
A model for automatic categorization of software

applications using non-parametric clustering and bytecode

analysis.

Javier Ricardo Escobar Avila
Ingeniero de Sistemas

Universidad Nacional de Colombia
Facultad de Ingeniería

Departamento de Ingeniería de Sistemas e Industrial
Bogotá, D.C.
Mayo de 2015

A model for automatic categorization of software

applications using non-parametric clustering and bytecode

analysis.

Javier Ricardo Escobar Avila
Ingeniero de Sistemas

Thesis Work to Obtain the Degree of
Magister en Ingeniería - Sistemas y Computación

Advisor
Mario Linares Vásquez, Ph.D(c)

PhD(c) Computer Science

Coadvisor
Jairo Hernan Aponte Melo, Ph.D.

Doctor en Ingeniería de Sistemas y Computación

Universidad Nacional de Colombia
Facultad de Ingeniería

Departamento de Ingeniería de Sistemas e Industrial
Bogotá, D.C.
Mayo de 2015

Title in English

A model for automatic categorization of software applications using non-parametric
clustering and bytecode analysis.

Título en español

Un modelo para la categorización automática de aplicaciones de software usando clustering
no paramétrico y análisis de bytecode

Abstract: Automatic software categorization is the task of assigning software systems or
libraries to categories based on their functionality. Correctly assigning these categories is
essential to ensure that relevant libraries can be easily retrieved by developers from large
repositories. State of the art approaches rely on the semantics re�ected by identi�ers
and comments in the source code of the libraries in order to determine their category.
However, these approaches fail when the source code of the libraries is not available.
In this document, we describe a novel approach for the automatic categorization of
Java libraries, which needs only the bytecode of a library in order to determine its cate-
gory. We show that the approach, based on Dirichlet Process Clustering with automatic
labeling, is able to successfully categorize libraries from the Apache Foundation Repository.

Resumen: Categorización automática de software es la tarea de asignar categorias o
etiquetas a aplicaciones o librerias para representar su funcionalidad. Una asignación
correcta de estas categorías es esencial para asegurar que las librerias puedan ser fácilmente
consultadas y recuperadas por los desarolladores, cuando estos últimos usan grandes
repositorios de software. Técnicas actuales se basan en la información semántica re�ejada
en los identi�cadores de código fuente y sus comentarios con el objetivo de determinar
su categoría. Sin embargo, estas técnicas no son adecuadas cuando el código fuente de
las aplicaciones o librerias no está disponible. En este documento, se describe una nueva
técnica para la categorización automática de librerias escritas en Java, la cual necesita solo
el bytecode de las librerias para asignarles una categoría. Este documento muestra que la
técnica, basada en Dirichlet Process Clustering con etiquetado automático de clusters, es
capaz de categorizar exitosamente librerias almacenadas en el repositorio del la Fundación
Apache.

Keywords: Software categorization, bytecode, non-parametric clustering, automatic
labeling

Palabras clave: Categorización de software, bytecode, clustering no paramétrico, etique-
tado automático

Acceptation Note

Thesis Work

Jury
Sonia Haiduc

Jury
Luis Fernando Niño

Advisor
Mario Linares Vásquez

Coadvisor
Jairo Hernan Aponte Melo

Bogotá, D.C., Mayo 11 de 2015

Dedication

This work is dedicated to Angela, who encouraged me all the time. Likewise, to my parent,
brothers and specially to my aunt Laura, who always o�ered their support.

Acknowledgments

I am and will always grateful to my advisors Mario Linares Vásquez and Jairo Aponte,
who have done an invaluable contribution to my professional training and so it has made
me a better person. Their dedication and guidance were the major factor that allow me
to reach the dissertation goal.

I express my grateful to the members of ColSWE research group from Universidad
Nacional de Colombia and SERENE group from Florida State University for their time
and feedback. Their opinions contributed a lot to the objectives of this thesis.

To my love, Angela, thanks for her unconditional support and sacri�ce which encourage
me to achieve this goal. I also grateful with my family, for their patience and support.

Finally, thanks to all those who supported me to write and conclude this thesis.

Contents

Contents I

List of Tables III

List of Figures IV

1. Introduction 2

1.1 Background and Justi�cation . 2

1.2 Problem De�nition . 4

1.3 Contributions . 5

1.4 Goal . 6

1.5 Outline . 6

2. Related work 8

3. Software categorization using bytecode and DPC 11

3.1 Data extraction . 11

3.1.1 Source code identi�ers . 12

3.1.2 Software pro�les and categories . 13

3.2 Preprocessing . 13

3.3 Model construction . 13

3.3.1 Clustering bytecode documents . 15

3.3.1.1 TF-IDF and the Vector Space Model 15

3.3.1.2 Non-relevant terms removal and Documents resizing 16

3.3.1.3 Dirichlet Process Clustering . 16

3.3.2 Automatic labeling using the bag-of-words representation of categories 18

3.4 Categorization of new projects . 19

I

CONTENTS II

3.5 Summary . 19

4. Experiments and results 20

4.1 Experimental design . 20

4.1.1 Research questions . 21

4.1.2 Analysis Method . 22

4.1.2.1 Research Question 1 . 22

4.1.2.2 Research Question 2 . 23

4.1.2.3 Research Question 3 . 24

4.1.2.4 Research Question 4 . 27

4.2 Data Extraction Process . 28

4.2.1 Apache Software Foundation dataset (ASF dataset) 28

4.2.2 Survey . 30

4.3 Results . 33

4.3.1 Single label (RQ1) . 33

4.3.2 Multi-label results (RQ2) . 34

4.3.3 Generalization (RQ3) . 38

4.3.3.1 Analysis of the open questions . 39

4.3.4 Comparison (RQ4) . 41

4.4 Threats to validity . 41

4.5 Lessons learned . 42

5. Conclusions and Future Work 45

5.1 Conclusions . 45

5.2 Future work . 46

Bibliography 48

List of Tables

4.1 Composition of the di�erent datasets used to answer RQ4 27

4.2 Java projects used in the survey . 31

4.3 Examples of ASF libraries categorized using DBYCAT. These examples were
taken from the testing datasets in the 10-fold cross validation process 43

4.4 Values for the Kolmogorov-Smirnov and Shapiro-Wilk tests 44

4.5 Values for the Kruskall-Wallis test . 44

III

List of Figures

3.1 Automatic software categorization model (DBYCAT) based on bytecode
code analysis and non-parametric clustering . 12

3.2 Example of a software pro�le. (a) Software pro�le of Apache CouchDB
provided by its main web page, (b) Software pro�le of Apache CouchDB
o�ered by the Apache Software Foundation. Note that the repository o�ers
a set of categories to summarize the purpose of the library. 14

3.3 Algorithm to automatically assign tags to clusters. I. DBYCAT extracts
the relevant terms of each cluster forming a vector. II. A cosine similarity
is computed among each centroid and the set of vectors of the categories
VSM. III. DBYCAT assigns the closest category to the software projects
belonging to the cluster. 18

3.4 Algorithm to automatically assign tags to new software projects. 19

4.1 Distribution of projects per category in the ASF dataset 29

4.2 Distribution of categories per project in the ASF dataset 29

4.3 Example of the information provided by the ASF web page about a software
library . 29

4.4 Distribution of the participants of the survey according to a) their occupa-
tion, b) their experience, and c) their age . 30

4.5 Example of a question in the survey used as instrument to validate the
correctness of the suggested categories. 32

4.6 Training accuracy and testing accuracy values obtained for the 10 steps in
the cross-validation process . 33

4.7 Precision@k and recall@k values for k=1,2,3,4,5 in each 10-fold validation
step using the training dataset. The x-axis shows the number of each step
in the 10-fold cross validation process . 35

4.8 Precision@k and recall@k values for k=1,2,3,4,5 in each 10-fold validation
step using the testing dataset.The x-axis shows the number of each step in
the 10-fold cross validation process . 36

4.9 Average values of Precision@k and recall@k for k=1,2,3,4,5 37

IV

LIST OF FIGURES V

4.10 Mean average precision for each step in the 10-fold cross validation process
for (a) the training datasets, and (b) the testing datasets 37

4.11 Reciprocal Rank and Mean Reciprocal Rank values for the single-label cat-
egorization of non-ASF projects . 38

4.12 Values of precision@k for the multi-label clasi�cation of non-ASF software
projects. 39

4.13 Values of Normalized Discountive Cumultive Gain for the ranked results of
the multi-label classi�cation of non-ASF software projects. 40

LIST OF FIGURES 1

<

CHAPTER 1

Introduction

1.1 Background and Justi�cation

Software reuse is de�ned as the use of software artifacts and libraries already developed in
the implementation of new software applications. Software reuse enables developers and
organizations to:

• Improve productivity: Time to market of applications is lesser because some function-
ality (mostly generic functionalities as logging, database access, transactions man-
agement, etc.) is delegated to software components previously built and tested.

• Improve quality: The construction of reusable software libraries can use an strict
testing plan, which guarantees its quality. Therefore, the testing plan of a new appli-
cation only focuses on testing the new source code. Additionally, a highly used library
is followed by a community of users and developers concerned about its quality.

• Improve application performance: A widely reuse of a library encourages developers
to improve its source code and architecture in order to increase its quality. This
means that developers carry out a constant maintenance and improvement activity,
launching new releases of the library. Each new version of this reusable library can
upgrade the performance of applications which make use of it.

Likewise, Mohagheghi and Conradi [29] report, using a review of previous works ori-
ented to software reuse in the industry between 1994 and 2005, that practicing reuse:

• Reduce errors and failures density.

• Decrease the e�ort required for implementing a new application.

• Reduce signi�cantly reworking on source code, using systematic software reuse

• Improve the assignment of sta�, taking advantage of their experience, because the
specialized developers are in charge of building reusable assets.

• Improve the reuse without modi�cation (black box reuse) in large projects.

2

CHAPTER 1. INTRODUCTION 3

• Improve software comprehension, because reusable components are built with
reusable architectures and enhanced abstractions.

Software repositories support software reuse through the centralization and indexation
of reusable software assets, particularly software libraries. These repositories, such as
SourceForge1, OpenHub2, and Maven Central3 o�er a single place to search and retrieve
software libraries to be reused in existing or new application. The success of this model
is evidenced by the large number of software libraries hosted in the repositories, which
increases on a daily basis. For example, Maven Central contains more than 90 thousand
unique artifacts4 and OpenHub contains more than 300 thousand projects (however most
of them are inactive)5.

Given the size and the changeability of the software repositories, there is therefore
the need to ensure that these libraries remain easily accessible to developers. Previous
work initially focused on building indexes or search engines to look for libraries in these
repositories; for example [23] and [12] used documentation of software libraries to create
information retrieval systems to support the identi�cation of software applications.

Nowadays, a common approach to support this task is to assign a set of keywords or
categories to software libraries which describe its purpose or main functionality. Developers
of this libraries can assign these categories by hand by either coming up with new labels
or choosing among the ones already de�ned by the software repository, which is a time-
consuming activity[14]. For example, if the repository does not o�er a proper category for
a new application, the developer should search and de�ne by hand the most appropriate
category, even though this is not accurate at all. On the other hand, if the software
repository does not provide a prede�ned set of categories, the developer will assign arbitrary
labels which can increase the complexity of the retrieval process.

Automatic categorization of software libraries reduces the manual e�ort required for
assigning a category to a library[28]. Previous works have proposed successful techniques
based on information retrieval and text classi�cation approaches [15, 16, 14, 28, 45, 22].
The main input of existing approaches is the source code of the libraries, leveraging the
text found in identi�ers and comments to extract semantics about the functionality of the
library. The reasoning behind these approaches is that the vocabulary used to name the
source code identi�ers is closely related with the application domain of the library. Thereby,
information retrieval approaches can extract this knowledge in order to summarize the main
purpose of the library. The main limitation of these techniques is that the source code is
not always available, as in the case of repositories with proprietary libraries. To deal with
this limitation, a new type of approach is needed, which relies only on artifacts that are
always available.

The Java environment is an interesting place to design automatic categorization ap-
proaches. In the �rst place, its one of the most used programming languages6, and the
design of the programming language enables to obtain the semantics about the function-
ality of the code from the compiled artifacts: the source code of the applications written
in Java is �compiled� in a set of instructions to be interpreted by the Java Virtual Ma-

1http://sourceforge.net/
2https://www.openhub.net/
3http://search.maven.org/
4http://search.maven.org/#stats
5https://www.openhub.net/explore/projects
6http://spectrum.ieee.org/computing/software/top-10-programming-languages

http://sourceforge.net/
https://www.openhub.net/
http://search.maven.org/
http://search.maven.org/#stats
https://www.openhub.net/explore/projects
http://spectrum.ieee.org/computing/software/top-10-programming-languages

CHAPTER 1. INTRODUCTION 4

chine. This set of instructions is called bytecode. Since the bytecode is needed to run the
application, it will always be available. While some information is lost in the compilation
process (e.g., comments), the bytecode still contains most of the textual information found
in the source code (i.e. the identi�ers). The bytecode can therefore constitute a good
replacement for source code in the process of automatic library categorization.

