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Alejandro Cáceres Euse

A dissertation submitted in partial satisfaction of the:
Doctorate in Marine Science

Advisor:
(Ph.D.) Francisco Mauricio Toro Botero

Co-Advisor:
(Ph.D.) Alejandro Orfila Foster

Universidad Nacional de Colombia Faculty of Mines,
Departament of Geoscience and Environment
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Chapter 1

Introduction

1.1 Introduction

The aquatic vegetation is ubiquitous worldwide, from low temperature areas to tropical
shallow coastal zones (Van Der Heide et al., 2007). These ecosystems provide a pro-
ductive life cyle being the habitat for many marine animal species (Marion et al., 2014).

At the coastal region, the aquatic vegetation (seagrass) attenuates the currents,
dissipates the wave height and stabilises the coastlines (Maxwell et al., 2017; Pinsky
et al., 2013) being considered as a soft system to reduce the risk of flooding and ero-
sion under sea level rise and extreme wave events (Ondiviela et al., 2014). Based on
the above described services, estimations of economical annual values provided by the
aquatic vegetations is over $10 trillion (Nepf, 2013).

Control field studies such as those by Schanz et al. (2002); Schanz and Asmus (2003)
demonstrate the interdependence between the hydrodynamic and biological processes,
since there is a cascading effect in which for a specific flow conditions, different species
can live and proliferate within the seagrass meadows or be washed away, depending on
the energetic wave conditions and seagrass density.

Regarding the interaction between the submerged seagrass and the surrounding
flow, it is well known that the presence of the seagrass canopies attenuate the momen-
tum by the work done on the flow by the stems (Finnigan, 2000). The effects in the
velocity field can be differentiated and thus studied in terms of scales; 1) processes
with spatial scales of the order of the stem diameter or spacing between stems; and 2)
processes with scales of the order of the drag length scale. The turbulent structures
at the scale of the stems are called wake scales and are produced by the shadow zone
downstream the stems (Nepf, 2012; Zhang et al., 2018). Turbulent processes at the
drag length scale are governed by the density of the canopy and the flow dynamics
(Nepf, 2012). These processes modulate the water renewal between the water inside
and above the canopy and the amount of suspended sediments along the water column
(Luhar and Nepf, 2013).
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18 CHAPTER 1. CHAPTER 1

The turbulent processes at the drag length scale can be analysed as a plane mixing
layer by two co-flowing streams that present a shear layer at the top of the canopy
(Raupach et al., 1996). This shear-layer-flow is characterized by an inflexion point
in the velocity profile (two water bodies moving at different velocities), responsible
for the vertical mass exchange at the top of the canopy (Ghisalberti and Nepf, 2009).
The shear layer facilitates the generation of Kelvin-Helmholtz instability type vortex
(Ghisalberti and Nepf, 2002).

The Kelvin-Helmholtz type vortex has been widely studied in steady flows (Rau-
pach et al., 1996; Finnigan, 2000; Ghisalberti and Nepf, 2002; Nepf, 2012; Mandel et al.,
2017), characterizing its effect on the seagrass movement, the Reynolds stresses, the
sediment distribution, the vertical mixing and the free surface. However, the formation
and effect of Kelvin-Helmholtz type vortices in the wave oscillatory flow is still far to be
completly understood. Indeed, it is still not clear which are the dominant terms in the
Navier-Stokes equations for the oscillatory-seagrass-flow interaction. Ghisalberti and
Schlosser (2013) reported some “‘necessary” conditions in the flow in order to produce
Kelvin-Helmholtz instabilities; Abdolahpour et al. (2017) analysed a steady current re-
leased by the presence of the shear layer and its relation with the shear layer magnitude
and Abdolahpour et al. (2018) used the seagrass-steady-flow interaction formulation
of Ghisalberti and Nepf (2002) to estimate the Kelvin-Helmholtz frequency range in
oscillatory flows.

The evolution of vortices downstream submerged structures in oscillatory dominant
flows is assumed to be dissipated by the viscosity and the effects on the wave breaking
process have not been yet analysed. Indeed, a theoretical model to solve the Kelvin-
Helmholtz instability modes as a function of the free surface and a general characteriza-
tion of the turbulent spectra is an open question that will provide new insights in order
to improve models and simulations of relevant hydrodynamic processes at coastal scale.

The aim of this Thesis is to understand the relation between the free surface fre-
quency and the Kelvin-Helmtholtz instability modes in seagrass-oscillatory-flow inter-
action. For this, I will first analyze the effects of a vortex by an isolated submerged
stem interacting with a surface wave. Then, I develop an analytical model to determine
the dominant terms in the momentum equation in seagrass-oscillatory-flow interaction.
Finally I close the scientific question by solving the Kelvin-Helmholtz instability modes
in seagrass-oscillatory flow interaction as a function of the free surface wave applying
the Piecewise method to a simplified velocity profile.

This thesis is structured as follows. Chapter 2 analyses the effects of backwards
wave breaking process induced by a strong transport of mass in a vortex produced
by an isolated submerged stem. In chapter 3, a simplified seagrass-oscillatory-flow
model is developed by dimensional analysis of the Navier-Stokes equation. Here, some
reference variables are defined according to the free surface wave parameters . The vali-
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1.1. INTRODUCTION 19

dation of the simplified model is performed against experimental data from a flap type
wavemaker system and a random seagrass distribution. Finally, chapter 4 presents
a theoretical model for the Kelvin-Helmholtz instability modes as a function of the
incoming free surface wave. The model applies the piecewise linear method to the
Rayleigh’s equation in an ideliazed vertical velocity profile.

It is important to remark that this thesis is composed by three papers: Chapter 2
has been published in the Ocean Engineering Journal, Chapter 3 is in final revision
for the Experiments in F luids Journal and Chapter 4 is under review for the Journal
of F luid Mechanics.

19



20 CHAPTER 1. CHAPTER 1

20



Chapter 2

Vortex formation in
wave-submerged structure
interaction

21



22 CHAPTER 2. CHAPTER 2

22



Abstract

Long wave-structure interaction is studied numerically. The Rayleigh and Goring wave
generation theories with a solitary wave with two nonlinearity factors and three dis-
cretization schemes for the advective terms for the wave propagation are evaluated.
Results show good agreement for the main wave peak and for the wave decay rate.
The model captures the trailing waves and some differences on the wave decay rates
are observed.

Analysis of monochromatic and solitary wave cases passing over submerged struc-
ture is then studied. For the monochromatic scenario, the model agrees very well with
the free surface experimental data, and a ”Linear fluid structure interaction mecha-
nism” can be observed based on the structure geometry and the absence of adverse
pressure gradient in the flow. For the solitary wave case interacting with a slender
column, the numerical model agrees very well with the measurements, showing that an
adverse pressure gradient in the flow is presented and the vortex in the flow induces a
wave breaking process, not by the bottom friction, nor by water depth reduction but
by a strong transport of mass from upstream to downstream side of the vortex; this
turbulent structure is the dominant process, even when the wave breaking is present.
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2.1 Introduction

Understanding wave propagation and its interaction with submerged structures is cru-
cial when studying hydrodynamic processes, specially in coastal areas where the large
interaction occurs between man-made or natural structures and the sea. In this area,
there are three main topics of research: a) the wave transformation along the sub-
merged structure, b) vortex generation by adverse pressure gradient and c) the wave
breaking due to a water depth reduction on the submerged structure. The physical
processes present in wave-submerged structure interactions are: reflection, transmis-
sion and dissipation of the incident wave Losada et al. (1996); Christou et al. (2008);
Zhou et al. (2014).

Regarding the physical wave processes along the submerged structure (with no
breaking due to bottom effects), two main phenomena are present: a) the generation
of higher harmonics from the incident wave frequency by the increment on the wave
non-linearity when the wave is over the obstacle (Grue, 1992; Huang and Dong, 1999)
and b) the vortex formation in the flow at the upstream and downstream side of the
structure, if the structure geometry and wave properties satisfy some specific condi-
tions, producing the crest-crest exchange and backward wave breaking (Cooker et al.,
1990). These complex flow behaviour (vortex formation) have been the focus of dif-
ferent works on the last decades, because of the inclusion of viscous stresses in the
hydrodynamic flow solutions, finding that these flow modifications or secondary flows
can strongly modify the wave free surface profile, wave loads and structure stability
(Huang and Dong, 1999; Chang et al., 2005; Wu et al., 2012). Nevertheless, the entire
vortex evolution on a wave environment and its effect on the backward wave breaking
process is still not completely understood.

Related to the wave scenarios, the solitary waves have been frequently employed for
decades to determine the characteristics of tsunamis and strong surges (Zhang et al.,
2012) or to describe waves in the surf zone (Dean and Dalrymple, 1991); additionally,
the study of solitary wave transformation around marine breakwaters is a critical prob-
lem when evaluating the effects produced by these extreme waves in coastal areas (Wu
et al., 2012). Also, for monochromatic waves, different authors study the wave transfor-
mation and its dissipation when an immersed obstacle is presented (Iwata et al., 1996;
Kawasaki and Iwata, 1998; Dong and Huang, 2001; Shen and Chan, 2008; Higuera
et al., 2013; Chen et al., 2014).

Concerning the use of CFD tools for wave generation and propagation and the
understanding of different physical processes in wave-structure interaction scenarios,
those who solve the Navier-Stokes equations are the most appropriate, due to the in-
clusion of viscosity effects in the wave field (Iwata et al., 1996; Huang and Dong, 1999;
Lin and Liu, 1999; Chang et al., 2001; Shen and Chan, 2008). The usual approach for
wave generation, since it presents the lower computational cost, uses a fixed mesh for
the whole computational domain, generating waves either by using the mass conserva-
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tion equation a in specific region known as the mass source or source region (Ohyama
and Nadaoka, 1991; Iwata et al., 1996; Kawasaki and Iwata, 1998; Lin and Liu, 1999;
Lara et al., 2006; Chen and Hsiao, 2016) or by specifying the free surface, on an open
boundary, according to the desired wave characteristics and advecting them using the
wave equations (Amini Afshar, 2010; Lambert, 2012; Jacobsen et al., 2012; Higuera
et al., 2013; Chen et al., 2014). All these method applied a relaxation or sponge-like
layer zone in the computational domain, in order to avoid unwanted reflected waves
by open boundaries or internally in the computational domain (Lara et al., 2006; Ja-
cobsen et al., 2012; Chen and Hsiao, 2016). However, wave generation in fixed meshes
presents limitations, since implicit signals produced in laboratory are not recreated.
In particular, the trailing waves as the result of the wave theory used in the solitary
wave generation paddle movement is not simulated by these models, inducing higher
uncertainties since the differences between the model and the experimental data are
the result of the wave boundary conditions. A second approach for the wave generation
is the use of dynamical computational mesh whose displacement is obtained by the so-
lution of a specific equation at the boundary, describing the wave generator movement
(Dong and Huang, 2001; Oliveira et al., 2009; Elangovan and Sahoo, 2010; Xi-zeng
et al., 2010; Wu et al., 2014; Higuera et al., 2015).

In the present work, the dynamic mesh approach is used following the piston-type
wave generator concept, in order to include the trailing waves in the wave propagation.
For the solution of the dynamic mesh generation problem, the library dynamicInkJetFvMesh

(Weller et al., 1998; Jasak and Tukovic, 2006) is used and the wave generation theory is
applied as a modulating function. For the wave propagation, the discretization scheme
for the advective terms in the momentum equation (Jasak et al., 1999; Ferziger and
Peric, 2002) is evaluated; minimizing the numerical damping and the wave decay along
the flume.

This paper is structured as follows. First, the dynamic mesh description and the
long wave and monochromatic wave generation theories are presented followed by the
modulating function for the wave governing equations at the moving boundary. Sec-
ondly, a detailed analysis of the numerical discretization of the advective terms in the
transport equation is described; and the numerical solution studied for the slip and
non slip boundary conditions. Finally the model is validated and used to describe two
wave-structure interaction scenarios.

2.2 Methodology

In this section, a review of the wave generation and propagation theories is briefly
summarized. The piston-type wave generator concept is described using the govern-
ing equations for a variable volume domain (Jasak, 2009); then, several discretization
schemes are tested to accurately solve the advective terms in the Navier-Stokes equa-
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tions (Jasak et al., 1999).

2.2.1 Dynamic Mesh

In dynamic mesh computations, two motions can be distinguished: the motions at the
boundary and the motions in the interior of the domain. Motions at the boundary are
specified by a given governing equation representing the boundary displacement while
the interior points have to accommodate to the prescribed boundary motion preserving
the mesh validity and quality. By following this procedure, errors in the results can be
only assigned to the mesh discretization (Jasak and Tukovic, 2010).

The moving mesh in the finite volume discretization is based on the integral form
of the mass conservation law over an arbitrary moving volume V, bounded by a closed
surface, M. For a general tensor property ψ, the following equation has to be satisfied
(Jasak and Tukovic, 2010)

∂

∂t

∫
V

ρψdV +

∮
M

ρ~n · (~v − ~vM)ψdM −
∮
M

ργψ(~n · 5ψdM) =

∫
V

MψdV (2.1)

where ρ is the fluid density, ~n is a unit normal vector to the surface M, ~v is the fluid
velocity, ~vM is velocity at the boundary, γψ is a diffusive coefficient and Mψ is a source
term. Now, the relationship between the change of volume and the boundary velocity
is defined by the space conservation law,

∂

∂t

∫
V

dV +

∮
M

~n · ( ~vM)dM = 0 (2.2)

In this work, Equations (2.1) and (2.2) are part of the CFD solver and the wave
generator is a modification of the native equation in the dynamic mesh movement di-
rectory (interDyMFOAM) of OpenFOAM c©.

