb, there was a significant difference (p = 0.012) in the scores for the

experimental group G2 (𝑥 = 4.00, = 0.71) and baseline G1 (𝑥 = 2.40, = 0.55)

conditions, as seen in Table 4.8. Let H1:Ge3>Gb, there was a significant difference (p =

0.024) in the scores for the experimental group G3 (𝑥 = 4.20, = 1.10) and baseline G1

(𝑥 = 2.40, = 0.55) conditions, as seen in Table 4.9. A typical issue of software

development in general is that there is never enough and/or good documentation.

However, the intent of this item was to perceive if the new WAF learning technique and its

DL application would improve the usage and value of the available documentation,

deemed sufficient to effectively undertake all the tasks presented. The exhibited scores

give a strong support of that assumption. Moreover, the score regarding Baseline G1 vs.

G2 and G1 vs G3 is pretty clear to show that the new WAF learning technique helped

dealing with WAF learning. G3 presented a higher average (𝑥 = 4.20) satisfaction with the

documentation than G2 (𝑥 = 4.00); and it could be explained because G3 had the

complete WAF learning material and G2 only the meso-tasks or examples.

OS3 I felt the need to have access to more information on how to use the

framework

Let H1:Ge2<Gb, there was a highly significant difference (p = 0.004) in the scores for the

experimental group G2 (𝑥 = 2.60, = 0.89) and baseline G1 (𝑥 = 4.60, = 0.55)

conditions, as seen in Table 4.8. Let H1:Ge3<Gb, there was a highly significant difference

(p = 0.004) in the scores for the experimental group G3 (𝑥 = 2.20, = 1.10) and baseline

G1 (𝑥 = 4.60, = 0.55) conditions, as seen in Table 4.9. Even when Codeigniter official

documentation was plenty of pages and full of different descriptions of each element, the

baseline G1 showed a strong need to access to more information. On the other hand,

experimental groups showed less need to access to more information. The scores

obtained by this item give strong evidence that the presented WAF learning technique

86 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

proved to be well suited for more easily learning about a WAF; identifying from the

beginning the specific material related with the subjects‘ requirements and giving useful

examples to develop the different tasks.

OS4 Despite of my experience, the tools and documentation available, delayed my

work considerably

Let H1:Ge2<Gb, there was a significant difference (p = 0.036) in the scores for the

experimental group G2 (𝑥 = 2.60, = 1.52) and baseline G1 (𝑥 = 4.40, = 0.55)

conditions, as seen in Table 4.8. Let H1:Ge3<Gb, there was a highly significant difference

(p = 0.004) in the scores for the experimental group G3 (𝑥 = 2.00, = 1.00) and baseline

G1 (𝑥 = 4.40, = 0.55) conditions, as seen in Table 4.9. Similar to OS3 subjects from

baseline G1 felt the documentation was not the proper to complete the different tasks –

even when the official documentation is the commonly used by most developers–. This

could be compared with OS1 results, as time was running out and the tasks weren‘t

completed the subjects felt the tools and the material was not the proper to the

experiment. Similar to OS3, the scores obtained by this item give strong evidence that the

new WAF learning technique proved to be well suited for more easily learning about a

WAF.

4.3.5 Development process

This category of items intended to ascertain how hard it was to complete each of the

tasks presented and its evolution throughout the experiment by using the different

learning materials. Due to some subjects from some groups weren‘t able to complete

some tasks; we decided to put the highest value –five– in those cases.

Table 4-10: Summary of development process results between the Baseline (G1) and

Experimental Group 2 (G2), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 2 Group 1

 𝑥 σ 𝑥 σ H1 p-value

Development Process 1 1,80 1,30 3,20 1,48 < 0,103

Development Process 2 1,60 0,89 4,40 0,89 < 0,008

Development Process 3 2,00 1,00 5,00 0,00 < 0,004

Development Process 4 3,60 1,95 5,00 0,00 < 0,222

Laboratory case 87

Table 4-11: Summary of development process results between the Baseline (G1) and

Experimental Group 3 (G3), including the values of the non-parametric significance Mann-

Whitney-Wilcoxon test.

 Group 3 Group 1

 𝑥 σ 𝑥 σ H1 p-value

Development Process 1 1,20 0,45 3,20 1,48 < 0,024

Development Process 2 3,00 1,87 4,40 0,89 < 0,143

Development Process 3 3,60 1,95 5,00 0,00 < 0,222

Development Process 4 4,80 0,45 5,00 0,00 < 0,500

As expected, subjects from experimental groups presented lower scores than subjects

from baseline group to the question ―It was hard to find out how to use the framework to

complete... iteration 1, 2, 3, 4‖ in all iterations. This assumption is strongly confirmed in a

later analysis at section 4.3.7.

In an overall analysis, it can be stated:

 In the case of Baseline (G1) and experimental group 2 (G2) with H1:Ge2<Gb, at

development process 2 (iteration 2) there was a highly significant difference (p =

0.008) in the scores for the experimental group G2 (𝑥 = 1.60, = 0.89) and baseline

G1 (𝑥 = 4.40, = 0.89) conditions, as seen in Table 4.10.

 In the case of Baseline (G1) and experimental group 2 (G2) with H1:Ge2<Gb, at

development process 3 (iteration 3) there was a highly significant difference (p =

0.004) in the scores for the experimental group G2 (𝑥 = 2.00, = 1.00) and baseline

G1 (𝑥 = 5.00, = 0.00) conditions, as seen in Table 4.10.

 In the case of Baseline (G1) and experimental group 3 (G3) with H1:Ge3<Gb, at

development process 1 (iteration 1) there was a significant difference (p = 0.024) in

the scores for the experimental group G3 (𝑥 = 1.20, = 0.45) and baseline G1 (𝑥 =

3.20, = 1.48) conditions, as seen in Table 4.11.

The scores obtained by this item give strong evidence that the new WAF learning

technique proved to be well suited for more easily learning about a WAF.

88 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

4.3.6 Framework knowledge

In order to measure the increase in framework knowledge, a set of 10 questions were

presented to the subjects at the end of the experiment. These questions intended to

ascertain how much correct information about the WAF the participants had acquired. The

questions were related with the concepts to the different components involved to the

design of the macro-task at section 4.2.7. It was assumed that all groups had no prior

knowledge of the WAF, as corroborated by item BG1.

