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Title in English
The Hilbert’s Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions

Título en español
El teorema de los ceros de Hilbert sobre las extensiones de Poincaré-Birkhoff-Witt torcidas

Abstract: In this work we study several versions of the Hilbert’s Nullstellensatz. We be-
gin with a commutative review of its geometric interpretation following the study of affine
and projective case. Later, we consider its algebraic interpretation. Next, we present
several treatments to the non-commutative interpretation. Therefore, we begin with Ore
extensions, their properties and obstructions with classical methods. We consider a re-
lationship between the Hilbert’s Nullstellensatz and the notion of generic flatness. Sub-
sequently we use the filtration-graduation technique over almost normalizing extensions
(also called almost commutative algebras) with the aim of state a theorem that helps us
to guarantee conditions such that the Hilbert’s Nullstellensatz holds.
Finally, we study skew Poincaré-Birkhoff-Witt extensions together with some of their ho-
mological and ring-theoretical properties in order to extend Hilbert’s Nullstellensatz to
such extensions.

Resumen: En este trabajo estudiaremos algunas versiones del teorema de ceros de Hilbert
(Nullstellensatz). Empezaremos con una revisión conmutativa de la interpretación geo-
métrica con el estudio del caso afín y proyectivo. Luego, consideramos su versión alge-
braica. Después, presentaremos varios desarrollos en el caso no conmutativo. De esta
forma, empezamos con las extensiones de Ore, sus propiedades y obstrucciones con los
métodos clásicos. Consideraremos una relación entre el teorema de ceros de Hilbert y la
noción de plenitud genérica. Posteriormente usaremos la técnica de filtración graduación
sobre las extensiones casi normalizadoras (tambien llamadas algebras casi conmutativas)
con el objetivo de establecer un teorema que nos ayude a garantizar condiciones para que
el teorema de ceros de Hilbert se cumpla.
Por último, estudiaremos las extensiones de Poincaré-Birkhoff-With torcidas junto con
algunas de sus propiedades homológicas y de teoría de anillos para poder extender el teo-
rema de ceros de Hilbert sobre estas extensiones.

Keywords: Hilbert’s Nullstellensatz, skew PBW extension, Jacobson ring, generic flat-
ness.
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plenitud genérica.
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Introduction

One of the most important results for the polynomial ring over a field is the Hilbert’s Null-
stellensatz, which establishes a fundamental relationship between geometry and algebra.
This is one of the three fundamental theorems for such structure proved by Hilbert (the
other two are Hilbert’s Basis Theorem and Hilbert’s Syzygy Theorem). Nullstellensatz
establishes a relationship between a radical of a polynomial ideal and the ideal of a variety
of the polynomial ideal. Since its formulation, multiples authors have given other versions
of the Nullstellensatz such as the algebraic version by Zariski given in 1946 that we will
address in Section 1.1. Such version states that if we have a finitely generated k-algebra
over a field k and this algebra turns out to be also a field, then this is a finite algebraic
extension of k.

Thinking about non-commutative algebras, since these non-commutative structures
have a polynomial form, a natural question is whether there exists a Nullstellensatz for
these objects. The answer to this question is more or less affirmative. If we think in a
geometrical version of Hilbert’s Nullstellensatz we can found several difficulties, especially
over the notion of the variety of an ideal, i.e, the collection of points in which the polyno-
mials of the ideal vanish. We overlook this problem addressing the algebraic version of the
Hilbert’s Nullstellensatz. Several authors have established versions of this result for some
non-commutative algebras such as Ore extensions [Irv79a], almost normalizing extensions
[MR88], while others have given a general versions over algebras imposing some conditions
[ASZ99].

The main family of non-commutative rings of interest for us in this work are the
skew PBW extensions defined by Gallego and Lezama [GL11] as a generalization of clas-
sical PBW extensions introduced by Bell and Goodearl [BG88]. Several ring-theoretical
and homological ring properties have been studied in recent years (e.g. [Art15], [LR14],
[LAR15], [Rey15], [RS17c],[RS16a], [Rey14], [RS18b],[RS17b], [RS16b], [RS18c], [RS18a]
). Since skew PBW extensions have a polynomial form, we ask if there is a version of the
Hilbert’s Nullstellensatz for these extensions and which are necessary conditions for such
theorem to hold.

This document is organized as follows: Chapter 1 is dedicated to present classical
Hilbert’s Nullstellensatz, beginning in Section 1.1 with the commutative case. Although
there is a well-known clasical version together with many interpretations, we take in this
work a geometrical (affine and projective case) and an algebraic one. In Section 1.2 we
our focus our attention on a non-commutative perspective by making a historical review
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of necessary conditions present in some formulations of the Hilbert’s Nullstellensatz for
different types of extensions. Firstly, we focus on Ore extensions. Then, we study the
filtration-graduation technique over a special class of non-commutative structures known
as almost normalizing extensions. Later, we address some conditions appearing in the
literature for an algebra to satisfy Hilbert’s Nullstellensatz.

In Chapter 2 we recall skew PBW extensions. Section 2.1 contains the definition of
such extensions together with some ring-theoretical and homological properties of them
that will be needed later to state Theorem 2.2.3. In Section 2.2 we present the main results
of this work: we formulate a theorem that guarantees, on certain conditions, that skew
PBW extensions satisfy Nullstellensatz. Finally, in Section 2.3 we classify some examples
of skew PBW extensions and determine which versions of the theorems are satisfied.

Lastly, we state some possible future work that could be developed having in mind
other versions of the Hilbert’s Nullstellensatz. Also, we enunciate several open questions
about this topic.



CHAPTER 1

The Hilbert’s Nullstellensatz

In commutative algebra, the Hilbert’s Nullstellensatz establishes a fundamental relation-
ship between geometry and algebra. Some algebraic approaches have been established
in the non-commutative case. If we think in a geometrical version we can found several
difficulties; the reason for this is that we can notice some obstacles when we try to see the
set of points that vanish a non-commutative polynomial we could have difficulties when
we commute some variable even with constants and variables. Due to this reason, we want
another interpretation of the Nullstellensatz for the non-commutative case.

In this chapter we will see some interpretations of the Hilbert’s Nullstellensatz in the
commutative case (geometrical and algebraic) and some approaches algebraic that have
been given to enunciate a non-commutative version of the Nullstellensatz.

1.1 Commutative case

The Hilbert’s Nullstellensatz is one of the three fundamental theorems about polynomial
ring over a field. This result states that over an algebraically closed field, different ideals
can give the same variety. The two other theorems are Hilbert’s Basis Theorem that
asserts that polynomial ring over a field is Noetherian, and Hilbert’s Syzygy Theorem
that concerns the relations, or syzygies in Hilbert’s terminology, between the generators
of an ideal, or, more generally, a module.

Several formulations of the theorem have been given throughout history. The most
important formulation establishes a relationship between the radical of a polynomial ideal
and the ideal of a variety of a polynomial ideal. We can find other statements such as an
algebraic formulation that gives conditions to know if a field extension is a finite algebraic
extension. Let us begin with the study of its geometric formulation.

1.1.1 Affine case

One important link between algebra and geometry is the study of the polynomial ring
k[x1, . . . , xn] over a field k. For any polynomials f1, . . . , fs ∈ k[x1, . . . , xn] we would like
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CHAPTER 1. THE HILBERT’S NULLSTELLENSATZ 2

to know which are the collections of points that vanish, while for a set of points we want
to find which are the set of polynomials that vanish in those points. These questions are
studied from the definitions of a variety and an ideal.

Definition 1.1.1 ([CLD15], Definition 1.1.4). Given a field k and a positive integer n, we
define the n-dimensional affine space over k to be the set

kn := {(a1, . . . , an) | a1, . . . , an ∈ k}.

For example, if we consider the case k = R, we get the familiar space Rn that usually
use. For n = 1 the affine space is named affine line; n = 2 is named affine plane.

Definition 1.1.1 is the cornerstone of classical algebraic geometry. On the affine space,
we will define affine variety which will be the collections of points that vanish certain
polynomials.

Definition 1.1.2 ([CLD15], Definition 1.2.1). Let k be a field, and let f1, . . . , fs be
polynomials in k[x1, . . . , xn]. Then we set

V(f1, . . . , fs) := {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0, for all 1 ≤ i ≤ s}.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs.

Thus, an affine variety V(f1, . . . , fs) ⊂ kn is the set of all solutions of the system of
equations f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0. Now we can think on the set of
all polynomials vanishing on collections of points given in Definition 1.1.2. The set of
polynomials will be called the ideal of a variety.

Definition 1.1.3 ([CLD15], Definition 1.4.5). Let V ⊂ kn be an affine variety. Then we
set

I(V ) := {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0, for all (a1, . . . , an) ∈ V }

The Definition 1.1.3 of I(V ) is an ideal as we see in Lemma 1.1.4.

Lemma 1.1.4 ([CLD15], Lemma 1.4.6). If V ⊂ kn is an affine variety, then I(V ) ⊂
k[x1, . . . , xn] an ideal. We will call I(V ) the ideal of V .

Proof. We can note that 0 ∈ I(V ) since the zero polynomial vanishes on all of kn, in
particular it vanishes on V . We suppose that f, g ∈ I(V ) and h ∈ k[x1, . . . , xn]. Let
(a1, . . . , an) be an arbitrary point of V . Then we have that f(a1, . . . , an)+g(a1, . . . , an) = 0
and h(a1, . . . , an)f(a1, . . . , an) = h(a1, . . . , an)0 = 0, so I(V ) is an ideal.

Ideals are algebraic objects, while varieties are geometric objects. We can notice a
connection algebra-geometric if we take some polynomials f1, . . . fs ∈ k[x1, . . . , xn] and find
a variety for them V(f1, . . . fs); next, we calculate the ideal of this variety I(V(f1, . . . fs)).

Polynomials Variety Ideal
f1, . . . fs // V(f1, . . . fs) // I(V(f1, . . . fs)).
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We can note a relationship between varieties and ideals, and we could think that
I(V(f1, . . . fs)) = 〈f1, . . . fs〉 but this, unfortunately, is not always true. We only can
say that 〈f1, . . . fs〉 ⊂ I(V(f1, . . . fs)). The reason is that if we take f ∈ 〈f1, . . . fs〉, means
that f =

∑s
i=1 hifi for some polynomials hi, . . . , hs ∈ k[x1, . . . , xs]. Since f1, . . . fs vanish

on V(f1, . . . fs), So must
∑s

i=1 hifi. An example that shows that equality need not occur
is 〈x3, y2〉 ( I(V(x3, y2)). We first compute I(V(x3, y2)). The equations x3 = y2 = 0
imply that V(x3, y2) = {(0, 0)}, and we can see that the ideal of {(0, 0)} is 〈x, y〉 and this
is strictly larger than 〈x3, y2〉.

Over an algebraically closed field we have the relationship between I(V(f1, . . . fs)) and
〈f1, . . . fs〉. One approach for this relationship is the Weak Nullstellensatz that says us
what happen if V(I) = ∅.

Proposition 1.1.5 ([CLD15],Theorem 4.1.1. (The Weak Nullstellensatz)). Let k be an
algebraically closed field and let I ⊂ k[x1, . . . , xn] be an ideal satisfying V(I) = ∅. Then
I = k[x1, . . . , xn].

We need an algebraically closed field because every nonconstant polynomial has a root
in k[x] and we can use this to prove Proposition 1.1.5 using induction over n. Hence, the
only way that we could have V(I) = ∅ would be to have f be a nonzero constant. In
this case, 1/f ∈ k. Thus 1 ∈ I which means that g ∈ I, for all g ∈ k[x1, . . . , xn]. Hence,
I = k[x1, . . . , xn].

By the Weak Nullstellensatz, one might think that the correspondence between ideals
and varieties is one-to-one provided if only we restricts to algebraically closed fields. Un-
fortunately if we take, like before, the ideals 〈x3, y2〉 and 〈x, y〉 we have that V(x3, y2) =
V(x, y) = {(0, 0)} over any field define the same variety. These examples illustrate a basic
reason why different ideals can define the same variety, a power of a polynomial vanishes
on the same set as the original polynomial. The Hilbert Nullstellensatz states that over an
algebraically closed field, this is the reason that different ideals can give the same variety.

Proposition 1.1.6 ([CLD15], Theorem 4.1.2. (Hilbert’s Nullstellensatz)). Let k be an
algebraically closed field. If f, f1, . . . , fs ∈ k[x1, . . . , xn] are such that f ∈ I(V(f1, . . . , fs)),
then there exists an integer m ≥ 1 such that fm ∈ 〈f1, . . . , fs〉 (and conversely).

