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ABSTRACT: This paper presents several numerical tests performed on Turing space when spatial parameters in reaction-
diffusion equations changes. The tests are performed in 2D on square units in which we perform subdivisions (subdomains). 
In each subdomain we set parameters that correspond to different wave numbers and therefore presents a heterogeneous 
medium. Each wave number is predicted by the linear stability theory and correspond to different Turing patterns. 
The reaction equation chosen is that of Schnakenberg. The results show complex patterns that mix bands and spots, as 
well as patterns that do not correspond with the original patterns that could be found  independently in each subdomain. 

KEYWORDS: Reaction-diffusion, Turing instabilities, heterogeneous medium

RESUMEN: Este articulo presenta distintas pruebas numéricas en dominios que presenta variación de parámetros, 
de forma espacial, de la ecuación de reacción- difusión en el espacio de Turing. Las pruebas son desarrolladas en 
cuadrados de lado unitario 2D en el cual se realizan subdivisiones (subdominios). En cada subdomminio se ingresan 
parámetros que corresponden a los diferentes números de onda, por lo tanto presentan un medio heterogéneo. 
Cada número de onda fue predicho mediante la teoría lineal de estabilidad y corresponde a diferentes patrones 
de Turing. La ecuación de reacción elegida es Schnakenberg. Los resultados muestran patrones complejos de 
bandas mixtas y puntos, además, los patrones no corresponden a los patrones originales en cada subdominio.

PALABRAS CLAVE: Reacción-difusión, inestabilidades de Turing, medio heterogéneo

1.  INTRODUCTION

Several physical problems can be modeled by balancing 
two phenomena: diffusion and reaction [1]. The first 
is defined as the dispersion of a species involved in a 
process throughout the physical domain of a problem. 
On the other hand, reaction is the process of interaction 
through which the species involved are generated or 
consumed in the phenomenon. The partial differential 
equation of reaction-diffusion (RD) for a single species 
can be written as (1):

                             
)(ufuk

t
u

+∇⋅∇=
∂
∂                 (1)

where u  is the concentration of the substance studied, 
k  is the diffusion constant and )(uf is the function 
that defines the reaction process. This equation and 
other more complex models of RD systems, where 
more species or reactants are involved, have the ability 
to create spatial-temporal patterns. A particular case is 
called Turing instability [1,7] which is characterized 
by creating stable patterns over time and unstable in 



Dyna 172, 2012 57

space. Due to this, RD systems have been used to 
study problems in areas such as fluid dynamics [2], 
heat transfer [3], semiconductor physics [4], materials 
engineering [5], chemistry [6], biology [7], population 
dynamics [8], astrophysics [9], biomedical engineering 
[10] and financial mathematics among others. It 
should be noted that equation (1) requires appropriate 
boundary conditions [11].

Thanks to experimental and theoretical studies on 
RD systems, the knowledge of it has been steadily 
growing [12–13] and, in turn, new models have been 
proposed that involve, in their simplest form, two 
chemical species [14]. Reaction-diffusion systems 
have been classified into three categories which are: (a) 
systems based on real reactions [14] (as is the case of 
the Thomas reaction), (b) Reaction-diffusion systems 
based on hypothetical reactions (e.g., the Schnakenberg 
reagent system), and (c) systems that emulate patterns 
found in nature (eg Gierer Meinhardt’s reaction). These 
types of RD systems have in common that spatial 
patterns can be stable over time if the parameters of 
the reactive terms and diffusion constants are in a well-
defined space called the Turing space [1].

Therefore, an RD system, of two species, is defined 
by (2):
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Spatial instability will be present in the patterns of 
concentration of species 1u  and 2u  if each of the 
conditions imposed (which define the Turing space) 
are fulfilled in (3) [28].
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where lf  and lg   indicate the derivatives of the 
reaction functions with respect to the concentration 

variables, for example u
ffu ∂
∂

= . In expressions (1) 

and (2) 2

1

u

u

D
Dd =  is the ratio of diffusion coefficients 

of the two species 1uD  and 2uD ; furthermore, in (2) 
γ  is a undimensional coefficient associated with the 
reactive processes f  and g  [1,15].

