
Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)

69

Simple generation of threshold for images
binarization on FPGA

Generación simple de umbral para binarización de imágenes en FPGA

E. Ieno1, L.M. Garcés2, A.J. Cabrera3, and T.C. Pimenta4

ABSTRACT

The methodologies presented in scientific literature to calculate the threshold of an image binarization process do not present good
results for all types of images. Additionally, the hardware implementations do not consider the FPGA resources that are used in
other processing phases. Thus, the method proposed in this work aims to present good results in the binarization process with un-
der-resourced area of FPGA. Therefore, this paper proposes the FPGA implementation of a threshold algorithm used in the process
of image binarization by simple mathematical calculations. The implementation only needs one image iteration and its processing
time depends on the size of the image. The threshold values of different images obtained through the FPGA implementation are com-
pared with those obtained by Otsu’s method, showing the differences and the visual results of binarization using both methods. The
hardware implementation of the algorithm is performed by a model-based design supported by the MATLAB®/Simulink® and Xilinx
System Generator® tools. The results of the implementation proposal are presented in terms of resource consumption and maximum
operating frequency in a Spartan-6 FPGA-based development board. The experimental results are obtained in co-simulation system
and show the effectiveness of the proposed method.

Keywords: Digital image processing, threshold, FPGA, System Generator®, Matlab®/Simulink®.

RESUMEN

Las metodologías desarrolladas para el cálculo del valor de umbral empleado durante el proceso de binarización de imágenes
no presentan buenos resultados para todo tipo de imágenes. Además, las implementaciones hardware no consideran los recursos
del FPGA empleados en las restantes etapas del sistema de procesado. De esta forma, el método propuesto en este artículo busca
alcanzar una relación óptima entre los resultados del proceso de binarización y el consumo de recursos del FPGA. Por lo tanto,
este trabajo propone la implementación sobre FPGA de un algoritmo para obtener el umbral de una imagen utilizando cálculos
matemáticos sencillos. La implementación se caracteriza por necesitar solamente una iteración de la imagen y su tiempo de proce-
samiento depende del tamaño de la imagen. Los valores de umbral obtenidos a través de la aplicación en la FPGA se comparan con
los obtenidos mediante el método de Otsu, mostrando las diferencias existentes así como los resultados visuales de la binarización
de diferentes imágenes utilizando ambos métodos. La implementación hardware del algoritmo de umbralización se realiza mediante
la metodología de diseño basado en modelos soportada por las herramientas MATLAB®/Simulink® y Xilinx System Generator®. Los
resultados de la implementación propuesta se presentan en términos de consumo de recursos y de frecuencia máxima de operación,
empleando una placa de desarrollo basada en un FPGA Spartan-6. Los resultados experimentales se obtienen en régimen de cosi-
mulación y muestran la efectividad del método propuesto.

Palabras clave: Procesamiento digital de imágenes, umbral, FPGA, System Generator®, Matlab®/Simulink®.

Received: July 7th 2015
Accepted: October 8th 2015

 Department (ISPJAE), Instituto Superior Politécnico “José Antonio Echeverría”
(CUJAE), Cuba. E-mail: alex@electrica.cujae.edu.cu

4	 Tales Cleber Pimenta: B.Sc. and M.Sc. in Electrical Engineering, Universidade
Federal de Itajubá, Brasil. PhD in Electrical Engineering, Ohio University. Affi-
liation: Microelectronics Department (IESTI), Universidade Federal de Itajubá
(UNIFEI), Minas Gerais, Brasil. E-mail: tales@unifei.edu.br

How to cite: Ieno, E., Garcés, L.M., Cabrera, A.J., & Pimenta, T.C. (2015).
Simple generation of threshold for images binarization on FPGA. Ingeniería
e Investigación, 35(3), 69-75.
DOI: http://dx.doi.org/10.15446/ing.investig.v35n3.51750

DOI: http://dx.doi.org/10.15446/ing.investig.v35n3.51750

Introduction
Image analysis usually refers to processing of images with
the goal of finding what objects are presented in the image.
One of the most widely used techniques for segmenting
the objects in an image is binarization (Gonzalez and

1	 Egídio Ieno Júnior: B.Sc. in Electrical Engineering and M.Sc. in Telecommuni-
cations, Instituto Nacional de Telecomunicações (INATEL), Santa Rita do Sa-
pucaí, Minas Gerais, Brasil. Affiliation: Mechatronics Department (DMCVG),
Centro Federal de Educação Tecnológica (CEFET), Brasil.

