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José Francisco Ruiz Muñoz
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Abstract

In this thesis, two promising and actively researched fields from pattern recognition (PR) and

digital signal processing (DSP) are studied, adapted and applied for the automated recogni-

tion of bioacoustic signals: (i) learning from weakly-labeled data, and (ii) dictionary-based

decomposition. The document begins with an overview of the current methods and tech-

niques applied for the automated recognition of bioacoustic signals, and an analysis of the

impact of this technology at global and local scales. This is followed by a detailed descrip-

tion of my research on studying two approaches from the above-mentioned fields, multiple

instance learning (MIL) and dictionary learning (DL), as solutions to particular challenges

in bioacoustic data analysis. The most relevant contributions and findings of this thesis are

the following ones: 1) the proposal of an unsupervised recording segmentation method of

audio birdsong recordings that improves species classification with the benefit of an easier

implementation since no manual handling of recordings is required; 2) the confirmation that,

in the analyzed audio datasets, appropriate dissimilarity measures are those which capture

most of the overall differences between bags, such as the modified Hausdorff distance and

the mean minimum distance; 3) the adoption of dissimilarity adaptation techniques for the

enhancement of dissimilarity-based multiple instance classification, along with the potential

further enhancement of the classification performance by building dissimilarity spaces and

increasing training set sizes; 4) the proposal of a framework for solving MIL problems by

using the one nearest neighbor (1-NN) classifier; 5) a novel convolutive DL method for learn-

ing a representative dictionary from a collection of multiple-bird audio recordings; 6) such a

DL method is successfully applied to spectrogram denoising and species classification; and,

7) an efficient online version of the DL method that outperforms other state-of-the-art batch

and online methods, in both, computational cost and quality of the discovered patterns.

Keywords: pattern recognition, digital signal processing, multiple instance learning,

dictionary learning, bioacoustics.

Resumen

En esta tesis se estudian, adaptan y aplican dos prometedoras y activas áreas del re-

conocimiento de patrones (PR) y procesamiento digital de señales (DSP): (i) aprendizaje

débilmente supervisado y (ii) descomposiciones basadas en diccionarios. Inicialmente se hace

una revisión de los métodos y técnicas que actualmente se aplican en tareas de reconocimiento

automatizado de señales bioacústicas y se describe el impacto de esta tecnoloǵıa a escalas

nacional y global. Posteriormente, la investigación se enfoca en el estudio de dos técnicas de

las áreas antes mencionadas, aprendizaje multi-instancia (MIL) y aprendizaje de diccionarios
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(DL), como soluciones a retos particulares del análisis de datos bioacústicos. Las contribu-

ciones y hallazgos más relevantes de esta tesis son los siguientes: 1) se propone un método de

segmentación de grabaciones de audio que mejora la clasificación automatizada de especies,

el cual es fácil de implementar ya que no necesita información supervisada de entrenamiento;

2) se confirma que, en los conjuntos de datos analizados, las medidas de disimilitudes que cap-

turan las diferencias globales entre bolsas funcionan apropiadamente, tales como la distancia

modificada de Hausdorff y la distancia media de los mı́nimos; 3) la adopción de técnicas de

adaptación de disimilitudes para mejorar la clasificación multi-instancia, junto con el incre-

mento potencial del desempeño por medio de la construcción de espacios de disimilitudes y

el aumento del tamaño de los conjuntos de entrenamiento; 4) se presenta un esquema para

la solución de problemas MIL por medio del clasificador del vecino más cercano (1-NN);

5) se propone un método novedoso de DL, basado en convoluciones, para el aprendizaje

automatizado de un diccionario representativo a partir de un conjunto de grabaciones de

audio de múltiples vocalizaciones de aves; 6) dicho método DL se utiliza exitosamente como

técnica de reducción de ruido en espectrogramas y clasificación de grabaciones bioacústicas;

y 7) un metódo DL, de procesamiento en ĺınea, que supera otros métodos del estado del arte

en costo computacional y calidad de los patrones descubiertos.

Palabras clave: reconocimiento de patrones, procesamiento digital de señales, apren-

dizaje multi-instancia, aprendizaje de diccionarios, bioacústica.
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1. Introduction

1.1. Context of the research

With the aim of alleviating the repetitive and labor-intensive tasks derived from wildlife mon-

itoring, biologists and ecologists have recently turned their attention to new technologies.

Especially, pattern recognition (PR) and digital signal processing (DSP) techniques facilitate

the assessment of biodiversity conservation through automated recognition processes [3, 12].

Therefore, despite the fact that automated recognition is not a new concept —because, since

decades ago, automatics has been applied on computation and robotics [26]— it is recently

starting to be popular in bioacoustic applications. Moreover, the multidisciplinary collabo-

ration among experts in bioacoustics, taxonomy, ecology, computer science and electronics

has encouraged new advances in tools for automatically analyzing bioacoustic data.

In this thesis, the following state-of-the-art PR and DSP approaches are applied and adapted

to handle challenges in bioacoustics: i) multiple instance learning (MIL), which is a weakly

supervised technique that reduces the training effort since it does not require explicit a

priori information of the concept [38, 47], and ii) dictionary learning (DL), which is used for

searching time-varying patterns in audio signals [82, 102].

1.2. Objectives

This thesis aims to facilitate the automated recognition of bioacoustic signals by adapting

and improving state-of-the-art PR and DSP techniques. To this end, the following aspects

have been considered:

– Identifying state-of-the-art PR and DSP techniques applicable to auto-

mated recognition of bioacoustic signals: an overall review of the literature was

carried out and published in [21]. In Chapter 2, an up-to-date version of it is presented.
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– Enhancing dissimilarity-based multiple instance classification: we explored

the MIL approach since it conveniently allows reducing the information needed for

training classification systems. We combine both, dissimilarity-based multi-instance

classification and metric-learning, in order to tackle the MIL problem as a standard

classification problem and enhance the information provided by dissimilarity estima-

tions. We published the results of this study in [95].

– Detecting relevant time-frequency patterns: we proposed a new convolutive

dictionary-learning approach to detect fundamental time-frequency patterns. It was

published in [96], showing its performance in both artificial and real-world data.

1.3. Contributions and outline

This thesis contributes to the fields of PR and DSP, and their applications to bioacoustics.

Particularly, a framework for enhancing the dissimilarity-based multiple instance classifica-

tion approach was proposed. This formulation allows both obtaining a good classification

performance and facilitating MIL tasks in bioacoustics. Furthermore, a novel convolutive DL

method was proposed to learn a representative dictionary from a collection of spectrograms.

The remainder of this document is organized as follows: Chapter 2 describes an analysis

of challenges and opportunities for the application of bioacoustic technology in Colombia.

Afterward, this thesis is divided into two parts: Part I contains the following three chapters

related to MIL: Chapter 3 describes the procedure for applying MIL to bioacoustic recogni-

tion tasks and compares two segmentation methods; a baseline supervised method against

a novel unsupervised method; in Chapter 4, metric learning techniques are applied to adapt

dissimilarity measures between spectrograms, which are represented as bags of feature vec-

tors also known as bags of instances ; and, in Chapter 5, a method to enhance the one nearest

classification on multiple instance datasets is proposed. Part II contains the following two

chapters related to DL: in Chapter 6, we propose an efficient approach for learning and

using a sparse convolutive model to represent a collection of spectrograms; subsequently,

in Chapter 7, we present an online method to learn recurring time-frequency patterns from

spectrograms. Finally, general conclusions of this thesis are drawn in Chapter 8 along with

some recommendations and guidelines for future work.



2. Automated recognition of bioacoustic

signals

Abstract

Among the most widely used methods to perform surveys, characterizations and monitoring

of wildlife is the acquisition and analysis of acoustic signals that animals emit to commu-

nicate. DSP and PR methods offer promising opportunities for the automatic and remote

bioacoustic monitoring of sound-emitting animals such as insects, fishes, frogs, birds, and

mammals. During the past decade, numerous research studies and applications on auto-

mated bioacoustic monitoring have been published; however, such studies are scattered in

the literature of engineering and life sciences. This chapter presents a review of fundamen-

tal concepts of automated acoustic monitoring. We aim to compare and categorize —in

a taxonomy of DSP/PR techniques— the contributions of published research studies and

applications in order to guide future research and highlight challenges and opportunities

related to the deployment of this technology in Colombia.

2.1. Introduction1

Wildlife monitoring is carried out in order to allow that researchers and conservation planners

acquire a good overview of the state and the outlook of the environment [77]. This activity is

often related to the collection, analysis, and identification of bioacoustic signals coming from

several species, which are frequently heard more than seen or even trapped [16]. Among

the specific advantages of the acoustic-based monitoring approach, the following ones are

worth mentioning: i) relative easiness and cheapness for collecting acoustic information

by using digital audio recording devices [90]; ii) feasibility for acquiring acoustic signals

1This chapter was published as: Paula Catalina Caycedo-Rosales, José Francisco Ruiz-Muñoz and Mauricio

Orozco-Alzate. Automated recognition of bioacoustic signals: A review of methods and applications. In

Ingenieŕıa y Ciencia ISSN: 1794-9165 ed: Universidad Eafit vol. 9, pages 171-195, 2013.
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during extended periods of time, allowing large scale coverages along both time and space

domains [63, 48]; and iii) ability to tackle the challenge of labeling the enormous amount

of available bioacoustic data, whose analysis might be too costly or even non-feasible to be

carried out by human experts [94]. Consequently, automated bioacoustic monitoring becomes

cheaper in the long term than the observations made by experts, sometimes providing even

more accurate results [53].

2.1.1. Importance of acoustic communication in wildlife

Two of the most commonly known functions of bioacoustic signals are the attraction of

mating animals and defense of territory [29]. Both of these aspects strongly affect the

genetic flow and the distribution patterns of the species [51]. Furthermore, acoustic signals

emitted by taxa, such as insects, frogs, birds, fish, and mammals, strengthen the differences

among species [109]. For instance, those signals have been used in several conservation

studies because they are very efficient to confirm the presence of particular species, especially,

in environments with reduced visibility (e.g., rainforest, aquatic ecosystems) and to study

nocturnal species [10, 32, 45, 79, 81]. Additionally, acoustic signals have been used for

identifying gender, age, and individuals [50, 67].

2.1.2. Bioacoustics and technology

In the field of bioacoustics, many approaches have been proposed for analyzing time-frequency

patterns. For instance, the spectrogram representation of audio signals has been widely

used [20]. However, analyzing this data by visual inspection might be non-feasible due to

the amount of data that is usually required to be processed.

Technological advances allow for the application of new approaches and devices for collecting

bioacoustic information [10]. For example, the autonomous recording units (ARUs) that are

specialized hardware to record and store a large amount of data [5]. Such data can be trans-

mitted, processed and analyzed with computational tools. Thus, the automated processing

of acoustic data facilitates the organization and search of information [64]. Furthermore, it

is possible to incorporate detection and location systems of sound-emitting animals based on

DSP/PR techniques [69]. Also, the extracted information can be used for answering a broad

range of questions about individuals, populations, communities and ecosystems [10, 36].



6 2 Automated recognition of bioacoustic signals

2.2. Collecting data

The acoustic monitoring is a non-invasive method, which implies that it does not require

capturing specimens. Furthermore, technological tools can strengthen this type of observa-

tion [27], reducing costs and obtaining a wide spatial and temporal coverage. The primary

devices used for acquiring bioacoustic signals are microphones, audio recorders, batteries,

mechanisms for initiating and ending recordings, and weather-proof housing for the equip-

ment [16]. There are specialized microphones used according to the physical properties of

the signals and the environmental conditions. For instance, infrasound microphones are

used for recording elephant and cetacean vocalizations whereas ultrasonic microphones are

used for recording vocalizations of bats and some insects. Some technical specifications and

recommendations about collecting devices are found in [12, 26, 27].

Currently, there is a wide variety of devices for recording bioacoustic signals. They vary in

price, sound sensitivity, signal-to-noise ratio (SNR), quality and design of hardware, configu-

ration, directionality of microphones, frequency sensitivity, and programmability of recording

schedules [92]. The ARUs are an example of these devices, they are programmable audio

recorders that can be handled automatically or by a wireless connection [78]. The most

widely used ARUs are songmeters,3 E3A recording systems [56, 111], and smartphones4.

In monitoring programs, due to the technological differences, it is advisable to use a single

type of equipment for comparative purposes and thus reducing bias in detectability. In [92],

it is recommended to use the same equipment for no longer than five years because older

versions usually leave the market. In such a way, researchers can take advantage of the

improvements that manufacturers have made.

2.3. Automated recognition of bioacoustic signals

In general, automation techniques are applied in bioacoustics for i) detecting relevant pat-

terns in recordings, which is known as segmentation, ii) extracting features, and iii) classify-

ing patterns. Frequently, segmentation methods assume that relevant patterns are continu-

ous and high energy regions [54]. Among the methods usually employed for extracting fea-

tures are Linear Predictive Coding (LPC) [85], Mel-frequency cepstral coefficients (MFCC)

[69] and descriptive parameters in the frequency and time domain [44]. Methods for acoustic

classification of bird species can be grouped into two types [19]: those that classify individ-

3http://www.wildlifeacoustics.com
4http://arbimon.com/arbimon/index.php/products-acoustics

http://www.wildlifeacoustics.com
http://arbimon.com/arbimon/index.php/products-acoustics
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ual units such as calls or syllables, and those that classify longer recordings. Most common

algorithms for classifying units are nearest-neighbor rule, linear discriminant analysis and

support vector machines (SVM) [1]. The classification of recordings has been carried out

by using Hidden Markov Models (HMM) [110], Gaussian Mixture Models (GMM) [104] and

Multi-Instance Learning (MIL) [19]. Figure 2-1 shows a diagram of a typical automated

recognition system. Even though we emphasize on audio signals, this scheme easily fixes

to a recognition system based on images, or other quantitative data, e.g., location, date, or

weather.

Signal Sensor Preprocessing Representation

Training

Test

Classifier/Model

Label

Inputs:
- Audio signal
- Label

Output:
- Classifier or model

Signal Sensor Preprocessing Representation Classifier/Model Label

Input:
- Audio signal

Output:
- Label

Figure 2-1.Stages of a typical automated recognition system. It is divided into (i) training

at top, which consists in building a model according to a priori information,

and (ii) test at bottom, which consists in labeling recordings of a test set.

Many approaches of DSP and PR have been applied to the problem of automatic bird

detection and classification. These approaches include time-frequency feature extraction,

analysis of specific vocalization properties, computation of dissimilarities between acoustic

signals or their representations, and statistical classifiers. Earlier studies focused on the

classification of syllables and songs. In [54], the problem of classifying syllables of passerine

birds is studied by using sinusoidal modelling and classification by matching, i.e., applying

the one-nearest neighbor (1-NN) classification rule. A similar approach is proposed in [23] to

tackle the bird strike avoidance problem in aviation. In [104], three feature sets are compared:

sinusoidal modelling, MFCC and descriptive features; the authors used three classification

techniques: 1-NN based on the dynamic time warping (DTW) distance, GMM and HMM.

In [44], vocalizations are represented by MFCC and descriptive features and classification is

carried out by using a decision tree with a support vector machine (SVM) classifier. In [110],

HMM is applied for classifying songs of antbirds from a Mexican rainforest represented by

MFCC and LPC. Likewise, in [1], a methodology is proposed for automatically classifying
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isolated calls of three common mountain bird species by using standard call variables and

spectral features, as well as three classifiers: linear discriminant analysis, decision tree, and

SVM.

Recently, the problems of classification of recordings and detection in continuous audio sig-

nals have been studied in order to face realistic problems. In [17], recordings of 6 species from

the Cornell Macaulay Library are classified by using a frame-level feature histogram repre-

sentation and a the 1-NN rule on statistical manifolds. In [19], a multi-instance multi-label

classification framework is proposed for classifying bird song recordings of the H. J. Andrews

dataset, which consists in the representation of each audio signal as a bag-of-instances and its

classification using a SVM. In [89], the recordings of the Multi-label bird species classification

challenge-NIPS 2013 are classified by detecting bags of relevant segments from spectrograms

and using image-based features with a random forest classifier. In [105], the concept of un-

supervised feature learning is introduced and the recordings of birds, from France, UK and

Brazil are classified in four datasets. Among the detection studies, we highlight the following

ones: in [9], a methodology of similarity search in audio recordings is proposed by using time-

frequency trajectories; this approach is evaluated with recordings from the Animal Sound

Archive of Berlin. In [10], a similar approach for detecting vocalizations of the Eurasian

bittern and Savi’s warbler is applied. Time-frequency features and HMM for detecting bird

species of North America, Eurasia, and North Africa are used in [90]. Vocalizations of the

Vanellus chilensis lampronotus are detected in [49] by extracting spectral features and using

GMM and HMM. In some studies, species-specific parametrization is carried out, e.g., the

methodology for detecting vocalization of a Hawaiian forest bird described in [100].

Audio recordings are often treated as images by using spectrograms. In such a way, acoustic

events appear as blobs in these two-dimensional representations. Therefore, any framework

of image analysis can be followed. In addition, for some of the studies mentioned above, the

audio recognition task is cast into an image processing and classification problem; for example

in the following ones: in [62], the proposed recognition method relies on the spectral shape

to detect tonal bird sounds in noisy environments. In [3], as a first stage in the recognition

system, regions of spectrograms are automatically selected. Similarly, the detection system

proposed in [112] extracts image-based features to classify bird species from Brazil.

2.3.1. Estimating the performance of an automated recognition system

Estimating the performance of an automated recognition system is crucial for knowing its

reliability. One of the easiest ways to carry out this procedure is by counting the number

of objects correctly labeled, which is known as accuracy. However, it might not be the

best option for unbalanced data, i.e., when the number of objects per class is significantly
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different, since a system that assigns only the label of the majority class could show an unreal

positive performance. Alternatively, in [15], several measures are described for estimating

the performance of two-class classifiers.5 To apply those measures to multi-class problems,

the classification problem can be restated as several two-class problems. This is carried out

by taking each class as the target class and the others as non-target class (which is known

as one-against-all approach) or evaluating the performance of each pair of classes (which is

known as one-against-one approach) [5, 44, 68].

In bioacoustics, classification of recordings is usually a multi-label problem —where an object

can belong to several classes. For instance, each recording can contain the sound of different

sources, such as vocalizations of several species and environmental noise. There are measures

specialized for estimating the performance in multi-label problems: Hamming loss, rank loss,

one-error, coverage and micro(macro)-AUC [19].

2.4. Projects of environmental monitoring based on

bioacoustic signals

A common purpose of the automated recognition systems of bioacoustic signals is to facili-

tate the permanent extraction of environmental information [64, 78, 119]. This knowledge is

fundamental for communicating with the decision makers and the general public about the

state of the environment. The following projects of environmental monitoring from bioacous-

tic signals are currently being developed. In general, they are equipped with technological

tools, specialized hardware and software, communication devices, and expert staff.

• In the United States of America (USA), the Bioacoustic Research Program6 from

The Cornell Lab of Ornithology aims to promote innovative technologies for collecting

and interpreting sounds in nature. In this program, hardware and software are being

developed to record and analyze acoustical information around the globe.

• In Puerto Rico, the Automated Remote BIodiversity MONitoring Network (ARBI-

MON7) develops several tools for acoustic monitoring. Researchers and technical staff

of this project are specialized in environmental monitoring through audio recordings

and satellite imagery. They implement permanent recording stations for long-term

monitoring in real time. Furthermore, they rent and sell portable recorders, and offer

5A two-class classifier assigns to each object one of two possible labels. It is common to denote one of them

as positive (or target class) and the other as negative (or non-target class).
6http://www.birds.cornell.edu/brp/
7http://arbimon.com/

http://www.birds.cornell.edu/brp/
http://arbimon.com/
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access to a cloud-computing platform.

• In Europe, the Automatic acoustic Monitoring and Inventorying of BIOdiversity (AMI-

BIO8) project constructs autonomous multi-sensor monitoring stations and software to

analyze the acquired data. The goals of this project are: i) biodiversity assessment and

inventorying of an area; ii) estimation of the density of animals in the monitored areas;

iii) monitoring and alarming about the presence or absence of rare and threatened

species at inaccessible areas as well as night-migrating birds; iv) estimation of the

health of certain species from their vocalizations; v) Monitoring and alarming of specific

atypical sound events such as those related to potentially hazardous human activities

(e.g., gun shots and trees falling); and, vi) permanent monitoring for danger and crisis

events (e.g., fires and storms).

