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ABSTRACT

Multi-Layer Approach to Motion Planning

in Obstacle Rich Environment. (May 2008)

Sung Hyun Kim, B.S., University of Illinois at Urbana-Champaign

Chair of Advisory Committee: Dr. Raktim Bhattacharya

A widespread use of robotic technology in civilian and military applications has

generated a need for advanced motion planning algorithms that are real-time imple-

mentable. These algorithms are required to navigate autonomous vehicles through

obstacle-rich environments. This research has led to the development of the multi-

layer trajectory generation approach. It is built on the principle of separation of

concerns, which partitions a given problem into multiple independent layers, and ad-

dresses complexity that is inherent at each level. We partition the motion planning

algorithm into a roadmap layer and an optimal control layer. At the roadmap layer,

elements of computational geometry are used to process the obstacle rich environment

and generate feasible sets. These are used by the optimal control layer to generate

trajectories while satisfying dynamics of the vehicle. The roadmap layer ignores the

dynamics of the system, and the optimal control layer ignores the complexity of the

environment, thus achieving a separation of concern. This decomposition enables

computationally tractable methods to be developed for addressing motion planning

in complex environments. The approach is applied in known and unknown environ-

ments. The methodology developed in this thesis has been successfully applied to a 6

DOF planar robotic testbed. Simulation results suggest that the planner can generate

trajectories that navigate through obstacles while satisfying dynamical constraints.
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CHAPTER I

INTRODUCTION

A. Motivation

Autonomous robot technology is being rapidly applied to many applications for daily

civilian and military life. Cleaning robots, such as Roomba, clean the house au-

tonomously with a touch of a button. Autonomous capabilities have also been ap-

plied to DARPA Grand Challenge competition where vehicles must navigate through

a dense urban environment while obeying traffic laws. It would demonstrate the

leading edge in sensor technology, algorithms, and computational devices to gather

information, process them with accuracy and speed, create trajectories, and actu-

ate the vehicle control system. The success of DARPA Grand Challenge is expected

to lead the industry to the next step where the automobiles become completely au-

tonomous.

Unmanned vehicles such as Unmanned Aerial Vehicle (UAV) and Unmanned

Ground Vehicle (UGV) take a significant role in modern battle field environment

to provide intelligence, targeting, and execution capabilities. Predator developed by

General Atomics is a good example of versatile UAVs. It can perform surveillance

in the region of interest for many hours and collect battle field intelligence using an

array of sensors such TV camera and IR sensor. What makes the Predator such a

valuable option for the military commanders is the absence of pilot and subsequent

life support and cockpit systems. This significantly improves the cost effectiveness of

the vehicle. Autonomous capabilities can also reduce the workload of the operators

- as well as the number of operators. In addition, eliminating human in the loop

This thesis follows the style of IEEE Transactions on Neural Networks.
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reduces the risk of errors. Wide applications of unmanned vehicles since the mid

1990s have generated a trend of development and procurement of unmanned vehicles

from all over the world.

This thesis concentrates on a problem of trajectory generation. In the presence of

obstacles, a motion planner is required to devise a scheme that incorporate the motion

constraints, tracks the waypoints, and obstacle avoidance. For a UGV scenario, ob-

stacles can be steep hills, buildings, another vehicle, or threats. For a UAV, obstacles

can be no-fly zones, Surface-to-Air Missile or Anti-Aircraft Artillery infested terri-

tories, or populated areas. All robotic vehicles possess their own unique dynamics.

A trajectory incompatible with the vehicle dynamics will lead to poor performance.

Vehicles also have constraints in fuel capacity, actuator effort, and mission time.

Thus, the objectives of this thesis is to generate trajectories in real-time that will

satisfy the following requirements:

1) avoid obstacles

3) dynamically feasible

3) optimal a performance index (control effort, distance, time, etc)

B. Background

Various motion planning algorithms with obstacle avoidance have been developed in

the computer science community. Motion planning in polytopic obstacle environment

has led to the development of Configuration space (C-space). It is the starting point of

most of motion planning schemes because they usually occur in 2D or 3D environment

where the obstacles can be expressed as polytopes. The idea behind the C-space is

to ”grow” obstacles by constructing a map of obstacles which takes into account of

various vehicle configurations [1, 2]. This ensures that the vehicle at any configuration
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never contacts the obstacles. C-space classifies the topology into the obstacle region

Cobs and the available region Cfree for motion planning. In a sense, configuration

defines the feasible state space for the trajectories.

A generalized term for a topological graph to solve a motion planning problem is

a roadmap. There are two major subdivisions of roadmap planning depending on the

methodology. One is the probabilistic roadmap method (PRM) based on sampling

approach through the use of a rapidly exploring dense trees (RDT). RDT starts from

a vertex in the map and expands the tree through sampled nodes. First, a set of

vertices that include start, goal, and sampled points in Cfree is constructed. RDT

initiates from the starting vertex. Then, it connects with the closest neighboring

vertex. The same process is recursively executed to build a tree. Every connection

is called a path which must be collision-free of all obstacles. PRM approaches the

sampling procedure in a probabilistic manner and it contains a bias towards the goal

point, reducing the number of sampled points. In a rapidly-exploring random tree

(RRT), dynamics of the vehicle can be embedded into the path generation step of the

RDT. This allows RRT to be a very potent method for a roadmap generation.

In a deterministic framework, visibility graphs, voronoi diagram [3], cell decom-

position [4] are well known algorithms that generate roadmaps. Some do not classify

cell decomposition as a roadmap method, but it essentially builds up to a roadmap.

These approaches focus on using geometric information from the existing features in

the environment and use techniques to extract trajectories. For instance, equidistant

edges are calculated in a Voronoi diagram by calculating and comparing distance

functions between vertices or edges of Cobs. Deterministic methods produce segments

over the entire map. Therefore, only the necessary segments will make into the query

in the graph search step.

Graph search algorithm evaluates the cost (measures can differ) and builds a
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sequence of segments that spans from the initial point to the goal through vertices

qi. A deterministic roadmap typically lacks smooth transitions between segments, so

that it requires a post-processing for dynamically compatible trajectories.