	 E-mail: egidio@varginha.cefet-mg.br
2	 Luis Manuel Garcés Socarrás: B.Sc. in Automation Engineering and M.Sc. in

Digital Systems, Instituto Superior Politécnico “José Antonio Echeverría” (CU-
JAE), Havana, Cuba. Affiliation: Automation and Computation Department (IS-
PJAE), Instituto Superior Politécnico “José Antonio Echeverría” (CUJAE), Cuba.
E-mail: lmgarcess@electrica.cujae.edu.cu

3	 Alejandro José Cabrera Sarmiento: B. Sc. and M.Sc. in Electrical Engineering,
Instituto Superior Politécnico “José Antonio Echeverría” (CUJAE), Havana, 	
Cuba. D. Sc. in Technical Sciences. Affiliation Automation and Computation

Woods, 2009). In this technique, each pixel is compared
to a threshold separating the foreground and background
in an image. The output of the thresholding operation is a
binary image. The uses of a bi-level information decrease

http://dx.doi.org/10.15446/ing.investig.v35n3.51750
http://dx.doi.org/10.15446/ing.investig.v35n3.51750

Simple generation of threshold for images binarization on FPGA

Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)70

the computational load and enable the utilization of the
simplified analysis methods compared to 256 levels of gray-
scale or color image information. For instance, in document
image analysis, where the goal is to extract printed characters,
the foreground can be represented by gray-level 0, that is,
black for text; and background by the highest luminance for
document paper, that is 255 in 8-bit images, or conversely:
foreground by white and background by black.

Another application of this technique is the motion
detection where the binarized image simplifies the count,
distance calculations and dimensioning of moving objects
(Das and Saharia, 2014; Liang, Haili, Tao, and Xiaomei,
2014; Pushpa and Sheshadri, 2014). Other areas such as the
processing of static medical images using the binarization
process presented in Humayun, Malik, and Kamel, (2011)
use several thresholds to segment the injured area of the
skin and improve medical diagnosis.

There are several algorithms in scientific literature aiming
at the binarization process. However, the lack of objective
measures to evaluate the performance of binarization
algorithms and difficulties in performing tests in an single
environment, where all types of algorithms for the same
purpose can be tested, motivated the study presented in
Sezgin and Sankur, (2004). This analysis is an attempt
to develop a unified note to the variety of binarization
algorithms. In this study, 40 methods to find the best threshold
are analyzed and classified. According to this study, there
is the large number of good algorithms to calculate the
threshold for binarization of an image. However, it may not
be stated that one of the methods presents a satisfactory
result for processing all kinds of images, such as images
that may present uneven lighting problems and objects at
different gray-levels, among others.

Studies on image binarization described in Sezgin and Sankur,
(2004) consider that the Otsu’s method is one of the best in
determining the threshold. Otsu’s method (Otsu, 1979) is a
popular technique for automatic global thresholding, which
can be used in a wide range of application, such as vehicle
license plates recognition (LPR), preprocessing fingerprint
image and separation and identification of skin lesions,
among others. This method is developed through statistical
calculations of mean and variance by image histogram in
order to find the threshold value.

The threshold calculated by Otsu’s method is considered
optimal to maximize the variance between classes, where
these classes represent an assignment of pixels to two or
more groups. The initial operation is to calculate a value
that provides the best separation between classes. For
this operation, the intensity values of the pixels are used
(Gonzalez, Woods, and Eddins, 2009). Figure 1 shows the
computational steps developed in Otsu’s method.

Figure 1.	 Otsu’s architecture (Jianlai et al., 2009).

In the Statistics Module (Figure 1), four functions are carried
out: the histogram calculation, the cumulative histogram,
the intensity area calculation and the accumulated intensity
area. All four functions are based on the histogram and
used to calculate the variance of the two classes (Jianlai,
Chunling, Min, and Changhui, 2009).

The Optimal Threshold Computation module (Figure 1)
is responsible for carrying out the comparison process to
choose the maximum variance between classes and inform
the optimal threshold through the corresponding index
(Jianlai et al., 2009).

