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Abstract

Nowadays, condition monitoring of rotating machinery i€@®ing increasingly important
for the industry because it allows reducing accidental dpaand improving the machine
performance at the same time. This tool, also callewdition-based Maintenanaelies
on the adequate evaluation of the machine health or stafdpgimg a set of measurements
as mechanical vibration signals. Nevertheless, most ofg¢hkworld machinery operates
unique pieces, which are not suitable for inducing faultakimg unfeasible to collect use-
ful data on damaged conditions. Furthermore, in many cdksespperating conditions of
the machine are governed by speed or load changes, whichsrddkeult the traditional
analysis based on the ISO standards, and hides relevamiation of the machine health.

In that sense, this document present a machine diagnodtiodwogy, based on the analysis
of non-stationary vibration signals, which includes theedgon, isolation, and identification
of the possible faults. Particularly, the proposed methmglohas the same stages but in an
order different. Firstly, an order tracking (OT) model i®posed to decomposes the signal
into a set of narrow-band spectral components that captfmennation associated with the
operating conditions. Besides, the OT model provides tissipdity also to extract the refer-
ence shaft speed when that measure is unavailable. Secamdiyel methodology for fault
detection, calledrequency-located fault detectipbased on novelty detection techniques
that use one-class classifiers (OCC) to describe the noracthime performance. Here, the
obtained order components, obtained using the OT models&® as pseudo-observations
of the vibration signal and a classification scheme is agpbaletermine if any new instance
corresponds with an outlier. Therefore, this step makesside for each order component,
assigning to each one a label either target or outlier. Tharadge in this step is centered
in the fact that allow determining the frequency range wthikeefault arises, reducing the
search time and giving useful information to the machinaafoe. Finally, the cyclostation-
ary properties of the order components are analyzed anédtesp to identify the type of
faults, which in this case are related with bearing failuk&gh the proposed methodologies
to machine diagnostic, it is possible detecting effectivblat the fault exists, taking into
complex account scenarios where the operating conditi@nsrae-varying.

Several experiments are discussed, lasting from labgragst rigs to case studies such as
ship driveline, wind turbine, gearbox and diesel enginegrgtthe proposed OT model was
tested estimating the instantaneous speed. Another s@gmifinding is defined by the cyclic
properties that the order components present because thed may be used as a preprocess-
ing tool that contributes to separate stationary and cyalimmary processes whenever the
operating condition of the machine be constant. In conetysihe proposed methodology
for machine diagnostic based on the OT model to extract Womponents and to detect
outlier behaviors is a promising tool in condition monitayi
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Resumen

Hoy en dia el monitoreo de condicion de maquinaria rosati@ comenzado a ser un tema
importante para la industria porque permite al mismo tiemgalucir dafos accidentales y
mejorar el rendimiento de las maquin&sta herramienta, conocida también cavtenten-
imiento basado en condimi se basa en la evaluacion adecuada de la salud de la maguinari
empleando una serie de mediciones como vibraciones noasaniNo obstante, la gran
mayoria de maquinas en ambientes industriales realemntpiezas Unicas, por lo cual no
es posible inducir o simular fallas, haciendo infactiblecoionar datos (tiles de la maquina
bajo condiciones de dafo. Ademas, en muchos casos, ld&cores de operacion de la
maquina se rigen depedendiendo de los cambios de la vatboidarga, lo cual incrementa
la dificultad del analisis tradicional basado en normas, I$sGculta informacion relevante
de la salud de maquina.

Bajo esa perspectiva, este documento presenta una mejadéodiagnostico de maquinaria
basada en el analisis de sefales de vibracion no estaigenincluyendo las etapas de de-
teccion, separacion e identificacion de las posibldadalParticularmente, la metodologia
propuesta esta compuesta por las mismas etapas que cuplgaiedimiento de diagnostico
de fallas pero en un orden diferente. Primero, se proponengielmde seguimiento de orden
(Order Tracking - OTen inglés) para descomponer la sefial en un conjunto deamnpes
espectrales de banda angosta, los cuales capturan la adi@masociada con las condi-
ciones de operacion. En ese sentido, el modelo OT prophgstta la posibilidad de extraer
tanto la velocidad del eje de referencia cuando ésta meutides disponible. Segundo, se
propone una novedosa metodologia para deteccion ds, fddlammadaleteccbn de fallas con
localizacibn en frecuencigla cual se basa en técnicas de deteccion de atigimse(ty De-
tectionen inglés) y usa clasificadores de una clase para desdrileindimiento normal de
la maquina. La metodologia propuesta utiliza los comptesede orden, obtenidos usando
el modelo OT, como nuevas pseudo-observaciones de ladefdracion, y se emplea un
esquema de clasificacion, como etapa posterior, con el fiegeminar si cualquiera de los
nuevas observaciones puede ser catalogada como un afpic@nsecuencia, a cada com-
ponente de orden se le asigna una etiqueta que puede tomealai@snormalo atipico. La
ventaja de esta metodologia se centra en el hecho que pdetérminar el rango de frecuen-
cia donde se encuenta una falla, reduciendo el tiempo adpibda y brindando informacion
atil al personal de mantenimiento, que en muchos casogne tionocimientos especializa-
dos para este tipo de analisis. Finalmente, se analizgrdasedades cicloestacionarias de
los componentes de orden y, mediante inspeccion visuialesgfican distintos tipos de falla
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relacionados con defectos en rodamientos. Con el uso dettalolegia propuesta es posi-
ble detectar de una forma efectiva que y cuales fallas pusdeexperimentado la maquina,
considerando escenarios complejos donde las condicien@gatacion son cambiantes en a
travées del tiempo.

Varios experimentos son discutidos, desde bancos de pdetzboratorio hasta estudios
de caso tales como la linea de propulsion de un barconaslide viento, sistemas de en-
granajes y motores de combustion interna, donde el modelr@puesto fue probado para
estimar la velocidad instantanea. Otro hallazgo significase basa en la definicion de las
propiedades ciclicas que tienen los componentes de oydayqye ésto abre la posibilidad
de emplear el modelo propuesto como una técnica de dessmigpopara separar Compo-
nentes estacionarias y cicloestacionarios cuando lasaonés de operacion de la maguina
son constantes. En conclusion, la metodologia propessaiaa herramienta prometedora en
el area de monitoreo de condicidon de maquinas rotativas.

Palabras claves: Seguimiento de orden, Extracoh de séales ocultas, Detecéin de afpicos,
Sdiales de vibracbn no estacionarias
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1 Introduction

1.1 Motivation

Technological developments had represented a challengigsfindustry to improve the ma-
chinery and the productive systems, motivating an increnmetmeir demand from commu-
nity searching a stable economy and a reliable plant. Bestdedecrease the environment
and human risks. Therefore, the importance of maintenarezetaas increased because it
allows holding the system health and its availability. Tlatcued progress in sensing
capabilities together with the necessity of monitoringgaesses have changed the indus-
try paradigm, where the companies are migrating from ti@uki preventive maintenance
strategies to conservative maintenance tasks, and thegamgorating predictive mainte-
nance concepts, which are carried out only when these anee€q

In this context, speaking about machine fault diagnostictuelevant, and it can be defined
as the procedure of mapping the information obtained fromeasurement space to a fea-
ture space. This mapping process is also cafeature extraction Traditionally, feature
extraction oriented to pattern recognition is done maguaith statistic indicators as root
mean square value, or auxiliary graphical tools such as pang phase spectrum graphs,
cepstrum graph, AR spectrum graph, spectrogram, wavelkigram, wavelet phase graph,
etc. However, manual pattern recognition requires exgeiiti the particular area of the
diagnostic application. Thus, highly trained and skilleetgonnel is needed. Therefore,
automatic pattern recognition is highly desirable, and loarachieved by classification of
signals based on the information or features extracted fr@chanical vibration signals. It
is worth noting that vibration analysis is attractive in thdustry due to its low cost and
the acceptable precision that it can reach using this teahtool, in comparison with tech-
niques as acoustic emission and thermography. In consegutims work covers only the
issue related to the digital processing of vibration signal

In Colombia, the industrial sector had seen the necessiippliementing predictive main-
tenance programs, aiming to optimize the performance amddbful lifetime of their ma-
chines. Hence, the vibration analysis as a tool for machiagnistics has generated all
kind of expectations, because it has a high profitabilitytwire cost/benefit relationship.
Therefore, the development of a methodology in machinendisiics allows increasing the
predictive and preventive maintenance in Colombian ingusihtailing a major competi-
tively in their products and processes. Furthermore, tga&@iProcessing and Recognition
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Group focuses its activity on the research and developmfestbohastic characterization,
training, and recognition systems, which are applied tolmmecdiagnostics using the vi-
bration analysis. Additionally, this doctoral work is frachinto the research project titled
“Sistema awtnomo de monitoreo de vibraciones raeicas para diagbstico de fallas no
estacionarias en aquinas rotativag which was endorsed by Colciencias.

1.2 Problem statement

Condition-based monitoring recommends maintenance idasigrounded on the informa-
tion collected from the machine, also callBthgnostics which deals with fault detection,
isolation, and identification whenever it occurs. Fauled&bn is a task to indicate whether
something is going wrong in the monitored system; faultasoh locates the component
that is faulty; fault identification determines the natuf¢he damage whenever it is detected
(Jardine et a).2006. The most used technique in diagnostics is vibration amslyecause

it allows to find the different sources, either internal oteeral, which excite the machine.
Thereby, itis possible to identify the fault source thatgyates the abnormal state of the ma-
chine. However, several problems involve the identificatd the source, especially, when
the machine behavior is dynamic, i.e. there are changesadfdad/or speed in the system,
causing non-stationary vibration signals.

Those non-stationary sources are then analyzed by sevethbds to detect a possible
change in their dynamics, which is reflected in the originalsurements, yet it is tough
to identify that changeRopescu2010. For this reason, it is necessary to estimate or mea-
sure the fundamental frequency that governs the dynamavo@tof the machine, giving a
detailed identification of speed changes, and analyzingntpact of those changes on the
vibration signals Barszcz and Randal2009. Those effects are known ésnsients and

its analysis has always been a crucial problem for localizeti detection. In that sense, the
principal aim of transient feature analysis is to identif/model and parameters (frequency,
damping ratio and time index), as well as the time intervdteguency band (i.e. the period
between transients)Mang et al. 20113. In practical applications, however, the transient
model and frequency parameter may not be so entirely aectoatdentifying the period.
Therefore, the frequency band selection problem is unoledsas the selection of optimal
center frequency or cyclic frequency and its bandwidth dyHue practical concern in ma-
chine diagnostics is that any of these two parameters idyhlandwn a priori. Furthermore,
in many cases, the sought impulses are masked by a sharponaidesr signal components
excited during normal operatioBérszcz and Jabtohsk011).

If there exists a priori knowledge about the cyclic frequgrcset of blind sources could be
separated into cyclostationary, periodic and random ssurélowever, conventional blind
source separation (BSS) algorithms rely on assumptionghwiiten do not fit into obser-
vations in reality. Hence, there is an urge to address thestabss issues such as separation
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of sources when the number of sources is not known a pri@istlirces are not statistically
independent, the mixing system is time varying or non-stery, and the mixture is nonlin-
ear or convolutive Antoni, 2005 2009. For instance, most of the BSS models developed
are based on the assumption of a stationary mixing systeminBuactice, there are many
circumstances where this assumption is violated, due testationary behavior caused by
load and speed changd3gs et al. 2009 2010. Thereby, it is necessary to alleviate some
of the difficulties of BSS, such as convolutive mixtures, asuifficient number of collected
mixtures and an unknown number of sources. Therefore, thiglgm is focused to blind
source extraction, where a blind component is sought asguthe knowledge of the part
of the machine that is going to failihg and Meng2009. Nonetheless, those assumptions
cannot be applied to real applications because they reguertise in the particular area of
the diagnostic application. Moreover, a single machine pament may represent multiple
signal sources, reflected by multiple faults of differenaretteristics. Then, using a dedi-
cated sensor and an algorithm for each and every such fasdwfecourse not viable both
technically and economically. Itis, therefore, highly idasle to develop an efficient method
for simultaneous detection of multiple transient faultd &tnd signals of a single or multi-
ple neighboring machine components based on a single- di-amainnel signalsWang and
Liang, 2012.

It is worth noting that distinguishing the different blindysals only gives a partial solution
to the diagnostic problem, because it allows identifyingevéhmay be the fault, but it does
not say if the defect exists, especially, in actual envirents, where the faulty cases are
not available. Therefore, it is necessary to render an iatdit stage for fault detection,
known asnovelty detectionIn most of the cases, the input dataset holds unbalancesof th
faulty/undamaged classes (states of the machine), sieaetiordings of the damaged ma-
chine are not available and the amount of available dateactexizing the different states
of the machine are very low. In consequence, the applicati@onventional classification
techniques can not be considerdtcBain and Timusk2009 Xiao et al, 2013. Likewise,

to reflect practical constraints; usually, there is only akawvailable dataset for the learning
task, at the constant regime and with no mechanical mode¢el, in the field of large and
complex rotating machines such as turbofans, many defaat®iat be modeled nor antici-
pated, and recordings of faults are unavailablaezan et aJ.2012. In the event, however,
that the distribution of available data among classes islamged, the ability of conventional
classification techniques to distinguish undamaged froyndamage is limited. So, in ma-
chinery monitoring, this unbalance is particularly poteinte the data that describe the fault
conditions are often non-existent, and their measuremeuntdvrequire damage equipment,
a costly or wholly unacceptable operational considergfidcBain and Timusk20117).
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1.3 A brief literature review

In the field of machine diagnostic problem, several authais $tudied different points of
view such as the non-stationary behavior identificatiorhefrhachine governed by variable
speed and/or load and its associated individual componesislly so callearder track-
ing). The extraction of blind components from the vibrationnsigthat characterizes fault
conditions, and the machine health state description whsthyndamaged recordings are
available fiovelty detection Although each issue looks like separated tasks, evety tec
nique is driven to the same problem, and the works relateel Wwere the motivation at the
beginning of this doctoral work.

1.3.1 Order tracking

In this regard, techniques grounded on order tracking (@i¥gtbeen devoted to obtaining
the fundamental component features of the reference sbedids(callecbasic ordej and
capturing the dynamics of the measured vibration signalse @T technique has shown
to be useful in the analysis of non-stationary vibratiomalg, condition monitoring, and
fault diagnosisBai et al, 2005. Moreover, it allows to identify the rotation speed andithe
spectral/order components, being both fundamental taritbesthe machine state as well as
its conforming mechanisms under changing load and speaétesgfor instance, start-up
and coast-down of the machingjo et al, 2006 Pan and Lin2006.

OT is used in the literature for two specific tasks, on one heace are the techniques related
with the estimation of the instantaneous angular speed)(Mere the pattern that governs
the machine dynamic is extracted from the vibration signiiis fact is specially useful
when the speed is not measured by tachometer or speed sefisdhat regard, the IAS
could be estimated from non-parametric or parametric sgmtations. In the former case, it
could be found approaches based on time-frequency repatieers such as Gabor transform
(Zhao et al. 2008 and Short-Time Fourier Transforn&(o et al, 2006 Gao et al. 2006
Zimroz et al, 2011, Leclere et al. 2016, which in many cases fitting the extracted IAS
by a least squares method. Another approaches are baseshesdale transformations
such as scale transforrc@mbet and Zimroz2009 and wavelet transformQryllias and
Antoniadis 2013. In the case of parametric representations are found appes based
on state space models that are mainly solved by recursiegitdns such as the Extended
Kalman Filtering (EKF) Ecala and Bitmegd 994 Bittanti and Saraves200Q Zhang et al.
2008, and the eigenvalue parametric computatiRaqopoulos et al2014). In spite of these
methods achieve satisfactory results, the fitting of a pataoomodel of the vibration signal
could provide more information about the spectral comptménthe signal, and hence,
similar approaches use the EKF to extract both IAS and apectral componentg\(ves
and Coelhp201Q Hajimolahoseini et al2012).

On the other hand, there are the approaches that use theisfethation to extract a sin-
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gular or multiple order components. In that sense, basedstig@ested estimation strategy
using Kalman filtering inBai et al.(2009, its improved version with increased precision,
termedVold-Kalman filtering(VKF_OT), is employed irPan and Lin(2006; Pan and Wu
(2007); Stephens and Vol(2014). However, either parametric estimation approach require
for measuring the shaft speed, which makes the order asaijsicomplicated since track-
ing performance is subject to the synchronization procetgden the vibration signal and its
reference speed. Also, the shaft speed measurement inmdialing additional equipment
near the machine, which in not all situations may be feasibtber approaches proposed in
Cardona-Morales et 82011 andWang and Heyn§2011), use a combined model for OT.
In the former case, an oscillatory model is employed togathExtended Kalman Filter and
the latter case uses the VKF-OT together to Empirical ModeoD®position for separating
the non-stationary and stationary components. Howevegstimation of the number of or-
der components is still an open issue, because it requinegedpriori knowledge about the
machine, moreover, it is sensible enough to the noise emviemt. Nonetheless, if a priori
information about the machine is available, it is possibledrry out an order-angle transfor-
mation that compensates the speed fluctuations, obtairsignal map where the majority
of components governed by the reference shaft speed ai@nsigt The most commonly
used techniques is called computed order tracking (C&¥je(and Munck 1997, which
performs a resampling of the signal according with the angt@mation. Nonetheless, an-
other techniques based on resampling are synchronousgavgmased inRenaudin et al.
(2010; Borghesani et al2012 2013, and a improved version termed moving synchronous
averaging approach is presented_igclere and Hamzao(R014). Those approaches have
showed interesting results identifying rolling elementibg faults, and its application to
other mechanisms is increasing.