Graph search is not only used to assist building roadmaps, but it has also evolved

significantly to make an impact on the motion planning community. The backbone of

such development is the A* algorithm [5]. It utilizes heuristics and searching logics to

execute start to goal shortest-path calculation, allowing for efficient fast planning and

replanning of trajectories. D* [6] contains improvements to A* to enabling vehicles

to sense and create trajectories in a partially known or unknown environment. D*

is widely used in navigation of autonomous vehicles such as DARPA Crusher and

Spinner to carry payload in a real world off and on-road environment where known

and static environment is scarce. Therefore, D* opened up a door for autonomous

navigation capabilities, applicable for indoor and outdoor platforms. Despite the

speed and efficiency of the algorithm, the paths need to go through a refining process

to make them dynamically feasible similar to roadmap methods.

The optimal control problem (OCP) is used to create optimal trajectories that

minimizes a certain performance criteria. In a basic environment where the vehicle

can traverse freely, an OCP can be formulated and solved to generate a trajectory

that satisfies boundary, dynamic, and control constraints of the vehicle. As station-

ary obstacles are added to the environment, the number of trajectory constraints

multiplies, increasing the complexity of the constraints. Recent research on numeri-

cal methods for trajectory optimization have generated tremendous improvement in

stability and convergence of the numerical algorithms [7]. However, brute force OCP

results in high computation time and ill-conditioned formulations.

To eliminate this shortcoming, recent papers propose motion planning with tra-

jectory primitives [8]. These primitives are pre-computed straight and minimum
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radius turn profiles which integrates the full vehicle dynamics. Finding a sequence

of primitives to generate a path completes the motion planning. Obstacles can be

avoided by checking for collisions. However, in a cluttered environment, extracting a

correct sequence might not be feasible and the path can become excessively lengthy

by detouring. [9].

Flores [10] presents the separation of concern for obstacle avoidance and trajec-

tories generation where different stages of work are specialized by different planners.

Likewise, this thesis suggests an approach that divides the motion planning prob-

lem into two major constraints: obstacle avoidance and vehicle dynamics. First,

collision-free regions and possible paths are found from the obstacle avoidance stage.

In addition, B-spline characterization [11] of the trajectory along with differential flat-

ness reduces OCP constraints further. This enhancement can improve convergence

and computational efficiency on trajectory generation level.

We call this approach a multi-layer approach. The division of stages in motion

planning lets each part to concentrate and solve respective objectives in the most

efficient manner possible. As a result, the trajectory generation becomes more com-

putationally efficient and real-time implementable.

C. Definition of Problems

Basic motion planning problem consists of the world in G = <2 or G = <3. The

robot must maneuver from the designated starting point qinit to the end point qgoal.

Let O = {O1, O2, . . . , On} ⊂ <2 be a set of convex polygons acting as obstacles. De-

pending on the scenario, obstacles are dynamic or static. The goal of this thesis is

to find and implement algorithms that concentrate on localized layers. Synergizing

the advantages of algorithms for different layers will provide the maximum compu-
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tational efficiency to achieve real-time performance of these autonomous capabilities.

The layers and their objectives are described in fig. 1. High level planner executes

geometric and graph search algorithms commonly used for motion planning without

dynamics model. It is done in discrete domain, creating discrete trajectories in the

map space. Mid level planner receives the waypoints and region of interest for tra-

jectories to pass. Based on the given information, feasible sets are created to ease

the generation of dynamically feasible trajectories. In addition, optimal control is ap-

plied using differential flatness and B-spline properties in a receding horizon control

manner. In the last level, a robot is put through the test and a feedback control is

performed to track the given trajectory and reach the goal.

D. Overview

The thesis is made up of several chapters that explain the motion planning procedure:

Chapter I: High level planner implements geometric algorithm to simplify the map

and the graph algorithms provide discrete trajectories.

Chapter II: Mid level planner create a friendly environment for dynamically feasible

trajectory generation through feasible sets.

Chapter III: Low level planner describes the experimental setup and vehicles used for

the simulation and implementation of the algorithm.

Chapter IV: Simulation results are presented that include motion planning in both

known and unknown environment.

Chapter V: A brief conclusion provides an overview and the performance of the multi-

layer approach for motion planning.
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Fig. 1. Multi-layer concept: High and mid level planner create trajectories using spe-

cialized tools and the low level controls the robot with localization system
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CHAPTER II

HIGH LEVEL PLANNING

When faced with a motion planning problem, the first challenge is to decide which

direction the robot must move. Finding the most logical and effective sequence of

points defines the objective of a high level planner. It designs paths by utilizing

graph theories to help making the best choice of maneuver for the robot in a discrete

domain. This section discusses the backbone of high level motion planning framework

and reviews the existing algorithms and their applications in known and unknown

environment. Appropriate implementations will be described to demonstrate the

feasibility.

A. Configuration Space

Configuration space classifies map space. It uses Minkowski’s sum to grow dimensions

of the polygonal obstacle by adding possible orientations of the vehicle. Let A ⊂ G be

a rigid body robot. Let r = (x, y, θ) be the configuration which represents the position

and orientation. Many scenarios of A(r) next to the obstacles are scrutinized by [12].

Considering the expansion of obstacles according to the addition of A(r), Cobs is

defined as

Cobs = {r ∈ C | A(r) ∩ O 6= ∅}

where O represents obstacles as mentioned in pg. 6. The rest of the space is obstacle

free, hence Cfree = G − Cobs obtained by set operations [3]. This provides the region

where the vehicle can maneuver without any contact with obstacles.
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Fig. 2. Configuration space and the visibility edges

B. Known Environment

A roadmap can be constructed in a known environment (it is possible in unknown

environment, but it needs to be updated to account for new realization of the environ-

ment). Among the roadmap algorithms, visibility graph and decomposition methods

require a graph search algorithm to support paths generation, whereas a generalized

voronoi diagram offers a different way of obtaining paths.

1. Visibility Graph

A visibility graph is a non-directed graph made up of vertices of Cobs, qinit, qgoal, edges

of obstacles Eo, and general edges Ef that lie entirely in Cfree [4]. The configuration

space and edges are shown in fig. 2. With these nodes and edges, a graph search

algorithm finds a set of sequential edges that connect qinit to qgoal. After calculating
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the cost of traversal, a combination of edges that offer the least cost is designated as

the optimal path in motion planning.

2. Decomposition

Cfree in configuration space is normally a large non-convex polytope. The geomet-

ric complexity limits the extensive use of algorithms in the workspace since many

geometric operations are based on convex hull assumption. Therefore, a convex de-

composition prior to the roadmap generation can ease the searching process. Any

n-dimensional decomposition of Cfree consists of simplicial complexes [3]. Typical

methods such as vertical, cylindrical decompositions, and triangulations result in

simplices T in <2. While visibility graph allowed the use of Eo as a path, decompo-

sition methods use centroids of polygons and midpoint of edges as nodes (shown in

red dots), avoiding contact with Cobs at all as found in fig. 3(a).