Table 4-12: Framework knowledge questions and answers. All items were presented

as true-false statements.

Question 1 2 3 4 5 6 7 8 9 10

Answer F F T T F T T F T F

Results

The relevance of an item-to-item analysis of the scores isn‘t so much important as the

total amount of knowledge the subjects acquired. So, the results are shown aggregated

and processed as the total knowledge acquired.

Table 4-13: Framework knowledge group statistics.

Group N Mean Standard Deviation Standard Error Mean

G1 - Baseline 5 3,000 1,871 0,8367

G2 5 4,400 1,140 0,5099

G3 5 5,000 1,581 0,7071

Table 4.13 shows subjects from baseline group 1 had an average of 3 correct answers of

10 questions; G2 had an average of 4.4/10 and G3 5/10. The results provide evidence

that the new WAF learning technique support the hypothesis that it helps novices on

learning about a WAF.

Similar to OS2 results, G3 showed more WAF knowledge than G2. It could be explained

because G3 had the complete WAF learning material and G2 only the meso-tasks or

examples.

Laboratory case 89

4.3.7 Objective measurement

During the experiment, the duration each subject took to complete each iteration was

recorded. At the end, these results were processed (see the complete results at Appendix

H). However, the quantity of iterations completion by baseline group was very low –only

six from twenty– and it made difficult to analyze the time between the groups. Due to

iteration 1 was the most completed by subjects from baseline group, we decided to make

a time analysis focusing only in iteration 1. Table 4.14 shows the iteration 1 completion

time results (average per group). This result shows a significant time reduction of

approximately 40% between the experimental groups‘ iteration 1 completion and the

baseline group.

Table 4-14: Iteration 1 completion time results (average per group). Units in minutes.

 Iteration 1

Baseline - G1 76

Experimental Group 2 30,2

Experimental Group 3 31,2

Figure 4-13: Number of subjects of each group who completed each iteration.

90 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Table 4-15: Number of iterations completion (average per group).

Group Iterations Mean

G1 - Baseline 4 1,200

G2 4 3,400

G3 4 2,400

Figure 4.13 and table 4.15 highlight a very important aspect. As expected the average of

iterations completion of the experimental groups G2 (𝑥 = 3.40) and G3 (𝑥 = 2.40) were

higher than the baseline G1 (𝑥 = 1.20). This result gives strong evidence that the

presented new WAF learning technique helps developers not only with their first contact

with the framework but also in all the development process.

4.4 Validation threats

The outcome of validation is to gather enough scientific evidence to provide a sound

interpretation of the results. Validation threats are issues and scenarios that may distort

that evidence and thus incorrectly support (or discard) expected results. Each validation

threat should be expected and addressed a priori in order to yield unbiased results or, at

least, minimized a posteriori with effective counter-measures.

This section addresses expected validation threats and how these were discarded, while

others should be attentively focused in future experiments.

 Insufficient skills to execute the tasks. The tasks required participants to have the

necessary skill to build and evolve information systems, namely knowing how to work

with the given programming language, IDE and database engine. Once again, this

threat was discarded by both pre-experiment evaluation and pre-experiment

questionnaire, through items BG4, BG5, BG6, BG8, BG9 and BG10.

 Experiment-related factors. Knowingly being part of an experiment changes the

mood and may be an inhibitor of normal development. The performance may be

conditioned by the feel of being observed and judged. The results of item EF1 allowed

this threat to be discarded.

Laboratory case 91

 Environment factors. Despite the noise or disturbance that could be generated in a

laboratory by other students, it was necessary to make sure that the experiment

environment wasn‘t a threat to validity. Item EF3 discarded this threat.

 Lack of motivation. Due to the length of the tasks (experiment went about 2 hours),

and the fact that there was no compensation to individuals participating in the

experiment, the lack of motivation could hinder the outcome. This threat is discarded

by item EF2.

The following threats were not completely discarded, and should be the focus of future

studies:

 Similarity between the meso-tasks and the macro-task iterations: even when was

developed a study case establishing the common concerns developers have

developing web applications (see section 3.2), is difficult to prove if experimental

groups were able to develop more iterations than baseline group because of the

similarity between the experiment tasks and the meso-tasks documentation. But the

important point is that this type of learning documentation could serve as a base to

develop a wide range of applications.

 A quasi-experiment and the new WAF learning technique applied only over a

specific WAF: even when was developed a study case establishing the generic

WAFs components and micro-tasks over six different MVC WAFs (see section 3.1), is

difficult to prove that these components and micro-tasks are the same to the whole

range of available WAFs. Some studies especially in Java WAFs must be developed.

Besides, more experiments over more WAFs must be applied.

The power of this study could also be improved by (i) increasing the number of

participants, (ii) switching the participants roles, where individuals in the experimental

groups would undergo the baseline process and vice-versa, (iii) developing more difficult

tasks, (iv) integrating WAF experts subjects to the experiment, and (v) developing tasks

not very similar to meso-tasks.

92 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

4.5 Summary

This chapter detailed a laboratory case –or quasi-experiment– conducted within a

controlled experimental environment using the new WAF learning technique presented in

previous chapters and the WAF official documentation over Codeigniter. There were three

groups –Baseline (G1), Experimental Group 2 (G2) and Experimental Group 3 (G3)– to

which their background and basic skills were screened through a pre-experiment

questionnaire, guaranteeing no statistical deviation. All three groups went through the

development of the same four incrementally tasks by using an unknown WAF

(Codeigniter), each group used a different learning technique to enable a comparison

between these techniques. A post-questionnaire and their number of iterations completion

were used to assess the outcome of the experiment.

The final results support the hypothesis that the new WAF learning technique helps

novices to more effectively learn about a WAF. Both experimental groups fared better at:

number of iterations completion, knowledge intake and time, when compared to the

Baseline group.

Some threats to this validation were identified and later discarded by analyzing the results

in pre- and post-experiment questionnaires and due to the nature of the experimental

setting.