1.3.2 Novelty detection

One-class classification (OCC) techniques have been uselktérmine when the state of
machine ceases to be normal and when the first symptoms ofgedeapgear. For instance,
Tax and Duin(2004) shows a comparison between several standard one-clastiels such
as the normal distribution classifier, thenearest neighbok{NN) classifier and an algo-
rithm called support-vector data description (SVDD). Tdose-class classifiers are trained
and tested employing vibration signals at different camsspeeds using the set of features
extracted with the statistical methods. However, the datcuption performance is low.
Therefore, several authors have proposed different metbges oriented to improve the
performance of OCC; for instancéhang et al(2009 suggested the use of weighted SVDD,
McBain and Timusk2009 employed a characterization using average-moving métel,
et al. (2010 used a wavelet packet transform addBain and Timusk2011) reduced the
subspace on classification using principal component aisalyThose methodologies seg-
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ment the non-stationary vibration signal piecewise anoinesgé statistical features of each
part. Those approaches reach a high classification perfaenaut, in some practical cases,
the signal segmentation entails loss of information eithéime or frequencyBartkowiak
and Zimroz 2011).

Also, for some data set, if the parameters are set inapptepyj the fault positive rates of
SVDD models will be too largeTax and Juszczal2002. Hoffmann(2007) introduced the
conventional Kernel Principal Component Analysis (KPCAjoi novelty detection. This
method performs well and involves only the linear algebnat iBis not robust to outliers in
the normal samples due to the inherent properties of L2 n@/iren non-uniform distributed
outliers contaminate the undamaged instances, the loadetgrs found by the conventional
KPCA will deviate a lot from the real loading vectors, leaglito the downgrade of the
performance.Xiao et al. (2013 introduced the L1 norm into KPCA problem, taking the
advantage of the robustness of L1 norm to outliers, to stremgthe immunity of the model
to outliers, and therefore to improve the detection pertoroe. Nonetheless, the L1-KPCA
algorithm requires to reach the global maximum point ana #&@able the detection model
to be more accurate. Furthermore, the way of choosing @ecteresholds is still an open
issue.

1.3.3 Blind signal extraction - BSE

In this field the issue of inferring the nature of unknown egelous sources from exogenous
measurements has always been a major concern. The works idaimain have already
proved that BSS provides new solutions for vibration andg@ainalysis.

Regarding the BSS problem, several methods for instantesreawd convolutive mixtures are
used. In the former case, the most popular method is indem¢cdmponent analysis (ICA),
which assumes a statistical independence between theesoti/arinen and Oja2000
and itis commonly employed in communication and biomedipgllications. Especially for
mechanical system¥ang and Nagarajaiat2014 andWang et al(20110 have been used
ICA for separating an output that is statistically indepeamicbf other sources, both structural
and rolling element bearing damages, respectively. Ondh&ary, the algorithm Nguyen
Thi-Jutten allows the separation of the contributions ab woupled machine assuming a
convolutive mixture Gelle et al, 2000 Ypma et al, 2002. Another method is presented in
Peled et al(2005, where a kurtosis-based blind deconvolution separatietihad is used to
bearing diagnostics. Since the machine environment iynioisServiere and Fabr{2004)

is presented a “robust-to-noise” technique for the separatf rotating machine signals, in
the context of spatially correlated noise. In the concrasecthey use a whitening matrix
computed either by Principal Component Analysis (PCA) acspal arrays of delayed ob-
servations, to improve the signal-to-noise rate, and tipgtyang the BSS algorithm termed
JADE (Joint Approximate Diagonalization of Eigen-matsgas also presented 8erviere
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and Fabry(2005. This algorithm is also used iRopescy2010 to separate the sources and
detect the change in the vibration level for each one, yetdbelts are not consistent in the
sense that the method depends on an appropriate whiternoggs:

Nonetheless, when BSS is used in mechanical signals, whactypically characterized by
an excessive complexity, it faces some difficulties whickesely hinder its feasibility, such
as a mixture of vibrations of the convolutive type, an unknawmber of the individual
sources in the mixture, among othefm(oni, 2009. Therefore, a new concept so-called
Blind Component Extractioar Blind Signal ExtractioBSE) was introduced by the same
author to compensate the BSS drawbacks. The major differeetween BSE and BSS is
that the former identifies the different system respons@s fonents) excited by the different
sources rather than seeking the sources themselves, whbeekatter blindly deconvolutes
the collected signals and identifies the sources. In thetesahe BSE is focused on sep-
arating the distinct processes present in the vibrationasithat exhibits a behavior either
periodic, periodically correlated (cyclostationary) andom. The method proposed Bgn-
nardot et al(2005 addresses the issue of extracting the pure second-ordestationary
part of a signal, exploiting its spectral redundan@gandall and Anton{2011) summarizes
some methods, such as an autoregressive model, adaptsee gaoicellation, self-adaptive
noise cancellation, discrete separation and time synclusaveraging, that could remove
the periodic components prior to spectral kurtosis anal#sitoni, 2006 and cyclic spectral
analysis Antoni, 2009, for the non-stationary transient components. In the casesimu-
lated signal;Tan et al.(2009 illustrates the effectiveness of using an eigenvectaorélym
(EVA) to extract bearing-fault signals from periodic sinidal noises. To further explore the
performance of the EVA and its application to a real indasttase,Tse et al.(2007) uses
the EVA and a generalized EVA to recover the bearing faulh@igrom a signal mixture
containing an eccentric rotor fault and a bearing fault. $ame author includes Wang
and Tseg(2012 a second strategy based on Averaged Regression filterirggrtove the in-
fluence of the periodic components before implementing BMAally, the cyclic spectral
analysis is performed to identify the cyclic frequency (thedulating frequency or bearing
fault characteristic frequency) to diagnose the beariiigria

1.4 Objectives

1.4.1 General objective

Develop a methodology for machine diagnostics that all@esiify, isolate and detect dif-
ferent kind of faults, based on time-varying blind signatragtion and novelty detection
using non-stationary vibration signals.
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1.4.2 Specific objectives

» Develop an algorithm to estimate the instantaneous angpked and the order com-
ponents correctly, describing the system dynamic behandrconsidering the time-
varying operational conditions of the rotary machines.

» Develop a methodology for fault detection using noveltyedgon techniques taking
into account the insufficient amount of vibration signate tack of labeled data and
the unbalance of the faulty/undamaged classes.

» Design and implement a methodology that allows extradtiegblind components in
the vibration signal, involving correctly the charact#ds of the fault processes that
are embedded in the data.

1.5 Contributions of this work

The present work is done within the framework of data-driweachine diagnostics, includ-
ing the detection, isolation and identification of differéypes of faults. In particular, the
analysis of vibration signals that exhibit non-stationprgcesses generated either by rota-
tional speed changes or non-stationary faults like rolefgment bearing failures. In that
sense, we aim to provide some approaches and methodologieynose damages in ma-
chines under non-stationary operating conditions, whiehfacused on the industry sce-
nario where the maintenance operators do not have sped&limwledge in condition-based
monitoring. With this in mind, the main contributions of thwerk are described:

» An order tracking approactCardona-Morales et ak014), namedsquare root cuba-
ture Kalman filtering - order trackingSRCKF.OT), is proposed aiming to estimate
simultaneously the instantaneous frequency (IF) assmtiatthe shaft speed, and the
order components related with that IF. The proposed SROKHRntroduces an oscil-
latory model the may describe the machine operating camditand provides a set of
narrow-band spectral components that are governed by dfesgieed. Those com-
ponents could be stationary and cyclostationary givingulseformation that allows
identifying the faulty processes generated in the mactnamportant characteristic
of the proposed approach is that it may be implemented @blatause the estimation
of the IF and the order components is based on the KalmansieourAs a conse-
guence, SRCKFOT can characterize the vibration signal taking into actthat each
spectral component describes the performance of the mischaupresent inside the
machine, therefore, this approach contributes in the faolation stage.

» We propose a novel methodology for fault detection, caftequency-located fault
detection based on novelty detection techniques that use one-dissifeers (OCC)
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to describe the normal machine performance. The methogatmiudes two differ-
ent OCC schemes oriented to provide to the machine operdtomation about the
machine in two senses: detecting if any fault exists or matl{tional scheme), and
detecting the spectral band where the fault arise (novereel). This information al-
lows to inferring the type of the fault that it is startingarthe machine and to give the
needed elements of judgment to deciding the possible mackjpairs. To this end,
the methodology comprises a classical framework of patecognition, where it is
performed the vibration signal characterization and thehimee health condition clas-
sification. The contribution consists of utilizing as dynarfeatures of the machine
condition, the order components obtained with the prop@&REKF.OT approach.
Then, the features are fed into the classification algosthnder both OCC schemes,
but in the first scheme statistical and similarity charastess are computed from the
order components, yet in the novel scheme those narrow-dmmgonents comprise a
new set of pseudo-observations. This fact allows idemtifyhe order component that
is an outlier and may be considered a potential fault in aiBpg@art of the machine.

Regarding the fault identification, we proposed a methogipbased on the SRCKOT
approach, taking advantage of the cyclostationary prigsettiat the order components
could exhibit. In the concrete case, the methodology ctseifso compute the enve-
lope of the narrow-band components and to verify if the nglielement bearing faults
arise. The proposed methodology is focused on the field oéilsignal extraction, so,
the obtained order components are filtered versions of thesignal that inherit the
stationary and cyclostationary properties.



2 Instantaneous frequency
estimation based on order tracking

Vibration analysis of rotating machines is one of the mostduechniques for fault diag-
nosis and condition monitoring due to its high performance @w implementation cost.
Nowadays, one of the main challenges in vibration analgsis track and reduce influence
of changes during time—varying operating conditions aradi$o In this regard, techniques
grounded on order tracking (OT) had been proposed, whiclieweted to obtaining fun-
damental component features of the shaft reference spabkedbasic ordej and capture
dynamics of measured vibration signals. The OT techniggeshawn to be useful mostly
within the analysis of non—stationary vibration signalsndition monitoring, and fault di-
agnosis Bai et al, 2005. OT allows identifying the rotation speed and the spefdrdéer
components, being both fundamental to describe the mastéte as well as its conform-
ing mechanisms during changing loads and speed regimesg&g and stop of the ma-
chine) Guo et al, 2006 Pan and Lin20096.

Mostly, OT is based on estimation of the instantaneous &eqy (IF) that in turn can be
extracted from a given time—frequency representatidng( et al, 2006 Gao et al. 2006.
For instance, the Gabor transform is employedivao et al (2008, where the shaft speed
reference signal is not required allowing to analyze rotathachines with less quantity of
sensors or when the reference signal is not available atNs\ertheless, the windowed
Fourier—based transforms have limited resolution in birtine and frequency, axes and they
suffer from increased computational burdétag and Wu2007). To overcome this issue,
OT technique is carried out grounded on parametric modeticigding adequate estimation
of spectral/order components.

Particularly, an OT approach based on Kalman filtering igested irBai et al.(2009. Its
improved version with increased precision, ternviettd-Kalman filtering(VKF-OT), is pro-
posed inPan and Lin(2006; Pan and Wy2007. Yet, either of them needs for measuring
the shaft speed, which makes the order analysis more comijpieg tracking performance
must rely on the synchronization process between vibratignal and its reference speed.
Furthermore, shaft speed measurement implies instaltidgianal equipment close to the
machine, which in not all situations may be feasible. To ceté this trouble, indirect
measurement of shaft speed, based just on the instantafitequency, is also discussed
in Scala and Bitmea(lL994); Bittanti and Saraveg000, where a frequency tracker is in-
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troduced using the oscillatory model. Parameters of theetar@ calculated employing the
Extended Kalman Filtering (EKF), which supplies amplitudease, and mainly frequency
of harmonic signal, for de-noising in non-stationary eomments. Nonetheless, tuning of
the above approach is heuristic and relies to some degregpentise. In this regard, better
estimation of amplitude and frequency using a non-lineastleninimum square algorithm
is suggested ilvendano-Valencia et a{2007).

On the other and, an improved version of the EKF frequenakéafor non-stationary har-
monic signals is presented Hajimolahoseini et al(2008, where the time-varying ampli-
tude is another state variable included in the oscillatooget, i.e., the standard state space
model of a measured signal takes into consideration andgliariations of harmonic data,
which can be assumed as time—variant or even corrupted. iy neal applications, how-
ever, the number of harmonic signals to track can increasanebly, and consequently
the needed amount of state variables implies more compuotdtcost affecting the on—line
tracking task implementation.

This chapter discusses a nonlinear model-based OT appfoacbndition monitoring of
non-stationary vibration signals that reduces the contipmal burden by decreasing the
model order. Particularly, time-varying amplitude is e&ted assuming the state variables
as the in-phase and quadrature components from the inmals@nd then computing the
guadratic mean between those components. As a result, thenarof state variables re-
quired to track the signal becomes lower and hence the mader dself also decreases.
Besides, to avoid numerical precision errors that are icitpdiuring derivative calculation
within the EKF framework Cardona-Morales et al2011), the use of Square-Root Cuba-
ture Kalman Filter is considered(asaratnam et gl201Q Arasaratnam and Hayki2011).
The proposed scheme, presentedCisrdona-Morales et a{2014) is tested over several
experiments: first, a synthetic signal is used aiming toirtistish between closed-order
components; second, a test rig is employed under two diffegimes, steady-state and
non-stationary, to track main order components and extreh; and finally, real-world
case studies are used to validate the approach, includangtian signals acquired on ship
driveline, internal combustion engine, and two intern@iocontest using signals from a
wind turbine and gearbox.

2.1 Order tracking and instantaneous angular speed
model

Given a machine vibration signal, OT provides estimatiosdillatory modes and corre-
sponding amplitudes. The machine shaft speed is assumiealsasorder while superior
orders are related ahaft speed harmonicSo, shaft speed, = 60f,, is assumed as the ma-
chine shaft fundamental frequency, wheiis the speed, expressed in revolutions per minute
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(rpm), while f; is given inHz

As a rule, a vibration signaly(n) € R, that is acquired from a rotating machine can be
represented along the discrete-time axisas a superposition df sinusoidal functions
(termedorder componenjsas follows:

K
y(n) = > an) coskw(nn + @) (2.1)
k=1

where notationg,(n) andyy(n) stand for the amplitude and phaseketh order component,
respectivelyw(n) = 2xf,(n) is the angular frequency of a rotational frequerid@y). Vari-
ablesak(n), ¢k(n), andw(n) are time-varying.

So, based on a representative mono-component model theliged in one time instant, a
version of lagged signay(n + 1), can be expressed addjimolahoseini et al2012):

y(n+ 1) =a(n + 1) cosfu(n + 1)n + ¢(n + 1)) cosfu(n + 1))
—a(n+ 1) sin(n+ 1)n+ ¢(n+ 1)) sinw(n + 1)). (2.2)

Under the assumption that the amplitude, phase, and fregumve smooth transitions (i.e.,
their speed does not change strongly enough to have discertiehavior)Borghesani et a|.
2012, the next approximations hold(n + 1) = a(n), ¢(n + 1) = ¢(n), andw(n + 1) = w(n).
Therefore, Eq.4.2) can be rewritten to get the following simpler decompositizat is given
in terms of sine and cosine components as:

y(n + 1) =a(n) cosw(n)n + ¢(n)) cosw(n))
—a(n) sin(n)n + ¢(n)) sin(w(n)). (2.3)

On-line processing that appraises both, order componénmag®n and inference of ma-
chine dynamic behavior can be accomplished if EcR)(is now expressed through the fol-
lowing state space model:

z(n+1) = [:’rls;"((;‘)) ‘Csoigj’((nr;)]m(n) ; é £(n) (2.43)
y(n) = [1 0]a(n) + v(n) (2.4b)

where variableg(n) € R>! andv(n) € R are the process and measurement noise, respec-
tively; z(n) = [x1(n) X:(n)]™ € R?! is the state variable vector, with vector elements defined
asx;(n) = a(n) cosw(n)n + ¢(n)) andx,(n) = a(n) sinf(n)n + ¢(n)). In this work, ampli-
tude of signaly(n) is computed assuming that state variable&y) andx,(n), are provided,
respectively, as in-phase and quadrature components sfghal. Afterwards, it holds for

amplitude thag(n) = /X1 (N)2 + xo(n)2.
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Generally, the singular—state space model of Edlg can be extended to the multiple sinu-
soidal component model as:

zi(n+1)| |M(wy) O --- 0 zi(n)| [&(n)
: = : Do : S I (2.5)
zk(n+1) 0 0 -+ M(wk)||zx(M)] [&(N)
where M (wy) € R?? is thestate transition matrixdefined as follows:
_[coswy(n) —sinwy(n)
M) = sinwg(n)  coswi(n) (2.6)
Besides, the model in Eq2 () can be described also in vectorial form as:
X(n+1)=Fn+1nX(n) +&MN) (2.7)

where X (n) € R is the state variable vector comprising in-phase and quagraom-
ponent for each ordds, vectoraxy(n) represents thike-th state variable correspondingkdh
order component; teri'(n + 1, n) € RZX*?X denotes the state transition matrix defining the
changes of state variable vector through the tig{a) ~ N(0, Q(n)) € R¥*1 is the process
noise, whereQ(n) € R js the covariance matrix of process noise; and diagonél(oj

is defined as dig@(n)} = [of oF --- of o qf<+1], wheregi(i = 1,.. ., K) denotes amplitude
variance of the order component aqul denotes frequency variance describing the system
dynamics.

At the same time, measuremsyn) in Eqg. (2.49 can be written in a short form as

x1(n)
ym=[h h - k|| : [+v()
xx (N)
=HX (n)+v(n) (2.8)

whereh = [1 0] appraises the measurement mafiixe R™K, v(n) ~ N(0,r(n)) € R is the
measured noise, am¢h) € R is the measured variance.

To estimate the IF that is associated/(n), an additional state variable should be introduced
at (K + 1)-th position. In this regard, state variable is set basedescribed oscillatory
model (see Eqs2(7) and @.8)), as discussed iHajimolahoseini et ak2012. Thus one can
assume thaby (n) = xk.1 (n), and therefore the needed state space model takes the form:
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z1(n+1) M (Xx41) x1 () €1(n)
: _ SN Y (2.9)
xk (N+1) M (KX11) x () &k (n)
Ti+ (N+1) [z (] [Eks1(N)
z1(n) v (n)
ym=[n - nol| © |+] ¢ (2.10)
| ] xk () Vic (n)
k41 (N) Vi1 ()
where the remaining terms of the state transition matrixare filled.
Lastly, the process equation in EQ.9) can be written in short form as
XM+l =9 X(n))+&(MN) (2.11)

wheredd (n, X (n)) is a state transition nonlinear vectorial function, suctt gstimation ofX
implies a set of nonlinear equations, which can be implesthy using the widely known
nonlinear Kalman filtering.