The idea of the proof is to take a nonzero polynomial f which vanishes at every
common zero of the polynomials f1, . . . , fs and show that there exists an integer m ≥
1 and polynomials g1, . . . , gs such that fm =

∑s
i=1 gifi. For this, we take a special

ideal Ĩ := 〈f1, . . . , fs, 1 − yf〉 ⊆ k[x1 . . . , xn, y] and prove that V(Ĩ) = ∅ to reduce to
the weak Nullstellensatz to this let (a1, . . . , an, an+1) ∈ kn+1. Either (a1, . . . , an) is a
common zero of f1, . . . , fs, or (a1, . . . , an) is not a common zero of f1, . . . , fs. In the
first case f(a1, . . . , an) = 0, since f vanishes at any common zero of f1, . . . , fs. Thus,
1 − yf takes the value 1 − an+1f(a1, . . . , an) = 1 6= 0 at point (a1, . . . , an, an+1). In
particular (a1, . . . , an, an+1) /∈ V(I). In the second case, for some 1 ≤ i ≤ s, we
must have fi(a1, . . . , an) = 0. Thinking of fi as a function of n + 1 variables which
does not depend on the last variable, we have fi(a1, . . . , an, an+1) 6= 0. In particular,
we conclude that (a1, . . . , an, an+1) /∈ V(I). Since (a1, . . . , an, an+1) ∈ kn+1 was ar-
bitrary, we obtain V(Ĩ) = ∅. By the weak Nullstellensatz we know that 1 ∈ Ĩ, and
hence 1 =

∑s
i=1 pi(x1, . . . , xn, y)fi + q(x1, . . . , xn, y)(1− yf), for some polynomials pi, q ∈
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k[x1, . . . , xn, y]. If we take y = 1/f(x1, . . . , xn) we have that 1 =
∑s

i=1 pi(x1, . . . , xn, 1/f)fi.
If we multiply both sides of this equation by a power f t, where t is chosen sufficiently large
to clear denominators, we have f t =

∑s
i=1 gifi, for some polynomials gi ∈ k[x1, . . . , xn].

The election of that ideal Ĩ is known as “Rabinowitz trick”.

To explore the relationship between ideals and varieties, it is natural to formulate
Hilbert’s Nullstellensatz in terms of ideals.

Definition 1.1.7 ([CLD15], Definition 4.2.4.). Let I ⊂ k[x1, . . . , xn] be an ideal. The
radical of I, denoted

√
I, is the set

{f | fm ∈ I, for some integer m ≥ 1}.

It is not hard to see that I(V ) is a radical ideal, if we take a element a ∈ V . If
fm ∈ I(V ), then (f(a))m = 0. But this can happen only if f(a) = 0, and since a was
arbitrary, we must have f ∈ I(V ). From Definition 1.1.7 and Theorem 1.1.6 we can state
ideal-theoretic form of the Nullstellensatz.

Proposition 1.1.8 ([CLD15]. Theorem 4.2.6. (The Strong Nullstellensatz)). Let k be an
algebraically closed field. If I is an ideal in k[x1, . . . , xn], then I(V((I)) =

√
I.

The proof of the strong Nullstellensatz consists of the following: for
√
I ⊂ I(V(I)),

taking f ∈
√
I implies that fm ∈ I for some m. Hence, fm vanishes on V(I), which

implies that f vanishes on V(I). Thus, f ∈ I(V(I)). Conversely, we use the Hilbert’s
Nullstellensatz to guarantee that I(V(I)) ⊂

√
I.

1.1.2 Proyective case

In some cases, affine case is not enough to verify all points where a polynomial vanished,
because, in a certain sense, we missing some “points at infinity”. To recover these points,
we will add them to reach definition of the projective space Pn. Then we will introduce
homogeneous polynomial for this space. Later, we will define projective varieties over
Pn and, such as in Section 1.1.1, we study a projective version of an algebraic-geometry
relationship due to the Hilbert’s Nullstellensatz.

Before we give a definition of projective space, we consider an equivalence relation ∼ on
the nonzero points of kn+1 by setting (x′0, . . . , x′m) ∼ (x0, . . . , xm) if are parallel, i.e. there
is a nonzero element α ∈ k such that (x′0, . . . , x′m) = α(x0, . . . , xm). With the equivalence
relation we can define the projective space

Definition 1.1.9 ([CLD15], Definition 8.2.1). The n-dimensional projective space
over a field k, denoted Pn(k) or Pn, is the set of equivalence classes of ∼ on kn+1 \
{(0, . . . , 0)}. Thus, Pn = (kn+1 \ {(0, . . . , 0)})/ ∼. Given a (n + 1)-tuple (x0, . . . , xn) ∈
kn+1 \ {(0, . . . , 0)}, its equivalence class p ∈ Pn will be denoted (x0 : · · · : xn), and we will
say that (x0 : · · · : xn) are homogeneous coordinates of p. Thus (x′0 : · · · : x′n) = (x0 :
· · · : xn) if and only if (x′0, . . . , x′m) = α(x0, . . . , xm), for some α ∈ k \ {0}.

We want to define varieties in projective case. If we try to replicate affine case, we
will have problems. For example in the 2-dimensional projective space P2 when we take
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some f ∈ k[x0, . . . , xn] and we try to construct V(x2
1−x2), the point p = (3 : 2 : 4) satisfy

the equation x2
1 − x2 = 0. However, we notice that p can be represented by a different

homogeneous component, for example p = (6 : 4 : 8); if we substitute these components
into our polynomial, we obtain that 42 − 8 = 4 6= 0. We can overlook this problem using
homogeneous polynomials. We recall that a polynomial f is homogeneous of total
degree d, if every term appearing in f has total degree exactly d. We define varieties
over projective space Pn.

Definition 1.1.10 ([CLD15], Defintion 8.2.5). Let k be a field and let f1, . . . , fs ∈
k[x0, . . . , xn] be homogeneous polynomials. We set

V(f1, . . . , fs) = {(a0 : · · · : an) ∈ Pn | fi(a0, . . . , an) = 0 for all 1 ≤ i ≤ s}.

We call V(f1, . . . , fs) the projective variety defined by f1, . . . , fs.

We could think that, such as the polynomial f = x2
1 − x2, we can have problems with

different representations of p. Nevertheless, in homogeneous polynomials this problem is
completely avoided.

Proposition 1.1.11 ([CLD15], Proposition 8.2.4). Let f ∈ k[x0, . . . , xn] be a homogeneous
polynomial. If f vanishes on any one set of homogeneous coordinates for a point p ∈ Pn
then f vanishes for all homogeneous coordinates of p. In particular V(f) is a well-defined
subset of Pn.

Proof. We take (a0 : · · · : an) = (λa0 : · · · : λan) homogeneous coordinate for p ∈ Pn and
we assume that f(a0, . . . , an) = 0. If f is homogeneous of total degree t, we have that every
term in f have the form cxα0

0 · · ·xαn
n , with α0+· · ·+αn = t.When we substitute xi = λai we

have c(λa0)α0 · · · (λan)αn = c(λ)α0(a0)α0 · · · (λ)αn(an)αn = cλt(a0)α0 · · · (an)αn . All terms
in f have a common factor λt and hence f(λa0, . . . , λan) = λtf(a0, . . . , an) = 0.

Definition 1.1.12 ([CLD15], Definition 8.3.1). An ideal I in k[x0, . . . , xn] is said to be
homogeneous if for each f ∈ I, the homogeneous components fi of f are in I as well.

We can note that not all ideals have this property. For instance, let I = 〈x2 − y〉 ⊆
k[x, y]. The homogeneous components of f = x2 − y are f1 = x2 and f2 = −y. Neither of
these polynomials is in I since neither is a multiple of x2−y. Hence, I is not a homogeneous
ideal.

One way to create examples of homogeneous ideal is to consider the ideal generated by
the defining equations of a projective variety. But there is another way such as a projective
variety can gives us a homogeneous ideal.

Proposition 1.1.13 ([CLD15], Proposition 8.2.4). Let V ⊆ Pn be a projective variety
and let

I(V ) = {f ∈ k[x0, . . . , xn] | f(a0, . . . , an) = 0, for all (a0 : · · · : an) ∈ V }.

If k is an infinite field, then I(V ) is a homogeneous ideal in k[x0, . . . , xn].
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We have a relationship between a projective variety and a homogeneous ideal, such as
in the affine case. For the Hilbert’s Nullstellensatz we define the radical of a homogeneous
ideal as is usual:

√
I := {f ∈ k[x0, . . . , xn] | fm ∈ I, for some m ≥ 1}.

The radical of a homogeneous ideal is always homogeneous. We expect an espe-
cially close relationship between projective varieties and homogeneous ideals over an alge-
braically closed field k, such as in affine case. We could think that the weak and strong
Nullstellensatz that we have seen in section 1.1.1 can be extended to projective varieties
and homogeneous ideals. Unfortunately this is not possible; in particular the Weak Null-
stellensatz fails for certain homogeneous ideals. For example, if we consider the ideal
〈x0, x1, . . . , xn〉 ⊆ k[x0, . . . , xn] with k algebraically closed, then V(I) ⊆ Pn is defined by
equations x0 = · · · = xn = 0 which have not solutions in Pn. It follows that V(I) = ∅, yet
I 6= k[x0, . . . , xn]. However, we can give a version projective Nullstellensatz having this
problem in mind.

Proposition 1.1.14 ([Lez19a], Theorem 4.2.17; [CLD15], Theorem 8.3.9 (Projective Null-
stellensatz)). Let k be an algebraically closed field and J ⊆ k[x0 . . . , xn] be a homogeneous
ideal. Then,

(i) V(J) = ∅ ⇔ 〈x0, . . . , xn〉 ⊆
√
J.

(ii) If V(J) 6= ∅, then I(V(J)) =
√
J.

1.1.3 Algebraic formulation

One version of the Hilbert’s Nullstellensatz is given in [AM69, Chapters 5 & 7] around
the definition of integral dependence and Noetherian rings (a weak version). For this, we
remember that A is a k-algebra (with k a field), if it is a vector space equipped with a
bilinear product, and it is a finitely generated k-algebra if there exist finitely elements
x1, . . . , xn ∈ A such that every element of A can be written as a linear combination of
these elements. Let us remember some definitions with the aim of establishing the theory.

Definition 1.1.15 ([Fra03], Definition 29.6). Let L,F be fields, with L a field extension
of F . An element a ∈ L is called an algebraic over F , if there exists some non-zero
polynomial g(x) with coefficients in F such that g(a) = 0. If a is not algebraic over F ,
then a is transcendental over F .

We are talking about elements that vanish a polynomial; we can think of it such as
a kind of variety. Considering the case when every element of a field vanishes, we can
extend Definition 1.1.15.

Definition 1.1.16 ([Fra03], Definition 31.1). Let L,F be fields, with L a field extension
of F . L is called algebraic, if every element of L is algebraic over F .

In field theory we remember that a field F is algebraically closed if contains a root for
every non-constant polynomial in F [x]. Hence, from Definition 1.1.16, we can said that L
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is algebraically closed. This definition of an algebraic element in fields can be extended to
the context of rings.

Let B be a ring, A a subring of B. An element x of B is said integral over A, if x is
a root of a monic polynomial with coefficients in A, that is, if x satisfies an equation of
the form

xn + an−1x
n−1 + · · ·+ a0 = 0,

where ai ∈ A, for 0 ≤ i ≤ n− 1. Clearly, every element of A is integral over A.

Remark 1.1.17. Let f : A → B be a ring homomorphism, so that B is an A-algebra.
Then f is said to be integral, and B is said to be an integral A-algebra, if B is integral
over the subring f(A).

Let us remind that an integral domain is a nonzero commutative ring in which product
of any two non-zero elements is non-zero. One of the important tools to give an algebraic
version of the theorem is the definition of a valuation ring.

Definition 1.1.18 ([AM69], page 65). LetB be an integral domain,K its field of fractions.
B is a valuation ring of K if, for each x ∈ K nonzero, either x ∈ B or x−1 ∈ B (or
both).

Valuation rings have many properties like being a local ring (they have a unique max-
imal ideal), and they are integrally closed over its field of fractions. Other way to char-
acterize valuation rings of a field K is that valuation rings B of K have K as their field
of fractions, and their ideals are totally ordered by inclusion. Equivalently, their principal
ideals are totally ordered by inclusion.

Proposition 1.1.19 ([AM69], Proposition 5.23). Let A ⊆ B be integral domains, B
finitely generated over A. Let v be a non-zero element of B. Then there exists u 6= 0 in A
with the following property: any homomorphism f of A into an algebraically closed field Ω
such that f(u) 6= 0 can be extended to a homomorphism g of B into Ω such that g(v) 6= 0.