5. Conclusions

Developing web systems is a complex, time-consuming, and expensive task that often

requires the coordination of efforts across organizational and technical boundaries. Web

Applications Frameworks (WAFs) provide different elements and components to develop

effective web systems. They are powerful techniques for large-scale reuse promoting

developers to improve quality and save costs and time.

Developers usually face the need for developing an application by using a specific WAF

(perhaps an unknown one); consequently, they need to learn how to use the WAF for

developing the application. Currently, when a developer has to use a specific WAF,

he/she has to invest considerable effort and time on understanding it. This problem is due

to the big amount of WAF components and the increasing number of documents.

Sometimes, developers face the reading of hundreds of documentation pages with

information they‘re never going to use. The main objective of the developers is to build

web applications which have different requirements from one to another. By related the

documentation to the developer concerns, we reduce the amount of documents they have

to face, and they focus on what they need. We also improve this learning technique with

the use of examples, providing a source of code reuse and a base for developing a wide

range of applications.

So, to deal with these problems we combine: separation of concerns, micro-learning and

example-based learning. Finally, we developed: (i) a list of web application concerns, (ii) a

list of WAF components, (iii) a connection between concerns and WAF components, (iv) a

list of meso-tasks or example for each concern, and (v) a web application to drive the

WAF learning. With all of this, we designed a new WAF learning technique which

improves the WAF learning, reduces the time and helps novice developers to drive their

own WAF learning.

94 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Evidence was collected that verifies the benefits behind these contributions and helps on

the validation of the presented work.

5.1 Key Contributions

Briefly, the main contributions of the work presented in this thesis are:

 Definition of a list of WAF components. WAFs have some similarities and share

some components. Based on this fact and previous studies, we proposed a list of 13

main components. We defined some tasks that a developer should learn to develop

for each component. This list serves to better-understand how WAFs works, it

describes from a high level to a very low level the main WAF elements. Some authors

could use these components for some WAF comparison studies.

 Definition of a list of developers’ common web application concerns. In the

software development context, a concern is a particular goal, concept, or area of

interest. Based on this perspective, we have faced the driving WAF learning by using

a separation of concerns. In this approach, each concern represents an application

feature supporting a kind of application requirements. Previous analysis shows that no

matter how different seem some application from one another, they use similar

concerns. We defined 29 concerns and we categorize them in different groups. When

developers focus on their own concerns they save time and find what really they need

to learn. Some authors could use these concerns for some comparison studies.

 Definition of a list of meso-tasks or example for web application concerns.

Programmers frequently use a copy-and-paste process to develop their applications.

We create a list of examples for each web application concern. When these examples

are developed by WAF senior developers, quality and security are improved. Besides

examples could serve as a base of WAF learning gluing together some WAF

components and micro-tasks. Finally, this example list has been very detailed which

means some authors could perform a comparison study between different WAFs.

 Definition of a new WAF learning technique. By join separation of concerns, micro-

learning and example based learning we developed a new WAF learning technique.

This technique is divided in several stages: (i) The developer has to extract his/her

Conclusions 95

application requirement, (ii) the developer has to select over a web application the

concerns related with his/her requirements, (iii) the web application displays the

micro-tasks documentation related with developer‘s requirements, (iv) the web

application displays the meso-tasks or examples related with developer‘s

requirements, and (v) the developer use that material in order to develop the web

application.

 Tool support for the WAF learning process. DL application supports the previous

contribution. This application allows displaying WAF learning material and allows

senior WAF developers to insert, modify and delete the different learning material.

 Impact study of the key benefits of the best practices and learning process

through a laboratory case. The impacts that the new WAF learning technique have

on learners and developers, was ascertained through a controlled laboratory case or

(quasi-) experiment. Evidence was collected that verifies the benefits behind these

contributions.

5.2 Future work

The following are consider important research paths by the author.

 Improve DL application. DL application could also be improved allowing forum

discussions and star rating documentation, also increasing the amount of material.

Another interesting idea is to integrate this application with a wiki, allowing an easier

way to modify and keep updated the documentation.

 Develop more experiment studies. The quasi-experiment developed was focus on

novice WAF developers, but how this technique improves the learning of expert WAF

developers is an important question. Developing more studies in professional –no

academic- environments with developers engaged in full-scale software projects with

defined time frames and development process will give powerful results.

 Implement the learning technique in other areas. Could this learning technique be

implemented in other scenarios? Software tools in general? Implementing this

96 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

technique in other areas could bring new insights and could improve the learning

experience.

A. Appendix: Pre-experiment Subject
Data

Table A-1: Student grades for all participating groups. Each column represents the

following courses: (I) Programming Fundamentals, (II) Data Structures, (III) Programming

Object Oriented, (IV) Software Engineering, (V) Databases I, (VI) Programming Logical

and Functional, and (VII) Requirements Engineering.

 I II III IV V VI VII MEAN DESV

G1 Subject 1 3,8 3,8 3,7 4,1 3,2 3,7 4,4 3,81 0,37

G1 Subject 2 4,5 3 3 4,6 * 3,8 4,1 3,83 0,71

G1 Subject 3 4,7 4 3,6 4,5 3,2 4,9 4,1 4,14 0,61

G1 Subject 4 5 4,8 3,4 4,2 3,7 4,8 3,8 4,24 0,63

G1 Subject 5 5 4,9 3,5 3,6 3,5 4,6 3,6 4,10 0,70

G2 Subject 1 4,2 3,5 * 3,8 3 3,5 * 3,60 0,44

G2 Subject 2 4,4 3,7 3,1 4,2 3,5 4,1 4,4 3,91 0,49

G2 Subject 3 5 4,9 4,7 4,3 4 4,7 4,4 4,57 0,35

G2 Subject 4 4,3 3,9 3,3 4,2 3,4 3,5 3,4 3,71 0,41

G2 Subject 5 3,8 3,5 3,2 3,7 3,2 3,3 3 3,39 0,29

G3 Subject 1 4 3,4 3,5 3,3 3,3 3,4 3,9 3,54 0,29

G3 Subject 2 4,5 3,8 4,1 3,7 3,4 3,5 3,2 3,74 0,44

G3 Subject 3 4,7 4,4 3,7 4,5 3,3 4 3,8 4,06 0,50

G3 Subject 4 4,2 3,7 3,6 4,1 3,6 4,8 3,8 3,97 0,43

G3 Subject 5 5 3,7 3 4,2 3 3,5 4 3,77 0,71

98 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

B. Appendix: Pre-questionnaire

The following is a copy of the anonymous questionnaire handed to the subjects of Group

1 Baseline (G1), Experimental Groups 2 and 3 (G2 and G3) before the beginning the

experiment.