3. Generalized Voronoi Diagram

We define P = {p1, p2, · · · , pn} ∈ <2 as voronoi sites. A voronoi region is formed by

the following expression for all x in Euclidean space [13]:

V (pi) = {x : |pi − x| ≤ |pj − x|,∀j 6= i}

Therefore, applications such as calculating cellular phone tower placement and gro-

cery store location utilize voronoi diagrams. A generalized voronoi diagram (GVD)

applies the same principle of the voronoi diagram, but it is extended to calculating

maximum distances among vertices and line segments of polygonal obstacles. Three

combinations of geometric features (vertex to vertex, edge to edge, vertex to edge)

produce voronoi edges and arcs representative of equidistant points between obsta-

cles. Equidistant segments for an edge to edge and vertex to vertex features are lines
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(a) Vertical Decomposition (b) GVD (taken from [21])

Fig. 3. Variety of high level implementable algorithms

whereas a vertex to edge relationship results in a parabolic voronoi arc. Essentially,

GVD creates medial axis paths in Cfree as shown in fig. 3(b). A vehicle tracking

GVD arcs is guaranteed to maintain maximum clearance from any nearby obstacles.

4. A* Algorithm

Whether the environment consists of a finite number of grids or a set of edges and

vertices, the robot must decide on its traversal based on the known information.

A*(pronounced A-star) is a well known algorithm for finding the shortest path be-

tween two nodes given traversable nodes or edges. The feature that differentiates it

from other graph search algorithms such as best-first search and Dijkstra’s algorithm

[14] is the use of heuristics. It provides a distance estimate to the goal for the algo-

rithm to direct the search better. A* also takes account of the cost g(s) from the qinit

to the current node s. The heuristic estimate h(s) gives the cost from the current

node to the qgoal. The measure of heuristics can differ from manhattan, diagonal, or

Euclidean distance. Then, nodes with the least combined cost f(s) = g(s) + h(s) are

selected to create a path with the minimum Σf(s). Therefore, we can see that A*
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algorithm neither searches for the goal comprehensively nor randomly. It makes an

educated guess of the feasible paths. Readers are referred to the reference [5] for the

details of the algorithm. It is proven that A* is complete and optimal.

5. Implementation

In this thesis, the modeled environment is very cluttered. Therefore, it is desired

that decompositions such as vertical, cylindrical, etc, which generate a large set of

polygons, are avoided to conserve the computation time. In this case, triangulation

can offer relatively small number of grids, hence lower computation time for the

planner.

Fig. 4. Triangulation of Cfree

Delaunay triangulation is the dual of voronoi diagram. Vertices of obstacles are

voronoi sites pi ∈ P and connecting them would result in Delaunay triangles. It

provides m triangular meshes of different sizes G =
⋃m

i=1 Ti where Ti represents each
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Fig. 5. A* algorithm in the map: The algorithm connects red dots, which are the

centroids of decomposed triangles, for shortest path

mesh as shown in fig. 4. However, in highly non-convex environment, Delaunay

triangulation cannot take into account of the restriction that edges of the triangle

must not intrude the obstacles. Thus, a pruning procedure takes place to capture the

polygons Pi which is the result of Pi = Ti−Cobs. For each Pi, corresponding centroids

Pci are found.

A* algorithm tries to find a shortest path with the nodes shown as red dots in fig.

5. A set of centroids Pc are given as the nodes and a constraint is applied to the A*

planner so that no path segment can intrude obstacles. Therefore, it can be proven

that connections between Pc create a path Ss and it is the shortest path. Polygons

in contact with the shortest path are designated as K and these are easily discovered.

For the definition,

K = {P | P ∩ Ss 6= ∅}.



14

Fig. 6. Shortest path as a result of A* algorithm

Fig. 7. A* algorithm computation time: Increasing number of nodes cause exponential

computation time increase
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Not only the polygonal grids are found, but this also lays the foundation of

feasible sets which will be discussed in the next section. Note that the shortest

path from qinit to qgoal in fig. 6 is not the globally optimal or shortest path. This

originates from the sparse distribution of nodes provided to the search tree. At this

point, we need to consider which factor is more important to this research: add more

nodes and obtain shorter paths or decrease the computation time. Fig. 7 represents

the relationship between computation time and number of nodes. The exponential

increase of computation time strongly suggests that minimizing the number of nodes

must be the priority to run the algorithm close to real time. Moreover, as explained

earlier, the purpose of A* is to find triangles that lie on the path than the actual

shortest path on the map. Therefore, the contribution of A* to the global optimality

is minimal and in turn the computation time for less A* run time can be allocated

to the mid level planner.

This combinatorial approach deviates from the traditional approaches explained

in prominent motion planning literature. Two step procedure seems to require more

computational effort compared to other methods. However, it can be observed that

the effect of this drawback will diminish when creating dynamically feasible trajecto-

ries in the next section.

C. Dynamic or Unknown Environment

1. Incremental Search Algorithm

We will review prominent methods applied in real world vehicles. Please refer to

reference [15]. Improvement has been made to A* to approach the motion planning

in partially known or unknown environment. The motivation was that many robotic

vehicles do attain only limited amount of information on terrain and obstacles. The
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vehicle must utilize its on-board sensors and fuse the previous information to navigate

relying on those. D* [6] was originally developed for such purpose. It finds the

discrepancy between the given map and the real map or it constructs a map while

traversing. It is often referred as backward A* where the search tree is constructed

from the goal state to minimize the number of nodes whose cost change.

Another modification to the A* algorithm brought the Lifelong Planning A*

algorithm [16], which is algorithmically very similar to A*, having better theoretical

ground and simpler implementation. One particular departure or advance of LPA*

from A* is the rhs value. It is one step lookahead value of the g(s) value from A*.

It is defined as

rhs(s) = {
0 if s = sgoal

mins′∈Succ(s) (g(s′) + c(s, s′)) otherwise
,

where s is a vertex. Measures such as g(s), h(s), and f(s) are preserved in LPA*. If

g value equals the rhs value, the vertex is called locally consistent. The algorithm

maintains a priority queue which contains all the ”inconsistent” vertices. The lowest

”key” retains the highest priority in the queue. A key is defined as

k(s) = [k1(s) ; k2(s)]

where k1(s) = min(g(s), rhs(s)) + h(s, sgoal) and k2(s) = min(g(s), rhs(s)). Ties are

broken arbitrarily. After all vertices become consistent, LPA* can trace back from the

goal to the starting point with the least cost, providing the shortest (optimal) path.