The analysis of these RD systems, which have Turing 
instability has been developed from two frameworks: 
by mathematical analysis [1] and through numerical 
simulation [1,15]. From the analytical standpoint, 
efforts to understand the behavior of RD systems 
have focused on the study of the relationship between 
branches of the space parameter and pattern formation. 
In this approach, RD systems have been studied by 
the comparisons of sub and super solutions, degree 
theory, the Conley index, the theory of critical dots, 
and singular perturbations for various types of principal 
maxima [11]. These methods have been effective for 
the analysis of stationary solutions and traveling waves 
[16]. Also, there are studies on complex branching 
scenarios in RD systems by applying methods of the 
group theory for problems with symmetries [17]. 
Efforts in this area of mathematical analysis and 
specifically, systems dynamics, have allowed for the 
construction of knowledge that has been tested and 
extended from the stand point of numerical simulation.

The numerical simulation of RD systems has confirmed 
the existing knowledge about pattern formation. 
For example, Madzvamuse et al. [7,15], Painter et 
al. [17,18] have developed numerical examples of 
pattern formation in the two-dimensional domain 
under the growth action of the domain. In Madvamuse 
[15], numerical simulations are developed using 
a Lagrangian scheme with a moving mesh. These 
simulations show a large difference between the 
steady state for fixed domains and the continuous 
formation of new patterns for growing domains. In 
[15] the appearance of different structures that can 
vary among band systems, dots, and combinations of 
these domains with decreasing exponential growth is 
reported. Madzvamuse [19] reported the formation of 
patterns in the presence of convective fields with null 
divergence. In turn, from a numerical point of view, we 
have studied the effects of fields on the formation of 
convective patterns. Garzón-Alvarado et al. [20]   show 
the pattern formation and transition of a Turing patterns 
to traveling waves in the presence of toroidal velocity 
fields that change the dynamics of the system. There are 
also studies on other phenomena in the generation of 
Turing patterns such as, for example, the heterogeneity 
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of the reagent parameters that cause complex patterns in 
the solution of the RD systems [14,21]. Voroney et al. 
[21] show the interaction between oscillatory dynamics 
and pattern formation when heterogeneous parameters 
are presented in space, in this case a solution exists 
using the Sel’kov reagent system.

Following the study of heterogeneities in space and 
under the numerical approach, the objective of this 
paper is to computationally solve the 2D RD equations 
for the Schnakenberg reaction system, in domains 
with non-homogeneous kinetic parameters, leading to 
uniform steady states that vary in the spatial domain. 
This paper gives a solution to the RD equations system 
using the finite element method with the evaluation 
of the nonlinear terms in the new time step, thus 
adopting the Newton-Raphson method. In this paper 
we developed some numerical examples that allow us 
to observe  how the spatial variation in the parameters 
of the RD equations generates complex Turing patterns.

The paper is organized as follows: first, it shows the 
mathematical model of reaction-diffusion system, 
especially in this article we used the Schnakenberg 
model. In addition, this section illustrates the theory 
on the prediction of wave numbers in different Turing 
spaces. Then it shows the finite element formulation 
for solving the RD system. In the next section we 
present examples to solve the boundary conditions, the 
type of domain and computational parameters. Later it 
shows simulation results and ends with discussion and 
conclusions from the patterns obtained.

2.  THE REACTION MODEL: SCHNAKENBERG 
MODEL

The RD system in (2) can be written, for the case of the 
Schnakenberg reagent model [1,15,19], as (4):
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where u and v are the chemical species, u2∇  and vd 2∇  
the diffusive terms and )(),( 2vuuavuf +−=   and 

)(),( 2vubvug −=  the reagent terms. Moreover, γ is a 
dimensionless constant a and b are constant parameters 
of the model. We have imposed homogeneous 
Neumann conditions and initial conditions are small 

perturbations around the homogeneous steady state of 
each of the reactive terms, this is, 0),( =ss vuf  and 

0),( =ss vug .