100 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

C. Appendix: Pre-questionnaire
answers

Table C-1: Pre-experiment questionnaire A results for Group 1 Baseline (G1) and

Experimental Group 2 (G2), each line representing the data of a single question for both

groups, with the corresponding means and standard deviation values. It includes the p-

value of the non-parametric significance Mann-Whitney-Wilcoxon test.

 Group 2 Group 1

 S1 S2 S3 S4 S5 𝑥 σ S1 S2 S3 S4 S5 𝑥 σ H1 p-both p-right p-left

Q.1 1 1 1 1 1 1,00 0,00 1 1 1 1 1 1,00 0,00 ≠ 1,000 1,000 1,000

Q.2 2 1 2 2 2 1,80 0,45 1 1 1 2 2 1,40 0,55 ≠ 0,524 0,262 0,976

Q.3 2 3 2 3 2 2,40 0,55 3 1 1 4 2 2,20 1,30 ≠ 0,683 0,341 0,706

Q.4 3 3 3 3 3 3,00 0,00 2 2 3 4 3 2,80 0,84 ≠ 0,444 0,222 0,861

Q.5 3 4 4 3 3 3,40 0,55 3 1 3 4 3 2,80 1,10 ≠ 0,643 0,321 0,917

Q.6 3 4 5 3 3 3,60 0,89 4 3 3 4 5 3,80 0,84 ≠ 0,921 0,778 0,460

Q.7 4 2 3 2 4 3,00 1,00 3 5 3 3 2 3,20 1,10 ≠ 0,810 0,643 0,405

Q.8 3 4 4 3 4 3,60 0,55 4 5 4 3 4 4,00 0,71 ≠ 0,643 0,917 0,321

Q.9 2 1 4 3 2 2,40 1,14 1 5 3 3 3 3,00 1,41 ≠ 0,460 0,802 0,230

Q.10 2 3 4 3 3 3,00 0,71 2 2 3 3 4 2,80 0,84 ≠ 0,881 0,441 0,798

102 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Table C-2: Pre-experiment questionnaire A results for Group 1 Baseline (G1) and

Experimental Group 3 (G3), each line representing the data of a single question for both

groups, with the corresponding means and standard deviation values. It includes the p-

value of the non-parametric significance Mann-Whitney-Wilcoxon test.

 Group 3 Group 1

 S1 S2 S3 S4 S5 𝑥 σ S1 S2 S3 S4 S5 𝑥 σ H1 p-both p-right p-left

Q.1 1 1 1 1 1 1,00 0,00 1 1 1 1 1 1,00 0,00 ≠ 1,000 1,000 1,000

Q.2 1 1 1 2 1 1,20 0,45 1 1 1 2 2 1,40 0,55 ≠ 1,000 0,917 0,500

Q.3 3 4 1 2 1 2,20 1,30 3 1 1 4 2 2,20 1,30 ≠ 1,000 0,595 0,595

Q.4 3 3 3 2 3 2,80 0,45 2 2 3 4 3 2,80 0,84 ≠ 1,000 0,500 0,679

Q.5 4 4 4 3 4 3,80 0,45 3 1 3 4 3 2,80 1,10 ≠ 0,167 0,083 0,996

Q.6 4 5 4 4 3 4,00 0,71 4 3 3 4 5 3,80 0,84 ≠ 0,881 0,441 0,798

Q.7 3 2 2 2 4 2,60 0,89 3 5 3 3 2 3,20 1,10 ≠ 0,365 0,881 0,183

Q.8 5 4 4 4 3 4,00 0,71 4 5 4 3 4 4,00 0,71 ≠ 1,000 0,683 0,683

Q.9 4 1 3 3 4 3,00 1,22 1 5 3 3 3 3,00 1,41 ≠ 1,000 0,500 0,619

Q.10 3 3 3 3 3 3,00 0,00 2 2 3 3 4 2,80 0,84 ≠ 0,444 0,222 0,861

D. Appendix: Experiment Main
Document

The following is a copy of the experiment document handed to the subjects of Group 1

Baseline (G1), Experimental Groups 2 and 3 (G2 and G3) at the beginning the

experiment.

104 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

E. Appendix: Sql File

The following is the source code of the .sql file used by the subjects of all groups to create

the database corresponding to the experiment.

CREATE TABLE IF NOT EXISTS `coffee_store` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT,
 `name` varchar(100) NOT NULL,
 `physical_address` varchar(100) NOT NULL,
 `city` varchar(100) NOT NULL,
 `state` varchar(100) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`,`physical_address`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=45500 ;