With LPA*, local changes of the map does not affect the entire vertices or cells. Only

the local vertices whose costs need to be updated according to the change undergo

recalculation and replanning. This makes LPA* very efficient if the computer allows

to maintain a large set of data for the entire map. This application can be easily seen
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on the applet [17].

While LPA* starts the search from the qinit, D* Lite initiates the search from

qgoal. This characteristic reduces the changes in the priority queue. It also accounts

for the vehicle movement. This means that D* Lite can encounter a dead end if the

detection horizon cannot cover the dead end in the previous iteration.

Further introduction of Field D* [18] states the issue of suboptimal paths created

by limited traversability between the nodes with preset angles in π/4 increments. It

suggests an interpolation based solution to obtain a globally optimal path. Theta*

cuts the computational time even more to create algorithms to be more real-time

implementable [19].

2. Implementation

LPA* is implemented for navigation in an unknown environment. The C code was

provided by Dr. Sven Koenig from University of Southern California. In addition

to the code, a new routine was written to the maze generation part to include user

defined maps. A special output was created to process the results from the code.

However, the basic concept and its implementation follows the LPA* algorithm.

A choice of 8-connected graph or 4-connected graph is given to the user. The

cost function is governed by the Euclidean distance. As the vehicle proceeds to the

goal, sensors detect new obstacles and LPA* replans the path as shown in figs. 8 and

9. Sensors has a certain range (sensor horizon) ahead of the robot position, however,

its horizon cannot provide the coverage for the whole area. For this thesis, we will

assume that the sensor horizon is 10 grids in four directions, making the detection area

a square. This finite sensor horizon causes multiple replanning episodes to occur where

the trajectory is planned within the detected area and the robot moves according to

the trajectory. At the final robot location in each replanning, the sensor builds a new
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map and replans the trajectory for the next horizon. The planning horizon eventually

covers the goal and the final planning can be done to reach the goal. Note that the

detected region is split into half to only select the region the vehicle is headed towards.

This region is called the region of interest (ROI) as shown in fig. 9.

High level algorithms in known and unknown environment are able to provide

feasible paths. Although not always dynamically feasible, the information can be

inherited to the mid level planner which efficiently extracts final trajectories.
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Fig. 8. Four connected grids: Original obstacles are shown in yellow. Green grids

show the projected path calculated by LPA*. We can see that the green cells

pass through obstacles beyond the sensor horizon. Red and orange areas show

obstacle region recognized by the sensors.
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Fig. 9. Eight connected grids: Light green region is determined by the planner by

evaluating where the projected path is headed to. Purple region represents

unnecessary region in the sensor horizon, whose information is discarded during

trajectory calculation. Paths from 8 connected grid tend to hug the obstacles

due to the lowest cost.
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CHAPTER III

MID LEVEL PLANNING

Although the high level planner provides a sequence of discrete points, no consider-

ation for the dynamics of the vehicle is given at this stage. The purpose of the mid

level planner is to build trajectories that follow prescribed waypoints while avoiding

obstacles and satisfying the dynamic and actuator constraints of the vehicle.

First, feasible set generation is discussed. Details of the implementation is de-

scribed in known environment, then the changes of procedure for the unknown envi-

ronment is discussed. This is followed by applications of B-spline, OCP formulation,

and Receding Horizon Control (RHC) are explained to generate paths.

A. Feasible Sets

Tracking trajectories made up of piecewise linear segments poses a challenge to the

continuous vehicle motion; discontinuous velocity and acceleration vectors at the

segment junctions are difficult to track. Although replacing the roadmap with an

optimal control problem is a valid option, it is an expensive and computationally

arduous process due to constraints that exponentially grow for an increasing number

of obstacles and dimension of state space. For some environment where sharp turns

are necessary due to narrow passes, OCP would suffer computationally to generate

feasible trajectories because the constraints on the control with the states are very

restrictive. Therefore, it is not suitable for a complex environment.

We propose the concept of feasible set. It can be defined as the following:

Given polygon K on the shortest path, a feasible trajectory τ must satisfy the rela-

tionship τ ⊂ FS where FS is a finite union of local K. Recall that polygon K is a

subset of Cfree from the previous chapter.
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The feasible set algorithm is a recursive algorithm as explained in algorithm A.

The algorithm starts with the parent polygon Kp set as the one that include the start

point qinit. From this point, a while loop contains the rest of the steps until there

emerges a FS that includes qgoal. A child Kc can be found by examining neighboring

polygons Kn. Kc is the polygon that intersect shortest path Ss. Fig. 10 shows how

Kc is selected among the candidates Kn and the incremental construction of feasible

sets. The selection process for Kc ensures that all FS follow the Ss while neglecting

irrelevant polygons present in the Cfree. Then, the union of parent and child polygon

is done in step 2. If this results in a convex polygon, the union is designated as

the parent polygon (step 4). Otherwise, only Kp becomes a FS (step 6) and its

mathcalKc inherits the title of parent polygon.

This operation incrementally builds feasible sets along the shortest path. Two

properties of FS benefit the motion planning. One is its local convexity that guar-

antees trajectories to be in the feasible set if characterized by B-spline, due to the

property that B-spline trajectories lie in the convex hull of the control points. The

other property is that a FS usually include more than one polygon K. Even though

a triangle is considered convex, generating trajectories in every triangle is compu-

tationally challenging. By making the largest convex polygon in the vicinity of the

vehicle, the number of trajectory generation inside FS decrease significantly. Fig. 11

indicates that there are 11 triangles from the start to the goal. With the application

of FS, there are only 4 convex polygons where trajectories are generated. Assuming

the CPU time for a trajectory generation scheme is constant, this can reduce the

computation time by more than 50%.
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Algorithm A. Feasible Set Generation

1. while FS ∩ qgoal = ∅

2. Kc = {K : K ∩ Kp 6= ∅ , K ∩ Ss 6= ∅}

3. check for convexity of (Kp ∪ Kc)

