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VECTOR VALUED CHEBECHEV SYSTEMS

by

AL-ZAMEL, A. and KHALIL, R.

Abstract. Let I be the unit interval and X be a real Banach
space. The space of continuous functi.ons on I with values in X
is denoted by C(I,X). The object of this paper is to introduce
Chebechev systems in C(I,X) and study the basi.c properties of
such systems, and its relation to interpolation. It is also
proved that a subspace that is generated by a weak Chebechev
system in C(I,X) is a Chebechev subspace.

Introduction. Let 1 = [0,1J, and CeI) be the space of real
valued continuous functions on I. Let {u1' ,un} be a set
of n-elements in CeI). The functions u1' ,un are said to
form a Chebechev system if for every set of points
o = t1 < t2 < ••• < tn = 1,

> 0

For the basic properties of Chebechev systems we refere to
[2] .

There are two ways in which one can try to generalize
the concept of a Chebechev system. The first is to consider
real valued continuous functions with domain on a compact
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set in a finite (or even infinite) dimensional vector space.
It turned out, as Michili pointed out in [3], that such gen-
eralization is impossible, unless one puts very severe con-
ditions and restrictions on the compact set under consider-
ation.

Another way to generalize Chebechev systems is to
consider continuous functions on I but with values in a real
Banach space X. It is the object of this paper to consider
such generalization. So, we define Chebechev systems for con-
tinuous functionss on I with values in a Banach space X. The
basic properties of such systems are then discussed, and some
results on interpolation are presented. Weak Chebechev sys-
tems are also defined.

§1. Notations. Let X be a real Banach space and let C(I,X)
denote the space of all continuous functions defined on I

with values in X. For n E C(I,X), we set 16100= s~pI6(t)l·
It is known, ['J, that C(I,X) is isometrically isomorphic to
C(I)~X , the completion of the injective tensor product of
C(I) with X.

The element g~x E C (I) ~X denotes the function u (t)

g(t)x in C(I,X). The dual of X is denoted by X* . If F
{x" ...,xn} is a set of n-elements in X, we let [F] to denote
the linear span of x" ...,xn . For x E X and x* E X*, <x,x*>
denotes the value of x* at x.

§2. Chebechev Syste.s in e(I,X). Let U = {u" ...,un} E X and
T = {t" ... ,tn} C 1. Set E(U,T) = {u,(t,), ... ,u,(tn),uZ(t,)
,... ,uZ(tn), ... ,un(t,), ... ,un(tn)}, and S(U,T) = [E(U,T)].
Clearly S(U,T) is a finite dimensional subspace of X. For
x* E X* , set

M(U,T,x*)

<u,(t,),x*> ... <un(t,),x*>
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DEF:IN1'1'ION 2.1.. Let U = {u1' ••• ,un} c C(T,X). Then U
is said to form a Chebechev system if for every set T = {t1, ... ,

tn} of n-di~tinet elements in T, there exists at least one
x* c X* ) which does not vanish identically on S(U,T) such
that M(U,T,x*) # o.

EXAMPLE 2.2. Let e be a fixed element in X. Put u1(t) =
te, ...,un(t) = tne . Then S(U,T) = [{e}]. Using the Hahn Ba-
nach Theorem, let x* E x* be such that <e,x*> = 1. Then, if
T = {t1, ••• ,tn}, one has

t tn1 1

M(U,T,x*)

Now, if t. # t. for i # j, then M(U,T,x*) # 0, since the set
,(. j

of real functions 9i(t) = ti is a Chebechev system in CeT),
[2] .

EXAMPLE 2.3. Let 91" ..,9n be a Chebechev system in
CeT) and x1, ... ,xn be arbitrary in X. Consider the set of
elements in CeT,X) defined by

If T {t1,...,tn}, ti # tj if i # j, then by, choosing
x* E X* such that <x.,x*> = 1 for i = 1,...,n , we have

,(.

seu,T,X*)

91 et ) ... 9 re )n n n

# 0 .

Thus U = {u1,'" ,un} is a Chebechev system in CeT,X).

THEOREM 2.4. T6 U = {u1" •• ,un} i~ a Chebeehev ~y~tem
in CeT,X), then u1" ",un a~e tinea~ty independent.

P~oo6. If possible assume ul"" ,un be linearly depen-
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dent. With no loss of generality, we assume u1 =

Let x* be any element in X* and T = {t" ...,tn},

-i.. " j. Consider

nr a·u·j=2 j j

t , " t·..(. j
for

M(U,T,X*)

nI a·<u.(t ),x*> ... <u (t ),x*>
j=2 j j n n n

By performing elementary row operations on M(U,T,x*), one
can get a column of zeros. Hence M(U,T,x*) = 0 for all
x* E X* . This is a contradiction. Thus u" ...,un must be
linearly independent. ,

Now we prove Zielk'x Theorem, [5], for the vector val-
ued case.

THEOREM 2.5. Let U = {u" ...,un} c C(I,X) . Then the
6ollow~ng a~e equ~valent:

and T
for all
that

(i) {u" ...,un} L6 a Chebec.hev SyJ.dem.
(ii) Eve~y element u ~n [U] ha~ at mo~t n-' ze~o~.

PlLoo6. (i) -+ (ii). If possible, let there exist UE [U]
{t" ...,tn}, t~ " tj for ~ " j, such that u(t~) = 0
~ = , ,2, ... ,n . If u = a,u,+ ...+anun ' it follows

a, <u, (t ), x*>+ ...+a <u (t ) ,x*> O.n n n n

Consequently, the matrix
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is not invertible, for all x* . Hence M(U,T,x*) = 0 for all
x* , which contradicts the assumption on U. Thus u can have
at most n-'-zeros.