This solver considers an incompressible, transient, newtonian fluid in a two phase
flow together with the dynamic mesh algorithm with no topological changes in the mesh
(Greenshields, 2015). The pseudo-algorithm presented here uses the dynamicInkJetFvMesh
library solver to simulate dynamic mesh phenomena, where the mesh behaviour is repre-
sented as a linear spring and is part of the different solvers available for non-topological
dynamic mesh changes using an explicit equation. This library allows the definition
of a dynamic and fixed regions by using a pivot at a specified location on the domain,
so the dynamic region is used for the wave generation (wave Generation zone) and
the fixed one for wave propagation and wave-structure interaction (wave Propagation
Zone). The utility of the fixed or static region in the numerical wave flume, permits to
study wave interacting with any kind of fixed structures without inducing cell defor-
mations in the structures by the mesh movement (see Fig. 4.1).
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2.2.2 Wave maker theory

The challenge in the generation of solitary waves in wave flumes is to minimize the spu-
rious waves generated after the main wave that degrades the target wave (Goring and
Raichlen, 1980; Katell and Eric, 2002; Wu et al., 2014). For monochromatic waves, the
objective is to obtain the desired wave height and period for a specific depth (Frigaard
et al., 1993).

Figure 2.1: Wave generation scheme and paddle displacement with mesh adjustment.
M1 is at 6.5, M2 at 9 and M3 at 11.5 meters from the paddle.

Long Wave Generation

For long waves, a transfer function relates the horizontal velocity of the wave generator
with the vertical average of the horizontal velocity component, ū as (see Fig 4.1),

dξ

dt
= ū(ξ, t) =

cη(ξ, t)

h+ η(ξ, t)
(2.3)

where c is the wave celerity and η the free surface. The left hand side (LHS) of Equa-
tion (2.3) represents the speed of the moving paddle and the right hand side (RHS)
represents the depth integrated horizontal velocity. If η has the shape of any harmonic
function for the paddle position, ξ(t), Equation (2.3) implies:

η(ξ, t) = Af [k(ct− ξ(t))] (2.4)
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where k is the wave number. By defining ϕ = k(ct − ξ) for a solitary wave, Equation
(2.4) can be expressed as (Katell and Eric, 2002):

η(ξ, t) = A sech2

(
βϕ

2

)
, (2.5)

ξ(t) =
2A

hβ
tanh

(
βϕ

2

)
(2.6)

where A is the amplitude of the solitary wave, h the still water depth, β is a decay
coefficient, S = (4A)/(hβ) is the stroke of the paddle and the duration of the stroke is,

τ = (4/βc) [arctanh (0.999) + A/h]

Two different approximations for the solitary wave generator have been imple-
mented: the solution of the Boussinesq equation presented by Goring and Raichlen
(1980) and the solution of the Rayleigh equation presented by Katell and Eric (2002).
Hereinafter, the sub-index G will denote the Goring and Raichlen constant and the R
the Rayleigh constant.

Goring and Raichlen approximation Based on the simplified solution of the
Boussinesq equation with ū(ξ, t) = ū(0, t), Equation (2.6) can be expressed as (Katell
and Eric, 2002):

ξ(t) = SG tanh

[(√
3A

4h3

)
ϕ

]
(2.7)

with SG = 4
√
Ah/3.

Rayleigh Approximation In the Rayleigh approximation, the position of the pad-
dle can be expressed as (Katell and Eric, 2002),

ξ(t) = SR
h tanh(βRcRt/2)

h+ A[1− tanh2(βRcRt/2)]
(2.8)

with SR = 4
√
A(A+ h)/3. Since the stroke of the paddle defined by Equations (2.7)

and (2.8) represents the displacements from -SG to +SG (or from -SR to +SR), a
translation is applied to transform it from 0 to +2SG (or from 0 to +2SR) to prevent
convergence problems of the numerical solution due to the rapid change of the bound-
ary as well as to guarantee the reduction of the simulation time.

Wave Train Generation

The wave train generation uses the Biésel Function, which relates the wave ampli-
tude with the paddle displacement (Frigaard et al., 1993). This procedure starts from
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the mass conservation equation and a harmonic boundary condition that mimics the
wavemaker. The wave hight-stroke relation (H/S) is a mathematical expression for the
monochromatic wave generation, see Equation (2.9), and the expression for the pad-
dle displacement, including the effect of the second order terms, is given by Equation
(2.10):

H

S
=

4sinh2(kh)

sinh(2kh) + 2kh)
= m1 (2.9)

ξ(t) =
Hsin(wt))

2m1

+
H2

32
(

1− h
2(h+L)

) (3cosh(kh)

sinh3(kh)
− 2

m1

)
sin(2wt) (2.10)

where m1 is the first order wave hight-stroke relation, w is the angular frequency and
L is the wavelength of the desired wave satisfying the dispersion relation. This formula
is valid for Ursel number up to 26.32 (Steven A., 1993).

2.3 Mesh Behavior

In the dynamic grid approach, we need to define three regions: i) the displacement
area for the wave generator, ii) the region where the computational cell faces move
proportional to the distance to the moving boundary (spring type region) and iii) a
fixed or static sub-domain, where the wave propagation and wave-structure interactions
will be studied. To do so, an equation emulating a linear spring is defined in the
generation zone (see Fig 4.1). The equation resulting for the grid that satisfies the
above conditions is Equation (2.11) (Jasak, 2009):

Xnew = Xold · (1 + position (−Xold − ref) · SCF ) (2.11)

where Xnew is the position of the cell faces at a given time, including the boundary; Xold

is the position of the cell faces at a previous time; ref is the pivot location where the
dynamic and fixed regions match each other and SCF is a function that modulates the
boundary displacement corresponding, in our case, to the solitary or monochromatic
wave generation functions previously defined. The objective for the wave generation
is to apply the native OpenFOAM c© equation (Equation (2.11)) for wave propagation
modifying the modulating function by the wavemaker theory. This is achieved using a
pivot position according to wave generation and combining a dynamic region for the
wave
generation with a fixed region for wave propagation in order to mimics wave-fixed
structure interaction scenarios.

Special care is taken in the wave propagation zone (see Fig 4.1) where a static grid
is defined since the grid resolution changes and some problems related to numerical
diffusion can arise in the limit between the generation and propagation zones. To
overcome this issue, we defined the cell size in the static zone to be the same as the
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neighbouring cells when the SCF parameter is maximum.

Regarding the vertical direction, the cell discretization ratio, ∆x/∆y, must have a
moderate value, which is related to the wave steepness as:

∆x

∆y
v 2 (2.12)

∆y

∆x
=
H

L
; ∆y =

H

n
(2.13)

where n is the number of cell divisions of the wave height.

2.3.1 Governing equations

Wave propagation is computed by solving the Navier-Stokes equations for an incom-
pressible fluid in a Cartesian coordinate system

∇ · ~U = 0 (2.14)

∂(~U)

∂t
+ (~U · ∇)~U = −∇P

ρ
+ ν∇2~U + ~g +

1

ρ
~Fs (2.15)

where ρ is the fluid density, ~g is acceleration due to gravity, ν the kinematic viscosity, ~U
the velocity field, P the dynamic pressure and ~Fs is a vector force due to surface tension.
To resolve the location of the free surface, the volume of fluid (VOF) technique uses a
transport equation for the fraction of the liquid volume γ (Hirt and Nichols, 1981):

∂γ

∂t
+5 ·

(
γ~U
)

+5 ·
(
γ (1− γ) ~Ur

)
= 0 (2.16)

where γ is the liquid fraction and ~Ur is an artificial velocity factor that allows a correc-
tion of the velocity of the water and air near their interface (Higuera et al., 2013). The
surface term and the properties of the fluids are defined below, where σ is the Surface
tension and ~n its curvature:

γ =


γ = 0 for air
γ = 1 for water
0 < γ < 1 for free surface

(2.17)

Fs = σ~n (2.18)

~n =
5γ
| 5 γ|

(2.19)

ρ = γρwater + (1− γ)ρair (2.20)

µ = γµwater + (1− γ)µair (2.21)
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Equations (2.14) to (2.21) are solved numerically using interDyMFOAM in the finite
volume (FV) approximation transforming the above set of partial differential equa-
tions in a set of integral equations over a differential control volume (CV). The total
computational domain is arranged in a computational mesh conformed by small CVs
computing the velocity field and the scalar variables at the center of the cell (Ferziger
and Peric, 2002), as shown in Fig 4.2.

Figure 2.2: A typical CV notation in 2D for Cartesian Coordinates.

To transform this set of PDEs into a set of integral equations, the Gauss first
theorem is applied to the advective terms and the transient terms integrated over the
CV in time.
The mentioned transformation applied to Equation (2.15) leads to:∫

∆t

(
∂

∂t

∫
CV

ρ~UdV

)
dt+

∫
∆t

∫
M

ρ~n · ~U
(
~U
)
dMdt =∫

∆t

∫
M

~n.
(
µ∇2~U

)
dM +

∫
∆t

∫
CV

ρ~gdV dt−
∫

∆t

∫
CV

∇PdV dt+

∫
∆t

~FsdV dt. (2.22)

For the pressure term, OpenFOAM c© uses the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) and PISO (Pressure Implicit Splitting Operator) methods,
a non-hydrostatic approximation formulation, and an iterative solution by coupling the
velocity field and the pressure with the mass conservation equation (Ferziger and Peric,
2002; Versteeg and Malalasekera, 2007).

2.3.2 Discretization Schemes

Several tests are performed to evaluate the effect of different discretization schemes of
the convective terms on the solution. Defining ~a as the vector field in the convective
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terms, Equation (2.22) is solved assuming that the integral is approximated using

the midpoint rule and the integral of the flux over the infinitesimal surface ~dM is
approximated as: ∫

M

~a ~dM ≈
∑
e

āeMe ≈
∑
e

aeMe (2.23)

Considering that Equation (2.23) is applied on the CV surface and the values of
the hydrodynamic variables are available at the CV center node, different methods can
be used to interpolate the values from the nodes to the surfaces. This procedure can
be done if the variables are function of the values at the node, which can be accomp
The style file: apalike.bst I couldn’t open database file Chapter2/Reference.biblished
by applying some interpolating procedures, i.e. the UPWIND (UD), the Quadratic
upwind interpolation for convective kinetics (QUICK) and the Total Variation dimin-
ishing (van Leer) interpolation.

The UD interpolation scheme uses the value of the variable at the surface depending
on the flow direction, UD is a diffusive scheme, thus a very fine mesh is required to
obtain accurate results (Ferziger and Peric, 2002). The value of ae, following Fig 4.2,
is:

ae =

{
aP if ~U · ~n > 0

aE if ~U · ~n < 0

}
(2.24)

The QUICK scheme was developed as an improvement of UD where, a parabolic
fitting between the points P and E (see Fig.4.2) is implemented, implying the use of
an additional point to define the function. This point is selected depending on the di-
rection of the convection process; i.e. if ux > 0, W is selected and conversely, if ux < 0,
EE is selected (where ux is the velocity component in the x direction). This scheme is
more accurate than the UD scheme presenting less numerical diffusion although it in-
troduces spurious oscillations for complex flows (Ferziger and Peric, 2002). The third
interpolation method evaluated is the van Leer scheme, a second order scheme that
allows controlling the spurious oscillations generated by the QUICK scheme. This is
achieved by defining a diffusive function. Details of the discretization schemes and
their implementation can be reviewed in Ferziger and Peric (2002) and Versteeg and
Malalasekera (2007).

2.4 Results

In this section, the dynamic mesh wave generation and propagation methodology is
tested against analytical solution as well as with experimental data for a solitary wave.
Additionally, the cases for a monochromatic wave over a trapezoidal cross section struc-
ture and a solitary wave over a slender column are validated using experimental data
reported in the literature and a backward wave breaking process due to vortex influ-
ence is explained. All test cases neglect the Reynolds Stress tensor, except for the
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Solitary-Slender Column case, where the κω − SST turbulent model is used (avail-
able in OpenFoam c©). All simulations are 2-DV, since we are interested in the wave
propagation and transformation rather than its transversal effects. For the numerical
stability, the Courant number was restricted to 0.8 and for the free surface and hydro-
dynamic quantities the absolute error has to be lower than 10−6, before to pass to the
next time step. Additionally, in order to determine where the free surface position is on
the vertical axis (based on Equations (2.16) and (2.17)), the γ values equal to 0.5 were
enough to extract the free surface time series. In order to evaluate the convergence be-
haviour and mesh independence, different mesh size were chosen to estimate the error,
order and ratio of convergence. The order and ratio of convergence are estimated using
the UD scheme and three different meshes (see Table 4.1), since the other two schemes
are improvements to the this formulation. The error analysis was based on the two
finest meshes. The numerical wave flume is a semi-infinite domain in the direction of
the wave propagation, increasing the cell size away from the wave propagation zone to
induce artificial damping in order to avoid reflection effects.

ε = 0.270 H/15 H/30 H/40
∆x(m) 0.0054 0.0028 0.0020
∆y(m) 0.0027 0.0014 0.0010
ε = 0.409 H/15 H/30 H/40
∆x(m) 0.0082 0.0040 0.0030
∆y(m) 0.0040 0.0020 0.0015

Table 2.1: Wave non-linearity and mesh properties for the numerical experiments for
the solitary wave on a flat bottom case.

2.4.1 Solitary Wave on a Flat Bottom

The profile for the solitary wave in the Boussinesq approach takes the form, (Chang
et al., 2001)

η = H sech2

(√
3H

4h3
(x− ct)

)
(2.25)

where c is the wave celerity, H the wave height and h the still water depth. The damp-
ing due to viscous effects along its propagation direction can be included by using the
Keulegan’s formulation (Keulegan, 1948; Liu and Orfila, 2005; Liu et al., 2006).