4. if true,

5. Kp = Kp ∪ Kc

6. else

7. FS = Kp

8. Kp = Kc

9. end

10. end

1. Known Environment

In known environment, one time execution of A* algorithm provides all the necessary

polygons to execute feasible set generation. Thus, feasible sets are generated all at

once. Concerns arise because of sharp turns created by the dimension of the FS. If

there is not sufficient lead space for the robot to turn, a very tight turn might not be

possible and it can lead to infeasible controls. Appropriate measures are devised to

add additional neighboring polygons in the direction of robot movement to give more

space for a turn. A method of imposing a velocity constraint on the transition point

from one FS to the next one can also direct the robot’s heading to the direction of

the next transition point, minimizing the effort to reach the next transition point.
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Fig. 10. Capturing FS: As explained in Algorithm A, Kp ∪ Kc is evaluated for the

convexity and the subsequent decision whether to designate the union as a

FS or to let the expansion continue is made
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Fig. 11. Feasible Sets in known environment: A* algorithm is executed once (redline)

and each subfigure is generated everytime a new FS (green) is generated
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Fig. 12. Feasible Sets in unknown environment: LPA* generates FS (cyan) at every

new detection of area
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Algorithm B. Known environment trajectory generation

1. Obtain the map with obstacle information

2. Create C-space : Cfree and Cobs

3. Triangulate Cfree and prune the triangles : P

4. A* Execution : shortest path Ss

5. Find polygons of interest : polygon K

6. Feasible Set Generation : FS

7. Trajectory Generation using B-splines and optimal control

2. Unknown Environment

Motion planning in unknown environment requires sensing and mapping of the sur-

roundings as the vehicle maneuvers, therefore feasible sets are generated every time

new information is gathered by the vehicle. The mechanism of feasible sets generation

remains identical for this case, with a few differences. First, the use of A* algorithm

is not required. LPA* provides the projected shortest path. The region inside the

sensor horizon is triangulated region of interest and the polygons K- relevant poly-

gons on the projected path of the robot - are found. Then, the feasible set generator

(explained in Algorithm A) takes K and creates FS. FS is generated multiple times

as it is a subset of the detected area that move until the goal is reached due to the

nature of finite detection horizon as presented in fig. 12.

In summary, the feasible set generation code that the mid level planner uses is

the same for any case. Algorithm B. represents the skeleton of the high and mid level

execution for the known environment. A slight modification needs to be made for the
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motion planning in unknown environment. All the steps - with the replacement of

step 4 with a simple search for FS candidates - must repeat several times until the

goal is within the range of the sensor.

Next section provides the description of the B-spline characterization of the tra-

jectory and its application to motion planning.

B. B-spline Trajectory Characterization

All previous steps involved obtaining Cfree and useful subdivisions to provide feasible

sets. The final step to motion planning is the trajectory generation using B-spline

curves [15]. Following is the definition of a B-spline:

S(t) =
n∑

i=1

ΦiBi,r(t) ,

where Φi are the n control points and Bi,r denotes B-spline basis functions with a

degree r. t represents a non-decreasing knot sequence t = [t1, . . . , tl]. The number of

control points is determined by the formula

n = Ni(r − s) + s

where s ≤ r, Ni is the number of piecewise polynomials in the curve, and s is the

smoothness condition which indicates the curve will retain Cs−1 continuity. The basis

function is calculated using Cox-de Boor recursion formula

Bi,0(t) := {
1 if ti ≤ t ≤ ti+1

0 otherwise
,

Bi,r(t) :=
t− ti
ti+r − ti

Bi,r−1(t) +
ti+n+1 − t

ti+n+1 − ti+1

Bj+1,r−1(t).
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In two dimensional space, we define x(t) and y(t)

x(t) =
n∑

i=1

αiBi,r(t) ,

y(t) =
n∑

i=1

βiBi,r(t) ,

where α and β denote control points in x and y coordinates. A unique property of

B-spline we can exploit is that a B-spline curve remains inside the convex hull of its

control points. We can translate this relationship mathematically as,

AcS(t) ≤ bc

where Ac is a m by n matrix. The rows of Ac reflect the number of edges convex hull

of control points creates and the columns n represents the dimensionality of space. In

<2, Ac has two columns. S(t) is a set of (x(t), y(t)) that satisfy the constraint. Our

goal to keep trajectory S(t) inside the FS can be achieved by an additional constraint

which is very similar to the previous equation

Afρ ≤ bf

where subscript f denotes the relation with FS and ρ represents control points (α, β).

For the optimization process, we parameterized α and β. Fig. 13 shows a graphical

representation of the concept.

A continuous trajectory S(t) can be characterized to satisfy the vehicle dynam-

ics. This enables us to simplify hard trajectory constraints on the states; address

only FS regardless of obstacles. Other properties such as local support - change

in one control point does not alter the whole curve - ease shaping the trajectory.

These advantages bring path planning easier than conventional OCP with brute force

constraints enforcement.
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Fig. 13. Use of B-splines: Trajectory remains in the convex hull of control points which

also reside inside feasible sets

C. Trajectory Generation

The dynamics and cost are not specified in this section and the detailed formulations

will be discussed along with the introduction of testbed. We follow the standard

formulation for the OCP:

Minimize

J = φ0(x0, u0, t0) +
∫ tf

t0
L(x(t), u(t), t)dt+ φf (xf , uf , tf ) ,

subject to dynamics

ẋ = f(x(t), u(t)) .

The initial, final, and trajectory constraints are

lb0 ≤ ψ0(x0, y0, t0) ≤ ub0 ,

lbf ≤ ψf (xf , yf , tf ) ≤ ubf ,

lb(t) ≤ ψt(u(t)) ≤ ub(t) .
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Feasible sets are enforced as trajectory constraints. Therefore, it is expressed as

Aiρ ≤ bi

As the trajectory migrates through the sequence of N feasible sets, Ai and bi also

change, 

A1 0 . . . 0

0 A2 . . . 0

0 0
. . . 0

0 0 . . . AN .





ρ1

ρ2

...

ρN


=



b1

b2
...

bN


,

where ρi = [αi βi]
T . After OCP is formulated, we parameterize states x and y into

B-spline curves. Now OCP has become an optimization problem for coefficients αi

and βi at every time step.

z =



α1

. . .

αNc

β1

. . .

βNc


Nc is the total number of collocation points where all constraints are enforced and

the cost function is evaluated. Pseudo-spectral and other collocation methods can

offer better effectiveness for calculations as presented in [8, 16].