1.2 Problem De�nition

In the same manner that developers implicitly introduce knowledge about the application
domain and functionality of a software library � through proper names for source code
identi�ers�, they explicitly introduce the same knowledge in the pro�les and main web
pages of the software projects. Commonly, developers release a software library using i) a
web page with a text description of the library �in some cases a detailed description�, or
ii) a software repository with a particular software pro�le. A software pro�le is composed
by a high-level text description of the library, and in most of the cases, a set of tags
or categories which succinctly summarize the functionality or application domain of the
library. Therefore, if the pro�les of several software libraries contain the same category, it
means that such libraries may share the same application domain, and additionally, they
may have implemented similar functionalities. Previous work have used software pro�les
to categorize software applications [45]. Thus, at this point, there are two approaches
to extract the semantics about the functionality of a library: i) using the source code
identi�ers, or ii) using the text and categories extracted from software pro�les.

If a particular software repository contains only the bytecode of its libraries (i.e. the
source code is not available), and additionally these libraries were not categorized by their
developers, an automatic approach can analyze the bytecode to create clusters, identifying
similar libraries that share some semantics about its functionality. Nevertheless, these
clusters are not useful by their own because there is not an easy way to describe the
common properties or semantics within each cluster, so we need an human readable way
to describe each cluster. What we do know at this point is that libraries in each cluster
were created using similar vocabulary related with a particular application domain, so we
could use this vocabulary in some way to create a succinct and human readable description
to the cluster.

In addition, we can create descriptions for a particular set of categories, which are
provided by other software repositories. Using the text of the pro�les of the libraries
tagged with a category, we can extract the semantics about the functionalities of those
libraries, and with these semantics, we can obtain the relevant vocabulary used in the
construction of such software pro�les. At the end, we will get in one hand, clusters of similar
applications (created through the analysis of bytecode) and the relevant vocabulary used
by the application within each cluster; and in the other hand, a description of each category
(created through the analysis of software pro�les) represented by the relevant vocabulary
used in the pro�les of the pro�les tagged with that category. If we identify a strong
relationship between the vocabulary extracted from a particular cluster and the vocabulary
extracted from a particular category, we can assign the category to the cluster, which in
turn means that the libraries contained in the cluster are automatically categorized.

However, there are inherent issues related with the clustering process of the bytecode
libraries. The �rst one, the size and changeability of a software repository, together with

CHAPTER 1. INTRODUCTION 5

the unstructured nature of the bytecode, do not allow to know beforehand the number of
clusters that can be identi�ed; indeed, the unstructured nature of bytecode lead to model
the clustering process with a potentially in�nite number of cluster, since the combinations
of source code identi�ers in a software library are virtually in�nite. In this sense, clustering
algorithms such as k-means (and its variations), or information retrieval approaches such
as Latent Dirichlet Allocation (LDA) which need the number of topics (widely known as
k) as a parameter are not appropriate to perform the task previously described. Another
issue is related with the description and the nature of each cluster; each cluster should be
constructed based on the similarity of the semantics about functionality of the software
libraries, and these common semantics should be represented by the clustering algorithm.
Hierarchical clustering algorithms such as Hierarchical Agglomerative Clustering (HAC)
with single-linkage, average-linkage or complete-linkage schemes, and density based clus-
tering algorithm such as DBSCAN can identify automatically the number of clusters in
the dataset, but do not represent the common semantics within each cluster; particularly,
HAC would need a cut point in the dendogram to obtain a con�guration of clusters to
model several groups of libraries. Therefore, we need an algorithm that i) can model an
arbitrary and unknown number of clusters, and ii) can o�er a description about the seman-
tics within each cluster. To overcome these limitations, we use Dirichlet Process Clustering
(DPC), which is used in non-parametric models of data, particularly in Bayesian mixture
models. DPC is able to recognize the distribution representation of the data without a
target number of clusters, therefore this algorithm meets our �rst condition. Addition-
ally, DPC assumes that each component (cluster) is generated by a particular probability
distribution; if that probability distribution is described by the vocabulary given by the
semantics contained in the cluster, we can obtain a description of the clusters, which meets
our second condition. DPC is called a non-parametric clustering algorithm because it does
not need the number of clusters as parameter.

1.3 Contributions

In this sense, this document presents an approach called DBYCAT (Dirichlet-based
BYcode Software CATegorization), which leverages the bytecode and software pro�les
to automatically categorize software libraries. The bytecode is extracted from the soft-
ware libraries to be categorized, then similar libraries are grouped using Dirichlet Process
Clustering, a non-parametric clustering algorithm. Finally, the clusters are automatically
labeled using existing categories extracted from software pro�les stored in software reposi-
tories. The trained model then can be used to categorize a new library assigning it to one
of the existing clusters; since the clusters were previously labeled with categories, these
categories become the new categories of the library.

Then, the principal capabilities of DBYCAT are:

1. It can automatically categorize libraries written in Java whose source code is not
available, through the analysis if its bytecode.

2. It does not need the number of clusters as a parameter, because it is able to determine
the appropriate number of clusters.

CHAPTER 1. INTRODUCTION 6

3. It automatically assigns categories to the clusters, comparing the vocabulary of the
libraries within each cluster with the vocabulary present in software pro�les tagged
with a particular category.

4. Given a baseline of categorized libraries in a repository using DBYCAT, it can addi-
tionally suggests relevant categories to new software libraries, measuring the similar-
ity of the vocabulary of the new library with the relevant vocabulary present in the
existing clusters. The categories previously assigned to the closest cluster becomes
the suggested categories for the new library.

1.4 Goal

This thesis aims at de�ning and implementing a software categorization model

via non-parametric clustering with automatic labeling, using the extraction of

features from java bytecode statements.

We de�ned the following sub-goals:

• Build a bag-of-words representation for domain categories of software repositories, in
particular the categories in Apache Software Foundation.

• De�ne a non-parametric software clustering model based on the automatic extraction
of features from Java bytecode statements.

• De�ne an automatic labeling process for software clusters using the bag-of-words
representation of prede�ned domain categories in a software repository.

• Validate the accuracy of the model (clustering and automatic labeling) using a cross-
validation study (i.e., using labeled applications from Apache Software Foundation).

• Validate the accuracy of the model (clustering and automatic labeling) using a user
study (i.e., asking users to validate the correctness of the categories provided by the
model).

And in general, this thesis makes the following contributions:

• An approach, DBYCAT, for automatic categorization of software libraries, which is
ideal in environments where the source code is not available; and

• An empirical study with 17 participants which evaluated the relevance of the cate-
gories suggested by DBYCAT to 15 software systems randomly chosen.

1.5 Outline

This document is structured as follows:

• Chapter 2 presents an brief survey of existing techniques and tools addressing auto-
matic software categorization, clustering to support software engineering tasks, and
applications of bytecode analysis.

CHAPTER 1. INTRODUCTION 7

• Chapter 3 introduces the model for automatic software categorization using non-
parametric clustering on Java bytecode.

• Chapter 4 details the validation process using an experiment involving libraries re-
trieved from Apache Software Foundation and a survey.

• Chapter 5 draws the conclusions and future work.

CHAPTER 2

Related work

Previous work have focused on developing automatic tools to index and retrieve retrieve
software artifacts from repositories. In particular, search engines and automatic catego-
rization approaches have been proposed, which leverages the lexical information contained
in such software artifacts. Earlier approaches focused in the construction of indexes, to be
used as a search engines. GURU[23] and Exemplar[11, 10, 27] are two examples of this
type of systems:

Maarek et al. [23] proposes a technique to create indexed software repositories, through
the use of information retrieval algorithms. A retrieval system called GURU let easily
explore similar components to help reuse. The system uses the documentation provided
with the software packages (e.g. man in UNIX); then an indexing space is built, where
the similarity between components is computed by its syntagmatic lexical a�nity. Similar
applications are detected by clustering common terms among components.

Exemplar [11, 10, 27] is a search engine to �nd highly relevant software projects through
the analysis of calls to APIs made by the applications. When a user enters a query,
Exemplar searches for API calls which are relevant for that query, then it suggests the
set of applications that use the set of API calls. Exemplar was implemented through
two crawlers; the �rst one retrieved a great amount of projects from SourceForge and the
second one traversed this information to create the search engine.

Then, approaches to summarize the purpose of the libraries were proposed, which
are mostly focused on the analysis of the source code of the software applications. The
reasoning behind most of these techniques is that developers introduces their knowledge
about a particular application domain into the source code using the vocabulary of such
domain to create source code identi�ers. Thus, automatic approaches based on information
retrieval and natural language processing can automatically identify this vocabulary to
label the applications with meaningful categories.

Kawaguchi et al [15] three approaches to automatically categorize software systems
thorough the analysis if its source code. The �rst approach uses a similarity measure for
software systems based on the code clones that those systems shares. The second one uses
a traing dataset to create classi�cation criteria based on a decision tree. The last one uses
Latent Semantic Analysis (LSA) and cosine similarity to evaluate the similarity of software
systems belonging to the same category.

8

CHAPTER 2. RELATED WORK 9

Kawaguchi et al. [16] introduces MUDABlue as a tool for automatic software catego-
rization. MUDABlue uses an algorithm that (i) extracts source code identi�ers (variable
and method names); (ii) creates a matrix with the identi�ers; (iii) removes outliers; (iv)
de�nes the categories grouping the identi�ers; (v) �nds the software clusters from the clus-
ters of identi�ers; (vi) sets the title of each software cluster, de�ning its main category.
The experimentation used software projects extracted from SourceForge.

Another approach is proposed by Kuhn et. al. [19, 21], using a technique called
semantic clustering that de�nes the semantic similarity between source code identi�ers.
Based in Latent Semantic Analysis, which is a statistical method to induce and represent
the aspects of the meanings of the words and sentences (documents) wrote in natural
language, generating representations of the documents through real value vectors, this
technique: (i) preprocesses the source code; (ii) applies LSA to represent source code
attributes; (iii) perform the clustering using a similarity measurement over source code
representations; (iv) automatically assigns the clusters tags. The experimentation process
was realized with JEdit and JBoss , two open source Java projects.

LACT[14] is a technique for automatically categorize software systems, which is based
on Latent Dirichlet Allocation. Given a document which represents a software library ,
LACT uses LDA to model a mixture of topics, and each topic as a distribution over words.
Thus, each software system can be described with a particular set of topics. To generate
the categories, LACT takes the topics found by LDA in the whole corpus and computes
the cosine similarity between each pair of topics; at the end, the closest topics are clustered
together to build a category. LACT provided comparable results as MUDABLue.

McMillan et. all. [28] and Linares-Vasquez et. al.[22] have used the calls to external
Application Programming Interfaces (API) to categorize software applications. Software
applications retrieved form SourceForge and Sharejar were parsed in order to extract pack-
age names and classes names of APIs called by these applications. Then, the proposed
approaches used several machine learning-based algorithms such as decision trees, Naïve-
Bayes classi�er and Support Vector Machines, to perform the categorization. It should be
noted that the applications retrieved from Sharejar did not contain source code, so in their
work the bytecode of the applications was used to support the automatic categorization.

Wang et. al. [45] describes an approach to categorize software application leverag-
ing their pro�les. The pro�le of an application commonly contains a description of the
project and a set of tags, Additionally, a software project can have a di�erent pro�le in
several repositories. Thus, this approach takes the pro�les of software projects from several
repositories to categorize them. The study uses the set of labels provided by SourceForge,
building a local binary classifer (using Support Vector Machines) to estimate whether a
software application belongs or not to a particular category.

The main di�erences between DBYCAT and the previous approaches is that DBYCAT
only relies on the analysis of bytecode. Although is true that [28] and [22] used bytecode to
categorize software applications, it should be noted that these previous works used just an
small subset of the information (i.e. calls to APIs) that could be extracted from bytecode.
In this sense, DBYCAT has an advantage over previous works because it can be used in
environments where the source code is not available.

Moreover, clustering algorithm have been used to support software engineering tasks,
such as the discovery of API usage patterns [1], software clustering and architecture re-
covery [17, 3, 33, 46], bussiness rules recovery [32], code clones detection [30, 13], program

CHAPTER 2. RELATED WORK 10

comprehension [21, 24, 34] and quality assesment [8, 39, 7, 2, 37, 35, 20, 6, 38]. The most
used clustering algorithm in this set of previous works are Hierarchical Agglomerative Clus-
tering [3, 46, 21, 34, 8, 39, 2, 35, 20, 6] and K-means with its variations [37, 1, 44, 32].
Therefore, DBYCAT contributes to the software engineering community through the ex-
ploration of a di�erent clustering algorithm, Dirichlet Process Clustering, which does not
need previous knowledge about the number of clusters

CHAPTER 3

Automatic software categorization using

non-parametric clustering on Java bytecode.