2.1.  Conditions for the diffusion instability

From Murray [22] we can establish that without the 
presence of the diffusive term, u and v must satisfy (5):
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For small perturbations around the steady state ),( ηξ   
(this is ),(),( ηξ ++= ss vuvu  ), equation (5) is 
linearized as (6):
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where  2 1uf uv= − ,  2ufv = ,  2ug uv= −  and 
2ugv −= . In (6), we have conducted a expansion in 

series where we have neglected terms of order greater 
than 2. It should be noted that ),( vuf   and ),( vug  are 
evaluated in the steady state 
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A solution to (6) can be written as (7):

                                                             (7)

where a  is a vector containing information fo the initial 
conditions. Replacing (7) in (6) we obtain (8):

                               ( ) 0aIJ =− tλ                          (8)

where I is the identity matrix. For there to be a 
nontrivial solution it requires that ( ) 0det =− IJ tλ , so 
we get the following characteristic Eq. (9):
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Then (6) is linearly stable if and only if the conditions 
are fulfilled (9) for which the real part of the 
eigenvalues tλ  are negative. Note that these conditions 
are analogous to Routh-Hurwitz [22]:

                           
0)( <+= vu gfJtr                  (9.1)
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                       0)( >−= hvvu gfgfJDet               (9.2)

If the diffusive term is introduced we get the linear 
differential equation (10):

                            
                     (10)

with ),1( ddiag=D . Using the homogeneous boundary 
conditions ( ( ) 0=Ψ∇•n ), equation (10) can be solved 
by separation of variables, with , so 
you can get a solution by the form (11): 

                        
∑=Ψ

k
k
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where k  is the wave number of the spatial pattern 
or eigenvalue described in [15], kc  is the vector of 
Fourier coefficients and )(xkϕ   is the eigenfunction of 
the Laplacian (with ( ) 0=∇• ϕn ) given by (12):

                           022 =+∇ kk k ϕϕ                       (12)

Replacing (11) in (10) yields:

                                          (13)

where 0 is the vector of zeros and I  is the identity 
matrix. As in the case of the differential equation 
without diffusion, requires that the vector of Fourier 
coefficients is not trivial, so we must verify the 
following condition:

                                        (14)

With what we get the dispersion relation (or characteristic 
equation from (13)) [1,15,22] (15):

                             0)()( 222 =++ kckb λλ            (15.1)
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2 4 2 2( ) ( ) ( ) u v u v v uc k dk df g k f g f gγ γ= − + + −       (15.3)

Therefore, for Turing instability occurs, the roots 
of (15.1) must satisfy 2Re ( ) 0kλ >  for some 2k . 
According to Ruth-Hurwitz conditions [22], so that the 
real part of the eigenvalues be positive it is required 
that 0)( 2 >kb  and 0)( 2 <kc  , or vice versa. From the 

condition (9.1) we can conclude that 0)( 2 >kb  for all 
2k .Therefore, it is  required that 0)( 2 <kc .

In (15.3) we can see that  0>d  and by (9.2) we know 
that 0>− uvvu gfgf , therefore, it must be satisfied 
that 0u vdf g+ > , which it is a necessary condition, 
but not sufficient. The additional relation is found by 
minimizing )( 2kc  where it must meet 0)( 2

min <kc . 
This is done by 2

2
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Replacing (16) in (15.3) yields (17):
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From where we obtain the last condition for Turing 
instability. Reorganizing the conditions to be met we 
obtain, in summary, the following inequalities (18):

                                 0>− uvvu gfgf                 (18.1)

                                        0<+ vu gf                    (18.2)

                                     0u vdf g+ >                    (18.3)

                    ( ) ( )2 4  u v u v v udf g d f g f g+ > −       (18.4)

2.1.1.  Definition of the wave number

At that point where 0)( 2
min =kc , we get a bifurcation 

parameter [1,15]. Therefore, from (18.4) we have 

t h a t  
( ) ( ) 0

4
)(

2
2

min =−+
+

−= uvvu
c

vuc gfgf
d

gfdkc  
determines the bifurcation point, for a value cd , called 
critical diffusion coefficient, above which Turing 
instabilities are obtained. Therefore, the critical value 
of diffusion cd  is given by (19):

          ( )  022 22 =+−+ vcvuuvcu gdgfgfdf         (19)