The numerical domain is a 25 m long, 0.6 m wide and 0.9 m deep in a 0.15 m still
water depth. Two different values for the non-linear wave characteristics (ε = H/h)
are tested. The vertical mesh resolution is defined by dividing H by 15, 30 and 40 (for
both wave cases); and the horizontal resolution is based on the mesh quality defined
in section 3. In Table 4.1, the mesh resolution for H/15 (Mesh1), H/30 (Mesh2) and
H/40 (Mesh3) are shown and the error analysis is presented for Mesh2 and Mesh3
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since the relative error based on the wave peak differences was defined to be lower than
20%.

Model convergence behaviour

In order to evaluate the performance of the numerical wave flume, it is important to
assess the convergence of the solution against the analytical one. The formulations
presented in this section follow the E. and Hoekstra (2008) methodology. To estimate
the order and ratio of convergence, three different meshes have been implemented with
a refinement ratio below 2.5, the slip boundary condition and the advective term UD
since this formulation solves the flow quantities based on the flow direction being the
other two improvements of the former.

Having three different grid size δ1, δ2 and δ3, and their specific variables (scalar or
vectorial) solution φ1, φ2 and φ3 (the free surface wave in this case), the convergence
ratio can be estimated by Equation (2.26) as:

Γ =
φ2 − φ1

φ3 − φ2

(2.26)

where φ1 stands for the finest grid solution, φ2 for the intermediate grid solution and
φ3 the coarsest grid one and convergence conditions are defined as:

0< Γ <1 => Monotonic convergence
-1< Γ <0 => Oscillatory convergence
Γ <-1 => Monotonic divergence
Γ >1 => Oscillatory divergence

For the order of convergence (j), a fitting to an error estimator values is done by a
power function expressed by Equation (2.27)

Er = φi − φ0 = ζhji (2.27)

where ζ is a coefficient and φ0 is the free surface reference value estimated by using
Equation (2.25) at three recording station (see Fig 4.1).

The results for j for both nonlinearity values (ε equals to 0.27 and 0.409) using the
wave peak error and having R-square higher than 80% (in the fitting), are presented
in the Table 2.2. Additionally, Γ values reported in this work are an average between
the three recording stations illustrated in Fig 4.1. As can be observed, using both pa-
rameters, the numerical solution shows a Monotonic convergence behaviour and the
error analysis can be done using the two finest meshes.
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ε = 0.270
j 0.4368
Γ 0.4121
ε = 0.409
j 0.6412
Γ 0.5262

Table 2.2: Numerical wave flume convergence behaviour.

Generation
Method

UPWIND Discretiza-
tion Scheme ε = 0.270

UPWIND Discretiza-
tion Scheme ε = 0.409

M1 M2 M3 Ω M1 M2 M3 Ω
G Mesh2 -7.2 -10.6 -11.8 0.055% -8.8 -12.5 -15.4 0.08%
G Mesh3 -4.4 -7.4 -10.1 0.046% -6.3 -9.5 -12.3 0.074%

van Leer Discretiza-
tion Scheme ε = 0.270

van Leer Discretiza-
tion Scheme ε = 0.409

G Mesh2 -5.9 -8.8 -11.3 0.044% -5.1 -8.4 -11 0.072%
G Mesh3 -3.3 -6.2 -8.6 0.043% -3.7 -6.4 -8.9 0.064%

QUICK Discretization
Scheme ε = 0.270

QUICK Discretization
Scheme ε = 0.409

M1 M2 M3 Ω M1 M2 M3 Ω
G Mesh2 -5.8 -8.8 -11.2 0.044% -4.5 -7.9 -10.5 0.074%
G Mesh3 -3.4 -6.3 -8.6 0.042% -3.3 -6.3 -8.7 0.066%

QUICK Discretization
Scheme ε = 0.270

QUICK Discretization
Scheme ε = 0.409

M1 M2 M3 Ω M1 M2 M3 Ω
Ra Mesh3 -1.9 -3.9 -6.4 0.032% 4.6 1.7 -1.06 0.07%

Table 2.3: Numerical relative wave peak error (%) and wave peak decay with respect
to theory for the solitary wave on a flat bottom case using all the numerical schemes.

Slip flat bottom

First, the model is tested against the theoretical wave peak solution given by Equation
(2.25), considering a slip condition on the bottom (no friction) and varying the mesh
resolution to determine the effect of the mesh size on the numerical results. For all
cases, the relative wave peak error and main wave peak decay (Ω) (evaluated by taking
the mean slope along three measuring points) are obtained at three locations along
the numerical wave flume, for all numerical schemes. These virtual wave gauges are
at the same locations than the experimental ones (see locations in Fig 4.1). Errors
for the three schemes and the two waves are reported in Table 2.3 and a time his-
tory at the three gauges for the three schemes and for the two wave non-linearities in
Fig 4.4 and 4.5, respectively. As seen, the Goring-Raichlen wave theory with Mesh3,
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gives the best solution with all the numerical schemes. The appropriate mesh and
advective numerical scheme is used for comparing the Keulegan’s solution against the
experimental data with the Rayleigh wave generation method (Ra), a more accurate
theory than the Goring-Raichlen (G) (Katell and Eric, 2002). However, recent works
using experimental and numerical approaches where Equation (2.3) is modified using
the Fenton’s wave profile, show improvement in the attenuation of the trailing waves
and a reduction of the main wave peak decay (Wu et al., 2014,0). This formulation
is more accurate for pure solitary wave generation than the other theories mentioned
above. Also, it is important to remark that the experimental data available for the
model validation, comes from the Goring and Rayleigh formulations and the Fenton’s
improvement will not be used in this work.

Model Keulegan Model Keulegan

ε = 0.270 ε = 0.409
Ω 0.039% 0.045% 0.08% 0.081%

Table 2.4: Model and Keulegan’s Wave decay rates for two wave non-linearity factors.

It is important to note that the exact solution of the paddle movement in the G
approach is obtained from a system of equations which implies a larger computational
effort. The paddle movement for the cases studied is presented in Fig 4.3 which repro-
duces Equation (2.7) and (2.8), and the G simplification given by Equation (2.28):

ξ(t) = SG tanh

(
7.6

(
t

τG
− 0.5

))
(2.28)

Which obeys the hyperbolic tangent function, avoiding the need of an iterative solution
for the boundary condition at each time steep.

Regarding the G method, the numerical solutions for both non-linear wave param-
eters underestimates the wave peak giving the highest trailing wave amplitude. The
Ra method, overestimates the main wave height and diminishes the trailing wave am-
plitude.

All methods reproduce the spurious trailing waves (Fig 4.4, 4.5, 3.6 and 3.7) for
both non-linear wave values tested. G is the method with the highest trailing wave
amplitude and the smallest trailing wave period. Conversely, the Ra method, gives
the smallest amplitude and the larger wave period for both ε values. Note that an
increment of the non-linear parameter generates an increment in the amplitude of the
trailing waves and a reduction in their wave period. Not significant effects in the wave
celerity and the trailing waves have been noticed regarding the discretization scheme.
Additionally, the wave decay rate and the error in the wave peak increase with larger
non-linearities due to limitations in the wave generation theories as already reported
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Figure 2.3: Paddle displacement with different theories for ε = 0.270.

Figure 2.4: Numerical time history (and zoom at the peak) of the wave profile at
M1(Left), M2(Right) and M3(Down) for ε = 0.270 for three discretization schemes,
theoretical and Goring-Raichlen theory.

by Katell and Eric (2002) and Wu et al. (2014).

Based on the results (Table 2.3), the Mesh3 and the QUICK scheme are selected
for the wave simulation and comparison with Keulegan’s solution and experimental
data. However, it is important to remark that the van Leer and QUICK solutions
are very close to each other, showing differences between them below 1% for all the
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Figure 2.5: Numerical time history (and zoom at the peak) of the wave profile at
M1(Left), M2(Right) and M3(Down) for ε = 0.409 for three discretization schemes,
theoretical and Goring-Raichlen theory.

Figure 2.6: Numerical time history of the wave profile at M1(Left), M2(Right) and
M3(Down) for ε = 0.270 using the Quick scheme, Mesh2, theoretical free surface and
Rayleigh theory.
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Figure 2.7: Numerical time history of the wave profile at M1(Left), M2(Right) and
M3(Down) for ε = 0.409 using the Quick scheme, Mesh2, theoretical free surface and
Rayleigh theory.

simulations.

Non slip flat bottom

Keulegan (1948), modified the solution for the theoretical solitary wave by including
the effect of the bottom friction in order to model a realistic wave. Fig 3.8 and Fig
3.9 show the numerical solution obtained with the Ra method, the QUICK scheme
and the decay rate for both non-linearity factors. For comparison purposes, the decay
rate obtained by the Keulegan’s correction is also included. The numerical model con-
siders a non-slip boundary condition on the channel bottom (ux = 0). The errors in
the decay rate are summarized in Table 2.4 indicating that the numerical model gives
smaller decay rate than the value predicted by Keulegan’s formulation. The theoretical
an numerical decay rate increase as the non-linear factor does.

Validation against experimental data

In this section we validate the model agaist the experimental data presented in Liu
et al. (2006) for a solitary wave. These experiments were performed in a wave flume
with the same characteristics as the numerical domain shown in the previous Section.
For the validation, two solitary waves with the same non-linear parameters as those
presented above were compared at locations M1, M2, and M3. Additionally, the
numerical model considers the Rayleigh wave generation theory, a non-slip boundary
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Figure 2.8: Numerical time history of the wave profile at M1, M2 and M3, the
Kuelegan′s viscous damping by bottom friction and theoretical wave peak for ε = 0.270.

Figure 2.9: Numerical time history of the wave profile at M1, M2 and M3, the
Kuelegan′s viscous damping by bottom friction and theoretical wave peak for ε = 0.409.

condition at the bottom and the QUICK scheme for the advective terms.

Model results and laboratory data are shown for ε = 0.270, at the three locations
in Fig 3.10. The errors for the wave amplitude are shown in Table 2.5. From these
figures it is clear that the model captures accurately the shape of the wave although
underpredicts the wave amplitude. This error slightly increases in the direction of the
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wave propagation indicating that the model overpredicts the wave decay rate. For
ε = 0.409 (Fig 2.11), the model overpredicts the wave decay rate and the magnitude of
the wave peak with errors up to 3.1% (Table 2.5). The numerical model overpredicts
the wave peak decay rate for both non linear wave values, with the highest relative
error of 5.5% for ε = 0.270.

ε = 0.270 ε = 0.409

M1 M2 M3 M1 M2 M3
3.0 4.3 5.5 3.11 0.62 -0.95

Table 2.5: Relative wave peak error (%) between numerical and experimental data.

Figure 2.10: Numerical and experimental (Liu et al., 2006) time history of the wave
profile at M1, M2 and M3 for ε = 0.270.

At M1 and for ε = 0.270, (Fig 2.12 left), the trailing waves have a maximum am-
plitude of 0.16 cm (4.43% of the main wave) with almost a constant period of 1.3 s.
At this location, the model reproduces the trailing waves of the same amplitude but
with a shorter period than those measured in the experiments. These waves detach
earlier from the main wave than the experimental ones leading to a wave profile which
is above the experimental one.

For the non-linearity factor ε = 0.409, the experimental and the numerical trail-
ing waves at M1 (Fig 2.12 right), are in much better agreement than for the other
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Figure 2.11: Numerical and experimental (Liu et al., 2006) time history of the wave
profile at M1, M2 and M3 for ε = 0.409.
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Figure 2.12: Numerical and experimental (Liu et al., 2006) trailing wave profile at M1
for ε = 0.270 (Left) and ε = 0.409 (Right).

non-linearity factor (amplitude of 0.27 cm or 4.8% of the main wave and period of
0.98 s). For this nonlinearity, the simulated waves detach at the same time than the
experimental ones.

The analysis of the trailing waves shows that viscosity has little effect. For both
non-linear factors and for slip (viscous fluid without bottom friction) and non slip
(viscous fluid and bottom friction), the numerical results show that neither the fluid
viscosity nor the bottom friction nor the surface tension have effect on the trailing
waves, since they are modulated by the gravity term (from Equation (2.15)). Ad-
ditionally, the Weber number (We) was estimated applying the linear wave theory
showing different behaviour for the theoretical and the numerical computations when
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neglecting the surface tension (Fig 2.12). The theoretical estimation of the We number
is around 0.6 and 1.7 for ε 0.27 and 0.41 respectively indicating that effects of surface
tension is important. In the numerical simulations, there are no differences for both
nonlinearity factors.

At stations M2 and M3, the recording time in the experiments were too short to
provide information about the trailing waves.

2.4.2 Monochromatic wave passing over a Trapezoidal cross
section

In this Section, the numerical model is tested with the experiments by Dingemnas
(1993) for a monocromatic wave interacting with a submerged trapezoidal cross sec-
tion structure. The still water level is h=40 cm, the wave height H=2 cm and the wave
period T=2.02 s; the incident Ursell number is Ur = 4.5, so the wave generation theory
presented above is adequate and the wave can be modelled in the linear wave theory
range. The submerged structure is 30 cm height and 11 m long (see Fig 2.13). To
validate the model, the experimental free surface from the wave gauges (in red box D1,
D2, D3 and D4) are compared against the numerical results. The distance from the
paddle to the wave gauges are 2, 13.5, 15.7 and 19 meters, respectively. It is important
to remark that the numerical simulation, the spectral analysis and error estimates were
computed during a simulation of 45 seconds, but only the first 38 seconds are shown
for illustration purposes.