(i) ~ (ii). Let T = {t" ...,tn}, t~ , tj for ~ # j. By
the assumption, it follows that for all a (a" ...,an) £ Rn

a,u,(t.)+ ...+a u (t.)
j n n j

j = ', ... , n , and xj # 0
loss of generality, that
there is at least one x*
x* , one has

for at least one j. Assume, with no
x , O. By the Hahn Banach Theorem,
n

£: X* such that <xn' x*> # O. For such

*<x, , X >

=

<x ,x*>n

<xl' x*> o

=

o

unless (a~, ...,an) = (0,...,0) £ Rn . Hence

# 0 .

Consequently, M(T,U,x*) , O. This implies that U {ul'···'un}

is a Chebechev system. ,
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For T

Let X(T) be the vector space generated by el, ... ,en ' where
addition and scalar multiplication are defined in the natu-
ral way.

Now, we prove an interpolation theorem concerning vec-
tor valued Chebechev systems.

THEOREM 2.6. Let U = {u1' ..• ,un} be a Cltebec.hev I:./pdem

<n cr r.xi. and T = \tl' ...• tnl. t< " tj ,0. <" j. I .. G:)
il:. an a~bit~a.~q element in X(T), then the~e exil:.tl:. a unique

u E [U] I:.uc.h tha.t u(ti) = qi' i = ',2,...,n.

P~oo6. First, we claim that X(T) has dimension n. To
see that, let A" ..-,An be real numbers such that

n
L A.e. O.

i=' .(..(.
A,U, (t,)+ •.. +Anun(:tl)

Then o

Hence, for every x* X*, we have

A,<U, (t ) ,x*>+ ... +A <u (t ) ,x*> 0n n n n

If A'.(. o for i = ', ,n , it follows that the map
<ul (t,) , x*> ... <un (t,) , x*>
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is not invertible for all x* E X* . This contradicts the fact
that U = {u1' ••• ,un} is a Chebechev system. Hence e1,·· .,en
are independent in X(T), and form a basis.

Now, consider the linear operator B:Rn ~ X(.) given by
nL It.u.(t1).£=1 -<- -<.

1t1

B

It n
so that

1t1

B

It n

nL x .«. (.t ).£=1 -<. -<. n

Using the same arguement as in the first part of the proof,

we get that B:Rn ~ X(T) is invertible. Since (~1)E X(T),

then there exists a uniqne (i:J ~ R" such B(t:)"" (r:l
Hence, there is a unique U E ~] such that u(t.£) = y.£ . This
ends the proof of the theorem. ,

REMARK 2.7. The definition we gave for Chebechev sys-
tems is not restrictive. To prove part of Jackson's Theorem,
[5], we need to modify our definition. It is an interesting
question whether Theorem 2.9 below is still valid for Chebe-
chev systems according to Definition 2.1.

DEFINITION 2.8. A set of elements U = {u1 , ••• ,un} in
CeI,X) is said to form a weak Chebeehev 6y6tem .£6 6o~ eve~y
T = {t1, ••• ,tn}, t.£ # tj for .£# j, there exist n-linear
functionals xr, ... ,x* in X*, (not necessarily distinct)
such that
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" °

The Jr.e~utt~ that weJr.e pno ve.d 60Jr.Chebec.hev ~y~tem~ en.
th~~ papeJr. c.an be at~o pJr.oved 60Jr.weak-Chebec.hev ~y~tem~,
u~ing the ~ame tec.hniq«e~.

One basic property of Scalar Chebechev systems is the
existence and uniquencess of best approximants in the span
of the Chebechev system of every 6 E C(I). We now prove the
same result for weak Chebechev systems. We assume in the fol-
lowing that X has the so-called approximation property, [1].

THEOREM 2.9. Let U = {u1' ••• ,un} be a weak Chebec.hev
~/f~tem in C I,X . Then, 60Jr.eveJr./f6 e: C(1,X), theJr.e excs t:«
a unique u e: [UJ J.>uc.hthat 16-uloo = inf{16-vloo:vE [UJ} .
That cs , [U] cs a Chebec.hev sub s po.c:e.06 C(I,X).

PJr.o06. Assume if possible that there exist n-linearly
independent extremal points (Li) of the unit ballof [C(I,X)]*,
and some u e: [UJ, u " 0, such that Li(u) = 0, i = 1, ••• ,n.

It is known, [lJ, that [C(1,X)]* is M(1)~X*, the com-
pletion of the projective tensor product of M(I) with X*,
where M(I) is the space of all regular Borel measures on 1.
Since M(I) and X* are dual spaces, it follows that the ex-
treme points of the unit ball of M(I)iX* are elements of the
form ~'x*, where ~ is an extreme element of the unit ball of
M(I) and x* is an extreme element of the unit ball of X* .
But it is well known that the extreme elements of the unit
ball of M(I) are the point mass evaluations. Hence L. is of-<..
the form ot.~x~ , t. e: (0,1), and x~ is an extreme point of

-<.. -<.. -<.. -<..
the unit ball of X* . Thus, there exist T = {t1 t} t., •.. , n J ..(.

; tj for i ; j; and xi e: x* , such that

<u(t.),x*> = 0, i
-<..

1 , ..• , n • (*)
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n
If u .I aIuI ' then (*) can be written in the form

..<.=1

<ul(tl),xl>",<un(.tl),xl> al 0

o

But since it is assumed that u 1 0, this equation violates
the fact that U = {ul"" ,un} is a weak Chebechev system.
This contradiction implies that there do not exist extreme
points LI of the unit ball of [C(I,X)J* such that LI(u) = 0
for all I = 1,...,n , and some u E [UJ, u 1 o. Hence by Cor-
ollary 2.1 of [4, p.213J, [UJ is Chebechev. ,
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