On the other hand, having 0)( 2 =kc we get the value 
for 2k for which there is a range of possible wave 
numbers, only if cdd > . This is shown in Fig. 1.
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Figure 1. Graphics for )( 2kc . Each of the curves are 

drawn for the Schnakenberg reaction model with  1.0=a
, 9.0=b  and 72.176=γ . Previously, using Eq. (19) we 

had found that 5676.8=cd  

Using  cd  and replacing its value in )( 2kc  (equation 
(15.3) we obtain the red curve. The magenta curve is 
obtained by 0.8=d , and the green curve is obtained 
for 1676.9=d . In the graph 43.14692

min =K  and 

                            78.95252
max =K

As shown in Fig. 1, if cdd >  is satisfied, at the cutoff 
point of )( 2kc with the axis 2k  (this is where the dots 
are 0)( 2 =kc ) we obtain two important points wich 
are  2

minK  and 2
maxK . These points define a range where 

we find the wave numbers or eigenvalues that will 
present the solution of the RD system. These values 
are given by:
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This interval  ),( 2
max

2
min KK  defines the wave number 

of the RD system solution in a Turing space. To define 
the behavior of the instability we must define the 
domain over which the solution takes place. In [1,15] is 
solved on a square, but for generality, we will provide 
information about a rectangle.

2.1.2.  Eigenfunctions of a rectangle

Consider the rectangle whose length of each side in 
the direction of x  and y  is xL  and yL , respectively 
[1,15]:
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In [15] we can verify that the eigenfunctions for the 
equation (11) are given by (22):
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When ∞→t , the solution of the linearized system 
(10) is:
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For example, in the case shown for Fig. 1, with 
1.0=a , 9.0=b , 72.176=γ  and 1676.9=d , have 

that 43.14692
min =K  and 78.95252

max =K . Then in a 
unit square   ( 0.1== yx LL ), the interval is given 
by ( 7.99963717.4 22 <+< nm ). Then we must 
choose m  and n  integers that satisfy the whole range 
proposed. In this case the values are 2=m  and 1=n , 
or vice versa. In conclusion, the wave number is )1,2( . 
Following a similar analysis yields Table 1 [15] where 
we observe the wave numbers and values for d  and γ   
with constant values 1.0=a  and 9.0=b .

2.2.  Finite element solution

To solve the system of equations (4) we have chosen the 
finite element method. We have also used the Newton-
Raphson method to solve the nonlinear problem that 
evolves over time. The time integration has been made 
using the trapezoidal rule. Then, u and v must be found 
by its correct interpolation with the shape functions 
given in [23]. To carry out the exhibition we start with 
the weak formulation of the problem and follow a 
procedure similar to that used in [24].
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Table 1. Modes of vibration for ),( nm  for different values 
of d  and γ  of the Schnakenberg model [15]

Mode 
(m,n) d γ

Mode 
(m,n) d γ

(1,0) 10.00 29.00 (3,2) 8.87 379.21
(1,1) 11.58 70.60 (3,3) 8.61 535.09
(2,0) 10.00 114.00 (4,0) 8.67 435.99
(2,1) 9.17 176.72 (4,1) 8.59 492.28
(2,2) 8.76 230.82 (4,2) 8.72 625.35
(3,0) 8.62 265.22 (4,3) 8.67 666.82
(3,1) 8.67 329.20 (4,4) 8.61 909.66

2.2.1.  Weak formulation

Be (4) rewritten as:

            

0)(

0)(

22

22

=−−∇−
∂
∂

=+−−∇−
∂
∂

vubvd
t
v

vuuau
t
u

γ

γ

    en Ω       (4.a)

Consider the equation (4.a) is sufficiently smooth and 
differentiable. Using Gauss’s theorem we can prove 
that (26):
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where 1w  and 2w  are weighting functions and n  is the 
normal vector directed outwards from the dominion  Ω  
over the frontierΓ . Keep in mind that it must be impose 
homogeneous Neumann boundary conditions so that 
the last term of equations (5.1) and (5.2) disappear. 

To move to the discrete solution, the variables are 
written in terms of nodal values using the weighting 
functions as [23]:

UNu=hu      (27.1)       VN v=hv      (27.2)

where uN  and vN are the shape functions that depend 

only on space, U  and V are the values of u and v 
at the nodal points and the superscript h indicates 
the discretization of the finite element variable. By 
substitution of (26) in (25) and the choice of weighting 
functions equal to the shape functions we obtain residue 
vectors of the Newton-Raphson method given by [22] 
(28):

( )  0        2
=Ω−Ω+

Ω−Ω∇∇+Ω
∂
∂

=

∫∫

∫∫∫

ΩΩ

ΩΩΩ

dvudu

addud
t

ur

hhThT

ThT
h

Th
u

γγ

γ

NN

NNN (28.1)