Figure 2.13: Dingeman’s experimental set-up. (Modified from (Lambert, 2012))

The model results are shown in Fig 2.14 to Fig 2.17 in the time (lower panel) and
frequency (upper panel) domains, respectively. All numerical results are recorded at
the same location as the experimental ones, eliminating the need to calibrate the nu-
merical incoming wave with the first experimental wave gauge, something that has to
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be done when using static meshes. From the time series presented in Fig 2.14, the wave
at D1 is a ”perfect monochromatic wave”; however the wave at D2 and at the structure
downstream slope (stations D3 and D4) has been transformed, generating free waves
that detach from the main wave gaining energy by diffusion effects (Huang and Dong,
1999), even at points where secondary harmonics are as high as the incident one (D3
and D4). Comparison between numerical results and experimental data is presented
in terms of the Agreement Index (AI), the Mean Absolute Error (MAE) and the Mean
Bias Error (MBE) (Willmott and Matsuura, 2005) applied wave by wave. The error
analysis shows that along the numerical domain, the model agrees very well with the
experimental data (AI>98% and MAE< 7.5∗10−4 meters) at all stations and the MBE
for the records is around zero with a mean value close to 3 ∗ 10−4 meters, showing a
small over-prediction respect to the experimental data (see Fig 2.18). Furthermore,
the wave error behaviour (AI) is very stable for all the waves (see Fig 2.18), implying
that the model does not need a warming time interval being able to solve the physi-
cal behaviour of the variables from the initial time of simulation. Those free waves
are explained from the wave mechanics viewpoint by using fully nonlinear Boussinesq
models (Galan et al., 2013), where the wave trains are propagated from a deeper water
to a shallower one. In deep water, the dispersion is more important than the nonlinear
effects, but when the waves reach the shallow water, the nonlinear effects becomes more
relevant and the dispersion decreases. In that moment, higher harmonics are released
by the nonlinear processes and those harmonics are more dispersive than the incident
waves when they reach deeper waters again.

Using a FFT decomposition of the free surface time series, it is possible to detect
the wave frequencies as is shown in the upper panel of Fig 2.14 - Fig 2.17, where
the vertical axes are twice the wave amplitude (2A) normalized by the incident wave
height (Hi). At D1, the main frequency is 0.5 Hz (corresponding to the target wave)
and downstream the structure, higher frequencies appear (D2, D3 and D4) with en-
ergy comparable with the incident wave(D3 and D4). These frequencies correspond to
the free waves that travel slower than the incident phase velocity (Huang and Dong,
1999). They are the result of the water column variation that produces an increment
in the advective acceleration (positive or negative). This acceleration is positive on
the upstream slope and on the top (flat zone) of the structure up to the beginning of
the structure downstream slope, where the acceleration is negative. Due to the change
in the hydrodynamic conditions along the submerged structure, the mass conservation
requires the free surface to adjust to the new flow conditions at the boundaries, in-
creasing the wave steepness and also increasing the wave nonlinearity over the upstream
slope and at the top of the structure. Over the downstream slope, the diffusive term in
the momentum equation is more relevant than the advection term transfering energy
from lower to higher frequencies. Notice that this structure has very mild slopes, long
flat top and the ratio of its height-base lengths is much less than unity, working as
a flat structure in an almost parallel flow (no flow separation occurs). For this type
of physical processes together with low Reynolds number, we call them ”Linear fluid
structure interaction mechanism” from the fluid mechanics point of view.
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Figure 2.14: Dingeman’s experimental data and numerical model results in the free
surface (lower) and frequency (upper) domain at 6 meters from the Wavemaker (D1).
Numerical (Black) Vs. Experiments (Red).

Figure 2.15: Dingeman’s experimental data and numerical model results in the free
surface (lower) and frequency (upper) domains at 13.5 meters from the Wavemaker
(D2).
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Figure 2.16: Dingeman’s experimental data and numerical model results in the free
surface (lower) and frequency (upper) domains at 15.7 meters from the Wavemaker
(D3).

Figure 2.17: Dingeman’s experimental data and numerical model results in the free
surface (lower) and frequency (upper) domains at 6 meters from the Wavemaker (D4).

2.4.3 Solitary Wave-Slender Structure interaction

At higher complexity, in this section the model is tested with a solitary wave interact-
ing with a slender column. Results are compared against the data published by Wu
et al. (2012). The Goring and Raichlen (1980) theory is used for the generation of the
solitary wave, since it is the used by the work of Wu et al. (2012). The still water level
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Figure 2.18: Index of agreement, Maximum absolute error (MAE) and Mean bias error
(MBE) for all stations.

is h=14cm and the wave height H=7cm; with a nonlinear parameter of ε = 0.5. Wave
breaking is presented downstream of the structure. The submerged structure is 10 cm
high (d) and 2 cm thick (w). The experiment set up is shown in Fig 2.19. The mesh
size close to the solid walls is 0.8 millimetres. To validate the model, the PIV velocity
field data is qualitatively compared against the numerical results and quantitatively
with the vertical velocity profiles.

Figure 2.19: Overview of the numerical and experimental set-up based on (Wu et al.,
2012).

For the numerical configuration, the turbulent 2-D vertical κω−SST model is used
with the no-slip condition at the bottom, zero velocity at the end of the wave flume and
zero gradient pressure on the walls (bottom and structure). The turbulent quantities
on the solid walls (sub index w) and at the free-stream (sub index∞) are set based on

48



2.4. RESULTS 49

the formulation suggested by Hellsten (1998) (Equations (2.29)-(2.33))

ωw =
2ν

0, 075d2
∗

(2.29)

κw = 10−7 (2.30)

ω∞ = Γ
U∞
L

(2.31)

νt = 10−3ν (2.32)

κ∞ = νtω∞ (2.33)

where ν, d∗ and Γ are the fluid viscosity, the first node wall distance and a proportion-
ality coefficient between 1-10, respectively. The eddy viscosity at the boundary layer
(νtw) follows the formulation presented by Spalding (1961), which is valid along the
entire boundary layer, from Y + ∼ 1 to Y + > 30. The advective terms in the transport
equation are solved using the QUICK scheme.

Eight velocity profiles at five different instants are compared with the experimental
data. These profiles are taken from z = −h to z = η at 0.06, 0.08, 0.1, 0.12, 0.14,
0.16, 0.18 and 0.2 meters from the downstream face of the slender column. Compar-
isons are performed at t = 0.46, 0.6, 0.74, 0.88, 1.02 seconds after the wave crest reaches
x = −0.657m (see Fig 2.19). Additionally, a qualitative comparison between velocity
fields is shown for each time.

Maximum errors for the horizontal and vertical velocity components for each time
are reported in Table 2.6, showing that the AI is higher than 83%. The lower AI and
the higher MAE are obtained at t = 1.02 seconds (the post-breaking time). The high-
est discrepancies are obtained when the horizontal velocity profile has the strongest
inflexion point (center of the vortex) with a vertical velocity slightly close to the vortex
center. In this situation, the model underpredicts the velocity gradients, decreasing
the vorticity (see Fig 2.20 - Fig 2.24).

t MAE − U [m
s

] MAE − V [m
s

] AI − U AI − V
0.46 0.022 0.0245 0.97 0.93
0.6 0.042 0.055 0.96 0.88
0.74 0.05 0.08 0.95 0.84
0.88 0.08 0.08 0.93 0.84
1.02 0.08 0.09 0.91 0.83

Table 2.6: Error estimation for the worst velocity profile at each time steep. Case of
the wave passing the slender column

The vortex structure and the magnitude of the velocity are in agreement with the
experimental ones (Fig 2.20 - 2.24, upper panel). At t = 0.46 s, a flow separation ap-
pears due to the drag pressure force exerted on the flow, inducing an adverse pressure
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Figure 2.20: Experimental (Wu et al., 2012) and Numerical velocity field comparison
(upper panel), and velocity profiles (lower panel) (Blue-horizontal and Red-vertical
components) at t = 0.46 seconds.

gradient exerted by the solid column (the main vortex). At this time two vortices arise:
the main vortex located downstream the column and a second one at the top of the
structure, both reported by Wu et al. (2012). The main vortex is advected by the wave
with velocity magnitudes decreasing slightly in the wave propagation axis. This be-
haviour is observed by following the vortex velocity profiles all time steps and noticing
that the vertical velocity close to the vortex center (upstream and downstream) has
an almost ”constant” value of 1 m/s and the difference between the upper and lower
(around the vortex center) horizontal velocities is also 1 m/s (see Fig 2.20 - 2.24, lower
panel). Following these description, we hypothesize that, the vortex travels faster than
what it is being diffused by turbulent and viscous effects; so that the advective term
is more relevant than the diffusive one in the transport equation. This behaviour is

50



2.4. RESULTS 51

Figure 2.21: Experimental (Wu et al., 2012) and Numerical velocity field comparison
(upper panel), and velocity profiles (lower panel) (Blue-horizontal and Red-vertical
components) at t = 0.6 seconds (before the wave breaking).

in contradiction with Chang et al. (2001), who postulated that the diffusion is higher
than the advection downstream the submerged obstacle.

As the main vortex travels along the wave propagation axis, the vortex on the top
of the structure vanishes, since there is no significant flow over the column. The vortex
generated by the flow separation induces downstream a steeper free surface profile at
0.6 and 0.74 seconds because the velocity is higher in the vortex upper zone accumu-
lating mass at its downstream side (see Fig 2.21 - Fig 2.22). As a result, the water
column loses its own stability until the moment when the wave breaking process ap-
pears (t = 0.88 s) (see Fig 2.23). Breaking is occurring in the opposite direction of
wave propagation, because the accumulated mass downstream the vortex is taken from
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Figure 2.22: Experimental (Wu et al., 2012) and Numerical velocity field comparison
(upper panel), and velocity profiles (lower panel) (Blue-horizontal and Red-vertical
components) at t = 0.74 seconds (before the wave breaking).

the upstream side (t = 1.02 seconds)(see Fig 2.23). This simulation gives more infor-
mation about the crest-crest exchange process, reported by Cooker et al. (1990), where
the physical phenomena was studied by using the Euler’s equations (without viscous
effects) with no vortices in the flow. When the backward breaking wave is present, a
new vortex appears and air is trapped in the water (notice that this air entrainment
is not capture by the PIV measurements). This vortex interacts with the main vortex
(produced by adverse pressure gradient) evolving into an elliptic form without affect-
ing its original direction and magnitude. This implies that the turbulent structure is
dominated by the flow separation effects even when the wave breaking processes occurs.
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Figure 2.23: Experimental (Wu et al., 2012) and Numerical velocity field comparison
(upper panel), and velocity profiles (lower panel) (Blue-horizontal and Red-vertical
components) at t = 0.88 seconds (at the wave breaking).

2.5 Conclusions

A numerical model implemented in OpenFoam c© for dynamic mesh has been presented
for wave propagation. The numerical results can be analysed at the same points as the
experimental data, eliminating the need to calibrate the numerical incoming wave with
the first experimental wave gauge as has to be done with static meshes. The definition
of the generation and propagation zones solved the cell deformation problem close to
the vicinity of the wave-structure interaction region. The inclusion of the trailing waves
in the solitary wave propagation includes a more realistic wave generated by the model.
We reiterate here that the properties of the solitary and wave trains are dependent on
the generation method according to Katell and Eric (2002).

53



54 CHAPTER 2. CHAPTER 2

Figure 2.24: Experimental (Wu et al., 2012) and Numerical velocity field comparison
(upper panel), and velocity profiles (lower panel) (Blue-horizontal and Red-vertical
components) at t = 1.02 seconds (at the post-wave breaking).

A special treatment was made for the grid size in a region close to the limits between
the paddle stroke in the so-called wave generation zone and at the rigid mesh, the wave
propagation zone, since geometric similarity must be preserved between the two areas
when defining the computational grid. Additionally, for a solitary wave propagation,
a mesh size of H/40 was found enough for a correct wave simulation even in wave
structure scenario. Regarding monochromatic waves, a vertical mesh size of H/25 was
enough close to the free surface.

To validate the case of a solitary wave on a flat bottom, the wave generation meth-
ods were tested for several discretization schemes of the convective terms. Model results
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were compared against the analytical solution for the solitary wave as well as with ex-
perimental data. The tests included a solitary wave propagating with slip and non-slip
wall conditions. For these cases, the three different discretization schemes, the UD,
QUICK and van Leer were compared against the analytical solution for the different
wave generation theories. The results showed that the Rayleigh method better fits
the analytical solitary wave in terms of the wave amplitude, the smallest wave decay
rate and moderate spurious trailing waves. None of the numerical schemes tested had
effects on the trailing waves. The QUICK and van Leer schemes adjusted better the
analytical solitary wave being the less diffusive schemes.

Regarding the trailing waves, the model results were compared with the experi-
mental data reported by Liu et al. (2006). Numerical results agreed very well with
experimental data for the case corresponding to ε = 0.409. The simulated trailing
waves were above the measured ones, indicating that the model underestimates the
depression produced by the trailing waves once the main wave has passed a certain
location. These trailing waves were not affected neither by the fluid viscosity, the bot-
tom friction, the discretization schemes nor by the surface tension. They are directly
induced by the wave generation method and modulated by the gravity force. It is
worth to note that the numerical wave decay ratio was higher than the obtained in the
flume experiments.

When simulating the wave behaviour over a submerged trapezoidal structure, the
appearance of higher harmonics were well simulated for the monochromatic wave case,
where the trapezoidal obstacle can be seen as a thin plate on the flume bottom due to
its small height-length ratio (0.3/11).

Finally, for a solitary wave flowing over a slender submerged column, the comparison
between modelled and measured velocity profiles showed that the model represented
very well the measuremnts as the maximum error for the velocity profiles was 17%, and
that the advection effects were higher than the diffusive ones over the main vortex at
the downstream side of the structure. The turbulent flow structure at the submerged
solid slender column was dominated by the flow separation effects, even when the wave
breaking processes occured. Additionally, the backward breaking wave was not in-
duced by the bottom friction or water depth reduction but it was forced by the effect
of the main vortex on the free surface profile; this phenoma explaines in more detail,
the crest-crest exchange processes presented by Cooker et al. (1990) and the backward
wave breaking.