The Otsu’s method and their approaches implemented on
FPGA (Field Programmable Gate Array) produce satisfactory
results in terms of speed and resource consumption when
analyzed individually (Ashari and Hornsey, 2004; Jianlai
et al., 2009; Tian, Lam, and Srikanthan, 2003). However,
the implementation of statistical calculations based on the
histogram for some types of images, can provide similar
results to other methods, therefore using more resources
of the FPGA. Furthermore, the process for obtaining the
threshold is only part of the binarization stage, which is
one of the simplest steps of an image processing system.
For example, processing systems may require memory
capacity to store a database used in the interpretation of
data in high-level steps, which have occupied part of the
histogram calculations. Thus, it proposes the development
of an algorithm to calculate the threshold in FPGA aiming
at mathematical simplicity, reduction of occupied resources
and values near the Otsu’s method. Hence, the aim of
this paper is to present a hardware alternative solution to
calculate the threshold value in only one image iteration
and automatically set this parameter to the binarization
block for the image process.

In order to check the results of the binarized images, the
article presents the visual results and calculates the values
in the hardware implementation over a group of 10 images
with different characteristics, which are compared with the
threshold calculated by Otsu’s method.

Implementation methodology
The implementation methodology used in Areefabegam and
Narendrakumar, (2014); Hamdaoui (2013); Saidani . (2009)
is employed in this work, adding the hardware simulation
results with area resources and speed optimization. In this
methodology, the image processing is implemented by
the Xilinx System Generator® (XSG) using model-based
design techniques in MATLAB®/Simulink® software. Hence,
continuous simulation during project development and
automatic code generation for the target architecture,
tend to decrease development time. The image processing
performed with XSG allows the use of optimizable and
configurable blocks according to the need of the designer.
This tool also permits the development and implementation
of embedded systems without thorough knowledge of
hardware programming languages (Albaladejo, Andrés,
Lemus, and Salvi, 2004; Ramos-Arreguín et al., 2010).

Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)

IENO, GARCÉS, CABRERA, AND PIMENTA

71

MATLAB®/Simulink® software, as a simulation and
development tool based on models, presents a graphical
environment and a series of configurable blocks with
partial solutions for some applications, including image
processing. Furthermore, the synthesis tool System
Generator® with Simulink® library enables the automatic
generation of code, such as VHDL.

Figure 2 shows the flow of the project through the MATLAB®,
Simulink®, Xilinx System Generator® and ModelSIM™. XSG
model-based design flow provides the interface between
Simulink® models and Xilinx tools for reconfigurable
devices. The Simulink® model (.mdl) describing the system
is compiled by XSG for simulation using Simulink® internal
or external simulators. ISE implementation tools obtain the
configuration (.bit) file to program the FPGA.

XSG offers three ways for the verification of the design:
functional simulation with Simulink®, functional and
temporal HDL simulations using ISIM or ModelSIM™
simulators, and HW co-simulation, where the HW part of
the design is implemented on a FPGA development board
and interacts with the rest of the Simulink® model. This
option creates a configuration file for the target device and
associates it to a new Simulink® block. The process allows
checking the algorithm functionality using HW in the loop.

Figure 2.	 Project development flow with System Generator (Xilinx, 2009).

The realization of the hardware co-simulation is achieved
through the XSG block ISE version 14.7 that performs the
compilation of the processing system. In the configuration,
the board and the connection interface with the development
board is selected. Thus, once the compilation is completed,
the system creates a new block called Model hwcosim
to be replaced in the processing system as presented in
Figure 3. The XSG is in charge of the synthesis, routing and
processed system configuration in the connected board
(Ramos-Arreguín et al., 2010). Therefore, there is an inflow
of the data from MATLAB® workspace to the board, which
is processed by the hardware and returns to MATLAB®.

The difference between the simulation and co-simulation
does not display the functional outcome, but does display
the difference between the response times. This is because
the synthesis influences the placement and routing of the
specific logic blocks of each physical device.

Figure 3.	 Implementation of co-simulation hardware (Xilinx, 2009).

Development methodology
For the calculation of the threshold of multiple images by
Otsu’s method, the MATLAB® function is used. These values
are collected and compared with the FPGA implementation.

Figure 4 presents the proposed steps for threshold
computation using a flowchart. It displays the use of
simple mathematical operations aiming to the use of a
small number of resources of the FPGA. The basic idea is
to separate the calculations of each average 3x3 window
into the highest and smallest values. These values are
separated by the median value between 0 and 255. The last
average computed after processing the entire image sets the
threshold value.

Figure 4.	 Proposed implementation flowchart.

In the iterative method presented in Gonzalez and Woods,
(2009), when the image background and the objects fill
a comparable size of areas, a good initial value for the
threshold is the average of gray-levels. Thus, for the area
occupied by small objects compared with the image
background, the average level is not the most appropriate
choice. Hence, the most appropriate value for the threshold
in these cases will be the median value between minimum

Simple generation of threshold for images binarization on FPGA

Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)72

and maximum gray-levels. Therefore, this choice restricts
the application of the proposed method for specific types
of images.