• In the Remote Environmental Assessment Laboratory (REAL9) from Michigan State

University, an architecture for automatically collecting acoustic signals in natural areas

has been developed. This architecture consists of communication and data processing

infrastructure used to transmit, store, and analyze environmental data.

2.5. Software for bioacoustics

The software programs listed below contain tools for processing audio signals. These pro-

grams are widely used to analyze and recognize bioacoustic signals by researchers in this

area:

• Avisoft (http://www.avisoft.com/): there are two types of this software: Avisoft-

SASLab Pro that provides sound analysis, editing and classification tools; and Avisoft-

RECORDER that is used to trigger recording systems.

• PAMGUARD (http://www.pamguard.org/): this open source software is designed

particularly to facilitate the passive monitoring in marine environments. It contains

tools for acoustic detection, localization and classification.

• Raven (http://www.birds.cornell.edu/brp/raven/RavenOverview.html): this is

a free software specialized in the analysis, visualization, and measurement of animal

sounds.

8http://www.amibio-project.eu/
9http://www.real.msu.edu/

http://www.avisoft.com/
http://www.pamguard.org/
http://www.birds.cornell.edu/brp/raven/RavenOverview.html
http://www.amibio-project.eu/
http://www.real.msu.edu/
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• Song Scope (http://www.wildlifeacoustics.com/products/song-scope-overview):

this is a computational tool designed to review recordings made by conventional bioa-

coustic recording equipment.

• SoundID (http://www.soundid.net/): this is a sound recognition application. The

primary intention of its developers was to offer a system that could be used to search

rare parrots.

• XBAT (http://www.birds.cornell.edu/brp/software): this is a bioacoustics tool-

box developed in the numerical computing environment MATLAB.

• SonoBat (http://www.sonobat.com/): this is a software to display and analyze spec-

trograms of bat echolocation calls recorded from time-expansion bat detectors.

2.6. Challenges and opportunities in Colombia

Colombia is a country rich in biodiversity, especially in acoustically active wildlife, with

more than 1.860 bird species [14], 763 frog species, 479 mammal species, 2.000 marine fish

species, and 1.435 freshwater fish species.10 Particularly, birds have been used as an in-

dicator of changes in the environment, since they are widely distributed, easy to detect

through their vocalizations and, compared with other groups of animals, there is a good

knowledge of their biology. In Colombia, there are almost 20 ornithological associations that

are interested in bioacoustic monitoring. Globally, the contribution of ornithological asso-

ciations and birdwatchers has increased awareness of population trends of birds, especially

in Europe and North America. In Colombia, since 1987, an annual census has been done

on birds. These manual yearly surveys —since the sampling method has been based on

counting points— have contributed to increased knowledge and cohesion of ornithological

associations. However, if ornithological associations implement automated acoustic monitor-

ing under a systematic experimental design, they could operate more than just once a year.

Thus, it would be possible to collect data on wider temporal and spatial scales.

Nowadays, the interest of different organizations —such as foundations, non-governmental

organizations (NGOs), industrial companies, and academic institutions— in automated bioa-

coustic monitoring is increasingly growing. The IAVH (Instituto de Investigación de Recursos

Biológicos Alexander von Humboldt) can support them through its centers and services, par-

ticularly the following two: i) the Collection of Sounds, and ii) the Laboratory of Applied

Biogeography and Bioacoustics. Thus, these institutions together could set up monitoring

10https://www.siac.gov.co/contenido/contenido.aspx?conID=1252&catID=52

http://www.wildlifeacoustics.com/products/song-scope-overview
http://www.soundid.net/
http://www.birds.cornell.edu/brp/software
http://www.sonobat.com/
https://www.siac.gov.co/contenido/contenido.aspx?conID=1252&catID=52
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nodes under a standardized system of field data collection and species identification. There-

fore, it might be possible to guarantee the long-term protection of bioacoustic specimens,

develop tools for automating the recognition of vocally active wildlife species, implement an

online information system about this type of monitoring, and disseminating this information.

Automated bioacoustic monitoring is an attractive tool in different scenarios. For example,

for ornithological tourism in Colombia, it is possible to facilitate the recognition of the species

in the field by smartphone applications. Furthermore, this type of monitoring allows private

companies to have reliable and efficient systems to detect the presence of wildlife in their

areas of operation. Therefore, this technology is ideal for impact studies and environmental

management plans that the ANLA (Autoridad Nacional de Licencias Ambientales) requires.

With respect to the design and implementation of an automated recognition system, there are

three bottlenecks: a) collecting a statistically sufficient number of examples of vocalizations

of target and non-target species; b) segmentation of the recordings to remove and discard

audio vocalizations that are not of interest; c) transformation of a prototype system to a

final product. This refers to the development of user interfaces, manuals, licensing and

legalization and in general everything that should be added to the system to operate it.

Tasks a) and b) require more than just technical expertise in computing and electronics.

They also need the contribution of experts in ecology. Thus, these tasks can be carried out

through cooperation agreements between groups or institutions with trained staff in science

and technology. Finally, the transformation of a prototype automated recognition system

into one appropriate for real-world scenarios and its installation are activities that require

investment in personnel, purchasing equipment and software.

2.7. Discussion

The automated bioacoustic monitoring has the potential to simultaneously supply real-time

information from various taxonomic groups —in a systematic way— covering both large

spatial and temporal scales. This type of monitoring can provide accurate information about

the behavior of the dynamics in nature. For instance, mining, agriculture and infrastructure;

as well as factors derived from human development, such as climate change. Using this

technology enables early warning systems with high efficiency, which provides environmental

decision makers with information based on up-to-date data.

In the world, some research on biodiversity and monitoring projects have been successfully

developed worldwide automated bioacoustic tools. In Colombia, cooperation between institu-

tions would facilitate the implementation and use of this technology. A standard bioacoustic
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scheme of automated monitoring could unify isolated research efforts related to this topic.

Since Colombia is a very diverse country —with a large number of species, and endemic

and endangered ecosystems— efforts to implement this type of monitoring are valuable and

strategic.
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Multiple Instance Learning



3. Birdsong classification based on

multiple instance learning

Abstract

This chapter focuses on the extraction of local information as units –called instances– from

audio recordings. The methodology for instance extraction consists in the segmentation car-

ried out on spectrograms using image processing techniques and the estimation of a needed

threshold by the Otsu’s method. The multiple instance classification (MIC) approach is used

for the recognition of the sound units. A public dataset was used for the experiments. The

proposed unsupervised segmentation method has a practical advantage over the compared

supervised method, which requires the training from manually segmented spectrograms.

Results show that there is no significant difference between the proposed method and its

baseline. Therefore, it is shown that the proposed approach is feasible to design an auto-

matic recognition system of recordings which only requires, as training information, labeled

examples of audio recordings.

3.1. Introduction1

In the field of pattern recognition, classifiers are designed to discriminate concepts, e.g.,

images, audio signals or documents. Traditionally, classifiers are provided with labeled

training objects that correspond to feature vector representations —also called instances—

of the concepts [55]. However, single feature vectors might be not appropriate to describe

complex objects [6]. Alternatively, more advanced representations have been proposed, for

example, the multi-instance representation. In the classification in this context, known as

1This chapter was published as: José Francisco Ruiz-Muñoz, Mauricio Orozco-Alzate, and Germán

Castellanos-Domı́nguez, Multiple instance learning-based birdsong classification using unsupervised

recording segmentation, in Proceedings of the Twenty-Fourth International Joint Conference on Arti-

ficial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, 2015, pp. 2632–2638.
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multiple instance classification (MIC), a priori information of the concept is not explicitly

provided because classifiers are trained from labeled objects represented by sets of feature

vectors —called bag-of-instances— where each single instance can or can not be associated

with the concept that corresponds to the label of its bag.

Methods for acoustic classification of bird species can be categorized into two types [19]: 1)

those that classify individual syllables, and 2) those that classify recordings having sounds of

multiple sources. The former ones require a detailed annotation of each segment while in the

latter ones, for training, it is only required to label the presence of the species of interest in

each recording. In either case, segmentation is a high-priority step [80]. However, methods

of the first type are more sensitive to the segmentation quality because omitted syllables

become false negatives and those sounds incorrectly detected could become false positives.

In contrast, for methods of the second type, it is possible to achieve correct classification

even if the two above-mentioned miss-segmentation cases occur since every recording may

contain multiple syllables.

In general, segmenting recordings into smaller recognition units is assumed as a part of

the preprocessing stage and it is done either manually or automatically. Yet, automatic

recognition should not require manual segmentation [110]. For this purpose, segmentation

algorithms have been developed mostly using energy and entropy as criteria to identify

onset and offset times of the regions of interest [44]. Under ideal conditions, when the

vocalization call is the only sound in the recording, an increase in energy clearly reveals a

region of interest, making segmentation procedures simple enough [80]. However, in real

conditions, recorded signals are degraded due to the presence of many sound sources, e.g.,

wind streams, background noise from other animals and surrounding events. In spite of

that, several research studies on automated species recognition clarify that their methods

work well when the recognition units are correctly detected, often this issue is not discussed

in depth (making only a brief description). Furthermore, as indicated in [53], it should be

taken into account that achieving perfectly segmented data is at least as difficult as the

classification step.

Considering that the recognition of recordings has the advantage of not making the imprac-

tical assumption of requiring perfectly segmented data, in this chapter, it is proposed a clas-

sification methodology for audio recordings which only uses —in the training phase— labels

from training recordings, that is, isolated and labeled vocalization segments are not required

beforehand since the methodology includes a novel unsupervised segmentation method for

birdsong recordings. Interest sounds are detected from the Short-time Fourier transform

(STFT). In the segmentation method described in Sec. 3.2.1, the output is a matrix of the

same size of the corresponding spectrogram, where interest elements (or pixels) are marked

with “one” and non-interest elements with “zero”. Classification is carried out using the
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MIC approach, as follows: 1) neighboring interest pixels are grouped into regions, 2) each

region is described by a feature representation and 3) a classifier based on multiple instance

learning (MIL) is trained considering each spectrogram as a bag of instances. Its classifica-

tion performance is estimated when using the unsupervised segmentation method proposed

in Sec. 3.2.1 and compared against the performance obtained when using the supervised

segmentation method proposed in [19]. Both methods consist in the detection of regions in

the spectrogram likely associated with vocalizations; however, in the latter, it is required to

provide a set of manually annotated spectrograms where pixels have been labeled according

to whether or not they correspond to bird sounds.

3.2. Material and methods

3.2.1. Segmentation of birdsong recordings

Time-frequency analysis of audio recordings is usually carried out through spectrograms

representing power intensity at each time-frequency point. Particularly, spectrograms are

considered as recognizable images to identify bird species [35], whose vocalizations are repre-

sented by intensity variations. Thus, under the assumption that segment vocalizations give a

form of continuous regions holding the highest power values, our unsupervised segmentation

methods consists in the following stages (see Fig. 3-1):
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Figure 3-1.Flow diagram of the proposed segmentation method.

– Spectrogram estimation: Based on the STFT decomposition, we compute a spec-

trogram matrix Y “ ryij : i “ 1, . . . , F ; j “ 1 . . . , T s PRFˆT , where indexes i and j

stand for the frequency and time domains (i.e., F points in the frequency domain that

are estimated in each one of T time frames). We use the Hann window lasting 512

samples and overlapping 256 samples as in [19].

– Preprocessing: After applying the two-dimensional Wiener filter, a denoised and

smoothed spectrogram, rY “rỹijs P RFˆT is estimated with elements:

ỹij “ µ` yijpσ
2
` σ2

ηq{σ
2
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where µ P R and σ2 P R are the local mean and variance, respectively, and σ2
η P R

is the noise variance. The first two values are estimated at a kˆk neighborhood

centered on each point (we set k“5 as in [91]), and σ2
η is the average over all local

variances σ2. Then, we suppress structures that are lighter than their surroundings and

are connected to image borders by considering a value of 8 as connectivity parameter.

An erosion [13] is performed before by estimating the lowest number of image elements

that are not connected to the edges. The erosion procedure results in a smoothed

image IPRFˆT , from which we perform morphological reconstruction of rY to remove

all intensity fluctuations (except the intensity peak). As a result, we get the matrix

H P RFˆT that only holds objects with neighboring borders. At the same time, the

difference matrix, ĂH “ rY ´H is also computed holding only those objects from the

original image not having neighboring borders.

– Thresholding: We fix a threshold to binarize each image ĂH using the nonparametric

and unsupervised Otsu’s method of automatic threshold selection [84]. Extracted

only from a computed gray-level histogram, the optimal threshold To is selected by

maximizing an introduced discriminant measure of separability among all resultant

gray level classes, as follows:

k̂ “ arg max
kPr1,Ls

tpφTωpkq ´ φpkqq
2
{pωpkqp1´ ωpkqqqu

where φT “
řL
j“1 jpj, ωpkq“

řk
j“1 pj, φpkq“

řk
j“1 jpj, pj“nj{N are the values of the

normalized gray level histogram, L is the number of gray levels, nj is the number of

pixels at level j, and N is the total number of pixels over the whole difference image
ĂH . Therefore, the optimal threshold is computed as To “ pk̂ ´ 1q{pL´ 1q.

– Mask operation: To select the most relevant pixels from the spectrogram at hand,

a binary matrix B“ rbijs PRFˆT is obtained by thresholding as follows:

bij “

#

1, if h̃ij ą To;

0, otherwise.

– Instance vector extraction: From computed arrangements B and Y , we compute

a spectrogram region set Z “ tZi : i “ 1, . . . , lu, holding the respective matrices of

all-connecting points Zi P RFiˆTi , with Zi Ă Y , being Fi ă F and Ti ă T. The number

of regions l is automatically fixed as indicated in [122]. Lastly, each region Zi supplies

a single feature vector (or instance), denoted as xi P Rd . The number of features d is

fixed in accordance with the training scenarios explained in Sec. 3.3.1.
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3.2.2. Multiple instance classification

Within the standard supervised classification framework, the training set consists of n feature

vector examples or instances X “ txi P Rd : i “ 1, . . . , nu and their labels, in a two-class

problem, Y “ tyi P t0, 1u : i “ 1, . . . , nu. Thus, any classifier function, X Ñ Y , is trained to

predict labels for each novel instance. On the other hand, in MIC, an object is represented

by a set, or bag, Xi “ txij P Rd : j “ 1, ...,miu of mi instances xij and a label ỹi, i.e., each

label is associated with the entire bag but labels of the individual instances are unknown.

Therefore, the training set consists of n bags rX “ tXi P Rmiˆd : i “ 1, ..., nu and their

corresponding labels rY “ tỹi P t0, 1u : i “ 1, . . . , nu. Then, the classifier function, rX Ñ rY ,
is trained to predict labels for each novel bag of instances.

MIC methods, depending on the level where they hold discriminant information, can be

grouped into two broad categories [4]: instance level methods and bag level methods. The

former category, for which objects are instances in the representation space, mostly focus

on modeling the class probability of each instance; afterwards, the bag-level classification is

carried out by an additional set of rules, which combine the results of instance classification.

Methods in the latter category take into account information about global properties of bags

represented in the bag space, avoiding an additional step for bag level classification. In turn,

the bag level methods are grouped into two types as follows:

– Dissimilarities between bags : a dissimilarity function is defined to compare any two

bags to be classified by a dissimilarity-based approach, e.g., by the k-nearest neighbor

(k-NN) rule.

– Embedded-space: a mapping function extracts information from each bag to a single

feature vector. As opposed to methods based on dissimilarities between bags, a set of

relevant features is derived.

We address the problem of classifying recordings using the MIC approach because, in our

case, we have labels for recordings, i.e. bags, but they are represented for several instances

(feature vectors extracted from each region detected after the segmentation stage).

Particularly in this chapter, we use the MILES (MIL via Embedded Instance Selection)

classification algorithm because it has been experimentally shown that it performs well with

bioacustic signals [25]. MILES transforms the original MIC problem into a standard super-

vised learning framework injectively relating instances and labels [22]. It maps each bag

into a feature space defined by instances in the training bags using an introduced instance

(dis)similarity measure. Thus, bags are represented by the maximum (dis)similarity to all

other instances. On this (dis)similarity representation, a sparse linear classifier is trained [108].
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3.2.3. Segmentation performance measures

Since the manual recording segmentation is a very fatiguing task, rather than directly com-

paring between automated and manual outputs, we indirectly estimate the quality of the

segmentation method proposed in Sec. 3.2.1 by the recording classification performance

that must be strongly influenced by the used segmentation procedure, as discussed in [19].

The most common performance measures for a classifier are the following ones: accuracy

a “ pTP ` TNq{pP ` Nq, specificity s “ TN{N , recall-rate r “ TP {P and precision-rate

p “ TP {pTP `FP q; where TP is the number of recordings correctly classified as positives, TN
is the number of recordings correctly classified as negatives, FP is the number of recordings

incorrectly classified as positives, FN is the number of recordings incorrectly classified as

negatives, P and N are the total number of positives or negatives recordings, respectively.

However, these performance measures are affected by the relative size of the classes There-

fore, to overcome that drawback, the two-class F -score is used as the performance measure

defined as follows:

F “
2TP

2TP ` FP ` FN
, (3-1)

so that F ranges from 0 to 1 where the higher its value, the better the classification perfor-

mance. In this study, the one-against-all reduction from multi-class task to binary classifi-

cation technique is used where each species is selected as objective (positive) class since the

F -score is a two-class measure. As regards the classifier performance, we carry out validation

using the Bootstrapping technique where input audio data are randomly split into two sets:

one-half for training and one-half for testing. This procedure is carried out ten times.

As suggested in [15], each one of the eight training strategies explained in Sec. 3.3.1 are

compared over the 13 classes (see Sec. 3.3.2) in terms of the paired t-test, for which the null

hypothesis states that the performance of two classification strategies can be statistically

assumed as the same. The pseudo-code to determine whether to accept the null hypothesis

is presented in Algorithm 1. Otherwise, when the null hypothesis is rejected, we select as the

best strategy the one having the highest pair performance difference computed in average

over all considered classification strategies.
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Algorithm 1 Process to determine whether or not to accept the null hypothesis of the

paired t-test. Based on [15].

1: Let z “ rz1, z2, ... zns be the vector of the differences in classification performances

between strategies 1 and 2 and let n be the number of classes.

2: Assign tlevel considering the following: for 13 degrees of freedom, t ě 1.771 would only be

expected to occur by chance with probability 0.10 or less, and it is said that the hypoth-

esis is rejected at 10% level. Therefore, if tlevel “ 1.771, tlevel “ 2.160 or tlevel “ 3.012,

and |t| ą tlevel, the null hypothesis is rejected at the 10%, 5% or 1% level, respectively.

3: procedure t-test(z, n, tlevel)

4: Compute a “ p
ři“n
i“1 z

2
i q ´ p

ři“n
i“1 ziq

2{n.

5: The sample variance s2 is equal to a{pn´ 1q.

6: The sample standard deviation is the square root of s2.

7: Divide s by the square root of n to get the standard error estd.

8: The t statistics is computed dividing the average value of z by estd.

9: if |t| ě tlevel then

10: Return The hypothesis is rejected.

11: else

12: Return The hypothesis is assumed as true.

13: end if

14: end procedure
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3.3. Experiments

3.3.1. Training strategy

Figure 3-2 shows the training scheme used through all experiments to test the proposed

birdsong classification methodology based on unsupervised segmentation of audio recordings

and multiple instance learning.

-

Dataset #1

Dataset ¨ ¨ ¨

Dataset #13

Data collection Segmentation Feature extraction Classification

MILES--

Supervised

Unsupervised

Mask descriptors

Profile statistics

HOG

Figure 3-2.Training scheme used through all experiments to test the proposed birdsong

classification methodology.

In the segmentation stage, only one approach, either the unsupervised (see Sec. 3.2.1) or

the supervised (proposed in [19]), is used. Besides, the following four representation sce-

narios are separately considered: 1) Mask descriptors, denoted as “MD”, that describe

region shape; the following set of features are computed: minimum frequency, maximum

frequency, bandwidth, duration, area, perimeter, non-compactness, and rectangularity. 2)

Profile statistics, “PS”, a set of fourteen features are computed, which are based on statis-

tical segment properties in time and frequency: frequency-Gini, time-Gini, frequency-mean,

frequency-variance, frequency-skewness, frequency-kurtosis, time-mean, time-variance, time-

skewness, time-kurtosis, frequency-max, time-max, mask-mean, and mask-standard devia-

tion. 3) Histogram of Gradients, “HOG”, this set consists of 16 features characterizing

shape and texture of each region where gradient directions over the pixels of the region are

computed; each histogram holds 16 bins equally spaced over the angle range r´π, πs and

features are extracted from the normalized 1-D histograms [33]. 4) All-features set, “AF”,

that merges all above feature sets into a single one, as in [19].