The main principle of DBYCAT is that it builds a model for the categorization of software
libraries based on a set of training data and uses this model in order to categorize new
libraries. DBYCAT �rst clusters similar libraries together using information extracted
from their bytecode. Then, the high-level text descriptions of the libraries in the training
dataset (i.e., �pro�les�) are used to determine the most appropriate category (or label) for
each cluster. The proposed approach follows several main steps: (i) data extraction, (ii)
text preprocessing, (iii) model construction (which describes the clustering process and
the automatic labeling process), and (iv) the categorization of new projects. In the data
extraction step (Section 3.1), DBYCAT builds a training dataset composed by bytecode of
software applications and text extracted from software pro�les; together with the pro�les,
the set of categories to be used by DBYCAT are de�ned as well. Then, the preprocessing
step (Secion 3.2) remove noise and meaningless information from the training dataset.
The model construction step (Section 3.3) performs the clustering using the bytecode, and
automatically labels the clusters with categories extracted from software pro�les; therefore,
the software libraries within each cluster are categorized using the labels assigned to the
clusters. At this point, DBYCAT have built a categorization model, composed by the
labeled clusters; this categorization model can be used to categorize new software libraries

which are not originally in the training dataset (Section 3.4).

These mains steps are shown in Figure 3.1 and described in the following sub-sections.

3.1 Data extraction

The data extraction step builds the dataset to train the model. This dataset is composed
by: i) the source code identi�ers which are extracted from the bytecode of the software
libraries, and ii) the pro�les and categories of these software libraries, extracted from its
web pages or extracted from a software repository.

11

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 12

Figure 3.1. Automatic software categorization model (DBYCAT) based on bytecode code anal-
ysis and non-parametric clustering

3.1.1 Source code identi�ers

The identi�ers of the source code entities can be found in the Java bytecode, which is
commonly released as .class �les 1. The set of .class �les containing all the instructions
of an entire Java application are commonly deployed using �les with .jar, .war or .ear
extensions (for simplicity, these �les are going to be referred just as .jar �les). Therefore,
the �rst part of the training dataset is constructed with the set of .jar �les of the software
libraries that will be used to train the model. Each library in this set is analyzed using
the Bytecode Engineering Library (Apache Commons BCEL)2[42], which o�ers an object
oriented representation of the source code entities found in the bytecode.

Using this object-oriented representation provided by BCEL, DBYCAT extracts the
identi�ers of the following object-oriented programming entities: classes, �elds or at-
tributes, methods, arguments in methods and local variables. These names can be
obtained with its Fully Quali�ed Name (FQN) which is composed by the sequence of pack-
age names in which the entity is stored, ended with the identi�er. Except for the identi�er,
a set of classes in the same package, and their methods share the same sequence of package
names in the root of its FQN, so these roots do not provide distinguishing information;
therefore, the roots of the FQN are ignored and only the last portion of the FQN �i.e. the
name of the class or method� is preserved. At the end, all the source code statements suc-
cessfully extracted from the bytecode of a single software library are compiled in a single
text �le, which can be considered as a document. For processing purposes, this text �le is
named using the name of the software library. The �rst part of the training dataset then is
composed by the �bytecode� documents of the software libraries used to train the model,
where each document contains the source code identi�ers of a single software library.

1A .class �le is the result of compiling a .java �le. Then, the Java Virtual Machine uses the sequences
of bytecode in the .class �le to execute a program

2Apache Commons BCEL (The Byte Code Engineering Library) is �intended to give the users a conve-
nient way to analyze, create and manipulate (binary) Java class �les (those ending with .class)�.

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 13

3.1.2 Software pro�les and categories

Moreover, DBYCAT uses the pro�les of software projects as the main input of the au-
tomatic labeling process. A software project pro�le is the description of the main func-
tionality or application domain of a software library, which normally is provided by its
developers. The pro�le of a software library can be found in two ways: (i) Using the
web page of the software library, and (ii) If the software library is hosted in a software
repository (e.g SourceForge and Apache Software Foundation), then the repository can
provide a short description of the project. Additionally, the software repository can o�er
a set of categories or tags which describe the purpose or main functionality of the library.
For DBYCAT, both sources of information are important: examining the web page of a
software project is useful to obtain relevant terms and vocabulary related to the function-
ality of the library, and the categories provided by the repository are used as labels for
the clusters that DBYCAT use to characterize the training dataset and to automatically
categorize new applications.

The pro�les described in the web pages of the software libraries in the training dataset
were extracted by hand, forming a text �le or document with all the text re�ecting the
functionality of the project. Since a software repository can provide a set of categories
for each library in the training dataset, DBYCAT extracts the set of di�erent categories
that developers assigned to the libraries of the training dataset; an example of a software
pro�le is shown in Figure 3.2. Finally, for each category, DBYCAT builds a document
containing the text of all of the pro�les of the software libraries previously labeled with
this category. For example, since MySQL, HSQLDB and PostgreSQL are software systems
related with databases, a single document called database should contain the text of the
pro�les extracted from the web pages of such systems.

Thus, the training dataset of DBYCAT is composed by the set of document containing
the bytecode of the libraries � one document per library �, and the set of documents
containing the pro�les of the libraries per category �one document per category.

3.2 Preprocessing

DBYCAT uses information retrieval techniques to preprocess the documents in the training
dataset. This process starts with tokenization, taking into special account the CamelCase
style present in bytecode. After a lower case transformation, DBYCAT �lters English stop
words, numbers, java reserved words and java common words (e.g. object and string).
Finally, the remaining terms are stemmed using the Porter algorithm[43]. A custom pre-
processor built at top of Apache Lucene3 performs the preprocessing steps.

3.3 Model construction

DBYCAT builds an automatic software categorization algorithm based on the clustering
of similar bytecode documents. Then, the model automatically assigns tags to the clusters
using the bag-of-word representation of existing categories. A detailed explanation of this
process is presented as follows:

3http://lucene.apache.org/core/

http://lucene.apache.org/core/

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 14

Figure 3.2. Example of a software pro�le. (a) Software pro�le of Apache CouchDB provided by
its main web page, (b) Software pro�le of Apache CouchDB o�ered by the Apache
Software Foundation. Note that the repository o�ers a set of categories to summarize
the purpose of the library.

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 15

3.3.1 Clustering bytecode documents

Source code is intended for humans, not for computers. In this sense, the vocabulary used
to name the source code identi�ers of a software library should relate with its functionality
and domain. Thus, the use of this vocabulary related with a speci�c topic along the source
code can be leveraged to recover its semantics[19]. Therefore, through the identi�cation of
the semantics of a set of software libraries, DBYCAT can group them taking into account
the similarity among the relevant terms that describe the purpose of each library.

3.3.1.1 TF-IDF and the Vector Space Model

The extraction of the vocabulary related with the application domain of a software library
is carried out through the detection of the relevant terms of each bytecode document.
DBYCAT starts using a bag of words representation of each software project; with this
view, each bytecode document becomes a set of tuples which in turn are composed by
a term and its weight regarding the document[25]. At the end of this step, the weights
represent the relevance of the terms in a document.

DBYCAT computes the relevance of the terms using TF-IDF weighting. This tech-
nique assigns to a term t contained in a bytecode document d a weight using the following
scheme[25]:

tf_idft,d = tft,d × idft· (3.1)

Where tft,d or term frequency is the number of occurrences of the term t in document
d. For the second part of equation 3.1, the inverse document frequency of the term t in
the collection of documents (corpus) is given by the following equation:

idft· = log
N

dft
(3.2)

Where N is the number of documents in the corpus and dft is the number of occurrences
of the term t in the corpus.

According to [25], tf_idft,d of a term is:

• Highest when t occurs many times within a small number of documents.

• Lower when t occurs fewer times in a document, or occurs in many documents.

• Lowest when t occurs in virtually all documents.

At this point, DBYCAT has transformed each document into a set of terms along with
a measure of their relevance, but additionally, has detected all the terms contained in the
corpus; this set of terms is called a dictionary from identi�ers or i-dictionary. Taking into
account this i-dictionary, each set of terms is seen as a vector formed by the weights given
by (3.1). For i-dictionary terms that do not occur in a document, the weight is zero. At
the end, DBYCAT builds a vector space model which is a representation of documents in
a common vector space.

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 16

3.3.1.2 Non-relevant terms removal and Documents resizing

The next step performed by DBYCAT is to group documents considering their similarity.
However, this similarity is in�uenced by the non-relevant terms which could not be removed
by the preprocessing step, and by the size of the documents. For example, when calculating
the similarity between documents using some similarity measure, it may happen that two
vectors dramatically di�erent appear as similar because both vectors contains several terms
with very low tf − idf . In this case, the similarity criteria only focuses in the common
but irrelevant terms with low weight ignoring the terms with high tf − idf . To avoid this
behavior, DBYCAT removes the weights (i.e. the weight is changed to zero) of the terms
of a vector whose values are lesser than the value corresponding to the �rst quartile of the
weights of the vector.

Likewise, the size of the vectors can a�ects the similarity measure. For example, DBY-
CAT can state that a vector with many non-zero dimensions4 is similar to many vectors
with many dimensions equals to zero. It may happen because a similarity measure focuses

only in the terms that both vectors share. Given a vector
−→
V (d) = [t1, t2, ..., tn] where

−→
V

is the vector representing the document d, this model proposes a Euclidean normalization

to resize the magnitude of the vector
−→
V which is addressed with the following equation:

norm(
−→
V (d)) = −→v (d) = [

w1√
n∑
i=1

(wi)2

,
w2√
n∑
i=1

(wi)2

, . . . ,
wn√
n∑
i=1

(wi)2

] (3.3)

3.3.1.3 Dirichlet Process Clustering

A Dirichlet Process is used in Bayesian non-parametric models of data, particularly in
in�nite mixture models. It is a distribution over distributions, i.e. if one pick a draw
from a Dirichlet process, it is going to be a distribution itself which can be interpreted as a
distribution over some probability space Θ. The Dirichlet Process is an in�nite dimensional
generalization of the Dirichlet distributions with a �nite set of K components which is
shown as follows:

π | α ∼ Dirichlet
(α
K
, · · · , α

K

)
zi | π ∼Multinomial (π)

θ∗k | H ∼ H
xi | zi {θ∗k} ∼ F

(
θ∗zi
) (3.4)

Where π = [π1, · · · , πk] is the mixing proportion, α = [a1, · · · , ak] is the concentration
parameter of the Dirichlet distribution, H is the distribution over the parameters θ∗k and
F (θ) is the component distribution parametrized by θ[40].

Thus, for a random variable G distributed according to a Dirichlet Process, its marginal
distribution have to be distributed according to a Dirichlet Distribution[9]. Speci�cally, let
H be a distribution over Θ and α be a positive real number. Then, the random variable G is

4Since the Vector Space Model represent a document using a vector, each dimension of this vector stores
the weight of a term contained in the document

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 17

distributed according to a Dirichlet Process with a base distribution H and concentration
parameter α, written G ∼ DP (α,H), if

(G(A1), · · · , G(Ar)) ∼ Dir(αH(A1), · · · , αH(Ar)) (3.5)

for every �nite partition A1, · · · , Ar of Θ[40].

An advantage of Dirichlet Process as a in�nite mixture model is that it assumes that
the data comes from an in�nite number of probability distributions, i.e. it does not restrict
the analysis to a particular number of clusters; however, most of the applications requires a
�nite mixture model or a �nite set of clusters. To address this issue, the Dirichlet Process
can be modeled placing most of the probability mass at the beginning of the in�nite
distribution, making possible to assign probabilities to clusters without restricting the
number of possible clusters[5]. An approach to place the probability mass at the beginning
of the in�nite distribution comes from a representation of a Dirichlet Process known as
Stick Breaking Process.

3.3.1.3.1 Stick Breaking Process The construction of the mixing proportions π =
[π1, · · · , πk] for the distribution for a random variable G ∼ DP (α,H) can be represented
metaphorically as follows: Starting with a stick of length 1, it is broken at β1, assigning π1
to be the length of the broken portion representing the proportion of probability assigned
to that component. Then the process is repeated with the remaining portion of the stick
in order to assign values to π2, π3 and so on. Since the stick at the beginning of the process
had a length of 1, the values of πk's decrease exponentially quickly, then only an small
number of clusters with a representative value of πi will be used to model the data[40].
The Stick Breaking distribution over π is written π ∼ GEM (α) , where the letters stand
for Gri�ts, Engen and McCloskey[31]. Thus, the Dirichlet Process mixture model can be
written as:

β ∼ GEM (α)

zi ∼Multinomial (β)

θz1 ∼ H
xi ∼ F (θzi)

(3.6)

3.3.1.3.2 Chinese Restaurant Process The Chinese Restaurant Process is another
metaphor to represent a Dirichlet Process which can explain the distributions over parti-
tions (clusters) of data. In this metaphor, there is a Chinese restaurant with a potentially
in�nite number of tables. The �rst customer enters the restaurant and sits at the �rst ta-
ble. Then, the second customer enters and decides either to sit with the �rst customer, or
by herself at a new table. In general, the n+ 1st customer either joins an already occupied
table k with probability nk

n+α where nk is the number of customers already sitting there
(all the occupants of a table k share the same dish), or sits at a new table with probability
α

n+α [40, 5].