Figure 5 shows the proposed implementation on FPGA.
Initially, the image is loaded via a MATLAB® script (From
MATLAB Work-space), which converts a matrix in a column
vector containing all the pixels information to emulate a
real image stream. However, the operation performed by
the adder block (Add9) with the 3x3 window requires 9
pixels simultaneously available at its inputs. Thus, in order
to process these pixels at the same time, an initial delay
(Line Buffer) is needed to store two lines of the images. This
block and a matrix of register blocks (Matrix), perform the
parallelization of the 3x3 window passing over the image
received from MATLAB® workspace. The delay to obtain 9
valid pixels at the adder block is function of the number of
columns of the original image and the size of the processing
window (2x Number of Col-umns + 2).

Figure 5.	 Proposed threshold on FPGA.

The control block (Control) is responsible for generating
signals that separate the accumulated values by comparing
them with middle gray-level. This block receives the input
signal (Previous Stage) that enables the internal blocks.
Hence, when the first sum (Add9) operation is performed

using the valid data, a reset signal (Acc_rst) is sent to the
accumulators (Acc_hi and Acc_lo)) and counter (C_hi
and C_lo) blocks. These accumulators store the sums of the
highest (Acc_hi) and smallest (Acc_lo) averages obtained
for each 3x3 window in the image. In addition, it is used
to enable a signal to split the accumulation between the
highest and smallest values, which are initially present
at the inputs of both accumulators. As the number of
accumulated operations is unknown, the signals enable the
specific counter for the highest (C_hi) and smallest (C_lo)
averages. This number is used to perform the arithmetic
average of the accumulated values.

The division blocks (Div_hi and Div_lo) perform the
arithmetic average of the accumulated values. Thus, the
results of division blocks are added (Add2) and divided
(Av2) to compute the final arithmetic average. After
calculating the last average between the highest and
smallest accumulated values, the valid threshold signal
(En_bin) is generated, allowing the synchronization of the
binarization stage. Finally, this value is sent to MATLAB® (To
MATLAB Workspace) in order to be analyzed via a script.

The presented method performs iterative calculations with
windows only once on the all image, while maintaining
an initial fixed threshold in the middle gray-level. Hence,
the stopping criterion is the processing of the last pixel.
This criterion is adopted because the operations repeatedly
carried in all image pixels can derail the real-time
processing.

Implementation results
The implementation is developed in a Spartan-6 FPGA-
based board, where the resources consumption with the
smaller and the bigger image are analyzed. The images used
in this article are available in MATLAB® library and others
were obtained from the research team library. The pictures
chosen have different characteristics that can evaluate the
precision of the algorithm compared to the Otsu’s method.
The relative error (I) is used in order to check the difference
between the results of both methods, where δ is the relative
error, X1 is the value calculated by Otsu’s method and
X2 is the value obtained by the proposed method. The
approximation error (X1 − X2) is the discrepancy between
the value calculated by Otsu’s method and the proposed.

	 δ =
X1− X2
X1

	 (1)

The relative error is the approximation error divided by
the magnitude of the expected value. Hence, the negative
values represent more quantity of pixels than the expected
value in the background, and, otherwise, in the foreground
of the binarized image.

Table 1 shows the description of each image, the resulting
threshold calculated by Otsu’s method on MATLAB® and
the proposed method on FPGA. In addition, it presents
the percentage difference between these values. The
highlighted results in the Table 1 show the values that have

Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)

IENO, GARCÉS, CABRERA, AND PIMENTA

73

a higher relative error. These differences represent features
in the image that have been lost, being characterized as
background.

Table 1.	 Otsu’s threshold and proposed.

Gray-level images
Otsu’s
X1

Proposed
X2

Error
δ

1 - Objects in black background 121.992 118.95 2.49 %

2 - Objects in white background 114.0105 115.6 -1.39 %

3 - License plate 158.9925 152.75 3.93 %

4 - Tools 135.9915 129.2 4.99 %

5 - Fingerprint 105.009 115.6 -10.08 %

6 - Brain 88.995 105.6 -18.66 %

7 - Venous blood 83.0025 100.2 -20.72 %

8 - Skin lesion 117.9885 118.7 -0.60 %

9 - Blood cell 129.0045 127.35 1.28 %

10 - Heart 130.9935 127.95 2.32 %

Figure 6 shows the original image, obtained by binarization
using the threshold by Otsu’s method and through
implementation proposal. The visual perception of these
losses are used to just have an idea of the results, since this
type of analysis is very subjective.