INSERT INTO `coffee_store` (`id`, `name`, `physical_address`, `city`, `state`)
VALUES
(20152, 'Sweet Beach Cakery', '2200 E 2nd St Bldg J', 'Gulf Shores', ' AL'),
(20153, 'Heritage House Coffee & Tea', '18 McFarland Blvd', 'Northport', ' AL'),
(20154, 'Tasty Tea', 'Not found', 'Alabaster', ' AL'),
(20155, 'Southern Decadence Desserts', '1956B S University Blvd', 'Mobile', ' AL'),
(20156, 'Florist Plus', '7938 Vaughn Rd', 'Montgomery', ' AL'),
(20157, 'Sonny''s Catfish Cafe''', '815 County Road 61', 'Houston', ' AL'),
(20158, 'Chat A Way Cafe', '4366 Old Shell Rd', 'Mobile', ' AL'),
(20159, 'Starbucks Coffee', '801 20th St S', 'Birmingham', ' AL'),
(20160, 'O''Henry''s Coffee', '2831 18th St S', 'Birmingham', ' AL'),
(20161, 'Red Diamond Coffee & Tea', 'Not found', '', 'ot'),
(20162, 'Starbucks Coffee', '1510 Government St', 'Mobile', ' AL'),
(20163, 'Starbucks Coffee', 'Not found', '', 'ot'),
(20164, 'G N U''s Room', '414 S Gay St', 'Auburn', ' AL'),
(20165, 'Starbucks Coffee', '1015 Memorial Pkwy NW', 'Huntsville', ' AL'),
(20166, 'Sunset Cafe', '203 E Main St', 'Samson', ' AL'),
(20167, 'Cafe On Main', '110 2nd Ave W', 'Oneonta', ' AL'),
(20168, 'Green Acres Cafe South', '8500 1st Ave N', 'Birmingham', ' AL'),
(20169, 'The Daily Perk', '913 N Daleville Ave', 'Daleville', ' AL'),
(20170, 'Starbucks Coffee', '2000 Riverchase Galleria', 'Birmingham', ' AL'),
(20171, 'Starbucks Coffee', '2056 Interstate Dr', 'Opelika', ' AL'),
(20172, 'Seattle''s Best Coffee', '2601 Mamie L Foster', 'Birmingham', ' AL'),
(20173, 'American Coffee House And Company', '22229 Highway 31', 'Flomaton', '
AL'),
(20174, 'Carpe Diem Coffee & Tea Company', '4072 Old Shell Rd', 'Mobile', ' AL'),

106 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

(20175, 'Bay Breeze Cafe', '50 S Church St # D', 'Fairhope', ' AL'),
(20176, 'Starbucks Coffee', '3255 Airport Blvd', 'Mobile', ' AL'),
(20177, 'Starbucks Coffee', '1650 US Highway 98', 'Daphne', ' AL'),
(20178, 'Bee Hive', '11 W Claiborne St', 'Monroeville', ' AL'),
(20179, 'Tomek''s', '2320 2nd Ave N', 'Birmingham', ' AL'),
(20180, 'Chelsea Coffee House', '109 Foothills Pkwy', 'Chelsea', ' AL'),
(20181, 'Mokas Coffee House Inc', '1204 Shelton Beach Rd Ste 1', 'Saraland', '
AL');

CREATE TABLE IF NOT EXISTS `barista` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(100) NOT NULL,
 `email` varchar(100) NOT NULL,
 `phone` varchar(100) NOT NULL,
 `coffee_store` bigint(20) NOT NULL,
 PRIMARY KEY (`id`),
 KEY `coffee_store` (`coffee_store`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=5 ;

INSERT INTO `barista` (`id`, `name`, `email`, `phone`, `coffee_store`) VALUES
(1, 'Sara Holmes', 'sara@test.com', '555-55-554', 20152),
(2, 'Nick Gomez', 'nick@test.com', '555-55-553', 20152),
(3, 'Patrick Viera', 'patrick@test.com', '555-55-51', 20152),
(4, 'John Smith', 'john@test.com', '555-55-52', 20153);

ALTER TABLE `barista`
 ADD CONSTRAINT `barista_ibfk_1` FOREIGN KEY (`coffee_store`)
REFERENCES `coffee_store` (`id`);

F. Appendix: Post-questionnaire

The following is a copy of the anonymous post-questionnaire handed to the subjects of

Group 1 Baseline (G1), Experimental Groups 2 and 3 (G2 and G3) at the end the

experiment.

108 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

G. Appendix: Post-questionnaire
answers

Table G-1: Post-experiment questionnaire results for Baseline (G1) and Experimental

Group 2 (G2), each line representing the data of a single question for both groups, with

corresponding means and standard deviation values. It includes the values of the non-

parametric significance Mann-Whitney-Wilcoxon test.

 Group 2 Group 1

 S1 S2 S3 S4 S5 𝑥 σ S1 S2 S3 S4 S5 𝑥 σ H1 p-both p-right p-left

EF.1 2 1 2 5 2 2,40 1,52 4 2 1 1 2 2,00 1,22 ≠ 0,643 0,321 0,802

EF.2 5 5 5 5 5 5,00 0,00 3 3 4 5 5 4,00 1,00 ≠ 0,167 0,083 1,000

EF.3 1 1 2 1 3 1,60 0,89 3 1 3 1 3 2,20 1,10 ≠ 0,524 0,897 0,262

OS.1 4 3 3 4 5 3,80 0,84 2 3 2 2 4 2,60 0,89 > 0,056 0,028 0,996

OS.2 3 5 4 4 4 4,00 0,71 2 3 2 3 2 2,40 0,55 > 0,024 0,012 1,000

OS.3 3 1 3 3 3 2,60 0,89 4 5 5 5 4 4,60 0,55 < 0,008 1,000 0,004

OS.4 3 1 2 2 5 2,60 1,52 5 5 4 4 4 4,40 0,55 < 0,071 0,976 0,036

DP.1 2 1 4 1 1 1,80 1,30 3 5* 4 3 1 3,20 1,48 < 0,206 0,929 0,103

DP.2 3 1 2 1 1 1,60 0,89 5* 5* 5* 4 3 4,40 0,89 < 0,016 1,000 0,008

DP.3 3 1 2 3 1 2,00 1,00 5* 5* 5* 5* 5* 5,00 0,00 < 0,008 1,000 0,004

DP.4 5* 5* 2 5* 1 3,60 1,95 5* 5* 5* 5* 5* 5,00 0,00 < 0,444 1,000 0,222

* The subject wasn‘t able to complete the task and the highest value –five– was

assigned.

110 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

Table G-2: Post-experiment questionnaire results for Baseline (G1) and Experimental

Group 3 (G3), each line representing the data of a single question for both groups, with

corresponding means and standard deviation values. It includes the values of the non-

parametric significance Mann-Whitney-Wilcoxon test.