2.2 Estimation of Model Parameters

2.2.1 K-orders based on maxima frequencies

As regards the valuK denoting the order components, it can be defined using tvierdif
ent approaches: firstly, thehysics-basedalculation that requires exact knowledge about
machine mechanisms to choice the interest compon@ats énd Lin2006. This choice
includes maintenance crew having available informatiogemfmetric and physical charac-
teristics of every single machine mechanism; secondlyd#ta-drivenestimation based on
the analysis of measured vibration signal power. Estimatiborder components, yield-
ing high amplitude level extracted from time-frequencynsigrepresentation, includes the
following steps:

— Given a signal signaj(n), compute its time-frequency representatio)(i, j), that is
a 2-dimensional plane with positions ), beingi=1,...,n; j=1,...,1, wherei and
j are the bins located at the time and frequency domains, ctsply.
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Table 2.1: SRCKF algorithm (Part 1).

Initialization:
1. Define the input values

Yins o, Poo = SooSg0, Qo, Ro
2. Define the cubature points

¢i = \/m_/z{[Imxm _Imxm]}

Tracking:
3. forn=1toNdo
Time update

4. Evaluate the cubature points<1,2,...,m), wherem= 2K + 1,
Xin-1n-1 = Sn-1n-19i + Tn-1n-1

5. Evaluate the propagated cubature points{,2,...,m)
Xi -1 = Y (Xin-1n-1)

6. Estimate the predicted state
Tnn-1 = nl'\én‘i Xinin-1

7. Estimate the square-root factor of prediction error cavee
Spn-1 = tria{[;?nm_l SQm]}

~ _ 1 * ol * ol * ol
Wherexnln_l - \/m I:Xl’nm_l - wnln—l Xz’nm_l - wnln—l e anm_l - wnln—l]

andSq, denotes a square-root factor@f_,

— Find magnitude valuey = arg max;{€2y(i, j)}, preserving positiond; j,), wherei,
and j, denote time and frequency indexes, respectively, whetakes place. Then,
the local maxima are extracted from frequency ve¢tdyi,, j)}. It allows to build a
set ofk frequencies with the greatest vibration povagk).

— Compute the rate between the first componerljfand the kK — 1) remainder com-
ponents, to obtain the different harmonics or spectral amepts'(k), wherel'(k) =
{z(k)/z(1) : k=2,...,K}.

2.2.2 1AS-OT model parameters

As seenin Eqs 2.9 and @.10), parameter computation implies a recursive nonlinealyana
sis allowing to get an approximated solution when Gaussieseris assumed, but avoiding
calculation of corresponding Jacobians of state variallleghis end, the Square-Root Cu-
bature Kalman Filter (SRCKF), which is based on recursiwgppagation of state variable
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Table 2.1: SRCKF algorithm - (Part 2).
Measurement Update
8. Evaluate the cubature points<1,2,...,m)

Xinn-1 = Snn-1@i + Trn-1
9. Evaluate the propagated cubature points{,2,...,m)
Yinn-1 = P (Xinn-1)
10. Estimate the predicted state
§n|n—1 = %Irzn:l Yinn-1
11. Estimate the square-root of the innovation covarianagix
Syynin-1 = tria{[’jnm_l SRm]}
whereYnn-1 = %n [¢1,n|n—1 ~Ynn-1 Y2nn-1 = Yon-1- - Ymon-1 -~ @\nln—l]
andSg, denotes a square-root factor Bf,
12. Estimate the cross-covariance matrix
ny,nln—l = xnln—l%—rnln—l
whereXnn-1 = %n [Xl,nln—l —Znn-1 X2nn-1~ Lan-1- - - Xmpin-1 — Enln—l]
13. Estimate the Kalman gain
W = (P xynin-1/ S;/ry,n|n—1) / Syynin-1
14. Estimate the updated state
Zon = -1 + Wh (Yo = Ynn-1)
15. Estimate the square-root factor of the correspondirgg eovariance
Sin = tria{[ X0 — Walnnr WaSn|]
16. end

moments (mean and variance), is suggestetasaratnam et a(2010, under assumption
that implicated nonlinear functiom, should be reasonably smooth. In this case, a quadratic
function near the prior mean is used assuming that it coulgdgnty approximating the given
nonlinear function. To this end, the error covariance mafniould be symmetric and positive
definiteness to preserve the filter properties on each upgate, and hence, SRCKF uses
a forced symmetry on the solution of the matrix Ricatti equratmproving the numerical
stability of the Kalman filter Grewal and Andrew2001), whereas the underlying meaning
of the covariance is embedded in the positive definiten®sss@ratnam et gl2010.

The SRCKEF algorithm that is described in Taldlel carries out the QR decomposition
(termed triangularization procedur§, = tria{-}), where theS is a lower triangular matrix
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and denotes a square-root factargsaratnam et gl2010.

2.2.3 Constrained model state variables

Constraints on states(n) to be estimated are important model information that isroftot
used in state estimation. Typically, such constraints aetd physical limitations on the
states. In Kalman filter theory, there is no general way abiiporating these constraints into
estimation problem. However, the constraints can be iraratpd in the filter by projecting
the unconstrained Kalman filter estimates onto the bounaditlye feasible region at each
time step §imon and Chig2002 Ungarala et a).2007). The numerical optimization at each
time step may be a challenge in time-critical applicatidnsthis section, a simple method
introduced inKandepu et al(2008) is applied to handle state constraints in the SRCKF.
Assume that the constraints of state variables are refgezgsbg box constraints as follow:

z (n) < x(n) < xzy(n) (2.12)

where subindexds andH denote the lower and upper boundaries, respectively. Thieade
is illustrated forz(n) € R?. In case of a second order system, the feasible region by the
box constraints can be represented by a rectangle as i@.Eidt is showed the illustration

of the steps of constraint handling of the SRCKF algorithamfrone time step to the next.
At t = n - 1, the true state,, its estimater,_, and state covariance are selected. The
constraints information can be incorporated in the SRCKerathm in a simple way during
the time-update step (TabR1-Part 1). After the propagation of the sigma points (step
5.), the (unconstrained) transformed sigma points whiehoaitside the feasible region can
be projected onto the boundary of the feasible region andiramnthe further steps. In
Fig. 2.1, att = n two sigma points which are out-side the feasible region aogepted
onto the boundary (right plot in the figure). The mean and damae with the constrained
sigma points now represents the a priori state variakfeRtKF) and covariance, and they
are further updated in the measurement-update step (ZdabRart 2). The advantage here is
that the new a priori covariance includes information ondbwestraints, which should make
the SRCKF estimate more efficient (accurate) compared tGSREKF estimate without
constraints. Extension of the proposed method to higheedsion,d, is straightforward.
Alternative linear constraints, e.@x < d are easily included by projecting the sigma point
violating the inequality normally onto the boundary of fises region. It is observed that
the new (constrained) covariance obtained at a time stepwierlin size compared to the
unconstrained covariance. If, in case, the estimate dftemteasurement-update (TaBlé-
Part 2) is outside the feasible region, the same projecéohrique can be extended. In a
practical point of view, the boundaries are fixed accordoigiaximum and minimum values
that could take the state variables, it means, in case ofrttexr componentk? = miny(n)
andH? = maxy(m), whereas the IF constraints depend on the approximatedl&dge of
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Initial set up, t=n-1 SRCKEF, t=n

@ Q@ :> Covariance
) () e—H ©

%) Transformed sigma points z

Figure 2.1: lllustration of sigma constrained points.

the machine speed range, whéreandH' are normally fixed as zero or idle speed and
maximum speed, respectively.

2.3 Simulation Study

As recommended iPan and WU2007), a testing signal is synthesized to validate perfor-
mance of considered OT schemes in closed-order comporeniifidation. Particularly, the
synthetic signal comprises the following three order congmis: &t 4th, and 42th, for
each one the amplitude is linearly increased from 10, 0— 3, and 0- 2.5, respectively.
Order amplitude level is set as time-varying since it is agsil that most of the machine
mechanisms have different vibration levels. The assunfedarece shaft speed has an incre-
ment ranging from 0 to 180fpm (that is, 30HZ) to reproduce a start-up machine process.
Besides, the synthetic signal lasts 5 seconds going framlisteady state to final maximum
speed. A sample frequency okHzis used through this simulation.

Generally, methods based on Fourier transform face limiatin distinguishing closed-
order components, as seen in Figar@ that shows time-frequency representation of syn-
thetic signal and its corresponding time series. Also, wasth noting that the amplitude
differences between the first order and its harmonics makesdlinsignificant the low fre-
guency information. If using OT techniques instead, it isgible to capture properly infor-
mation about each order component. This work uses OT twapaphes based on parametric
models: VKEOT and the introduced SRCKBT scheme. Both schemes have computation
parameters that are fixed as suggeste®an and Wu2007); Alves and Coelhq2010.
Parameters that influence tracking performance the moshauiaitial values of process co-
variance matrix), and measurement noise,In the proposed SRCKBT scheme, filter
response bandwidth depends on the signal error covarigfcand in a less extent to the
frequency error covariance’, that is, the following condition should hold’ < ¢?. For this
reason, when choosing initialization parameters, two @sphould account: the maximum
range of machine speed and the maximum variance of measibration signal to preserve

a needed convergence region of estimatldngarala et a].2007).

Aforementioned parameter tuning is carried out for eactingsin the case of the synthetic
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Figure 2.2: Simulated synthetic signal with closed-order componesjisn time domain, and b) the

time-frequency representation obtained by STFT (hammingew, 512 frequency samples and 50%
overlap).
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Figure 2.3: 1st order component tracked from the synthetic signal, in tiroeain (top) and the

time-frequency representation using STFT (bottom), wihschalculated using the approaches: a)
SRCKEOT, b) VKF_OT.

signal, therefore, the following values of initializatiparameters are fixed for SRCKBT
schemexqf = 1014, g = 1072 andr = 10°°; while for VKF_OT schemer = 10, and
r=1073

Figures2.3, 2.4, and2.5 show accomplished order components (i.st, 4th, and 4.2h, re-
spectively) that are estimated from the synthetic signadguthe above described models.
As seen in Figur@.3, the VKF.OT scheme accomplishes better energy concentration of the
1storder component. Proposed scheme achieves energy catmantf the ktorder com-
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Figure 2.4: 4th order component tracked from the synthetic signal, in tiramalin (top) and the
time-frequency representation using STFT (bottom), wischalculated using the approaches: a)
SRCKFEOT, b) VKF_OT.
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Figure 2.5: 4.2th order component tracked from the synthetic signal, in tirmmain (top) and the
time-frequency representation using STFT (bottom), wihschalculated using the approaches: a)
SRCKEOT, b) VKF_OT.

ponent, but also preserves spectral information assaciwith other spectral components.
This degradation happens just within the first second umtilKalman recursion converges.
A similar situation takes place during tracking dh4&nd 42th order components (see Fig-
ures2.4 and2.5). But in this situation, spectral contamination becomeghér since the
order components are closer. Once the Kalman recursioreages, however, order tracking
improves remarkably. At this point, two aspects must beliggted: a) both OT schemes
estimate correctly closed-order components (either veawrebr amplitude); b) SRCKIOT
scheme gets higher convergence time, especially, whenastg 4h and 4.2h order com-
ponents.

To determine the estimation accuracy of tracked closedrardmponents, Tab 2 shows
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Table 2.2: Estimated RMSE for synthetic signal
Parameters storder 4horder 42thorder

A 0.01 0.01 0.01

VKFOT WR 0.54 0.64 0.56

A 0.09 0.16 0.24

SRCKEOT WR 0.07 0.23 0.24
IF 0.29 - -

the root mean squared error (RMSE) of estimated model paeaspenamely, amplitude
(noted A), waveform reconstruction (WR), and instantasdoequency (IF). For IF estima-
tion, only SRCKEOT is applied since VKEOT requires a reference pattern to track distinct
order components. So, VKBT scheme gets the same estimated amplitude error for all
considered order components. While using SRGKEF, the higher the order — the higher
the amplitude error. But in the case of WR estimation, therdancreases using VKIOT.
This error augmentation, which is due to a shift-phase betvestimated and original com-
ponents, is not perceptible in the Figu&s§, 2.4, and2.5. In contrast, SRCKFOT gets the
lower RMSE for estimated WR and IF. Thus, proposed approdotvato capture signal
dynamics of the basic order, but it preserves the phase bf@aoponent. As a result, pro-
vided above detailed analysis shows that SRGKFscheme gets better performance than
VKF_OT.

2.4 Experiments on Test Rig: Universidad Nacional
de Colombia data 1

Evaluation is rendered on test rig over fixed machine opegatgimes: steady-state and
non-stationary. In the former regime, performance is @d\because of importance of
machine working analysis under normal operational comd#iat given constant speed. In
the latter regime, speed becomes time-varying (i.e., ducmast-down maneuvers of the
machine), and it is important to track order components dentifying machine dynamic
behavior.

As shown in Figure?2.6, experimental test rig includes &P electromotorSi ermrens with
1800pm maximum speed. The motor is connected to shaft by a rigidloaupnd has two
supports, each one holding a ball bearBig-- 6005NR and two wheels. Drilling wells
are designed to create either static or dynamic unbalaradd@gmns. To measure machine
mechanical vibration, accelerometers are also includdichware located perpendicularly
to the shaft horizontal plane (labeled @scelerometer location In this experiment, just
the ACC102 accelerometer placed near the machine is employed, whgh heeasurement
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Figure 2.6: Experimental set-up for test rig.

range of 3-10kHzand 100mV/gof sensibility. TheNat i onal | nstrunents USB- 6009
data acquisition card acquires vibration recordings é2dsampling frequency.

2.4.1 Steady-state regime analysis

In this regime, the main goal of provided testing is to corepachieved performance of
amplitude and waveform estimation of both considered OTewsws under different ma-
chine states: bearing fault and undamaged. Used data saet@ueed on described above
test rig at fixed 1800pm speed. 20 vibration recordings are obtained from aforeioesd
measurement locations. Besides, according to bearinganagi characteristics, inner and
outer race frequencies are fixed a3t and 37th order of shaft rotation frequency, respec-
tively. Afterwards, input signal is filtered by low-passédiltwith 2500Hz cut frequency to
preserve most of information.

Figure 2.7 shows an example of vibration signal that is acquired onrigst As seen in
subplot of Figure2.7(a)for undamaged state, there are several salient spectrgamnts,
namely: Bt order (30Hz) component showing the highest constant amplitude anchbavi
a periodic behavior; time-varying®&h order component (18Blz) with amplitude ranging
from —20dBtill —10dB; and both, 18 order (390Hz) and 14h order (420Hz), components
having meaningfulness amplitude. For bearing fault caskowagh Ist order component
behaves similarly as in undamaged state, amplitude of higtder components changes
differently (see Figur@.7(b)), as follows: in case of.8th order component, amplitude span
increases in 1@B and shows an impact atsecondsfor 13th and 14h order components,
bearing fault frequency harmonics are cyclo-stationargmiey that there are some hidden
changes in the waveform that must be estimated.

So, the proposed procedure in Sectiis carried out supplying the following order com-
ponent sef” = {1,4,5,6.3,8,10,11, 13 14}, which regards bearing and shaft frequencies to
be tracked by compared OT schemes. In addition, for thisrebaexperimental set-up, the
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(b) Bearing inner race fault state in time domain (top) arsdtiine-
frequency representation using STFT (bottom).

Figure 2.7: Exemplary of acquired recordings on the test rig at 1808. (a) Undamaged machine
state, (b) bearing fault, where displayed recording regeedions are: time-domain (top) and time-
frequency (bottom). Red rectangles denote regions wheeaudny inner race fault is expected.

initial parameters are heuristically set &:= 10°%, " = 107%, r = 10 for SRCKFEOT,
andq = 101%andr = 1 for VKF_OT. Selected parameter values remain the same for whole
database to test stability and tracking performance of @athOT estimation approaches.
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Figure 2.8: Waveform reconstruction of order component tracked fromiamaged (left) and bearing fault
(right) recordings at 180fpm

Under assumption that the higher the amplitude — the retéli@rcomponent, the following
orderT setis selected:st, 6.3th, 13th, and 14h. As seen in the Figur2.8, either OT scheme
reaches enough accuracy in all estimated component ahgditur his fact means that fre-
guency associated with each component keeps proportoimatiorresponding harmonic,
i.e., Ist order relates to 361z 6.3th to 180Hz, and so on. Nonetheless, each OT scheme
performs differently amplitude and waveform reconstmuttispecifically, in case of.8th,
13th, and 14h order components.

In case of fault identification, Figur.8 shows that &th order amplitude, estimated by
SRCKFE.OT scheme, clearly increases fron2 @ 05, while VKF_OT based estimation does
not capture any amplitude change. But that change shouldkeé Whenever a bearing
fault appears. Also, SRCKBT based waveform reconstruction ofti3and 14h order
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Figure 2.9: Example of an acquired signal in the test rig under coastaddoperating condition:
(a) in time domain, (b) time-frequency representation gi$TFT, and (c) estimated instantaneous
frequency using SRCKPT.

components shows remarkable cyclo-stationary behavimresult of short impacts, instead,
the VKF_OT scheme does not show any information on that regard.

2.4.2 Non-stationary Regime Analysis

A set of signals is acquired to analyze order component astim under non-stationary
regime induced by speed changes, particularly, in the chseast-down operating condi-
tions. The dataset comprises 20 recordings that are adquirder coast-down operating
condition in the test rig displayed in Figuge6. The data are measured within 10-seconds
interval; this time interval is enough to register thredadiént operating momentsy maxi-
mum speed (180€pm), ii) once again, Secondsleceleration, andi) total stop. In all 20
recordings, the beginning of the deceleration is not syoulaed, i.e., the time instant when
the machine is turned-off is different in each recordingure2.9displays an exemplary of
an acquired signal during machine coast-down operation.