The OCP formulation was then transcribed into a nonlinear programming (NLP)

problem. To implement the SNOPT solver, the formulation was altered as the fol-

lowing:

min F (z)
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subject to constraints:

LB ≤


z

Az

C(z)


≤ UB

The resulting α and β from the NLP generate state and control output.

D. Receding Horizon Control

Receding horizon control (RHC) repeatedly solves for controls for a finite horizon T .

At time t, a set of control inputs U1 = [ut . . . utf ] are produced. Instead of executing

the control U1 for its whole length, RHC recalculates the controls at the next time step

t+ 1 to obtain new controls. Executing and creating controls this way minimizes the

error propagation throughout the trajectory. Fig. 14 shows a graphical representation

of the approach. In this thesis, OCPs are solved in receding horizon manner.

Ef is defined as a shared edge between two consecutive feasible sets: FSi and

FSi+1. Therefore, Ef = FSi ∩ FSi+1. We could select the point where the shortest

path Ss made a contact with Ef to be the waypoint WPi as presented in fig. 15.

In unknown environment application, Ss is replaced by a line that connects the

centroids of FSi and FSi+1. If the FSi is the first one in the detected region, the

centroid is replaced by the starting point. If the region of interest only contains one

FS, such method is not achievable. In this case, a point near the end of the FS

can be chosen as a waypoint through the projected path. By taking 3 grids closer to

the start grid, the waypoint will be located inward towards the first waypoint. This

change of scheme is motivated because high level planner has a tendency to create

projected path next to the obstacles, making the trajectory generation difficult for

the OCP. By taking this step, the waypoints are generated near the center of the FS,
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Fig. 14. Use of RHC framework to track a reference trajectory
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Fig. 15. Boundary conditions during the transition between FS in known environment

which generally has ample separation from the wall. This prevents trajectories being

placed too close to the obstacles. From fig. 16, it can be seen that the last waypoint

for the region of interest is the centroid of the last FS in order.

At current position (xc, yc), the vehicle would be inside of a feasible set FSi

heading forWPi. When the vehicle or trajectory reachedWPi, a new waypointWPi+1

would be immediately selected to follow in the feasible set FSi+1. We formulated a

fixed final time OCP for each horizon length T :

Minimize

J = (x(tf )− xf )
2 + (y(tf )− yf )

2.
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Fig. 16. Boundary conditions when generating trajectories in new FS

This formulation reflects that the cost is directly related with the proximity of the

vehicle’s position at final time tf to the specified target on the convex polygon. There-

fore, if xf is not reachable, it induces a high cost.

The initial condition of one trajectory segment are

X(t0)
k = (xc, yc)

k Ẋ(t0)
k = (ẋc, ẏc)

k ,

The subscript c denotes current and the superscript k indicates the iteration number.

To maintain trajectory smoothness, initial conditions for position and velocity were

defined. The final position Xf was specified as well, whereas the velocity Ẋ(tf )
k

remained free. In the next iteration, all the final position and velocity are inherited
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to the k + 1th iteration as the initial condition.

X(t0)
k+1 = X(tf )

k Ẋ(t0)
k+1 = Ẋ(tf )

k .

The only exceptions to this inheritance occur at qinit and qgoal.

Trajectories were planned in the interval [tc, tc + T ], where T is the planning

horizon. Within a FS, if the trajectory did not reach the final position before T

has passed, more iterations were executed with the same destination waypoint. Yet,

the initial conditions continuously changed for new iterations to ensure a smooth

trajectory.

OPTRAGEN [17] was used to obtain optimal trajectories for each planning hori-

zon. OPTRAGEN has a built-in transcription method to NLP, so that cost and

constraints, types of collocation and trajectory representation can be specified with-

out directly coding the NLP solver.
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CHAPTER IV

LOW LEVEL PLANNING

For the purpose of verification and validation of the motion planning algorithms, an

experimental setup has been built. This includes a robot, vision system mounted on

top of the experiment station, and a computer that collects all available information,

calculates trajectories, and commands the robot.

A. System Integration

There are three components that govern the low level robot control. Fig. 17 shows

a vision system with a camera that provides images and image processing software

which processes the image in SIMULINK. Acquired information through the vision

system is fed into the trajectory generation package software in MATLAB to create

the map of the environment and execute motion planning. Depending on the condi-

tion of the environment - known or unknown - the software also uses C code. After

all trajectories and controls are generated, trajectory package sends commands to the

robot control software written in Java to give appropriate commands. Through wire-

less connections, the robot receives command inputs, then executes them. Camera

again detects the robot and the feedback loop is complete to control the robot. The

environment for executing different programming languages is built on MATLAB due

to its compatibility with Java and ease of use.

B. Vehicle System

The vehicle used for the system is Telepresence Robot Kit (TeRK) developed by the

Carnegie Mellon Robotics Institute and Charmed Labs. The heart of the system
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Fig. 17. Systems Overview
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is the Qwerk embedded computer. It features a 200MHz ARM9 RISC processor

with 32 MB of SDRAM and 8 MB flash memory. It is equipped with 4 closed-loop

motor controllers, 16 RC-servo controllers, 16 programmable digital I/Os along with

analog inputs, USB ports, and ethernet port. Two independent motors drive the

robot and they are individually controlled, able to make turns of any radius. Its

wireless networking capability allows the robot to move without tether or attachment

to any object while receiving commands and transmitting information. The Logitech

Quickcam STX mounted on the robot can provide real-time video stream to the

computer.

C. Vision System

The primary purpose of an overhead vision equipment is to detect the obstacles and

moving robot in the plain field. To conduct motion planning in a static and known

environment, obstacles must be detected once to provide the accurate map. In a

dynamic or unknown environment, the map must be updated to account for changes

in the map, making detection and mapping usable for a limited duration of time.