 Group 3 Group 1

 S1 S2 S3 S4 S5 𝑥 σ S1 S2 S3 S4 S5 𝑥 σ H1 p-both p-right p-left

EF.1 1 1 2 5 1 2,00 1,73 4 2 1 1 2 2,00 1,22 ≠ 0,921 0,659 0,460

EF.2 5 5 5 5 4 4,80 0,45 3 3 4 5 5 4,00 1,00 ≠ 0,286 0,143 0,976

EF.3 2 1 1 1 1 1,20 0,45 3 1 3 1 3 2,20 1,10 ≠ 0,167 0,976 0,083

OS.1 4 4 3 5 5 4,20 0,84 2 3 2 2 4 2,60 0,89 > 0,056 0,028 0,996

OS.2 5 5 3 5 3 4,20 1,10 2 3 2 3 2 2,40 0,55 > 0,048 0,024 1,000

OS.3 3 1 3 1 3 2,20 1,10 4 5 5 5 4 4,60 0,55 < 0,008 1,000 0,004

OS.4 2 3 3 1 1 2,00 1,00 5 5 4 4 4 4,40 0,55 < 0,008 1,000 0,004

DP.1 1 1 2 1 1 1,20 0,45 3 5* 4 3 1 3,20 1,48 < 0,048 0,996 0,024

DP.2 2 1 5 5* 2 3,00 1,87 5* 5* 5* 4 3 4,40 0,89 < 0,286 0,917 0,143

DP.3 2 1 5* 5* 5* 3,60 1,95 5* 5* 5* 5* 5* 5,00 0,00 < 0,444 1,000 0,222

DP.4 4 5* 5* 5* 5* 4,80 0,45 5* 5* 5* 5* 5* 5,00 0,00 < 1,000 1,000 0,500

* The subject wasn‘t able to complete the task and the highest value –five– was

assigned.

Appendix G. Post-questionnaire answers 111

Table G-3: Post-experiment questionnaire framework knowledge items results for all

Groups. A value of 1 means the questions was correct, 0 incorrect, * the subject didn‘t

know the answer.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Total Correct

Answers

G1 S1 1 * * * 0 * * * * 1 2

G1 S2 0 * * * 1 * * * * * 1

G1 S3 1 * 1 * * * * * 0 * 2

G1 S4 1 * 1 1 1 * * * * 1 5

G1 S5 1 * 1 * 1 * 1 0 1 * 5

G2 S1 0 * 1 * * 1 1 * 1 0 4

G2 S2 0 1 1 * * * 1 * 1 1 5

G2 S3 1 * 1 0 * 1 * * 1 * 4

G2 S4 0 0 1 1 * * * * 1 * 3

G2 S5 0 1 1 1 * 0 1 * 1 1 6

G3 S1 0 * 0 * * 1 1 1 1 1 5

G3 S2 1 1 1 1 0 1 0 * 1 1 7

G3 S3 1 * 1 1 * * * * 1 * 4

G3 S4 0 1 1 0 1 1 1 * * 1 6

G3 S5 0 * 1 0 0 1 * * 1 * 3

H. Appendix: Time Results

Table H-1: Iterations time results. Units in minutes.

 Iteration 1 Iteration 2 Iteration 3 Iteration 4

Group 1 Subject 1 109 - - -

Group 1 Subject 2 - - - -

Group 1 Subject 3 102 - - -

Group 1 Subject 4 42 62 - -

Group 1 Subject 5 51 36 - -

Group 2 Subject 1 29 28 26 -

Group 2 Subject 2 31 41 20 -

Group 2 Subject 3 37 22 32 19

Group 2 Subject 4 27 30 48 -

Group 2 Subject 5 27 15 27 41

Group 3 Subject 1 20 29 19 32

Group 3 Subject 2 31 30 35 -

Group 3 Subject 3 40 60 - -

Group 3 Subject 4 37 - - -

Group 3 Subject 5 28 58 - -

References

[1] J. An, A. Chaudhuri, and J. S. Foster. ―Static typing for Ruby on Rails,‖ Proceedings of

24th IEEE/ACM International Conference on Automated Software Engineering, Auckland,

New Zealand, 2009, pp. 590-594.

[2] D. Correa, C. M. Zapata, and F. Arango, ―Learning of web application frameworks

components,‖ IADIS AC, October. 2013, pp. 155-162.

[3] X. Shi, K. Liu, and Y. Li, ―Integrated Architecture for Web Application Development

Based on Spring Framework and Activiti Engine,‖ The International Conference on E-

Technologies and Business on the Web (EBW2013), The Society of Digital Information

and Wireless Communication, May. 2013, pp. 52-56.

[4] J. Weinberger, P. Saxena, D. Akhawe, and M. Finifter, ―A systematic analysis of xss

sanitization in web application frameworks,‖ Computer Security–ESORICS 2011, Springer

Berlin Heidelberg, pp. 150-171, 2011.

[5] I. Sommerville, ―Ingeniería del software,‖ Pearson Educación, 2005.

[6] N. Flores and A. Aguiar, ―Understanding Frameworks Collaboratively: Tool

Requirements,‖ International Journal on Advances in Software, vol. 3(1 and 2), 2010, pp.

114-135.

[7] D. Hou, ―Investigating the effects of framework design knowledge in example-based

framework learning,‖ Proceedings of 24th IEEE International Conference on Software

Maintenance, Beijing, China, 2008, pp. 37-46.

116 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

[8] J. An, A. Chaudhuri, and J. S. Foster, ―Static typing for Ruby on Rails,‖ Proceedings of

24th IEEE/ACM International Conference on Automated Software Engineering, Auckland,

New Zealand, 2009, pp. 590-594.

[9] J. van Gurp, and J. Bosch, ―Design, implementation and evolution of object oriented

frameworks: Concepts and guidelines,‖ Software: Practice and Experience, 31(3), 2001,

pp 277-300.

[10] W. G. Halfond, ―Automated Checking of Web Application Invocations,‖ Proceedings

of IEEE 23rd International Symposium on Software Reliability Engineering (ISSRE),

Dallas, TX, USA, 2012, pp. 111-120.

[11] M. Canales, ―A Comparative Study of Rapid Development Frameworks for the

Creation of a Language Placement Exam Template,‖ Master‘s Thesis, Texas A&M

University, 2010.

[12] P. Wang, ―Comparison of Four Popular Java Web Framework Implementations:

Struts1. X, WebWork2. 2X, Tapestry4, JSF1. 2,‖ Master‘s Thesis, University of Tampere,

2008.