For future analysis, the effect of the vortex on the structure stability should be
studied, since it can undermine the soil that embeds the structure and advecting it by
the vortex displacement, inducing a structure overturning.
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Chapter 3

Simplified approach to oscillatory
flow-submerged canopy
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Abstract

A shear layer at the top of a submerged canopy is analyzed under oscillatory flow driven
by free surface waves. By applying a dimensional analysis at the shear layer scale, a
simple analytical model that reveals the dominant terms in Navier-Stokes equation is
developed. A set of laboratory data show good agreement with the analytical model
and the assumptions applied in its derivation. The wave-seagrass interaction can be
assumed as a horizontal parallel flow, since the mean vertical velocity and the vertical
advection can be negligible compared to the mean horizontal velocity and the horizon-
tal advection, respectively. Notable results are that the shear layer thickness (δ) can
be approximated as a function of the horizontal orbital excursion (Aw) by δ ≈ 0.2Aw.
Additionally, the turbulent model parametrization as function of Aw shows good agree-
ment in developing the shear layer, so that the mixing process at the top of the canopy
and the development of the horizontal velocity profile are modulated by the horizontal
orbital excursion and wave period.
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3.1 Introduction

Seagrass ecosystems constitute one of the most diverse and productive environments
on Earth (Maxwell et al., 2017). The aquatic vegetation provides a wide range of ben-
efits and ecosystems services; for example, the production of oxygen, the improvement
of water quality, the sheltering of important species, and the prevention of shoreline
erosion by damping waves and storm surges (Luhar et al., 2010; Ondiviela et al., 2014).

The hydrodynamic impact begins when the seagrass canopy dissipates the incident
wave height by following a hyperbolic decay (Kobayashi et al., 1993; Méndez et al.,
1999; Losada et al., 2016; Lei and Nepf, 2019), reduces the oscillatory velocity (Ab-
dolahpour et al., 2016), and increases turbulence at stem length scales (Zhang et al.,
2018). The wave height attenuation based on field and laboratory observations can
reach up to 70% of the incident wave height, depending on the canopy density, length
and submergence ratio (Stratigaki et al., 2011; Koftis et al., 2013; Anderson and Smith,
2014; Ondiviela et al., 2014; Karambas et al., 2015). The oscillatory velocity inside the
canopy can be reduced up to 40% (compared to a bare bed), presenting a shear layer
at the top of the canopy (Ghisalberti and Nepf, 2002) that depends on the canopy
density, wave period and wave height (Lowe et al., 2005; Pujol et al., 2013). So the
reduction of the flow inside the canopy is a function of the drag length scale (Lcd) and
horizontal orbital excursion (Aw) (Lowe et al., 2005).

The magnitude of the shear layer in the velocity profile induces a strong vertical
mixing (Abdolahpour et al., 2018). This vortex is highly dependent on wave condi-
tions and canopy properties (Ghisalberti and Schlosser, 2013), so that minor changes
in forcing can yield major changes in mixing (Abdolahpour et al., 2016).

To understand the canopy-oscillatory flow interaction, Lowe et al. (2005) developed
a simplified 2-Box model to analyze the reduction of the mean oscillatory velocity in-
side the canopy interacting with a very rough surface; Zeller et al. (2015) presented a
simplified model to describe the seagrass effects in combined current-waves, solving the
vertical advection by assuming linear wave theory. However, the dominant terms be-
hind the shear layer formation, as the drag term, unsteadiness term, Reynolds stresses
or the pressure gradient are not yet completely understood and quantified. Addition-
ally, a detailed analysis of the shear layer at the top of the canopy has not yet been
presented.

In the present work, a one-dimensional (1D) model for pure wave-seagrass flows,
with important applications in coastal protection and ecosystem services, is proposed
by analysing the 2D Navier-Stokes equation at the shear layer and horizontal orbital
excursion scales. The resulting expression is a function of the local acceleration, hor-
izontal pressure gradient, vertical shear and drag force. Some assumptions reported
in the literature were found valid and others did not agree with the analytical and
laboratory results.
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The paper is structured as follows: In section 2, a dimensional analysis to the 2D
Navier-Stokes equation is performed by defining physical reference variables and sim-
plifying the momentum equations. In section 3, the methods used to obtain a set of
laboratory data with a seagrass canopy are presented. And finally, in section 4, the
laboratory data is used to calibrate and validate the analytical model, and a simple
expression to estimate the shear layer is defined.

3.2 1D Model approximation for wave-seagrass in-

teraction

3.2.1 Model Development

In this work a 1D model approximation to a 2D momentum equation is presented. The
model starts by assuming that the cross-stream direction is negligible compared to the
streamwise (wave propagation axis). So that any cross-stream component is due to
the turbulence at the wake scale produced by the canopy stem (not considered in the
present development), and the 2D momentum and mass conservation equations for the
instantaneous streamwise velocity (u), vertical velocity (w), pressure (p) and constant
fluid density (ρ) can be expressed by:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)
(3.1)
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+ u

∂w
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∂w

∂z
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ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
− g (3.2)

∂u

∂x
= −∂w

∂z
(3.3)

where ν and g are the kinematic fluid viscosity and the gravitational acceleration, re-
spectively.

The vegetation interacting with the surrounding wave flow (see the analysis do-
main, zones R1 and R2 in Figure 3.1) can be assumed to be dense enough that the
stem skin friction can be neglected (Kobayashi et al., 1993; Luhar et al., 2017), the
canopy resistance is dominated by the drag force and the add mass term is negligible
(Ghisalberti and Schlosser, 2013). With this simplification, the presence of the seagrass
canopy can be modelled by modifying the Navier-Stokes equations to include the drag
force (from the bottom to the top of the canopy) in the momentum equation.

To simplify Eq.(3.1) to Eq.(3.3), a dimensional analysis is performed to identify the
dominant terms, so some reference variables are defined: U∞(the orbital velocity far
from the seagrass effects), Aw (horizontal orbital excursion length), T (wave period)
and δ (shear layer thickness at the top of the canopy). The dimensionless variables
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Figure 3.1: Theoretical Seagrass-Wave flow scheme. The blue line is a horizontal
velocity profile at a fixed position along the water depth, and hs is the segrass height.

are defined by Eq.(3.4) and substituted in Eq.(3.1) to Eq.(3.3) giving the dimension-
less forms Eq.(3.5) to Eq.(3.7). Additionally, by the mass conservation equation, the
dimensionless vertical velocity (w∗) in Eq.(3.4), can be scaled as W∞ ∼ U∞δ
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where t, z and x are time, vertical and horizontal coordinates, respectively.

The shear layer thickness should be function of Lcd (this will be analysed later);
however, in the scaling process, the shear layer is assumed to be of the same order
of magnitude as the wave boundary layer. Thus Eq.(3.8) is used in the present de-
velopment. Additionally, δ is strongly correlated to the mean flow Reynolds number
(Re) from laminar to turbulent flow (Jensen et al., 1989; Sana and Tanaka, 2007), and
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remarking that for marine canopy environments Re ∼ (O(102)− O(106)) (Ghisalberti
and Schlosser, 2013; Abdolahpour et al., 2016), simplifications to Eq.(3.5) and Eq.(3.6)
can be applied by substituting Eq.(3.8) and Eq.(3.9) into Eq.(3.5) and Eq.(3.6)

δ ∼ Aw√
Re

, Aw =
U∞T

2π
(3.8)

Re =
U∞Aw
ν

, Re > 1000 (3.9)

where Re is considered large enough to neglect viscous effects.

Finally, Eq.(3.5) and Eq.(3.6) are reduced in dimensionless form to Eq.(3.10) and
Eq.(3.11) or in terms of the original variables Eq.(3.1) and Eq.(3.2) to Eq.(3.12) and
Eq.(3.13), respectively:
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Eq.(3.13) implies that the vertical change of the pressure across the shear layer (δ)
is negligible compared to the horizontal one, and hydrostatic pressure formulation was
assumed not changing across the shear layer. Any effect by a steady current released
by the presence of the canopy (Abdolahpour et al., 2017) is not considered here, since it
occurs at a larger temporal and spacial scales. Additionally, inside the shear layer, the
vertical gradient of the horizontal velocity is as important as the horizontal pressure
gradient and the local acceleration is the least relevant term (by a factor of (2π)−1)
(see Eq.(3.10)). The analysis of the advective terms is introduced later.

Now, applying the Reynolds decomposition for the velocity field (u = U + u′,
w = W + w′) and pressure (p = P + p′); assuming that the horizontal scale is much
larger than the vertical one (Fletcher, 1987) given the ratio δ

Aw
<< 1, turbulence

and waves do not correlate (Bricker and Monismith, 2007) and averaging in time, the
momentum equation takes the form of Eq.(3.14):

∂U

∂t
+ U
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∂x
+W

∂U

∂z
= − ∂P

ρ∂x
− ∂u′w′

∂z
(3.14)

where U and W are the horizontal and vertical wave-induced orbital velocities, respec-
tively. u′ and w′ are the turbulent velocities.
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Additionally, the order of the vertical and horizontal components of the mean ad-
vective term can be expressed as,

U
∂U

∂x
∼ U2

∞
Aw

, W
∂U

∂z
∼ U2

∞
Aw

(3.15)

so they can be reduced in one term by:

U
∂U

∂x
+W

∂U

∂z
≈ ΓU

∂U

∂x
(3.16)

Substituting this into Eq.(3.14) and keeping only the horizontal advection term by
adding a Γ parameter yields Eq.(3.17)

∂U

∂t
+ ΓU

∂U

∂x
= − ∂P

ρ∂x
+
∂u′w′

∂z
(3.17)

The Eq.(3.17) is valid at the horizontal orbital excursion length and orbital velocity
scales. This mathematical formulation implies that the seagrass-wave interaction is
dominated by the horizontal velocity and the flow can be assumed parallel. Addition-
ally, up to this point the momentum equation in terms of U (the mean flow variable)
includes the relative importance of the advective terms by Γ, but in the next subsection
a Volume-averaged procedure is applied to approximate the expression ∂U

∂x
≈ 0, so we

obtain a velocity profile representative at the wave excursion length domain.

Volume-averaged at the particle excursion scale

At the wave excursion particle scale, the horizontal spatial variability of the mean
velocity (U) is of the same order of magnitude as the other terms in the transport
equation (see Eq.(3.17)); however, it is impractical to account explicitly for this vari-
ability over and within the seagrass canopy (Finnigan, 2000). Therefore, a volume
average is applied to the horizontal flow heterogeneity to deal with the advective term
(Finnigan, 2000; Nepf, 2012; Zeller et al., 2015). This procedure is applied to Eq.(3.17).
An averaging volume (V̂) is defined based on Finnigan (2000) and Nepf (2012) to re-
move the wave excursion-scale heterogeneities. The stem-scale heterogeneities are also
averaged by this operation. The dimensions of V̂ are the wave excursion particle Aw
and thickness ζ, where Aw was chosen from the dimensional analysis because it is large
enough to include several stems, but significantly small compared to changes at the
wavelength (λ) scale and canopy length (L) scale. The averaging volume height, ζ, has
to be small enough so it does not modify the flow quantity variations at the computa-
tional grid scale (4z).

The volume-averaging decomposition for any scalar or vectorial field can be ex-
pressed as:

ψ = 〈ψ〉+ ψ′′ (3.18)
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where 〈〉 is the volume-averaged flow quantity and ′′ is the fluctuation from spatial
heterogeneity (Finnigan, 2000; Nepf, 2012). This volume-averaging decomposition is
applied to the time-averaged variables. Additionally, the averaging expression for time
and space derivatives are: 〈

∂ψ

∂x

〉
=
∂〈ψ〉
∂x
− 1

V̂

∫∫
St

ψ~ndS (3.19)〈
∂ψ

∂t

〉
=
∂〈ψ〉
∂t
− 1

V̂

∫∫
St

ψvi~ndS (3.20)

where St is the sum of all stem surface inside V̂ , ~n is the unit normal vector pointing
away from St and vi is the velocity of a point on the stem surface (Raupach and Shaw,
1982). Now, hypothesizing no stem skin friction and no flux through the stem sur-
face area, the momentum equation for volume-averaged velocity comes from replacing
Eq.(3.18), Eq.(3.19) and Eq.(3.20) into the Eq.(3.17):

∂〈U〉
∂t

= −∂〈P 〉
ρ∂x

− ∂〈u′w′〉
∂z︸ ︷︷ ︸

I

− ∂〈U
′′W ′′〉
∂x︸ ︷︷ ︸
II

− fx︸︷︷︸
III

(3.21)

where term I includes the volume-averaged Reynolds stress 〈u′w′〉 and term II includes
the dispersive flux 〈U ′′W ′′〉 (Finnigan, 2000; Nepf, 2012; Zeller et al., 2015). The term
III represents the pressure drag force. Since the vertical gradients are much larger than
the horizontal ones, term II is negligible in comparison to term I for ahs > 0.1 (Nepf,
2012; King et al., 2012) and the momentum equation (Eq.(3.21)) reduces to:

∂〈U〉
∂t

= −∂〈P 〉
ρ∂x

− ∂〈u′w′〉
∂z

− fx (3.22)

fx =
Ω(z)

V̂

∫∫
St

P~ndS =
Ω(z)Cda

2(1− φ)
〈U〉|〈U〉| (3.23)

The pressure drag force (Eq.(3.23)) can be written in terms of a drag coefficient,
Cd; a quadratic velocity law, where |〈U〉| is the absolute velocity value; and the solid
volume fraction occupied by the canopy elements inside the volume-averaged Lowe
et al. (2005), φ. Aditionally, as the volume-averageing is applied over the length Aw,
the frontal area per unit volume is expressed as a = Nd

Aw

[
1
m

]
, N being the number

of seagrass elements inside the volume V̂ and d the stem diameter. The presence of
the seagrass canopy in the water column is included in this equation by using a step
function (Ω(z)) with values of 1 (for 0 ≤ Z1 ≤ hs) or 0 (for hs < Z2 ≤ H + η) (King
et al., 2012; Singh et al., 2016).