Therefore, eight training strategies are tested for the feature extraction stage. In case of

supervised segmentation training, the affix “-Br” (meaning Briggs) is added to the end of

every feature notation, in accordance to the segmentation method proposed in [19]. Lastly,

we use the MILES classification algorithm. We employ an exponential kernel expt´p||a ´
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b||q{pu as the instance (dis)similarity function, where parameter p P r2 . . . 5s is heuristically

fixed and notation } ¨ } stands for Euclidean-norm.

3.3.2. Dataset of recordings

For the sake of comparison, we perform experiments with the publicly available2 dataset

used in [19]. This data collection holds 548 recordings sampled at 16 kHz that were manually

labeled. The dataset contains 13 bird species, often vocalizing simultaneously and perturbed

with environmental noise, though each recording lasting ten-seconds holds between one and

five species. Table 3-1 shows the amount of recordings holding each considered species.

Table 3-1.Amount of recordings where each considered bird species (objective class) is la-

beled.

Classes Labeled species name Number of

recordings

1 BRCR Brown Creeper 197

2 WIWR Winter Wren 109

3 PSFL Pacific-slope Flycatcher 165

4 RBNU Red-breasted Nuthatch 82

5 DEJU Dark-eyed Junco 20

6 OSFL Olive-sided Flycatcher 90

7 HETH Hermit Thrush 15

8 CBCH Chestnut-backed Chickadee 117

9 VATH Varied Thrush 89

10 HEWA Hermit Warbler 63

11 SWTH Swainson’s Thrush 79

12 HAFL Hammond’s Flycatcher 103

13 WETA Western Tanager 46

3.3.3. Results of compared classification strategies

Table 3-2 shows the estimated F -scores for the different considered feature sets; notice that

the HAFL class has the highest F -score (ą 0.99). In contrast, both classes DEJU and HETH

achieve the lowest values (ă 0.21) and get zero-value F -score for several features because

those classes hold very few recordings (see Table 3-1): 20 and 15, respectively.

2Audio recordings of the dataset are available at http://www.miproblems.org/datasets/birds/
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Table 3-2.Performed F -score values for all considered objective classes and each training

scenario. The best reached F -score is marked in bold for each objective class.

Besides, the notation “–” stands for null-value performance.

Training scenario

Class MD MD-Br PS PS-Br HOG HOG-Br AF AF-Br

BRCR 0.762 0.792 0.848 0.824 0.694 0.847 0.774 0.819

WIWR 0.938 0.870 0.917 0.870 0.896 0.900 0.933 0.905

PSFL 0.791 0.771 0.781 0.777 0.768 0.736 0.817 0.802

RBNU 0.853 0.742 0.793 0.725 0.759 0.784 0.871 0.831

DEJU – – – – – – 0.095 0.214

OSFL 0.701 0.704 0.718 0.681 0.667 0.694 0.756 0.738

HETH – – – – – – – –

CBCH 0.742 0.569 0.687 0.602 0.643 0.514 0.685 0.600

VATH 0.967 0.931 0.902 0.971 0.909 0.889 0.911 0.983

HEWA 0.729 0.718 0.643 0.764 0.641 0.652 0.715 0.741

SWTH 0.521 0.587 0.594 0.813 0.451 0.566 0.627 0.796

HAFL 1 0.996 0.999 0.996 1 0.994 1 0.996

WETA 0.852 0.762 0.795 0.757 0.340 0.372 0.840 0.823

Average 0.805 0.767 0.789 0.798 0.706 0.723 0.812 0.821

In terms of the considered feature sets, the use of AF-Br reaches the highest average per-

formance value (F “ 0.821) that is averaged over all considered objective classes, while

HOG gets the lowest one, F “ 0.723, for the baseline supervised approach. Once again,

AF (F “ 0.812) and HOG (F “ 0.706) are the best and worst cases, respectively, for the

unsupervised method. However, the MD feature set, in average, benefits the most from the

use of the unsupervised segmentation, while the HOG set degrades the worst. It must be

noted that the average performance is taken without DEJU and HETH classes because of their

accomplished anomaly values. This situation may be explained since the MD feature set

encodes region shape attributes that are far from being easy to be manually computed, as

seen in Fig. 3-3 (a) showing a typical birdsong spectrogram. In contrast, the texture-based

HOG set implies calculation of gradient directions over region pixels, as illustrated in Fig. 3-

3 (b); this procedure includes enhanced Gaussian filtering and histogram binning that are

very sensitive to their parameter tuning.

In order to provide an intuitive illustration, all F -score values estimated in Table 3-2 are

graphically presented in Fig. 3-4 where the vertical axis represents the performance ob-

tained by the proposed unsupervised-based segmentation method, while the horizontal axis

corresponds to the one obtained by the supervised reference method. Since the larger the

F -score – the better the performance, any point above the diagonal line indicates that the
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Figure 3-3.Example of a segmented spectrogram from a given audio birdsong recording.

proposed method outperforms the reference. In most of the cases, no remarkable difference

in terms of performance is observed between both segmentation methods tested for the same

representation scenario.
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(c) HOG
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Figure 3-4.Relationship of performed F scores for each considered feature set between both

methods: the proposed unsupervised-based segmentation (vertical axis) and

supervised reference (horizontal axis).

In case of the worst performance when the classifier guesses at random with equal frequency

(i.e., Tp “ P {2, Fn “ P {2, FN “ N{2, and Tn “ N{2). Thus, one may calculate a threshold

Ft “ P {p1.5P`0.5Nq value, under which the classifier is just guessing. In our case, Ft “ 0.42,

corresponding to BRCR class, is the lowest one. As shown in Fig. 3-4, most of the computed
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F -scores overcome by far this Ft threshold.

Table 3-3 shows several performance measures (namely, recall, r, specificity, s, precision, p,

accuracy, a, and the F -score) obtained for the whole feature sets, i.e., AF and AF-Br feature

sets. Typically, both training strategies may be differently influenced by each considered

class. Particularly, the former training strategy gets the better specificity for DEJU, HETH,

VATH, HAFL, and WETA classes, while the latter strategy instead of WETA the HETH class also

gets the highest value. At the same time, only the HALF class remains the best in terms of

accuracy.

To provide a better illustration, Table 3-4 shows the obtained results of the paired F -score

difference, ∆F, computed between the AF and AF-Br features. Since the latter set is the

reference, the estimated ∆F value gets negative sign when the reference feature set is better,

otherwise ∆F becomes a positive value. The best and worst achieved ∆F values are marked

in bold. Particularly, the SWTH gets the lowest difference (´0.169), that is, that class is the

most negatively influenced by the proposed strategy while the CBCH class achieves the best

influence (0.084). However, though the average value is ∆F “ ´0.017 in support of AF-Br

set, the corresponding estimated t value gets as high as 0.905, meaning that neither of the

considered feature sets are statistically different at levels of 10%, 5%, and 1%.

Lastly, the null-hypothesis values are shown in Table 3-5 in order to make clear the influ-

ence of each considered segmentation strategy, in terms of performed F -score classification

measure. Values are computed at 10% level (a strong assumption) to either admit (value 0)

or deny (value ˘1) the null hypothesis about their statistical similarity between each pair

of contrasted feature sets (columns stand for the reference supervised feature sets and rows

for the proposed unsupervised sets). In case the statistical similarity is rejected, the null

hypothesis gets the value 1 if the column-wise feature set reaches a better performance than

the row-wise set. Otherwise, the null hypothesis gets the value ´1.

As seen from the obtained main diagonal matrix values, one can infer that each compared

feature set, except MD, has no statistical difference regardless of the used segmentation ap-

proach. In case of the MD set, its unsupervised version turns out to be better. This situation

should be expected due to the above-given explanation about the advantage of automated

MD feature extraction. As a result, the proposed birdsong classification methodology based

on unsupervised segmentation of audio recordings and multiple instance learning has no

statistical difference with the baseline supervised version, at least, when using the three

extracted feature sets: PS, HOG, and AF.
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Table 3-3.Performance classification measures for the feature sets: AF (above) and AF-

Br (below). The best column-wise measures achieved overall data-sets are high-

lighted in bold. Performance is estimated by: , recall (r), specificity (s), precision

(p), accuracy (a), and F-score (F ).

Class r s p a F

A
F

BRCR 0.91 0.76 0.68 0.81 0.77

WIWR 0.92 0.99 0.94 0.97 0.93

PSFL 0.87 0.89 0.77 0.88 0.82

RBNU 0.86 0.98 0.88 0.96 0.87

DEJU 0.05 1 1 0.96 0.10

OSFL 0.86 0.92 0.67 0.91 0.76

HETH 0 1 0{0 0.97 0

CBCH 0.74 0.89 0.64 0.86 0.68

VATH 0.84 1 1 0.97 0.91

HEWA 0.57 1 0.95 0.95 0.72

SWTH 0.47 0.99 0.93 0.92 0.63

HAFL 1 1 1 1 1

WETA 0.77 0.99 0.92 0.98 0.84

A
F

-B
r

BRCR 0.87 0.85 0.77 0.86 0.82

WIWR 0.88 0.98 0.94 0.96 0.90

PSFL 0.78 0.93 0.83 0.88 0.80

RBNU 0.82 0.97 0.84 0.95 0.83

DEJU 0.12 1 1 0.97 0.21

OSFL 0.85 0.91 0.65 0.90 0.74

HETH 0 1 0{0 0.97 0

CBCH 0.46 0.98 0.85 0.87 0.60

VATH 0.97 1 1 1 0.98

HEWA 0.80 0.95 0.69 0.94 0.74

SWTH 0.70 0.99 0.91 0.95 0.80

HAFL 0.99 1 1 1 1

WETA 0.72 1 0.97 0.97 0.82
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Table 3-4.Computation example of the paired F -score difference, ∆F, that gets negative

sign when the reference feature set is better, otherwise ∆F becomes positive.

Dataset AF AF-Br ∆F

BRCR 0.774 0.819 -0.045

WIWR 0.932 0.905 0.027

PSFL 0.817 0.801 0.016

RBNU 0.871 0.831 0.040

DEJU 0.095 0.214 -0.119

OSFL 0.756 0.738 0.018

HETH 0 0 0

CBCH 0.685 0.600 0.084

VATH 0.911 0.983 -0.072

HEWA 0.715 0.741 -0.026

SWTH 0.627 0.796 -0.169

HAFL 1 0.996 0.004

WETA 0.840 0.823 0.017

Average 0.694 0.711 -0.017

Table 3-5.Values of null-hypothesis test computed at 10% level for both considered training

segmentation strategies: supervised and unsupervised. Main diagonal elements

marked in bold.

MD PS HOG AF

MD-Br 1 0 0 1

PS-Br 0 0 -1 0

HOG-Br 0 0 0 1

AF-Br 0 -1 -1 0
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3.4. Discussion

In this chapter, the use of unsupervised segmentation of audio birdsong recordings is investi-

gated along with multiple instance learning to classify among a given number of bird species.

The proposed unsupervised segmentation of audio birdsong recordings is contrasted against

its baseline reference supervised version requiring manual annotation of properly computed

spectrograms, as described in [19]. Yet, since this manual recording segmentation poses

as a very fatiguing task, we indirectly estimate the quality of the proposed segmentation

method by the introduced two-class F -score as classification performance measure that is

not affected by the relative class size. Afterwards, each one of the considered feature sets

are compared in terms of the paired t-test, for which the null hypothesis states that the

achieved F -score performance of two given classification sets can be statistically assumed as

the same. The univariate paired t-test is preferred due to its simple interpretation though

other multivariate tests may be used, for example, the multivariate paired Hotelling’s T 2

test that provides similar results in our work. Both segmentation approaches are validated

for the four feature sets: MD, PS, HOG, as well as the all-features set. In average, the MD

feature set benefits the most from the use of the unsupervised segmentation, while the HOG

set degrades the worst, as seen in Table 3-2. The main reason for the latter results is the

fact that parameter tuning of the automated HOG feature extraction should be improved.

However, this procedure is out of the scope of the present work. Nonetheless, according to

the accomplished values of the null-hypothesis test shown in Table 3-5, the introduction

of the unsupervised segmentation of audio recordings has no statistical difference with the

baseline supervised version, at least, when using the following three extracted feature sets:

PS, HOG, and AF.

This work provides a birdsong recognition framework using the MILES classifier, which in

turn uses an exponential kernel as (dis)similarity measure. Even though performed F -score

values are high, this classifier is sensitive to a low number of training recordings. As a

conclusion, the proposed unsupervised recording segmentation of audio birdsong recordings

improves species classification with the benefit of easier implementation since no manual

handling of recordings is required, making feasible the design of fully automatic birdsong

recognition systems.



4. Enhancing the dissimilarity-based

multi-instance classification of

birdsong recordings

Abstract

As stated in the previous chapter, classification of birdsong recordings can be naturally

formulated as a multiple instance problem, where a bag of instances is built from one spec-

trogram, and each instance corresponds to a region of interest in the spectrogram of its

bag. Those instances are detected after a segmentation stage of the audio recordings. In

this chapter, we use different dissimilarity measures between bags and explore whether the

subsequent application of metric learning/adaptation methods and the construction of dis-

similarity spaces allow increasing the classification performance of birdsong recordings. A

publicly available bioacoustic data set is used for the experiments. Our results suggest, in the

first place, that appropriate dissimilarity measures are those which capture most of the over-

all differences between bags, such as the modified Hausdorff distance and the mean minimum

distance; in the second place, they confirm the benefit from adapting the applied dissimilar-

ity measure as well as the potential further enhancement of the classification performance

by building dissimilarity spaces and increasing training set sizes.

4.1. Introduction1

In general, automatic recognition systems require an adequate representation of the objects

or events to be recognized as well as accurate classification rules [87]. In the particular case of

bioacoustic applications, we group the options to represent the segmented and preprocessed

1This chapter was published as: José Francisco Ruiz-Muñoz, Mauricio Orozco-Alzate, and Germán

Castellanos-Domı́nguez. Enhancing the dissimilarity-based classification of birdsong recordings in Eco-

logical Informatics, Elsevier, Vol. 33, 2016, pp. 75–84.
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recordings into two categories, namely i) feature-based representations and ii) dissimilarity-

based representations. The most common alternatives for feature-based representations are

feature vectors and bags of feature vectors (so-called bags of instances). The former is the

classic representation that consists in the extraction of a set of characteristic and hopefully

discriminative descriptors from each recording. Notice that feature vectors and instances

refer to the same concept; however, in order to maintain consistency with the literature, we

prefer the word instances hereafter. The other option, bags of instances [73], represents each

object as a set of feature vectors. In more detail, the representation by bags of instances

allows representing each audio recording (one object) as a bag of regions from its spectrogram

which are typically detected by an automatic procedure (see for example the one described

in Sec. 4.2.1). It is worth clarifying that the segmentation algorithm may fail —in isolated

cases, as indicated by [18]— when calls overlap and detect only one segment, instead of

two, that represents two species. However, in this non-classical representation by bags of

instances, it is not required that all regions exclusively belong to the target class, since a

bag is positive if at least one of its instances is positive. In other words, a positive bag

might contain some instances not associated to the target class. As explained in [25], the

relative advantage of the bags of instances is that they are a flexible representation that

allows preserving more information than a single feature vector representation. However,

this representation increases the complexity of the classification stage. On the other hand,

in dissimilarity-based representations, each object is described by a number of dissimilarity

values, regarding its relative differences against a set of pre-selected ones. This representation

is used in [65] to compare information provided by several dissimilarity measures between

bird calls – as whole units.

Bags of instances and dissimilarities have been very actively researched during the last

years. Among their enhancement proposals, the following two are especially promising for

simplifying the bag-of-instances classification process and improving the dissimilarity-based

classification, respectively: (i) To compute bag dissimilarities so that a single vector holds all

pairwise dissimilarity values between each bag and a set of other bags selected beforehand.

Therefore, the bag-of-instances problem is cast into a dissimilarity-based task while preserv-

ing its original representational power [107]. (ii) To optimize or adapt2 a given dissimilarity

measure by using the information from a training set [41]. The first proposal might be fur-

ther enhanced by applying the latter to it, that is, by optimizing or adapting dissimilarity

measures between bags. Therefore, we propose such an adaptation for classifying birdsong

recordings represented as multiple instance objects, resulting a classification strategy that

takes the advantages from both approaches.

The basic outline of this chapter is as follows: Representation and classification methods are

2Here, the term adaptation refers to procedures carried out in the training stage where the original dissim-

ilarity values are modified to improve their discriminant ability.
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Table 4-1.Notations used in this paper.

Notation Explanation

Sn n-th bag of instances

snm m-th instance of Sn
EEEt¨u Expectation operator

dp¨, ¨q Any dissimilarity measure

dminpSk,Slq Overall minimum distance

R Representation set (R Ď T )

Rl l-th bag of the representation set

dminpSk,Slq Mean minimum distance

dhauspSk,Slq Standard Hausdorff distance

dhauspSk,Slq Modified Hausdorff distance

} ¨ } Euclidean norm

} ¨ }p `p-norm

dSi Vector of dissimilarities between Si and elements of R
T Training set of bags of instances

Tk k-th bag of the training set

d̃p¨, ¨q Adapted measure

d̃LANNpSi,Rlq Dissimilarity measure adapted by LANN

d̃z´spSi,Rlq Dissimilarity measure adapted by z -score

d̃ESLpSi,Rlq Dissimilarity measure adapted by ESL

d̃NLSDpSi,Rlq Dissimilarity measure adapted by NLSD

d̃Si Adapted-dissimilarity vector between Si and elements of R
ρ radio estimated by LANN

described in Sec. 4.2. The experiments and obtained results are described in Sec. 4.3 and

discussed further in Sec. 4.4. Table 4-1 summarizes the notation used in this chapter.

4.2. Methods

Our methodology is based on the multiple instance classification (MIC) approach and consists

in the following four stages that are explained below: i) a preprocessing stage to extract

bags of instances from the spectrograms computed for birdsong recordings; ii) selection of

a dissimilarity measure between the estimated bags; iii) enhancement of the dissimilarity

representation using metric learning and dissimilarity space approaches and iv) classification

using either the 1-NN algorithm or a trained classifier in the dissimilarity space. According to

the different configurations for this methodology, we formulate four classification strategies
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that are described at the end of this section.

4.2.1. Preprocessing stage

For addressing our classification problem, we use the set of bag-of-instances that are extracted

from the data set collected and analyzed by [19]; see their paper for further details about

preprocessing and noise reduction stage. Initially, the magnitude spectrogram is estimated

by dividing every birdsong recording into frames of 32 ms with 50% overlap, using the

discrete Fourier transform windowed by the Hamming function. Afterwards, two iterations

of a whitening filter are applied to remove noise in order to improve the contrast of bird

sounds from the background. Such a filter consists in normalizing each frequency band

by the average of the low-energy frames. Each pixel of the preprocessed spectrograms is

automatically labeled as either bird sound or noise. To this end, each single pixel is described

by a feature vector composed by the following values from itself and its surrounding: i)

coordinate value in the frequency axis associated to the pixel, ii) intensities of pixels in a

neighborhood of size 13 ˆ 25 (in time and frequency, respectively) centered in the current

pixel and iii) standard deviation of the intensities in the neighborhood. Finally, a supervised

classifier is trained with a set of manually-segmented spectrograms. Each large enough

and continuous area of the spectrogram labeled as bird sound becomes a single instance.

One instance is characterized by a vector holding 38 features grouped into three types:

mask descriptors, profile statistics, and the histogram of gradients. Refer again to [19] for

a detailed description on the computation of these features. Consequently, the whole set

of instances extracted from one spectrogram constitutes a bag. Figure 4-1 illustrates the

procedure for extracting a bag of instances from a raw spectrogram.

Filter Segmentation Feature extraction

Bag of instances

Figure 4-1.Illustration of the procedure for extracting a bag of instances from a raw spec-

trogram.

4.2.2. Dissimilarity measures between bags

Provided a pair of bags, Sk“tskmu and Sl“tslqu, each one holding Nk and Nl instances,

respectively, we will consider the following pairwise dissimilarity measures between bags:
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– Overall minimum distance:

dminpSk,Slq “ min
m,q

dpskm, slqq (4-1)

where dpskm, slqq is the dissimilarity measure between their corresponding instances

skm and slq.