The proof of Proposition 1.1.19 works by induction on the number of generators of B
over A and reduce to the case where B is generated over A by a single element. If the
element is transcendental, we can make a function and extend it if we consider that the
field is infinite. If the element is algebraic, we use that v is a polynomial in the element
and use v−1, and take equations with the element and v−1 and u as the multiplication of
the lead coefficients of the equations; hence we extend the function.

If we use Proposition 1.1.19, we can give an algebraic version of the Hilbert’s Nullstel-
lensatz. Following [AM69, page 80], we recall that a ring A is said to be Noetherian, if
it satisfies one of the following three equivalent conditions:

1. Every non-empty set of ideals in A has a maximal element.

2. Every ascending chain of ideals in A is stationary.

3. Every ideal in A is finitely generated.
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Noetherian rings are one of the most important class of rings in commutative and
non-commutative algebra. Next, we recall some of their properties which are essential for
the purpose of this work.

Proposition 1.1.20 ([AM69], Proposition 7.8). Let A ⊆ B ⊆ C be rings. Suppose that
A is Noetherian, that C is finitely generated as an A-algebra and that C is either (i)
finitely generated as a B-module or (ii) integral over B. Then B is finitely generated as
an A-algebra.

Proof. We follow the proof given in [AM69]. Let x1, . . . , xm the elements that generated
C as an A-algebra, and let y1, . . . , yn be the elements that generate C as a B-module.
Then we can find expressions of the form

xi =
∑
j

bijyi with bij ∈ B (1.1.1)

yiyj =
∑
k

bijkyi with bijk ∈ B. (1.1.2)

In particular yiyi =
∑

k biikyi. Let B0 be the algebra generated over A by the bij and the
bijk. Since A in Noetherian, so B0, and A ⊆ B0 ⊆ B.

Any element of C is a polynomial in the xi with coefficient in A. Substituting the
expression (1.1.1) in the polynomial and making repeated use of expression (1.1.2) we
can show that each element of C is a linear combination of the yi with coefficients in B0,
and hence C is finitely generated as a B0-module. Since B0 is Noetherian and B is a
submodule of C, it follows that B is finitely generated as B0-module. Since B0 is finitely
generated as an A-algebra, it follows that B is finitely generated as an A-algebra.

From valuation rings or Noetherian rings we can state a version of Hilbert’s Nullstel-
lensatz that gives us a method to identifying a finite algebraic extension through a finitely
generated k-algebra.

Proposition 1.1.21 ([AM69], Proposition 7.9. (Hilbert’s Nullstellensatz)). Let k be a
field, E a finitely generated k-algebra. If E is a field then it is a finite algebraic extension
of k.

If we use valuation rings, we can follow Proposition 1.1.21 as a corollary of Proposition
1.1.19 taking B = E, A = k, v = 1 and Ω = algebraic clousure of k, whereas if we use
the Noetherian rings, we assume k is infinite and E is a simple transcendental extension
k[x]. We claim that if f1, . . . , fn ∈ E, then the k-algebra A they generate is smaller than
E. To see this, we choose a ∈ k away from the poles of the rational functions fi. Then no
element of A can have a pole at a, so 1/(x− a) /∈ A, and A is smaller than E.

Proposition 1.1.21 is known as Zariski’s lemma. In Section 1.2 we will see a general-
ization of the Proposition 1.1.21 and the Hilbert’s Nullstellensatz for some non-commutative
rings. We can note that this version of Hilbert’s Nullstellensatz does not use varieties of
a collection of polynomials, or an ideal of a set of points.

Next, we recall the algebraic version of the weak Hilbert’s Nullstellensatz.
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Proposition 1.1.22 ([AM69], Corollary 7.10. (Weak Hilbert’s Nullstellensatz)). Let k be
a field, A a finitely generated k-algebra. Let M be a maximal ideal of A. Then the field
A/M is a finite algebraic extension of k. In particular, if k is algebraically closed then
A/M ∼= k.

We can see that the Hilbert’s Nullstellensatz implies the Weak Hilbert’s Nullstellensatz.
In Proposition 1.1.21, since B is a field, the maximal ideal is generated by 0, and so
Proposition 1.1.22 follows from Proposition 1.1.21. For the proof of the Proposition 1.1.22,
take E = A/M .

The algebraic version of Hilbert’s Nullstellensatz allows us to overlook the difficulty
of define variety and the ideal of a set of points in a non-commutative structure. We
can extend Proposition 1.1.21 to state a general version of Hilbert’s Nullstellensatz in the
commutative and non-commutative case.

1.2 Non-commutative case

In Section 1.1 we saw that the Hilbert’s Nullstellensatz has a geometric and an algebraic
version. If we try to extend the Hilbert’s Nullstellensatz in its geometrical form, we would
have some difficulties. In some cases, a set of points can vanish an expression, but when
we commute variables or even a variable and a constant, possibly this set does not vanish
the new polynomial. That is the reason we will concentrate on approaches in the algebraic
version of the Hilbert’s Nullstellensatz. All these methods have been studied throughout
the 20th century.

1.2.1 First approach: Ore extensions

One of the most important approaches for the non-commutative case is presented in
[Irv79a] which provides us a relationship between Hilbert’s Nullstellensatz for Ore exten-
sions defined by [Ore33] and the notion of generic flatness (see Definition 1.2.12). Before
that, let us review some facts of commutative ring theory.

Definition 1.2.1 ([Irv79a], page 259). A commutative domain R is called G-domain, if
its fraction field is a finitely-generated R-algebra, that is if there exists a finite number of
non-zero elements u1, . . . , un such that R[u−1

1 , . . . , u−1
n ] = K, with K the field of fractions

of R.

From Definition 1.2.1, it follows that the fraction field is generated by a single element
u =

∏n
i=1 ui.

Definition 1.2.2 ([Irv79a], page 260). A prime ideal P of a ring A is a G-ideal, if the
primes which properly contain P intersect in an ideal properly containing P .

We can note that a commutative ring R is a G-domain, if {0} is G-ideal or R/P is a
G-domain.

Proposition 1.2.3 ([Irv79a], Proposition 1). Let R be a commutative ring. G-ideals of
R are precisely the intersections of the maximal ideals in R[t].
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Over a commutative ring, maximal ideals are G-ideals, and G-ideals are prime ideals.
We can enunciate a class of rings in which converse holds.

Definition 1.2.4 ([Irv79a], page 260). A commutative ring R is Jacobson ring, if every
G-ideal is maximal.

In particular, nilradical in a Jacobson ring coincides with Jacobson radical; this prop-
erty is the usual definition of a Jacobson rings and it is used for commutative rings. We
can find other characterizations of Jacobson rings. For example, a ring R is a Jacobson
ring if J(R/P ) = 0, for every prime ideal P of R. We can observe some examples of
Jacobson rings, such as Z or k[x], with k a field, every field is a Jacobson ring.

More recently, Jacobson rings (also known such as Hilbert rings) can be seen using
primitive ideals. Let us enunciate when a ideal is known as primitive.

Definition 1.2.5 ([GW04], page 60). Let R be a ring and I an ideal of R. We say that I
is a left (right) primitive ideal, if there exists a simple left (right) R-module M such
that Ann(M) = I. A right (left) primitive ring is any ring in which 0 is a right (left)
primitive ideal, i.e., any ring which has a faithful simple right (left) module.

Definition 1.2.6 ([MR01], page 342). R is a Jacobson ring, if every prime ideal in R
is an intersection of primitive ideals.

We can note that for commutative rings, primitive ideals are equivalent to maximal
ideals (over a commutative ring R, any simple module is isomorphic to R/I for some
maximal ideal I, and Ann(R/I) = I); therefore, in Jacobson ring every prime ideal is
an intersection of maximal ideals. The most important property in commutative algebra
establishes a relation between fields and finitely generated algebras.

Proposition 1.2.7 ([GW10], Proposition 1.7). Let K be a (not necessarily algebraically
closed) field and let A be a finitely generated K-algebra. Then A is Jacobson.

Proposition 1.2.8 ([Irv79a], Proposition 2). If R is a Jacobson ring, so is R[t].

Proposition 1.2.7 can be used to deduce the Hilbert’s Nullstellensatz, and might it
self be considered a version of the Nullstellensatz. We might think, over Proposition
1.2.8, that in a non-commutative ring introduced by Ore [Ore33], if we start from a
Jacobson ring and the extension of this ring results Jacobson ring we could conclude
the Nullstellensatz. Unfortunately, at least in the Ore extensions this result does not
hold. In [Irv79a], [Irv79b] and [PS77] we can see non-commutative extensions of Jacobson
rings which are not necessarily Jacobson. In [NIM14], under suitable conditions, an Ore
extension of a Jacobson ring is also Jacobson. This tells us that to extend the result we
have to consider other notions to conclude the Nullstellensatz.

Proposition 1.1.21 establishes a way to conclude the algebraic version of the Nullstel-
lensatz; we can extend this proposition to state a non-commutative version of the theorem.

Definition 1.2.9 ([Irv79a], page 261). Let R be a commutative ring and A an R-algebra.
We say that A satisfies the (right) strong Nullstellensatz, if for every simple right
A-module M , the annihilator I intersects R in a G-ideal.
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Definition 1.2.10 ([Irv79a], page 262). Let A be an algebra over a field k. Then A satisfies
the Nullstellensatz, if for any simple right A-module M , the division ring EndA(M) is
algebraic over k.

Definition 1.2.10 extends Proposition 1.1.21. Let K be a finitely-generated algebra
over k. Then K is a simple K-module, which equals its own endomorphism ring, and
hence we have the algebraic version of the Hilbert’s Nullstellensatz.

The use of the word “strong” is justified by Proposition 1.2.11.

Proposition 1.2.11 ([Irv79a], Proposition 3). Let A[x] be satisfy the strong Nullstellen-
satz as a k[x]-algebra. Then A satisfies the Nullstellensatz

Proof. Let M be a simple A-module and let φ an A-endomorphism of M . We want to see
that φ is algebraic over k. We can view M as an A[x]-module, with x acting as φ does.
By hypothesis A[x] satisfy the strong Nullstellensatz, i.e. some G-ideal of k[x] annihilates
M . But k[x] is not a G-domain, so every G-ideal of k[x] is maximal. Hence, for some
non-zero polynomial p(x) in k[x], we have Mp(x) = 〈0〉. This implies that p(φ) is the zero
endomorphism, and φ is algebraic over k.

There are many examples of algebras in which the Nullstellensatz holds, and some of
these are finitely-generated PI-algebras, or enveloping algebras of finite-dimensional Lie
algebras. In Chapter 2, we are going to develop some examples of skew PBW extensions
that satisfy Nullstellensatz.

We have a more general version of the Nullstellensatz, even for the non-commutative
case. However, in general, it is not easy to verify. Hence we will develop several tools in
order to make such verification easier. For that we define the notion of generic flatness.

Definition 1.2.12 ([Irv79a], page 263). We say that an algebra A over a commutative
domain R satisfies generic flatness, if for any finitely-generated A-module M , there
exists a non-zero element c in R such that Mc = M ⊗RRc is free over the localization Rc.

In other words, an algebra A satisfies generic flatness over R, if for every simple A-
module M there is c 6= 0 in R such that M [c−1] is free over R[c−1] ([Row88, Definition
2.12.32]).

We identify a relationship between generic flatness and Nullstellensatz. This interac-
tion is presented in [Duf73] and justified in [Irv79a].

Proposition 1.2.13 ([Irv79a], Proposition 4). Let R be a commutative ring and let A be
an R-algebra. Suppose for each prime P of R, the R/P -algebra A/PA satisfies generic
flatness. Then A satisfies the strong Nullstellensatz.

Proof. Let M be a simple A-module. We want to see that the annihilator I intersect R
in a G-ideal. Its annihilator in R is a prime ideal, which we may set equal to {0}. So we
can assume R is a domain over which A satisfies generic flatness, and we must prove that
R is a G-domain.

By hypothesis, there exists an element c ∈ R such that Mc is free over Rc. Since c is
central, it belongs to EndA(M) and must be invertible, so Mc = M . Let {mi | i ∈ I} be
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a basis for M over Rc, r a non-zero element of Rc, and i ∈ I. By Schur’s Lemma, r−1mi

is in M, which means that we can write r−1mi = tmi +
∑

j 6=i tjmj , where ti and mi are
unique elements of Rc. Thus mi = rtmi +

∑
j 6=i rtjmj , and rt = 1, so r−1 = t lies in Rc,

and we can conclude that Rc is a field. This fact proves that R is a G-domain.

Propositions 1.2.11 and 1.2.13 imply the following corollary.

Corollary 1.2.14 ([Irv79a], page 266). Let A be an algebra over the field k, and assume
that A[x] satisfies generic flatness as a k[x]-algebra. Then A satisfies the Nullstellensatz.