The Reynolds stress tensor is solved by using a Zero-Equation Eddy viscosity model
(Eq.(3.24))

−〈u′w′〉 = νt

(
∂〈U〉
∂z

)
= Im2

∣∣∣∣∂〈U〉∂z

∣∣∣∣ (∂〈U〉∂z

)
(3.24)
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where Im is the mixing length scale and νt the eddy viscosity.

Boundary conditions and Numerical solution

The effect of the atmosphere and sea-bed are negligible in comparison to the drag force
exerted by the seagrass, therefore, close to the free surface and on the sea bottom,
the vertical gradients can be neglected

(
∂
∂z
≈ 0
)

(Tanino and Nepf, 2008; Singh et al.,
2016). Additionally, by studying non-wave breaking scenarios (Hw

h
< 0.7) and using

the mean horizontal velocity expression for shallow water regions (U∞ = CHw
h

), the
particle excursion is always much smaller than the wavelength (Aw < 0.1λ); where
Hw is the wave hight, h the still water depth and C the wave phase speed. So the
boundary conditions for the horizontal velocity at z = 0 and z = h can be obtained by
a numerical solution (a Runge-Kutta method, for example) of Eq.(3.25) and Eq.(3.26),
respectively, as function of the wave passing over the seagrass:

∂〈U〉
∂t

= −∂〈P 〉
ρ∂x

= −g ∂η
∂x

(3.25)

∂〈U〉
∂t

= −g ∂η
∂x
− fx (3.26)

Additionally, replacing the pressure gradient (Eq.(3.25)) in Eq(3.22) gives Eq.(3.27)

∂〈U〉
∂t

= −g ∂η
∂x
− ∂〈u′w′〉

∂z
fx (3.27)

From now on for simplicity in reporting and presenting results, the variables will
be redefined as: 〈U〉 = U and 〈u′w′〉 = u′w′.

Finally, the 1D model in this section (Eq.(3.27)) solves a volume-averaged veloc-
ity profile at the wave excursion scale. The governing equation shows that the vertical
mass exchange is a function of the shear layer at the top of the canopy. This conclusion
achieved by this model agrees with the experimental work for several wave excursion
values reported by Abdolahpour et al. (2016) and Abdolahpour et al. (2018).

3.2.2 Drag coefficient estimation

The drag force exerted by the seagrass in the momentum equation (Eq.(3.27)) is highly
dependent on the drag coefficient. For oscillatory flows the drag coefficient has been
fitted by using the Reynolds number (Red = Ud

ν
) (Kobayashi et al., 1993; Bradley and

Houser, 2009; Koftis et al., 2013), where U is the maximum orbital velocity above the
seagrass and d is the diameter of the stem. However, in recent research the Keulegan-
Carpenter number (KCd = UT

d
) has been applied (Luhar and Nepf, 2016; Luhar et al.,

2017), since for oscillatory flows the wave excursion-stem diameter (or drag scale) ratio
has to be taken into account. In the present work, the Cd is estimated as function of
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KCd number in Figure 11 for cylinders in Keulegan and Carpenter (1958), these values
show good agreement at individual blade scale (Lei and Nepf, 2019). It is important
to remark that the inertial force can be neglected since KCd is larger than one for all
the experiments (Luhar and Nepf, 2016) (see section Methods).

3.3 Methods

In order to validate the model and all the assumptions presented in this work, a set of
velocity time series were recorded in a pure-wave environment experiments in the Civil
and Environmental engineering department at the University of California-Berkeley.
The wave tank is 30 m long, 1.8 m high and 0.45 m wide, with a flap type wavemaker
system (Figure 3.2).

In typical field conditions, φ is between 1%−10% (Luhar et al., 2010), and a between
1m−1 − 100m−1 (Nepf, 2012). The experiments were ran by using a random seagrass
canopy distribution with two different density values (Low and Medium) based on the
classification by Ghisalberti and Schlosser (2013) and Abdolahpour et al. (2016) (Table
3.1). The canopy was made of plastic elements that are 25 cm high, the diameter of the
stem 12 mm, and six different wave conditions for each seagrass canopy were simulated
(Table 3.2). To avoid any edge effect by the canopy, the stems are mounted on an
acrylic plate of 1.2m length, to have a seagrass canopy length larger than 2Aw for all
the experiments (Abdolahpour et al., 2016). The canopy was always in the shallow
submerged region (h/hs ≈ 2) (Nepf, 2012), using a false bottom and a still water level
of 50 cm (see Figure 4.2). All the simulated waves were in the intermediate water
wave condition (11 < λ/h < 26), where λ is the wavelength. The reflection coefficient

was estimated by using Cr = I2r
5.5+I2r

(Nejadkazem and Gharabaghi, 2008), giving values

below 10% for all the wave conditions. Ir is the Iribarren number at the beach.

Table 3.1: Seagrass Canopy geometric set-up. 4S is the average spacing between
stems.

Density a[m−1] φ[%] 4S[m]

Low 5.0 4.8 0.05
Medium 8.0 7.6 0.04

A Nortek Acoustic Doppler Velocimeter (ADV) was used starting at 12 cm above
the bottom up to the free surface (depending on the wave height) to measure the ve-
locity at different vertical positions. 14 recording locations (7 inside and 7 above the
canopy) separated 2 cm and a sampling interval of 10 minutes at 25 Hz were performed.
The signal was filtered by using a Signal Noise Ratio (SNR) and Correlation values
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Figure 3.2: Experimental setup, ADV position, and frontal and top view of the random
seagrass canopy.

of 30 dB and 95%, respectively. To apply the filter, the averaged values for SNR and
Correlation at every recording station were estimated and the data below the mean
value minus twice the standard deviation (Pujol et al., 2013) were replaced by a cubic
fitting (Rusello et al., 2006; Chanson et al., 2008). The despike method proposed by
Goring and Nikora (2002) was also applied to the filtered data.

To obtain a velocity profile for a specific wave condition, the phase-averaged method
was used (Lowe et al., 2005; Pujol et al., 2013; Abdolahpour et al., 2016). This method
is based on the fact that the instantaneous velocity in a wave environment can be
decomposed in steady (Uc), oscillatory (Uw) and turbulent (u

′
) components:

ui = Uc + Uw + u
′

(3.28)

To determine the oscillatory term to analyse the wave seagrass interaction (Uw), the
Hilbert transform is applied to the time series and the velocity record is transformed to
the phase domain (ϕ) between [−π π]. The data were grouped into common phases (91
phase bins) to calculate the phase-averaged statistics (Pujol et al., 2013; Abdolahpour
et al., 2016) (see Figure 4.3). The steady component Uc can be defined by Eq.(3.29).
The turbulent component is estimated by the difference between the instantaneous,
steady, and the oscillatory velocities.
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Table 3.2: Experimental scenarios for two different seagrass densities and 12 mm stem
diameter. L and M stand for low and medium density, respectively. (KC = UT (aCd)

1−φ ).
.

Name T [s] U∞[ cm
s

] Aw[cm] KC Re KCd Cd

L1 3 16.8 8 3.7 13508 42.1 1.4
L2 4 10.0 7 3.3 7305 37.9 1.4
L3 4 23.0 16 6.8 36345 83.2 1.3
L4 5 16.8 15 6.3 24764 77.1 1.3
L5 5 18.8 16 6.8 29822 83.3 1.3
L6 6 16.1 16 7.0 26395 86.1 1.3
M1 3 15.9 7 5.0 10889 35.9 1.4
M2 4 13.3 8 6.2 11227 44.3 1.4
M3 4 16.3 12 8.5 19523 62.6 1.3
M4 5 17.2 13 9.5 23015 69.9 1.3
M5 5 13.4 11 8.2 15340 60.1 1.3
M6 6 15.8 15 10.3 23748 78.9 1.3

Uc =
1

2π

∫ π

−π
ui(ϕ)dϕ (3.29)

In order to compare the analytical oscillatory velocity profile against the measure-
ments, the root mean squared velocity for the horizontal and vertical components was
estimated in the phase domain (U rms

w and W rms
w ) by using Eq.(3.30) (Lowe et al., 2005;

Abdolahpour et al., 2016)

U rms
w =

√
1

2π

∫ π

−π
(Uw(ϕ)− Uc)2dϕ (3.30)

Finally, since a statistical value does not provide enough information about the
model performance when a comparison between the measurements and numerical data
along the water column is performed, an Interquartile range (IQR) combined with the
Bootstrapping method were applied to estimate the 95% confidence interval. The Boot-
strapping method generates enough resampled data to ensure that the Median and
the Mean are the same in the probability distribution (Singh and Xie, 2003). Later,
the Median, Q1 (25%) and Q3 (75%) values were obtained and IQR = Q3 - Q1.

3.4 Results

The equation presented in the present work (see Eq.(3.27)) can be used to solve the
vertical profile of the mean horizontal velocity during a wave period; however, the
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Figure 3.3: Comparison between the instantaneous velocity and phase-averaged oscil-
latory velocity.

data to validate the statements and assumptions are from an ADV device. So it is
not possible to measure along the recording stations simultaneously and a statistical
quantity has to be used for the model validation. The rms value of the horizontal and
vertical oscillatory velocities, and horizontal orbital excursion was estimated in order
to determine the rms shear layer thickness. The assumptions to develop the model are
validated for Low and Medium densities; and finally, the analytical model is compared
to velocity profile for both densities.

3.4.1 Validating the Assumptions

The assumptions to validate are:

(a) Ww ∼
δ

Aw
Uw∞ → W rms

w ∼ δrms

Armsw

U rms
w∞

(b) Ww
∂Uw
∂z
∼ U2

w∞
Aw

→ W rms
w

∂U rms
w

∂z
∼ U rms2

w∞
Armsw

where Armsw = TUrmsw∞
2π

and δrms are the root mean squared horizontal orbital excursion
length and shear layer thickness, respectively. δrms represents a typical shear layer
thickness problem not bounded by solid walls (Wilcox, 2006) (see Figure 4.4). It is
important to remark that the rms velocity profiles from the numerical model were
estimated by the same method as for the experimental data, solving the momentum
equation in time and estimating U rms

model at the recording depths levels.

To validate the assumptions (a), the ratio between the mean vertical and horizontal
components of the oscillatory velocity is estimated (Figure 4.5), showing that at the top
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Figure 3.4: Root mean square horizontal velocity profile and shear layer thickness
definition.

of the canopy (a) is centered around 0.2 for all the wave scenarios with some peaks for
short wave periods, but always lower than 0.35 (L1, L3 and M1), so δrms ≈ 0.2Armsw .
This result is similar to the solution presented by Wilcox (2006) for mixing layers in
flows not bounded by solid walls. However, as the data are recorded each 2 cm (same
order of magnitude as Aw) and δ is expected to be function of Lcd, a scaling analysis
relating the mixing time scale by the shear layer (tKH) and the horizontal orbital
excursion time scale (tw) is performed in order to verify the relationship between Aw
and δ. The variables are defined by tKH ∼ Lcd

u∗
and tw ∼ Aw

U∞
. Lcd ∼ 1

aCd
and the friction

velocity (u∗) at the top of the canopy can be scaled as:

u2
∗ ∼ νt

U∞
δ
, νt ∼ I2

m

U∞
δ

(3.31)

where Im ∼ O(10−2) (see the turbulent closure model in the next section), Lcd ∼
O(10−1), and O(tKH) ∼ O(tw) based on the experimental work by Abdolahpour et al.
(2018), then Φ = tKH

tw
∼ O(100), so δ can be expressed as:

δ2 ∼ U2
∞I

2
mt

2
KH

L2
cd

=
t2KHI

2
mA

2
w

t2wL
2
cd

(3.32)

δ ∼ ΦImAw
Lcd

= 10−1Aw (3.33)

As can be observed in Eq.(3.33), there is an agreement between the validation of
assumption (a) and the scaling process regarding the relationship between δ and Aw.
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Figure 3.5: δrms/Armsw along the water column for Low and Medium density canopy.
Dashed line is the Canopy Top.

Also, the shear layer thickness is function of Lcd but δ ≈ 0.2Aw is a valid approximation.

To validate (b), the analysis of the advective terms shown in Eq.(3.15) to Eq.(3.16)
implies that the advection is dominated by the horizontal component. So to prove
this assumption, the σ

Θ
ratio is calculated expecting a value smaller than 1. σ is the

rms vertical advection and Θ is the rms of the order of magnitude of the horizontal
advection (see Eq.(3.34)).

Based on the experimental data shown in Figure 3.6, the σ/Θ ratio at the top of the
canopy is centered around 0.1 with some peaks for short wave periods, but always lower
than 0.18 (L1, L3 and M1). This implies that the horizontal advection is around 90%
larger than the vertical advection, and the flow can be assumed parallel and horizontal,
so that the simplification made in Eq.(3.17) before the volume-averaged procedure is
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valid. Additionally, any effect on the flow by the vertical advection can be negligible
compared to the horizontal advection, a contradictory argument to the formulation by
Zeller et al. (2015), who assumed that the vertical advection is an important compo-
nent in the momentum equation.

In summary the assumptions (a) and (b) are valid for the development of the present
model.
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Figure 3.6: σ/Θ along the water column for Low and Medium density canopy. Dashed
line is the Canopy Top.