– Mean minimum distance:

dminpSk,Slq “ EEEtEEEtmin
m

dpskm, slqq : @qu,EEEtmin
q
dpskm, slqq : @muu (4-2)

where EEEt¨u stands for expectation operator and it is computed here as an arithmetic

average; that is, we assume an equally likely case.

– Standard Hausdorff distance:

dhauspSk,Slq “ maxpmax
q
pmin
m

dpskm, slqqq,max
m
pmin

q
dpskm, slqqqq (4-3)

– Modified Hausdorff distance:

dhauspSk,Slq “ maxpEEEtmin
m

dpskm, slqq : @qu,EEEtmin
q
dpskm, slqq : @muq (4-4)

Due to its easy interpretation, the Euclidean distance is commonly used as the pairwise

closeness between instances: dpskm, slqq“ }skm ´ slq}, where notation } ¨ } stands for the

`2-norm.

4.2.3. Dissimilarity-based Multiple Instance Classification

In dissimilarity-based MIC, each bag Si is described by a vector dSi “rdpSi,R1q . . . dpSi,RP qs P

R1ˆP that holds dissimilarities to a representation set composed by P prototype bags

R“tR1, . . . ,RP u, where dp¨, ¨q is a bag-to-bag dissimilarity measure. On the other hand, the

training set T “tT1, . . . ,TMu contains the points that populate the space in order to define

classification boundaries. Note that the representation set can be a subset of the training

set, R P T , and that the size of the R set determines the number of entries of the vector

representation, which is the dimension of the corresponding dissimilarity space.

Based on the incorporated dissimilarity measure between bags, we further design the classi-

fication algorithm so that information from a query test object is given in terms of its dis-

similarities to the training set. To this end, we initially employ the baseline k-NN classifier
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that assigns the most frequently occurring class among the nearest neighbors. Specifically,

the 1-NN classifier gives to Si the label of the prototype that corresponds to the minimum

element of dSi . As an alternative dissimilarity-based classification approach, we build a dis-

similarity space that maps bags of instances into a vector space in which further conventional

statistical training procedures may be applied as suggested in [88]. Axes of this dissimilarity

space are associated to prototypes fromR, thereby, the larger the cardinality ofR, the larger

the dimensionality of the space.

In contrast to the instance-level methods, approaches based on dissimilarities often require

tuning fewer parameters and allow incorporating global information by taking each bag-

of-instances as a whole [72]. Also, the validation of these classifiers is simple once the

dissimilarity matrix is estimated, providing similar performance to other state-of-the-art

MIC approaches but at lower computational cost [25]. Nonetheless, the computation of

distances between bags implies pairwise set comparisons, meaning that Minkowski metrics

(that is, `p-norms between one-dimensional points) are not suitable. Instead, the concept of

dissimilarity measure can be adopted by considering each bag-of-instances as a point set in

a high-dimensional space.

4.2.4. Metric learning for dissimilarity adaptation

The enhancing (adaption) stage is frequently considered to emphasize particular aspects of

the input representation in order to increase the classification performance. Thus, an original

distance dpSi,Rlq, which is applied between a test bag and a prototype bag, can be adapted

d̃pSi,Rlq according to the following strategies [41]:

– Locally adaptive nearest neighbor distance (LANN). This adaptation, proposed in [116],

searches for appropriate factors to scale dissimilarities between a test object and the

training objects so, that reliable training objects are rewarded and, conversely, unreli-

able ones are penalized:

d̃LANNpSi,Rlq “ dpSi,Rlq{ρl. (4-5)

where ρl“ min
@k:θk‰βl

dpTk,Rlq is the maximum radius that excludes all bags Tk P T from

classes different to the class of bag Rl (see Fig. 4-2), and, θk and βl are the class labels

associated to Tk and Rl, respectively.

– z-score. This adaptation is the statistical standardization that scales and shifts each

dissimilarity value as follows:

d̃z´spSi,Rlq “ pdpSi,Rlq ´ µlq{σl, (4-6)
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Figure 4-2.Illustration of the scaling radii ρl and ρm, corresponding to Rl and Rm, as

defined in (4-5). The radii ρl and ρm are the distances to the closest bag in the

training set T to Rl and Rm, respectively, whose labels differ from those of each

prototype. Considering the size of the radii, it can be inferred that Rl is more

reliable than Rm.

where µl“EEEtdpTk,Rlq:@ku and σl“
a

EEEtpdpTk,Rlq:@ku ´ µlq2 are the mean and stan-

dard deviation, respectively, of the l-th column of the dissimilarity matrix computed

between training objects and prototype objects. This adaptation affects the dissimi-

larity range in such a way that even if the dissimilarity is positive, z-score may produce

a negative value, making infeasible to classify by directly using the 1-NN rule.

– Adaptive distance in EigenSpace Lp (ESLp). This adaptation is the mapped `p-norm

between each query object Si and the prototype object Rl. It rotates the dissimilarity

space to avoid undesired effects of correlations of the dissimilarity data:

d̃ESLpSi,Rlq “ }cSi ´ cRl
}p

where cSi “Cd
J
Si
P RPˆ1 and cRl

“CdJRl
P RPˆ1 are the vectorized versions of each

mapped bag, matrix C “rδ1 . . . δP s P RPˆP is the projection matrix that holds eigen-

vectors sorted according to the ranked magnitude of the eigenvalues, i.e., it holds that

λ1 ě, . . . ,ě λP . These eigenvalues and eigenvectors are extracted from the covariance

matrix computed asΣ “ rΣijs P RPˆP , where Σij “ EEEtpDp¨, iq´EEEtDp¨, iquqpDp¨, jq´

EEEtDp¨, jquqJu, Dp¨, iq denotes the i-th column of D, D“rdJT1
¨ ¨ ¨dJTM s

J P RMˆP is the

dissimilarity matrix of the training set, and dTm “rdpTk,R1q . . . dpTk,RP qs P R1ˆP .
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– Nonlinear scaling of dissimilarities (NLSD). This adaptation non-linearly and mono-

tonically maps the dissimilarity space so that the non-linear mapping does not change

the ordering of objects, but it changes the behavior of the classifier in the dissimilarity

space:

d̃NLSDpSi,Rlq “ dpSi,Rlq
α, α PR` (4-7)

This adaptation reduces the effect of outliers whenever αă1 since dissimilarities from

distant points are shrunk. So, we choose α as the interval midpoint p0, 1q, i.e., the

square root (α“ 0.5).

4.2.5. Classification strategies

Table 4-2 shows the tested strategies for classifying bags of instances from dissimilarity

information that are enumerated from the simplest to the most complex one.

The first strategy, noted as Strategy 1 and also known as template matching, is the simplest

strategy that assigns labels by the 1-NN rule. The second one, Strategy 2, incorporates

the adaptation of the dissimilarity measure in order to improve the performance achieved

by template matching. This strategy is the same applied in [41] to classify different data

sets by using dissimilarity information; however, they do not consider problems of bag of

instances but only data sets already given as dissimilarity matrices. The third strategy,

Strategy 3, carries out classification in the dissimilarity space, i.e., a vector space where

each axis corresponds to a prototype object. Thus, it is possible to take advantage of the

dissimilarity information on the training data and use more complex decision rules than

template matching, such as linear classifiers, quadratic classifiers or SVM; this strategy is

used in [25] to address the problem of classifying birdsong recordings. Finally, we propose the

last strategy, Strategy 4, which combines Strategy 2 and Strategy 3, aiming to benefit from

both the properties of distance measure adaptation and classification in the dissimilarity

space; moreover, it also allows using adaptation techniques that do not modify the result of

the 1-NN rule such as the monotonic transformations, e.g., NLSD.
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Table 4-2.Representation of an object in each classification strategy. Notation d̃p¨, ¨q stands

for adapted measures.

Strategy Object Notation
representation

Strategy 1 Original dissimilarities dpSi,Rlq

Strategy 2 Adapted dissimilarities d̃pSi,Rlq

Strategy 3 Coordinates in the dSi “rdpSi,R1q . . . dpSi,RP qs
dissimilarity space

Strategy 4 Coordinates in the d̃Si “rd̃pSi,R1q . . . d̃pSi,RP qs
dissimilarity space

4.3. Experiments

In order to validate the proposed dissimilarity-based classification of birdsong recordings, we

use the methodology displayed in Fig 4-3 that considers the stages described in Sec. 4.2. It

is worth noting that two well-known validation models are performed:

a) Leave-one-out cross-validation that we use to compare the discriminant ability of the

contrasted dissimilarity measures (second stage). In this case, we employ the 1-NN

algorithm classifier since its performance strongly depends on the examined distance

and does not demand any parameter tuning.

b) Cross-validation that is carried out for five folds and ten repetitions for comparing the

performance of the considered classification strategies.

4.3.1. Birdsong dataset

We employ the public dataset4 of recordings collected in the H. J. Andrews (HJA) forest,

in 2009, that has been used in other previous studies [19, 18, 25]. The raw recordings were

acquired by using 13 Wildlife Acoustics Song Meter SM1 devices on six locations with a

sample rate of 16 kHz, within the range of 5:00 am to 5:20 am because birds are very active

during that period. In order to automatically extract instances from the spectrograms of

the recordings, 625 manually-segmented spectrograms were used to train the segmentation

algorithm described in Sec. 4.2.1. Such a segmentation algorithm is used to generate bags

of instances from the spectrograms of an independent set of 548 10-second recordings, which

contains sounds of 13 bird species (Table 4-3). Ground-truth class labels were assigned by

4The same dataset employed in Chapter 3.
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Representation
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Figure 4-3.Proposed methodology for dissimilarity-based classification of birdsong record-

ings represented as multiple-instance objects. Four strategies for training are

studied. Boxes marked in dashed lines are subjects of investigation.

an expert who inspected the recordings, see acknowledgments in [19, 18]. Each recording can

hold sounds vocalized by one up to five species. Consequently, the data set is cast into five

two-class MIC data sets by using the one-against-all strategy. Specifically, we alternately

designate each one of the classes with more than 100 recordings as the target or positive

class, while labeling the remaining classes as negative (see the highlighted cells in Table 4-3).

4.3.2. Selection of the best dissimilarity measure

We compare the discriminant ability of each dissimilarity measure in terms of the classifica-

tion performance. In this case, we employ the leave-one-out cross-validation model together

with the 1-NN classifier, which requires the selection of a proper dissimilarity measure as

indicated in [61]. Particularly, we select the modified Hausdorff distance that reaches the

best classifier performance almost for all tested data sets as seen in Table 4-4; although the

mean-minimum distance accomplishes a high classification performance as well. To handle

the class imbalance of the tested data sets, we use the F-score as the performance measure.

4.3.3. Comparison of enhanced dissimilarity measures

We estimate the classification performance of the learning representation for the four con-

sidered adaptation techniques: LANN, z-score, NLSD, and ESL (as in [41], p “ 1.5 ). Refer
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Table 4-3.Amount of 10-second birdsong recordings and class labels of the HJA data set.

Abbreviation Name Latin name Amount of

(Class label) recordings

BRCR Brown Creeper Certhia americana 197

WIWR Winter Wren Troglodytes hiemalis 109

PSFL Pacific-slope Flycatcher Empidonax difficilis 165

RBNU Red-breasted Nuthatch Sitta canadensis 82

DEJU Dark-eyed Junco Junco hyemalis 20

OSFL Olive-sided Flycatcher Contopus cooperi 90

HETH Hermit Thrush Catharus guttatus 15

CBCH Chestnut-backed Chickadee Poecile rufescens 117

VATH Varied Thrush Ixoreus naevius 89

HEWA Hermit Warbler Setophaga occidentalis 63

SWTH Swainson’s Thrush Catharus ustulatus 79

HAFL Hammond’s Flycatcher Empidonax hammondii 103

WETA Western Tanager Piranga ludoviciana 46

Table 4-4.Comparison of the examined distances in terms of F-score.

DistancezClass BRCR WIWR PSFL CBCH HAFL

Standard Hausdorff 0.7537 0.8722 0.7432 0.6614 0.9394

Mean minimum 0.7970 0.9091 0.8318 0.6506 0.9852

Overall minimum 0.6838 0.7636 0.7438 0.5507 0.9756

Modified Hausdorff 0.7921 0.9099 0.8328 0.6667 0.9852

again to Fig. 4-3 and notice that the block “Metric learning” is part of Strategy 2 and

Strategy 4. However, Strategy 2 uses 1-NN for classification, whose decision is not affected

by monotonic transformations as NLSD. Therefore, in order to compare the four adaptation

techniques within the same framework, we only use Strategy 4 for this experiment. Since

HAFL contains the minimum amount of recordings per class (103), the maximum number

of training objects belonging to this class is 80 when a 5-fold cross-validation is carried

out. Remember that the dimensionality of the dissimilarity space is equal to the number

of prototypes (refer back to Sec. 4.2.3) and, therefore, classifiers may suffer from the curse

of dimensionality phenomenon5 if the number of prototypes is too large in comparison with

the cardinality of the training set. Consequently, a convenient dimensionality must be fixed

in order to avoid that phenomenon. In [61], it is shown an example when a ratio of 1/5

between the dimensionality of the space and the number of training objects is optimal and

5A brief introduction to this phenomenon is available at http://www.37steps.com/2349/

curse-of-dimensionality/.

http://www.37steps.com/2349/curse-of-dimensionality/
http://www.37steps.com/2349/curse-of-dimensionality/
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recommend, in general, a ratio of 1/10 to be in the safe side. In our case, considering the

above-mentioned 80 objects from the target class, we set the dimensionality of the dissimi-

larity space to 20, in such a way that the set of the prototypes is formed by 10 prototypes

from the target class and 10 prototypes from the non-target class.

As seen in Figs. 4-4 and 4-5 that display the obtained F-scores depending on the number

of training objects and the best recall versus precision point obtained for each adaptation,

respectively, all four strategies perform similarly for classification of BRCR class. In turn,

ESL accomplishes the highest performance for WIWR and PSFL (see Figs. 4-4(b) and 4-4(c))

classes, but it fails for the CBCH class (see Fig. 4-4(d)). However, we choose LANN as the

adaptation technique since it evenly exhibits a high performance for all classes.
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Figure 4-4.Comparison of the metric learn-

ing techniques LANN, z-score,

NLSD and ESL according to

Strategy 4. Curves show F-score

versus training set sizes.
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Figure 4-5.Comparison of the metric learn-

ing techniques LANN, z-score,

NLSD and ESL according to

Strategy 4. Planes show recall

versus precision performance.

4.3.4. Classification and validation

Two classifiers are employed in order to validate all the tested strategies i) 1-NN that

is directly used in Strategy 1 and Strategy 2 to infer the labels; and ii) linear SVM in

dissimilarity spaces carried out by Strategy 3 and Strategy 4, as suggested in [42]. For

any classifier, we fix the number of prototypes to 20 so that 10 for each class (positive and

negative) are randomly chosen in order to avoid the curse of dimensionality, as explained

in Sec. 4.3.3. The regularization SVM parameter is heuristically tuned (C “ 10). In the

experiments, different sizes for the training set are tested (from 10 to 80 objects per class).

Notice that the set of prototypes (fixed to 10 per class) is a subset of the training set.

Overall, the simplest classification (Strategy 1 ) accomplishes the lowest classification per-

formance as seen in Figs. 4-6 and 4-7. In comparison to Strategy 1, the use of Strategy
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2 improves the classifier performance for BRCR, PSFL, and HAFL classes (see Figs. 4-6(a),

4-6(c), and 4-6(e), respectively). However, Strategy 2 fails at some values of the training

set for WIWR and CBCH classes (Figs. 4-6(b) and 4-6(d), respectively), providing irregular

performance. In turn, the incorporation of Strategy 3 improves further the performance

achieved for all classes as the size of the training set grows, when the SVM classifier extracts

enough information from the training set. Lastly, the best strategy is Strategy 4 for all tested

classes. Moreover, this strategy clearly benefits from the input data information since the

provided performance improves as the size of training set increases. Also, it outperforms the

baseline Strategy 1 even when the training set is small (10 objects per class). From Figs. 4-5

and 4-7, we can observe that the classification system is a bit more sensitive (high recall)

than precise.
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Figure 4-6.Comparison of the four stud-

ied strategies by using modified

Hausdorff and LANN as dis-

tance measure and adaptation

technique, respectively. Curves

show F1 performances versus

training set sizes.

As a result, the insertion of dissimilarity space along with the adaptation stage of dissimi-

larities allows a larger enhancement, and thus a better performance of the system.
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Figure 4-7.Comparison of the four stud-

ied strategies by using modified

Hausdorff and LANN as dis-

tance measure and adaptation

technique, respectively. Planes

show recall versus precision per-

formance.

4.4. Discussion

We validate the classification enhancement of birdsong recordings by using metric learning

techniques and dissimilarity spaces. From the obtained results on the HJA birdsong data

set, the following findings are worth to be mentioned:

Modified Hausdorff and mean-minimum distances provide the best performance among the

four compared distances (overall minimum, mean-minimum, standard Hausdorff, and modi-

fied Hausdorff). Both of them consider the global distribution of the instances, meaning that

they take into account the whole set of sounds in the recording, i.e., vocalizations and en-

vironmental noise. Even though, the standard Hausdorff distance also considers the global

distribution of instances in each bag, it is too strict and, therefore, outliers can produce

mistaken dissimilarity values. Our result coincides with the finding in [40]. Finally, overall
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minimum distance —particularly in the bioacoustic data set— is affected by the environ-

mental noise, e.g., in case that the rain sound is not completely removed in the segmentation

stage, an underestimated low dissimilarity value will be produced.

The next aspect for consideration is the influence of the adaptation of the dissimilarities

between bags by using metric learning techniques. After comparing LANN, z-score, ESL

and NLSD, the best adaptation technique is LANN, closely followed by ESL. However, the

first one is selected due to its simple interpretation.

In the last experiment, the classification strategies are compared. Results show that Strategy

4 outperforms the others, which is followed, in the given order, by Strategy 3, Strategy 2,

and Strategy 1. As it can be seen, the order matches with the complexity of the strategies,

in such a way that the more complex the strategy, the better the performance. Notice that

despite our methodology can be easily applied to classify more species since we use the

one-against-all approach, it is recommended to have a sufficient number of training objects

per class. In addition, taking into account that when a fixed size of the representation set

is considered, all the strategies take almost the same computation time for classifying a

test object. Nevertheless, in order to scale our methodology to much larger data sets, a

computationally-tractable size of the set of prototypes must be fixed; however, Strategy 1

might suffer from that because it does not allow to include additional information to the

system that the one provided by the representation set. For this reason, we recommend to

use Strategy 2, Strategy 3 or Strategy 4 when more training objects are available to build

the system. Particularly, the last one that takes advantage of the information of the training

set in two stages of the process (metric learning and training in dissimilarity spaces) and

exhibits the best results in our experiments.

As valuable results, we highlight the following two: i) to consider the dissimilarity infor-

mation of the training set is relevant, as made by Strategy 2, Strategy 3, and Strategy 4

which remarkably outperform the matching technique (Strategy 1 ) and ii) classification in

dissimilarity spaces is significantly enhanced by adapting the dissimilarities between bags.

To sum up, we focused on classifying birdsong recordings from dissimilarity information

that simplifies its solution as a classical MIC problem. We experimentally verified that

metric learning as well as dissimilarity spaces are valuable approaches to take advantage of

the dissimilarity information and, furthermore, we found that the learning strategy is more

powerful by combining both than separately using each one.



5. Improved multiple instance

classification using relative minimum

distance between projected bags

Abstract

The one nearest neighbor (1-NN) rule relies on a distance measure between the objects to

be classified. In multiple instance classification (MIC) problems, the 1-NN rule assigns to

a query bag the label of the closest object in a set of prototype bags or instances. In the

past, it has been proved that dissimilarity-based MIC approaches work well for a wide range

of datasets, particularly, when the mean-minimum distance is applied. However, most of

these approaches mask interpretability of the data because MIC does not require that the

dissimilarity between objects behaves as intuitively expected: the closer the objects, the more

likely to belong to the same class. Hence, we introduce a methodology for improving the

dissimilarity-based MIC, which uses a supervised method to compute a projected space, and

a novel relative minimum distance to compare bags and prototype bags. Our experiments

show that the classification performance, when the proposed methods are applied, is higher

than the baseline for most of the studied real-world datasets.

5.1. Introduction

Multiple Instance Classification (MIC) consists in learning from patterns represented as sets

of feature vectors (termed bags), where each bag holds multiple feature objects (instances),

so that a label is attached to each bag and not to every instance. Moreover, there might

be instances inside a bag, that do not convey any information about its class, or that are

more related to other classes of bags, providing confusing information [4]. To deal with the

scarcely characterized examples, and assuming that the discriminative information lies at

the instance-level, the binary classification setting separates the instances in positive and
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negative ones, defining the location of the feature space where positive instances are located

as the concept.

