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FINITE SUBCOVERING PROPERTY "

by
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Abstract. Let C be a ring of (not necessari-
ly bounded) real-valued functions with a common
domain X such that C includes all the constant
functions and if f &€C then |f|€C. Without re-
sorting to any topological notions and using only
algebraic techpniques, we prove that X can be
extended to a set X' and every f€C can be ex
tended to a function f' on X', such that the re
sulting set C' of the extended functions is a
ring isomorphic to C, and such that if E' |is
any bounding sybset of C' with the property that

for every z¢€ X' there exists an f'€ E' with
* The first author acknowledges an F.L.I. grant from
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£'(z) # 0 , then there exists a finite subset of
E' with the same property (E' is bounding if for
every f'€ G' there exist a constant function

c'e G' and e'€ E' such that c¢' 2 |f']+e°)o

When X 1is a completely regular Hausdorff space
and C its ring of continuous real-valued functions
(or - bounded continuous real-valued functions )
then X' is the Hewitt realcompactification ( or
-the Stone-Cech compactification, since in this
case the requirement that E' must be bounding can
be dropped) of X. In effect, our result shows that
the Hewitt real-compactification (or -the Stone-
Cech compactification) theorem can be formulated
purely algebraically requiring neither the conti=-

nuity of functions nor a topology on X.

In what follows all the functions are real-va-
lued. Also, all the ring-theoretical statements
which are made in connection with a set F of
functions (with a common domain) refer to the point
wise addition and multiplication of the elements
of [ 3 similarly, statements pertaining to order
among the elements of F refer to the pointwise
comparison. Moreover, if f is a function then
we let |f| ‘stand for the function whose values
are the absolute values of f. Let c be a func-
tion whose domain is X. Then, as expected, c¢ 1is
called a consétant function on X if and only if
c(x) = r for every x€X. In particular, if r = 1

then ¢ is called the unit function on X.
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Let E be a set of functions with a common do
main X and let wu be the unit function on X.
We say that wu 44 covered by the elements of E

if and only if for every z<€ X we have:
(1) £(z) # 0 for some feE.

‘Lemma i.Let F be a 4ubset of a ning C of func-
tions with a common domain X and Let ue C where u
is the unit function on X. I§ u 48 not covered by
the elements of F then the ideal J of C generated
by F 44 propen.

Proof. Since u 1is not covered by the elements
of F, from (1) it follows that for some =z&€ X it
is the case that f(z) = 0 for every f& F. But
then if ge&€J we see that g(z) = 0. Hence, ugJ

and J 1is a proper ideal. @
From the Lemma we have immediately:

Corollary. Let c be a ning as mentioned in Le-
mma 1 and E be a subset of C . I§ u 44 covered by
no finite numben of elements of E then the ideal
I 0§ C generated by E L& propenr.

Let C be a set of functions with a common do-
main X. A set E of functions on X 1is called
a bounding set (or a bounding subset in case EC C)

of C if and only if for every f& C there exists
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a constant function ¢ <c¢con X such that
(2) c > |[£f] + e for some ec€ E .

Lemma 2. Let C be a ning of functions with a
common domain X such that every constant function
on X <4 an element of C and if fec then |[fle C.
Let M be both a maximal ideal and bounding subset
of C . Then M {8 a real Lideal of C (i.e., C/M L4
Lsomonphic to the neals).

Proof. Let us observe that C 1is a lattice
where fvg and fAg are equal, respectively,
to ¥(f+g + |f-g| ) and X(f+g - |[f-g| ). Thus,
by [1], p.66, the maximal ideal M is an absolu-
tely convex ideal of ¢ and C/M 1is a totally or-
dered field. However, M 1is bounding subset of
C and therefore for every f€C, there exists
a constant ¢ such that, in view of (2) and
using an obvious notation, we have ctM > |f|+M,
Hence, C/M is also Archimedean. Moreover, since
every constant function is an element of C we
see that C/M has a subfield isomorphic to the
reals. But then, as such, C/M itself is iso-
morphic to the reals and M is a real ideal of C,

as desired. ®
Based on the above, we have:

Theorem. Let C be a ning of (real-valued) func
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tions with a common domain X such that every cons
tant function on X 44 an element of C and Lf f€ C
then |fle€ ¢ and where u 48 the function on X. Then,
X can be extended to a set X'and every element f
0§ C can be extended to a function f'with X' as its
domain such that:

(i) the nesulting set c' of the extended functions
Ls a ning.