It must be noted that the order components present consteoittade while the machine is
working at maximum speed. But when deceleration occurgri@itude of each component
monotonically decays until reaching the frequency mininvahaie, as seen in Figu&9q(b).
The frequency minimum value is the estimated IF by SRCGKF(see Figur&.9(c)) as the
base frequency that does not reach the zero level, yet pheger frequency minimum with
such a value that can be attributed to the structural regenafithe test rig. Nonetheless, the
estimated IF allows identifying machine dynamic behawdmjch is associated to the first
order component. The IF supplies useful information aboetmanical functionality in the
proximity of the shatft.

For order component estimation, the set of initial paranseethe same as in the steady-
state regime analysis (Secti@m.1). However, the order components to be trackedare
only the first ten, since they contain most of informationw@tmachine behavior, including
the main bearing frequencies. Particularly, Figizel) 2.11, and2.12show first three or-
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Figure 2.10: 1st order component tracked from the coast-down signal, in tomeain (top) and the

time-frequency representation using STFT (bottom), wiéchalculated using the approaches: a)
SRCKFEOT, b) VKF_OT.
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Figure 2.11: 2nd order component tracked from the coast-down signal, in timeain (top) and

the time-frequency representation using STFT (bottom)chvis calculated using the approaches: a)
SRCKEOT, b) VKF_OT.
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der components, respectively, that are estimated usincK6RTT and VKEOT. Although

in the former case, each amplitude gets non-zero value ahthienum frequency, ampli-
tude estimation and posterior waveform reconstructionchrse to the original. For latter
approach, in contrast, each amplitude reaches zero valu¢h®&order components are con-
taminated with noise since reference speed forces the niodgt zero value, and hence
the estimated amplitude differs from the one of the origo@hponents. After waveform
reconstruction, however, each order component gets statinary nature; that behaviour
does not correspond to real one. Mostly, VKH is very sensitive to synchronization be-
tween vibration and reference speed signals, particulaHgn there are changes among the
different operating moments. Instead, SRCRHF does not present that issue.

2.5 Order tracking case studies

2.5.1 Case study 1: Ship Driveline

The proposed methodology is also tested on the ship stathloizeline appraising a diesel
engineCat erpi | I ar 3412C, 12 valves in Vee, 4 strokes-cycle. The engine that pro-
vides 2100rpm maximum speed is directly coupled by a geariddx 520. The database
is recorded using ACC102 accelerometer with a spectral range 6f 8 kHzand 10mV/g
sensibility.NI 9234 acquisition card is employed at a.B&kHzsampling frequency. The ac-
celerometer is located between the gearbox output and fsehaxel, but perpendicularly to
the shaft horizontal plane. The recordings, each one [astiie second, are captured under
the forward-running operating condition. Since it is nosgible to measure the reference
shaft speed that is required by VKBT, only SRCKEOT is used, for which the following
free parameters are heuristically fixed gfs= 1072, " = 10** andr = 102
Figure2.13shows a time-frequency representation of the measuredlsigd the estimated

Figure 2.13:Example of an acquired signal from ship driveline under trevard running conditions:
(a) in time domain, (b) time-frequency representation g FT, and (c) estimated instantaneous
frequency using SRCKBT.
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Figure 2.14: Examples of estimatedsfi(subplot a), & (b), 1%h (c), and 2% (d) order components,
for forward running condition, tracked from ship drivelisignal using SRCKEOT in time domain
(top) and its corresponding time-frequency represemtaisming STFT (bottom). The red rectangles
show the region of interest in the time-frequency map.

IF using the proposed SRCKBT scheme. As seen, the machine speed decreases slowly
despite the ship is running forward; that means that the twathe vessel axle is chang-
ing. Since the largest the spectral component — the morenwaimon they have, only order
components with bigger amplitude are extracted. In the mtecase, stronger components
relate to the gearbox (e.g. gear-mesh, bearings) and tifie stsaa result, using the above
explained procedure in Secti@2, the estimated and tracked order components for the an-
alyzed signal ar& = {1, 6, 8, 10, 11, 13.6, 15, 16.6, 19, 20, 22, 23.4, 25, 26.2,, 285,

30.6, 36, 37.6, 894 Time domain (top) and the time-frequency representatiott¢m) of

the 4 components holding highest amplitudes are shown uw&Ry14, namely: (a) $t, (b)

6th, (c) 1ah, and (d) 25h.

As seen in Figure®.14a) and2.14b), the most representative components aseahd
6th, since they describe the dynamic behavior of the shaft amatiput gearbox bearing,
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respectively. The first order component shows short impesssciated to the exerted load for
a sea movement. An increment isttomponent can supply information about an eventual
propeller crash into an object, which might generate umtza@ar misalignment in the axle.
In turn, the 8h order component shows a concentrated energy within shogtitistants; that
accumulation distinguishes the output gearbox bearingréfbre, we hypothesize that fixed
amplitude change of thetlborder component can supply discriminating informationwbo
an eventual fault.

Regarding the 1B and 25h order components, as seen in Figuzes4c) and2.14d), they
present the highest spectral amplitudes and are derivedtfre gear-mesh since those com-
ponents are in constant friction. It must be noted that ashiyespeed decreases, the com-
ponent amplitudes also diminish since there is less frictio

2.5.2 Case study 2: Internal Combustion Engine

In this experiment, the IF is estimated from an IC engine andmared with the tachometer
reference to demonstrate that the proposed method carctettteanon-stationary behavior
associated to variable speed even when the interest comigmesents a low amplitude. The
analyzed mechanical system consists of. alizsel engine with 4 cylinders in line. The ac-
celerometer recording (provided by Vibration and Acouktiboratory from INSA-Lyon) is
located on the motor support distribution side in the axiahp, and acquired using 32163
of sampling frequency lasting 80 seconds approximatelg Hig.2.15shows the analyzed
signal, where Fig2.15(a)depicts in the top part the complete vibration recording ted
bottom part the signal downsampled 32 times, reaching 224 sampling frequency. The
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Figure 2.15: Signal acquired in the IC engine from INSA-LVA laboratorg) Signal in time domain
complete (top) and a downsampled version 32 times (bottang,(b) the time-frequency represen-
tation of downsampled version.
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Figure 2.16: IF estimated by IAS-OT model from INSA-LVA IC engine signh) time-frequency
representation highlighting the estimation with blue Jinad (b) a comparison with the tachometer
reference (top) and its relative error (bottom).

preprocessing applied to the signal is required becauseaimglete signal exhibit a time-
varying cyclic behavior that breaks the imposed oscillatoodel. However, the downsam-
pled version present a clear harmonic behavior that presehe continuity condition to
estimate the order component amplitude. Rig.5(b)display the time-frequency represen-
tation of downsampled version computed by the spectrogramav4096 frequency bins,
50% overlapping and a Hamming window of 512 samples. It isthvooting that highest
order corresponds with 4 harmonic signal that represerteéinkshaft by the number of
pistons, and hence, the expected IF has a very low amplitdllbough, the IF extraction
by the maxima bins in the spectrogram works successfulinggikto account the scalable
relationship between the first and forth orders, the progp@ggproach is applied to obtain
multiple order components even when the signal of interasthlow SNR.

Taking into account that thetldorder has a biggest amplitude, the harmonic algorithm ex-
plained in Sectior?.2.1could not be able of correctly estimating the order comptsen
be tracked. Therefore, the amount of orders is fixed sudh as{1, 2, 3, 4, 5,6, 7, 8, 9
10, 11, 12,13, 14, 15 and the SRCKF covariances are fixedjfo= 10-°, g = 10! and

r = 1012 As a result, the IF estimated is displayed in Fgl6(a) and the relative error
compared with the tachometer reference (Rid.6(b) allows to observe that the estimation
is closer to measured crankshaft speed, startingsb and decreasing to reach error levels
under 2%. The high error at the beginning corresponds tarethat the algorithm takes
to stabilize the order and IF estimation.

In Fig. 2.17 could be observed the time-frequency representation obttier components
lasting from Ktto 6th in logarithmic scale. It could be appreciated that all o@@nponents
include information about thetdorder due to the model is driven by the spectral component
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Figure 2.17: Time-frequency representation of six order componenimastd from INSA-LVA IC
engine signal using the IAS-OT model.

amplitudes. In addition, the spectral information relavath orders beyond from 18 is
distributed into the all estimated components since theahddes not separate noise from
signal part. However, it is worth noting that the componeithwighest amplitude on each
order corresponds with the estimated component, and itéitangis much more represen-
tative than in the complete signal (see Fidl5(b). The error introduced by the amount of
estimated order components may be reduced if the harmaetics imcreased, but the com-
putational cost is increased also. Since ttieatder component has the highest amplitude,
it is perfectly extracted from the signal, which impliesttispectral components with high
energy could be estimate with high precision, and the pregp@pproach is sensitive to the
SNR in the sense that between higher is the desired ordertadeglhigher is the estimation
accuracy.
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Figure 2.18: Gearbox schematic from CMMNO2014 conteSMMNO, 2014

Table 2.3: Amount of each gear teeth presented in Rid.8

No. Gear 01 O2(3planets) 93 94 O O U7 08 U9 Qw0 Oun
No. Gear teeth 123 50 21 93 22 120 29 63 23 10 13

2.5.3 Case study 3: Wind Turbine - CMMNO2014 contest

This experiment consisted of estimating the instantanspesd impm, or instantaneous fre-
guency inHz, from a wind turbine operating under non-stationary caodg. The informa-
tion given hereatfter, as well as the signal, have been kipidlyided byMaia Eolisto solve
the contest in the framework of the International confeeean Condition Monitoring of
Machinery in Non-stationary Operations (CMMNO), Decemb®116, 2014 Lyon-France
The provided signal comes from an accelerometer locateti@notor side of the gearbox
(high speed shatft) casing in the radial direction, and teedpf the main shaft (also called
low speed shaft) is between 13 andrpsn during the recording. The sampling frequency is
20kHzand the acquisition time is 547 seconds approx. Aiming teewstdnd the planetary
gearbox from wind turbine, a kinematic scheme is presenig®FL8 The whole gearbox
has three stages: one planetary (pairs 1-2 and 2-3) and twallgarallel stages (pairs 4-5
and 6-7), neglecting the gear pairs 8-9 that are related tvghoil bump. Table2.3 lists
the gear parameters of the planetary gear and the fixedggafs. Regarding with the IAS
estimation, the red shaft is used as the input shaft (lowdspkaft) and the yellow shaft is
regarded as high speed shaft. When the input speed of th&éaftdsgiven at any time, it
is possible calculating the characteristic frequenciethefplanetary gearbox by using the
equations listed in Tabl2.4, which are deduced from the configuration of planetary amd pa
allel gearboxes. As regards to high speed shaft estimdtiomsing the expressions listed in

IContest rules link:
http://cmmno2014.sciencesconf.org/conference/cm@bdpages/cmmno20bntestV2.pdf
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Table 2.4: Characteristic frequencies of planetary gearbox

Characteristic frequency Expression
Meshing frequency of gear pairs 1-2 and 2-3,10 = frpz3 =01 - f;

Rotational frequency of blue shaft f, = % -,

Meshing frequency of gear pair 4-5 frus =04 fo = Qs - % -
Rotational frequency of grey shaft for = % -y = % . % -
Rotational frequency of yellow shaft fy = % < Afgr = % . % @G
Meshing frequency of gear pair 6-7 frer=07-fy=07- % . % -

wheref;, is the rotational frequency of the low speed shaft.
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Figure 2.19: Signal provided by CMMNO2014 contest in: (a) time domair), f(equency domain,
and (c) time-frequency domain.

Table2.4are defined the boundarids’[ H] from the desired IF, obtaining that the reference
frequency is between ZBHz and 2998Hz. However, when the testing is carried out, it was
found that the minimum boundary must be fixed aHz5In Fig. 2.19 it is shown the pro-
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Figure 2.20: IF estimated by IAS-OT model from CMMNO2014 contest windbine signal: (a)
time-frequency representation highlighting the estioratvith blue line, and (b) a comparison with
the tachometer reference and the common (top) and itsuelkatior (bottom).

vided signal, where it is possible to observe the signahmefifrequency and time-frequency
domain ((a), (b) and (c) part, respectively). In frequenoyndin, the harmonics obtained
using the harmonic algorithm are marked and showed in theétdwansform computation
from 20 seconds signal segment (see Ei$9(b). Here, the harmonic 2BHzis used as first
order, obtaining in total a s€tof 26 orders. In addition, the SRCKF parameters associated
to process and measurement covariances are fixgtiasl0=, ' = 10-° andr = 107

On the time-frequency representation, it is possible tenlesthat there are two different
dynamic behavior in the signal, which are dominated by twitedint rotating systems, it
means that there are harmonics synchronized with the lovhagidspeed shafts, yet there
are other harmonics that do not matchAs a result, Fig2.20 displays the IF estimated
using the proposed IAS-OT model. Obtained IF is highlightéith blue line on the time-
frequency representation Fig.20(a) where it is possible to see that the estimation match
with the high speed shaft, ranging fromk28to 30Hz, which confirms the boundaries fixed
into the IAS-OT model. A comparison with the tacho refererecehown in Fig.2.20(b)
and besides, the IF estimation (red line) using a traditiorethod based on time-frequency
representation (noted as STFT), which consists in trackiegnaxima values in the STFT
(Urbanek et a].2013. It is worth noting that using the aforementioned method aehieved
the fifth place in the contest. In that sense, the proposeddA3nodel allows to improve
the result obtained using the based-STFT method, reachialative error undes3% de-
spite the fact that the intervals [22@50] and [326- 350] seconds there are a delay between
the reference and the estimated IF. Also, it is importantighlight that the IF estimated

IContest results link:
http://cmmno2014.sciencesconf.org/conference/cm@ibdipages/PresentationCMMNOcontestwopicts. pdf
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Figure 2.21: Time-frequency representation of nine order componetimated from CMMNO2014
contest wind turbine signal using the IAS-OT model.

by STFT does not match with the reference shaft speed betagiseaxima tracking was
obtained at frequency interval [5060JHz and the scaling factor was not enough accurate.
Finally, a time-frequency representation of nine order ponents is displayed in Fig.21,
where it is important to notice that each plot is presentddgarithmic scale, therefore, the
filtering provided by the proposed method allows to extraetrion-stationary components,
even if the order components are not integer multiple fratotder. Similar to case study
presented in Sectiok.5.2 there are components that comprise noise around the tracke
der component, nonetheless, the fact that the order amdeltalds during all signal length,
improving the filtering precision of the proposed IAS-OT rabd
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Figure 2.22: Gearbox schematic from SAFRAN conteSAFRAN, 2015.

2.5.4 Case study 4: Gearbox - SAFRAN SURVEILLANCE 8
contest

This experiment consisted of estimating the instantanspeed inrpm, or instantaneous
frequency inHz, from a gearbox operating under non-stationary conditidrtee informa-
tion given hereafter, as well as the signal, have been kipdlyided bySAFRAN to solve
the contest in the framework of the International confeeeBarveillance 8, October 20-21,
2015, Roanne-France

The contest includes two independent exercises, the saggnabch exercise is under non-
stationary conditions, i.e. coast-down and start-up dpgyaonditions (exercise 1 and 2
respectively). In this case study just the first exercise sedged using the IAS-OT model,
and the results are presented here. The provided vibratioalshas a 5kHz of sampling
frequency and & minutes of time acquisition. Fig.22shows the kinematic scheme of the
gearbox, where it is possible identifying the transmisgioes (L1 — L11), and the number
of gear teeth, as well as the relationship between diffdirees in order and frequency terms
(Fig. 2.23. For sake of simplicity, the signal exhibits a visible hamits from HP shaft, and
the objective is to recover the non-stationary rotatioregpe HP shaft (N2) from a vibration
signal mounted on the gearbox casing. A visual inspectionlohtion signal is presented
in Fig. 2.24, where it is displayed the gearbox signal under coast-dqvemating condition
both in time, frequency and time-frequency domains. Whersignal is decimated to Rblz
(Fig. 2.24(c), two different dynamics that cross between them could bgrgjuished, yet
the signal is downsampled 25 times obtaining a clear harenpatiterns that are related to
required shaft speed. Nonetheless, there is no a spectrgdazeent around 1667Hz (i.e.
1000Gpm) that presents a visible harmonics. Therefore, in spitb®friformation included

2Contest rules link:
http://surveillance8.sciencesconf.org/resource/fidd&
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Figure 2.24:Provided gearbox signal by SAFRAN contest in: (a) time dorndd) frequency domain,
and time-frequency domain from downsampled signal (c) 2(dh@5 times.

in Fig. 2.23allows to infer that expected HP shaft component must ap@eaund 166 7Hz
(1storder), inspecting the tacho signal measured on line 4, aed gor solving the exercise
2, shows that thé&4 rotational speed ranging from 182 to 243z Therefore, taking into
account that the relationship betwdehandL1 (HP shaft speed) is@14, it is assumed that
the desired shaft speed is around H8and 24&1z. Then, the IAS-OT model boundaries are
fixedLT = 180 andH™ = 250, and it is not relevant if the operating condition is tstgr of
coast-down, due to the required useful information is tadedin approximated range where
the expected IF is changing. The orders to be tracked intpriyl@osed model are estimated
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Figure 2.25: Time-frequency of SAFRAN contest gearbox signal (exerdisand the estimated IF
using the IAS-OT model (blue line).

using the harmonic algorithm (Secti@i2.1 from a 20 seconds signal segment, obtaining
the harmonics showed in Fig.24(b) As regards to properly fix the first order component,
a high-pass FIR filter is applied, because there is a compa@mneand 1061z that is a sub-
harmonic of desired component, and the proposed modelresgtiiat the first component
in the signal corresponds with the first order. In that seasetal of 6 order components are
needed to estimating the IF associated to HP shaft speedressilt, adjusting the SRCKF
parameters tof = 10, " = 10 andr = 1072, it is obtained the IF showed in Fig.25
The blue line indicates the IF estimated by the proposedadetind green line corresponds
to estimation using the based-STFT methddrf@nek et al.2013). It is possible to see
that IF extracted with SRCKIOT method is centered with respect to spectral component
(red band), whereas the based-STFT method obtains a stiftedich could be generated
by a bias introduced when the interpolation of the estimétead carried out. Nonetheless,
it is worth noting that both methods extracting correctlg tk structure, but the proposed
scheme is more accurate, taking into account that the gctator in the maxima tracking
must be fixed. Other aspect to highlight is that the estimiteadlows us achieve the third
place in the contest, yet including the exercise 2 answgr226shows the time-frequency
representation of the six extracted order components iarithgnic scale. It is important to
highlight that first order is extracted perfectly, it meanghout spurious noise, whereas the
other components are contaminated with low power noise.