Notice that Definition 1.2.12 is a powerful tool to the task of verifying the Nullstellen-
satz. We remark that, up to this moment, the ring is not ask to be Noetherian. However,
when this property holds we can conclude that it is Jacobson.

Proposition 1.2.15 ([Irv79a], Proposition 5). Let R be a commutative Jacobson ring and
A an R-algebra which satisfies the strong Nullstellensatz. Assume that for each maximal
ideal M of R, the algebra A/M [x] satisfies the Nullstellensatz over k = R/M . Then the
Jacobson radical A is nilpotent. In particular if A is Noetherian, then A is a Jacobson
ring.

Proof. Let a be an element in the Jacobson radical of A. We claim that (1−ax)A[x] = A[x].
By contradiction, let I be a maximal right ideal of A[x] containing (1− ax)A[x]. Denote
by N the module A[x]/I, which is simple over A[x]. By assumption, the annihilator of
N intersects R in a maximal ideal M , and the A[x]-endomorphism of N induced by x
is invertible and algebraic over k = R/M . Let φ be this endomorphism, and v ∈ N the
image of 1 under the canonical map of A[x] to M . Then v(1 − ax) = v(1 − aφ) = 0, so
vφ−1 = va. The element φ can be expressed as p(φ−1), for some polynomial p ∈ k[φ], since
φ is algebraic over k = R/M . It follows that vp(φ−1) = vp(a), and so 0 = v(1 − aφ) =
v(1− ap(a)). Since a is in Jacobson ring, the element 1− ap(a) must be invertible, which
is a contradiction. This fact allows us to conclude that (1 − ax)A[x] = A[x]. Therefore,
for some element f(x), we have f(x) = 1 +

∑
i>0 a

ixi, so a must be nilpotent, if this not
the case we could have a sum that never ends.

As we have seen, for verifying the Nullstellensatz it is enough to check the condition
of generic flatness. In the particular case of Ore extension we shall prove that they all
satisfy generic flatness. For that we recall the definition of these extensions.

Definition 1.2.16 ([GW04], page 34). Let A be a ring, σ a ring endomorphism of A, and
δ a σ-derivation on A. We shall write B = A[x;σ, δ] provided

(a) B is a ring, containing A as a subring;

(b) x is an element of B;

(c) B is a free left A-module with basis {1, x, x2, . . .};

(d) xa = σ(a)x+ δ(a) for all a ∈ A.
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Such a ring B is called Ore extension over A (for some authors skew polynomial rings
over A).

We recall that for A a ring, σ : A → A be a ring homomorphism, δ : A → A
is a σ-derivation which means that δ is a homomorphism of abelian groups satisfying
δ(a1a2) = σ(a1)δ(a2) + δ(a1)a2, for every a1, a2 ∈ A.

In general, we begin with an endomorphism σ of A, and a right σ-derivation δ on A.
When we have σ an automorphism, any element of B can be written either as a polynomial
in x with all its coefficients on the left or as a polynomial with all its coefficients on the
right. If A is an algebra over a commutative ring R, we want B to be an R-algebra as
well. This will be the case if σ is an R-automorphism and δ vanished on R.

One of the most important result for Ore extension is the Hilbert’s Basis Theorem
which establishes a sufficient condition for the Noetherian property to extend from the
coefficient ring to all extension.

Proposition 1.2.17 ([GW04], Theorem 2.6 (Hilbert’s basis Theorem)). Let B = A[x;σ, δ],
where σ is an automorphism of A. If A is right (left) Noetherian, then so is B.

We want to extend from the coefficient ring the property of generic flatness to the Ore
extension. We will do it by guarantying that the extension is an algebra.

Proposition 1.2.18 ([Irv79a], Theorem 1). Let R be a commutative domain, and let A
be a right Noetherian R-algebra which satisfies right generic flatness. Let σ be an R−
automorphism of A and δ a σ-derivation such that δ(R) = 0. Then the Ore extension
B = A[x;σ, δ] satisfies right generic flatness.

Proof. We follow the proof presented in [Irv79a]. Due to Lemma 1.2.24 below, it suffices to
prove generic flatness for cyclic modules, so let B/I be a cyclic right B-module, where I is
a right ideal of B. As A-module B can be written as an infinite direct sum: B =

⊕∞
i=0 x

iA
We define a series of right A-submodules

L−1 := 〈0〉, L0 := A, . . . , Lk :=
k∑
i=0

xiA.

Let Ik := I+Lk be the right A-submodule. Then by the isomorphism Theorem and the
modular lay, we can assert that Ik/Ik−1 ∼= Lk + I/Lk−1 + I ∼= Lk +(LK−1 + I)/Lk−1 + I ∼=
Lk/(Lk ∩ (Lk−1 + I)) ∼= Lk/(Lk−1 + (I ∩Lk)). Let us consider I ∩Lk more closely. Every
element has degree at most k, and it can be written with its coefficients on the left, so
that it has the form

∑k
i=0 aix

i.

Let Qk ⊂ A be the set of leading coefficient {ak} of elements in I ∩ Lk. By writing
coefficients on the left, it follows that Qk ⊂ Qk+1. This fact is true because Ix ⊂ I. Also,
each Qk is a right ideal of A. Now, if a ∈ A, and al ∈ Qk, then(

k∑
i=0

aixi

)
σk(a) = akax

k + (lower degree terms),
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so that ama ∈ Qk. By the definition of Qk, we see that Lk−1 + (I ∩ Lk) is equals to
Lk−1 +Qkx

k. Therefore, Ik/Ik−1 is isomorphic as an R-module to

Lk/(Lk−1 +Qkx
k) ∼= (Lk−1 +Axk)/(Lk−1 +Qkx

k).

Other application of isomorphism Theorem shows that the above is isomorphic to
Axk/(Qkxk + (Lk−1 ∩Axk)). This is because

(Lk−1 +Axk)/(Lk−1 +Qkx
k) ∼= (Lk−1 +Axk +Qmx

k)/(Lk−1 +Qkx
k)

∼= Axm/(Axm ∩ (Qkxk + Lk−1))
∼= Axk/(Qkxk + (Lk−1 ∩Axk)),

but Lk−1 ∩Axk = 〈0〉, so we conclude that,

Ik/Ik−1 ∼= Axk/Qkx
k ∼= A/Qk (R-modules).

The ascending chain of right ideal {Qk} must become stationary at some integer n, since
A is right Noetherian. For each 1 ≤ n, by assumption of generic flatness on A, there
exist fi in R such that (A/Qi)fi

is free over Rfi
. Let f =

∏
fi. Then every Rf -module

(Ik/Ik−1)f ∼= (A/Qk)f is free, and so (B/I)f is free over Rf .

We can iterate the construction of Ore extension (or skew polynomial ring) with the
aim of obtaining a iterated Ore extension (or iterated skew polynomial ring) of the form
A[x1;σ1, δ1] · · · [xn;σn, δn]. Notice that σi and δi must be defined as

σi, δi : A[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1]→ A[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1].

But we can impose some conditions because this construction can be difficult if we
restrict when δ is an automorphism; the conditions are the following:

σi(xj) = xj , j < i,

δi(xj) = 0, j < i,

σiσ1 = σ1σi, 1 ≤ i ≤ n,
δiδ1 = δ1δi, 1 ≤ i ≤ n,

when the two last relations are understood to be restricted to A.

Proposition 1.2.17 can be extended to an iterated Ore extensions with the aim of
determining if this extensions are right (left) Noetherian.

Proposition 1.2.19 ([GW04], Corollary 2.7). Let B = A[x1;σ1, δ1] · · · [xn;σn, δn] be a it-
erated Ore extension, where each σi is an automorphism of the ring
A[x1;σ1, δ1] · · · [xi−1;σi−1, δi−1]. If A is right (left) Noetherian, then so is B.

We saw in Proposition 1.2.18 that, under the condition of the Ore extension A being an
R-algebra, the extension satisfy the condition of generic flatness. The next result extends
this scenario to iterated Ore extensions.
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Corollary 1.2.20 ([Irv79a], page 270). Let R be a commutative Noetherian domain and
A an R-algebra obtained from R by a finite sequence of Ore extensions, each of which
preserves the R-algebra structure. Then A satisfies generic flatness.

Proof. This follows from the Theorem 1.2.18 by induction on the number of extensions re-
quired to obtain A, since we have σ an automorphism and an Ore extension of a Noetherian
ring is Noetherian by Proposition 1.2.19.

Proposition 1.2.21 ([Irv79a], Theorem 2). Let A be a finitely iterated Ore extension of
the commutative Noetherian Jacobson ring R (resp., field k), which preserves the algebra
structure. Then A satisfies the strong Nullstellensatz (resp., Nullstellensatz), and A is a
Jacobson ring.

Proof. If A is an R-algebra, Corollary 1.2.20 insures that Proposition 1.2.13 holds, so A
satisfies the strong Nullstellensatz.

On the other hand, when A is an algebra over the field k, the ring A[t] can be viewed
as an iterated ore extension of k[t]. The Corollary 1.2.20 now insures that the hypotheses
of Proposition 1.2.13 and its Corollary keep, so that a satisfies the Nullstellensatz.

In either case, we can apply Proposition 1.2.15, since A[t] is an iterated Ore extension
of R or k. So A/M [x] is an iterated Ore extension of R/M , and satisfies the Nullstellensatz
by the first part of this Corollary 1.2.20.

Since generic flatness and the strong Nullstellensatz are satisfied by several impor-
tant families of finitely-generated Noetherian algebras, one might hope that all finitely-
generated Noetherian algebras satisfy these properties. However, this is not the case, as
we can appreciated in [Irv79a] and [Irv79b].

Remark 1.2.22 ([Irv79a], page 272). Let R = Z[1
2 , y, y

−1] and let T be the multiplica-
tively closed subset generated by the set of elements {y + 2n | n ∈ Z}, and let S = RT be
the corresponding localization. The ring S is a commutative, Noetherian, Jacobson, with
an automorphism σ defined by σ(y) = y + 2.

We now construct the associated twisted group ring A = S[x, x−1;σ], which consists
of polynomials in x and x−1 satisfying the relation x−1yx = y + 2 and more generally,
x−nyxn = y + 2n and x−ny−1xn = (y + 2n)−1.

The ring A is a finitely-generated, Noetherian, Jacobson Z-algebra which is a primitive
ring. Hence A does not satisfy the strong Nullstellensatz or generic flatness.

A is finitely generated by 1
2 , y, y

−1, x and x−1. Also A can be viewed as a factor ring
of an iterated Ore extension of S by two automorphisms, σ and σ−1. This implies that A
is Noetherian, now, due to [GM74, Theorem (1.11)] we can conclude that A is a Jacobson
ring. Notice however that A is not a finitely- iterated Ore extension of Z, and that A is
an iterated Ore extension of S without S-structure. Then Theorem 1.2.18 and 1.2.21 does
not apply.
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We prove primitivity by constructing an explicit faithful, simple module. Let V be the
Q-vector space with basis {vn | n ∈ Z}. We make V an A-module as follows: xvn = vn+1,
x−1vn = vn−1 and yvn = (2n+ 1)vn, and y−1vn = (2n+ 1)−1vn. This is well-defined, since
2n+ 1 can never be zero, and the relation x−1yx = y + 2 we can see because x−1yxvn =
x−1yvn+1 = x−1(2n+ 3)vn+1 = (2n+ 3)vn = (2n+ 1)vn + 2vn = yvn + 2vn = (y + 2)vn.

The module V is faithful, for see this suppose a ∈ A annihilates V and we must
conclude that a = 0. We can write a =

∑
i six

i, for si ∈ S. Then avn =
∑

i six
ivn =∑

i sivn+i, so each si must also annihilates V . But then, multiplying si by an element in
the set {2l} ∪ T, with l ≥ 1, we can assume some f(y) of Z[y] annihilates V . This mean
0 = f(y)vn = f(2n+ 1)vn, so f vanishes on the set {2n+ 1 | n ∈ Z}. Therefore f = 0 and
we can conclude that a = 0.

To prove simplicity, let v =
∑n

i=m civi be a non-zero vector. Suppose m 6= n and
cm, cn 6= 0. Then yv =

∑n
i=m ci(2i+ 1)vi, and yv− (2m+ 1)v =

∑n
i=m 2ci(i−m)vi, So Av

contains a vector with fewer non-zero coefficient. Continuing this process, we find that
Av contains a vector of the form cvn, with c ∈ Q. If we can show that Av contains Qvn,
we will be done, for then the action of x allows us to conclude that Av = V . But observe
that (x−iy−1xi)vn = (2(n+ i) + 1)−1vn, and as i varies, we obtain multiples of vn by the
inverse of all odd primes. Since A already contains 1

2 , we see that Av does contain Qvn.