( )2
       0 

h
h T T h T

v

T h h

vr d d v d bd
t

u v d

γ

γ

Ω Ω Ω

Ω

∂
= Ω+ ∇ ∇ Ω− Ω

∂

+ Ω =

∫ ∫ ∫

∫

N N N

N

(28.2)

where  h
ur  and  h

vr are  the  res idue  vec tors 
t h a t  a r e  c a l c u l a t e d  a t  t h e  n e w  t i m e . 
Meanwhile, each of the positions (inputs) of the 
Jacobian matrix are given by (29):
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where α  is a feature parameter of the temporal 

integration method [23] and ( ) ( )[ ]TTnnodT NN ∇∇=∇ ...1N   
is the row vector of the first spatial derivatives of the 
shape functions. In this case we used bilinear elements 
of 4 nodes as described in [23].

2.3.  Numerical tests

To solve the system of equations resulting from the 
finite element method with Newton-Raphson method 
we created a program in FORTRAN and resolved all 
the examples illustrated below in a Laptop of 4096 MB 
RAM and 800 MHz speed processor.
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The mesh used is the same for all examples, which has 
2500 bilinear regular elements of 4 nodes each, for a 
total of 2601 nodes.

Moreover, the initial conditions are the same for all 
the examples, with small random perturbations of 10% 
around the steady state [15].

Numerical solutions over homogeneous domains 
(control)

Initially we solved the system given in (4) for 
completely homogeneous domains in order to have a 
frame of reference and comparison for all subsequent 
numerical tests.

Figure 2 shows the results for the variable u of the 
Schnakenberg equation. Note the formation of dot 
patterns (cases b, d, e, g, h, i, k, l, n) and rows (a, c, f, 
j, m). Special attention deserves the case m) where we 
have 2 2 25m n+ =  with two possibilities for Turing 
pattern formation given by the dynamics of the system, 
which can choose among forming a wave number 

)3,4( == nm , or, a pattern by the type )0,5( == nm
. By the principle of minimum energy, in this case the 
pattern )0,5(  was formed.

The wave number indicates the number of half sine 
waves in each of the directions x and y. Figure 3 
provides an explanation for a wave number (4,2), which 
notes 4 half-waves in x direction and 2 half waves in 
y direction.

2.3.2.  Heterogeneous domains, subdomains location

To observe the independence of the location of the 
subdomains in the formation of Turing patterns we 
carried out several numerical tests as (see Fig. 4): 
Divide the domain into two subdomains, where in 
each one of them their respective parameter is taken 
according to the specific wave number given in Table 
1. Example: Figure 4(a) shows two sub-domains (upper 
and lower). In the lower subdomain we have chosen the 
parameters 1d  and 1γ  corresponding to a wave number

),( 11 ba  and at the upper level domain we took 2d  and 
2γ  which generates a mode in the shape of ),( 22 ba . 

Figure 4(b), (c) and (d) show the different subdomains 
that have been tested.

Figure 2. Turing Patterns in steady state for different 
wave numbers.

 a(1,0); (b) (1,1); (c) (2,0); (d) (2,1); (e) (2,2); 
(f) (3,0); (g) (3,1); (h) (3,2); (i) (3,3); (j) (4,0); 

(k) (4,1); (l) (4,2); (m) (4,3); (n) (4,4). 
For further reference see Table 1. The black color has 

concentration values higher than 1.0. Black color: high 
concentration, White color: low concentration. The figure 

has been made for the concentration u in Eq. (4).

 
Figure 3. Explanation of the correspondence of the wave 

number and Turing pattern for a (4,2) value.

We show, only the results of Fig. 5, where the wave 
modes that have been chosen are )0,1( 11 == ba  and 

)3,3( 22 == ba . It should be noted that the initial 
conditions do not change between each of the examples, 
so that each temporary path to the steady state is 
different. Then we have different spatial patterns in 
times 1.0=t   and 4.0=t . In 7.0=t  we have the 
same type of pattern, in each of the examples but with 
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a 90° rotation, as expected if the initial conditions do 
not affect the steady-state results.

Figure 4. Types of subdomains chosen for the test of 
independence of the location of the different modes.

Figure 5. Numerical examples for a heterogeneous 
domain with )0,1( 11 == ba and )3,3( 22 == ba . (a), (b), 

(c) and (d) according to the distribution of subdomains 
given in Fig. 4(a), (b), (c) and (d), respectively. At the 

bottom it shows the time during the transient simulation to 
reach steady state in 7.0=t .