In order to infer the concept in MIC problems, several techniques try to find the region

of the space where positive bags intersect while not containing negative instances, e.g., the

Diverse Density method proposed in [76] that looks for an area where there is both high

density of positive points and low density of negative points. Likewise, an MIC model is

proposed in [99] that requires that a positive bag does not have any points near the so-called

“repulsion” points, in addition to having a point near the “target” points. Therefore, it

means that positiveness implies that some positive instances have to be present in the bag,

and negativeness requires that positive instances must be absent. Much of the recent work

in MIC has been concentrated on a relaxed view of the standard assumption, considering

alternative assumptions instead, e.g., the collective assumption where all instances in a bag

equally contribute to the bag-level labels or bags of words that group classes of instances.

Intending to improve the performance of instance-level MIC algorithms, the dissimilarity-

based approaches have been proposed in [25], using pairwise dissimilarity measures that

directly compare bags, rather than relying on locating a concept. Thus, a single label is

inferred for each query bag, which is represented by a vector that holds the distances between

the query bag and a set of prototypes. Therefore, we obtain a dissimilarity representation

that is similar to a traditional feature vector space, for which a standard supervised classifier

can be employed. With the purpose of comparing the training/test bags against prototypes,

there are two type of approaches: i) Bag-to-instance distances. These approaches capture

the instance-level information, like the Multiple Instance Learning via Embedded Instance

Selection, that maps each bag into a high-dimensional feature vector [22]. In this case,

however, the classifier has to be appropriately selected and trained to perform well in high-

dimensional representations [24]. ii) Bag-to-bag distances. This option allows working in

a low-dimensional space, but it usually misses instance-level information, i.e., discriminant

instances are masked by non-discriminant ones. Nonetheless, it would be desirable that the

measure fulfills the following properties: i) it enables to compare a bag and a prototype bag,

for building a low-dimensional representation, and ii) it enhances the instances that most

likely belong to the concept, intending to benefit from the instance-level information.

To improve the performance of dissimilarity-based MIC algorithms, we propose a dissimi-

larity measure, termed relative minimum distance, that compares bags and prototype bags,

considering local instance-level information. To this end, we project the input feature space

in advance, to bring closer the instances that most likely represent the concept, yielding a

representation space where the closer the bags are, the more likely they belong to the same

class. Particularly, relying on the bag labels, we compute a projected space by using Multiple

Instance Logistic Discriminant Metric Learning (MildML) [52]. Using a simple one-nearest-
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neighbor (1-NN) classifier, validation is carried out on several real-world datasets, proving

that the proposed dissimilarity measure between bags in a projected space, outperforms the

baseline dissimilarities used for MIC.

5.2. Methods

5.2.1. Dissimilarity-based Multiple Instance Classification

MIC is a weakly supervised approach, that represents each object in a feature space by a set

of points S “ts1, . . . , sNu –termed bag of instances– where si PRnˆ1 is the i-th instance [39].

Each bag consists of two subsets of instances, one positive and another one negative: S “
‘

SY
a

S. Thus, a positive subset holds only positive instances (
‘

S “ts`1 , . . . , s`N`u, with N`ďN),

i.e., the instances that are directly related to the concept. In contrast, a negative subset has

only negative instances that are not related to the concept (
a

S “ts´1 , . . . , s´N´u, with N´ďN).

Besides, S is positive if there is, at least, one instance in the bag relating to the concept

(S`), that is, if
‘

S‰H, otherwise, S is negative (S´).

Provided a test bag S, the dissimilarity-based MIC –using 1-NN– infers a label according to

the closest bag in the representation set tR1, . . . ,RQu, composed of Q prototype bags. That

is: the label assigned is the one that corresponds to the minimum entry of the distance vec-

tor dS “rdpS,R1q . . . dpS,RQqs, being dp¨, ¨q PR` a dissimilarity measure. Because of their

proved suitability for MIC tasks, in this chapter, we consider the following three dissimilarity

measures between bags [25]: i) Hausdorff distance (dH), ii) Mean-minimum distance (dmin),

and iii) Overall-minimum distance (dmin), computed, respectively, as follows:

dHpSk,Slq “maxpmax
q
pmin
m

dpspkqm , splqq qq,max
m
pmin

q
dpspkqm , splqq qqq,

dminpSk,Slq “EEEtEEEtmin
m

dpspkqm , splqq q : @qu,EEEtmin
q
dpspkqm , splqq q : @muu,

dminpSk,Slq “min
m,q

dpspkqm , splqq q,

where Sk“tspkq1 , . . . , s
pkq
Nk
u and Sl“tsplq1 , . . . , splqNlu are the bags of instances that respectively

hold Nk and Nl n-dimensional instances, dps
pkq
m , s

plq
q q is a dissimilarity measure between in-

stances (it is customary to choose the Euclidean distance), and notation EEEt¨u stands for the

expectation operator. Note that the 1-NN rule demands the following asymptotic behavior of

dissimilarities between bags: dpS`,R`q«0, dpS`,R´q"0, dpS´,R`q"0, and dpS´,R´q«0.
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5.2.2. A relative minimum distance in a projected space

To associate the concept with a particular region, we adopt a projection that maps the input

space, such that at least one instance of each positive training bag is brought as close as

possible to the others, while instances of the negative bags must be driven apart. Specifically,

we use the MildML method that maximizes the following loss function [52]:

max
L,b
L “ max

L,b

ÿ

k,l
λkl log pkl ` p1´ λklq logp1´ pklq (5-1)

where λkl is 1 if both (Sk and Sl) are positive bags, otherwise, it is 0, pkl PRr0, 1s is the

probability that Sk and Sl are together positive, and is calculated by the sigmoid function

as follows:

pkl “ p1` exp p´b` dp rSk, rSlq2qq
´1

where b PR is a shifting parameter, dp¨, ¨q PR` is a dissimilarity measure between the pro-

jected bags rS “ts̃Ln :n PNu, which hold the instances in the mapped space through a projec-

tion matrix L PRnˆn, that is, s̃Ln :Rnˆ1
ÑRnˆ1.

The optimization task in (5-1) can be solved iteratively by the conjugate gradient algo-

rithm [37], employing the update rule:

Lk`1 “ Lk ` αkPk,

where αk PR is the step length, and Pk PRnˆn is the search direction that is fixed to

Pk“´Gk β̀kPk´1. In the case of the Polak-Ribiére update, the scalar-valued step βk PR is

computed as βk“p∆γ
J
k´1γkq{pγ

J
k´1γk´1q, where ∆γk PRn2ˆ1 denotes the vectorized version

of the gradient ∆Gk“Gk`1´Gk (with ∆Gk PRnˆn). Likewise, γk PRn2ˆ1 is the vectorized

version of the loss function gradient Gk“BL{BL (with Gk PRnˆn), defined for the MildML

method in terms of L as below:

Gk “ L
ÿ

k,l
pλk,l ´ pk,lqpsk ´ slqpsk ´ slq

J. (5-2)

Therefore, the maximizing framework in (5-1) minimizes the distance dpS̃`k , S̃`l q evaluated

between the projected positive bags, maximizing at the same time the distance dps̃Lk , s̃
L
l q

between the projected instances s̃Lk PR
nˆ1 and s̃Ll that belong to the projected negative

bags S̃´k and S̃´l , respectively. Consequently, it allows the concept being confined, within a

narrower region of the projected space than in the original space, since mapping reduces the

distances between positive instances, while enlarges the distances between negative instances.

Although the concept is associated with a single region in the projected space, the dis-

tance between instances fulfills just the following trade-off conditions: dps`k , s
`
l q«0, while

dps`m, s
´
q q"0. Moreover, the value dps´m, s

´
q q is not restricted, since negative instances can
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be present either in positive bags or negative bags, causing the considered distances between

bags fail, in the following cases:

- dHpS`,R`q"0 or dHpS´,R´q"0, if there is at least an instance s such that minr dps, rq"

0 (s PS and r PR), or at least an r such that mins dps, rq"0.

- dminpS`,R`q"0 or dminpS´,R´q"0, if there are several instances s such that minr dps, rq"

0, or several r such that mins dps, rq"0. In addition, dminpS˘,R¯q«0, if there are sev-

eral instances s such that minr dps, rq«0, or several r such that mins dps, rq«0.

- dminpS˘,R¯q«0, if there is at least one pair of instances s and r such that mins,r dps, rq«

0. Also, dminpS´,R´q"0, if mins,r dps, rq"0.

Aiming to avoid the above-mentioned drawbacks in the distances between bags, we propose

the relative minimum distance that, provided a test bag S and either case of prototypes R˚r ,
is defined as follows:

drelpS,R˚r q “

$

’

’

’

&

’

’

’

%

1

Q` ´ 1

ř

i‰r dminpS,R`i q
ř

i‰r dminpR`r ,R`i q
, ifR˚r “ R`r

1

Q`

ř

i dminpR´r ,R`i q
ř

i dminpS,R`i q
, ifR˚r “ R´r

where Q` is the number of positive prototypes.

So, a measured value drelpS,R`r qă1 implies that S becomes “more positive” than the r-

th positive prototype. In contrast, drelpS,R´r q ă 1 yields a “less positive” S than the r-th

negative prototype. Consequently, the lower the value of drelp¨, ¨q – the higher the probability

of belonging to the class of the corresponding prototype. Then, the problematic issue of

dissimilarity measures between bags is avoided for the 1-NN rule.

5.3. Experiments

For appraising the effectiveness of the tested dissimilarity measures, we estimate the F -score

as the classification performance, using a leave-one-out validation. In particular, the 1-NN

rule is applied to each bag of the dataset, assuming the complete input data as the prototype

set, but removing the query bag. In the experimental setup, validation is accomplished on the

real-world datasets described in Table 5-1 (publicly available on http://www.miproblems.

org/). Note that the performance evaluation is carried out on both the original and projected

spaces as seen in Table 5-2.

http://www.miproblems.org/
http://www.miproblems.org/


5.3 Experiments 51

Table 5-1.Real-world datasets described by the number of positive bags (S`), number of

negative bags (S´), number of features per instance (Dimension), total number

of instances and minimum and maximum (min and max, respectively) number of

instances per bag.

Application Dataset S` S´ Dimension Instances min max

Musk 1 47 45 166 476 2 4

Molecule Musk 2 39 63 166 65598 1 1044

activity Mutagenesis1 125 63 7 10486 28 88

Mutagenesis2 13 29 7 2132 26 86

Fox 100 100 230 1302 2 13

Images Tiger 100 100 230 1220 1 13

Elephant 100 100 230 1391 2 13

Brown Creeper 197 351 38 10232 2 43

Winter Wren 109 439 38 10232 2 43

Pacific-slope Flycatcher 165 383 38 10232 2 43

Red-breasted Nuthatch 82 466 38 10232 2 43

Dark-eyed Junco 20 528 38 10232 2 43

Audio Olive-sided Flycatcher 90 458 38 10232 2 43

classification Hermit Thrush 15 533 38 10232 2 43

Chestnut-backed Chickadee 117 431 38 10232 2 43

Varied Thrush 89 459 38 10232 2 43

Hermit Warbler 63 485 38 10232 2 43

Swainson’s Thrush 79 469 38 10232 2 43

Hammond’s Flycatcher 103 445 38 10232 2 43

Western Tanager 46 502 38 10232 2 43

5.3.1. Multiple Instance Classification in the original space

Firstly, we directly apply the 1-NN classifier to the dissimilarities between bags, computed

in the original space. Note that dmin exhibits the best performance for most of the datasets.

An advantage of this distance is that it considers the overall distribution of the bag of

instances but is not so sensitive to outliers as dH or dmin. However, dmin fails for some of

the classification problems, e.g., with the Hermit Thrush dataset of the audio application,

for which the number of negative instances may be remarkably higher than the number of

positive instances in the positive bags. Also, drel fails in most of the cases, since it is not

guaranteed that the concept is located in a particular region of the original space.
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Table 5-2.1-NN leave-one-out test (F-score performance) applying the four studied dissimi-

larity measures between bags in the original space and the projected space. Best

performances are highlighted in boldface.

Dataset Original space Projected space

dH dmin dmin drel dH dmin dmin drel
Musk1 86.60 88.89 86.32 72.38 86.54 91.26 91.26 100

Musk2 80.00 71.91 70.45 60.00 78.26 80.43 88.64 100

Mutagenesis1 86.31 87.45 81.25 78.60 84.77 87.45 80.93 79.72

Mutagenesis2 43.48 45.45 52.17 40.91 41.67 61.54 50 59.26

Fox 56.60 62.50 53.27 68.77 59.16 68.14 77.87 98.49

Tiger 70.71 76.04 73.10 64.31 66.03 80.89 87.72 100

Elephant 76.78 81.65 79.07 69.50 75.00 82.70 80.65 100

Brown Creeper 75.37 80.20 68.38 68.95 73.32 75.40 68.38 72.05

Winter Wren 87.23 91.32 76.36 79.41 88.59 94.12 78.93 83.94

Pacific-slope Flycatcher 74.32 83.79 74.38 69.85 66.86 76.58 78.91 81.94

Red-breasted Nuthatch 67.50 75.47 57.65 49.66 54.88 67.01 70.39 100

Dark-eyed Junco 25.53 37.50 20.00 26.67 24.00 40.82 30.30 97.44

Olive-sided Flycatcher 63.59 82.61 56.97 57.75 70.72 72.36 64.82 67.15

Hermit Thrush 7.14 25.00 11.11 14.29 18.18 20.69 26.32 96.55

Chestnut-backed Chickadee 66.14 65.35 55.07 48.52 60.56 70.54 77.42 94.42

Varied Thrush 95.40 99.44 87.18 73.59 96.00 96.63 83.96 98.88

Hermit Warbler 68.75 75.76 68.12 77.78 71.43 76.12 70.06 93.94

Swainson’s Thrush 77.03 86.53 52.50 30.13 65.31 69.51 65.74 92.62

Hammond’s Flycatcher 93.94 98.52 97.56 34.77 78.92 98.08 97.63 100

Western Tanager 54.95 85.06 49.44 47.15 57.14 78.43 55.56 96.70

5.3.2. Multiple Instance Classification in the projected space

Table 5-2 shows that the proposed dissimilarity measure, drel, in the projected space re-

markably outperforms the rest of the compared measures for most of the tested datasets.

Nonetheless, the distance dmin exhibits the best performance in some cases. When dmin

outperforms others, the bags of instances might mainly hold positive instances.

As mentioned in Sec. 5.2.1, some distances for multiple instance datasets are prone to behave

in a non-intuitive way, since they may produce high values between correctly labeled bags of

the same class, and small values between bags that belong to different classes. To illustrate

the overall behavior of each estimated measure, we plot the normalized histograms obtained

from the considered dissimilarity measures —in the original space (see Fig. 5-1) as well as in

the projected space (see Fig. 5-2)— between the following cases of bags in the Musk1 dataset:

positive-positive bags, negative-negative bags, and negative-positive bags. Note that the
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histogram of a good dissimilarity measure should contain most of the distances between

bags of the same class, positive-positive or negative-negative, on the left of the horizontal

axis (i.e., smaller dissimilarities), and most of the distances between bags of different classes,

negative-positive, on the right of the horizontal axis (i.e., larger dissimilarities).
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Figure 5-1.Normalized histograms of distances in the original feature space (Musk1

dataset).

Figure 5-1 shows that, in the original space, there is no clear difference in the distribution

of the dissimilarities between neither bags of the same class, nor between bags of different

classes. However, the mean of the dissimilarities calculated between positive-positive bags

(for dH , dmin and dmin) seems to be slightly smaller, than the dissimilarities between negative-

negative and negative-positive bags. For drel, the dissimilarities between negative-negative

bags are located on the left of those between positive-positive and negative-positive bags.

On the other hand, Fig. 5-2 shows that applying the projection makes the distributions of

the dissimilarities to behave in the above-mentioned intuitive way. Particularly, for dmin,

the dissimilarities between positive-positive bags are smaller, than those between negative-

negative and negative-positive bags. For drel, the distances between bags of the same class

are clearly lower, than the ones between bags of different classes. It coincides with the

outstanding results for this dataset reported in Table 5-2.
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Figure 5-2.Normalized histograms of distances in the projected space (Musk1 dataset).

5.4. Discussion

We introduce the relative minimum distance for positive bags, denoted by drel, that globally

compares a query bag to a prototype bag. This bag-to-bag distance is appropriate to build

low-dimensional dissimilarity-based representations. Furthermore, we benefit from instance-

level information, by previously computing a supervised projection, using MildML. This

projection estimates a space, where the most likely positive instances are concentrated in

the same region and pushes apart the most likely negative instances. Therefore, it allows

inducing the desired behavior of the dissimilarities, for the 1-NN rule, i.e., the distance

between bags of the same class should be small, and the distance between bags of different

classes should be high. Moreover, the proposed algorithm is fully automated, so the tuning

of all the parameters is included in the framework. In our experiments, we classify datasets

of molecule activity, images, and audio. Our results show that applying drel in the projected

space improves the classification performance in most of the studied datasets, in comparison

with conventional distance measures between bags applied in either, the original or the

projected space. Our algorithm could fail if the projected space is not estimated as expected,
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e.g., if an insufficient number of iterations for MildML are computed or if increasing the

distance between negative instances is not possible, because it is zero for many of them.



Part II.

Dictionary Learning



6. Dictionary learning for bioacoustic

monitoring with applications to

species classification

Abstract

This chapter deals with the application of the convolutive version of dictionary learning

(DL) to analyze in-situ audio recordings for bioacoustic monitoring. We propose an efficient

learning approach that uses a sparse convolutive model to represent a collection of spectro-

grams. In this approach, we identify repeated bioacoustic patterns, e.g., bird syllables, as

time-frequency patterns or words, and represent new spectrograms using these words, and

their corresponding activation signals. Moreover, we propose a supervised DL approach in

the multiple-label setting to support a multi-label classification of unlabeled spectrograms.

Our approach relies on a random projection for reduced computational complexity. As a

consequence, the non-negativity requirement on the dictionary words and activations is re-

laxed. Furthermore, the proposed approach is well-suited for a collection of discontinuous

spectrograms. We evaluate our approach on synthetic examples and two real-world datasets

consisting of multiple birds audio recordings. Additionally, we successfully apply our DL

approach to spectrogram denoising and species classification.

6.1. Introduction1

One of the challenges in bioacoustics is to extract a robust representation to animal vocaliza-

tions from noisy recordings [105]. In this chapter, we are interested in analyzing a collection

1This chapter was published as: José Francisco Ruiz-Muñoz, Zeyu You, Raviv Raich, and Xiaoli Z. Fern.

Dictionary Learning for Bioacoustics Monitoring with Applications to Species Classification in Journal

of Signal Processing Systems, Springer US, 2016, pp. 1–15.
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of audio recordings of bioacoustic data. In particular, our focus lies in learning vocalization

models for bird species.

Machine learning techniques are usually applied in order to ease the analysis of a large

collection of data. Specifically, dictionary learning (DL) is commonly used to obtain a

concise mathematical representation to data for further processing. Previously, dictionary

learning have been proposed for analyzing speech and music signals, but only a few attempts

have been made for bioacoustic applications.

The DL approach has been used for searching time-varying patterns of audio signals [7, 74],

e.g., to detect basic acoustic units as phonemes in speech recognition [83]. In [82], convolutive

non-negative matrix factorization (CNMF) [118] is proposed as a DL method. In CNMF

approach, a signal is represented by a set of atoms and their associated sparse activation

patterns [60]. One of the advantages of CNMF is the simplicity of factor dependencies [11]

because each recording is recovered by a linear combination of shifted dictionary words.

In this chapter, we propose a DL approach —based on CNMF— particularly focused on

bioacoustic signal processing. Although CNMF has been already applied for analyzing time-

series signals, a few challenges arise when applied to the bioacoustic setting: (i) the high

computational requirement of CNMF [114] makes it difficult to be applied to large amounts

of bioacoustic signals [105]; (ii) CNMF is typically used in a single spectrogram setting,

where bioacoustic signals usually contain a collection of discontinuous recordings; and (iii)

it is often assumed that the length of the activation signal is the same as the length of the

spectrogram in the time domain but it is possible that recordings register only part of a

vocalization at the beginning or the end. In this case, a longer activation signal should allow

for representing syllable parts in the beginning and the end of the spectrogram.