Until now we have seen that an Ore extension which comes from a Jacobson ring is not
necessarily a Jacobson ring [NIM14]. We can find examples of finitely generated Jacobson
Noetherian Ore extensions (also been algebras) which does not satisfy the Nullstellen-
satz or generic flatness condition. For this reason we still need to develop new tools for
verification purposes of the Hilbert’s Nullstellensatz.

1.2.2 Filtration-graduation technique

Another approach to the Hilbert’s Nullstellensatz in the non-commutative case is given
in [MR88], which gives an extended version of generic flatness to see how the theorem is
satisfied in certain non-commutative affine algebras over a field.

In [MR88, page 227] we can note that for certain non-commutative affine algebras R
over a field k, if the following properties hold:

(i) (Endomorphism property) For each simple right R-module M, End(M) is algebraic
over k.

(ii) (Radical property) The Jacobson radical of each factor ring of R is nilpotent.

It is said that R satisfies the Nullstellensatz over k.

Next, we recall the definition of generic flatness given in [MR88] over a commutative
integral domain D (compare with Definition 1.2.12).

Definition 1.2.23 ([MR88], Definition 1). We say that a D-algebra R is generically
flat over D, if for each finitely generated MR, there exists 0 6= d ∈ D such that Md is free
over Dd.
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In practice, it is sufficient to check the Definition 1.2.23 for each cyclic module as we
will see in the following result.

Lemma 1.2.24 ([MR01], page 349). Let R be a K-algebra over a integral domain K. If,
for each cyclic module NR there exist 0 6= f ∈ K such that Nf is free over Kf , then R is
generically flat over K.

Proof. SupposeMR =
∑n

i=1miR.We are going to use induction on n. When n = 1 we are
done. We can, therefore, assume the existence of 0 6= v, w ∈ K such that (m1R)v is free
over Kv and (M/m1R)w is free over Kw. Let f = vw; the both (m1R)f and (M/m1R)f
are free over Kf . Hence the short exact sequence

0 // (m1R)f //Mf
// (M/m1R)f // 0

splits and Mf is free over Kf .

There is a well-know connection between the Definition 1.2.23 and the Nullstellensatz
as we can see in [Duf73], or Proposition 1.2.13 and Corollary 1.2.14.

Lemma 1.2.25 ([MR88], Lemma 2). Let R be a k-algebra and x be a central indetermi-
nate. If R[x] is generically flat over k[x] then R has the endomorphism property.

Proof. We follow the proof given in [MR88]. Let MR be a simple module and assume that
End(M) is algebraic over k. Then there is an embedding k[x] ↪→ End(M). By hypothesis,
Md is free over k[x]d for some d ∈ k[x] non-zero. Thus, if A is proper nonzero ideal of
k[x]d then AMd is a proper nonzero submodule of Md. However since k[x] ↪→ End(M)
then k(x) ↪→ End(M) and also Md = M . It follows that k[x]d must be a field, which is a
contradiction.

Next we note a link with radical property given for the Lemma.

Lemma 1.2.26 ([MR88], Lemma 3). If R is a k-algebra, x is a central indeterminate and
R[x] has the endomorphism property then R satisfies the Nullstellensatz.

Throughout this chapter we have tried to explain how a algebraic structure satisfy the
Hilbert’s Nullstellensatz. In the following we are going to concentrate our attention on
the endomorphism property (Nullstellensatz) and on the generic flatness notion.

Corollary 1.2.27 ([MR88], Corollary 4). If R is a k-algebra such that R[x, y] is generically
flat over k[y] then R satisfies the Nullstellensatz.

With this in mind we now extend Definition 1.2.23.

Definition 1.2.28 ([MR88], Definition 5). A D-algebra R is (N,N)-generically flat over
D, if R[x1, . . . , xn, y1, . . . , ym] is generically flat over D[y1, . . . , ym] for all n,m ∈ N.

We are going to see a sequence of results for the existence of a large class of such
algebras.



CHAPTER 1. THE HILBERT’S NULLSTELLENSATZ 18

Lemma 1.2.29 ([MR88], Lemma 6). Let R ⊆ S be D-algebras and let R be (N,N)-
generically flat over D. Suppose that either one of the following conditions holds:

(i) S is a finite extension of R (i.e. S is finitely generated as a right R-module);

(ii) S is generated over R by an element z such that zR = Rz.

Then S is (N,N)-generically flat over D.

Proof. Let us see the two cases.

(i) The fact that S[x1, . . . , xn, y1, . . . , ym] is a finitely generated R[x1, . . . , xn,
y1, . . . , ym]-module shows that it is enough to prove that S is generically flat over D.
However, any finitely generated right S-module is also finitely generated as a right
R-module.

(ii) Once again it is enough to show that S is generically flat over D, so we consider, for
lemma 1.2.24, a cyclic S-module M , say M ∼= S/I, with I a right ideal of S. If one
defines, for each n

In = {r ∈ R | rzn ∈ zn−1R+ · · ·+ zR+R+ I},

then one obtains a chain of R-modules

0 = M0 ⊆M1 ⊆ · · · ⊆Mn ⊆ · · · ⊆M =
⋃
Mn

in which Mn =
(
I +

∑n−1
i=0 Rz

i
)
/I and Mn+1/Mn

∼= R/In as a D-module. Now, let
N = R[x]/

∑
xnIn where x is a central indeterminate. N is a cyclic R[x]-module

and so, by hypothesis, Nd is free over Dd for some 0 6= d ∈ D (in this point the
condition (N,N)-generic flatness is needed). It follows that each Dd-direct summand
(R/In)d of Nd is projective and hence Md splits; Md

∼= ⊕(R/In)d ∼= Nd. Thus Md is
free.

Next, we define graded and filtered rings with the aim of characterizing the generic
flatness property and so the Nullstellensatz in several non-commutative structures.

Definition 1.2.30 ([AM69], page 106). A graded ring is a ring A with a family {Ap}p≥0
of subgroups of the additive group of A, such that

(i) ApAq ⊆ Ap+q, for all p, q ≥ 0.

(ii) A =
∞⊕
p=0

Ap.

The family {Ap}p≥0 is called a grading of A.
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We have that A0 is a subring of A, and each Ap is an A0-module.

Definition 1.2.31 ([MR01], Definition 1.6.1). A filtered ring is a ring A with a family
{Fp(A)}p≥0 of subgroups of the additive group of A such that

(i) Fp(A)Fq(A) ⊆ Fp+q(A), for all p, q ≥ 0.

(ii) A =
⋃∞
p=0 Fp(A).

(iii) Fp(A) ⊂ Fq(A), for p < q.

(iv) 1 ∈ F0(A) .

The family {Fp(A)}p≥0 is called a filtration of A.

The notion of filtered and graded ring have several important properties. Some of
them will be described throughout this chapter.

Proposition 1.2.32 ([MR01], page 26). Every graded ring is a filtered ring.

Proof. Let A be a ring with graduation {Ap}p≥0. A is a filtered ring with filtration
{Fp(A)}p≥0, where Fp(A) :=

⊕p
n=0An. We can note that this definition is a filtration: we

have that Fp(A)Fq(A) =
⊕p

n=0An
⊕q

n=0An ⊆
⊕p+q

n=0An = Fp+q(A);
⋃∞
p=0 =

⊕∞
p=0Ap =

A; Fp(A) =
⊕p

n=0An ⊆
⊕q

n=0An = Fq(A), if p < q and 1 ∈ F0(A).

Proposition 1.2.33 ([MR01], Page 26). If A is a filtered ring, then there is a graded ring
Gr(A) associated to A.

Proof. Given a filtered ring A, first we clarify that we could consider several graduation
associated to the ring A. We are going to describe one (different from the trivial). So
that, let {Fp}p∈Z the filtration of A. Due to Fp are subgroups of the abelian group R+,
we can consider Gri(A) = Fi(A)/Fi−1(A), with i ∈ I. Let us check that we can defined
the ring Gr(A) =

⊕
i∈Z Gr(A)i1, whose multiplication for a = a + Gr(A)p−1 ∈ Gr(A)p,

with a ∈ Fp(A) and b = b + Gr(A)q−1 ∈ Gr(A)q, with a ∈ Fq(A) is given by (a +
Gr(A)p−1)(b + Gr(A)q−1) = ab + aGr(A)q−1 + Gr(A)p−1b + Gr(A)p−1Gr(A)q−1 = ab +
Gr(A)p+q−1. This multiplication is well defined: take a, a′ ∈ Gr(A)p and b, b′ ∈ Gr(A)q,
such that a, a′ ∈ Fp(A) and b, b′ ∈ Fq(A) then we have that a − a′ = 0 and a − a′ = 0,
that is to say a − a′ ∈ Fp−1(A) and b − b′ ∈ Fq−1(A). By hypothesis we have that
(a − a′)(b − b′) = ab − ab′ − a′b + a′b′ ∈ Fp+q−2(A) ⊆ Fp+q−1(A). Due to ab − ab′ −
a′b+ a′b′ = ab+ (−a′b′ + a′b′)− ab′ − a′b+ a′b′ = (ab− a′b′) + (a′ − a)b′ + a′(b′ − b) and
(a′ − a)b′, a′(b′ − b) ∈ Fp+q−1, then ab − a′b′ ∈ Fp+q−1. Therefore ab = a′b′ in Gr(A)p+q.
According to the defined multiplication the first condition Gr(A)pGr(A)q ⊆ Gr(A)p+q
holds. Therefore Gr(A) is a graded ring with graduation {Gr(A)p}p∈Z.

Corollary 1.2.34 ([Lez19b], Corollary 2.2.5 ). Let A be a graded ring. Then Gr(A) ∼= A.
1⊕

i∈Z Gr(A)i
∼=

∑
i∈Z ⊕Gr′(A)i, if we consider Gr′(A)i = (· · · , 0, · · · , Gr(A)i, · · · , 0, · · · ), with Gr(A)i

in the i-th entry.
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Proof. Let A be a graded ring with grading {Ap}p∈Z. Due to the Proposition 1.2.32 we
have {Fp(A)}p∈Z, with Fp(A) :=

⊕
n≤pAp a filtration of A. Then the associated graded

Gr(A)p =
⊕

n≤pAp/
⊕

n−1≤pAp
∼= Ap and Gr(A) :=

⊕
p∈Z Gr(A)p ∼=

⊕
p∈ZAp = A.

Example 1.2.35. Several examples of graded and filtered rings are the following:

1. Let P = K[x1, . . . , xn] be the polynomial ring with n-variables. Then consider the
group Pm which is generated by {xα = xα1

1 · · ·xαn
n |

∑n
i=1 αi = m} as K-module.

{Pm}m∈N is a positive graduation of P.

2. Let S = A[x, σ] be an Ore extension of endomorphism type. It admits a positive
graduation according to the degree of the polynomials, so that Sp = {axp | a ∈ A},
for p ∈ N is a positive graduation of S.

3. Let S = A[x;σ, δ] be an Ore extension over A. Then A is a filtered ring with positive
filtration {Fp(A)} defined as Fp(A) = {f ∈ A | deg(f) ≤ p} ∪ {0}.

Proposition 1.2.36 ([MR01], Page 27). Let A be a N-filtered ring with filtration {Fi(A)}i∈N.
If Gr(A) is a domain, then A is a domain.

Proposition 1.2.37 ([MR01], Theorem 6.9). Let A be a N-filtered ring with filtration
{Fi(A)}i∈N. If Gr(A) is right (left) Noetherian, then A is right (left) Noetherian.

Finally we have that the associated graded ring of an Ore extension with coefficients
in a ring A is well determined by an Ore extension of endomorphism type

Proposition 1.2.38 ([MR01], Page 29). Let S = A[x;σ, δ] be an Ore extension over A.
Then Gr(S) ∼= A[x;σ].

The following result establishes that the (N,N)-generically flat inherits from the asso-
ciated graded ring.

Lemma 1.2.39 ([MR88], Lemma 7). Let S be a filtered D-algebra with D ⊆ S0 and
suppose that the associated graded ring Gr(S) is (N,N)-generically flat over D. Then so
too is S.

Proof. It is sufficient to show that S is generically flat. If M is a finitely generated right
S-module, it can be filtered so that Gr(M) is finitely generated over Gr(S). Therefore
(Gr(M))d is free over Dd for some d, and so, arguing as in Lemma 1.2.29 (ii), Md

∼=
(Gr(M))d and thus is free.

In [MR88] it was shown that a kind of special extensions are (N,N)-generically flat and
so they satisfy the Nullstellensatz.