2.3.3.  Heterogeneous domains: numerical test for
)0,1( 11 == ba  and ),( 22 ba given in Table 1 (Fig. 6).

Using the configuration (b) of Fig. 4, numerical test are 
made where )0,1( 11 == ba  and ),( 22 ba  are different 

wave numbers given in Table 1. Figure 6 shows the 
results of the numerical experiment.

Figure 6. Turing patterns in steady state for two 
heterogeneous medium with different numbers given by 

)0,1( 11 == ba and given by:
(a) (1,1);   (b) (2,0);    (c) (2,1);    (d) (2,2);    (e) (3,0);    
(f) (3,1);   (g) (3,2);    (h) (3,3);    (i) (4,0);    (j) (4,1);   

 k) (4,2);    l) (4,3);    m) (4,4). 

It is noted that the final patterns (steady state) have a certain 
complexity with respect to those in Fig. 2. In case (a) shows 
that the wave number (1,0) is in the left subdomain. This 
wave mode dominates and silences the mode (1,1) so at 
the end the result  is “similar” to a mode (1,0) where low 
density values are dominant in 75% of the domain. In case 
(b) gives a result that is not similar to any of the modes of 
the subdomains. Here we see a “drop” of low concentration 
found in 70% of the domain. In c) shows the simulation for 
the wave numbers (2,1) and (1,0). For this case the ending 
result is similar to a wave number with a value of (1,1) not 
symmetric. Cases (d), (e) and (f) show similar patterns. 
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The wave numbers of the subdomains are (1,0) with (2,2) 
(3,0) and (3,1), respectively. In the f) case it shows a pattern 
with a strip with a horizontal excitation (curve), which can 
be explained by the high excitation of the wave number 
(3,1). In cases (g) and (i) shows the numerical results with 
subdomains with wave numbers (3,2) and (4,0), respectively. 
It is noted that the results are similar for these two cases. We 
can see that half of the domain has a high concentration of 
u. The left half has a vertical “pseudo-mode” of 3. On the 
left side we can see the formation of dots, while on the right 
side we notice a block of high density of u with an edge that 
has saw-tooth shape. In the( h) case, with wave modes (1,0) 
and (3,3), show the formation of a “pseudo-mode” wave of 
(3,0) (bands), where the last half wave (right side) is very 
elongated (see Fig. 2). In (j) shows the simulation with 
wave numbers (4,1) and (1,0). It is noted that the left side 
generates a “pseudo-mode” in the vertical direction of 4. In 
the horizontal direction we can not set one only mode. There 
is a distorted dot pattern similar to a semicircular sector. Case 
(k) shows a pattern for wave numbers (1,0) and (4,2). This 
pattern is similar to that found in (g) and (i), however, the 
left side is a pseudo mode in the vertical direction of 2. The 
right side shows a single saw tooth. In (1) the formation of 
dot patterns (low concentration of u with modes (1,0) and 
(4,3)) is shown without symmetry, these dots are elongated 
horizontally. In the vertical direction we have a pseudo-mode 
of 4 in the left side. In (m) it shows the formation of dots of 
high concentration.

2.3.4. Heterogeneous Domains: Numerical test for 
)0,2( 11 == ba  and ),( 22 ba  given in Table 1 (Fig. 7).

Using a configuration similar to the previous case we 
did numerical tests with )0,2( 11 == ba and ),( 22 ba
given in Table 1. Fig. 7 shows the results of the 
numerical experiment.

Again we observe the difference between the original 
Turing patterns and the new patterns formed by 
heterogeneous medium (Fig. 7). Figure 7(a) shows the 
result for modes with each subdomain (2,0) and (2,1). 
Note the formation of a pattern similar to a vibration 
mode (2,1) where we have invested the maximum value 
of the variable u that  is shown in Fig. 2(d). 