In this study, we adapt CNMF for a collection of potentially discontinuous spectrograms in

which vocalizations may occur prior to the beginning of the recording such that only part

of them is observed. The proposed modification is designed to better suit the convolutive

DL approach to bioacoustic audio recordings. To illustrate the merit in this approach, we

compare our approach against a standard CNMF approach. To address challenges with

computational complexity, we propose a randomly projected dictionary learning approach.

Additionally, we describe a framework for classifying birdsong recordings based on feature

extracted from the sparse representation of spectrograms. In experiments, we present an

application of the proposed approach for (i) denoising spectrograms, which are corrupted

by rain noise, (ii) unsupervised bird syllable discovery, and (iii) supervised classification of

birdsong recordings.

This chapter is organized as follows. Section 6.2 reviews a convolutive DL model using
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CNMF. Section 6.3 presents a random matrix projection approach. Section 6.4 develops a

two-step update equations for DL and activation signal extraction and analyzes the proposed

algorithm for computational complexity. Section 6.5 describes a DL based approach for

classifying spectrograms. Finally, Section 6.6 evaluates the randomly projected approach

and the classification framework.

6.2. Background and problem formulation

In this section, we first review previous work on the application of CNMF to speech or audio

analysis before we introduce our approach. Then, we present the mathematical formulation

of the DL approach considered in this chapter.

6.2.1. Background on convolutive NMF

In CNMF [82, 83], a series of non-negative matrices Ww P RFˆK (w “ 1, . . . ,W ) and a non-

negative matrix H P RKˆT are used to approximate a matrix V P RFˆT in a convolutive

way. Based on this model, an observed spectrogram V can be written as:

V «

W
ÿ

w“1

Ww

wÑ

H , (6-1)

where
wÑ

H is the matrix H shifted w columns to the right with the leftmost columns zero

filled, W is the length of each word, and each entry of V is

V pf, tq “
W
ÿ

w“1

K
ÿ

k“1

Wwpf, kq
wÑ

H pk, tq.

Since this approach requires positive factorized matrices, the Kullback-Leibler (KL) diver-

gence is used in [70] for solving this decomposition problem. In [83], the solution with

sparseness constraint is achieved by repeatedly alternating between updating Ww and H as:

H “ H b
W J

w

wÑ

rV
Λ
s

W J
w Ξ` λΞ

, and, (6-2)

Ww “ Ww ` γKL

“V

Λ

wÑ

H
J

´Ξ
wÑ

H
J
‰

, (6-3)
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where Λ “
řW
w“1Ww

wÑ

H , γKL has to be small enough to reduce the cost function deter-

mined by the Kullback-Leibler divergence, b is the element-wise product, the division is

also element-wise and Ξ is an F ˆ T matrix with all its entries equal to 1 [114].

Two limitations of this approach with respect to bioacoustics applications are: 1) the non-

negativity assumptions on both factorized matrices may be invalid, especially when we con-

sider a random projection approach, and 2) the activation signal may occur before the time

of the first observation, which requires the length of the activations to be greater than the

length of the observation signals. To address these issues, we present a convolutive DL model

for random projected spectrograms.

6.2.2. Notation

In this part, we use lower case to denote indexes (e.g. 1 ď m ď M), upper case to denote

fixed scalars (e.g., M P N), boldfaced lower case to denote vectors (e.g., v P RMˆ1), ÐÝv to

denote the reversal of v (i.e., ÐÝv pmq “ vpM ´ m ` 1q where ÐÝv pmq is the m-th entry of
ÐÝv P RMˆ1), boldfaced upper case to denote matrices (e.g., V P RMˆN), and calligraphic

font to denote sets (e.g. the set of matrices V “ tV p1q, . . . ,V pLqu where V plq P RMˆN for

1 ď l ď L).

We consider two types of discrete convolution operations, denoted by ‹ (regular convolution)

and ˚ (full convolution). Taking two vectors u P RNˆ1 and v P RMˆ1 where N ěM, regular

convolution (u ‹ v) returns a third vector z P RpN´M`1qˆ1 following

zptq “ pu ‹ vqptq “
M
ÿ

m“1

upt´m`Mqvpmq

for 1 ď t ď N ´M ` 1. On the other hand, full convolution (u˚ v) returns a third vector

z P RpN`M´1qˆ1, which is greater than the one returned by regular convolution. Its entries

are computed as follows

zptq “ pu˚ vqptq “
M
ÿ

m“1

upt´m` 1qvpmq

for 1 ď t ď N `M ´ 1. Notice that uptq is considered for ´M ď t ď N `M ´ 1, and vptq

for 1 ď t ďM. Those unavailable values, uptq for t ă 1 and N ă t, are assigned as zeros.

Furthermore, regular convolution can be expressed as a matrix multiplication operation by

u ‹ v “ Tuv or u ‹ v “ Tvu where Tu “ toeplitzpu,M,N,Mq P RpN´M`1qˆM , and Tv “

toeplitzpv,M,N,Nq P RpN´M`1qˆN (Algorithm 2 explains the construction of a Toeplitz
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matrix). Similarly, full convolution can be expressed as a matrix multiplication operation by

u˚ v “
˚

Tuv or u˚ v “
˚

T vu where
˚

Tu “ toeplitzpu, 1, N `M ´ 1,Mq P RpN`M´1qˆM ,

and
˚

T v “ toeplitzpv, 1, N `M ´ 1, Nq P RpN`M´1qˆN .

Algorithm 2 Toeplitz matrix

1: x P Rmˆ1

2: τ, R, C P N
3: function toeplitz(x, τ, R, C)

4:

T Ð

»

—

—

—

–

φpx, τq φpx, τ ´ 1q ¨ ¨ ¨ φpx, τ ´ C ` 1q

φpx, τ ` 1q φpx, τq ¨ ¨ ¨ φpx, τ ´ C ` 2q
... ¨ ¨ ¨ ¨ ¨ ¨

...

φpx, Rq φpx, R ´ 1q ¨ ¨ ¨ φpx, R ´ C ` 1q

fi

ffi

ffi

ffi

fl

5: return T P RpR´τ`1qˆC

6: end function

7: function φ(x, t)

8:

x̃Ð

"

xptq, if 1 ď t ď dimpxq

0, otherwise

9: return x̃

10: end function

6.2.3. Problem formulation

We assume that the spectrogram Y P RFˆT is composed of a sequence of successive time-

frequency units called dictionary words that are activated at certain time instants (see Fig. 6-

1). This approximation is expressed by the discrete convolution operation as follows

yf «
K
ÿ

k“1

ak ‹ dkf (6-4)

where yf P RTˆ1 is a transpose row of Y “ ry1 . . .yF s
J, corresponding to the f -th frequency-

band, ak P RLˆ1 is a column of the matrix of activations A “ ra1 . . .aKs P RLˆK , dkf P

RWˆ1 is the time pattern at frequency f of the time-frequency pattern Dk “ rdk1 . . .dkF s
J P

RFˆW , andD P RKˆFˆW is the full dictionary —which is built by stacking allDk. According

to this decomposition, K is the number of time-frequency patterns, W is the length of each

time-frequency pattern, and L “ T `W ´ 1 is the length of each activation signal.
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As explained at the beginning of this section, the convolution in (6-4) is equivalent to a

matrix multiplication as follows

K
ÿ

k“1

ak ‹ dkf “
K
ÿ

k“1

Takdkf (6-5)

where Tak “ toeplitzpak,W, L,W q P RTˆW ; this is the expression that we use to update

the dictionary. Likewise, (6-4) can be expressed as follows

K
ÿ

k“1

ak ‹ dkf “
K
ÿ

k“1

Tdkfak (6-6)

where Tdkf “ toeplitzpdkf ,W, L, Lq P RTˆL; this is the expression that we use to update

the activations.

Dictionary Words

Activations

Spectrograms

*D1(f,t) D2(f,t) D3(f,t) Y1(f, t)

Y2(f, t)

Y3(f, t)

a1
1(t) a2

1(t) a3
1(t)

a1
2(t) a2

2(t) a3
2(t)

a1
3(t) a2

3(t) a3
3(t)

Figure 6-1.Reproduction of a convolutive model for dictionary learning [97]. This illustra-

tion shows how the elements Y ipf, tq of a spectrogram are computed by applying

the convolution operation between the elements of the dictionary words d1pt, fq,

d2pt, fq and d3pt, fq, and the activation signals ai1ptq, a
i
2ptq and ai3ptq.

To minimize the reconstructed error between a set of N stacked spectrograms Y “ tY p1q,

. . . ,Y pNqu and their approximated spectrograms, we propose a convolutive dictionary model

formulated as the following optimization problem:

min
D,A

`pY ,D,Aq

`pY ,D,Aq :“
1

2

N
ÿ

n“1

˜

F
ÿ

f“1

||y
pnq
f ´ ỹ

pnq
f ||

2
` 2λ

K
ÿ

k“1

L
ÿ

t“1

|a
pnq
k ptq|

¸

subject to
F
ÿ

f“1

W
ÿ

t“1

|dkf ptq|
2
ď 1, @1 ď k ď K.

(6-7)

where A “ tAp1q, . . . ,ApNqu. The constraints are introduced to prevent D from being

arbitrary large, which would lead to arbitrary small values of activation signals. Therefore,
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the proposed convolutive model provides a natural representation for a set of N discontinuous

spectrograms of bird vocalizations.

To facilitate the optimization of the objective in (6-7), we use Toeplitz matrices [106] and an

iterative approach that alternates between the estimation of the dictionary D and the acti-

vations A. Therefore, in the p-th iteration, for the dictionary update, A is held fixed, and the

dictionary D is updated following: Dppq “ arg min
D

`pY ,Dpp´1q,Aq. To this end, we approx-

imate each frequency-band of the spectrogram by ỹ
pnq
f “

řK
k“1 T

pnq
ak dkf . Similarly, to update

Appq “ arg min
A

`pY ,D,App´1qq, we approximate each frequency-band of the spectrogram by

ỹ
pnq
f “

řK
k“1 Tdkfa

pnq
k .

Constructing Toeplitz matrices is memory inefficient and solving the above alternating

quadratic programming problem with matrix inversion is time-consuming. To reduce the

computational complexity and the memory issue of the convolutive model, in this chapter,

we propose a random projected convolutive model with modified gradient descent algorithm

that utilizes the convolution operator.

6.3. Random projected dictionary learning

In order to facilitate the reduction in computational complexity, we consider a compressive

sampling approach. Since bird vocalizations are mostly concentrated in a small range of

frequencies, spectrograms of bird vocalization tend to have sparse columns. Therefore, we

apply a random matrix transformation (with less rows than the number of frequency bins)

to both the spectrogram width and dictionary word width. In such a way, the computational

complexity of obtaining dictionary words and activations is decreased by reducing the size

of the spectrograms and hence, the number of unknowns (see Sec. 6.4.3). Accordingly, the

proposed new formulation of the dictionary learning is

min
D,A

`pYQ,DQ,Aq

`pYQ,DQ,Aq :“
1

2

N
ÿ

n“1

˜

R
ÿ

r“1

||yQpnqr ´ ỹQpnqr ||
2
` 2λ

K
ÿ

k“1

L
ÿ

t“1

|a
pnq
k ptq|

¸

subject to
R
ÿ

r“1

W
ÿ

t“1

|dQkrptq|
2
ď 1, @1 ď k ď K.

(6-8)

where Q P RRˆF is a transformation matrix, YQ “ tY Qp1q, . . . ,Y QpNqu is a set of trans-

formed spectrograms such that Y Qpnq “ QY pnq P RRˆT , yQr P RTˆ1 is a transpose row

of Y Q “ ryQ1 . . .y
Q
R s
J, and DQ

k “ QDk is the k-th time-frequency pattern transformed,
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such that dQkr P RWˆ1 is the time pattern at frequency r of the time-frequency pattern

Dk “ rd
Q
k1 . . .d

Q
kRs

J P RRˆW .

If the intensities at several frequency bins are compressed into a single coefficient using

Mel-Frequency-Coefficients (MFC), it is difficult to recover their value from the single coef-

ficient but it might be prevented by applying a compressive transformation with a random

matrix [115]. By relying on the sparsity of the signal and the compressive approach, the

recovery of the original spectrograms or dictionary words can be implemented using a linear

programming approach [8, 93].

6.4. Solution approach for dictionary learning and

extraction of activations

Considering the DL problem in (6-7), we analyze two cases:

min
D

`DpY ,D,Aq

`DpY ,D,Aq :“
1

2

N
ÿ

n“1

F
ÿ

f“1

||y
pnq
f ´

K
ÿ

k“1

T pnqak
dkf ||

2

subject to
F
ÿ

f“1

W
ÿ

t“1

|dkf ptq|
2
ď 1, @1 ď k ď K,

(6-9)

and

min
A

`ApY ,D,Aq

`ApY ,D,Aq :“
1

2

N
ÿ

n“1

˜

F
ÿ

f“1

||y
pnq
f ´

K
ÿ

k“1

Tdkfa
pnq
k ||

2
` 2λ

K
ÿ

k“1

L
ÿ

t“1

|a
pnq
k ptq|

¸

.
(6-10)

Several solution approaches have been established for solving both of the problems written

above, (6-9) and (6-10). For (6-9), one of the current state-of-art methods is least square

solution with normalization on dictionary words and projected Newton descent method. For

(6-10), the current state-of-art method is Least Angle Regression (LARS) algorithm [43] or

feature-sign sparse coding algorithm [71]. However, these algorithms require a large ma-

trix inversion to obtain an efficient and exact solution. To solve our proposed problem

directly, computing T
pnq
ak

J

T
pnq
ak and T JdkfTdkf require a computational complexity of the or-

der OpNKT log T q and OpFKT log T q, respectively, and computing their inverse requires

OppKW q3q and OppKLq3q, respectively. It strongly limits the practical applicability of the
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approach. Hence, we follow the work in [120] on majorization-minimization [59] for DL in

a non-convolutive case and consider a similar optimization transfer approach to minimize

both (6-9) and (6-10).

In majorization-minimization, a surrogate function gpx, x1q satisfying i) fpxq ď gpx, x1q, @x, x1

and ii) fpx1q “ gpx1, x1q, @x1 is considered as a replacement to the original objective fpxq.

The update iteration xpj`1q “ arg minx gpx, x
1q guarantees fpxpj`1qq ď fpxpjqq.

6.4.1. Dictionary learning

Since we consider an optimization transfer approach —majorization-minimization [59]— to

facilitate an iterative minimization of the objective in (6-9), we need to identify an efficient

surrogate function. For this purpose, we use the following inequality

1

2

N
ÿ

n“1

}y
pnq
f ´

K
ÿ

k“1

T pnqak
dkf}

2
“

1

2

N
ÿ

n“1

}

K
ÿ

k“1

T pnqak
pdkf ´ d

1
kf q ´ py

pnq
f ´

K
ÿ

k“1

T pnqak
d1kf q}

2

ď
γf
2

K
ÿ

k“1

}dkf ´ d
1
kf}

2
´

N
ÿ

n“1

K
ÿ

k“1

dJkfT
pnq
ak

J
py
pnq
f ´

K
ÿ

k“1

T pnqak
d1kf q ` const.

“
γf
2

K
ÿ

k“1

}dkf ´ pd
1
kf `

1

γf

N
ÿ

n“1

T pnqak

J
py
pnq
f ´

K
ÿ

k“1

T pnqak
d1kf qq}

2
` const.,

(6-11)

which provides a surrogate to

1

2

N
ÿ

n“1

}y
pnq
f ´

K
ÿ

k“1

T pnqak
dkf}

2.

To satisfy the inequality, we choose

γd “ max
f

γf ě max
f

K
ÿ

k“1

}
N
ř

n“1

T
pnq
ak pdkf ´ d

1
kf q}

2

}dkf ´ d1kf}
2

.

Replacing the objective using the surrogate in (6-11) and minimizing with respect to the

dictionary yields

min
dkf

F
ÿ

f“1

γd
2
}dkf ´ gkf}

2

subject to
F
ÿ

f“1

}dkf}
2
ď 1, @1 ď k ď K,

(6-12)
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where

gkf “ d
1
kf `

1

γd

N
ÿ

n“1

v
pnq
dkf

(6-13)

and

v
pnq
dkf
“ T pnqak

J
py
pnq
f ´

K
ÿ

k“1

T pnqak
d1kf q.

To solve (6-12), we form the Lagrangian

LpD, βq “
K
ÿ

k“1

F
ÿ

f“1

γd
2
}dkf ´ gkf}

2
`

K
ÿ

k“1

βkp
F
ÿ

f“1

}dkf}
2
´ 1q. (6-14)

Minimizing the Lagrangian with respect to dkf results in

dkf “
γd

γd ` 2βk
gkf . (6-15)

Substituting dkf back into (6-14) yields the dual function

Gpβkq “
K
ÿ

k“1

“

βkp
γd

γd ` 2βk

F
ÿ

f“1

}gkf}
2
´ 1q

‰

.

Maximizing the dual objective with respect to βk subject to βk ě 0 yields

argmin
βk

Gpβkq “

$

’

’

’

&

’

’

’

%

0, if
F
ř

f“1

}gkf}
2 ď 1;

γd
2
p

d

F
ř

f“1

}gkf}2 ´ 1q, otherwise.

(6-16)

To compute the optimal dkf , we replace (6-16) back into (6-15) and obtain

dkf “

$

’

’

’

’

&

’

’

’

’

%

gkf , if

d

F
ř

f“1

}gkf}2 ď 1;

gkf
d

F
ř

f“1
}gkf }2

, otherwise.
(6-17)

Finally, replacing (6-13) into (6-17) yields

d
pj`1q
kf “

$

’

’

’

’

’

&

’

’

’

’

’

%

d
pjq
kf `

1
γd

N
ř

n“1

v
pnq
dkf
, if

d

F
ř

f“1

}d
pjq
kf `

1
γd

N
ř

n“1

v
pnq
dkf
}2 ď 1;

d
pjq
kf `

1
γd

N
ř

n“1
v
pnq
dkf

d

F
ř

f“1

}d
pjq
kf `

1
γd

N
ř

n“1
v
pnq
dkf

}2

, otherwise.

(6-18)
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Step-size selection for the DL update

To determine the step size γd, we consider two cases: i) when the updated dictionary words

satisfies the constraint that
F
ÿ

f“1

}gfk }
2
ď 1,

the optimal step-size is

γd “

}
N
ř

n“1

T
a
pnq
k
v
d
pnq
kf
}2

}
N
ř

n“1

v
d
pnq
kf
}2

;

and, ii) when the constraints are not satisfied, the optimal step-size has no closed-form

solution. Setting

γd “ λmaxp

N
ÿ

n“1

T
a
pnq
k

JT
a
pnq
k
q

ensures that

}

N
ÿ

n“1

T
a
pnq
k
v
d
pnq
kf
}
2
ď γd}

N
ÿ

n“1

v
d
pnq
kf
}
2

for any
N
ř

n“1

v
d
pnq
kf
. This conservative approach results in a small step size 1{γd, which leads to

a slow convergence rate. To improve this, we consider the following tighter bound on γd. We

rely on maximizing first individual frequency-band and take the maximum over all of them.

From (6-18), we have

dkf ´ d
1
kf “

d1kf `
1
γd

N
ř

n“1

v
pnq
dkf

d

F
ř

f“1

}d1kf `
1
γd

N
ř

n“1

v
pnq
dkf
}2

´ d1kf “ α1dkf ` α2

N
ÿ

n“1

v
pnq
dkf
.

Since d¨f ´d
1
¨f P spantd¨f ,v

p¨q

d¨f
u where d¨f “ rd

J
1f . . .d

J
Kf s

J P RKWˆ1, d1¨f “ rd
1
1f
J . . .d1Kf

J
sJ

P RKWˆ1, and v
p¨q

d¨f
“ r

N
ř

n“1

v
pnq
d1f

J

. . .
N
ř

n“1

v
pnq
dKf

J

s P RKWˆ1, we can further restrict γd without

violating the bound on γd. Using Gram-Schmidt orthogonalization, we obtain the orthogonal

basis for tv
p¨q

d¨f
,d1¨fu as u1 “ v

p¨q

d¨f
{}v

p¨q

d¨f
} and u2 “ d̃

1
¨f{}d̃

1
¨f}, where d̃1¨f “ d

1
¨f ´ pd

1
¨f
Ju1qu1.