Definition 1.2.40 ([MR88], Definition 8). Let R, S be k-algebras with R ⊂ S. Then S is
an almost normalizing extension (also almost commutative algebra) of R, if the
following conditions hold:

(i) S is generated over R by a finite set of elements {x1, . . . , xn};
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(ii) xiR+R = Rxi +R;

(iii) xixj − xjxi ∈
∑n

k=1Rxk +R.

Lemma 1.2.41 ([MR88], Lemma 9). If R is (N,N)-generically flat over D and S is an
almost normalizing extension of R then S is (N,N)-generically flat over D.

Proof. We filter S by “degree” in the xi’s, i.e., we set Sn =
∑
Rw where w ranges over

all words of length at most n in the xi. The associated graded ring Gr(S) is generated by
R and the images of the xi and so is obtainable from R by a finite number of extensions,
as covered by Lemma 1.2.29 (ii). Therefore Gr(S), and hence S, is (N,N)-generically flat
over D.

An example of the existence of (N,N)-generic flatness is given in Lemma 1.2.42.

Lemma 1.2.42 ([MR88], Lemma 10). D is (N,N)-generically flat over D.

Proof. Initially, we are going to show that R = D[x1, . . . , xn] is generically flat over D.
Let W be the semigroup of all words in x1, . . . , xn and order W first by total degree and,
subject to that, lexicographically. Suppose that M ∼= R/I with I a right ideal of R and
for each w ∈W , let

I(w) := {d ∈ D | dw ∈
∑
v<w

Dv + I}.

Note that if v divides w then I(v) ⊆ I(w). One can show that any subset S of W has
finite elements which are not divisible within S. We let S := {w ∈ W | I(w) 6= 0} and
let w1, . . . , wt be its nondivisible elements. We choose 0 6= d ∈ I(w1) ∩ · · · ∩ I(wt). Then
(D/I(w))d is free over Dd for all w ∈ W . One can now argue, as in Lemma 1.2.29 (ii),
that Md

∼=
⊕

(D/I(w))d. Thus Md is free.

Definition 1.2.43 ([MR88], Definition 11). A K-algebra S is called constructible, if it
can be obtained from K via a finite number of iterations of finite extensions and almost
normalizing extensions.

Proposition 1.2.44 ([MR88], Theorem 12). (i) Any constructible D-algebra is
(N,N)-generically flat over D.

(ii) Any constructible k-algebra satisfies the Nullstellensatz.

Proof. (i) This combines Lemmas 1.2.29, 1.2.41 and 1.2.42

(ii) This follows from (i) and Corollary 1.2.27

Corollary 1.2.45 ([MR88], Corollary 12). Let S be a constructible K-algebra, M a simple
S-module and P a prime ideal of S.

(i) If k is the field of fractions of K/P ∩K, then S/P ⊗K k is a constructible k-algebra,
and J(S/P ⊗K k) = 0.
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(ii) If P = AnnS(M) then End(M) is algebraic, indeed finite dimensional over k.

Proof. (i) It is clear that S/P ⊗K k is constructible over k. Moreover it is prime (since
it is a localization with respect to an Ore set) and Noetherian, and hence it has no
nonzero nil ideals.

(ii) The embedding K/p ∩ K ↪→ End(M) extends to an embedding k ↪→ End(M). It
follows that M is also a simple module over S/P ⊗ k and so its endomorphism ring
over S/P ⊗ k is algebraic over k. However End(MS) ↪→ End(MS/P⊗k) (in fact they
are isomorphic). The finite dimension follows.

As we saw in Section 1.1, a Jacobson ring is a ring S such that J(S/P ) = 0, for all
prime ideal P . This fact implies that the Jacobson radical of each factor ring of S is nil.

Proposition 1.2.46 ([MR88], Theorem 14.). Let S be a constructible K-algebra with K
a Jacobson ring, and let M be a simple right S-module. Then

(i) S is a Jacobson ring; and

(ii) K/AnnKM is a field over which End(MS) is finite dimensional.

Following [McC82] we have k a commutative field and K commutative ring. Let A be a
finitely generated commutative polynomial algebra over k. Then the following statements
are equivalent:

(i) the algebra A satisfies the Hilbert Nullstellensatz;

(ii) each prime ideal of A is an intersection of primitive ideals;

(iii) if M is a simple A-module, the division ring EndA(M) is algebraic over k.

The second statement, as we could see in Definition 1.2.6, is the definition of Jacobson
ring. The third statement for Definition 1.2.10 is our definition of Nullstellensatz. Other
perspective in [McC82] is the maximal Nullstellensatz that tells us that an algebra A
over K satisfies the maximal Nullstellensatz over K, if for all simple left A-modules M ,
AnnK(M) is a maximal ideal of K and A/AnnAM satisfies the Nullstellensatz over the
field K/AnnK(M) (thus when K is a field the maximal Nullstellensatz coincides with the
Nullstellensatz like the definition 1.2.10).

In [McC82] we find some examples of almost normalizing extension like B an Ore
extension of A, B = A[x;σ, δ], where σ is an automorphism of A, B a skew Laurent
extension B = A[x, x−1;σ] where σ is an automorphism of A.

1.2.3 Flatness, freeness and projective

In [Irv79a] and [MR88] the definition of generically flat and generically free are used as
the same. However, the two notions are not equivalent (recall that every free module is
flat but the converse is not true).
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From now on we will follow [ASZ99]. We say that an R-module M is generically
flat over a domain R if there is a simple localization Rs such that Ms = M ⊗RRs
is flat over Rs. Generically projective and generically free modules are defined similarly.

A technique to verify that the modules over a fixed ring are generically free is to check
that all the associated graded modules are generically projective.

Proposition 1.2.47 ([ASZ99], Proposition 3.8). Let R be a commutative domain and
let A =

⋃
Fn be an N-filtered R-algebra. If every finite graded right Gr(A)-module is

generically projective over R, then every finite right A-module is generically free over R.

Proof. We follow the proof presented in [ASZ99]. LetM be a finite right A-module. Since
M is finite, there is a finite R-submodule N ⊂ M such that M = NA. Let Ln = NFn.
Thus Gr(M) :=

⊕
n Ln/Ln−1 is a finite graded Gr(A)-module. By hypothesis, there is an

0 6= f ∈ R such that Gr(M)f is projective over Rf . Hence every (Ln/Ln−1)f is projective.
Therefore

Mf =
⋃
n

(Ln)f ≈
⊕
n

(Ln/Ln−1)f ,

which it is projective over Rf . By Bass’s theorem that asserts that an infinitely gener-
ated projective module over a commutative domain is free, we can conclude thatM is free
if it is an infinitely generated R-module, andM is generically free if it is finitely generated.
Thus M is generically free in every case.

We recall the results of the previous subsections in the following lemma, in which, part
(i) is explicitly in Lemma 1.2.25 and the part (ii) is a special case of Proposition 1.2.15.

Lemma 1.2.48 ([ASZ99], Lemma 3.9). Let A be a right Noetherian algebra over a field
k.

(i) If every simple right A[t]-module is generically free over k[t], then A satisfies the
Nullstellensatz.

(ii) If A[t] satisfies the Nullstellensatz, then A is a Jacobson algebra.

The next result establishes some conditions in which the modules of an Ore extensions
are generically free, provided that all the modules over the coefficient ring are all generically
free as well.

Proposition 1.2.49 ([ASZ99], Theorem 3.10). Let R be a commutative domain. Let A
be a right Noetherian R-algebra such that every finite right A-module is generically free
over R. Let A[x;σ, δ] be an Ore extension for an R-linear automorphism σ and a R-linear
σ-derivation δ. Then every finite right A[x;σ, δ]-module is generically free over R.

Proof. We follow the proof in [ASZ99]. The Ore extension A[x;σ, δ] is an N-filtered R-
algebra and its associated graded ring is A[x;σ] with deg x = 1. By Proposition 1.2.47 it
suffices to prove that every finite graded right A[x;σ]-module M is generically projective
over R. The automorphism σ of A can be extended to an automorphism of A[x;σ] by
σ(x) = x. The σ-twisted module Mσ is M as an R-module with right multiplication
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defined by m · a = mσ(a), for all m ∈ M and a ∈ A[x;σ]. Consider the A[x;σ]-linear
map Mσ[−1] → M defined by multiplication by x. The kernel and cokernel of this map
are finitely generated graded modules on which x acts trivially, so they are finite graded
right A-modules. They are zero except in finitely many degrees, and for large degree, say
n > n0, the linear map Mn−1 → Mn is bijective. To make M free over R, it suffices to
make Mi free for i ≤ n0. Since each Mi is a finite A- module, it is generically free by
hypothesis, so this can be done.

In order to state a result that helps us to describe the Hilbert’s Nullstellensatz, let
us remind that an N-graded R-algebra A =

⊕∞
i=0Ai is called locally finite, if each

homogeneous component Ai is a finite R-module for every i.

Example 1.2.50. Several examples of locally finite N-graded R-algebras are the following.

1. Let A = k[x] with k a field. We can do a N-graduation as follows:

A = k ⊕ kx⊕ kx2 ⊕ · · · ⊕ kxn ⊕ · · · ,

when Ai = kxi and Ao = k, we have that A is a k-algebra. We can note that every
Ai is finite dimensional k.

2. We extend the previous example with A = k[x1 . . . , xn].We consider a N-graduation
given by

A = k ⊕ kx1 + · · ·+ kxn ⊕ kx2
1 + · · ·+ kx2

n ⊕ · · · ⊕ kxn1 + · · ·+ kxnn ⊕ · · · ,

when Ai = kxi1 + · · ·+ kxin and Ao = k. We have that A is a k-algebra and every Ai
is finite dimensional.

A Dedekind domain is an integral domain in which every non-zero ideal is uniquely
represented as the product of a finite number of prime ideals ([Mat89], page 284). A
consequence of this definition is that every principal ideal domain (PID) is a Dedekind
domain.

Proposition 1.2.51 ([ASZ99], Theorem 0.4). Let A be an N-filtered algebra over a field k,
whose associated graded ring is locally finite and right Noetherian. Then A is a Jacobson
algebra which satisfies the Nullstellensatz.

Proof. We follow the proof in [ASZ99]. Let B be an algebra over k[t]. Since k[t] is a
Dedekind domain, every Noetherian right B-module is generically flat over k[t]. If B is also
graded, then every right Noetherian, locally finite, graded right B-module is generically
projective and hence generically free, over k[t]. Together with Proposition 1.2.47, these
remarks show that if A is a right Noetherian N-filtered k-algebra, then every finite right
A[t]-module is generically free over k[t]. By Proposition 1.2.49 every finite right A[x][t]-
module is generically free over k[t]. Lemma 1.2.48 (i) guarantees that A[x] satisfies the
Nullstellensatz and so for Lemma 1.2.48 (ii) we have that A is a Jacobson algebra.



CHAPTER 2

The Hilbert’s Nullstellensatz over skew PBW
extensions

In Chapter 1 we appreciated several treatments with the aim of formulating a non-
commutative version of the Hilbert’s Nullstellensatz. Now, we will see the definition of
skew PBW extensions introduced in [GL11] and several of their properties with the goal of
formulating the Hilbert’s Nullstellensatz for these extensions. In Section 2.3 we are going
to see several examples of skew PBW extensions for which the result holds.

2.1 Definition and properties

Skew PBW extensions were defined in [GL11] as a generalization of the PBW (Poincaré-
Birkhoff-Witt) extension introduced in [BG88], as an alternative technique for studying a
very wide class of non-commutative rings of polynomial type. Let us remind the definition
of the classical PBW extensions.

Definition 2.1.1 ([BG88], page 27). Let R and A be rings. It is said that A is a Poincaré-
Birkhoff-Witt (PBW, for short) extension of R, if the following conditions hold:

(i) R ⊆ A;

(ii) There exist elements x1, . . . , xn ∈ A such that A is a left free R-module, with basis
the basic elements Mon(A) := {xα = xα1

1 · · ·xαn
n | α = (α1, . . . , αn) ∈ Nn}(x0 := 1);

(iii) xir − rxi ∈ R, for each r ∈ R and 1 ≤ i ≤ n;

(iv) xjxi − xixj ∈ R+Rx1 + · · ·+Rxn, for any 1 ≤ i, j ≤ n.

In this situation, we write A = R〈x1, . . . , xn〉.

The following are examples of PBW extensions: the enveloping algebra of any finite-
dimensional Lie algebra; any Weyl algebra An(R); any differential operator ring
R[x1, . . . , xn; δ1, . . . , δn] formed from commuting derivations δ1, . . . , δn on R; the twisted
or smash product differential operator ring, among others (see [BG88]).