Figure 7(b) and (c) show similar results. We observe 
the formation of a band of great length on the right side 
and two dots on the left. In the vertical direction appears 
a vibrating pseudo mode of 2, while in the horizontal 

direction there is a pseudo-mode of 1. Note that the 
resulting pattern is symmetrical with respect to the axis 
y=0.5 but does not preserve the original symmetry. The 
original modes (in each subdomain) are (2,0) and (2,2) 
and (3,0) for b) and c) respectively. In addition, Fig. 8(d) 
with modes (2,0) and (3,1) has a similar behavior, where 
the vast band of the right has an appearance like a water 
drop shape.  Figure 7(e), (g) and (h) show the formation 
of a pattern with dots of low concentration of u on the 
right side and lines in the left side. The original patterns 
are (2,0) and (3,2), (4,0) and (4,1), respectively. Note that 
the vibrating pseudo-mode in the horizontal direction in 
the center is 2 and on the top and bottom 3, while in the 
vertical direction is 0 in the left region and 2 on the right. 

Figure 7. Turing patterns in steady state for two 
heterogeneous medium with different numbers given by 

)0,2( 11 == ba and ),( 22 ba given by:  
(a) (2,1);    (b) (2,2);   (c) (3,0);   (d) (3,1);   (e) (3,2);   (f) 

(3,3);    (g) (4,0);   (h) (4,1);   (i) (4,2);   (j) (4,3);   (k) (4,4). 

Figure 7(f), (i) and (j) show the patterns developed for 
subdomains with wave numbers (2,0) and (3,3), (4,2) 
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and (4,3), respectively. There is a symmetrical pattern 
with respect to     5.0=y . Again, it presents a band 
on the right side and three dots on the left side. Note 
the similarity with Fig. 7(b) and (c). Unlike the latter, 
there is a pseudo mode of vibration in x and y of 2. 
The last Fig. 7(k) shows a complex figure which has 
a combination of dots and bands without symmetry.

2.3.5.  Heterogeneous domains: Numerical test for 
)1,2( 11 == ba  and ),( 22 ba  given in Table 1 (Fig. 8)

In this case (results in Fig. 8) we used a vibration mode 
(2,1). The configuration used for the numerical test is 
similar to that given in previous examples. Figure 8(a) 
and Fig. 8(b) show the test results for a subdomain 
(2,1) and (2,2) and (3,0), respectively. Note a similar 
pattern to Fig. 2(e) being a pseudo-mode (2,2) without 
symmetry. Note that there is a pattern of dots with the 
length of these on the right side.  

Figure 8. Turing patterns in steady state for two 
heterogeneous medium with different numbers given by 

)1,2( 11 == ba and ),( 22 ba given
 (a) (2,2);  (b) (3,0); (c) (3,1);  (d) (3,2);  (e) (3,3); (f) 

(4,0);  (g) (4,1);  (h) (4,2);  (i) (4,3);   (j) (4,4). 

In Fig. 8(c), a pseudo mode (2,2) where the main dot 
has been separated and has been directed toward the left 
side of the domain is shown. Note the similarity with a) 
and b). Figure 8(d) and (f) show the formation of band 
patterns from a domain with vibration modes (2,1) and 
(3,2) and (4,0), respectively. The resulting pseudo-mode 
is (3,0). Figure 8(e) shows the formation of patterns 
from modes with each subdomain (2,1) and (3,3). We 
observe in the left side the formation of a figure similar 
to a “nut” and in the right side the formation of two dots 
at the top and bottom of the domain. Figure 8(g) shows 
the dot formation (“water drops”) of different sizes that 
are directed toward the center. It is symmetrical to the 
axis y = 0.5. Figures 8(h) and  (i) are taken as the original 
modes (2,1) and (4,2) and (4.3), respectively. We observe 
the formation of a pattern of dots with a pseudo-mode 
of (3,2). In (j) we observe the formation of a pattern of 
lines with a pseudo-mode (4,0).

3.  CONCLUSIONS

This article has shown many numerical tests where 
we give evidence that the patterns obtained in a 
heterogeneous medium present, in general, complex 
Turing instabilities. In two dimensions there is the 
possibility of the emergence of mixed patterns of 
dots and bands. Additionally, they can have complex 
pseudo-modes wave that can change the length and 
shape of the bands and dots.

It is also observed, in the case of two subdomains, that 
the resulting wave mode, in general, is an intermedium 
mode between the original modes of each subdomain.

Furthermore, the combination of distant wave 
modes, for example (2,0) and (4,4) presents complex 
instabilities that do not have a defined wave pseudo-
mode, so the symmetry seen in the original patterns 
is lost.
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