For every value of pα1, α2q in the representation of d¨f ´ d
1
¨f “ α1d

1
¨f ` α2v

p¨q

d¨f
there is a

pβ1, β2q in the equivalent representation of d¨f ´ d
1
¨f “ β1u1 ` β2u2. Hence, we can find γf
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by maximizing the following with respect to pβ1, β2q:

}
N
ř

n“1

T
pnq
A pd¨f ´ d

1
¨f q}

2

}d¨f ´ d1¨f}
2

“

}
N
ř

n“1

T
pnq
A ru1,u2srβ1, β2s

J}2

}rβ1, β2sJ}2
(6-19)

where T
pnq
A “ rT

a
pnq
1
. . .T

a
pnq
K
s P RTˆKW .

Accordingly, we can bound (6-19) by

γf “ λmaxpru1,u2s
J
p

N
ÿ

n“1

T
pnq
A T

pnq
A

J

qru1,u2sq.

Notice that although
N
ř

n“1

T
pnq
A T

pnq
A

J

is independent of the frequency f, it is fairly large and its

associated eigendecomposition may be computationally intensive. Instead, we replace it with

the eigendecomposition of F 2ˆ2 frequency-dependent matrices ru1,u2s
Jp

N
ř

n“1

T
pnq
A T

pnq
A

J

qru1,u2s.

To ensure that the bound holds for every f , we select the step size γd “ max
f
γf .

6.4.2. Extraction of activations

Similarly to DL, we consider an optimization transfer approach to facilitate an iterative rule

to the minimization of the objective in (6-10) with respect to the activations. Therefore, a

bounding technique yields

1

2

F
ÿ

f“1

||y
pnq
f ´

K
ÿ

k“1

Tdkfa
pnq
k ||

2
ď

γ
pnq
a

2

K
ÿ

k“1

}a
pnq
k ´ pa1

pnq
k `

1

γ
pnq
a

F
ÿ

f“1

Tdkf
J
py
pnq
f ´

K
ÿ

k“1

Tdkfa
pnq
k qq}

2
` const.,

(6-20)

such that

γpnqa ě

K
ÿ

k“1

}
F
ř

f“1

Tdkf pa
pnq
k ´ a1

pnq
k q}

2

}a
pnq
k ´ a1

pnq
k }

2
. (6-21)

Therefore, the surrogate problem for extracting activations is defined as:

min
a
pnq
k

1

2
||a

pnq
k ´ h

pnq
k ||

2
` λ

K
ÿ

k“1

L
ÿ

t“1

|a
pnq
k ptq| (6-22)
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Notice that the objective in (6-22) is separable since
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Therefore, the solution to (6-22) can be obtained by solving element-wise for every a
pnq
k ptq.

The resulting updating rule for extracting the activation follows
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(6-23)

Step-size selection for updating activations

Since the optimal step-size for activation updates must satisfy (6-21), we can bound γ
pnq
a by

λmaxp
F
ř

f“1

T JdkfTdkf q, which is the largest eigenvalue of the matrix
F
ř

f“1

T JdkfTdkf . Computing this

eigenvalue is computational expensive. Instead, we use the fast Fourier transform (FFT).

According to the Parseval theorem and Cauchy-Schwartz inequality, we derive the following

bound

K
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F
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where d̂kf P RWˆ1 contains the magnitude values of the discrete Fourier transform of dkf .

Hence,
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|d̂kf pωq|
2.
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6.4.3. Solution approach for random projection model

For the random projection approach, we simply replace Y with YQ and D with DQ. Thus,

we obtain an efficient algorithm for practical dictionary extraction. This algorithm consists

of three main parts: (i) transforming the original input spectrograms using a random projec-

tion matrix, (ii) alternatively updating dictionary words and activations until a convergence

criterion is met, and (iii) recovering the uncompressed domain dictionary words by solving

the optimization problem with the extracted activations and the original data Y .

Using the FFT and inverse fast Fourier transform (IFFT), the computational complexity

for each convolution block with size L is OpL logLq. For the iterative procedure in (6-9),

calculating
K
ř

k“1

T
pnq
ak dkf , v

pnq
dkf

and γd, requires OpNKL logLq. Therefore, the overall computa-

tional complexity is OpFNKL logLq. Updating the activations requires the same computa-

tional complexity as OpNFKL logLq. The total computational complexity for the algorithm

without random projection is OpFNKL logLq. With random projection, the computational

complexity is OpRNKL logLq, which is proportional to the original computation complex-

ity. Thus, if the reduced frequency band R is 20% of the original frequency band F , the

running time will be five times faster than the uncompressed dictionary learning algorithm.

Therefore, using random projection makes the convolutive dictionary learning method more

efficient and practical.

6.5. Dictionary-based classification framework

Dictionary learning is not limited to spectrogram reconstruction or denoising. Here, we

present a dictionary-based classification step that aims to use the learned sparse representa-

tion for classifying bioacoustic recordings. The proposed scheme is inspired by the framework

used in music analysis [121]. In Fig. 6-2, we present the classification framework in two parts:

training and test. In the first part, the dictionary words and activation signals are estimated

from the training set, a set of features is extracted from the activations signals, which is

used for training an SVM classifier. In the second part, the activations signals correspond-

ing to the test set are estimated using the dictionary previously learned. Then features are

extracted based on the activations. Finally, the features are provided as an input tor the

SVM classifier. The supervised dictionary learning adaptation, feature extraction and SVM

for training and classification are explained below.
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Figure 6-2.Diagram of dictionary-based classification.

6.5.1. Supervised dictionary learning

For classification, we consider the case in which each recording may contain dictionary words

from multiple classes. In our application, vocalizations in the same recording may come from

from multiple bird species. This classification framework has been considered for species

recognition of in-situ recordings [19]. This setting is often referred to as the multiple label

setting. In the multiple label setting, spectrogram Y pnq is associated with a label vector

lpnq P R1ˆNc such that lpnqplq P t0, 1u for 1 ď l ď Nc, and Nc is the number of classes.

Those binary entries indicate the presence (by 1) or the absence (by 0) of the l-th species

in the n-th recording. Therefore, the label information can be summarize using the matrix

L “ rlp1q . . . lpNqsJ P RNˆNc .

To adapt our dictionary learning approach to this setting, we assume that the dictionary

consists of Nc sub-dictionaries (one for each class). The l-th sub-dictionary consists of Kl

words and the total number of dictionary words is K such that
Nc
ř

l“1

Kl “ K. We assume that

a sub-dictionary can only be used to construct a given spectrogram if it contains its corre-

sponding class. Alternatively, if the class is absent in the n-th spectrogram, the activations

associated with its dictionary words are assigned as zeros.

We consider using a summarization of the activations as a feature vector that provide infor-

mation about the presence or absence of a given class in a recording. To this end, we map
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the set of activations of the n-th spectrogram Apnq to a vector where its dimension is the

number of estimated features. Therefore, we compute a vector xpnq P RKˆ1 where

xpnqpkq “

L
ř

t“1

|a
pnq
k ptq|

K
ř

k“1

L
ř

t“1

|a
pnq
k ptq|

.

Notice that for each activation, the entire activation time series is first replaced with its

l1 norm. Then, the l1 norms are scaled by the sum of l1 norms to make xpnq sum to one.

We use the set of feature extracted from activation signals as input of a support vector

machine (SVM) classifier. For training this SVM classifier, we use a linear kernel [57]:

Kpxpiq,xpjqq “ xpiq
J
xpnq.

6.6. Experiments and discussion

In this section, we empirically evaluate the proposed random projected dictionary learning

approach on both synthetic and real data. First, we compare how the boundary effect is

addressed by our approach and CNMF. Additionally, we evaluate the proposed approach for

the problems of denoising, dictionary discovery and classification of birdsong recordings.

6.6.1. Analysis on synthetic data

In this case, we use three spectrograms synthetically generated with three dictionary words

and their corresponding sparse activation signals. The dimensions of each spectrogram are

fixed to F “ 50ˆT “ 500, and the dimensions of each dictionary word are F “ 50ˆW “ 50.

The learned dictionary words for these three spectrograms and activations using our approach

and CNMF [101] are shown in Fig. 6-3. The number of iterations is 10, 000 in both cases.

We observe the proposed approach accurately recovers the dictionary words (see Fig. 6-3(a))

and the spectrograms (see Fig. 6-4(a)) despite the boundary effect in the first spectrogram

of Fig. 6-4(c). However, CNMF learns each dictionary word as a mixture of the original

dictionary words (see Fig. 6-3(c) and Fig. 6-4(b)) including the part of the dictionary word

appearing in the beginning of the first spectrogram. As it can be seen, our model is more

robust to boundary effects than CNMF.
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(a) Learned dictionary by our approach.
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(b) Learned activations by our approach.
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(c) Learned dictionary by CNMF.
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(d) Learned activations by CNMF.

Figure 6-3.Comparison of activations between our approach and CNMF [101].

6.6.2. Analysis on real-world data

In order to apply our random projected convolutive dictionary learning approach for birdsong

analysis tasks, we use two real-world data sets:

• MLSP 20132 dataset: it contains 645 recordings of 19 different bird species (see

Table 7-1).

• H. J. Andrews (HJA) dataset [19]: it contains a total of 548 recordings with six

different locations PC1, PC4, PC7, PC8, PC13, and PC15 (see Table 3-1).

We convert each recording into a two-dimensional spectrogram with F “ 247 and T “ 2497

and examine four aspects of the proposed approach: (i) spectrogram denoising (ii) optimal

parameter selection, (iii) dictionary learning, and (iv) species classification.

2https://www.kaggle.com/c/mlsp-2013-birds

https://www.kaggle.com/c/mlsp-2013-birds
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Table 6-1.Number of recordings per species of MLSP2013 dataset.

Abbreviation Class name #

(Class label) recordings

BRCR Brown Creeper 14

PAWR Pacific Wren 81

PSFL Pacific-slope Flycatcher 46

RBNU Red-breasted Nuthatch 9

DEJU Dark-eyed Junco 20

OSFL Olive-sided Flycatcher 14

HETH Hermit Thrush 47

CBCH Chestnut-backed Chickadee 40

VATH Varied Thrush 61

HEWA Hermit Warbler 53

SWTH Swainson’s Thrush 103

HAFL Hammond’s Flycatcher 28

WETA Western Tanager 33

BHGB Black-headed Grosbeak 9

GCKI Golden Crowned Kinglet 37

WAVI Warbling Vireo 17

MGWA MacGillivray’s Warbler 6

STJA Stellar’s Jay 10

CONI Common Nighthawk 26

Spectrogram denoising

We use the proposed dictionary learning approach for spectrogram denoising. To this end,

we learn a dictionary from a clean set of recordings (they are selected from the HJA dataset)

and use it for recovering a rain corrupted spectrogram. The result in Fig. 6-5 shows that

after running the dictionary learning algorithm, the rain artifact that appears as a long

vertical line has been significantly reduced in the reconstructed spectrogram.

Parameter selection for dictionary learning

The model parameters that affect the performance of dictionary learning are the number of

dictionary words K and sparsity of the activations λ. To show the relationship between the

model parameters and the dictionary learning performance, we present the reconstruction
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error
N
ÿ

n“1

F
ÿ

f“1

||y
pnq
f ´

K
ÿ

k“1

T pnqak
dkf ||

2

against a practical approximation of the L0 norm of the activations (number of the el-

ements in A that are greater than ε “ 10´2). During the training phase, we select 8

spectrograms from location PC15 of the HJA dataset and run the proposed algorithm to

extract the dictionary words for each of the following parameter values K “ t5, 10, 15u and

λ “ t1, 5, 10, 15, 30, 50u. We apply the learned dictionary words in the validation phase to

independent three test spectrograms, the performance curves are shown in Fig. 6-6(a) (a)

and (b). Results show that the reconstruction error decreases with decreasing value of λ

and/or increasing the value of K. The L0 norm of the activations increases with decreas-

ing the value of λ. For a large λ, the dictionary concentrates on high energy words and

low energy words are not discovered. For a small λ, the L0 norm of activations increases

significantly even though the reconstruction error decreases.

We select the optimal set of parameters (λ “ 10, K “ 15) to balance the reconstruction error

and the sparseness of the activation in the validation set. We show the extracted dictionary

words in the Fig. 6-7.

Extracted dictionary words on MLSP2013 dataset

We select four or five rich-of-syllable spectrograms from each species to learn the bird song

dictionary and show the discovered dictionary words of all 19 species in Fig. 6-8 by using

randomly projected dictionary learning with R “ 10%F and setting W “ 200 for all species.
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(a) Reconstructed spectrograms from our approach.
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(b) Reconstructed spectrograms from CNMF [101].
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(c) Original spectrograms.

Figure 6-4.Comparison of original and recovered spectrograms



6.6 Experiments and discussion 77

0 10Time (seconds)

F
re

q
u
e
n
c
y
 (

k
H

z
)

8

(a) Original spectrogram

0 10Time (seconds)

F
re

q
u
e
n
c
y
 (

k
H

z
)

8

(b) Reconstructed spectrogram

Figure 6-5.Examples of rain denoising on test spectrogram
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(b) Validation phase

(c) Learned dictionary (d) Learned dictionary

Figure 6-6.Parameter selection: (a) training phase reconstruction error vs. L0 norm of

activations for PC15 (the first number for each point represents K and the

second number for each point represents λ); (b) validation phase reconstruction

error vs. L0 norm of activations for PC15; (c) set of 15 learned dictionary words

with λ “ 10 for PC15; (d) set of 15 learned dictionary words with λ “ 50 for

PC15.
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(a)PC1 (b)PC4

(c)PC7 (d)PC13

Figure 6-7.Learned dictionary words for recordings of HJA dataset on locations (a) PC1,

(b) PC4 (c) PC7 and (d) PC13.

Figure 6-8.Learned dictionary words for MLSP2013 dataset
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6.6.3. Classification experiments

In order to test the discriminative information provided by the learned dictionary, we formu-

late the problem of bird species recognition in recordings of the MLSP2013 dataset and HJA

dataset (Tables 7-1 and 3-1, respectively). In each classification experiment, we perform

a five-fold cross-validation with ten repetitions. Since our experiments are carried out on

multi-label datasets (each recording can be associated with multiple labels simultaneously),

we report the results by evaluating each class label separately [123], i.e., the multi-label

problem is seen as Nc binary-classification problems, where Nc is the number of classes, so

that, each class is taken once as target class (labeled as ‘1’) and the others as non-target

class (labeled as ‘0’). Additionally, we choose area under the curve (AUC) as performance

measure because it is regarded as appropriate for evaluating learning algorithms [58] in this

setting in which label imbalance may occur. This measure estimates the probability that a

classifier produce a higher output for an object of the target class than an object from the

non-target class.

Random projection is applied with R “ 12. The following are the used parameters: λ “ 0.1

(heuristically fixed), K “ 2pNc ` 1q (i.e., two dictionary words are estimated for each

class plus two words of a class which all the recordings belong, in order to find com-

mon patterns), and, 5000 iterations for estimating dictionary words from the training set

and 10000 for estimating activations from the test set. The parameter C, which con-

trols the trade off between errors of the SVM and margin maximization is selected among

t0.001, 0.01, 0.1, 1, 10, 100, 1000u.

In order to evaluate the performance of the proposed approach against other methods, we

compared the proposed classification method that extracts features from activations using

random projection (Act-RP) against classification methods whose features are extracted

from: random projected spectrograms (Spc-RP), Mel-Frequency-Coefficients (MFC, reduc-

tion of the original frequency scale to a logarithmic scale with 12 coefficients) dimension

reduced spectrograms and original spectrograms (Spc). Tables 6-2 and 6-3 show the classi-

fication performance (AUC mean and standard deviation) from HJA dataset and MLSP2013

dataset, respectively.

Table 6-2 shows that most of the species from the HJA dataset can be well-classified by

using both the proposed method based on dictionary learning and extracting features directly

from the spectrograms. Therefore, it means that the spectral information is highly relevant

for classifying those recordings. Additionally, the good performance of the classification

performed based on MFC features confirms that. The species that benefits mostly of our

approach is HETCH. However, the baseline outperforms our method when RBNU is classified.

We suspect that possibly highly relevant frequency information from this class is lost when



806 Dictionary learning for bioacoustic monitoring with applications to species classification

the random projection is applied. Nevertheless, in comparison to the poor performance

of classification from random-projected spectrograms without using DL, our DL approach

provides a significant increase in performance by recovering the hidden activations and using

them as features for classification.

Table 6-2.Classification results obtained with the HJA dataset and feature representation

extracted from i) activations using the random projection (Act-RP); ii) the ran-

dom projected spectrograms (Spc-RP); iii) MFC dimension reduced spectrograms

(MFC) and iv) original spectrograms (Spc).

Class Act-RP Spc-RP MFC Spc

BRCR 97.10 (0.70) 70.21 (2.53) 88.91 (1.67) 95.92 (0.70)

WIWR 99.15 (0.36) 83.46 (1.68) 98.72 (0.50) 99.08 (0.27)

PSFL 94.54 (0.86) 72.45 (1.74) 91.10 (0.74) 93.61 (1.20)

RBNU 90.04 (2.31) 43.26 (3.84) 90.05 (2.51) 96.70 (1.38)

DEJU 96.69 (1.13) 47.24 (4.06) 78.10 (3.05) 94.96 (2.11)

OSFL 98.26 (0.56) 60.19 (3.17) 92.92 (0.64) 98.18 (0.57)

HETH 94.63 (2.81) 80.34 (4.37) 83.74 (4.15) 91.26 (2.25)

CBCH 92.80 (2.03) 66.99 (1.97) 89.60 (1.03) 92.89 (1.49)

VATH 100 (0) 70.60 (3.29) 100 (0) 100 (0)

HEWA 97.53 (0.49) 64.98 (3.39) 98.23 (0.69) 97.70 (0.80)

SWTH 99.44 (0.24) 52.19 (4.75) 99.01 (0.48) 98.57 (0.82)

HAFL 100 (0) 81.00 (3.22) 100 (0) 100 (0)

WETA 97.02 (0.89) 89.39 (1.69) 87.38 (1.69) 97.46 (1.17)

Classification experiments carried out with the MLSP2013 dataset behave differently. In this

case, direct use of the spectrograms produces relatively low AUC results. Generally speaking

the MLSP dataset is more challenging than the HJA dataset due to a larger number of species

and the presence of rain that may overlap with bird vocalizations. It can be observed that

our method outperforms other methods for almost all of the species with the exception of

the BHGN species. As mentioned above, it is possible that vocalizations of this species contain

discriminative information that is lost when the dimension reduction techniques are applied.



6.6 Experiments and discussion 81

Table 6-3.Classification results obtained with the MLSP2013 dataset and feature repre-

sentation extracted from i) activations using the random projection (Act-RP);

ii) the random projected spectrograms (Spc-RP); iii) MFC dimension reduced

spectrograms (MFC) and iv) original spectrograms (Spc).

Class Act-RP Spc-RP MFC Spc

BRCR 97.86 (0.90) 62.78 (7.26) 89.84 (2.57) 86.51 (8.97)

PAWR 88.71 (1.32) 66.03 (2.65) 86.69 (1.07) 85.92 (2.21)

PSFL 89.37 (1.73) 43.68 (6.34) 71.24 (3.21) 71.94 (3.58)

RBNU 68.89 (14.29) 21.99 (6.55) 53.55 (14.10) 58.18 (10.11)

DEJU 83.05 (6.05) 62.78 (7.48) 65.90 (8.24) 68.81 (3.71)

OSFL 93.97 (3.49) 69.70 (9.36) 78.60 (5.10) 72.78 (8.53)

HETH 85.66 (3.65) 49.96 (3.09) 81.00 (2.77) 77.46 (4.58)

CBCH 74.46 (4.77) 55.71 (6.87) 67.36 (4.10) 61.30 (7.06)

VATH 87.29 (2.57) 60.20 (4.82) 81.59 (3.28) 78.02 (4.33)

HEWA 90.41 (2.53) 63.05 (5.14) 78.20 (2.08) 74.10 (2.93)

SWTH 89.24 (1.50) 50.15 (3.87) 85.74 (2.69) 84.01 (2.84)

HAFL 85.54 (5.03) 64.93 (5.26) 75.58 (6.80) 69.33 (3.77)

WETA 91.08 (2.72) 57.06 (6.82) 81.68 (4.45) 77.96 (3.86)

BHGB 48.87 (15.47) 49.78 (13.47) 49.05 (15.53) 68.49 (14.19)

GCKI 91.47 (2.44) 64.41 (5.59) 76.98 (3.52) 68.54 (5.91)

WAVI 96.42 (1.69) 47.52 (8.26) 85.28 (2.65) 73.80 (4.76)

MGWA 50.00 (15.81) 14.64 (8.48) 43.20 (13.56) 37.51 (14.30)

STJA 92.86 (4.55) 58.26 (8.32) 71.62 (9.99) 64.24 (7.86)



7. Online learning of time-frequency

patterns

Abstract

We present an online method to learn recurrent time-frequency patterns from spectrograms.