Figure 6.	 Binarized images: a) Otsu’s method b) Proposed method.

Table 1 shows that results of threshold for pictures 1, 2, 3,
4, 5, 8, 9 and 10 are close to the Otsu’s method threshold
value. Furthermore, significant losses are not observed for
these images in Figure 6. Even though for images 6 and 7
the threshold calculated by the proposed method is further
than that presented by the Otsu’s method, displaying
losses can be considered irrelevant for some practical
applications. Hence, the results do not compromise the use
of the proposed method in practical applications such as
identification and counting of objects.

Table 2 shows the resources employed in the Spartan-6
FPGA-based development board (6slx100fgg484). The
implementation is applied to the smaller image (Figures 6
and 8 170x170 pixels) and the bigger image (Figures 6 and
7 470x570 pixels).

Table 2.	 Device Utilization – Spartan-6slx100fgg484-3.

Slice Logic
Image - 8

(170x 170)
Image - 7

(470x 570)
Available

Number used registers as: 533 (0.42%) 929 (0.73%) 126576

Number used LUTs as: 1060 (1.67%) 1272 (2%) 63288

Occupied Slices 337 (2.13%) 398 (2.52%) 15822

RAMB16BWERs 2 (0.75%) 2 (0.75%) 268

DSP48A1s 22 (12.22%) 22 (12.22%) 180

Among the blocks used for implementation on FPGA, the
division blocks have the highest possibility to improve
system response time. Additionally, working with binary
representation in fixed-point number and operands
with fewer bits results in approaches that improve
implementation performance. Thus, the division operation

Simple generation of threshold for images binarization on FPGA

Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)74

by 2-based power (Av2) implemented on FPGA employs
shift register that is faster and consumes fewer resources
than the division specific blocks. However, the division
operation on the accumulated results have not dividend
previously known, which leads to increased complexity
of these implemented blocks. Therefore, specific blocks of
division are also implemented.

The division specific block in XSG library has the option to
select between two algorithms to perform the operation.
The Radix2 algorithm is recommended for operand widths
less than 16 bits. This option supports both unsigned
(2’s complement) and signed divisor. The High_Radix
algorithm is recommended for operand widths greater
than 16 bits, although the implementation requires the
use of DSP48 specific blocks. This option only supports
signed (2’s complement) divisor and dividend inputs
(Xilinx, 2009).

Therefore, as in the proposed implementation the number
of bits representing the result of the accumulator is directly
proportional to the image size, the maximum frequency
is around 50 MHz for the division specific block with
High_Radix. In order to increase the system operating
frequency, the algorithm used by the divisor to calculate the
cumulative average is changed to Radix2. In this situation,
the frequency is significantly increased to 184.076 MHz.
However, the division is limited to integer numbers with
up to 16 bits, reducing the size of the image processed. On
the other hand, even with the reduction of three times the
operating frequency using the High_Radix algorithm, there
is the advantage of working with bigger images.

Conclusions
In this paper an algorithm to calculate the threshold for
image binarization using simple mathematical calculations
over a 3x3 window was proposed. It provides a new
threshold when the windows move to another region of the
image. The processing window allows to analyze 9 pixels
at the same time, instead of performing pixel-by-pixel
operations. Thus, through arithmetic average calculation, it
is possible to obtain results close to Otsu’s method.

Since the classification by the visual inspection is sometimes
subjective to each person observing the same image, there
is no way to say which is the best result. However, the
proposed method allows to obtain a threshold for images
binarization with under-resourced area of FPGA. The
results demonstrate that the presented method offers better
performance on images with homogeneously distributed
objects on a uniform background.

The use of System Generator model-based design flow
to implement the proposed algorithm speeds-up the
development time adding some abstraction levels to
traditional design flows using accurate simulations and
easily parametrizable blocks. Thus, this tool allows rapid
changes in the implementation aimed to the optimization
of the relation of execution speed and occupied area in the
device.

Acknowledgements
The authors acknowledge FAPEMIG, CNPq and CAPES,
a Brazilian Government entity focused on the training of
human resources, for their financial support.

References
Albaladejo, J., de Andrés, D., Lemus, L., & Salvi, J. (2004).

Codesign Methodology for Computer Vision Applications.
Microprocessors and Microsystems, (5-6), 303–316.