Using DPC, DBYCAT can identify clusters of similar applications without prior knowl-
edge of the number of clusters but obtaining a vector of representative terms from each
cluster. This vector is not meaningful by itself to describer the cluster, but can be used to
establish a relation between the relevant terms in the clusters, and the relevant terms in

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 18

Figure 3.3. Algorithm to automatically assign tags to clusters. I. DBYCAT extracts the relevant
terms of each cluster forming a vector. II. A cosine similarity is computed among
each centroid and the set of vectors of the categories VSM. III. DBYCAT assigns the
closest category to the software projects belonging to the cluster.

the pro�les of the projects belonging to a particular category. The next section describes
how this relationship is established in order to categorize each cluster � categorizing the
libraries within the cluster as well �, providing a meaningful and succinct description of
the nature of the cluster.

3.3.2 Automatic labeling using the bag-of-words representation of cat-
egories

In this step, DBYCAT automatically assigns categories to each cluster using the pro�les
of the software projects from which the documents were extracted. To achieve this goal,
the dataset described in section 3.1.2 is preprocessed using the same methods described
in sections 3.2,3.3.1.1 and 3.3.1.2 except the removal of non-relevant terms using the �rst
quartile. At the end, DBYCAT obtains a vector space model representing the categories
and its weighted terms as vectors; in addition, DBYCAT collects all the terms contained
in the pro�les corpus as a dictionary called c-dictionary.

DBYCAT describes each cluster with a vector of relevant terms (hereinafter referred
to as centroid); this centroid represents all the documents (software projects) contained in
a cluster. Thus, the model assigns the categories to the clusters by calculating the cosine
similarity between each centroid and the vectors contained in the vector space model of
categories. The closest category vectors are the assigned ones. Finally DBYCAT assigns
the top 5 closest categories to each software project contained in the cluster under analysis,
i.e., DBYCAT recommends a set of 5 categories. A summary of the algorithm is depicted
in Figure 3.3.

CHAPTER 3. SOFTWARE CATEGORIZATION USING BYTECODE AND DPC 19

Figure 3.4. Algorithm to automatically assign tags to new software projects.

3.4 Categorization of new projects

At this point, DBYCAT has trained a classi�er of software projects based on vectors
composed by the weights of the relevant terms of each cluster �centroids. To categorize a
new software library, DBYCAT extracts the source code identi�ers from its bytecode (as
described in section 3.1.1) and builds a document with these identi�ers. Then, DBYCAT
preprocesses the document as described in section 3.2 and extracts the vector of weights
using tfidf as described in section 3.3.1.1. Finally, DBYCAT computes the cosine similarity
of this vectors with each centroid ; the categories previously assigned to the closest centroid
are the categories of the new software project. A representation of this process is depicted
in Figure 3.4

3.5 Summary

DBYCAT uses the bytecode and pro�les of software projects to categorize software li-
braries. To assign a set of categories for a new software library, DBYCAT: (i) analyzes the
bytecode given by the training dataset in order to cluster similar libraries together. Each
cluster contains a vector of relevant terms that describes the nature of the libraries within
the cluster; (ii) analyzes the software pro�les and categories given by the training dataset;
DBYCAT processes the software pro�les of the projects that belongs to each category in
order to �nd a vector of relevant terms to describe each category appropriately (iii) assigns
a set of categories to each cluster, computing the cosine similarity between the represen-
tative vector of each cluster and the vector of relevant terms of each category found in the
step (iii), then, DBYCAT assigns the closest categories to the cluster; (iv) builds a vector
of terms for the new software library through the analysis of its bytecode, (v) computes the
cosine similarity between this vector of terms and the representative vector of each cluster,
and (vi) identi�es the closest cluster and suggests the categories previously assigned to it.

CHAPTER 4

Experiments and results

To validate the capabilities of DBYCAT, two studies were conducted. The �rst study
focused on estimating the accuracy and generalization capabilities of DBYCAT, i.e., we
wanted to know whether the categories suggested by DBYCAT are relevant to the software
libraries. The second study aimed at knowing if the information provided by bytecode is
enough to perform the categorization.

4.1 Experimental design

To estimate the correctness and usefulness of DBYCAT, we analyzed 158 software libraries
written in Java, which are published and maintained by the Apache Software Foundation
(ASF)1. This repository contains the .jar �les (i.e. the bytecode) and the software project
pro�les. Likewise, developers of these software projects categorized them using a set of 18
prede�ned categories. It should be noted that the developers of these projects may assign
one or more categories to each software project.

In addition, a set of 15 software libraries not developed nor maintained by ASF were
randomly collected to be analyzed and categorized by DBYCAT, in order to measure its
capability of categorizing new software libraries, it means, software projects not related to
ASF. Thus, the dataset composed by the libraries extracted from ASF is suitable to work
as a training set and the dataset composed by the libraries not developed by ASF becomes
in our testing set.

On the other hand, previous works in software categorization have focused on analyzing
the source code to extract semantic information about the software artifacts, because the
source code is the most used artifact in which developers re�ect their knowledge about
a particular application domain. Since DBYCAT is based on the extraction of lexical
information only from the bytecode of the applications, that is to say, the bytecode does
not o�er all the information available in the source code (e.g., the comments or JavaDoc
documentation), this study is interested in comparing the results (i.e., the appropriateness
of the recommendations) of DBYCAT trained with bytecode documents, and the results
of DBYCAT but trained with identi�ers and comments extracted from source code. The

1http://www.apache.org/

20

http://www.apache.org/

CHAPTER 4. EXPERIMENTS AND RESULTS 21

intuition behind this comparison is that the bytecode will become a good replacement
for the source code � for the software categorization problem � only if the accuracy of the
recommendations provided by DBYCAT trained with information extracted from bytecode
is comparable (i.e. it is not statistically di�erent) with the accuracy of the recommendations
made by DBYCAT but trained with information extracted from source code.

In summary, given a categorization model DBYCAT-1 trained through the analysis of
the bytecode of the ASF software projects, we propose a �rst study Study-1 , with the
following objectives:

1. To compare the categories recommended by DBYCAT-1 to some ASF projects with
the categories previously de�ned by its developers (accuracy).

2. To establish wether it is possible to recommend categories to new software projects
(generalization).

Study-1 intends to address these goals taking into account that a software project
can be categorized using only one label (i.e. single label), or using a set of labels (i.e.
multi-label).

Finally, given an additional categorization model DBYCAT-2 trained win the informa-
tion extracted from the source code of the ASF software projects, we propose a second
study Study-2, to establish whether there is a statistical di�erence between the series of
metrics obtained from the model trained with bytecode and the model trained with source
code.

4.1.1 Research questions

In the context of this thesis, the following research questions are formulated:

Research Question 1 (RQ1): What is the accuracy of DBYCAT when recommending

a category (single-label software categorization)? This research question aims at
establishing if DBYCAT can suggest a single correct category for an ASF library,
given that the model is trained through the analysis of the bytecode of others ASF
libraries.

Research Question 2 (RQ2): What is the accuracy of DBYCAT when recommending

several categories (multi-label software categorization)?. For this question, this study
intends to verify if the set of categories suggested by DBYCAT contains one or more
correct categories for and ASF library.

Research Question 3 (RQ3): Can a library not maintained by the ASF be categorized

using DBYCAT, which was trained through the analysis of ASF projects? This ques-
tion aims at estimating the generalization capability of DBYCAT.

Research Question 4 (RQ4): Are the results of DBYCAT-1 (which was trained with

bytecode documents) comparable to the results of DBYCAT-2 (which was trained with

documents extracted form source code)? This question aims at investigating if the
di�erence between the results of both models are statistically signi�cant.

CHAPTER 4. EXPERIMENTS AND RESULTS 22

To answer RQ1 and RQ2, Study-1 used a 10-fold cross validation, in which the set of
158 ASF projects were divided in 10 random subsets. DBYCAT analyzed the subsets 10
times, each time using a di�erent subset as a testing dataset and all the remaining subsets
as a training dataset.

The results of RQ3 were obtained using an survey involving 17 participants, among
students, developers and researchers. The survey contained 15 questions, each one asking
for the appropriateness of a set of categories suggested by DBYCAT to each of the 15
software projects not related with ASF.

The results of RQ4 are obtained comparing the values of precision@1, precision@5,
recall@1, recall@5, MAP y RR provided by DBYCAT-1 and DBYCAT-2.

4.1.2 Analysis Method

4.1.2.1 Research Question 1

For RQ1, Study-1 proposes a custom criteria to determine whether libraries are correctly
categorized assuming the categorization is single-label; our proposed approach provides
several labels as part of the DCP-based categorization. However, for RQ1 we are only
interested in a single label categorization.

De�nition 4.1.1. The model categorizes a library correctly if at least one of the suggested
categories is equal to any of the categories assigned by the ASF developers. Thus, given
Si = {c1, c2, . . . , c5} the set of suggested categories to the library i by the model and
Pi = {p1, p2, . . . , pk} the set of categories assigned to the library i by ASF developers, an
example is correctly classi�ed if S ∩ P 6= ∅.

De�nition 4.1.2. The score of a categorized library is de�ned as follows:

scorei(Si, Pi) =

{
1, if Si ∩ Pi 6= ∅
0, if Si ∩ Pi = ∅

(4.1)

De�nition 4.1.3. The accuracy for a categorization of the documents in the set L, with
| L |= n:

accuracy =

n∑
i=1

scorei(Si, Pi)

n
(4.2)

It should be noted that DBYCAT suggests the same number of categories for each
library, i.e. |Si| = |Sj | ∀i 6= j.

Whit this de�nition of accuracy, the metrics of training precision and testing precision
for the results of the automatic categorization are proposed:

De�nition 4.1.4. The training accuracy is the accuracy of the classi�er at recommending
categories to the libraries contained in the training dataset.

De�nition 4.1.5. The testing accuracy the accuracy of the classi�er at recommending
categories to the the libraries in the testing dataset.

CHAPTER 4. EXPERIMENTS AND RESULTS 23

The training accuracy provides some insights about how the model is being trained.
However, the accuracy of the recommendations given by DBYCAT will be measured using
the testing accuracy, which re�ects the capability of the model to categorize libraries not
contained in the training dataset.

4.1.2.2 Research Question 2

To answer RQ2, Study-1 uses the standard approach to evaluate information retrieval
systems based on precision and recall. This standard approach bases the evaluation on the
notion of a relevant category, which is de�ned as a category prede�ned by ASF developer
to the software libraries under analysis. The set of relevant categories suggested by the
mentioned developers to a software project is called a gold set. Thus, the precision is
de�ned as the fraction of the suggested categories that are relevant[25]:

precision =
#(relevant categories retrieved)

#(retrieved categories)
(4.3)

And recall is the fraction of relevant categories that are retrieved[25]:

recall =
#(relevant categories retrieved)

#(relevant categories)
(4.4)

DBYCAT assigns a set of categories to the new library ranked them by its relevance.
Therefore, we were interested in measuring the accuracy of the recommendations consider-
ing the order in which those categories are given. Because the model describes each cluster
with the top �ve relevant categories, each software project is categorized with the same
set of �ve categories ordered by its relevance; therefore, for the multi-label case this study
uses

precision@k =
#(relevant categories retrieved)

k
(4.5)

and

recall@k =
#(relevant categories retrieved)

#(relevant categories)
(4.6)

Where k is the number of recommended categories (k = 5) and
#(relevantcategoriesretrieved) ≤ k

It should be noted that the value of precision@k and recall@k are in�uenced by the
number of retrieved results in a di�erent manner. For example, if a software project has
only one category assigned by its developers, and the model suggest a set of 5 categories
containing the relevant one, the value of precision@5 for this query would be 1/5 = 0.2,
whereas the value of recall@5 would be 1. Another scenario, where a software project has 7
categories assigned by its developers, and the model suggests a set of 5 relevant categories,
the value of precision@5 would be 5/5 = 1 but the value of recall@5 would be 5/7 = 0.714
so the model would have a high precision but it would be unable to retrieve all the relevant
results.

CHAPTER 4. EXPERIMENTS AND RESULTS 24

The metrics aforementioned are appropriate to estimate the accuracy of the set of k
categories, but these do not take into account the order in which these categories are
given. For example, a set of suggested categories containing only a relevant category in
the �rst position will be more appreciated than a set with the relevant category in the �fth
position. In this sense, the mean average precision (MAP) provides a measure of quality
among recall levels [25]. Given a set of queries Q and Rk the set of ranked and retrieved
results, then

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

precision(Rjk) (4.7)

We were interested in identifying which are the values of precision@k and recall@k if
the value of k varies from 1 to 5, and the value of MAP for k = 5. The reasons to propose
this analysis with the results limited to 5 are: (i) The distribution of projects per category
in ASF dataset varies from 1 to 8, but only three projects were given 6,7 and 8 categories
respectively. Additionally, the majority of the ASF projects were categorized using 1 or
2 categories; and (ii) if the majority of the projects only have 1 or 2 categories, MAP
can measure the usefulness of the results taking into account the position of the relevant
categories in a set of suggested categories. The characteristics of the ASF dataset will be
shown in Section 4.2.1

For each step in the 10-cross validation process, the measurements of precision@k,
recall@k and MAP are computed for each categorized software project in both training
and testing datasets.