2.6 Discussion

The developed experiments allow formulating several figgiabout the considered OT
schemes. So, the following advantages and drawbacks ofrdpoged scheme are high-
lighted:
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Figure 2.26: Time-frequency representation of six order componentmagttd from SAFRAN con-
test gearbox signal using the IAS-OT model.

— The proposed nonlinear model for solving the OT problemhzandle vibration signals
with multiple oscillatory components represented throagheral order components.
Yet, the approach has a trade-off between the model or#er 12 beingK the number
of components to be tracked) and the computational costiaéed with parameter
estimation. Moreover, aK increases the precision also improves, but at the same
time, the computing burden grows since the amount of itenatbecomes bigger. In
the concrete cas& can over exceed hundred components. To cope with this Kalman
filtering issue, estimation is carried out just over the nteltvant order components.
So, the proposed methodology downsizes to the needed Maaatbunt (more less
thanK) such that it provides enough precision of the respectigenstructed order
components.

— However, the proposed OT scheme represents both the aigghabise energy as state
variables, and therefore the estimation performance dsesinasmuch as obtained
order components from vibration signal are corrupted. Toen® the needed estima-
tion accuracy, particularly, ten order components are useéest rig experiment, as
seen in Figure®.1Q 2.11, and2.12 Likewise, since the noise level is higher, the
amount of order components increases to 20 in the ship gréevelpplication (Fig-
ure2.14). Besides, the IF estimation also depends on the amountecfrsb compo-
nents to be tracked, but the noise influence is more focusedmatitude estimation
according to the selected model covariar@eHere, it is worth noting that the tracked
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order components could be estimated using the algorithrtakeqa in Sectior?.2.],
but when the signal comprises an order components with derale amplitude, as
in the case studies related with both contest.

— Since the IAS-OT model is solved by Kalman filtering, thegass and measure-
ment covariances are parameters that strongly affect timaasn accuracy, there-
fore, it is suggested to utilize a grid of parameters conugishe following values:
i) g2 € [10°3,1076], i) qf € [10°6,10711], andiii) r = qf - 10"1. Starting with
those parameter values reduce the possibility to find a coestimation both order
components and IF.

In addition, comparison between SRCKH and VKEOT brings the following observa-
tions:

— In terms of the achieved estimation performance, comparedels turn to be ade-
guate for all considered databases. Therefore, the obtaineomes in simulated
experiment (see Tabl.2) allow inferring that the waveform reconstruction using
SRCKFEOT gets a lower error, which is reduced to half in averagegémh estimated
order component. Error reduction can be explained sincgithigosed scheme does
not require any synchronization between vibration anddasgnals, while VKEOT
scheme does. In contrast, amplitude estimation of eaclr cadeponent shows that
VKF_OT supplies better approximation to the original compos&micause it modu-
lates each component using the amplitude parameter, veilgroposed scheme is just
based on the frequency parameter. Yet, when experimentabdaused, the achieved
performance has no meaningful differences between com@gmeroaches, i.e., both
schemes are satisfactory. Therefore, comparison mustbened in a graphical way.
Generally, the VKEOT scheme needs a reference signal coming from the rotation
speed of the machine. Instead, the SRCBF does not require any synchronization
and is able to estimate the frequency associated with thecimponent as well as
other components that might not be integer multiples of ttation speed, such as
resonances (Figui29).

— As seenin Figured.3, 2.4, and2.5(theoretical experiment), as well as in Figuke$Q
2.11, and2.12(test rig experiment), the VKIOT approach performs as an amplitude
modulation scheme, carrying out a cumulative integratibthe angular velocity to
get the forming signal phase of each compon@ain(and Lin2006, and hence, this
approach presents a high estimation error when referegoalsianishes at all. In
contrast, in the proposed scheme, each component is estifinam its own waveform
and then the amplitude is calculated from each in-phase aadrgture component;
this allows to track more complex dynamic systems.
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— As shown in Tabl&.2, the proposed scheme requires larger component ankotmt

perform more precise estimation of each component. InstbadVKF OT can es-
timate the desired component, provided the reference sfigadl. However, to get
similar accuracy, the latter scheme requires fine synchation of the vibration sig-
nal along with the reference. In the case of the closed-ardemponent estimation,
VKF_OT is more accurate in determining the amplitude, but theafigam reconstruc-
tion error is worse when the order component is estimatenbghrere is a phase delay
between the base signal and the modulation performed. Trhe bahavior can be
seen in Figure®.10 2.11, and2.12 On the other hand, SRCKOT performs more
precise estimation because it preserves the waveform aptitade at current time,
despite the noise influence; this fact is an advantage irwedt applications.

From the carried out test rig analysis two aspects are tonfjghasized: first, the
proposed scheme performs suitable estimation, mainlgesindoes not require any
reference shaft speed measurement. Rather, there areptragaeters associated to
Kalman filter recursion that must be tuned. In case of the MK, there are only two
parameters to be fixed. Second, the estimation stabilityRGIS-_OT is better than
in the VKF_OT case since for each recording a reference shaft speediragesnt is
needed.



3 Fault identification by novelty
detection

Nowadays, condition monitoring of rotating machinery i€@®ing increasingly important
for the industry because it allows reducing accidental dgaand improving the machine
performance at the same time. This tool mainly relies on tlegjaate evaluation of the ma-
chine health or state, employing a set of measurementgddatndition-based Maintenance
— CBM). Nevertheless, most of the real-world machinery afgeunique pieces, which are
not suitable for inducing faults, making unfeasible to eotluseful data from undamaged
machine conditions. Therefore, training datasets arelanbed, presenting enough infor-
mation just about normal class. Regarding this matterntheelty detectioechniques had
been developed that aim at inferring or modeling the undisicd or missing data.
According to the extensive review Pimentel et al(2014), the novelty detection methods
(also termed one-class classifiers OCC) can be construsted generative or discrimina-
tive models. In either case, non-normal classes can beldaséd on several representations:
Distance-based, Probabilistic, heuristic, subspaceehas based on information-theoretic
learning. Nonetheless, extraction of a representativieifeaset must be carried out accu-
rately to provide robust performance on test data. To thik fgature extraction achieves a
trade-off that maximizes the exclusion of novel sampledeviminimizes the exclusion of
known samples.

For training of CBM systems, data can be measured by sev@mnalges: vibration, acoustic
emission, and temperature signals, among others. Howteevjbration principle is more
frequently used because of its low cost and high performaiscally provided Randal
2011). Furthermore, a set of statistical features has beendgine@posed for extracting a
set of discriminating features from vibration signdlgi(et al, 201Q Villa et al., 2012 Lei

et al, 2012 Wang 2016. However, several machine operations often lead to natesiary
signals due to the dynamic behavior of the machinery exeitaf resulting in time-varying
operating conditions. Therefore, the development of dignalysis methods suited to ex-
tracting the time-varying features from non-stationagnsis has become increasingly rele-
vant for machinery fault diagnosig€ng et al.2013. To obtain valuable information from
non-stationary signals, several principles of featureagtion have been suggested for diag-
nosis of machinery health conditiong/grden et al.2011, Goyal and Pabla2015. Where

it is possible to find stochastic models for time series (légressive modeld dngone et a).
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2015, Markov models Zhou et al, 2015), linear time-varying decompositions (harmonic
analysis Cardona-Morales et al2014 Heo and joon Kim 2015, time-frequency analy-
sis (Wang et al. 2015, time-scale analysisdhen et al.2016) , non-linear time-varying
decompositions (empirical mode analydisi et al, 2015, complex analysisGaesarendra
et al, 2015), among others.

Although the implicit trade-off between the time and frenoge resolution of the analysis
may degrade the performance of time-frequency represent@FR), its use remains very
desirable for machinery diagnostics. The major advantagd$R are its fast implemen-
tation and the provided physically meaningful interprietatas suggested iBejdic et al.
(2009, where different TFR methods are discussed to discriraitedt rig faults. Never-
theless, one aspect that may jeopardize the use of linearvarying decompositions for
condition monitoring is the high dimension of the extradieature set, extremely increasing
the computational load of the CBM as a whole notal@gidona Morales et a013.

In this chapter, a CBM methodology for non-stationary opegaconditions is introduced
that relies on a set of the time-varying narrow-band feataxtracted from order tracking ap-
proach presented in Chap®&raiming to encode the non-stationary behavior of the aeduir
vibration signals. The key point here is conceiving the omenponents like dynamic fea-
tures, and then, estimating several statistical parasetar those features to carry out the
dimension reduction of the input training set as discuseediiet al.(2015. Another ap-
proach to properly characterize each narrow-band compasmemploying similarity mea-
sures as is presented $terra-Alonso et al(2014). Particularly, the multi-dimensional out-
lier detection problem is solved using two different dataatgtion classifiers, including the
Support Vector Data DescriptiofsVDD) as OCC method that is assumed to accomplish a
spherical boundary around the data set by avoiding the astimof the data densityTéx
and Duin 2004 Cha et al.2014). The other data description classifier is based on the astim
tion of the probability distribution function, assumingthlihe boundary can be modeled by a
Gaussian distribution, so-call&hussian Distribution One-Class Classif(@DOCC) (Tax,
201D).

The proposed CBM methodology comprises two different OCRestes under different
points of view (SectiorB8.3). Firstly, a traditional scheme, similar @ing et al.(2015);
Lei et al. (2015, where one class encloses the all undamaged data, andeaitdks is
compounded from different types of machine faults, eithdralance and misalignment or
bearing faults. Moreover, secondly, a novel scheme basdydirmhlabel assignment where
the dynamic features (i.e. order components) are dealpbkeido-observations taking into
account that each order component inherits the propertifseaccomplete signal. Then, a
feature set is built with all undamaged order componentsaio the classifier algorithms,
and the order components estimated from faulty signals ssesaed to identify a spectral
region where the abnormal condition appears. In order tolatd the proposed methodol-
ogy, several experiments are shown in Secti®disand 3.5 using three different datasets.



3.1 Feature estimation 45

First, a dataset collected on a test rig for undamaged, anbatl and misaligned instances
under speed-varying machine conditions (start-up and-ctmagn). Second, a set of signals
acquired on a test rig including undamaged and bearingsfanlier constant speed. Finally,
a dataset composed by undamaged and bearing faults undgrdoven operating machine
condition.

3.1 Feature estimation

With the purpose of separating the information of spectratisands, the filter bank methods
(FBM) decompose bandwidth-limited signals into a set ofmarband components. Thus,
a given signay(t)e R(T) that has a finite bandwidthF (with F0, 1/2At], being /At the
sampling frequency) is decomposed ie R* narrow-band componenis{x.(t):ke K} so
that each one has a bandwidtk, such that,cF.

In that sense, the order tracking model (OT) proposed in@e2t1 decomposes the signal
y(t) in a set of order componenkg(t)e R(T) such that theZ.1) can be written as follows:

K
Y(O) = > %), Vte T (3.1)
k=1

where each order componentigt) = ay(t) coskw(t) + ¢k(t)), beingay(t) the order ampli-
tude kw(t) thek-thharmonic of the fundamental rotational frequengy) andgy(t) the order
phase. It is worth noting that depending on the amourK @rder components extracted,
it is feasible thatx.(t) could be associated with a mono-component signal (i.espleetral
information is contained in a singular frequenay(t), but considering that in the most of
case« is lower than the actual harmonicsyi(t), eachx,(t) has a limited-bandwidtAF,.
Due to the narrow-band components comprises much infoomatout the machine condi-
tion, itis necessary to estimate a set of features that mégdaato the classification scheme.
In that sense, two different type of features are computed fach order component includ-
ing the statistical and similarity characteristics.

3.1.1 Features based on statistics

To compute a commonly state-of-the-art feature set, usectiiret al. (2010; Villa et al.
(2012; Wang (2016, both each single recording;(t)) and each dynamic featurg ((t)) is
represented by a set of scalar-valued time—invariant festispecifically, the suggested sta-
tistical features appraises two sets: set 1 having 11 fes{w#, . . ., x11}, which are proposed
to be estimated directly from the time serig3), that denotes either the raw sigiydl) or

an order component(t); set 2 with 13 featuresy, . . ., ¥13}, which are estimated from the
frequency domain computed by the Fourier Transform of the tseries'(f) = F{u(t)}.
Both sets are shown in Tabk1, where f; denotes the-th frequency value, and in this
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Table 3.1: Extracted statistical features in time and frequency daomaifterLei et al. (2008 2010.
x1=FE{yt):VteT} x1=FE{¥(f):VfeF}

X2 = std@(1) 2 = var(¥(f))
X3 = ms (1) 72 = ms(¥(f))
xa = skew (1) a = skew(¥(f))
Aszkut@W®) o s=kur¥() .
xe = (E{WOI))" o= E(F¥(1)/E{¥(1))
x7 = max|y(b)l ¥7 = VE{(fi - %)?¥(f)}
e =x7/xa o= E{f(N) /B {12%(1))
Xo = x7/x6 fo = E{{99(1)} /B 1¥(D) B{f4%(1))

x10 = xe/ E {ly ()]} X10 = X7/X6

xu=xr/Ew®l = E{(fi-76)*®(f)} /i3
¥12 = B {(fi - to)"W(1)} /74
F1s = E{(fi - %) 2¥(N)] /77*

study, both sets are merged into a single statistical featetr (SFS). An optional dimension
reduction is also considered by using Principal Componewalysis (SFS-PCA).

In Table 3.1, E {-} stands for the expectation operator, and the set of feafytes ., ys}
are: the standard deviation, s)¢¢he root mean square (RMS) value, rn)sthe skewness,
skew(); and the kurtosis, kurd all of them providing a physical interpretation in ternfs o
vibration severity levels. In addition, other statistitehtures agq, y10 andyg are the crest
factor, the shape factor and the frequency center, respécti

3.1.2 Features based on similarity measures

With the aim of improving the discriminating ability of thedture set, it is computed a
measure of similarity between the input signé) and each extractekithe narrow-band
componentx(t)e R(T), quantifying their mutual statistical dependence. Takinip iac-
count the available FBM representation, it is measured thiesscal dependence through
the cross-correlation spectral density (CCSbgtween{y(t), X«(t)} that depicts the distribu-
tion of signal content over the frequency domain, defineded®hn

2

f f Y(7)X(t + 7)d7T exp( jowt)dt (3.2)
2

T

Syx. (w) =

wherew = 21 f. Derived from the spectral measure $13), it could be consider the follow-
ing generalizing values of mutual statistical dependence:

— Pearson’s correlation coefficient (PCQy x € R[-1, 1], that is a straightforward way
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to quantify the linear relationship of dependence as bellow
Pyx = FE {Sm(w) - Ywe Fk}/O'y(er (3.3)

whereoZ=(2r)™* ka IS¢(w)|?dw is the variance. Note that bolft) and x(t) are as-
sumed zero-mean values.

— Cumulative spectral density index (CSiHjroduced as follows:
Oyx = E{fsw(a)da ‘VYw € Fk}, Oyx €ER' (3.4)

It is worth noting that the higher the values®f, ando, , the higher statistical association
between variables.

3.2 One-class data inference

Based on the optimal signal detection that infers whetherddimage is present, different
approaches to distinguish one class from the rest of therfeatata spaceZ € RV*P, had
been developed, (beirmythe data dimension arid the number of available objects). Partic-
ularly, the measured data space is related to just one ofdbseas (termethrgetand noted
as Z,CZ) that can be properly characterized and compactly clust@nesuch a way, as to
guarantee the discrimination of other possible objectst (&) outlier class from which no
measurements are available) distributed outside of thyetadass. So, to hold the target
class within concrete boundaries, two concepts are intedtiu) the distanced(z;) € R*,
that measures the closeness of an objjecti = 1,...,N; z; € Z} to the target class, and
i) the threshold € R* on this distance, that fixes the decision boundary of thestargss,
that is (Tax, 2011):

{d(z,—) <6, =z — targetclass (3.5)

d(z;) > 6, =z — non-target class

The definition of the adequate classification boundary atdarget class remains the most
challenging issue. Moreover, the threshelshould allow as many objects as possible from
the target class, minimizing the chance of accepting nayetgor outlier) objects at the
same time Khan and Madde®2010. The most important feature of OCC, as is discussed
in (Tax, 2011), is the trade-off between the fraction of the target clasd is acceptedy,

and the fraction of outliers that is rejectdd, or the equivalent trade-off between the error of
the first and the second types,ande),, respectively (see Tabi&?2). In OCC problems, the
errors are commonly denote in terms of the false positiv@utlier accepted) and the true
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Table 3.2: Types of classification error in the OCC problem. In mulsslgproblem the errors are
noted as type | errore() and type Il error £,).

True class label
target outlier
true positive () false positive ()
target accepted outlier accepted) (
false negativef() true negativet()
target rejecteds(,) outlier rejected

target

Assigned label
outlier

Figure 3.1: Regions in OCC. A spherical shaped one-class boundaryifgtraising the training set
(blue dots). The outliers are represented by red dots. Tée ayeas represent the error of the first
and second types.

negativet, (target rejected). The general setup is shown in Bify. The circular boundary
is the data description which should describe the data, henvi makes some errors: a part
of the target data are rejected and some outliers are accdpteasing the volume of the
data description aiming to decrease the eggrwill automatically increase the number of
accepted outliers, and hence, increase the errém practice, the employed distance can be
implemented by the simple Euclidean or even more compldissts-based distances. In
that sense, the distances are more robust when it is impoedel to the OCC that allows to
provide a highly dense volume of the decision hyper-sph®pecifically for implementing
the OCC, the Gaussian distribution classifier (using Maludnms distance) and the Support
Vector Data Description (using kernel based square dis)aare explained below.
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Figure 3.2: Threshold on a 1-dimensional Gaussian distribution.