25



CHAPTER 2. THE HILBERT’S NULLSTELLENSATZ OVER SKEW PBW EXTENSIONS 26

Definition 2.1.2 ([GL11], Definition 1). We say that A is a skew PBW extension of
R (also called σ-PBW extension of R), which is denoted by A := σ(R)〈x1, . . . , xn〉, if
the following conditions hold:

(i) R ⊆ A;

(ii) There exist elements x1, . . . , xn ∈ A such that A is a left free R-module, with basis
the basic elements Mon(A) := {xα = xα1

1 · · ·xαn
n | α = (α1, . . . , αn) ∈ Nn}(x0 := 1);

(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exist an element ci,r ∈ R \ {0} such
that xir − ci,rxi ∈ R;

(iv) For any elements xi, xj with 1 ≤ i, j ≤ n, there exists ci,j ∈ R \ {0} such that
xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn.

Skew PBW extensions have several ring-theoretical and homological properties (see
[LSR17], [RS17a], [NR17], [RJ18]). Let us remind some them.

Proposition 2.1.3 ([GL11], Proposition 3). Let A a skew PBW extension of R. Then,
for every 1 ≤ i ≤ n, there exist an injective ring endomorphism σi : R → R and a
σi-derivation δi : R→ R such that xir = σi(r)xi + δi(r), for each r ∈ R.

Proof. For every 1 ≤ i ≤ n and each r ∈ R we have elements ci,r, ri ∈ R such that
xir = ci,rxi + ri; since Mon(A) is a R-basis of A ci,r and ri are unique for r, so we define
σi, δi : R → R by σi(r) = ci,r, δi(r) = ri. We can check that σi is a ring endomorphism
and δi is a σi-derivation of R, for r, s ∈ R we have that

xi(r + s) = σi(r + s)xi + δi(r + s)
xir + xis = σi(r)xi + δi(r) + σi(s)xi + δ(s)

= (σi(r) + σi(s))xi + δi(r) + δi(r),

so we have that σi(r + s) = σi(r) + σi(s) and δ(r + s) = δi(r) + δi(r), and

xi(rs) = σi(rs)xi + δi(rs)
(xir)s = (σi(r)xi + δi(r))s

= σi(r)xis+ δi(r)s
= σi(r)(σi(s)xi + δi(s)) + δi(r)s
= σi(r)σi(s)xi + σi(r)δi(s) + δi(r)s,

we have σi(rs) = σi(r)σi(s) and δi(rs) = σi(r)δi(s) + δi(r)s (this is de condition of σi-
derivation), we can note also that xi = xi1 = σi(1)xi + δi(1), so σi(1) = 1 and δi(1) =
0. Moreover, by the Definition 2.1.2 (iii), ci,r 6= 0 for r 6= 0. This means that σi is
injective.

Definition 2.1.4 ([GL11], Definition 4). Let A be a skew PBW extension.

(a) A is quasi-commutative if the conditions (iii) and (iv) in the Definition 2.1.2 are
replaced by the following:
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(iii’) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element ci,r ∈ R \ {0}
such that xir = ci,rxi.

(iv’) For any elements xi, xj with 1 ≤ i, j ≤ n, there exists an element ci,j ∈ R \ {0}
such that xjxi = ci,jxixj .

(b) A is bijective, if σi is bijective for every 1 ≤ i ≤ n and ci,j is invertible for any
1 ≤ i, j ≤ n.

Skew PBW extensions are filtered rings, as the following proposition shows.

Proposition 2.1.5 ([LR14], Theorem 2.2). Let A be an arbitrary skew PBW extension
of R. Then, A is a filtered ring with filtration given by

Fm :=
{
R, if m = 0
{f ∈ A | deg(f) ≤ m}, if m ≥ 1.

and the corresponding graded ring Gr(A) is a quasi-commutative skew PBW extension of
R. Moreover, if A is bijective, then Gr(A) is a quasi-commutative bijective skew PBW
extension of R.

Proposition 2.1.5 gives us a information over associated graded of a skew PBW ex-
tension (we obtain a quasi-commutative skew PBW extension). Moreover, we can give a
characterization of quasi-commutative skew PBW extension.

Proposition 2.1.6 ([LR14], Theorem 2.3). Let A be a quasi-commutative skew PBW
extension of a ring R.

(i) A is isomorphic to an iterated skew polynomial ring of endomorphism type.

(ii) If A is bijective, then each endomorphism is bijective.

Proposition 2.1.7 ([LR14], Corollary 2.4. Hilbert Basis Theorem). Let A be a bijective
skew PBW extension of R. If R is a left Noetherian ring, then A is also a left Noetherian
ring.

Proof. According to Proposition 2.1.5, Gr(A) is a quasi-commutative skew PBW exten-
sion, and by the hypothesis, Gr(A) is also bijective. By Proposition 2.1.6, Gr(A) is isomor-
phic to an iterated skew polynomial ring R[z1;σ1] · · · [zn;σn] such that each σi is bijective,
1 ≤ i ≤ n. This implies that Gr(A) is a left Noetherian ring, and hence, A is left Noethe-
rian.

The following are examples of skew PBW extension: classical polynomial rings, skew
polynomial rings of derivation type, Weyl algebra, universal enveloping algebra of a finite
dimensional Lie algebra, Woronowicz algebra, q-Heisenberg algebra, additive analogue of
the Weyl algebra, multiplicative analogue of the Weyl algebra. For some of these examples
we know that the Hilbert’s Nullstellensatz holds (see [Irv79a] and [MR88]). The idea is to
find the conditions to guarantee the result over general skew PBW extensions.
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2.2 Nullstellensatz over skew PBW extensions

We identify several conditions that we should expect skew PBW extensions satisfy in
order to the Hilbert’s Nullstellensatz to be valid over them. In this section, we shall
review some preliminaries properties and enunciate the Hilbert’s Nullstellensatz for skew
PBW extensions.

Recall from Definition 1.2.10 that a k-algebra A satisfies the Nullstellensatz, if for any
simple right A-module M , the division ring EndA(M) is algebraic over k. This will be
our standard version of Hilbert’s Nullstellensatz that the following result extends for skew
PBW extensions.

Proposition 2.2.1. Let R be a commutative domain. Let B be a right Noetherian R-
algebra such that every finite right B-module is generically free over R. Let A be a skew
PBW extension of B for an R-linear automorphism σi and a R-linear σi-derivation δi,
for 1 ≤ i ≤ n Then every finite right A-module is generically free over R.

Proof. Let A be a skew PBW extension of B, with B a right Noetherian R-algebra such
that every finite right B-module is generically free over R. We have by Proposition 2.1.5
that A is isomorphic to B[z1; θ1] · · · [zn; θn], and we have that θi is a R-lineal automorphism,
by hypothesis every finite right B-module is generically free over R, then Proposition 1.2.49
every finite right B[z1; θ1]-module is generically free over R, so we can conclude that every
finite right B[z1; θ1] · · · [z1, ; θn]-module is generically free and by the Proposition 1.2.47
we have that every finite right A-module is generically free over R.

From Proposition 1.2.51 we know that one hypothesis for an algebra N-filtered to
satisfy the Nullstellensatz is that its associated graded ring is locally finite.

Proposition 2.2.2 ([LSR17], Proposition 2.10). Let A be a K-algebra. A is finitely graded
if and only if there exists a graded isomorphism of K-algebras

A ∼= K{x1, . . . , xn}/I,

where I is a proper homogeneous two-sided ideal of K{x1, . . . , xn} that denote the free
algebra over K. In such case, A is locally finite, i.e., for every n ∈ N dimK An <∞.

Following Proposition 1.2.51 and Section 2.1 we can give a theorem to guarantee when
a skew PBW extension satisfies the Hilbert’s Nullstellensatz.

Theorem 2.2.3. Let A be a bijective skew PBW extension of a Noetherian k-algebra R
such that A is also a k-algebra and Gr(A) is locally finite. Then A is a Jacobson algebra
which satisfies the Nullstellensatz.

Proof. By the Proposition 2.1.7, since A is a bijective skew PBW extension of R Noethe-
rian, A is left Noetherian. According to Proposition 2.1.5, Gr(A) is a quasi-commutative
bijective skew PBW extension isomorphic to an iterated skew polynomial ring
R[z1; θ1][z2; θ2] · · · [zn; θn] such that each θi is bijective, 1 ≤ i ≤ n and by the Proposi-
tion 2.1.6 Gr(A) is left Noetherian, and by the hypothesis Gr(A) is locally finite. So we
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have A N-filtered algebra over k (Proposition 2.1.5) whose associated graded ring is locally
finite and left Noetherian. Then, by Proposition 1.2.51, A is a Jacobson algebra which
satisfies the Nullstellensatz.

Corollary 2.2.4. Every bijective skew PBW extension which preserves the k-algebra struc-
ture whose associated graded ring is finitely graded is a Jacobson algebra which satisfies
the Nullstellensatz

Proof. If we have A skew PBW extension over k whose associated graded ring Gr(A)
is finitely graded, by Proposition 2.2.2. is locally finite and by Proposition 2.1.7 is left
Noetherian. Then from the Theorem 2.2.3 A is a Jacobson algebra which satisfies the
Nullstellensatz.

2.3 Examples

We addressed conditions that skew PBW extensions should satisfy in order to the Hilbert’s
Nullstellensatz to hold. In this section we will exhibit some particular examples in which
such hypothesis hold and thus the theorem.

The examples here presented were studied in [LR14], [GL11], [Rey14], [RJ18], [RS16b],
[RS17b], [RS17a], [RS18b], [RS18c]. Here we verify that the Hilbert’s Nullstellensatz holds
for them.

2.3.1 Classical PBW extensions

Example 2.3.1 (Classical polynomial ring). Let k[x1, . . . , xn] be the polynomial ring with
k a field. The polynomial ring is an Ore extension with σi = ik[x1,...,xn] and δi = 0 for
1 ≤ i ≤ n, Therefore, we have an extension over a Noetherian ring k which preserves the
algebra structure. Then, polynomial ring satisfies the hypothesis of Proposition 1.2.21,
thus the Nullstellensatz hold and we have a Jacobson algebra.

We can note also that k[x1, . . . , xn] is a N-filtered A algebra over k and its associated
graded is k[x1, . . . , xn]. We know that k[x1, . . . , xn] is Noetherian and locally finite. Then,
for the Proposition 1.2.51 k[x1, . . . , xn] is a Jacobson algebra that satisfies the Nullstellen-
satz.

Finally, the polynomial ring is a skew PBW extension. Since xir − rxi = 0 and
xixj − xjxi = 0 for any r ∈ k and 1 ≤ i, j ≤ n. The k-free basis is Mon(k[x1, . . . , xn]).
Every skew PBW extension is filtered in this case N filtered and its associated graded is
locally finite. Then for the Theorem 2.2.3 k[x1, . . . , xn] is a Jacobson algebra that satisfies
the Nullstellensatz.
Example 2.3.2 (Universal enveloping algebra of a Lie algebra with K field). Let K
be a commutative ring (in this case a field) and G be a finite dimensional Lie algebra
over K with basis {x1 . . . , xn}. The universal enveloping algebra of G, U(G), with
xir − rxi = 0 and xixj − xjxi = [xi, xj ].

These algebras not necessarily are Ore extensions. Then, we do not conclude the
Nullstellensatz using Proposition 1.2.21.
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In [Dix77, page 75] it was shown that U(G) is an algebra N-filtered; in [Li02, page 30] its
associated graded is isomorphic to the classical polynomial ring. Therefore, this algebra is
Noetherian and locally finite. Then, due to Proposition 1.2.51, U(G) is a Jacobson algebra
that satisfies the Nullstellensatz.

The universal enveloping algebra of G, U(G), can be seen such as a skew PBW exten-
sion. In [LR14, page 1211] the authors shown that there exists a skew PBW extension
A = σ(K)〈x1, . . . , xn〉 such that U(G) ∼= A. Since xir− rxi = 0 and xixj − xjxi = [xi, xj ],
with [xi, xi] = K+Kx1+· · ·+Kxn. In this case A is a N-filtered algebra and its associated
graded is isomorphic to the classical polynomial ring and is locally finite. Then, due to
Theorem 2.2.3 A is a Jacobson algebra that satisfies the Nullstellensatz.

2.3.2 3-dimensional skew polynomial algebras

Following [Ros95, Definition C4.3], 3-dimensional skew polynomial algebras A are
k-algebra generated by the indeterminates x, y, z restricted to relations yz − αzy = λ,
zx − βxz = µ, and xy − γyx = ν, such that, he following conditions hold: (i)λ, µ, ν ∈
k + kx + ky + kz, and α, β, γ ∈ k∗; (ii) standard monomials, {xiyjzk | i, j, k ≥ 0}, are a
k-basis of the algebra.