4.1.2.3 Research Question 3

This research question aims at investigating the capability of DBYCAT to categorize
projects not related to the Apache Software Foundation, using the categories provided
by the developers of ASF projects. To measure this capability, a dataset composed by 15
software libraries non maintained by ASF was analyzed and categorized using DBYCAT,
i.e., DBYCAT suggested a set of 5 categories extracted from ASF dataset to each non-ASF
software project. Then, a survey with 17 developers was conducted, where the participants
were asked to evaluate the correctness of each suggested category and their opinions were
collected using a 5-item Likert scale. Finally, the reasoning behind their evaluation was
collected through an open question.

In this case there is no gold set, it means, a set of prede�ned categories for each non-ASF
project is not available. Therefore, Study-1 uses the opinions given by the participants to
identify the set of relevant categories for each non-ASF project. In this sense, Study-1
is interested in assessing the accuracy of DBYCAT when it categorizes the projects with
a single tag (single-label) and when it categories the libraries with a set of relevant tags
(multi-label).

For the single-label case, we were interested in estimating whether any of the recom-
mended libraries is relevant for each non-ASF software project. Since a 5-item Likert scale
was used to collect the opinion of the participants of the survey about the relevance of a
suggested category for a particular library, we need a simpli�ed criteria to evaluate these
opinions. The construction of this simpli�ed criteria begins with the computation of the

CHAPTER 4. EXPERIMENTS AND RESULTS 25

mode of the answers of each question, then if the mode of the answers of a particular ques-
tion was composed by several Likert items, this study penalized this uncertainty taking the
item with the least relevance (e.g. if the mode of a particular question was Strongly agree
and Strongly disagree, this study only took into account the item Strongly disagree as
the mode). Because the values of these modes can be any of the 5 items of the Likert scale,
we want to simplify the analysis transforming the modes into two new items: Agree and
Disagree. Therefore, the following transformation is proposed: Strongly agree,Agree →
Agree;Strongly disagree,Disagree,Neither agree or disagree → Disagree. Given this
transformation, an example correctly classi�ed is de�ned as follows:

De�nition 4.1.6. The model categorizes an example correctly if most of the participants of
the survey (mode) agree with the appropriateness of at least one of the suggested categories.

Taking into account that DBYCAT suggests an ordered set of categories to the projects
in the non-ASF dataset, this study is interested in identifying the position in which the
�rst relevant category is o�ered. The Mean Reciprocal Rank (MMR)[4] shows whether the
model can provide a relevant category at the top of the suggested set of categories. To
de�ne the MRR, it is needed to de�ne �rst the Reciprocal Rank score (RR); given a set of
queries Q = q1, q2, · · · , qn, the RR for a query j is de�ned as follows:

RRj =
1

k
(4.8)

Where k is the position of the �rst relevant results in the query j. Thus, the MRR is
de�ned as follows:

MRR =

∑j
1RRj
|Q|

(4.9)

In other words, MRR is the average of the RR values across multiple categorizations.

On the other hand, to measure the multi-label performance, this study uses once again
the standard criteria for information retrieval problems. However, the dataset of non-ASF
projects does not contain prede�ned categories, therefore recall@k can not be �gured. In
this sense, let p be the number of relevant categories retrieved by DBYCAT and k the
number of retrieved (i.e. provided by the model) categories (k can contain relevant and
irrelevant categories), the precision@k is de�ned as follows:

precision@k =
p

k
(4.10)

We were interested in measuring the accuracy of DBYCAT when it recommends k =
1, 2, 3, 4, 5 categories to each software project, in order to know for which k the model can
recommend the greatest amount of relevant categories in the top k results.

Finally, since Likert scale o�ers a non-binary notion of relevance of each suggested
category, this study intends to measure the usefulness of the ranked results, that is to say,
whether DBYCAT can recommend the most relevant categories at the top of the list of
suggested categories. The Discounted Cumulative Gain (DCG)[25] uses graded relevance
as a measure of gain. However, to summarize the ranking, it means, to compare the
usefulness or gain of the suggested order of categories with the gain of the expected order
of the categories, this study uses the Normalized Cumulative Gain (NDCG). The reasoning

CHAPTER 4. EXPERIMENTS AND RESULTS 26

behind this metric is that the ideal ranking would return the most relevant categories at
the beginning of the list, it means, re�ecting the highest level of relevance.

The Discounted Cumulative Gain (DCG) for a recommendation j is de�ned as follows:

DCGj = rel1 +

p∑
i=2

reli
log2(i)

(4.11)

Where p is the number of retrieved categories. The Ideal DCG (ICDG) for a recom-
mendation j can be de�ned as the CDG for the ideal ranking in which the recommendation
j must provide the categories. Since the purpose of NCDG is to compare the real ranking
of a recommendation with the ideal ranking of the recommendation, it is de�ned as follows:

NDCGj =
DCGj
IDCGj

(4.12)

To estimate the ideal ranking of a recommendation, Study-1 uses the answers provided
by the participants of the survey using the 5-item Likert scale as a non-binary measurement
of relevance. In this case, the 5-item Likert scale is represented as numbers as follows:

• Strongly disagree→ 0

• Disagree→ 1

• Neither agree or disagree→ 2

• Agree→ 3

• Strongly agree→ 4

For example, the participants of the study expressed their opinions about the relevance
of the suggested categories for the library eclipselink-2.5.1 as follows (it should be noted
that these values correspond to the modes of the answers of the participants):

• d1 : library = Agree

• d2 : web− framework = Disagree

• d3 : network − server = Disagree

• d4 : database = Strongly agree

• d5 : xml = Agree

With the proposed transformation, the numerical values for the ranking
{d1, d2, d3, d4, d5} would be {3, 1, 1, 4, 3}. The expected ranking is obtained with the de-
creasing order of this values, i.e. {4, 3, 3, 1, 1}, therefore an expected order of the results
(ranking) could be {d4, d1, d5, d2, d3}. For this recommendation, the value of DCG, i.e
the value for the Discounting Cumulative Gain for the ranking {d1, d2, d3, d4, d5} is 7.923,
whereas the value of IDCG, i.e. the value for the expected order {d4, d1, d5, d2, d3} is 9.823.
At the end, the value of NDCG for this example is 7.923/9.823 = 0.8065, indicating that
the real ranking has the 80% of the usefulness of the expected ranking.

CHAPTER 4. EXPERIMENTS AND RESULTS 27

Class
names

Method
names

Fields Local
vari-
ables

String
con-
stants

Calls to
meth-
ods

Comments

Bytecode
1 (Original
dataset)

X X X X

Bytecode 2 X X X X X X

Source code X X X X X X X

Table 4.1. Composition of the di�erent datasets used to answer RQ4

4.1.2.4 Research Question 4

To answer RQ4, we want to establish if the accuracy of DBYCAT trained with the byte-
code documents is comparable with the accuracy of the same model but trained with
the documents extracted from source code. Therefore, several experiments with DBY-
CAT involving di�erent training datasets are conducted, and the metrics provided by each
experiment are stored in order to be compared with each other. Since each experiment
provides a series of di�erent results, we want to estimate the statistical di�erence between
these series of observations;. In this sense, the following statistical hypothesis are proposed:

Null Hypothesis 1 (NH1): The probability distribution of each series of observations

corresponds to a normal distribution.

Alternative Hypothesis 1 (AH1): The probability distribution of each series of obser-

vations corresponds to an arbitrary distribution.

Null Hypothesis 2 (NH2): The probability distribution of every series of observation is

the same .

Alternative Hypothesis 1 (AH2): The probability distribution of every series of obser-

vation vary in at least one element.

According to the description of the data extraction process performed by DBYCAT
(Section 3.1), it originally extracts from bytecode a particular set of source code identi�ers
(classes, methods, �elds, local variables). So this experiment additionally wants to extend
the results to the same model but trained with two di�erent dataset: the �rst one, a
di�erent set of bytecode documents which includes string literals (those string constants
that developer uses to show some messages to the user) and calls to methods, and the
set of source code documents. Table 4.1 summarizes the di�erences among the datasets
Bytecode 1 (the original dataset), Bytecode 2 and Source code.

Some validation metrics for the multi-label categorization scenario (precision@1, re-
call@1, precision@5, recall@5 andMAP), and the reciprocal rank were obtained by running
the experiment (i.e. the 10-fold cross validation) several times using a di�erent dataset (i.e.
bytecode1, bytecode 2 and source code) each time. Then, to evaluate NH1, i.e. to verify
if each series of metrics are distributed according with a normal distribution, this study
uses the Shapiro-Wilk [36] and the Kolmogorov-Smirnov [26] tests. Because the results of
these tests suggest that the measures (i.e. the values of precision@k, recall@k, MAP and
reciprocal rank) are not normally distributed (as described in Section 4.3.4), this study uses

CHAPTER 4. EXPERIMENTS AND RESULTS 28

the Kruskall-Wallis test [18] to verify if the series of measures are statistically di�erent.
The statistical tests are applied using a con�dence level of 95%, i.e. α = 0.05.

4.2 Data Extraction Process

The data needed to answer the research questions are (i) the bytecode of the 158 ASF
projects, (2) the source code of the 158 ASF projects, (iii) the software pro�les of those
158 projects, (iv) the categories provided by ASF developers, (v) the bytecode of the 15
software projects not related with ASF, and (vi) the answers of the survey conducted with
17 software developers.

4.2.1 Apache Software Foundation dataset (ASF dataset)

The ASF dataset is composed by 158 software projects, each one having the following
artifacts:

JAR �les The thesis proponent visited all the 158 main web pages belonging to the
software projects in order to download the deployable artifacts that each project
o�ers. The ASF website contains more than 158 projects, but some of them were
discarded because they are not written in Java (e.g. Apache http server) or they did
not provide .class �les. In some cases, the web page provided the source code of a
project, but the building process was not trivial, thus the project was discarded.

Categories Each software project is tagged with at least one prede�ned category. We
collected the categories assigned to each project in order to built a labeled dataset,
which was used to train DBYCAT. The distribution of projects per category is shown
in Figure 4.1 and the distribution of assigned categories per project is shown in Figure
4.2.

Since ASF developers can assign more than one category to each project, the sets
of projects per category shown in Figure 4.1 are not disjoint. Additionally, Figure
4.1 shows an evident bias in the distribution of projects per category, particularly,
44.9% of projects in ASF dataset were categorized by ASF developers as library, and
around 44% (53) of projects that have only one category (120 projects according with
Figure 4.2) were tagged as library.

Pro�les The author compiled the pro�le of each project, reading and extracting from the
web page the chunks of text related with the main functionality and features of the
software projects. The extraction process was done by hand.

Source code The source code of the 158 software projects was collected manually.

It should be noted that the source code of the projects is only used to answer RQ4,
as described in Section 4.1.2.4; therefore the training phase of the DBYCAT uses the JAR
�les, categories and pro�les of the ASF dataset. Finally, an example of the information
provided by the ASF web page about its software libraries is shown in Figure 4.3.

CHAPTER 4. EXPERIMENTS AND RESULTS 29

Figure 4.1. Distribution of projects per category in the ASF dataset

Figure 4.2. Distribution of categories per project in the ASF dataset

Figure 4.3. Example of the information provided by the ASF web page about a software library

CHAPTER 4. EXPERIMENTS AND RESULTS 30

Figure 4.4. Distribution of the participants of the survey according to a) their occupation, b)
their experience, and c) their age

4.2.2 Survey

The survey was composed by 15 questions about the correctness and usefulness of the
categories suggested by DBYCAT for 15 software projects randomly chosen. Table 4.2
presents a brief description of these projects.

We categorized each project of this testing set using DBYCAT, extracting the bytecode
and computing the weighted vectors using tf − idf . Then, the cosine similarity between
each vector and the centroids obtained in the best iteration of the 10-fold cross validation
process performed for RQ1 and RQ2 was computed � the best iteration was chosen taking
the iteration with the highest value of accuracy (see Section 4.2). Then, the categories
assigned to the closest cluster becomes the new categories of the new testing project. For
each project, the survey asked to read the pro�le of the project in order to know a little
more about it, then it asked about the correctness of each one of the suggested categories.

The survey, composed by 15 question, was responded by 17 software developers and
students with experience in software development, software testing, software architecture,
software project management or research in software engineering. Figure 4.4 shows an
overview of the participants of the survey.

Each question in the survey aimed at knowing the opinion of each participant about the
correctness and usefulness of 5 categories suggested by DBYCAT, to the projects described
in Table 4.2; this opinion was measured using a 5-item Likert scale. Additionally, each
question had an open item in which each participant could express the rationale for her
selection or opinion. An example of a question used in the experiment is shown in Figure
4.5

The results of the metrics for each research question (i.e. accuracy, precision@5,
recall@5, MAP , MMR and NDCG) are analyzed through boxplots.