3.2.1 Gaussian-Distribution One-Class Classifier - GDOCC

The Gaussian-distribution-based OCC fitp-dimensional multivariate normal distribution
(e.g. see Fig3.2) to the data seBishop 1995:

1
(27)P2 det(Z)/2

- 1 -

=(z) - exp(~5( - )" 5z - ). 36)
wherep € RP* and X' € RP*P stand for the mean vector and covariance matrix of the
training set,Z;. In order to distinguish between target and outlier datarestiold on the
probability distribution function is set and then, the Miam®bis distance of a new objesgt

is computed as follows:

d(zy) = \/(zv - )" XNz — p). (3.7)

The instances with thé = 10% amount of largest Mahanalobis distance are regarded as
outliers. As a result, an ellipsoidal boundary around thia édaachieved. This method is
expected to work reasonably well when the data are normadtyilouted.

3.2.2 Support Vector Data Description -  SVDD

The objective of SVDD is finding the best data descriptioreofiét data in OCC. Assume a
datasetz,i = 1,..., Ny}, whereNy is the number of target data. The objective function of
SVDD is as follows ?):

Nir

min R2+CZ&
i=1
s.t. lzi—alP<R+¢&, &=0 VieNg (3.8)

wherea is the sphere centeRis the radius and is a slack parameter used to incorporate the
effect of data not included in the spherical descriptios, it allows a soft boundaries (see
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Figure 3.3: SVDD in feature space.

Fig. 3.3). The variableC represents the trade-off between sphere volume and thearwhb
target data outside the sphere, allowing the relative itapoe of each term to be adjusted.
To solve the optimization problem i8 @), itis constructed a Lagrangian function as follows:

Nir Nir Nir

LR a,a;,,6) =R+C Y &- > aifRf+& -z —alP} - ) vé (3.9)
i=1

i=1 i=1

where Lagrange multipliers arg > 0 andy; > 0. Finding the stationary point oB(9), the
rearranged function ir3(8) is rewritten as:

N N Nir
minZZaiaij(ai,aj) - ZaifK(ai,ozi)
R i-1
Nir
st Y ai=1 «el0Cl, Vij=1. N (3.10)

i=1

whereX represents a Mercer’s kernel; usually a Gaussian kernél sté&ndard deviation
o (adjustable parameter) is employed, thati¥zi, z;) = exp(llzi - zj||/0'2), with i, ] =
1,...,Ng. Those vectors for which; = C, termed thébounded support vectqgrare located
outside of the sphere, whereas the objects wiith [0, C], or unbounded support vectomre
located exactly on the surface of the decision boundaryrsplBy the way, a large fraction
of thea; should become zero during the optimization3ril(. Then, the introduced squared
distance of an object, € Z, to the center of the sphere is estimated as follows:

Nir N N

d(zv) = K(zv, 2v) - 22 aiK(zy, zi) + Z Z aia;K(zi, zj) < R (3.11)
i=1

i1 j-1

In consequence, the threshélds the radius calculated as the distance from the spherercent
to an unbounded support vector. In practice, the averagandis to a set of unbounded
support vectors is used.
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3.2.3 Performance measures

In classification problems, the primary source of perforogameasurements is the coinci-
dence matrix showed in TabB2 The equations of most commonly used metrics that can
be calculated from coincidence matrix are as follo@tspn and Dele2008):

rec= f
prec= t, + fp
t
rec= —"
ty + fo
f=2- _prec-rec (3.12)
prec+ rec

whereprec recandf; denote precision, recall arfdmeasure, respectively. The precision or
confidence denotes the proportion of predicted positivestsat are correctly real positives,
whereas the recall or sensitivity is the proportion of rezdipve cases that are correctly pre-
dicted positive. The-measure references the true positive instances to tlineraatiic mean
of predicted positives and real positives, being a consttliate normalized to an idealized
value Powers2011). Those measures focus only on the positive instances aualicgons,
for which are adequate measures for OCC problems, i.e. wbgatine examples are miss-
ing. In addition, those measures are ranged at the intéyH], [being measure values closer
to 1 a sign of satisfactory performance in classification.

3.3 Experimental setup

The proposed methodology comprises two different classifin schemes, for which is em-
ployed the diagram displayed in Fig.4. First, a traditional classification scheme is carried
out, where OCC algorithms are trained with a feature ZeRN*P, such that the goal is
detecting if any fault exists or not. Here, three distincys/¢o build the feature sets are
considered:) p = 24 statistic features from the raw signgt) (Table3.1); ii) a singular
statistical featurega= K) from each order componeri(t) such as standard deviation (OT-
STD), root mean square (OT-RMS) and kurtosis (Ot-KURT), uhose statistics provided
basic information about the physical nature of each nafsand component; anid) the
similarity measures (OT-CCSD, OT-CSDI and OT-PCC) comgbutetweenx,(t) and y(t)
(i.,e. p = K), aiming to encode the relevant spectral information tlaahedynamic feature
enclosed.

In consequence, 8 feature sets are individually testedethdthfo the OCC algorithms. Be-
sides, a feature extraction stage is performed using PCArtgpare the performance of the
estimated features against a set the extracted featurgsvdtth noting that order decompo-
sition could obtain a different amount of orders, and hetw@ccomplish a square feature
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y(t) {X(t)} - Statistics from Y(t) Z - Principal VA s t Vector Dat
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Figure 3.4: Diagram of proposed methodology for fault detection andhtifieation using dynamic
features extracted from order component decompositiohaodet

matrix Z, itis needed to fix the features according to the minimum number of decomposed
components.

Second, taking into account that each order comporgt)tholds the main characteristics
of y(t) in a limited-bandwidth defined by the order frequetkey(t), it is possible assuming
that x(t) is a newpseudo-observationin that sense, the OCC problem comes up the fault
detection task like a frequency-located fault detectiohere it is assessed if each order
component is labeled either target or outlier. The stateémemtioned above implies that an
outlier order component could be associated with a typeuf,faonsidering that damages
close to low orders are related to the shaft defects (e.galanbe, misalignment, looseness,
among others), and high orders are linked to either beariggar faults.

In particular, as regards feature set compositiéaR N<K)*P indicates an augmented feature
matrix, whereN x K is the set of pseudo-observations. In a similar way that teediassi-
fication scheme, different feature sets are comprised bigtstedeatures p = 24), singular
statistics (hamed as STATS wifh= 3) comprising STD, RMS and KURT, and similarity
measuresg = 3) including CCSD, CDSI and PCC, that is named as CSIM. Bexatithe
feature matrix,Z, in the major of cases has few features, the feature extrastage is not
carried out.

Both classification schemes are employed by a 20-fold crabdation and 75% of target
objects to training the algorithms aiming to reduce the waarting, inasmuch the number
of observations is very low. Besides, the fraction rejectd the OCC algorithms is fixed
to 10%, which gives the fraction of the target set which wélrejected. The tuning of free
parameters both SVDD and GDOCC are founded by grid seargtariicular, the former
case isre[1, 100000] using a logarithmic scale, and the last case usesdghéarization o
given byX = (1-8)2 + 5l n, beingBe[0.05, 1] andl , the identity matrix of dimensiop. The
methodology is tested using three different experimentaioed in a test rig from Univer-
sidad Nacional de Colombia. Firstly, a dataset that corapnisibalance and misalignment
damages under two particular dynamic operating condifistast-up and coast-down). Sec-
ondly, a dataset including bearing faults such as inner (8B¢&1), outer race (BPFO) and
ball bearing (BSF) defects, under constant speed. Ang/)astlataset of the same damages
on bearing faults, but under coast-down operating corditio
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3.4 Experiment on test rig: Universidad Nacional de
Colombia data 1

A set of experiments is performed by using the supplied fgstshown in Fig.2.6, that
includes &2 HP Si enens electromotor with a maximum speed of 18G#n (a detailed
description is provided in Sectidh4.2.

The data set holds the following types of acquired outliegarding the considered ma-
chine statest) a static unbalance generated by a masssgrdocated on the drilled wheel
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Figure 3.5: An exemplary of signals under both operating conditioreft)(ktart-up and (right) coast-
down. Each type of signal is presented in time domain (top)) iemtime-frequency representation
(bottom).
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closer to the rigid coupling, anid) an angular misalignment generated by a horizontal and
vertical displacements of.® and 07um, respectively. The data collection also includes an
undamaged condition that is assumed as the target classeddrelings are measured under
start-up and coast-down operating conditions, where eigelalsunder coast-down condi-
tion (Fig. 3.5-right) contains three phasea¥:maximum speed (180m), ii) turning motor
off, andiii) steady—state regime. The start-up condition case @Fgleft) has the same
phases in reverse order. Each recording is five secondsdaodghe working phases are not
synchronized, that is, the decreasing (increasing) maintesgifferent times within each
recording. Here, it is important to highlight that start-egndition includes an interference
generated by the electromotor while the speed increasegat¢he coast-down condition
shows clear order components.

As a result, 20 recordings were acquired for undamaged abalamce classes, whereas for
misalignment were 8. Taking into account that the maximuetspl information is around
1.2kHzeach recording is downsampled tkHEto reduce the computational cost, yielding a
recording length of. = 20000 samples in&5 Consequently, the respective OCC analysis is
carried out both start-up and coast-down operating canditusing the traditional and novel
classification schemes.

3.4.1 Analysis of start-up operating condition

With respect to the feature estimation, it is needed to defiaesignal harmonics that will
be tracked by the SRCKBT algorithm. To cope this procedure, a harmonic estimation
algorithm is performed to 1 second signal segment at maxispeed (i.e. the last recording
second), obtaining the harmonics showed in Bi@. It is possible to observe that unbalance
class presents a highest amplitude in the order attainedHa @st order), whereas ther@
order stands out in misalignment and undamaged case. Aslg the amount of harmonics

is K = 10,K = 9 andK = 10 for undamaged, unbalance and misalignment instancas (th
number could change depending on the spectral informatidheoeach observation). In
addition, the SRCKF covariances are fixedgfo= 10°%, " = 10° andr = 10°% and an
advantage of the method is based in the fact that the paresratefounded once time and
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Figure 3.6: Orders estimated from start-up regime using maximum haicaaigorithm.
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Figure 3.7: An exemplary of first six order components for the machineestander start-up operat-
ing condition.

it does not need searching those parameter values again.

An exemplary of tracked orders in time domain is shown in Big, where it is notorious
that both undamaged and misalignment are distributing ltxtremotor noise between all
order components, increasing the OCC problem difficultycdntrast, the unbalance class
has different signal structures on each component, edlyetkee 1st order that could be
considered without noise since it presents a great amplitespect with the others.
Afterwards, the traditional classification scheme resatesshown in Tabl&.3, where it is
observed that OT-RMS and OT-STD features overcome the tghtrres, reaching an over-
all performance 9% 8.3 and 89+ 11 percent using GDOCQ3(= {0.5,0.4}) and SVDD
(o = {8.8,10}), respectively (where the first number indicates the meduevaf 20-folds
and the second is its corresponding standard deviation3o,Ahe traditional feature set
(SFS) presents an acceptable performance, being comeavéghl OT-RMS and OT-STD
when the SVDD is utilized. In contrast, the OT-KURT featuet achieves the worst per-
formance, and when PCA is used, the performance does neasel(in almost all cases),
which is expected in the sense that the employed OCC algusitivork better under the
non-linearities of the feature set. On similarity featueéssthe obtained performance indi-
cates that those characteristics are not suitable to rprége considered machine condition
(start-up), nonetheless, by means the SVDD, the perforengmaceases significantly.

In case of the classification scheme 2, Tablké shows the averaged training performance
of each classifier in terms of percentages. It is observedttta algorithms (GDOCC and
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Table 3.3: Performance results in (%) of faults associated to shafeusthrt-up regime using the
classification scheme 1.

GDOCC SvDD

Feature set fo | prec | rec | f fp | prec | rec | f

SFS 52+14 83+35 90+7.3 86+4.1 0+0 100+ 0 72+ 16 83+14
SFS-PCA 16 8.7 50+10 81+19 59+55| 45+34 77+18 67+23 68+14
OT-STD 0+0 100+ 0 91+14 95+8.3| 052+1.7 97+9.1 84+14 89+10
OT-STD-PCA 11+ 5.7 61+16 84+18 67+59| 4.1+2.1 78+ 10 78+17 76+10
OT-RMS 0+0 1000 91+14 95+8.3| 0.52+2.3 98+9.6 83+16 89+11
OT-RMS-PCA 8.6+6.2 68+18 80+18 70+7.2| 2.8+1.4 83+9.7 75+19 77+12
OT-KURT 32+16 30+12 69+19 40«11 3.4+0 61+9.9 35+14 44+14
OT-KURT-PCA | 94+6.6 15+1.3 94+13 25+25| 59+1.6 53+11 39+14 44+12
OT-CSDI 21+ 16 55+30 83+16 59+16 2.4+ 1.6 85+11 69+17 75+10
OT-CSDI-PCA 21+ 16 52+29 78+14 57+17 0+0 100+ 0 67+25 77+19
OT-CCSD 21+ 16 54+30 81+17 59+18 1.2+1.7 92+ 14 65+23 73+18
OT-CCSD-PCA| 1#® 17 63+32 78+17 62+16 0+0 100+ 0 62+16 75+12
OT-PCC 3425 83+x11 78+19 78+85 4+ 2.6 75+15 60+17 65+11
OT-PCC-PCA 44121 79+8.2 84+14 80+4.6| 2.2+1.7 82+ 14 56+18 65+16

Table 3.4: Performance results in (%) of faults associated to shafeusthrt-up regime using the
classification scheme 2.

GDOCC SvDD
Feature sef prec | rec| { | prec| rec| {
SFS 100 75 84 100 97 98
STATS 100 89 94 100 85 92
CSIM 100 91 95| 100 98 99

SVDD) properly describe the target class, achieving peréorce rates over 86%. A preci-
sion (prec of 100% indicates that all predicted training samples #eztvely true positive,
which it is expected since the training is performed usinly target samples. Therefore, the
performance depends on the proportion of real positivantss that are correctly labeled as
target. Nonetheless, when the outlier objects are labeleteclassifiers, the performance
rates do not preserve, which implies that a high classi@ioatites in the training step do not
entail a high performance in testing.

Fig. 3.8 displays the label assigned to each pseudo-observagigi)) from the actual ob-
servationsy(t), where the label could be target (blue color) or outlied(celor). Here, the
goal consists of detecting if each order component labedemlidier effectively corresponds
with the expected fault, it means, in unbalance case (UNB)otlitliers are located in the
1st order, whereas then?l and 3d orders are characteristics from misalignment (MIS). As
a result, the CSIM feature set reaches the best performamoe it is able to distinguish
the order components associated to faults mentioned abtneebest or worst performance
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Figure 3.8: Performance obtained under start-up regime with (left) @OGand (right) SVDD clas-
sifiers using the features: a) SFS, b) STATS, c) CSIM.

is defined taking into account the ability for identifyingetspectral range where the faults
are present, from each pair OCC classifier together eachafyfgature set. It implies that

in several classification outcomes the OCC methodologg,féor example, the class MIS

is wrongly classified in the majority of employed approacties to that the relevant order
components are labeled either as outliers or targets. dhigpkrformance is because the
pseudo-observations of undamaged and misalignment slassevery similar, and hence,
the estimated features do not provide discriminant infaiona

3.4.2 Analysis of coast-down operating condition

When the proposed methodology is validated in the coasndmsge, the obtained results
are presented below. First, the set of harmonigsafe calculated from 1 second signal
segment using the algorithm proposed in Secahl In consequence, the harmonics
showed in Fig3.9are introduced to the SRCKET algorithm to estimate the new pseudo-
observations. In this case, it is observed that undamagess differs in amplitude from
misalignment, but therd harmonic still preserving the highest amplitude. As thesaray
than start-up operating condition, unbalance is chanaetgby a ktorder predominant.

For the sake of estimate the order components, the amourtrofdmics of each observa-
tion is aroundK = 11, K = 8 andK = 11 for undamaged, unbalance and misalignment,
respectively. Since the number of harmonics depends orptetral information of the sig-
nal. Besides, the covariances of the OT algorithm are fobraligh grid search, obtaining
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Figure 3.10: An exemplary of first six order components for the machinéestander coast-down
operating condition.

the reference valueg® = 104, g = 10® andr = 108, which may present changes of
10*, avoiding performing the complete searching. FdLOdisplays an exemplary of six
extracted order components that are considered as dyneatioés. Itis possible to see that
the amplitude of each narrow-band component is consistightits own amplitude showed
in Fig. 3.9, that is, the & order is predominant in undamaged class, as well as in misali
ment, whereas in the unbalance class the highest amplitwoesponds to thest It is worth
noting that since the electromotor is turned off, there i®exi@rnal noise that contaminates
the order component information.

When the classification scheme 1 is applied, the OT-STD andREA% achieve the best

performance again, both using the GDOCC (wath= {0.45,0.8}) and SVDD (witho =
{900Q 8500) classifiers. In Tabl&.5, it is observed that GDOCC overcomes to SVDD, but
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Table 3.5: Performance results in (%) of faults associated to shaféuodast-down regime
GDOCC SvDD

Feature set fp | prec | rec | f fp | prec | rec | f

SFS 9.2+13 86+56 92+11 89+6.6 0+0 100+ 0 86+22 91+16
SFS-PCA 3.809 88+6.1 92+19 90+13 2+1.3 85+14 87+22 85+16
OT-STD 0+0 100+ 0 96+8.2 98+4.6 0+0 100+ 0 93+9.8 96+5.4
OT-STD-PCA 27+55 31+3.8 93+9.8 46+45 16+6.9 41+7.4 80+19 52+3.9
OT-RMS 0+0 100+ 0 96+8.2 98+4.6 0+0 100+ 0 89+15 93+9.3
OT-RMS-PCA 25+ 5.7 32+ 4 92+ 16 47+ 6 20+58 38+86 92+12 53+6.4
OT-KURT 70+ 13 14+ 26 88+12 24+29| 20+1.3 33+49 79+19 47+8.2
OT-KURT-PCA 79+ 1.2 13+1 93+98 22+19| 23+23 30+3.8 82+17 44+6.5
OT-CSDI 6.6+ 13 83+29 95+14 84+22 0+0 100+ 0 88+14 93+8.2
OT-CSDI-PCA 7.4+ 20 88+ 27 96+8.2 88+22 0+0 100+ 0 89+17 93+11
OT-CCSD 5.8+ 17 88+ 26 96+14 88+22 0+0 100+ 0 88+15 93+9.2
OT-CCSD-PCA| 5.8 15 87+27 87+18 83+21 0+0 100+ 0 88+16 93+10
OT-PCC 0+0 100+ 0 81+17 89+10 | 0.13+0.6 99+56 67+25 77+19
OT-PCC-PCA 0.130.6 99+45 84+18 90+12 0+0 1000 63+23 75+16

Table 3.6: Performance results in (%) of faults associated to shaftuodast-down regime using the

classification scheme 2.