[13] N. Flores and A. Aguiar, ―Patterns for understanding frameworks,‖ Proceedings of

15th Conference on Pattern Languages of Programs (PLoP), Nashville, TN, USA, 2008,

pp. 8.

[14] D. Kirk, M. Roper, and M. Wood, "Identifying and addressing problems in object-

oriented framework reuse," Empirical Software Engineering, Vol. 12(3), 2007, pp. 243-

274.

[15] R. E. Johnson, ―Documenting frameworks using patterns,‖ ACM Sigplan Notices, vol.

27, no. 10, pp. 63-76, 1992.

References 117

[16] F. Shull, F. Lanubile, and V.R. Basili, ―Investigating reading techniques for object-

oriented framework learning,‖ IEEE Transactions on Software Engineering, vol. 26(11),

pp. 1101-1118, 2000.

[17] G. E. Krasner, and S. T. Pope, "A cookbook for using the model-view-controller user

interface paradigm in Smalltalk-80," Journal of Object-Oriented Programming, Vol. 1(3),

1998, pp. 26–49.

[18] K. Jackson, R. Biddle, and E. Temper, ―Understanding frameworks through

visualisation,‖ Proceedings of 37th International Conference on Technology of Object-

Oriented Languages and Systems, Sydney, Australia, 2000, pp. 304-315.

[19] N. Flores, ―Patterns and Tools for Improving Framework Understanding: a

Collaborative Approach,‖ Doctoral dissertation, University of Porto, December 2012.

[20] T. Hug, ―Didactics of microlearning: concepts, discourses and examples,‖ Waxmann

Verlag GmbH, Germany, 2007.

[21] G. Kamble, ―Aop-Introduced Crosscutting Concerns,‖ Proceedings of International

Symposium on Computing, Communication, and Control (ISCCC), October. 2009, pp.

140-144.

[22] F. Garzoto, D. Schwabe and P. Paolini, "DM-A Model Based Approach to

Hypermedia Aplication Design," ACM Transactions on Information System, 11 (1), 1993,

pp 1-26.

[23] D. Schwabe, G.Rossi, "Developing Hypermedia Applications using OOHDM,"

Workshop on Hypermedia Development Process, Methods and Models, Hypertext 98,

Pittsburg, USA, 1998.

[24] M. J. Escalona, and N. Koch, "Requirements engineering for web applications-a

comparative study," Journal of Web Engineering, vol 2(3), 2004, pp. 193-212.

118 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

[25] A. Cicchetti, and D. Di Ruscio, "Decoupling web application concerns through

weaving operations," Science of Computer Programming, vol 70(1), 2008, pp. 62-86.

[26] S. Meliá, A. Kraus, & N. Koch, "MDA transformations applied to web application

development," Web Engineering, Springer Berlin Heidelberg, 2005, pp. 465-471.

[27] X. Kong, L. Liu, and D. Lowe, ―Separation of concerns: a web application architecture

framework,‖ Journal of digital information, vol. 6, no. 2, 2005, pp. 1-8.

[28] G. Sousa, S. Soares, P. Borba, and J. Castro, ―Separation of crosscutting concerns

from requirements to design: Adapting the use case driven approach,‖ EA, pp. 93-102,

2004.

[29] I. S. Brito, F. Vieira, A. Moreira, and R. A. Ribeiro, ―Handling conflicts in aspectual

requirements compositions,‖ Transactions on aspect-oriented software development III,

Springer Berlin Heidelberg, pp. 144-166, 2007.

[30] L. Rosenhainer, ―Identifying crosscutting concerns in requirements specifications,‖

Proceedings of OOPSLA Early Aspects 2004: Aspect-Oriented Requirements

Engineering and Architecture Design Workshop, Vancouver, Canada, October. 2004.

[31] T. Elrad, M. Aksit, G. Kiczales, and K. J. Lieberherr, ―Discussing aspects of AOP,‖

Communications of the ACM, vol. 44, no. 10, pp. 33-38, 2001.

[32] D. L. Parnas, ―On the Criteria To Be Used in Decomposing Systems into Modules,‖

Communications of the ACM, vol 15, no. 12, pp. 1053–1058, 1972.

[33] T. Van Gog, and N. Rummel, "Example-based learning: Integrating cognitive and

social-cognitive research perspectives," Educational Psychology Review, vol 22(2), 2010,

pp. 155-174.

References 119

[34] R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, "Learning from examples:

Instructional principles from the worked examples research," Review of Educational

Research, vol 70, 2000, pp. 181–214.

[35] J. Sweller, "Cognitive load during problem-solving: Effects on learning," Cognitive

Science, vol 12, 1998, pp. 257–285.

[36] R. Holmes, and G. C. Murphy, "Using structural context to recommend source code

examples," Proceedings of the 27th international conference on Software engineering,

ACM, 2005, pp. 117-125.

[37] M. Grechanik, K. M. Conroy, and K. A. Probst, "Finding relevant applications for

prototyping,‖ Proceedings of the Fourth International Workshop on Mining Software

Repositories, IEEE Computer Society, 2007, pp. 12.

[38] D. Hou, and L. Li, "Obstacles in using frameworks and apis: An exploratory study of

programmers' newsgroup discussions. Proceedings of IEEE 19th International

Conference on Program Comprehension (ICPC), Kingston, ON, Canada, 2011, pp. 91-

100.

[39] C. M. Zapata, A. Gelbukh, F. A. Isaza, "Pre-conceptual schema: A conceptual-graph-

like knowledge representation for requirements elicitation," Lecture Notes in Computer

Science, Vol. 4293, 2006, pp. 17–27.

[40] C. M. Zapata, G. L. Giraldo, and S. Londoño, ―Esquemas preconceptuales

ejecutables,‖ Avances en Sistemas e Informática, vol. 8, no. 1, p. 2, 2011.

[41] R. Likert, ―A technique for the measurement of attitudes,‖ Archives of Psychology 22

140, 1932, pp. 1–55.

[42] D. Correa, F. Arango, and C.M. Zapata, "Driving the Learning of a Web Application

Framework by Using Separation of Concerns," The Ninth International Conference on

Internet and Web Applications and Services, ICIW 2014, pp. 76-82.