σ = W rms
w

∂U rms
w

∂z
,Θ =

U rms2

w∞
Armsw

(3.34)
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3.4.2 Validation of the model

To validate the model, a comparison between the rms oscillatory velocities from the
experimental and numerical values was done. Initially, two important aspects have to
be taken into consideration: 1) the parametrization of the drag coefficient as a function
of the vertical position (Cd = Cd(z)); and 2)the solution for mean horizontal velocity by
using a mixing model. In general, for wave-seagreass interaction at laboratory and field
studies, a constant drag coefficient in the vertical axis is assumed; however, Ghisalberti
and Nepf (2004) and Zampogna et al. (2016) showed that for steady flows there is an
important change in the drag value as a function of z and can be expressed by:

Cd(z) = Cd

{
1.4
(
z
hs

)2.5
+ 0.45 , 0 ≤ z

hs
< β

−4.8
(
z
hs

)
+ 4.8, β ≤ z

hs
< 1

(3.35)

where Cd is shown on Table 2.2 for all the wave scenarios, and the maximum u′w′ in
the vertical axis was used to define β. u′w′ is the time-averaged Reynolds stress.
Figure 3.7 shows the u′w′ profile for L2, L4 and L5, being β between [0.88 0.96] and
outside this region u′w′ approaches to zero. This interval was considered narrow enough
so that β is set on 0.92.
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Figure 3.7: u′w′ profile for three characteristic wave conditions with Low density
canopy. The blue and red dashed lines indicate the location of β.

Regarding the numerical simulations, the incoming wave height was estimated from
the velocity time records (Figure 3.8-panel I), and the mean horizontal velocity profile
was solved by using linear wave theory at the free surface (Figure 3.8-panel II) (the
linear wave theory appeared to predict the velocities in the whole intermediate water
depth range (Hedges, 1995)); later, the U rms

model was estimated (Figure 3.8-panel III). For
the turbulent closure model (Eq.(3.24)), the mixing length parameter can be estimated
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as a function of δ (Rodi, 1993), Im = 0.07δ, or with Im = 0.14Aw. Thus in oscilla-
tory flows, the mixing process is modulated by a finite horizontal particle displacement
magnitude (Aw), while in steady flow the particles have more time and space to develop
the velocity profile. Additionally, Im is assumed constant on the water column.

In Figure 3.8-panel II, it was possible to observe that the model is able to reproduce
the shear layer at the top of the canopy; additionally, the numerical simulation presents
a lag between the mass of water above and inside the canopy. This lag is produced by a
reduction of momentum by the stems on the flow (drag force) and a constant diffusion
of momentum by the diffusive term in the governing equation (Stokes′ second problem
(Kundu et al., 1990)).
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Figure 3.8: Free surface record (I), horizontal velocity profile at different time values
(II), rms velocity profile (III) calculated from (II).

Finally, the validation of the model is shown in Figure 3.9 and Figure 3.10, where
the model shows a good general agreement with the experimental data and most of the
simulated velocity profiles are inside the confidence interval (C.I.) of the experimental
data. Additionally, the horizontal velocity profile above and at the top of the canopy
is in a better concordance compared to the profile in the canopy.

Concerning the results inside the canopy, the biggest discrepancies against the ex-
perimental data are presented for L3, L5 and M5. The model predicts the position
of the maximum drag coefficient around 2 cm below the laboratory data and overesti-
mates the magnitude. The constant drag coefficient formulation seems to have a better
response for these cases. For L1, L2, L4, L6, M2, M4 and M6 not only the velocity
profile above the canopy is well reproduced but also the flow inside the canopy has a
good concordance with the measurements. Additionally, it seems that a constant drag
coefficient formulation has a better response for cases with KC > 7 and Re > 23000.
For Re <23000, the drag coefficient as a function of z fits better the measurements
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and β = 0.92 is a good estimation.

3.5 Conclusions

By scaling analysis, a simplified one-dimensional horizontal model was developed. This
simplified model has applications on large scale models for coastal protection and
ecosystem services not only on seagrass ecosystems but also on submerged structures
with known geometry and spatial distribution.

The laboratory data shows that the mean vertical velocity is around 20% of the
mean horizontal velocity and the vertical advection is 10% of the horizontal one, sup-
porting the assumptions to develop the model. Additionally, the seagrass-wave inter-
action can be assumed as a horizontal parallel flow, and the shear layer thickness can
be approximated by δ ≈ 0.2Aw.

During the scaling process it was possible to determine the dominant terms in the
momentum equation, being these, the horizontal pressure gradient, horizontal advec-
tion, the vertical gradient of the horizontal velocity, the drag force by the seagrass and
the local acceleration. Two important differences were found in this work, compared
to the work by Zeller et al. (2015): 1) the local acceleration is the least dominant term
in the momentum equation (see Eq.(3.10)); and 2) the vertical advection can be negli-
gible compared to the horizontal one. Also, the analytical model solves the horizontal
velocity profile by using the free surface wave, and the developed model by Lowe et al.
(2005) solves the depth-averaged velocity from the freestream velocity.

The model is valid for cases when the shear layer is present, but the horizontal or-
bital excursion length has to be larger than the stem spacing. Additionally, the model
needs to be tested for sparse canopies, where the bottom friction is important and the
shear layer is not present.

No documentation or publications were found regarding the behaviour of disper-
sive fluxes in oscillatory flow. The ahs > 0.1 threshold (Nepf, 2012) for steady flows
does not take into account the finite horizontal particle displacement in oscillatory
flows (Aw). The discrepancies between the measurements and numerical results are
attributed to spatial heterogeneities and wake scale turbulence processes by the stems,
since the mixing model reproduces the shear layer, but some velocity gradients are
observed inside the canopy. Additionally, experimental work has to be done on trying
to measure the spatial heterogeneities in oscillatory flow scenarios and its relation with
Aw. Also, a possible source of error could be the assumption of linear theory on the
free surface, and by using a recorded free surface the velocity profiles can be improved.
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Figure 3.9: Experimental and simulated oscillatory component of the horizontal veloc-
ity profiles for Low density canopy. The blue line is the confidence interval.
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locity profiles for Medium density canopy. The blue line is the confidence interval.
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Chapter 4

Piecewise linear method for
Kelvin-Helmholtz solution in
seagrass-oscillatory flow interaction
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Abstract

A theoretical solution for the Kelvin-Helmholtz instability (KH) over submerged canopies
is presented. The method linearises the vertical velocity profile in the seagrass-oscillatory
flow applying the piecewise linear method, together with the Kelvin’s circulation the-
orem. Results show that the frequencies of the KH instabilities are higher than those
from the incident free surface wave and they can be expressed by fKH ≈ 4fw. Addition-
ally, the turbulent spectrum of the Reynold stress (Su′w′ ) show cases where the wake
scale is the dominant turbulent production mechanism (even when the KH is present
in the flow) and other where the KH is the main source of turbulent production. For
>18000 and KC >20, the KH is the dominant turbulent production mechanism, and
for <7500 and KC <12 the wake scale is the dominant process.
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4.1 Introduction

The aquatic vegetation is a highly valuable ecosystem that play important ecological
services in coastal protection (Ondiviela et al., 2014). It contributes to coastal resilience
by protecting the coastal land by wave dissipation mechanisms (Foster-Martinez et al.,
2018; Tinoco and Coco, 2018). The wave height dissipation can reach up to 70% of
the incident wave, depending on the seagrass canopy density, coverage, blade height
and submergence ratio (Anderson and Smith, 2014; Pinsky et al., 2013; Bradley and
Houser, 2009; Foster-Martinez et al., 2018).

The presence of the seagrass attenuates the oscillatory velocity within the canopy
(Lowe et al., 2005), and generates a shear layer at the top of the canopy (Ghisalberti
and Nepf, 2002). The presence of the shear layer induces a strong vertical mixing across
the top of the canopy (Abdolahpour et al., 2018) and modulates wave-induced currents
at the top of the canopy in the shoreward direction (Abdolahpour et al., 2017), that can
be in charge of sediment transport. This shear layer induces a mass and momentum
transfer that is governed by the presence of Kelvin-Helmholtz-type vortex instabilities
(KH) (Abdolahpour et al., 2016). Similar investigations regarding the effect of shear
instability, by longshore currents at beaches, that modulates the sediment dynamics
and current-wave refraction called “‘far infragravity” have been reported (Mei and Liu,
1993; Bettess and Bettess, 1982). Furthermore, the understanding of the KH effects
by the seagrass-oscillatory flow interaction at the beach is a critical issue to research,
in order to analyze if the KH modes are in the infragrativy range.

The KH formation is highly dependent on the wave conditions and canopy prop-
erties. The kinematic energy of the instability needs to be strong enough to overcome
the viscosity, and the wave period needs to be long enough to generate a shear layer
(Ghisalberti and Schlosser, 2013). If these wave and canopy conditions are satisfied,
the inflexion point and the Fjφrtof’s conditions (necessary but not sufficient conditions)
are present in the oscillatory velocity profile and lead to the KH (Kundu et al., 1990;
Drazin and Reid, 2004).

Regarding the KH solution, Py et al. (2004,0) applied the piecewise-linear method
to a steady wind-flow velocity profile, coupled to a flexible canopy, finding that the
main characteristics of the KH can be well reproduced. Also, Singh et al. (2016)
modified the Orr-Sommerfeld equation including the drag effect by the vegetation,
finding that the KH modes are similar to those solved by the Rayleigh’s equation.
Additionally, Zampogna et al. (2016); Luminari et al. (2016) studied the drag-model
sensitivity for KH on steady flow-canopy scenarios finding no important differences in
the KH modes between viscous and inviscid formulations. And for oscillatory flows,
Abdolahpour et al. (2018) used the same Strouhal number proposed by Ho and Huerre
(1984) and (Ghisalberti and Nepf, 2002) in steady flows, but this formulation does not
take into account its relation with the incoming free surface wave. Thus, solutions to
the KH have been developed concluding that there are not relation with fluid viscosity.
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In the present work the Pieceswise-linear method is applied to understand the KH
modes in oscillatory flow-seagrass interaction. This work aims to develop an analyt-
ical model to answer the following questions: does the KH release shorter or longer
waves than the incident one in seagrass-oscillatory flow interaction?, and what is the
frequency of the KH as a function of the incoming free surface wave frequency?.

The paper is structured as follows; in section 2, a theoretical solution to the KH
frequencies by simplifying the vertical profile of a characteristic horizontal velocity in
seagrass-oscillatory interaction is developed. In section 3, the theoretical solution is
validated and the energy spectra characterized for cases where the turbulent wake is
the dominant process and cases where the KH is the dominant. Finally, section 4
concludes the work.

4.2 Kelvin-Helmholtz instability solution

For wave-seagrass interaction the flow can be assumed as a horizontal parallel-shear
flow (Cáceres-Euse et al., 2019) and the velocity profile can be decomposed in the
mean vertical velocity plus a vertical dependant component by a superposition law see
Eq.(4.1),

U rms(z) = U
rms

+ Ũ(z)rms; U
rms

=
U rms

1 + U rms
2

2
, (4.1)

where U rms is the root mean squared velocity of the oscillatory flow, U
rms

is the uni-
form velocity, analogous to cases without seagrass; U rms

1 , U rms
2 are the velocity far

above and below the shear layer, and Ũ(z)rms is the velocity produced by the presence
of the seagrass (Figure 4.1).

At seagrass-oscillatory flow interaction, the velocity profile varies along the wave
period, so to analyze the KH instability it is important to define a characteristic ve-
locity profile that presents the most relevant shape of the flow in the wave period. The
characteristic velocity used is Ũ(z)rms.

A linear perturbation analysis is performed by defining an instantaneous velocity
and pressure as:

u(x, z, t) = Ũ(z)rms + u′(x, z, t),

w(x, z, t) = w′(x, z, t),

p(x, z, t) = ct+ p′(x, z, t).

(4.2)

The instability by Ũ(z)rms can be studied as a temporal stability problem where
the perturbation can be formulated as:
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Figure 4.1: Characteristic horizontal velocity profile for wave-seagrass interaction
U rms(z) (Panel (a)). U

rms
is the uniform velocity component and Ũ(z)rms is the com-

ponent as a function of z (Panel (b)). hs is the seagrass height.

u′(x, z, t) = û(z)ei(kx−wt),

w′(x, z, t) = ŵ(z)ei(kx−wt),

p′(x, z, t) = p̂(z)ei(kx−wt),

(4.3)

where u′, w′ and p′ are the horizontal and vertical disturbed velocities and pressure
respectively, k is a real streamwise wavenumber, ω a complex number where the real
part (ωr) is the frequency of the mode and the imaginary one (ωi) the growth or decay
rate in time, and c = ω/k the phase speed. Since viscosity does not have any influence
on the solution of the unstable modes we will treat it as a dumping term.

Replacing Eq.(4.2) and Eq.(4.3) into the two-dimensional Euler’s momentum equa-
tion and applying the Squire’s transformation (Drazin and Reid, 2004) gives:

ik(Ũ rms − c)û+DŨ rmsŵ = −ikp̂,

ik(Ũ rms − c)ŵ = −Dp̂,

ikû+Dŵ = 0, D =
d

dz
.

(4.4)

Additionally, defining a stream function as,

u′ =
∂ψ′

∂z
, w′ = −∂ψ

′

∂x
, and ψ′(x, z, t) = φ(z)ei(kx−wt), (4.5)

and replacing it into Eq. (4.4) one obtains the Rayleigh’s stability equation:

(Ũ rms − c)(D2 − k2)φ− φD2Ũ rms = 0 (4.6)

Now, the KH instability arising from the seagrass-flow interaction, can be repre-
sented as an unbounded flow problem where the unstable modes can be found solving
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Figure 4.2: Simplification of Ũ(z)rms to a piecewise-linear velocity profile and the
definition of the shear layer thickness (δ). Ũ(z) = Ũ(z)rms.

the Rayleigh’s equation. For unbounded flows it is possible to consider that as z → 0
(bottom) or z → h (free surface), Ũ rms approaches to a constant value (see Figure
4.1). Ui is the horizontal velocity at the inflexion point approximated to the uniform
velocity (U

rms ∼ Ui).