CHAPTER 4. EXPERIMENTS AND RESULTS 31

Project Description URL

Eclipselink ORM library and database connector http://projects.

eclipse.org/projects/

rt.eclipselink

Sweet
Home 3D

Free interior design application http://www.sweethome3d.

com/features.jsp

Hibernate ORM library and database connector http://hibernate.org/orm/

UIMA Analyze large volumes of unstructured
information in order to discover knowl-
edge that is relevant to an end user.

http://uima.apache.org/

Artifactory Provides out-of-the-box all that is
needed to set up and run a robust se-
cured repository within your organiza-
tion

http://www.jfrog.com/

home/v_artifactory_

opensource_features

ZK Open source Java framework for build-
ing enterprise web and mobile apps.

http://www.zkoss.org/

product/zk

Web-
Harvest

Open Source Web Data Extraction tool
written in Java

http://web-harvest.

sourceforge.net/

Jsoup Java library for working with real-world
HTML

http://jsoup.org/

HSQLDB HSQLDB (HyperSQL DataBase) is a
SQL relational database software writ-
ten in Java

http://hsqldb.org/

JUnit A programmer-oriented testing frame-
work for Java

http://junit.org/

Dom4j Open source library for working with
XML, XPath and XSLT on the Java
platform

http://dom4j.sourceforge.

net/

Slf4j The Simple Logging Facade for Java
(SLF4J) serves as a simple facade or
abstraction for various logging frame-
works

http://www.slf4j.org/

JHotDraw JHotDraw is a Java GUI framework for
technical and structured Graphics.

http://www.jhotdraw.org/

Liquidbase Revision control system for databases http://www.liquibase.org/

XMLUnit XML can be used for deciding if two
documents are equal to each other

http://xmlunit.

sourceforge.net/

Table 4.2. Java projects used in the survey

http://projects.eclipse.org/projects/rt.eclipselink
http://projects.eclipse.org/projects/rt.eclipselink
http://projects.eclipse.org/projects/rt.eclipselink
http://www.sweethome3d.com/features.jsp
http://www.sweethome3d.com/features.jsp
http://hibernate.org/orm/
http://uima.apache.org/
http://www.jfrog.com/home/v_artifactory_opensource_features
http://www.jfrog.com/home/v_artifactory_opensource_features
http://www.jfrog.com/home/v_artifactory_opensource_features
http://www.zkoss.org/product/zk
http://www.zkoss.org/product/zk
http://web-harvest.sourceforge.net/
http://web-harvest.sourceforge.net/
http://jsoup.org/
http://hsqldb.org/
http://junit.org/
http://dom4j.sourceforge.net/
http://dom4j.sourceforge.net/
http://www.slf4j.org/
http://www.jhotdraw.org/
http://www.liquibase.org/
http://xmlunit.sourceforge.net/
http://xmlunit.sourceforge.net/

CHAPTER 4. EXPERIMENTS AND RESULTS 32

Figure 4.5. Example of a question in the survey used as instrument to validate the correctness
of the suggested categories.

CHAPTER 4. EXPERIMENTS AND RESULTS 33

Figure 4.6. Training accuracy and testing accuracy values obtained for the 10 steps in the cross-
validation process

4.3 Results

4.3.1 Single label (RQ1)

As discussed in section 4.1.2.1, the accuracy of DBYCAT according to RQ1 is evaluated
measuring the precision of a classi�er that uses the results of the clustering model; therefore,
a custom precision measure is proposed considering the nature of the dataset under analysis
(see Equation 4.1). The accuracy values obtained for each iteration of the cross-validation
process for both training (training precision) and testing (testing precision) datasets are
shown in Figure 4.6.

The average accuracy on training dataset was 0.860, indicating that DBYCAT can
extract groups of similar software projects and propose suitable vectors of relevant terms
from each group which can greatly recreate the assignment of categories previously made
by ASF developers. Likewise, the value of accuracy ranged from 0.83803 to 0.88028,
suggesting that DBYCAT o�er consistent results using di�erent training sets.

On the other hand, the average accuracy on testing dataset took a similar place, with
a value of 0.859. This result denotes an important capability of DBYCAT to categorize
new software projects with a single label using just the relevant terms extracted from each
cluster. Nevertheless, the value of accuracy ranged from 0.73333 to 1.00000, suggesting
that the classi�er is sensitive to the nature of the training dataset.

CHAPTER 4. EXPERIMENTS AND RESULTS 34

With this last result (testing accuracy) the Research Question 1 can be answered.
We conclude that the accuracy of DBYCAT at recommending relevant categories

to software libraries of ASF not contained in the training dataset was on av-

erage 0.859, i.e., in 8 out of 10 cases DBYCAT is appropriate to categorize

applications.

4.3.2 Multi-label results (RQ2)

The set of categories suggested by DBYCAT can contain more than one appropriate cat-
egory for a software project. As aforementioned on section 4.1.2.2, the e�ectiveness of
this kind of categorization is measured using precision@k and recall@k. The values for
precision@k and recall@k for k = 1, 2, 3, 4, 5 obtained after the 10-fold validation process
using the training datasets are shown in Figure 4.7; likewise, the same values but using the
testing datasets are show in Figure 4.8, and the averages of this values are shown in Figure
4.9; in these �gures, the reader can perceive how the values of precision@k and recall@k

changes whereas the value of k increases. Additionally, some examples of categorized li-
braries belonging to the ASF dataset are shown in Table 4.3; these examples were taken
from the testing datasets of the 10-fold cross validation process.

For both sets (training and testing) the values of precision@k by themselves shows that
DBYCAT never reaches an high level of precision, due to it greatest value (near to 0.4 for
k = 1) dramatically decrease as k (i.e. the number of categories suggested by the model)
increases. This reduction in the precision@k values is stabilized in k = 5, proving that
given the set of 5 suggested categories, at least 1 is relevant and can be assigned to the
project. This conclusion is consequent with the results obtained in RQ1.

However, analyzing together the values of recall@k and precision@k, the results show
that for k = 4, DBYCAT already have recommended most of the appropriate categories
for each software project, as shown by the values of recall@4 which are close to 0.8. Thus,
despite the low values of precision@4 which are close to 0.2, DBYCAT can suggests all the
relevant categories. These results are closely related with the nature of the ASF dataset; as
shown in Section 4.2.1, the distribution of the number of categories per project showed that
most of the projects were tagged with only one category, thus the values of precision@4
and recall@4 are biased by the software projects with only one relevant category. Thereby,
the performance of DBYCAT can not be properly estimated using the libraries that were
categorized with more than one tag. To solve this uncertainty, this study usesMAP because
it provides a measure of quality across recall levels, it means, this metric is insensitive to
the bias provided by the dataset. The values for MAP for each step of the 10-fold cross
validation process for both training and testing dataset are shown in Figure 4.10.

Considering the nature of the ASF dataset, aMAP = 1 would indicate that DBYCAT
is recommending all the relevant categories at the top of the suggested set for every software
project being categorized; hence the values obtained for the training (MAP = 0.532) and
testing (MAP = 0.502) dataset show that, in general, DBYCAT always recommend a
suitable number of categories, but those are not shown at the top of the suggested set.

Given these results, Research Question 2 can be answered. We conclude that the
accuracy of DBYCAT at recommending several categories for a ASF software

project not contained in the training dataset is acceptable. The values of preci-

sion@1 indicates that in four out of ten cases the �rst recommended category

is a correct one; however, a random suggestion using the categories of ASF would lead to

CHAPTER 4. EXPERIMENTS AND RESULTS 35

Figure 4.7. Precision@k and recall@k values for k=1,2,3,4,5 in each 10-fold validation step using
the training dataset. The x-axis shows the number of each step in the 10-fold cross
validation process

CHAPTER 4. EXPERIMENTS AND RESULTS 36

Figure 4.8. Precision@k and recall@k values for k=1,2,3,4,5 in each 10-fold validation step using
the testing dataset.The x-axis shows the number of each step in the 10-fold cross
validation process

CHAPTER 4. EXPERIMENTS AND RESULTS 37

Figure 4.9. Average values of Precision@k and recall@k for k=1,2,3,4,5

Figure 4.10. Mean average precision for each step in the 10-fold cross validation process for (a)
the training datasets, and (b) the testing datasets

CHAPTER 4. EXPERIMENTS AND RESULTS 38

Figure 4.11. Reciprocal Rank and Mean Reciprocal Rank values for the single-label categoriza-
tion of non-ASF projects

a value of 1/18 = 0.055 so the accuracy of DBYCAT at recommending only one category is
not underestimated. Additionally, the values of precision@5 (0.210) and recall@5

(0.765) show that the set of 5 categories recommended by DBYCAT contains at

least 1 relevant category, result that reinforces the results obtained for RQ1.

Analyzing together the values of recall@5 and precision@5, the results look

remarkable, showing that in fact, despite the seemingly low value for the pre-

cision at k = 5, DBYCAT in fact recommends 76% of the correct categories

for each library in the top �ve recommendations. Finally, the value of MAP

(0.502) show that DBYCAT does not show the relevant categories at the top

of the suggested set.

4.3.3 Generalization (RQ3)

For the categorization with a single label, the answers of the survey were transformed into
Agree and Disagree values, as shown in Section 4.1.2.3. According to the answers of the
participants, the set of categories suggested by DBYCAT for every project in the dataset
conformed by 15 non-ASF projects contains at least one appropriate category for that
project. In this sense, the trained model is capable of recommending a single category for
a new software project through the analysis of the bytecode of existing software libraries.
Regarding the position of the relevant category in the set of recommendations, the values
of the Reciprocal Rank (RR) varies from 0.25 to 1, with a Mean Reciprocal Rank of 0.794.
This result shows that a model trained to recommend categories provided by ASF can
recommend relevant tags within the �rst 2 positions of the recommended set. Figure 4.11
shows the values of RR and the value of MRR obtained for RQ3.

CHAPTER 4. EXPERIMENTS AND RESULTS 39

Figure 4.12. Values of precision@k for the multi-label clasi�cation of non-ASF software projects.

The results of precision@k with k = 1, 2, 3, 4, 5 for the multi-label categorization are
shown in Figure 4.12. The average of the values for precision@5 suggests that, in general,
DBYCAT can recommend 2 relevant ASF categories to each non-ASF software project.
This conclusion proves an important capability of the model to generalize its recommen-
dations, that is to say, although the model is trained with an small number of labeled
samples and can suggest an limited number of categories, the recommendations managed
to describe the purpose or main functionality of some non-ASF software projects.

Regarding the order of the categories, the values of NDCG suggest that the usefulness
of the recommendations is close to the expected one. The average value of NDCG was
0.84 varying from 0.64 to 1, this means that in general, the real ranking has an 84%
of the usefulness of the expected ranking. The values obtained of NDCG for all the
recommendations are presented in Figure 4.13.

4.3.3.1 Analysis of the open questions

The purpose of the open section in each question of the survey was to understand the
reasoning behind the opinions of the participants. It was found that some participants
could identify the main purpose using the web pro�les of the applications, and then they
could �nd a succinct category to describe that purpose; for example, this is one of the
answers to the open question related with the main purpose of dom4j-1.6.1 (the suggested
categories were intentionally highlighted in bold): "Based on the short description of the

software on the link, all of the categories library, web-framework and xml are very rele-

vant in identifying the purpose or details of dom4j. I agree that network-server is mildly

relevant as a target for the software. I don't think that database is a particularly helpful

categorization given the purpose of the application.". Moreover, in some cases most of the
suggested categories did not match the purpose of the software project, it means, only one

CHAPTER 4. EXPERIMENTS AND RESULTS 40

Figure 4.13. Values of Normalized Discountive Cumultive Gain for the ranked results of the
multi-label classi�cation of non-ASF software projects.

of them works as a relevant category for the library; an example of this case, where only
one recommended category was appropriate for the project SweetHome3D-4.3 is presented
as follows: "The SwetHome3D application, while extendable does not appear to be a library

for developmental purposes as much as a customizable application. I see no evidence of

this being a web-based technology, as it appears to be downloaded and executed on a local

machine, although it appears to have downloadable content. I agree that graphics play

a large part in the application as it primarily seems to be visualization based, but I dis-

agree that xml and network-server are valid categories, as neither seem to really relate

to the purpose of the application itself or any overt implementation details speci�c to the

application." ; in this case SweetHome3D-4.3 is a �free interior design application�, i.e. an
application to draw and design indoor environment. Therefore, the only relevant category
in set of categories provided by ASF was graphics, which was correctly recommended by
DBYCAT. Finally, there was a case where any of the suggested categories represented the
purpose of the library, so in this case the participant decided to choose a generic category
as an appropriate tag; the following comment, which was given for the library junit-4.11,
expresses this scenario: "I don't think that any of the available categories are exceptional

at identifying the purpose of this piece of software. I agree that it is a library that assists

with unit test creation, but have insu�cient exposure or information to know whether that

is in the form of a web-framework or not. I disagree that xml and database are relevant

because they don't really apply to junit at all from what I see." ; this case DBYCAT recom-
mended a set of irrelevant categories to the library junit-4.11 ; the set of categories provided
by ASF contains a relevant category testing which was not recommended by DBYCAT.