120 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

[43] S. Thummalapenta, and T. Xie, "Parseweb: a programmer assistant for reusing open

source code on the web," Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, ACM, 2007, pp. 204-213.

[44] M. Bruch, M. Monperrus, and M. Mezini, "Learning from examples to improve code

completion systems," Proceedings of the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering, ACM, 2009 pp. 213-222.

[45] J. Kim, S. Lee, S. W. Hwang, & S. Kim, "Adding examples into java documents,"

Proceedings of the 24th IEEE/ACM International Conference on Automated Software

Engineering, 2009, pp. 540-544.

[46] StackOverFlow Question [online] http://stackoverflow.com/questions/15737838/how-

to-pass-id-in-controller-from-form-action-using-codeigniter [Last visit: 16 October 2014].

[47] G. Lawton, "Web 2.0 creates security challenges," Computer, vol 40 (10), 2007, pp.

13-16.

[48] P. A. Bruck, L. Motiwalla, and F. Foerster, "Mobile learning with micro-content: a

framework and evaluation," Proceedings of the 25th Bled eConference eDependability:

Reliable and Trustworthy eStructures, eProcesses, eOperations and eServices for the

Future, 2012.

[49] J. Watson, ―A Case Study: Developing Learning Objects with an Explicit Learning

Design,‖ Electronic Journal of e-Learning, vol 8 (1), 2010, pp. 41-50.

[50] D. Kovachev, Y. Cao, R. Klamma and M. Jarke, "Learn-as-you-go: new ways of

cloud-based micro-learning for the mobile web." Advances in Web-Based Learning-ICWL

2011," Springer Berlin Heidelberg, 2011. pp. 51-61.

[51] Driving Learning Application. [Online]. Available from:

http://www.frameworkg.com/dl/micro.php [Last visit: 24 October 2014].

References 121

[52] TJ. C. Carver, L. Jaccheri, S. Morasca, and F. Shull, ―A checklist for integrating

student empirical studies with research and teaching goals,‖ Empirical Software

Engineering, vol 15(1), 2010.

[53] WampServer [online] http://www.wampserver.com/en/

[54] Notepad++ [online] http://notepad-plus-plus.org/

[55] Codeigniter Framework [online] https://ellislab.com/codeigniter

[56] Codeigniter Spanish Official Documentation [online]

http://escodeigniter.com/guia_usuario/

[57] Driving Learning Application Meso-Tasks Material. [Online]. Available from:

http://www.frameworkg.com/dl/examples.php [Last visit: 24 October 2014].

[58] Driving Learning Application Complete Material. [Online]. Available from:

http://www.frameworkg.com/dl/micro.php [Last visit: 24 October 2014].

[59] Yii Framework [online] https://www.yiiframework.com/

[60] Prado Framework [online] https://www.pradosoft.com/

[61] MVC4 Framework [online] https://www.asp.net/mvc/mvc4

[62] Ruby on Rails Framework [online] https://rubyonrails.org/

[63] Cakephp Framework [online] https://cakephp.org/

[64] M. Hollander and D. A. Wolfe, ―Nonparametric statistical methods,‖ Wiley-

Interscience, 1999.

122 Learning of Web Application Frameworks based on Concerns, Micro-Learning and Examples

[65] J. Plekhanova, ―Evaluating web development frameworks: Django, ruby on rails and

cakephp,‖ Institute for Business and Information Technology, 2009.

[66] M. Björemo, and P. Trninić, ―Evaluation of web application frameworks-Evaluation of

web application frameworks with regards to rapid development,‖ Master‘s Thesis,

University of Gothenburg, Göteborg, Sweden, 2009.

[67] J. M. Carroll, P. L. Smith-Kerker, J. R. Ford, and S. A. Mazur-Rimetz, ―The minimal

manual,‖ Journal of Human-Computer Interaction, vol 3(2), pp. 123-153, 1987.

[68] M. P. Robillard, ―What makes apis hard to learn? answers from developers,‖ IEEE

Software, vol 26(6), pp. 27-34, 2009.

[69] A. Forward and T. C. Lethbridge, ―The relevance of software documentation, tools

and technologies: a survey,‖ In Proceedings ACM Symposium on Document Engineering,

pp. 26-33, 2002.

[70] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and M. Gordon, ―What

programmers really want: results of a needs assessment for sdk documentation,‖ In

Proceedings International Conference on Computer Documentation, pp. 133-141, 2002.

[71] R. Johnson, ―Components, framework, patterns,‖ SIGSOFT Software, Engineering

Notes, vol 22(3), pp. 10-17, 1997.

[72] M. Fayad, D. Schimdt, and R. Johnson, ―Building application frameworks,‖ Wiley

Computing Publishing, 1999.

[73] G. Froehlich, H. Hoover, L. Lui, and P. Sorenson, ―Hooking into object-oriented

application frameworks,‖ Proceedings of the 19th International Conference on Software

Engineering, pp. 491–501, 1997.

References 123

[74] S. B. Ho, I. Chai, and C. H. Tan, ―Leveraging Framework Documentation Solutions

for Intermediate Users in Knowledge Acquisition,‖ International Journal of Information

Science, vol 3(1), pp. 13-23, 2013.

[75] P. Roberts-Morpeth and J. Ellman, ―Some security issues for web based

frameworks,‖ Proceedings on the 7th International Symposium in Communication

Systems Networks and Digital Signal Processing (CSNDSP), IEEE, pp. 726-731, 2010.

[76] W. K. Robertson, and G. Vigna, ―Static Enforcement of Web Application Integrity

Through Strong Typing,‖ In USENIX Security Symposium, pp. 283-298, 2009.

[77] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, ―An empirical analysis of input

validation mechanisms in web applications and languages,‖ Proceedings of the 27th

Annual ACM Symposium on Applied Computing, ACM, pp. 1419-1426, 2012.

[78] K. Jayaraman, G. Lewandowski, P. G. Talaga, and S. J. Chapin, "Enforcing request

integrity in web applications," Data and Applications Security and Privacy XXIV, Springer

Berlin Heidelberg, pp. 225-240, 2010. Springer Berlin Heidelberg.