(ii) the cornrespondence f = f' {8 a ning Lsomorphism
from ¢ onto c'.

(iii) 4§ u' 44 covered by the elLements of a bounding
subset E'0f C' then u' is already covered by §inite-
Ly many elLements o4 E'.

Proof. Since C <contains all the constant func

tions on X, then the set Mx given by

(3) M. = {f| fec and f(x) = 0}
is a real ideal of C for every x€ X. Let
(4) {Myl vet }

be the set of all the real ideals not of the form

(3), and consider

(5) x' = xUy
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Clearly, X' 1is an extension of X, and

(6) {MZI ze X'}

is the set of all the real ideals of C.

To every fe€C 1let us make correspond a func-

tion f' on X defined as:
(7) £ = f on X, and f(y) = f(Mod My) on Y.

© 1 c o
Obviously, f 1is an extension of f. Moreover,

My = {f| fe<cC and flly) = 0} for every ye€Y,
which by (3) implies

(8) M = {£] £€C and f'(z) = 0} for every

z € X.
Again, from definition (7) it readily follows that:
(9) f'+ g'= (f+g)' and f'g' = (fg)
and since C is a ring, we see that C' given by:
(10) c={f] fec}
is also a ring. Hence (i) is established.

Clearly, if f = g' then f = g which by (9)

implies that the correspondence f+~ f is a ring
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isomorphism from C onto C'. Hence (ii) is also

established.

Next, let the unit function u' be covered by
the elements of a bounding set E' of C i.e.,

as in (1), for every xe X we have:
(11) £(z) # 0 for some fe EL

To prove (iii) we must show that u' is alrea
dy covered by some finitely many elements of Bl
Let us assume to the contrary that u' is covered
by no finite number of elements of E' Thus, by
the Corollary, the ideal I' of C' generated by
E' is proper. Also, since E' is a bounding sub-

set of C',

(12) A and I" is a bounding subset of ct,

Since u' is the extension of u and fe~ f'
is a ring isomorphism, in view of (12), we see that

the subset I of € defined by:
(13) I {{F fle 1'}

is both a proper ideal and a bounding subset of C.
As a proper ideal, I is contained in a maximal
ideal M of C. But then, since I is a bounding
subset of € we see that M 1is both a maximal

ideal and a bounding subset of C. Consequently,
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from Lemma 2 it follows that M is a real ideal

of C and, in view of (6), we have:
(14) IcM =M for some z € X%
Now, from (12), (13), (14), (8) it follows that
fz) = 0 for every f'¢ E'

which contradicts (11). Hence our assumption is

false and (i11i) is established. ¥

Remark. We observe that X (as well as X )
can be topqlogiied with subbasic open sets of the
form {x | f(x) # 0} for some feC (as well as
for some f%:C')?which in fact form a base. It
can be readily verified that with respect to this
topology all the elements of C (as well as of C)
become continuous functions (where reals are topo-
logized as usual). If the elements of C separate
points and closed subset of X then X becomes
completely regular Hausdorff and X' becomes real-
compact (since every real ideal in C' is fixed).
Moreover, if C 1is the ring of all continuous
functions on X then X 1is C-embedded in X'and

¢
hence X' is the Hewitt realcompactification of X.

If in the above, C was the ring of all bound
ed continuos functions on X then X 1is c¥-em-~

bedded in X' and hence X' is the Stone—éech com-
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pactification of X (since in this case the requi-
rement that E' must be a bounding subset of ¢’

can be dropped).

On the other hand, if X had a completely re-
gular topology to startwith, this topology coin-
cides with the one defined above for any ring C
of continuos functions separating points and clo-
sedAsubsetsf Therefore, the above Remark shows
that the topolecgical structures involved in the
Hewitt realcompactification or the Stone-Cech com
pactification can be fully recovered from the

underlying algebraic structures.
* % X
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