To answer Research Question 3, The results indicated that the survey participants

agreed that at least one of the �ve suggested categories was relevant for each

of the 15 non-ASF projects used, resulting in an accuracy of 1.0, by using our

accuracy estimation in Equation 4.2. The value of MMR for this part of the

CHAPTER 4. EXPERIMENTS AND RESULTS 41

study was 0.794, indicating that according to the survey participants, DBYCAT
recommended the �rst relevant category within the top 2 positions.

4.3.4 Comparison (RQ4)

The results for the statistical test to evaluate NH1 (Kolmogorov-Smirnov and Shapiro-
Wilk tests) are shown in Table 4.4, and the values for the Kruskall-Wallis test are shown
in Table 4.5.

According to Table 4.4, the values of p-value are lesser than 0.05 (the con�dence level),
therefore NH1 is rejected and it can be concluded that the probability distribution of the
observations (measures) is an arbitrary distribution (AH1). For this reason, the Kruskall-
Wallis test is used to estimate whether the results are statistically di�erent because unlike
ANOVA, Kruskall-Wallis does not need Gaussians distributions. Finally, the p-values in
the Kruskall-Wallis test are greater than 0.05, thus NH2 can not be rejected and it can be
concluded that the measures are not signi�cantly di�erent, that is to say, the bytecode is
a good option when source code is not available, which answers our Research

Question 4.

4.4 Threats to validity

The validity of the results and its generalization are a�ected by some internal and external
threats. An internal threat to validity is the nature of the code entities extracted from
bytecode. DBYCAT uses a subset of the code entities that can be extracted from the
bytecode; particularly, DBYCAT does not take into account the calls to methods and
the string constants present in the bytecode. However, we showed that the accuracy of
DBYCAT is comparable with the accuracy of similar models but trained with all code
entities extracted from bytecode and source code.

Another internal threat to validity is the nature of the categories uses to train DBY-
CAT. The Apache Software Foundation dataset does not contain all possible application
domains and the small number of categories (18) suggests that many of them are not spe-
cialized. Then, this set of categories cannot represent every application domain in the Java
ecosystem; additionally, the training dataset contains many software libraries previously
categorized with a popular category (library), which impact the capability of DBYCAT to
assign specialized labels to the clusters. To minimize this threat, we used a user study to
estimate the generalization capability of DBYCAT using the categories provided by ASF.

A third internal threat to validity is the nature of Dirichlet Process Clustering. This
clustering algorithm does not need the number of clusters as parameters; instead, it needs
the concentration parameter (α) as a parameter. Therefore, choosing the right value of
α to obtain an optimal number of clusters becomes a non-trivial optimization problem.
Additionally, since DPC models each cluster with a particular probability distribution
assigning to each one a mixing proportion π, the results of this algorithm depend of the
values of π which can be di�erent if the algorithm is executed several times.

A fourth internal threat to validity is the use of libraries written in only one programing
language (Java). Therefore, the results might not be generalized to other software libraries
written programming languages such as C++, Python, Ruby, Groovy, etc. Nevertheless,
this study was focused in the exploration of the bytecode as the source of relevant vocab-

CHAPTER 4. EXPERIMENTS AND RESULTS 42

ulary to categorize software applications, but it is not restricted to the use of bytecode
of Java libraries. Future work can leverage any artifact with source code identi�ers (e.g.
source code �les for C++ and Ruby, bytecode for Groovy) to categorize applications using
DPC and automatic labeling using software pro�les.

One external threat to validity is the repository chosen to train DBYCAT. The Apache
Software Foundation dataset does not contain a comprehensive amount of libraries with
di�erent application domains, thus we can not guarantee that DBYCAT can automatically
categorize appropriately every application in the Java ecosystem.

Finally, another external threat to validity is related to the categories that developers
assigned to the ASF software libraries. Since the set of available categories in the ASF
repository is not fully comprehensive, developers could assign to software libraries the
closest categories even if these do not represent properly the application domain or main
functionality of the library.

4.5 Lessons learned

Reviewing the categories provided by ASF developers, which were shown in Section 4.2.2, it
can be said that those categories appropriately describe libraries and applications mainly
used by programers and developers, it means, people with requirements closely related
with software development or computer science. For this reason, a model trained with this
dataset would not be able to appropriately categorize libraries and applications containing
other applications domains. For example, any of the ASF categories can provide a succinct
explanation of a library or application whose main functionality is related with audio,
media, etc.

Moreover, the Dirichlet Process Clustering (DPC) o�ers a non-parametric approach
for �at clustering; since its purpose is to group the elements in disjunctive sets, or seen
from another perspective, DPC assigns each element to a single cluster, this approach is
suitable for software categorization with a single label but not to categorize with multiples
labels. DBYCAT addressed this issue describing each cluster with several categories, but
the results for RQ2 show that the set of categories describing each cluster in general only
contains a single relevant label for the libraries contained in it. Future work will try to
improve this aspect.

CHAPTER 4. EXPERIMENTS AND RESULTS 43

Library Recommended categories Real categories

cayenne-3.0.2 library, web-framework,
network-server, xml, database

database, library, network-
client, network-server, web-
framework, xml

apache-forrest-0.9 library, web-framework,
network-server, xml, database

build-management, database,
graphics, http, network-
client, network-server, web-
framework, xml

cocoon-2.2.0 library, web-framework,
network-server, xml, database

database, graphics, http,
network-client, network-
server, web-framework, xml

click-2.3.0 library, web-framework,
network-server, database, xml

library, network-client,
network-server, web-
framework, xml

apache-ofbiz-
12.04.02

library, web-framework,
network-server, database, xml

database, http, network-
server, web-framework, xml

apache-cxf-3.0.0 library, web-framework,
network-server, database, xml

library, network-client,
network-server, xml

jackrabbit-2.6.5 web-framework, library, xml,
content, network-server

database, library, network-
server, xml

geronimo-
framework-3.0.1

library, web-framework,
network-server, xml, database

http, javaee, network-server,
web-framework

axis2-1.6.2 library, web-framework,
network-server, database, xml

http, network-client, network-
server, xml

httpcomponents-
core-4.3.2

library, web-framework,
database, network-server, xml

http, library, network-client,
network-server

apache-etch-1.3.0 library, web-framework,
network-server, database, xml

library, network-client,
network-server

apache-openjpa-
2.2.2

library, web-framework,
network-server, xml, database

database, javaee, library

shiro-all-1.2.3 web-framework, library,
network-server, xml, database

library, web-framework

apache-ode-war-
1.3.6

library, web-framework,
network-server, database, xml

network-server, xml

apache-
servicemix-5.0.0

library, web-framework,
network-server, database, xml

network-server, xml

solr-4.7.0 library, web-framework,
database, network-server, xml

network-server, web-
framework

Table 4.3. Examples of ASF libraries categorized using DBYCAT. These examples were taken
from the testing datasets in the 10-fold cross validation process

CHAPTER 4. EXPERIMENTS AND RESULTS 44

Table 4.4. Values for the Kolmogorov-Smirnov and Shapiro-Wilk tests

Kolmogorov-Smirnov Shapiro-Wilk
Statistic p-value Statistic p-value

Bytecode 1

Precision@1 0.386 1.758× 10−67 0.624 1.889× 10−18

Precision@5 0.419 8.749× 10−80 0.600 5.302× 10−19

Recall@1 0.368 5.880× 10−61 0.664 1.624× 10−17

Recall@5 0.397 1.860× 10−71 0.652 8.609× 10−18

Reciprocal Rank 0.234 9.823× 10−24 0.732 1.160× 10−15

Bytecode 2

Precision@1 0.373 7.700× 10−63 0.630 2.560× 10−18

Precision@5 0.415 3.505× 10−78 0.608 8.057× 10−19

Recall@1 0.354 3.186× 10−56 0.672 2.662× 10−17

Recall@5 0.402 2.633× 10−73 0.646 6.108× 10−18

Reciprocal Rank 0.233 1.230× 10−23 0.743 2.558× 10−15

Source code

Precision@1 0.363 1.827× 10−59 0.633 3.009× 10−18

Precision@5 0.406 9.154× 10−75 0.620 1.462× 10−18

Recall@1 0.342 2.565× 10−52 0.682 4.822× 10−17

Recall@5 0.395 1.386× 10−70 0.657 1.085× 10−17

Reciprocal Rank 0.243 8.819× 10−26 0.717 4.302× 10−16

Table 4.5. Values for the Kruskall-Wallis test

Precision@1 Precision@5 Recall@1 Recall@5 Reciprocal Rank

Statistic 0.634 0.023 0.575 0.065 0.211

p-value 0.728 0.989 0.750 0.968 0.900

CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

This document described DBYCAT, a model to categorize software libraries through the
analysis of bytecode. DBYCAT uses Dirichlet Process Clustering to group similar bytecode
documents together, and then the clusters were automatically labeled with existing cate-
gories extracted from a software repository. DBYCAT explored Dirichlet Process Cluster-
ing to group similar bytecode documents because it �nds the appropriate number of clusters
automatically, thus DPC can be considered as a non-parametric clustering algorithm.

DBYCAT takes advantage of the similarity between the vocabulary used by developers
in the source code of the software libraries and the vocabulary present in software pro�les,
to assign a relevant category to a software library. Therefore, DBYCAT is an example of
how unstructured information (i.e. identi�ers extracted from bytecode and text extracted
from software pro�les) can be used to create information retrieval systems. Additionally,
DBYCAT can be viewed as a classi�er which is trained with the bytecode and pro�les of
a particular set of software libraries, in order to categorize new ones. The categorization
of a new software library is not computationally expensive; to categorize a new library,
DBYCAT just computes the cosine similarity between the vector of terms which represents
a library and the vector of terms which represent the existing clusters.

An experiment was conducted in order to evaluate the accuracy of DBYCAT. The
�rst step was the training of the model using libraries extracted from Apache Software
Foundation. The next step was the categorization of ASF libraries through a 10-fold cross
validation process recommending a set of 5 categories. The �nal step was the categorization
of projects not maintained by ASF (i.e. generalization), using the model trained with the
bytecode and categories of the ASF libraries and recommending a set of 5 categories.
The accuracy of the categorization was estimated when it recommends a single category
(single-label) and several categories (multi-label).

The results of the experiment for the single-label case indicated that DBYCAT can
accurately recommend a relevant category for new software library. For the multi-label
case, the results indicates that in four out of ten cases the �rst recommended category
is a correct one. We consider this result as being very encouraging, given that randomly
suggesting a category would lead to a value of 0.055. The value for precision@5 indicates

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 46

that given the set of �ve suggested categories, at least one of them is correct. This reinforces
the results obtained for the single-label case. Analyzing together the values of recall@k
and precision@k, the results look remarkable, showing that in fact, despite the seemingly
low value for the precision at k = 5, DBYCAT in fact recommends 76% of the correct
categories for each library in the top �ve recommendations.

For the generalization case, the results of the survey showed that DBYCAT recom-
mended a relevant category to every non-ASF project. Additionally, DBYCAT recom-
mended the �rst relevant category within the top 2 positions.

On the other hand, since DBYCAT uses bytecode to train the classi�er, and taking
into account that some of information contained in the source code of the software libraries
is lost during its compilation (e.g. the comments), this study was interested in comparing
the results of the proposed model trained with bytecode with the results of the same model
but trained with source code. The results of this comparison suggest that the bytecode is
a good replacement of source code for the proposed model, encouraging us to explore the
capability of the bytecode to create information retrieval approaches to support additional
software engineering tasks.

The potential of DBYCAT resides in that it is able to categorize the libraries in a
software repository using the existing tags of another repository, establishing a relationship
between the vocabulary used in the libraries with the vocabulary used in the software
pro�les containing the categories. Thus, for example a software repository whose source
code is not available and its libraries are not categorized can be characterized using the
categories provided by other software repository such as SourceForge or OpenHub. Another
example of the possible uses of DBYCAT is Maven Central, a repository of Java libraries
(more than 90.000 unique artifacts1) without categories. Since this repository does not
contain the source code of many of the libraries in it, it can be characterized using DBYCAT
and the categories provided by other repository. This categorization is performed using
a clustering algorithm that does not need prior knowledge about the number of clusters,
o�ering at the end a suitable representation of the semantics of each cluster.

Additionally, when a new software developer wants to store a new software library in
this type of software repositories, DBYCAT can support the assignment of relevant cate-
gories through the recommendation of a particular set. Taking into account the training
dataset used in this study, it can be said that a developer of the Apache Software Founda-
tion will be able to use DBYCAT to obtain suggestions about the appropriate categories
to her new application. Using a suggested category, the ASF developer will ensure that
its new library shares the same application domain with existing libraries. Nevertheless,
at the end the developer will be the person who will choose the appropriate categories.