GDOCC

SvDD

Feature set

prec | rec| f

prec| rec| f{

SFS
STATS
CSIM

100 86 93
100 82 90
100 97 98

100 86 93
100 100 100
100 98 99

the last increases the performance (over 90%) when theasitpimeasures are employed,
even using PCA. This fact implies that SVDD has a better gaization capability than
GDOCC and offers more feature set options to characterezedhsidered faults. The pos-
sibility of working with a major set of distinct features|@ks to assess relevant information
that provide different physical interpretations. On thieesthand, CSIM and STATS reach
the best performance under the classification scheme 2ugeacd the training rate is 99%
and 100%, when SVDD is applied Tal8e5. Nonetheless, the former case is better because
the outcomes classifying the outliers shows that in mangs#se pseudo-observations as-
sociated to unbalance and misalignment are correctly édb@$ outliers. In spite of there
are several mistakes concerning the exact order compdredrdtiaracterizes each fault, i.e.,
1stand 3d orders, the results indicate that the fault is located innaftequency range (see
Fig.3.11(c). As regards to STATS feature set, the performance is veryplothe unbalance
class, assigning the outlier label to the last order componwhile SFS and CSIM achieve
regular classification rates, falling in the number of atedmon-target pseudo-observations
when GDOCC is used, and in some cases, labeling both low- ighedftequency instances
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Figure 3.11: Performance obtained under coast-down regime with (IdlpGC and (right) SVDD
classifiers using the features: a) SFS, b) STATS, c) CSIM.

like target class. In misalignment case, CSIM has a sat@facesult since a big number
of the objects are correctly classified. Conversely, bailistic feature sets do not provide
a successful identification, because there are either a lobiwe of the outliers accepted.
This result may be caused by the similar component ampktbeéween undamaged and
misalignment classes.

In general terms, both classification schemes achievdaabsy results when they are ap-
plied to detect frequency-located faults associated tdt sipged like unbalance and mis-
alignment. In particular, the dynamic features based oeranéicking components allow
extract relevant information of the machine providing agibgl meaning that improves the
OCC interpretation.

3.5 Experiment on test rig: Universidad Nacional de
Colombia data 2

The goal of this experiment is validating the proposed mahagy (presented in Fig.4)

to detect bearing faults and identify the spectral rangeravtiee fault exists. The mechanical
system is displayed in Fi@.12(a) and consists of a shaft driven by &8P DC electric mo-
tor able to reach 172Ppmthrough the equipped rigid coupling. The test rig has twaibga
HTH UC206 and two drilling wheels that are used to simulate bearinguarhlance faults,
respectively. The database holds acoustic signals latimeg seconds at 4kHz sam-
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Figure 3.12: Experimental test rig (left): 1) Motor driven, 2) Rigid cdung, 3) Drilling wheels, 4)
Bearing housing. Sensors location: (A) Accelerometers(Bid/licrophones. The simulated BPFO,
BPFI and BSF defects (right).

pling frequency and 20 vibration recordings captured siamdously, lasting four seconds
at 256kHz sampling rate. The acoustic sighals were acquired by tweoapiones located
at a distance of @in front of each bearing housing. Simultaneously, the \tibrerecord-
ings were collected in the horizontal plane, employing ssEvaccelerometers mounted on
bearing supports.

In the concrete case of introduced bearing faults, theviotig outlier classes in rotating
machines are considered: inner race (BPFI), outer race @pPand ball elements (BSF).
The damages are simulated on the bearing located at shafintrudiucing a crack on the
surface of interest with a motor tool (Fig.12(b). To validate the proposed OCC scheme,
two different operating conditions are analyzed: steadjesregime and dynamic regime,
that is, the machine operates under constant and variaidstdown) speed, respectively.

3.5.1 Bearing faults under steady-state regime

For this experiment, the signals were recorded &B0OOrpm constant speed and just the vi-
bration signal closest to the faulty bearing is employed. Fil3shows an exemplary of the
different bearing faults in the time domain (top part) arsccibrrespondingly time-frequency
representation (bottom part) using the STFT with 8192 feaxgy bins, a Hamming win-
dow of 512 samples, and 50% of overlapping. The bearingdavitdence a notable cyclo-
stationary behavior that is characteristic of this type efledts. Nonetheless, two aspects
must be highlighted: First, it is expected that at high-freocy appears a representative
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Figure 3.13: Exemplary of bearing fault signals in time domain (top pary its time frequency
representation (bottom part), which was acquired undedgtstate regime.

spectral information, which is clearly observed in BPFI &8F (around 3kH2), yet BPFO

is distinct since the spectral information with the highesiplitude is underdHz Second,
the undamaged recording presents a cyclo-stationary pmeman, which may be caused by
the low quality of the bearings. Therefore, that behaviordsconsidered as a bearing fault
and introduces more difficulties to the OCC problem.

Afterwards, aiming to obtain the different narrow-bandctps components; i (t) from the
actual observationg(t), the signal harmonics are estimated following the albamitpre-
sented in SectioB.2.1 In consequence, the estimated harmonics to be trackedsatayed
in Fig. 3.140n the signal spectra, where it is possible to see that eachingstate has a dif-
ferent number of harmonids§. Besides, it is worth noting that all faults have more anoiolié
than undamaged ones, because there is a big spectral compori2Mz that is the four
harmonic of the electromotor inasmuch it has four poles.dmm@ast, the biggest harmonic
in the undamaged signal is 18Hz that is associated with the bearing quality.

In this particular signal instances, it is observed that Br&s the highest spectral com-
ponents at high-frequency compared with BPFO and BSF, kbetgohenomenon a clear
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Figure 3.14: Orders estimated from bearing fault signals when the maohyrerates under a steady-
state regime, and its respective spectrum.

sign of a bearing fault. As a resuk = {20,16,18 17} is the number of harmonics that
are included into the SRCKBT algorithm for undamaged, BPFO, BPFI and BSF, respec-
tively. In this case, the covariance parameters are haaiigtfixed asg® = 103, q" = 10°°
andr = 1077 for all machine states. An exemplary of tracked order coneptgis shown
in Fig. 3.15 where the first three and the last three narrow-band dynteatares are dis-
played.

Since the machine speed is not measured, the interaH[ ] is fixed as [2832]Hz, ob-
taining an estimated IF profile that oscillates betweeng,2D.5]Hz, which allows that sev-
eral components have noise. For instance, @teofder of all considered machine states
is very noisy, and hence, a clear sinusoidal component adtlth# speed frequency is not
observed. Besides, the non-tracked harmonics are digdl@among estimated harmonics,
causing noisy order components. For those reasons, alhebdtaarrow-band components
attained to &torder present impulsive behavior that is added on the besatisociated with
the main tracked frequency.

On the other hand, the last order components (lower row ih egchine state) evidence a
strong cyclo-stationarity that is described by the impiddiehavior, and hence, it is expected
that those narrow-band components allow characteriziadpdaring defects. From a visual
inspection, it is possible to highlight that both BSF and BR&ve a clear cyclo-stationary
behavior, whereas BPFO does not show a cyclic dynamic.

After obtaining the dynamic featureg(t), the different feature sets are estimated, and both
classifiers are tested, achieving the results exhibitechblel3.7. As a result of the fault
detection task, OT-CSDI reaches the best performance ®#thigsing GDOCC, overcoming
the classical SFS feature set that only achieves 82% ofifitasi®n rate. In contrast, when
SVDD is employed, OT-RMS performance is better improving@8DI by 2%. Another
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Figure 3.15: Exemplary of several estimated order components from hgdaiult signals when the
machine operates in steady-state regime.

important aspect is based on the fact that the false posifjvare zero, and the precision
is 100% when OT-STD, OT-RMS, OT-CSDI and OT-CCSD featuresused, indicating a
perfect rate of the proposed OCC scheme for rejecting thilemiinside of the classifier
boundary. In general, GDOCC accomplishes better outconaes3VDD, and the utility of
PCA is not reflected because the classification rates arec@ased.

Regarding the classification scheme 2, where the pseudmna@lti®ns are characterized and
fed into both OCC algorithms, CSIM obtains the best perforoea reaching a perfect rate
with SVDD in the training stage. Nonetheless, STATS aclsexesimilar classification
rate with SVDD, whereas SFS makes the same with GDOCC (sde 3&l). When the
faulty signals are assessed, the high performance is assdevith those order components
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Table 3.7: Performance results in (%) of bearing faults under stegalg-segime using the classifi-

cation scheme 1.

GDOCC SvDD

Feature set fo | prec | rec | f fo | prec | rec | f

SFS 12¢35 78+1.2 87+12 82+7.3| 10+15 83+11 78+20 80+13
SFS-PCA 19 6.7 75+12 87+16 81+12 | 17+3.2 81+55 83+17 82+10
OT-STD 0+0 100+ 0 85+23 90+ 16 0+0 100+ 0 82+25 88+18
OT-STD-PCA 25+95 42+15 80+23 53+10 | 17+85 44+15 60+26 48+11
OT-RMS 0+0 100+ 0 87+20 92+13 0+0 100+ 0 82+20 89+13
OT-RMS-PCA 27+55 38+38 83+17 52+58| 39+2.7 32+35 90+16 47+5.9
OT-KURT 36+6.3 28+6.7 72+25 40«10 76+ 5 15+ 3.7 70+21 25+6.3
OT-KURT-PCA | 51+9.5 24+4.6 82+20 37+ 7 77+6.3 17+3.4 80+20 28+5.7
OT-CSDI 0+0 100+ 0 92+ 18 95+13 0+0 100+ 0 80+25 87+18
OT-CSDI-PCA 2.3+ 3.3 91+13 93+14 91+10 0+0 100+ 0 75+26 83+19
OT-CCSD 0+0 100+ 0 87+17 92+10 | 4.7+3.1 82+12 87+23 81+12
OT-CCSD-PCA| 0+0 100+ 0 87+17 92+10 0+0 100+ 0 73+21 83+15
OT-PCC 7.7+76 76+20 80+25 72+13 | 3.3+t46 84+21 60+17 68+15
OT-PCC-PCA 19 11 49+ 17 T77+24 57+16 | 21+7.8 46+14 83+23 59+15

Table 3.8: Performance results in (%) of bearing faults under stegalg-segime using the classifi-

cation scheme 2.

GDOCC SvDD
Feature sef prec| rec| f [ prec| rec| f{
SFS 100 89 94 100 86 92
STATS 100 81 90 100 99 99
CSIM 100 90 95| 100 100 100

labeled as outliers that comprise high-frequency speatfaimation. Therefore, observ-
ing Fig. 3.16 several aspects are found: firstly, GDOCC wrongly class#idig number
of pseudo-observations, accepting as outliers both low-ragh-frequency order compo-
nents, except the BPFO defects when the objects are chazadtavith STATS and CSIM.
Secondly, the BPFI defect apparently could be distinguisheéhe majority of order com-
ponents, because the narrow-band components are labedetliess lasting from the gt to
the final order. And lastly, the CSIM feature set togethehv@VDD classifies just the high-
frequency order components as outliers, being consisténtke training performance and
obtaining the best outcome taking into account the objeafithe proposed OCC method-

ology.

3.5.2 Bearing faults under dynamic regime

The goal of this experiment consists of testing the prop@€€ methodology to discrim-
inate defects on rolling element bearing mechanism whemtehine operates at variable
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Figure 3.16: Performance obtained bearing faults under steady-stgimeewith (top) GDOCC and
(bottom) SVDD classifiers using different feature sets.

speed, in particular, at the coast-down operating corditio that sense, a set of recordings
is captured from the test rig shown in F&j12including several faults like BPFO, BPFI, and
BSF. Here, the coast-down operating condition impliesttmachine works at maximum
speed (around 30H2) at the beginning of each signal, and then, the electromstiirned

off decreasing the speed to zero. As a consequence, thaimgetasts 5 seconds with a
sampling frequency of 256B{¢, and an exemplary of each machine condition is displayed
in the left column of the Fig3.17. Particularly, Fig.3.17(Part 1) and -(Part 2) display the
undamaged and BPFO, and the BPFI and BSF cases, respectively

A visual inspection from the raw signals allows determinihgt the signal harmonics de-
crease proportionally to the speed change, which may bdyclaaserved in the undamaged
case Fig3.17(a}(left). Nonetheless, when the bearing faults are intredu¢igs.3.17(b)
3.18(a)and3.18(b)in the left side), a cyclo-non-stationary behavior emergassing AM-
FM modulations that depends on the variable speed. Thatiespendition has been studied
when the analyzed signal is mono-component, but in this typérations signals the spec-
tral content is multi-component. In that sense, the sightileated as angle cyclostationary,
and the SRCKEOT approach could be employed.

Therefore, a signal pre-conditioning is carried out towadle the variable speed effects on
the signal, applying the following two-steps approach:
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Figure 3.17:(Part 1) Exemplary of bearing fault signals from the machinder coast-down operat-
ing condition, both raw signal (left) and its resampled i@rgright): a) undamaged and b) BPFO.

* Instantaneous speed estimatiosince the signal is a mixture of several dynamics
including cyclo-stationary.(t) and stationarys(t) components that are governed by
the non-stationary speed changes, thé)(could be expressed as follows:

Ke Ks
YO = D %+ ) x(t) (3.13)
c=1 s=1

whereK; andKg are the number of order components associated with cyatmsary

and stationary components, beikg= K. + Ks. In particular, theKs components are
found around the shaft speed comprising at least 3 or 5 hacsyonhereas thé.

are beyond the 6 harmonic. This fact could be appreciatdukitbéaring fault signals

Fig. 3.17, and thus, it is feasible down-sampling the signal untilaotihg a narrow
band such that onlys(t) components appear. As a consequence, the IF is estimated
from the removal of the(t) components using the SRCKBT algorithm.

» Angle-order domain transformationwith the estimated IF, the signg(t) is trans-
formed into an angle-order domain using a widely knavamputed order tracking -
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Figure 3.17:(Part 2) Exemplary of bearing fault signals from the machinder coast-down operat-
ing condition, both raw signal (left) and its resampled i@rgright): a) BPFI and b) BSF.

COT method discussed iPptter 1999 Fyfe and Munck1997. Where the signal
y(t) (sampled at constant increments of timeé), is re-sampled at constant increments
of shaft angleAd, based on a keyphasor signal, which may be provided eitber &
tacho or IF signal. The resampling method is based on twereifft processes: First,
a process of sample time determination, where the resarapdscated on the inde-
pendent axis (time). Second, a process of interpolatianidicates the resamples on
the dependent axis (amplitude). The success of COT depentthe aletermination of
resample times as accurate as possible because it drivegehgolation process. In
the concrete case of the bearing fault signals used in tipisrerent, the resampling
method is performed with 64 samples per revolution, obtgnhe angle-order map
displayed on the right part of the Fig.17. For the sake of simplicity, the angle do-
main is noted as rotations, where the domain unity is sangaesevolution. The 64
samples used to resampling the signal allow to observe 3 aamponents, which
are estimated using the SRCKPT algorithm because the non-stationary dynamic
given by the speed changes has been removed.

As a result of the signal pre-conditioning, the obtainedeombrmalized signalg;(t) are
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Figure 3.18: Orders estimated from bearing fault signals after COT idieggpwhen the machine
operates under a dynamic regime, and its respective spectru

shown in Fig.3.17-(right), where it is possible to observe that both time angl@ domain
signals are similar, but several differences are found filmenvisual inspection of the time-
frequency representations. Firstly, the coast-down hiehawas removed causing that the
order components appear closer to a limited spectral bamtiphtaining more separabil-
ity among them. Secondly, the amplitude of the order comptsnelose to shaft speed
(low orders) decreases and apparently they are not corbtanigh the angle axis, yet the
STFT scaling generates this visual effect. So lastly, tr@dicyrder components at the in-
terval of [30Q450Hz(i.e., [1Q 15]th orders) preserve its structure but under constant speed.
Nonetheless, those components give a false sensatiorhthapeed is increased, because
of the spectral information at the time interval of 8 seconds is of a higher order than
between [02] seconds.

Afterwards, the set of harmoni€sis calculated from the Fourier transform of each observa-
tion §{y(#)}, obtaining the narrow-band componertgd). Fig. 3.18displays an exemplary
of the order components to be tracked, belhg- {21, 19,21, 18} the number of harmon-
ics that are included into the SRCKBT algorithm for undamaged, BPFO, BPFI and BSF,
respectively. In this case, the covariance parametersersstically fixed agf® = 107,

q" = 10°° andr = 10°° for all machine states, having deviations of #did 10* for ¢f and

qif, respectively. It is important to notice that the maxima &tages are similar between
the considered classes, yet the damages present a monakjpéotmation above the 10
order.

For that reason, in Fig3.19a couple of order components are exhibited from low, medium
and high frequency. Here, it is possible to see that #tedder presents a low frequency
that is a few perturbed by noise, however, the waveform isl&mOn the other hand, the
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Figure 3.19:Exemplary of estimated order components in low, medium dgid frequency, from the
re-sampled version of the bearing fault signals under ed@sh operating condition.

medium and high order components (i.e.,,[12]th and [28 31]th), present amplitude mod-
ulations that are generated by the shaft speed and the gdauit fundamental frequency.
Since the higher order components are more impulsive, ¥ge@ed that the proposed OCC
methodology discriminates those ones.