These algebras are skew PBW extensions. In [RS17b] it was shown that 3-dimensional
skew polynomial algebras have a PBW basis, and with the relations defined we can note
that these algebras satisfy the condition (iii) and (iv) of Definition 2.1.2. Note that, not
necessarily, 3 dimensional skew polynomials algebras are PBW extensions, the condition
(iv) of the Definition 2.1.1 fail when α, β,γ 6= 1.

There exists a classification of 3-dimensional skew polynomial algebras provided by
[Ros95, Theorem C.4.3.1]. More precisely, up isomorphism, A is one of the following
algebras:

(a) if |{α, β, γ}| = 3, then A is defined by the relations yz−αzy = 0, zx−βxz = 0, and
xy − γyx = 0.

(b) if |{α, β, γ}| = 2 and β 6= α = γ = 1, then A is one of the following algebra:

(i) yz − zy = z, zx− βxz = y, xy − yx = x;
(ii) yz − zy = z, zx− βxz = b, xy − yx = x;
(iii) yz − zy = 0, zx− βxz = y, xy − yx = 0;
(iv) yz − zy = 0, zx− βxz = B, xy − yx = 0;
(v) yz − zy = az, zx− βxz = 0, xy − yx = x;
(vi) yz − zy = z, zx− βxz = 0, xy − yx = 0,

where a, b are any elements of k. All nonzero values of b yield isomorphic algebras.

(c) If |{α, β, γ}| = 2 and β 6= α = γ 6= 1, then A is one of the following algebra:

(i) yz − αzy = 0, zx− βxz = y + b, and xy − γyx = 0;
(ii) yz − αzy = 0, zx− βxz = b, and xy − γyx = 0.
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In this case, b ∈ k is an arbitrary element and, like before, any nonzero values of b
give isomorphic algebras.

(d) If α = β = γ 6= 1, then A is the algebra defined by the relations yz−αzy = a1x+ b1,
zx − βxz = a2y + b2, and xy − γyx = a3z + b3. If ai = 0 for i = 1, 2, 3, then all
nonzero values of bi give isomorphic algebras.

(e) If α = β = γ = 1, then A is isomorphic to one of the following algebras:

(i) yz − zy = x, zx− xz = y, xy − yx = z;
(ii) yz − zy = 0, zx− xz = 0, xy − yx = z;
(iii) yz − zy = 0, zx− xz = 0, xy − yx = b;
(iv) yz − zy = −y, zx− xz = x+ y, xy − yx = 0;
(v) yz − zy = az, zx− xz = z, xy − yx = 0;

With a, b ∈ k arbitrary, and all nonzero values of b generate isomorphic algebras.

These algebras are not necessarily iterated Ore extension (see Example 2.3.3). For this
reason, The Nullstellensatz do not hold using Proposition 1.2.21.

3-dimensional skew polynomial algebras A are skew PBW extensions as we note pre-
viously. From Proposition 2.1.5 we have that A is N-filtered. The associated graded of
this algebra is kq[x, y, z] with q defined by an automorphism and is Noetherian and lo-
cally finite. Then, due to Proposition 1.2.51 or Theorem 2.2.3 the 3-dimensional skew
polynomial algebras are Jacobson algebras in which the Nullstellensatz hold.

Example 2.3.3 (Dispin algebra U(osp(1, 2))). Dispin algebra U(osp(1, 2)), defined in
[Ros95, Definition C4.1], is the enveloping algebra of the Lie superalgebra osp(1, 2). It is
generated by the indeterminates x, y, z over the commutative ring K (in this case a field)
satisfying the relations yz − zy = z, zx+ xz = y, xy − yx = x.

These algebras not necessarily are Ore extensions. Hence, we can not use Proposition
1.2.21 to conclude the Nullstellensatz.

We can note that U(osp(1, 2)) is a skew PBW extension over K; in [Ros95, page 99] we
can see a basis and with the relations satisfy Definition 2.1.2. In [LR14, page 1215] we note
that U(osp(1, 2)) ∼= σ(K)〈x, y, z〉, its associated graded is kq[x, y, z], this is Noetherian,
and its locally finite (in deed is a K-algebra finitely graded). Then, due to Proposition
1.2.51 or Theorem 2.2.3 U(osp(1, 2)) is a Jacobson algebra in which the Nullstellensatz
hold.

2.3.3 Other examples

Example 2.3.4 (Multiplicative analogue of the Weyl algebra). The K-algebra On(λji),
defined in [Jat84], is generated by the indeterminates x1, . . . , xn subject to the relations:
xjxi = λjixixj with 1 ≤ i < j ≤ n, and λji ∈ K − {0}.

We can note that On(λji) is not an Ore extension over K, but, On(λji) is an Ore
extension over K[x1] (see [Li02, page 29]). This is a finitely iterated Ore extension
(K[x1][x2;σ2] · · · [xn;σn] with xjxi = σj(xi)xj = λjixixj) and we have that K[x1] is a
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Jacobson ring, and preserves the algebra structure i.e. σi(k) = k, for all k ∈ K and we
have that δi = 0. Then, due to Proposition 1.2.21, On(λji) satisfies the Nullstellensatz .

We can note for the relations that On(λji) the condition (iii) of the Definition 2.1.2 and
the condition (iv) (δ = 0). In [LR14], we can note thatOn(λji) ∼= A = σ(K)〈x1, . . . , xn〉. A
is N-filtered and its associated graded isKq[x1, . . . , xn] with q defined by the automorphism
σ, its associated graded is Noetherian and locally finite. Then, by Proposition 1.2.51 or
Theorem 2.2.3 On(λji) satisfies Nullstellensatz.

Example 2.3.5 (Additive analogue of the Weyl algebra). The k-algebra An(q1, . . . , qn),
introduced in [Kur80], is the algebra generated by the indeterminates x1, . . . , xn, y1, . . . , yn
subject to the relations: xjxi = xixj and yjyi = yiyj for 1 ≤ i, j ≤ n, yixj = xjyi for i 6= j
and yixi = qixiyi + 1 for 1 ≤ i ≤ n, where qi ∈ k \ {0}.

An(q1, . . . , qn) is not a Ore extension over k. In [Li02], the authors proved that this al-
gebra is an Ore extension over k[x1, . . . , xn], i.e. k[x1, . . . , xn][y1;σ1, δ1] · · · [yn;σn, δn] with
yixi = σi(xi)yi+δi(xi) = qixiyi+1. Here, we have, for the Example 2.3.1 that k[x1, . . . , xn]
is a Jacobson ring and is commutative Noetherian ring. Then, due to Proposition 1.2.21
An(q1, . . . , qn) satisfies the Nullstellensatz.

From the relations that describe the algebra, in [LR14] the authors shown that
An(q1, . . . , qn) ∼= σ(K)〈x1, . . . , xn, y1, . . . , yn〉. Hence, the additive analogue of a Weyl
algebra is a skew PBW extension, then we have that is N-filtered and its associated
graded is kq[x1, . . . , xn, y1, . . . , yn] with q defined by the automorphism σi, its associated
graded is Noetherian and locally finite. Then, by Proposition 1.2.51 or Theorem 2.2.3,
An(q1, . . . , qn) satisfies Nullstellensatz.

Example 2.3.6 (Quantum algebra). The K-algebra U ′(so(3,K)), developed in [HKP00]
and [Ior02] is generated by I1, I2, I3 subject to relations I2I1 − qI1I2 = −q1/2I3, I3I1 −
q−1I1I3 = q−1/2I2, I3I2 − qI2I3 = −q1/2I1, where q ∈ K − {0}. This algebra is not a Ore
extension. Then, we can not conclude Nullstellensatz with Proposition 1.2.21.

In [AL15] and [RS17b], the authors proved that this algebra is a skew PBW exten-
sion U ′(so(3,K)) ∼= σ(K)〈I1, I2, I3〉. Then we have that the algebra is N-filtered and its
associated graded is kq[I1, I2, I3] with q defined by the automorphism σi, its associated
graded is Noetherian and locally finite. Then, due to Proposition 1.2.51 or Theorem 2.2.3,
U ′(so(3,K)) satisfies Nullstellensatz.

Example 2.3.7 (q-Heisenberg algebra). The K-algebra Hn(q) introduced in [Ber92] is
generated by the set of variables x1, . . . , xn, y1, . . . , yn, z1, . . . , zn subject to the relations:

xjxi = xixj , yjyi = yiyj , zjzi = zizj , 1 ≤ i, j ≤ n,
zjyi = yizj , zjxi = xizj , yjxi = xiyj i 6= j,

ziyi = qyizi, zixi = q−1xizi + yi, yixi = qxiyi 1 ≤ i ≤ n,

with q ∈ K \ {0}.

In [Li02], the authors proved that this algebra is an Ore extension over k[x1, . . . , xn],
i.e. k[x1, . . . , xn][y1;σ1] · · · [yn;σn][z1; θ1, δ1] · · · [yn; θn, δn] with yixi = σi(xi)yi = qxiyi,
ziyi = θi(yi)zi = qyizi, zixi = θi(xi)zi + δi(xi) = q−1xizi + yi, for 1 ≤ i ≤ n. So, due to
Proposition 1.2.21 we can conclude that Hn(q) satisfies the Nullstellensatz.
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In [LR14] we can see that Hn(q) is a skew PBW extension isomorphic to
σ(K)〈x1, . . . , xn, y1, . . . , yn, z1, . . . , zn〉. Then we have that is N-filtered and its associ-
ated graded is kq[x1, . . . , xn, y1, . . . , yn, z1, . . . , zn] with q defined by the automorphisms σi
and θi; its associated graded is Noetherian and locally finite. Then, due to Proposition
1.2.51 or Theorem 2.2.3 Hn(q) satisfies Nullstellensatz.

Throughout this section we observe some examples of extensions in which the Nullstel-
lensatz hold using different enunciated that we studied in this work. On the next table, we
will see which property can be used to conclude the theorem in these examples. Using the
symbol X if we can conclude the theorem and ? if we do not. We note for I-N Proposition
1.2.21, Z-N Proposition 1.2.51 and SPBW-N Theorem 2.2.3.

Algebras I-N Z-N SPBW-N
Classical polynomial ring k[x1, . . . , xn] X X X
Universal enveloping algebra of a Lie algebra G,U(G) ? X X
Multiplicative analogue of the Weyl algebra On(λji) X X X
Additive analogue of the Weyl algebra An(q1, . . . , qn) X X X
Quantum algebra U ′(so(3, k)) ? X X
Some 3-dimensional skew polynomial algebras ? X X
Dispin algebra U(osp(1, 2)) ? X X
q-Heinsenberg algebra Hn(q) X X X

Table 2.1: Skew PBW extension and the Hilbert’s Nullstellensatz



Conclusions

Throughout the document, we saw several versions of the Hilbert’s Nullstellensatz in the
commutative case. We can note that some of these versions can be extended to the non-
commutative case.

For skew PBW extensions, we identify several conditions that these extensions must
have to guarantee that Hilbert’s Nullstellensatz hold. Some of these restrictions are quite
powerful and, for some examples, we can not conclude the theorem.

It becomes a difficult task to try to give a geometric version of the Nullstellensatz in
the non-commutative case, especially for skew PBW extensions.
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Future work

We noticed that several examples of skew PBW extensions satisfy Hilbert’s Nullstellensatz
for Theorem 2.2.3. Unfortunately, there exist quite examples in which we can not conclude
the Nullstellensatz with Theorem 2.2.3; an example of this case is giving in [ASZ99], we
find an algebra that satisfies the Nullstellensatz but is not a skew PBW extension. In other
cases, to verify that a structure is a k−algebra is difficult and it is an essential condition
to conclude the theorem. Thinking about that, we want to state another property to
identify more examples that could be not skew PBW extensions and a form to guarantee
when an algebra preserve the k-algebra structure. In [LG18] the authors defined finitely
semi-graded algebras. These structures are more general than skew PBW extensions and
therefore, it would be interesting to extend the results of this work to finitely semi-graded
algebras.

We overlook the geometrical version of the theorem due to the difficulty to define
a notion of variety and ideal such as the commutative case. An interesting question is
stated as a purely geometrical case to the Hilbert’s Nullstellensatz for non-commutative
structures.

We gave an algebraic version of the Nullstellensatz and we can conclude the affine case
of the geometrical version with this. Another possible work would be searching in the
literature an algebraic version of the projective case and extended to non-commutative
structures.

In classical algebraic geometry, we give a topology for the polynomial ring with the
prime spectrum of a ring (the set of all prime ideals). This topology is known as Zariski
topology. In the non-commutative cases, there are examples in which we do not have
prime ideals. We can substitute the prime spectrum with the primitive spectrum in the
non-commutative case and defined a topology with this (known as Jacobson topology).
Thinking about that, we saw that some examples are Jacobson algebras; we would be
interested in giving a topology to skew PBW extensions.
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