The vision system is equipped with the Logitech QuickCam Ultra Vision. The

resolution was set at 320 x 240 with the frame rate of 30 fps. Its wide angle lens allows

for larger coverage area of the experimental environment compared to conventional

webcams. The localization algorithm was built using SIMULINK video processing

blocksets and default blocksets. Since all trajectory generation process is executed

in MATLAB environment, conducting image processing in the same environment

could eliminate the hassle of changing data types and other work. OpenCV is also a

powerful tool to do the same job, yet the SIMULINK featured all necessary operations

for this setup.
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Here’s the explanation of the algorithm. First, an image of a plain view of

the experimental field is taken. Another image is taken when obstacles and the

vehicle are placed in the map. Two images are subtracted from each other to find

the difference. Note that both images are converted to intensity images (showing

black and white). Therefore, the more contrast objects retain with respect to the

background, the easier it is to detect the object. The floor was covered with white

sheet, so that all obstacles and vehicle must carry non-reflective black markers on

their top. After the difference has been found, autothreshold feature uses Otsu’s

method to convert the intensity image into a binary image. Before the new image is

analyzed, morphological structuring elements are created. This effectively detects the

neighborhood pixels with the binary number ’1’ and imposes a user-defined shape onto

the area. Square has been selected for this thesis. These regions are called the region

of interest (ROI). Blob analysis blockset takes ROIs and process them to find out

their properties such as area, centroid, major-axis, etc. Area, centroid, and bounding

box provide enough information to provide identifications, coordinates, and size of

the objects in the post-processing stage of image processing. The implementation of

the vision system on SIMULINK is shown in figs. 18 and 19.

The maximum number of blobs are specified, say 10. Blobs are then sorted from

the largest to the smallest while their indices in the array are remembered. Indices are

utilized to extract the centroid and bounding box coordinates for the corresponding

blob areas. Orientation of the robot is found by attaching two differently sized (con-

secutively sized) black masks on the robot. By using two blobs, the vector between

these can be found, hence the orientation is recovered.
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Fig. 18. First two steps of image processing: First block diagram receives background

image and video frame, then converts them to intensity images. The second

block subtract the images and obtain region of interest
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Fig. 19. Last two steps of image processing: Blob analysis is carried out and position

and orientation is obtained through the lower block diagram. Then, the in-

formation is sent to the robot controller where the sequence of commands are

determined
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D. Dynamical Models

Several dynamical models have been utilized to generate simulations to study the

feasibility of creating dynamically feasible trajectories.

1. TeRK

TeRK is the primary vehicle used in the experimental setup. It is a differentially

driven vehicle. The dynamics of the vehicle is described as following:

ẋ = r
2
(ul + ur) cos θ

ẏ = r
2
(ul + ur) sin θ

θ̇ = r
L
(ur − ul).

Constants are

L = 5.5 in

r = 1 in

ul = 6 in/s

ur = 6 in/s

where r is the radius of the wheel, ul and ur are the speed of the left and right

motors, and L is the distance between wheels. This system is differentially flat,

therefore instead of directly parameterizing x, y, ul, ur, we described the system in

terms of flat outputs:

z1 = x z
(1)
1 = ẋ z

(2)
1 = ẍ

z2 = y z
(1)
2 = ẏ z

(2)
2 = ÿ
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Fig. 20. Bottom view and the picture of the TeRK: Two motors and two wheels along

with other ports on top of the board are visible

This parametrization allowed for an algebraic expression for θ and wheel velocities ul

and ur.

θ = tan−1( ẏ
ẋ
) = f1(z1, z2, z

(1)
1 , z

(1)
2 )

ul = ẋ(1 + ẏ2/ẋ2)1/2 − 1.5(ẋÿ + ẏẍ)/(ẋ2 + ẏ2)

= f2(z1, z2, z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 )

ur = ẋ(1 + ẏ2/ẋ2)1/2 + 1.5(ẋÿ + ẏẍ)/(ẋ2 + ẏ2)

= f3(z1, z2, z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 )

The schematic and picture of TeRK (fig. 20) shows the setup of the wheels and

motors underneath the robotic platform

2. Multi-Vehicle Wireless Testbed Model

It is a 3 degree of freedom vehicle with translations in x,y and rotation θ. There

are two fans on the port and starboard side of the vehicle that produce up to 4.5

N of force. For further information on the testbed, readers are referred to [22]. We

exploited its differential flatness to simplify its dynamics. The dynamics of the vehicle
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is described as following:

mẍ = ηẋ+ (FR + FL) cosθ

mÿ = ηẏ + (FR + FL) cosθ

Jθ̈ = ψθ̇ + (FR − FL) rf .

Constants have been specified as

m = 5.05 kg

J = 0.05 kgm2

rf = 0.132 m

η = 4.5g kg/s

ψ = 0.064g kgm ,

where g denotes gravitational acceleration. The flat outputs were:

z1 = x z
(1)
1 = ẋ z

(2)
1 = ẍ

z2 = y z
(1)
2 = ẏ z

(2)
2 = ÿ

This parametrization allowed for an algebraic expression for θ and forces FL and FR.

θ = f1(z1, z2, z
(1...4)
1 , z

(1...4)
2 )

FR = f2(z1, z2, z
(1...4)
1 , z

(1...4)
2 )

FL = f3(z1, z2, z
(1...4)
1 , z

(1...4)
2 )
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Fig. 21. Caltech MVWT: Thrust of the fans and friction from the wheels

3. Dubin’s Car

Dubin’s car best represents the kinematics of automobiles. It has limitation of turning

radius due to the steering angles and the vehicle dimensions [23].

ẋ = ucosθ

ẏ = usinθ

θ̇ = u
L
tanφ.

Constants are

L = 4.5 in

ul = 4.5 in/s

ur = 4.5 in/s

E. Robot Controller

A Java object called ”myRobot” is created from the SimpleRobotclient class. This

class contains functions that govern the actions and movements of the robot as well

as other simple tasks. It also creates a GUI client, where the robot can be connected
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Fig. 22. Dubin’s car dynamics taken from [4]

wirelessly to the computer. After the connection is established, instead of running

a compiled code prescribed to do certain tasks, commands are given each time the

position and the orientation of the robot from the image processing unit. After cal-

culating the robot position error, MATLAB subroutine connected to the SIMULINK

can direct the robot back to the reference trajectory by giving velocity commands on

the differential motors.

F. Tracking Results

Since the robot system identification has not been completed and the localization

system only relies on the vision system, accurate measurements of robot movement

and how the motor reacts to the commands are difficult to obtain. Therefore, a simple

control law must be devised to facilitate the immediate need for a controller. The

vehicle was allowed to track a simple reference trajectory with two commands. These

are simple ”turn left” and ”turn right” control commands where the robot is turning
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Fig. 23. TeRK robot trajectory tracking: With a primitive controller, the robot could

still track a simple trajectory

at a specified rate towards the direction. As shown in fig. 23, the robot was able to

track the trajectory with a tendency to overshoot.
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CHAPTER V

RESULTS

This section demonstrates the application of multi level motion planning to dynamical

systems.

A. Known Environment

All obstacles were assumed to be stationary and non-changing. Starting point is

always near the lower left corner of the map and the motion planner must navigate

the vehicle through the obstacles to reach goal in the upper right corner of the maps.