5.2 Future work

Future work will be focused on three aspects:

1. Improving DBYCAT: The proposed model should be trained using repositories which
contains a comprehensive representation of application domains of Java libraries.
An example of this kind of repositories is Maven Central2; the libraries could be

1http://search.maven.org/#stats
2http://search.maven.org/

http://search.maven.org/#stats
http://search.maven.org/

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 47

automatically categorized without the intervention of developers using the set of
categories of a similar repository such as SourceForge or Ohlo. In general, future
work will be focused on exploring the capability of DBYCAT to categorize software
libraries using previous knowledge extracted from di�erent software repositories.

2. Exploiting the bytecode: Current information retrieval (IR) techniques and machine
learning (MR) approaches use the source code of applications to support software
engineering tasks. Since the bytecode contains most of the information contained in
the source code, the bytecode becomes a good alternative to solve problems where
the source code is not available. Hence, future work will be devoted to leverage the
bytecode to create information retrieval and machine learning based approaches to
solve that kind of problems.

3. Exploring Dirichlet Process Clustering: This clustering algorithm is considered a
non-parametric algorithm because it does not require the number of cluster as a
parameter (conversely to clustering algorithms such as K-Means and its variations),
then it is suitable for modeling problems where the number of groups is unknown.
However, this algorithm produces partitions over data, i.e. each datum is assigned to
a single cluster. Because software categorization approaches need to deal with cate-
gorization using multiple labels, a partitional clustering algorithm where each cluster
is described using a single label seems not to be adequate. Therefore, future work
will focus on exploring algorithms that allow the assignment of a datum to several
clusters, in order to describe a cluster with a single relevant label; thus, a library
belonging to several clusters could be categorized with multiple labels. Particularly,
future work will focus on the use of Hierarchical Dirichlet Process Clustering[47, 41]
to improve the accuracy of the model at categorizing a software library using multiple
labels.

Bibliography

[1] Raymond P L Buse and Westley Weimer, Synthesizing API usage examples, Proceed-
ings of the 2012 International Conference on Software Engineering (Piscataway, NJ,
USA), ICSE 2012, IEEE Press, 2012, pp. 782�792.

[2] Ryan Carlson, Hyunsook Do, and Anne Denton, A clustering approach to improv-

ing test case prioritization: An industrial case study, 2011 27th IEEE International
Conference on Software Maintenance (ICSM), IEEE, September 2011, pp. 382�391
(English).

[3] Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe Scanniello, Investi-
gating the Use of Lexical Information for Software System Clustering, 2011 15th Eu-
ropean Conference on Software Maintenance and Reengineering, IEEE, March 2011,
pp. 35�44.

[4] Nick Craswell, Mean Reciprocal Rank, Encyclopedia of Database Systems, Springer,
2009, p. 1703.

[5] Nigel Crook, Ramon Granell, and Stephen Pulman, Unsupervised Classi�cation of

Dialogue Acts Using a Dirichlet Process Mixture Model, Proceedings of the SIGDIAL
2009 Conference: The 10th Annual Meeting of the Special Interest Group on Discourse
and Dialogue (Stroudsburg, PA, USA), SIGDIAL '09, Association for Computational
Linguistics, 2009, pp. 341�348.

[6] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel,
ReBucket: A method for clustering duplicate crash reports based on call stack similar-

ity, 2012 34th International Conference on Software Engineering (ICSE), IEEE, June
2012, pp. 1084�1093.

[7] Tejinder Dhaliwal, Foutse Khomh, and Ying Zou, Classifying �eld crash reports for

�xing bugs: A case study of Mozilla Firefox, 2011 27th IEEE International Conference
on Software Maintenance (ICSM), IEEE, September 2011, pp. 333�342.

[8] William Dickinson, David Leon, A. Fodgurski, and Andy Podgurski, Finding Failures
by Cluster Analysis of Execution Pro�les, Proceedings of the 23rd International Con-
ference on Software Engineering (Washington, DC, USA), ICSE '01, IEEE Computer
Society, 2001, pp. 339�348.

[9] Thomas S Ferguson, A Bayesian analysis of some nonparametric problems, The annals
of statistics (1973), 209�230.

48

BIBLIOGRAPHY 49

[10] M Grechanik, Fu Chen, Xie Qing, C McMillan, D Poshyvanyk, and C Cumby, A search

engine for �nding highly relevant applications, Software Engineering, 2010 ACM/IEEE
32nd International Conference on, vol. 1, 2010, pp. 475�484.

[11] M Grechanik, K M Conroy, and K A Probst, Finding Relevant Applications for Pro-
totyping, Mining Software Repositories, 2007. ICSE Workshops MSR '07. Fourth In-
ternational Workshop on, 2007, p. 12.

[12] Nie Jian-Yun, F Paradis, and J Vaucher, Using information retrieval for software

reuse, Computing and Information, 1993. Proceedings ICCI '93., Fifth International
Conference on, 1993, pp. 448�452.

[13] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu, DECKARD:
Scalable and Accurate Tree-Based Detection of Code Clones, 29th International Con-
ference on Software Engineering (ICSE'07), IEEE, May 2007, pp. 96�105.

[14] Tian Kai, M Revelle, and D Poshyvanyk, Using Latent Dirichlet Allocation for auto-

matic categorization of software, Mining Software Repositories, 2009. MSR '09. 6th
IEEE International Working Conference on, 2009, pp. 163�166.

[15] S. Kawaguchi, P.K. Garg, M. Matsushita, K. Inoue, and Z. Source, Automatic cate-

gorization algorithm for evolvable software archive, Sixth International Workshop on
Principles of Software Evolution, 2003. Proceedings., IEEE, 2003, pp. 195�200.

[16] Shinji Kawaguchi, Pankaj K Garg, Makoto Matsushita, and Katsuro Inoue, MUD-

ABlue: An automatic categorization system for Open Source repositories, Journal of
Systems and Software 79 (2006), no. 7, 939�953.

[17] Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano, and Akihiko
Matsuo, Feature-gathering dependency-based software clustering using Dedication and

Modularity, 2012 28th IEEE International Conference on Software Maintenance
(ICSM), IEEE, September 2012, pp. 462�471.

[18] William H Kruskal and W Allen Wallis, Use of ranks in one-criterion variance anal-

ysis, Journal of the American statistical Association 47 (1952), no. 260, 583�621.

[19] A Kuhn, S Ducasse, and T Girba, Enriching reverse engineering with semantic clus-

tering, Reverse Engineering, 12th Working Conference on, 2005, p. 10 pp.

[20] Adrian Kuhn, On extracting unit tests from interactive live programming sessions,
2013 35th International Conference on Software Engineering (ICSE), IEEE, May 2013,
pp. 1241�1244.

[21] Adrian Kuhn, Stéphane Ducasse, and Tudor Gîrba, Semantic clustering: Identifying

topics in source code, Information and Software Technology 49 (2007), no. 3, 230�243.

[22] M Linares-Vásquez, C McMillan, D Poshyvanyk, and M Grechanik, On Using Machine

Learning to Automatically Classify Software Applications into Domain Categories,
Empirical Software Engineering (EMSE) (2013).

[23] Y S Maarek, D M Berry, and G E Kaiser, An information retrieval approach for au-

tomatically constructing software libraries, Software Engineering, IEEE Transactions
on 17 (1991), no. 8, 800�813.

BIBLIOGRAPHY 50

[24] J.I. Maletic and A. Marcus, Supporting program comprehension using semantic and

structural information, Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, IEEE Comput. Soc, 2001, pp. 103�112.

[25] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze, Introduction to

Information Retrieval, Cambridge University Press, New York, NY, USA, 2008.

[26] Frank J Massey, The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the
American Statistical Association 46 (1951), no. 253, 68�78.

[27] C McMillan, M Grechanik, D Poshyvanyk, C Fu, and Q Xie, Exemplar: A Source

Code Search Engine For Finding Highly Relevant Applications, Software Engineering,
IEEE Transactions on PP (2011), no. 99, 1.

[28] C McMillan, M Linares-Vasquez, D Poshyvanyk, and M Grechanik, Categorizing soft-
ware applications for maintenance, Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, 2011, pp. 343�352.

[29] Parastoo Mohagheghi and Reidar Conradi, Quality, productivity and economic bene�ts
of software reuse: a review of industrial studies, Empirical Software Engineering 12
(2007), no. 5, 471�516.

[30] Tung Thanh Nguyen, Hoan Anh Nguyen, Jafar M. Al-Kofahi, Nam H. Pham, and
Tien N. Nguyen, Scalable and incremental clone detection for evolving software, 2009
IEEE International Conference on Software Maintenance, IEEE, September 2009,
pp. 491�494.

[31] Jim Pitman and Others, Combinatorial stochastic processes, Tech. report, Springer,
2002.

[32] Wenyi Qian, Xin Peng, Zhenchang Xing, Stan Jarzabek, and Wenyun Zhao, Mining

Logical Clones in Software: Revealing High-Level Business and Programming Rules,
2013 IEEE International Conference on Software Maintenance, IEEE, September 2013,
pp. 40�49.

[33] Simone Romano, Giuseppe Scanniello, Michele Risi, and Carmine Gravino, Cluster-
ing and lexical information support for the recovery of design pattern in source code,
2011 27th IEEE International Conference on Software Maintenance (ICSM), IEEE,
September 2011, pp. 500�503.

[34] Thorsten Schafer, Ivica Aracic, Matthias Merz, Mira Mezini, and Klaus Ostermann,
Clustering for Generating Framework Top-Level Views, 14th Working Conference on
Reverse Engineering (WCRE 2007), IEEE, October 2007, pp. 239�248.

[35] Robert Schwanke, Lu Xiao, and Yuanfang Cai,Measuring architecture quality by struc-

ture plus history analysis, 2013 35th International Conference on Software Engineering
(ICSE), IEEE, May 2013, pp. 891�900.

[36] Samuel Sanford Shapiro and Martin B Wilk, An analysis of variance test for normality

(complete samples), Biometrika (1965), 591�611.

[37] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand, Mining SQL injection

and cross site scripting vulnerabilities using hybrid program analysis, 2013 35th Inter-
national Conference on Software Engineering (ICSE), IEEE, May 2013, pp. 642�651.

BIBLIOGRAPHY 51

[38] Charles Song, Adam Porter, and Je�rey S. Foster, iTree: E�ciently Discovering High-

Coverage Con�gurations Using Interaction Trees, IEEE Transactions on Software En-
gineering 40 (2014), no. 3, 251�265.

[39] Mark D. Syer, Bram Adams, and Ahmed E. Hassan, Identifying performance devia-

tions in thread pools, 2011 27th IEEE International Conference on Software Mainte-
nance (ICSM), IEEE, September 2011, pp. 83�92.

[40] Yee Whye Teh, Dirichlet process, Encyclopedia of machine learning, Springer, 2010,
pp. 280�287.

[41] Yee Whye Teh, Michael I Jordan, Matthew J Beal, and David M Blei, Hierarchical
dirichlet processes, Journal of the american statistical association 101 (2006), no. 476.

[42] The Apache Software Foundation, The Byte Code Engineering Library (Apache Com-
mons BCEL).

[43] Cornelis J Van Rijsbergen, Stephen Edward Robertson, and Martin F Porter, New
models in probabilistic information retrieval, Computer Laboratory, University of
Cambridge, 1980.

[44] Shaowei Wang, David Lo, and Lingxiao Jiang, Inferring semantically related soft-

ware terms and their taxonomy by leveraging collaborative tagging, 2012 28th IEEE
International Conference on Software Maintenance (ICSM), IEEE, September 2012,
pp. 604�607.

[45] Tao Wang, Huaimin Wang, Gang Yin, C X Ling, Xiang Li, and Peng Zou, Mining

Software Pro�le across Multiple Repositories for Hierarchical Categorization, 2013,
pp. 240�249.

[46] Wei Zhao, Lu Zhang, Hong Mei, and Jiasu Sun, Requirements guided dynamic software
clustering, 21st IEEE International Conference on Software Maintenance (ICSM'05),
IEEE, 2005, pp. 605�608.

[47] Tianbing Xu, Zhongfei Zhang, Philip S Yu, and Bo Long, Evolutionary clustering by

hierarchical dirichlet process with hidden markov state, Data Mining, 2008. ICDM'08.
Eighth IEEE International Conference on, IEEE, 2008, pp. 658�667.

	Contents
	List of Tables
	List of Figures
	Introduction
	Background and Justification
	Problem Definition
	Contributions
	Goal
	Outline

	Related work
	Software categorization using bytecode and DPC
	Data extraction
	Source code identifiers
	Software profiles and categories

	Preprocessing
	Model construction
	Clustering bytecode documents
	TF-IDF and the Vector Space Model
	Non-relevant terms removal and Documents resizing
	Dirichlet Process Clustering

	Automatic labeling using the bag-of-words representation of categories

	Categorization of new projects
	Summary

	Experiments and results
	Experimental design
	Research questions
	Analysis Method
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Data Extraction Process
	Apache Software Foundation dataset (ASF dataset)
	Survey

	Results
	Single label (RQ1)
	Multi-label results (RQ2)
	Generalization (RQ3)
	Analysis of the open questions

	Comparison (RQ4)

	Threats to validity
	Lessons learned

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