4.2.1 Piecewise-linear method on wave-seagrass interaction

The piecewise-linear method simplifies a smoothly varying function by linear segments
being linear in the shear layer and constant outside of it (Figure 4.2).

The Rayleigh’s equation is solved following Drazin and Reid (2004). We assume
that the shear layer, δ in the velocity profile is quasi-symmetric respect to the canopy
top and that the inflexion point is located close to the seagrass top (zi ∼ hs). As the
velocity profile becomes a linear function, D2Ũ(z)rms = 0 and the Rayleigh’s equation
is:

D2φ− k2φ = 0. (4.7)

If Ũ(z)rms agrees with the Rayleigh’s inflexion point at zi and the Fjφrtof’s condi-
tion, certain matching conditions have to be satisfied at the discontinuity of Ũ(z)rms

and DŨ(z)rms. Moreover on each discotinuity the pressure has to balance ∆p̂ = 0
(Drazin and Reid, 2004; Phillips, 2018). This gives the jump conditions:

∆[(Ũ(z)rms − c)Dφ−DŨ(z)rmsφ] = 0,

∆

[
φ

Ũ(z)rms − c

]
= 0

(4.8)

where ∆ implies the change at the discontinuity. For wave-seagrass interaction problem,
locating the inflexion point at the canopy top, the velocity profile can be defined as:
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Ũ(z) =



Ũ rms
1 for z >

δ

2

2
Ũ rms

1

δ
z for − δ

2
< z <

δ

2

Ũ rms
2 = −Ũ rms

1 for z < −δ
2

(4.9)

where δ ∼ 0.2Aw, andAw = U
rms

T/2π is the horizontal wave excursion length (Cáceres-
Euse et al., 2019). Additionally, the corresponding solution to the homogeneous ordi-
nary differential equation Eq.4.7 is:

φ(z) =


φ+ = Ae−kz for z >

δ

2

φ0 = Be−kz + Eekz for − δ

2
< z <

δ

2

φ− = Dekz for z < −δ
2

(4.10)

Solution of Eq.4.8 using Eq.4.9 and Eq.4.10 can be formulated as:

ek δ2 [2k(Ũ rms
1 − c)− 2Ũ rms

1

δ
] −2

Ũrms1

δ
e−k

δ
2

2
Ũ rms

1

δ
e−k

δ
2 ek

δ
2 [2k(Ũ rms

1 − c)− 2Ũrms1

δ
]

[B
E

]
= 0, (4.11)

where a non-trivial solution leads to the quadratic dispersion equation for the celerity,

c2− c(Ũ rms
1 + Ũ rms

2 ) = − Ũ
rms
1

kδ
(Ũ rms

1 − Ũ rms
2 )− Ũ rms

1 Ũ rms
2 − (Ũ rms

1 )2

k2δ2
(e−2kδ− 1) (4.12)

The imaginary part of the complex number (c) is:

kci(k; δ) = kŨ rms
1

√
(kδ − 1)2 − e−2kδ

k2δ2
(4.13)

while the real part is implying that instability releases a steady wave (Drazin and Reid,
2004).

To solve the Eq.4.13, the dominant modes of the instability are determined in an
interval that covers the 50% of the total area of the possible growing modes, centred
on the fastest one (see Figure 4.3). These values are between kδ = [0.5698− 1.024] or

k = [0.5698−1.024]
δ

.

Additionally, as cr = 0 for Ũ rms(z), the Kelvin’s circulation theorem implies that the
instability is advected by the uniform base flow (U

rms
), as shown for adverse pressure

gradient vortex-types by Cáceres-Euse et al. (2018). This behaviour is supported by
experimental data for steady flows, where the instability travels at a speed between
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Figure 4.3: Solution to possible unstable modes from the dispersion relation equation
(Eq.4.13). The black dashed lines correspond to the inferior and superior limit of the
fastest growing mode.

1.0-1.45 times the velocity at the inflexion point (see Figure 4.1-panel a) (Ghisalberti
and Nepf, 2002; Mandel et al., 2017). This result presents an apparent “progressive
wave” with,

fKH =
kU

rms

2π
≈ [0.09− 0.16]

U
rms

δ
(4.14)

Replacing the value of δ as a function of Aw gives a frequency range for the KH modes:

fKH = [2.83− 5.02]fw (4.15)

where fw is the free surface wave frequency. Eq. 4.14 is a modified formulation to
the existent one for unforced mixing layer by Ho and Huerre (1984), steady currents-
seagrass canopy by Ghisalberti and Nepf (2002), and wave-seagrass canopy interaction
by Abdolahpour et al. (2018).

4.3 Results

We used the data of Abdolahpour et al. (2016) that correspond to rigid stems in high
canopy density. All experiments present KH instabilities for the seagrass-oscillatory
flow interaction, based on Keulegan-Carpenter (KC > 5) and Reynolds (> 1000) num-
bers by Ghisalberti and Schlosser (2013) (see Table 4.1). The resultant spectra were
estimated by using the Reynolds stress tensor (u

′
w
′
) time series at three recording

positions (see Figure 4.4), in order to capture the turbulent wake scales (nearby the
bottom), the KH energy (at the shear layer) and the energy close to the free surface.
Initially, a phase-averaged method was applied to the instantaneous horizontal and
vertical velocity time series for wave-turbulence decomposition (Lowe et al., 2005; Ab-
dolahpour et al., 2016), where the flow can be decomposed in a steady component (Uc),
wave orbital velocity (Uo) and turbulent velocity (u

′
) (Eq4.16).
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Run T [s] U∞[ cm
s

] KC Re
1 9 3 5.4 1290
3 8 5.6 8.9 3992
6 8 7.7 12.3 7549
11 5 14.9 14.9 17666
12 9 11.3 20.3 18290
17 6 18.8 22.5 33751
19 6 14.3 25.8 44141

Table 4.1: Experiments for rigid stems and high density. U∞ was estimated for bared
bed. From Abdolahpour et al. (2016)

.

Z

Turbulent wake scale 
   dominant process

       KH scale 
dominant process

   Free surface 
domiant process

)(zU rms

Figure 4.4: The three recording stations in the velocity profile. The gray dashed line
is the seagrass top.

91



92 CHAPTER 4. CHAPTER 4

10
0

10
1

S
u'

w
'

10
-1

10
0

10
1

10
0

10
1

10
-1

10
0

10
1

10
0

10
1

10
-1

10
0

10
1

10
2

10
0

10
1

10
-1

100

10
1

10
2

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

Frequency[Hz]
10

0
10

1

10
0

10
1

10
2

10
3

Inside Canopy
Top of the Canopy
At the free surface

10
0

10
1

10
-1

10
0

10
1

10
2

S
u'

w
'

S
u'

w
'

S
u'

w
'

KH KH

KH KH

KH KH

KH

R19
KC = 25.8
Re = 44141 

R17
KC = 22.5
Re = 33751 

R12
KC = 20.3
Re = 18290 

R11
KC = 14.9
Re = 17666 

R6
KC = 12.3
Re = 7549 

R3
KC = 8.9
Re = 3992 

R1
KC = 5.4
Re = 1290 

KH range

f
-5/3

f
-5/3

f
-5/3

f
-5/3

f
-5/3

f
-5/3

f
-5/3 f

-5/3

Figure 4.5: Spectra of the vertical velocity averaging using the three recording stations.
The KH energy range is indicated by the gray vertical dashed lines and the f−5/3 law
by blue dashed line.

92



4.4. CONCLUSIONS 93

ui = Uci + Uoi + u
′

i (4.16)

Additionally, a high pass filter was applied to the turbulent components, using a
cut-off frequency three times higher than the wave frequency in order to attenuate
free surface effects (Abdolahpour et al., 2018). To estimate the energy spectra (Su′w′ ),
the Welch’s method was applied to the records with 40-s ensemble window with 50%
overlap (Mandel et al., 2017) and the energy normalized by the maximum Reynolds
stress in the vertical axis (at the canopy top).

Figure 4.5 shows the shear production energy contained at the three recording sta-
tions; bottom (black), top of the canopy (red) and free surface (blue). An increment in
the energy spectrum inside the dashed black lines (the KH band) is observed for cases
R11, R12, R17 and R19 coinciding with Eq. 4.15. Thus, the developed formulation
gives information about the band where the KH can be expected; also, the KH fre-
quency is always higher than the free surface wave. For R1, R3 and R6 the differences
in the shear production between the bottom and top of the canopy was not observed,
even when the criteria by Ghisalberti and Schlosser (2013) was satisfied.

In general, the energy by shear production at the free surface is one order of mag-
nitude smaller than the energy at the top of the canopy, but for cases with <7500
and KC <12, the energy at the bottom and at the top of the canopy were very close,
so it is possible to conclude that the wake production is the dominant process in the
system and the KH production is not relevant. For cases with 8000<<18000 and
13< KC <20, there is an increment in the energy in the KH band, but its magnitude
is of the same order of magnitude as the energy close to the bottom, so the KH and
wake production can be assumed to be equally important (similar results are reported
by Abdolahpour et al. (2016)). For cases with >18000 and KC >20, there is an in-
crement in the energy at the KH band and the system can be dominated by KH
production; additionally, the energy along the whole frequency axis is higher than the
energy at the bottom, so part of the energy produced by shear at the KH band is
transferred at smaller scales and added to the wake scale production. Additionally,
there is a small increment in the energy spectrum at the free surface for R19, and some
signature of the KH production can be observed and affects the free surface for high
Re, phenomena observed by Mandel et al. (2017) for steady flows.

4.4 Conclusions

By simplifying the vertical profile of a characteristic horizontal velocity in the seagrass-
oscillatory flow interaction with a seagrass canopy, and applying the piecewise linear
method, it was possible to solve theoretically the KH frequencies. It was found that
the KH releases shorter waves than the incident wave with fKH ≈ 4fw. The under-
standing of this process has important implication on beach morphodynamics, since
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there is still an open question about the frequency-release mechanisms by seagrasses
that affect the beach erosion and sedimentation. For much longer released waves than
the incoming free surface wave, it is plausible to assume a permanent current that
modifies the sediment distributions, so this mechanism should be analyzed in Uc.

Additionally, KC > 5 and > 1000 are not sufficient conditions to assume that the
seagrass-oscillatory flow interaction is dominated by the shear production by an inflex-
ion point in the velocity profile, since for <7500 and KC <12, the turbulent production
at the bottom is very close to the turbulence at the top of the canopy, and the wake
scale by the presence of the stems seem to be the main turbulent production mecha-
nism. For 8000<<18000 and 13< KC <20, the wake and KH production are equally
important; and for >18000 and KC >20, the KH production is the dominant process.
Additionally, the free surface is affected by the KH energy when ≥44000 and KC ≥25.
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Chapter 5

General Conclusions

5.1 General Conclusions

In this thesis, a theoretical solution to the Kelvin-Helmholtz instability for seagrass-
oscillatory flows interaction was developed. The investigation started by analysing the
effect of an isolated submerged element, with similar dimensions to a seagrass stem,
interacting with a solitary wave. It was possible to conclude that the vortex formation
by the adverse pressure gradient can be the dominant turbulent structure, even when
the wave breaking is present; additionally, the vortex is transported by the base flow
produced by the wave and the Kelvin’s circulation theorem is valid for this type of
problems.

After analysing the validity of the Kelvin’s circulation theorem for this type of prob-
lems, a dimensional analysis to the Navier-Stokes equations was performed, in order to
determine the relevant terms in seagrass-oscillatory flow interaction; finding that the
horizontal pressure gradient and the vertical gradient of the horizontal velocity are the
dominant terms in the momentum equation, and a simplified parametrization to the
shear layer thickness can be proposed (δ). δ is function of the horizontal orbital excur-
sion value (δ ∼ 0.2Aw). This simplified model has important applications on regional
to coastal models, since the mathematical expression takes into account the most rele-
vant physical aspects of the problem as a function of the wave properties (wave height
and period) and seagrass distribution, and low computational cost.

Finally, it was possible to develop a theoretical solution to the Kelvin-Helmholtz
instability by using the assumption that a base flow transports a steady wave released
by the instability (Kelvin’s circulation theorem). The steady wave was found by lin-
earising the vertical profile by the piecewise linear method and the inclusion of δ in the
definition of the simplified horizontal velocity. The solution showed that the shear ve-
locity is the main source of turbulent production when KC > 14 and Re > 17000 and
the wake production is the dominant turbulent production mechanism when KC < 13
and Re < 8000; additionally, the released Kelvin-Helmholtz frequency is always higher
than the free surface wave frequency (fKH ≈ 4fw).
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As future work, the understanding of long waves released by the seagrass-oscillatory
flow interaction is a challenging topic to research, since there is still an open question:
If the intensity of steady currents, due to the presence of seagrass in oscillatory flows,
is a function of the shear magnitude (Abdolahpour et al., 2018) and wave height decay
along the seagrass meadow (Luhar et al., 2010), is the steady current related to a
longer released wave than the incident one in charge of affects the morphodynamic of
the beaches?, is the steady current related to an infragravity wave?.
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Cáceres-Euse, A., Toro-Botero, F. M., Orfila-Foster, A., and Osorio-Arias, A. (2018).
Vortex formation in wave-submerged structure interaction. Ocean Engineering,
166:47–63.
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