Originally, the map was designed to provide pixel by pixel value for the vision system,

therefore its size is 320 by 240. Considering the real experimental plain field size of

12 ft by 8 ft, the speed was scaled, so that the maximum speed of the robot at 6

in/s would be expressed as 14 pixels/s. The maximum speed for the dubin’s car was

arbitrarily set to 10 pixels/s, equivalent to about 4 in/s.

In fig. 24, blue curve in the left subfigure is the trajectory. We can see that

wheel speeds ul and ur on the TeRK do not exceed the 14 units in the lower figure.

ur goes below 0 for less than a second. TeRK is capable of having negative values

for the motors, meaning they are running backwards. However, in this simulation,

0 < ul, ur < 14. If the speed of a motor is 0, TeRK is turning with the static motor

as a pivot point.

In a narrower environment such as in fig. 25, TeRK was able to avoid obstacles

without violating any control constraints. In contrast, dubin’s car struggled to keep

the steering angle under 45 degrees and it exceed the control limits by twice the

amount in two instances shown as 2 peaks in fig. 26. Those instances are when the

car makes a hard left turn and then a right turn to enter and exit the cluttered area.
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Not only hard turns contribute to this error, but the formulation of the φ angle can

affect the result. If the signs of ẋ and ẏ are different due to slight infeasibility of

the first derivatives falling under zero, it will create extreme φ values. The trajectory

generated for MVWT show no violation of constraints in fig. 27; FL and FR remained

under 4.5 N. Unlike other vehicles, MVWT obtained very smooth trajectory. We can

also observe that there is a time period with low F values. This occurs during the

narrow pass because the narrow pass is a small area, but a whole FS is assigned to

the region to account for the sharp turns. Having a constant horizon length T , the

planner slows down the MVWT by exerting less force than in other regions of the

map where the traveling distance is long.

B. Unknown Environment

To demonstrate the planning in partially known environment, 8- connected LPA* was

used. 4-connected LPA* can also be used, however it lacks the capability to direct

the vehicle, since the ties are broken arbitrarily. Going through a L shape trajectory

from upper left corner to the bottom right incurs the same cost as taking the diagonal

way because 4-connected graph cannot support diagonal movement. It can do zigzag

movement to imitate a diagonal trajectory, yet the cost is essentially the same with

L shape movement.

The motion planning is done on a 50 by 50 map. This is a smaller map than the

one for the known environment, so that the TeRK wheel velocity is scaled down to

nearly 3.5 pixels/s. The speed for dubin’s car remained at 10 pixels/s. To generate

trajectories with simulation, obstacle map was given to the trajectory planner for a

specific region that the sensor was able to detect. In all scenarios, sensor horizon was

set at 10 grids. On the figures, after the vehicle reaches a location where the goal is
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Fig. 24. Known environment map 1 with TeRK. T = 4 sec



52

Fig. 25. Known environment with TeRK, T = 4 sec
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Fig. 26. Known environment with dubin’s car, T = 8 sec
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Fig. 27. Known environment MWVT, T = 300 sec
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visible and the feasible set includes or touches the goal (marked as a yellow grid), the

trajectory generation finishes.

Next two figures show trajectories for TeRK and the dubin’s car. In fig. 28,

velocity bounds are satisfied for TeRK. Dubin’s car also generated obstacle free path

while keeping the controls in the boundary. The maximum angle near 45 degree is

achieved near the middle obstacle in the upper region as shown in fig. 29. In general,

the trajectory is straight to the goal, minimizing the risk of intruding other obstacles.

A different map was utilized to demonstrate another planning episode in figs.

30 and 31. Sharp corners of the trajectory are shown in both TeRK and dubin’s

case when entering the cluttered area and making the turn for the goal after exiting

the area. However, the first turn right turn towards the obstacles cannot be found

on the control profile whereas the steep left turn after exiting is clearly seen with φ

overshoot. This instance is also visible in the velocity profile due to the sudden drop

near 2.5 second mark, yet the steering is nowhere to be found. The most probable

cause of the control disappearance is from failing to achieve the continuity of the

velocity as specified in the OCP and OPTRAGEN. Even though the initial condition

for position and velocity was given, the initial velocity could have been ignored and

be set to zeros. This can explain several dips towards zero for ul and ur at almost

every 5 seconds (if not, at times that are multiples of 5).

The final map demonstrates similar characteristics with the previous. For the

dubin’s case in fig. 33, 90 degree right turn in the middle of the trajectory is not

shown in the control and only three significant left turns are recorded on the control.

In fig. 32, both ul and ur have negative velocities from 22 to 25 second interval.

However, it is difficult to verify whether there was any backward motion.

All the results in the unknown environment retained issues with discontinuous

velocity vector from one FS to another. This can be compensated by implementing
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Fig. 28. Unknown environment with TeRK, T = 5 sec, Map A
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Fig. 29. Unknown environment with dubin’s car, T = 5 sec, Map A
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Fig. 30. Unknown environment with TeRK, T = 5 sec, Map B
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Fig. 31. Unknown environment with dubin’s car, T = 5 sec, Map B
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Fig. 32. Unknown environment with TeRK, T = 5 sec, Map C
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Fig. 33. Unknown environment with dubin’s car, T = 5 sec, Map C
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smoothing techniques locally where problems occur. Then, the vehicle can track

more refined trajectory and be able to reach the goal without experiencing infeasible

controls.
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CHAPTER VI

CONCLUSION

This thesis has presented a multi-layer approach to reduce the complexity of motion

planning by separating the problem into two parts: obtaining simplified obstacles

and generating a feasible region in obstacle rich environments and solving for optimal

control problem to create dynamically feasible trajectories. Feasible sets were suc-

cessfully created inside the obstacle free region for known and unknown environment.

Continuous time trajectories within the bounds of the feasible sets were also obtained

using optimal control theory. Application of the approach to vehicle models show

successful trajectory generation without violating constraints. The major advantage

of this approach is the significant improvement in the computational efficiency due

to the reduction in the complexity in path constraints and dynamics.

Further investigation to devise more computationally efficient algorithms for high

level and mid level planner will enhance the performance of this approach. In addition,

the experimental setup will fully acquire the capability to control the TeRK platform

with system identification and control laws to track trajectories and follow command

sequences. Stability analysis of motion planning in the RHC framework will provide

insights on how to effectively build trajectories to satisfy all constraints.
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