	 DOI:10.1016/j.micpro.2004.-03.010

Areefabegam, S. K., & Narendrakumar, T. (2014). FPGA Based
Design and Implementation of Image Edge Detection
Using Xilinx System Generator. International Journal of
New Trends in Elec-tronics and Comunication, 2,18–21.

Ashari, E., & Hornsey, R. I. (2004). FPGA Implementation of
Real-Time Adaptive Image Thresholding. In J. C. Armitage,
R. A. Lessard, & G. A. Lampropoulos (Eds.), (pp. 410–419).
DOI:10.1117/12.566861

Das, D., & Saharia, S. (2014). Implementation and Performance
Evaluation of Background Subtraction Algorithms.
International Journal on Computational Sciences &
Applications (IJCSA), 4 (2), 49–55.

	 DOI:10.5121/ijcsa.2014.4206

Gonzalez, R. C., & Woods, R. E. (2009). (3rd ed.). Tennessee:
Prentice Hall.

Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2009). (2nd
ed.). Gatesmark.

Hamdaoui, F., Khalifa, A., Sakly, A., & Mtibaa, A. (2013). Real
Time Implementation of Medical Images Segmentation
Based on PSO. In 2013 International Conference on
Control, Decision and Infor-mation Technologies (CoDIT)
(pp. 36–42). Hammamet, Tunisia: IEEE. DOI:10.1109/
CoDIT.2013.6689516

Humayun, J., Malik, A. S., & Kamel, N. (2011). Multilevel
Thresholding for Segmentation of Pigmented Skin Lesions.
In 2011 IEEE Interna-tional Conference on Imaging Systems
and Techniques (pp. 310–314). IEEE.

	 DOI:10.1109/IST.2011.5962214

Jianlai, W., Chunling, Y., Min, Z., & Changhui, W. (2009).
Implementation of Otsu’s Thresholding Process Based on
FPGA. In (Vol. 1, pp. 479–483). IEEE.

	 DOI:10.1109/ICIEA.2009.5138252

LLiang, Z., Haili, W., Tao, D., & Xiaomei, H. E. (2014).
Improving Inte-grality of Detected Moving Objects Based
on Image Matting. Chinese Journal of Electronics, 23(4),
742–746.

Otsu, N. (1979). A Threshold Selection Method from Gray-
Level His-tograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1), 62–66.

	 DOI:10.1109/TSMC.1979.4310076

Pushpa, D., & Sheshadri, H. S. (2014). Computationally
Efficient Al-gorithm for Detecting Moving Objects with
Moving Background. International Journal on Recent and
Innovation Trends in Com-puting and Communication
(IJRITCC), 2(11), 3605–3610.

Ramos-Arreguín, C. A., Moya-Morales, J. C., Ramos-Arreguín,
J. M., Pedraza-Ortega, J. C., Canchola-Magdaleno, S. L., &

Ingeniería e Investigación vol. 35 n.° 3, december - 2015 (69-75)

IENO, GARCÉS, CABRERA, AND PIMENTA

75

Vrgas-Soto, J. E. (2010). Metodología de una Etapa Básica
de un Sistema de Procesamiento de Imágenes Basado en
FPGA. In 9o Congreso Nacional de Mecatrónica, Puebla,
México (pp. 235–240). Pue-bla, México.Saidani, T., Dia,
D., Elhamzi, W., Atri, M., & Tourki, R. (2009). Hardware
Co-simulation for Video Processing Using Xilinx System
Generator. , , 3–7.

Saidani, T., Dia, D., Elhamzi, W., Atri, M., & Tourki, R. (2009).
Hardware Co-simulation for Video Processing Using Xilinx
System Generator. Proceedings of the Word Congress on
Engineering, I, 3–7.

Sezgin, M., & Sankur, B. (2004). Survey over Image
Thresholding Techniques and Quantitative Performance
Evaluation. Journal of Electronic Imaging, 13(1), 146–168.

	 Doi:10.1117/1.1631315

Tian, H., Lam, S. K., & Srikanthan, T. (2003). Implementing
Otsu’s Thresholding Process using Area-Time Efficient
Logarithmic Ap-proximation Unit. In Proceedings of the
2003 International Sympo-sium on Circuits and Systems,
2003. ISCAS ’03. (Vol. 4, pp. IV–21–IV–24). IEEE.

	 Doi:10.1109/ISCAS.2003.1205763Xilinx. (2009).
	 The MathWorks Design Tools and Service. Retrieved from

http://www.xilinx.com

Xilinx. (2009). The MathWorks Design Tools and Service.
Retrieved from http://www.xilinx.com