Our method relies on a convolutive decomposition that estimates sequences of spectra into

time-frequency patterns and their corresponding activation signals. This method processes

one spectrogram at a time such that, in comparison with a batch method, the computational

cost is reduced proportionally to the number of considered spectrograms. We use a first-order

stochastic gradient descent and show that a monotonically decreasing learning-rate works

appropriately. Furthermore, we suggest a framework to classify spectrograms based on the

estimated set of time-frequency patterns. Results, on a set of synthetically generated spec-

trograms and a real-world dataset, show that our method finds meaningful time-frequency

patterns and that it is suitable to handle a large amount of data.

7.1. Introduction1

Learning time-frequency patterns is helpful for both supervised and unsupervised analyses

of acoustic signals. For this purpose, the mathematical model known as dictionary learning

(DL) has been used. Estimation of such a model is usually formulated as a constrained

optimization problem that includes a data fit term between the signal and a combination

of a set of patterns —called dictionary— and their corresponding coefficients for weighting

those patterns —called activations.

Depending on the problem, a physical meaning can be attributed to patterns and coeffi-

cients [66]. For example, for bioacoustic signals, dictionary patterns can be associated with

1This chapter was accepted for presentation on The 42nd IEEE International Conference on Acoustics,

Speech and Signal Processing ICASSP 2017, March 5-9, 2017, New Orleans, USA.
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different sound sources, e.g., bird species vocalization, and coefficients can be related to

the time when the vocalizations are emitted. For later analysis, a DL algorithm should

appropriately recover the original signal and satisfy the constraints, e.g., norm-constraints

or non-negativity. Nevertheless, those algorithms are usually computationally expensive;

therefore, to scale up and allow handling a large amount of data, it is important to consider

complexity and memory requirements [60].

One approach for DL, which has been widely applied in machine learning and digital signal

processing, is based on nonnegative matrix factorization (NMF) [86]. Particularly, NMF

allows extracting meaningful information from audio recordings that contain mixtures of

sounds [31, 103]. In order to apply NMF, the audio signal is usually represented by its

spectrogram [7, 46, 98]. NMF has been successfully applied to various audio applications

including automatic transcription, music analyses and blind source separation [30, 74]. NMF

is formulated as an optimization problem (sparsity constraints are often added) that mini-

mizes the least-squares error or the generalized Kullback-Leibler divergence [70] between the

measured signal and its decomposition.

Using NMF a spectrum is decomposed into a product of two matrices: one corresponding to a

collection of 1-D spectra (which forms the dictionary) and another corresponding to their ac-

tivations in time. An alternative model is the convolutive non-negative matrix factorization

(cNMF) in which each pattern of the dictionary is a matrix that corresponds to a sequence of

1-D spectra (time-frequency pattern) [83, 34]. The resulting time-frequency patterns provide

useful information related to relevant temporal structures contained in the recordings [102].

Nevertheless, when dealing with large data (e.g., in bioacoustics), traditional cNMF algo-

rithms become computationally expensive and demand large memory resources. To reduce

the computational complexity and memory consumption, low-rank approximations are ap-

plied [124]. However, this approach generally results in information loss. An alternative

approach to alleviate the processing requirements is using online algorithms. For instance,

in [75], an algorithm for learning 1-D patterns using stochastic gradient descent is proposed

and in [113], an online version of the cNMF algorithm proposed in [117] is introduced.

In this chapter, we propose an unsupervised online version of the algorithm originally pre-

sented in [95]. For this purpose, we use a first-order stochastic gradient descent approach.

Our algorithm progressively updates the dictionary with each incoming spectrogram. Addi-

tionally, we propose a scheme for classifying audio signals based on features extracted from

the convolutive decomposition of the spectrograms. We evaluate and compare the proposed

approach on synthetic and real-world datasets.
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7.2. Online dictionary learning

In Chapter 6, an iterative rule for updating the k-th time-frequency pattern is proposed,

which can be rewritten as follows:

Dkppq “ ΠpDkpp´1q ` ηd∇Dk
`pY ,Dkpp´1q,Aqq, (7-1)

where ppq denotes the current iteration, ηd “ 1{γd (γd is the step-size described in Chapter 6),

and the projection Π is defined as

ΠpDkq “

#

Dk if ||Dk|| ď 1
Dk

||Dk||
otherwise

@k,

the projection projection Π : RNˆM Ñ RNˆM is defined as

ΠpM q “

#

M if }M}F ď 1
M
}M}F

otherwise

such that } ¨ }F is the Frobenius norm that is computed for any arbitrary matrix M by

}M}F “

g

f

f

e

N
ÿ

n“1

M
ÿ

m“1

M pn,mq2,

. The gradient of the loss function wrt Dk is

∇Dk
`pY ,D,Aq “ rvdk1 . . .vdkF s

J
P RFˆW (7-2)

where vdkf “ T
J
ak
ryf ´

K
ř

k“1

Takd
pp´1q
kf s P RWˆ1.

One spectrogram
and its activations

Online DL

Label
Updated dictionary

Only for supervised DL

ActivationsTraining set

Figure 7-1.Diagram of the online method for learning time-frequency patterns. The dashed

line is only enabled for the supervised online DL.

We propose an online version of the DL method (see Fig. 7-1), which updates the dictionary

by considering the current spectrogram and the ones processed in the past. In order to learn
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a dictionary from a set of N stacked spectrograms Y “ tY p1q . . .Y pNqu, in [95], the updating

rule of (7-1) is applied as follows:

Dkppq “ ΠpDkpp´1q ` ηd

N
ÿ

n“1

∇Dk
`pY pnq,Dpp´1q,A

pnq
qq. (7-3)

Alternatively, we propose an online algorithm that updates the time-frequency patterns

according to the current spectrogram and the ones observed in the past. Therefore, we

define the following loss function:

gNpDq :“
1

N

N
ÿ

n“1

`pY pnq,D,Apnqq

where Apnq is the estimated activation matrix that corresponds to the n-th spectrogram

Y pnq. Hence, the dictionary learning task consists in minimizing the expected cost

gpDq :“ EY r`pY ,D,Aqs :“ lim
NÑ8

gNpDq.

For this purpose, we updateDk by using the first-order stochastic gradient descent algorithm

[2, 75] as follows:

Dkppq “ ΠpDkpp´1q ` µpηd∇Dk
`pY pnq,Dpp´1q,A

pnq
qq (7-4)

where

n “

"

N if modpp,Nq “ 0

modpp,Nq otherwise,

and µp is the factor for scaling the gradient, also known as learning-rate. Notice that one

iteration of (7-3) requires computing N times the gradient ∇Dk
`pY ,D,Aq but (7-4) requires

computing this gradient only once.

According to [28], two learning-rate schedules commonly used in matrix factorization are:

1. Fixed Schedule (FS): the learning rate µp “ α @p is fixed throughout the online

learning process.

2. Monotonically Decreasing Schedule (MDS): the learning rate monotonically de-

creases each time that a new spectrogram is observed. Two options are: i) MDS1:

µp “
α
p
, and ii) MDS2: µp “

α
?
p
.

Our DL process, which aims to compute A “ tAp1q . . .ApNqu and D, alternatively updates

both of them. Therefore, in the p-th iteration, the algorithm updates Apnq for 1 ď n ď N by

(6-23), and D by (7-4). Note that due to the non-convex nature of the problem convergence

to a global optimum is not guaranteed.
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7.3. Classifying spectrograms

Our classification task consists of mapping the vector representation of a spectrogram x P RK

–which is computed by using the learned dictionary– to a categorical (class) label y P t´1, 1u.

The label in the binary classification setting indicates the presence (y “ 1) or absence (y “

´1) of the target class in a given spectrogram. For this purpose, we divide the experiments

into two stages: training and test. In the training stage, the dictionary is estimated by using

the proposed online DL method, which receives a sequence of spectrograms. The learned

dictionary words are used to extract the feature vector xi “ rxi1, . . . , xiKs P RK for the i-th

spectrogram Yi P RFˆT in a training set, in such a way that each one of the entries of xi
corresponds to the point of maximum correlation of a dictionary word and the spectrogram.

So, it is computed as follows: xik “ max
t
|
ř

f

h
piq
kf ptq| where h

piq
kf “

ÐÝ
d kf ˚y

piq
f P RpT`W´1qˆ1, and

ÐÝ̈ denotes the vector in reversed order.

7.4. Experiments and discussion

7.4.1. Experiments on an artificial dataset

Initially, we perform experiments in a collection of 1000 synthetically generated spectrograms

containing some of six different time-frequency patterns. The three-dimensional binary label

vector of each spectrogram Y P R16ˆ30 indicates the presence or absence of each class in

the spectrogram. We generate the training spectrograms by randomly combining the words

(an adding Gaussian noise) of an “original dictionary” formed by six basic time-frequency

patterns (see Fig. 7-4(a)). In the original dictionary, two types of time-frequency patterns

of length 10 correspond to each class.

The free parameters in the proposed online DL method are: length of window W , number

of dictionary words K, learning-rate µ, and `1-norm regularization parameter λ. We fix

W “ 10, since this parameter is known beforehand, and K “ 8 (we over-estimate the size

of the dictionary in order to avoid missing a time-frequency pattern). Estimation of the

remaining parameters is described below.

We compare the schedules of µ described in Sec. 7.2 and tune the parameter α. Figure 7-2

contains the reconstruction error of a test set of 30 spectrograms and the actual sparsity of

their activations (rate of non-zero entries) as a function of the number of observed spectro-

grams for a set of different values of α (for λ “ 0.1). According to this experiment, the FS



7.4 Experiments and discussion 87

schedule works well for moderate values of α trading off initial instability at a large value of

α with slow convergence for a small value of α.

Figure 7-3 shows the reconstruction error and the rate of non-zero entries in function of λ

after observing 1000 spectrograms (the learning-rate is MDS1 for a set of different values

of α). Results confirm the trade-off in the objective function between the reconstruction

error and the `1-norm constraint. Figures 7-4(a) and 7-4(b) show the original set of time-

frequency patterns and the estimated ones (with MDS1, α “ 100 and λ “ 0.1), respectively.
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Figure 7-2.Comparison of the studied learning-rate schedules, in a test set of 30 spectro-

grams, for a set of different values of α (FS+α, MDS1+α and MDS2+α) and

λ “ 0.1.

7.4.2. Experiments on real-world datasets

To validate the proposed method, we perform experiments on the MLSP 2013 Bird Clas-

sification Challenge dataset,3 which was collected in the H. J. Andrews (HJA) Long-Term

Experimental Research Forest in Oregon (USA). Table 7-1 shows the number of recordings

and classes of this dataset.

The classification experiments consider the following: i) for each class a binary (pres-

ence/absence) classification problem is considered; ii) the dataset is randomly divided into

50% for training and 50% for test (with 20 repetitions); iii) spectrograms are computed with

3https://www.kaggle.com/c/mlsp-2013-birds

https://www.kaggle.com/c/mlsp-2013-birds
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Figure 7-3.Reconstruction error and rate of non-zero entries in function of λ after observing

1000 spectrograms (the learning-rate is MDS1 for a set of different values of α).

dimensions F “ 80 and T “ 250 (corresponding to 10 seconds); iv) the parameters of DL

are: W “ 25 (window length of 1 sec.), K “ 6, λ is tuned for t0.01, 0.1, 1, 10u, learning-

rate MDS1 where α is tuned for t1, 10, 100u, and 1000 iterations (due to the small size of

the dataset, online DL cycles through the spectrograms several times to allow for a num-

ber of iterations that is greater than the number of spectrograms available in the dataset);

v) feature representation as indicated in Sec. 7.3; vi) linear SVM classifier (the best reg-

ularization parameter C is searched using a cross-validation in the training set, such that

C P r1ˆ 10´2, 1ˆ 102sq; and, vii) performance is reported by the F-score.

Table 7-1 shows the classification performance of three methods: 1) Wang et. al. (2013)

that considers the proposed classification framework but learns the dictionary by the online

method proposed in [113] (using our own implementation); 2) Online DL that applies the

proposed online DL method and classification framework; and, 3) Frequency that applies the

proposed classification framework, but the feature representation is directly extracted from

the spectrograms, i.e., the feature vector corresponds to the normalized average spectra.

According to our results, the proposed Online DL outperforms the others in 12 of the 19

classes. Frequency outperforms the others when classifying BRCR, VATH, BHGB, and MGWA.

Among these classes, the performance is remarkably high for BHGB, this suggests that the

frequency band is enough to distinguish this species. Wang et al. (2013) produces the best

performance when classifying OSFL, CBCH, and WETA.

Both types of experiments, on the artificial dataset and on the real-world dataset, show that
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Figure 7-4.Original and estimated sets of time-frequency patterns.

the method recovers appropriately the original spectrograms and finds meaningful time-

frequency patterns for classification outperforming a the baseline DL method and the clas-

sification based on the raw frequency information.
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Table 7-1.Number of 10-second recordings per species of MLSP2013 dataset. Size of the

traing/test datasets. F-score performance of classification experiments (boldface

indicates the highest result per species).

Label # F-score performance

recordings Wang et al. Online DL Frequency

BRCR 14 70.8 ˘ 7.5 92.8 ˘ 3.7 94.1 ˘ 0.7

PAWR 81 80.1 ˘ 3.4 84.9 ˘ 1.3 79.4 ˘ 2.4

PSFL 46 75.1 ˘ 5.3 84.0 ˘ 3.4 77.8 ˘ 2.4

RBNU 9 53.4 ˘ 10.8 83.9 ˘ 8.7 79.7 ˘ 7.6

DEJU 20 87.8 ˘ 4.3 89.9 ˘ 4.7 80.9 ˘ 2.4

OSFL 14 90.0 ˘ 5.0 79.7 ˘ 7.3 88.6 ˘ 4.6

HETH 47 70.6 ˘ 5.5 80.5 ˘ 5.1 78.0 ˘ 2.5

CBCH 40 83.9 ˘ 4.5 74.7 ˘ 6.0 81.7 ˘ 1.5

VATH 61 74.7 ˘ 4.5 83.6 ˘ 3.0 84.1 ˘ 0.6

HEWA 53 75.5 ˘ 4.8 80.7 ˘ 5.0 77.7 ˘ 2.7

SWTH 103 70.0 ˘ 4.0 82.4 ˘ 4.3 77.2 ˘ 2.4

HAFL 28 81.6 ˘ 5.1 85.8 ˘ 4.3 74.1 ˘ 2.5

WETA 33 88.1 ˘ 4.2 75.3 ˘ 6.6 86.4 ˘ 0.8

BHGB 9 70.2 ˘ 9.1 67.5 ˘ 9.9 95.5 ˘ 0.5

GCKI 37 67.8 ˘ 5.6 85.4 ˘ 6.0 83.0 ˘ 1.4

WAVI 17 83.4 ˘ 4.9 92.7 ˘ 6.8 89.0 ˘ 1.1

MGWA 6 42.3 ˘ 10.6 77.3 ˘ 8.7 86.3 ˘ 6.5

STJA 10 86.7 ˘ 6.5 94.3 ˘ 7.8 93.6 ˘ 0.9

CONI 26 86.0 ˘ 3.5 89.1 ˘ 4.6 85.6 ˘ 1.4
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7.4.3. Computational cost: Batch Learning vs Online Learning

In order to show the computational benefits of our method (online learning), we compare it

against a batch learning approach. We call batch learning to the DL method that updates the

time-frequency patterns by (7-3), which requires the whole set of spectrograms to estimate

the gradient. These experiments were carried out on a CPU with Processor 2.20GHz ˆ 8

and Memory 3.8 GB.

Figure 7-5 compares the time needed to reconstruct 20 (randomly selected) spectrograms

from the MLSP 2013 dataset by batch learning and online learning. Note that since there are

more than 20 iterations, the spectrograms are observed several times in the online case. We

observe that the error is not monotonically decreasing at the beginning for online learning.

However, the reconstruction error for both the online and batch methods converges to a

similar value after several iterations. Furthermore, as expected, the online learning is faster

than the batch learning by a factor of the number of spectrograms reconstructed at each

iteration. Since the proposed method handles better the computational resources than its

batch counterpart, it might be preferred for analyzing large datasets.
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Figure 7-5.Comparison of reconstruction error (top) and computational cost (bottom) be-

tween batch learning and online learning.



8. Conclusion

8.1. Concluding remarks

The technological tools currently available to acquire, store and process information can

be used to support the collection of environmental information. It facilitates tasks such as

counting species, rapid assessment of biodiversity with large spatial and temporal coverage,

the enrichment of information studies of ecology and conservation, development of automated

monitoring activities, monitoring of rare or endangered species, invasive species detection,

estimation of the impact of climate change, and analysis of the effects of anthropological

activity.

Particularly, this thesis provides the description and improvements of two state-of-the-art

approaches of PR and DSP: multiple instance learning (MIL) and dictionary learning (DL).

Regarding MIL, we described the application of this weakly supervised learning approach in

bioacoustic problems and its advantages. In the first part of this document, it is proposed

an unsupervised recording segmentation method of audio birdsong recordings that improves

species classification with the benefit of easier implementation since no manual handling

of recordings is required. Afterward, we especially focused on the dissimilarity-based MIC.

Our results showed that appropriate dissimilarity measures are those which capture most

of the overall differences between bags, such as the modified Hausdorff distance and the

mean-minimum distance and confirmed the benefit from adapting the applied dissimilarity

measure as well as the potential further enhancement of the classification performance by

building dissimilarity spaces and increasing training set sizes. Furthermore, we proposed a

method for improving the 1-NN classification on multiple instance datasets, which uses a

supervised projection of the original feature space and a novel relative minimum distance

between test bags and prototype bags.

In the second part, a novel convolutive DL method for learning a representative dictionary

from a collection of multi-labeled audio dataset is proposed. About this topic, we proposed

a dictionary learning approach for randomly projected spectrograms. This approach com-

bines the power of estimating time-frequency patterns given by the convolutive model and
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the computational complexity reduction associated with the random projection approach.

Additionally, we address the boundary effect arising in a collection of discontinuous spectro-

grams. Furthermore, we introduce a step-size selection criterion to improve convergence rate

when updating the activations and the dictionary words. The DL method was successfully

applied to spectrogram denoising and species classification. Finally, we presented an efficient

online version of the DL method –based on stochastic gradient descent– that outperforms

other state-of-the-art batch and online methods, in both, computational cost and quality of

the discovered patterns.

8.2. Recommendations

Environmental acoustic signals are not acquired under controlled conditions. Therefore, au-

tomated recognition systems must have robust methods against noise, variations in intensity

and not demand high computational requirements —taking into account the amount of data

required to inspect. Moreover, given the random and non-stationary nature of bioacoustic

signals (temporal and spatial variations of its parameters), these systems should allow the

eventual inclusion of corrections suggested by experts.

In order to extend the studied multi-instance approaches to another applications or datasets,

the instance-extraction stage has to be implemented taking into account the nature of the

data and any prior knowledge that is available.

We recommend using dissimilarity-based MIC —with the proposed improvements— in bioa-

coustic recognition tasks (and in general for PR) because it reduces the required information

for training and exhibits a good performance. Also, we suggest using the MildML projected

space to classify instances and reduce dimensionality. Besides, we encourage to apply DL

for unsupervised analysis of raw data, feature extraction, classification, and denoising tasks.

8.3. Future work

As future work, with respect to MIL, we consider that more studies must be undertaken

on improving the feature extraction stage. Besides, the use of classifiers demanding less

input training examples remains an important issue since, in practice, collecting labeled

data is very costly. Regarding DL, supervised and semi-supervised analyses could improve

the information provided by the learned dictionary. Moreover, further research in MIL and

DL can be carried out by taking into account multi-labeled or unlabeled data.



Bibliography

[1] Acevedo, Miguel A.; Corrada-Bravo, Carlos J.; Corrada-Bravo, Héctor;
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Neighbor Performance. In: Fränti, Pasi (Hrsg.); Brown, Gavin (Hrsg.); Loog,

Marco (Hrsg.); Escolano, Francisco (Hrsg.); Pelillo, Marcello (Hrsg.): Structural,

Syntactic, and Statistical Pattern Recognition Bd. 8621. Springer Berlin Heidelberg,

2014, S. 183–192
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