As regards traditional OCC scheme, the 7 feature sets cauguam thex(6) and the
SFS set are each one fed into both classifier algorithmsjnafgathe outcomes exposed
in Table3.9. Consequently, it is observed that OT-RMS and OT-STD aehéeperformance
rate above 90% and 80%, overcoming the other feature seig bsth GDOCC and SVDD,
respectively. Nonetheless, when the GDOCC is employed¢ldssical features reaches a
relevant performance due to that the precision is 100% drfdls¢ positives are rejected.
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Table 3.9: Performance results in (%) of bearing faults under noriestaty regime

GDOCC SVvVDD

Feature set fo | prec | rec | f fo | prec | rec | f

SFS 0+0 100+ 0 83+23 89+16 8+42 75+6.4 85+18 79+13
SFS-PCA 00 90+ 58 85+10 87+6.2| 12+94 73+85 84+15 78+8.9
OT-STD 0+0 100+ 0 87+17 92+10 0+0 100+ 0 72+22 82+16
OT-STD-PCA 1.335 94+15 72+25 79+20 40+ 20 36+24 78+20 45+16
OT-RMS 0+0 100+ 0 92+ 15 95+8.9 0+0 100+ 0 75+ 21 84+15
OT-RMS-PCA 8.+65 71+18 87+17 76+12 13+ 11 60+ 31 58+21 53+17
OT-KURT 62+25 23+6.9 87+25 35+88| 59+2.7 20+4.4 75+21 32+7.3
OT-KURT-PCA | 77+6.6 20+2.7 97+15 33+4.5| 58+3.1 21+52 78+25 33+8.7
OT-CSDI 47+3.1 78+16 73+26 73+17 | 6.3+t15 71+10 78+25 73+16
OT-CSDI-PCA 43+ 14 33+16 93+17 46+95| 9.3+6.6 66+23 67+19 62+13
OT-CCSD 2+ 3.1 92+ 13 75+x26 79x17 8+ 35 67+15 80+x25 71+17
OT-CCSD-PCA| 2810 39+7.3 87+20 53+89| 16+£7.6 53+21 78+22 60+14
OT-PCC 17+ 11 54+ 22 73+26 56+ 12 25+12 38+88 70+21 47+94
OT-PCC-PCA 24+ 18 48+ 27 73+23 53+19 0+0 100+ 0 67+24 78+18

Table 3.10:Performance results in (%) of bearing faults under nonestaty regime using the clas-

sification scheme 2.

In contrast, the OT-PCC feature set joint PCA is able to geirélag classification rate (in

GDOCC

SvDD

Feature set

prec | rec| f{

prec | rec| f{

SFS
STATS
CSIM

100 91 9§
100 86 92
100 94 97

100 87
100 96
100 98

93
98
99

terms off, and preg) using the SVDD classifier.

Different outcomes are appreciated from the second OCCrsshehere the set of sim-
ilarity features CSIM achieves the best performance botfOGDB and SVDD classifiers,
whereas the STATS set presents a similar performance usintast OCC algorithm (see

OCC training performance rates exposed in Tabl€). When the new pseudo-observations
are classified either target or outlier (Fi§20), it is observed that the training results are
consistent. That is, CSIM can distinguish more accuratedydrder components that are

related with the bearing faults using SVDD because the ntgjof outliers are above the
14th order and the low orders are labeled as target class. Arestteg result is depicted by

the STATS set, where the order components betweegli]éh are selected as outliers, inas-
much those components effectively present amplitude nadidnis and the most of those are
associated to shaft speed modulations. In contrast, tesictd SFS feature set presents the
worst outcome since several low-frequency order comparametiabeled as outliers.

As a conclusion of this experiment, the traditional and h@€C schemes were tested for
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Figure 3.20: Performance obtained bearing faults under non-statioregiyne with (top) GDOCC
and (bottom) SVDD classifiers using the proposed featuse set

bearing faults, providing useful information about the hriae state in the former case. Be-
sides, the second scheme gives information about the fregjuange where the fault occurs,
which is really important to reduce the searching of thetfatlen any fault is detected.

3.6 Discussion

The presented OCC methodology in this chapter gives irttegegesults that must be dis-

cussed from several points of view such as the types of madhint, the performance of

the OCC algorithms, and the interpretability provided by teature sets. In that sense, it
is worth to highlight the performance analysis both traxch#il and frequency-located fault
detection schemes.

» As regards the distinct types of machine faults, the thrgeeements show that it
is possible identifying both shaft and bearing faults eitlneder non-stationary and
stationary operating conditions. In particular, the tiiatial OCC scheme, which only
detects if any fault exists or not, achieves classificatates between 95% and 98%
to distinguish the considered faults. Here it is worth ngtihat the best-identified
faults are the shaft defects under coast-down conditiocsuse those signals present a
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clear harmonic behavior, and there is no external noiseffexts the characterization
and classification processes. On the other hand, the profrespiency-located OCC
scheme reaches the best performance detecting the beauiltg)Wwhen the machine
operates under constant speed. Nonetheless, the mostltlificlts to identify are
misalignment and BPFI, inasmuch the similarity with thegoral signal is very high.
For instance, in the former case the order components thetcterize the undamaged,
and the misaligned shaft are similar in amplitude, and hesitieer under start-up or
coast-down much order components are misclassified agoatid target. Whereas
the BPFI case, most of the order components are labeled agtlgar,ovhich implies
that this type of fault is distributed along the spectralggnand it may exist several
narrow-bands that evidence the cyclo-stationary behavior

» On the classification algorithms, it is found that GDOCC dastinguish the consid-
ered faults for the traditional OCC scheme, overcoming t®BVThis fact implies
that the built feature sets are appropriately modeled byws&an distribution, and if
the problem is delimited only to detect when a fault occunss tlassifier is the best
option. In contrast, the experimental results show thatlémiify any fault present at
a frequency band, it is better to use SVDD algorithm than GBOThe improvement
obtained by SVDD may be based on the fact that there are mstanices of the fea-
ture set, allowing to generate a data description boundaxibfe since this classifier
adjusts the boundary taking into account the slack varsaldie general, both classi-
fiers perform a high classification rate in terms of false fpess and precision, which
is most important in CBM problems since it is better to misslfy a target than an
outlier.

* Regarding the feature sets carried out, it was proved tR8td®es not provide a high
generalization capability because the performance is m@yas successful in both
classification schemes. This outcome implies that the natmeaary vibration signals
must be enhanced and analyzed by frequency bands. In thed,gbe proposed dy-
namic features based on OT decomposition performs a satisfasignal characteriza-
tion, because it preserves the signal properties compinsetiand-limited frequency.
Therefore, the statistics could be applied on each bandirobg that OT-RMS feature
set achieves the better result to fault detection, yet C&tlgroves the performance to
frequency-located fault. That result is explained in tret faat the similarity measures
taking into account the spectral information of each bandgared with the complete
signal. In consequence, a CBM system, that uses this mdtgdanay give more
useful information to the machine operator allowing to detghen the fault occurs
and which type of fault is growing.



4 Blind cyclostationary signal
extraction based on order tracking

The vibration signal from rotating machines, in most of sasemprises stationary and non-
stationary components that describe the different presesscurring inside the machine.
Thereby, the distinct components provide relevant infairomaabout the machine health,
and the internal and external forces that affect the cooeatcorrect system behavior. In
the concrete case of the stationary components, theserapplea machine is running at
steady-state regime where the speed and load are not tirmieyaNonetheless, when bear-
ing faults arise, non-stationary processes also appehosenstatistical characteristics vary
periodically with time depending on some period and aresdall/clostationary processes
(Gardner et a).2006 Antoni, 2009. The bearing failure frequency governs the cyclic be-
havior, which may be generated by defects of the inner rader oace, rolling elements and
the cage (holding rolling elements together). Those fraqigs are commonly known as
cyclic frequenciegenerating AM modulations of the shaft spe@ib(chowski et a.2014h
Borghesani2019.

In practice, the rolling element bearings are the heart efrtfachine and its failure is a
common reason for machine breakdown. Therefore, the wilratgnals generated by bear-
ing damages have been widely studied, and powerful techaigue available to diagnose
them Randall and Antoni2011). One of the most used methods is the classical envelope
spectrum of the raw signaMcFadden and SmitH984), because of its simplicity is pre-
ferred in the industry. Other methods consist of analyzirgtime-frequency response of
the signal to identify and characterize the frequency banere/the fault occurs, being em-
ployed techniques like the Short-Time Fourier TransfoFang et al. 2013 Obuchowski
et al, 2014ha), and the Wavelet Transfornhi( et al., 2007 Jena and Panigrat2015 He

et al, 2015. Nonetheless, the problem to detect a bearing fault sigadlbeen addressed
to separate the deterministic and the stochastic partedigmal, extracting a signal of in-
terest that exhibits the damage characterisBzgghesani et al2012. On this matter, the
synchronous averaging explainedAntoni (2009 is validated in real-world signals and a
modified versions presented lireclere and HamzaoyR014); Abboud et al.(2016 allow
introducing speed fluctuations by a resampling into theeadgimain. However, computed
order tracking performs a similar signal resamplifkyfé and Munck 1997, and it may
be used with envelope spectrum to extract the componeritditiaguish the bearing fault
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patterns Borghesani et a12013.

In spite of the multiple methods that could be applied to ceearing faults, one of the
most popular is based on the spectral kurtosis, which wasdtzed byAntoni (2006,
and its improved versions like kurtograrr(toni and Randa)l2006 and fast kurtogram
(Antoni, 2007h provide an accurate frequency band where the transieotiassd with an
optimal frequency band is observed. On the other hand, threréhe approaches based
on the cyclic spectrumBoustany and Antoni2005 Cioch et al, 2013 Borghesani2015
where the representation of the data in a cycle frequeremyuncy domain allows observing
precisely the effect of the different modulations that anrespnt in the signal.

For that reason, this chapter is dedicated to demonstratatta proposed OT model pre-
sented in the Chapt@has the needed conditions to extract cyclostationary Egia this
end, in Sectior.1.2the proposed model is defined as a particular case of theeudiocor-
relation and cyclic power spectrum. Since the proposed odedlets as a narrow-band filter,
a comparison with the spectral kurtosis is performed usimdifferent datasets including
bearing faults under steady-state and dynamic regimegahs) constant and variable speed.
The first experiment is based on the recent benchmark stedgpted irsmith and Randall
(2015, where the recordings of the Case Western Reserve Urtivarsilabeled as diagnos-
able, partially diagnosable, and not diagnosable, progithe conditions to use that dataset.
The second experiment consists of validating the labelsiodd in SectiorB.5 where a set
of bearing fault signals under different machine operatimigditions are classified by a novel
frequency-located fault identification scheme.

4.1 Cyclostationary signals

A signal is cyclostationary (CS) of order(in the wide sense) if and only if it is possible find-
ing somepth-order nonlinear transformation of the signal that will geate finite-strength
additive sine-wave components, which result in spectnadiGardney1994). In that sense,
a CS process is a stochastic process that exhibits somenhpediedicities in its statistical
structure and encompass a subclass of non-stationarysigitia an inherent cyclic behav-
ior (Antoni, 20073. In a simplest way, a signal CS could be understood like aplitude
modulated signal that is characterized by a pair of sidebamdhe spectrum, which are
spaced around each modulated frequency component by a neape to the modulation
frequency. Nonetheless, there is a hidden structure ingetisum which can be discovered
by correlating the spectrum with itself, giving non-zeraretation for displacements equal
to discrete multiples of the sideband spacing, the so-gtaifelic frequencyRandall 2011).
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4.1.1 Cyclostationarity definition

So, let bey(t) a cyclostationary process whose joint probability dgnfsibction is a quasi-
periodic function of time, and for which its meamy(t) = E {y(t)}, and autocorrelation
function,Ry(t, 7) = E {y(t + 7)y(t)*}, are periodic with some periot}, (Gardney 1990:

my(t + To) = my(t)
.

T T T
Ry(t+T0+§,t+To—§)—Ry(t+§,t—§), (4.1)

whereR (t+7/2,t—7/2) is a function of two independent variableendr, which is periodic
in t with periodT, for each value of. It is assumed that the Fourier series representation for
this periodic function converges, such that:

R(t,7) = Y Ri(x)e, 4.2)

ac A
for which {R]} are the Fourier coefficients,

1 T/2

Ri(7) = 7)., R/(t, 7)e"2"dt, (4.3)

beingac A a set ofcyclic frequenciesvhere the so-calledyclic autocorrelation function
or cyclic cross-correlation functionjRr) # 0. The cyclic autocorrelation can be character-
ized in a way that reveals the role that periodicity in autoglation plays in the frequency
domain, implying that a process exhibits cyclostatioyairtthe wide sense only if there
exists correlation between frequency-shifted versiorte@processGardney 1990. It also
reveals that a process can be stationary only if there ddesxigi any correlation between
any frequency-shifted versions of the process, becaugetuen carR} = 0 for alla # 0.

The Fourier transform of the cyclic autocorrelation fuontis a spectral descriptor of the
signaly(t) and is known as theyclic power spectrunor cyclic spectrumBoustany and
Antoni, 2009,

Sy(f) = f i Ri(r)e">"dx. (4.4)

The cyclic power spectrum may be also understand from thmnteneous probabilistic
spectral density, denoted &(t, f), which is the Fourier transform of the instantaneous
probabilistic autocorrelation,

S(t, f) éf Ry(t+ %,t— %)e“z”“dr, (4.5)

where the cyclic power spectrum is the Fourier coefficiehthe trigonometric expansion
of Sy(t, f) as follows

Sy(t. f) = > su(f)e>t. (4.6)

ac A
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In consequence, the essence of the difference betweeonstatiand cyclostationary or al-
most cyclostationary processes is that the latter exhgatsal correlation. Furthermore,
this spectral correlation is completely and convenientigracterized by the cyclic power
spectrum{Sy} or equivalently by the cyclic autocorrelatioffg]}.

4.1.2 OT model as cyclostationary process

From the OT model discussed in Sectibf, the vibration signaf(t) = xy«(t) = ax(t) cos(Zrk f,t+
¢(t)) could be expressed in thguadrature-amplitude-modulatiof@AM) form (Gardney
1990:

Xk(t) = u(t) cos(k ft) + v(t) sin(2rk f.t), 4.7)

for any value off, andk = 1, providedu(t) andv(t) can be calculated by using the standard
trigonometric identity as follows:

u(t) = xq(t) cos(Zrft) + X(t) sin(2r f,t)
V(t) = Xo(t) cos(2r f,t) — xy(t) sin(2rf,t), (4.8)

beingx,(t) the Hilbert transform ok (t). In this case, if,(t) is bandlimited tof e(f, — B, f, +
B), thenu(t) andv(t) are bandlimited tof e(—B, B), and hence, iB < f;, u(t) andv(t) are
uniquely determined by, (t) andx,(t). Besides, it can be shown that for any procegs),
(4.7) and @.8) yield a unique definition of envelope magnitude, for which

a(t) = [UP(t) + VA(D)]*?
v(t)
0|

This QAM representation, calldRice’s representatigns valid regardless of the probabilistic
model for x,(t). That is, X;(t) can be stationary, cyclostationary, almost cyclostatipn

or more generally non-stationary. To this enddardner(1990 a complete study of the
correlation and spectral properties is presented, inotuthe cyclic correlations and cyclic
spectra, forx,(t) and its in-phase and quadrature componagt)sandv(t).

Specifically, let consider the procesft) as aLinear Periodically Time-Varian{LPTV)
transformation of the two-dimensional vector of procegggs), x»(t)}, for which the vector

of impulse-response functions, that specify the LPTV tiamsation,h(t+7,t) = 3> gn(7)eZ™T
is periodic int for eachr, where{g,(r)} are a set of Fourier coefficients. The representation
of the impulse-response functions both in-phase and gtuadreomponents is as follows:

#(t) = tar? (4.9)

h(t, 2) = {cos(2f,)8(t — 2), sin(2rf)s(t — 21, (4.10)
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and the vector of corresponding system functions is

(o8]

G(t, f) £ f h(t,t - e > dr = Gn(f ; g)ézﬂ”“ (4.11)

N=—oc0

whereG,(f) is the Fourier transform aj (7).
Therefore, the LPTV transformatioun(t), in terms of cyclic autocorrelation defined ih.g),
is as follows

Ri(r) =3 [R(7) + R, ()] coS(rtir) + 3[R (1) — R (1) sin(2r )

+ % 2RO -RI@| iR @O+ R @] 412)

n=-11

and the Fourier transformation Bf(r) allows to obtain the cyclic power spectrum as

Se(f) :% Z {[S5,(f +nf) + Sy (f +nf)] +ni[ Sy, (f +nf) = S, (F+nf)]]

n=-1,1

3 2 S n -SR]+ nifsER(n + syt (n]). (3.13)

n=-1,1

Equations4.12 and @.13 reveal that the set of cyclic autocorrelations and the seydic
spectra are each self-determinant characteristics undelP &V transformation, in the sense
that the only features of the excitation that determine flodicautocorrelations (cyclic spec-
tra) of the response are cyclic autocorrelations (cycliecg@a) of the excitationGardney
1990.

From @.12 and its Fourier transform#(13), it is possible to determine all cyclic correlations
and cyclic spectra fox,(t), u(t), andv(t). For instance, with the use af = +2f,, it can be
shown that the cyclostationarity af(t) at cyclic frequencyr depends on the cyclostation-
arity of u(t) andv(t) at only the cyclic frequency, if and only if the cyclic correlations are
balanced in the sense that

RcutiZfr (T) — Rgizﬂ (T),
22" (@) = R (-1). (4.14)

Otherwise, there is dependence on the cyclostationariiytpandv(t) at cyclic frequencies
a + 2f,, as well as atv.
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4.1.3 Spectral kurtosis

Other method to characterize non-stationary processesiadly conditionally non-stationary
(CNS) processes, is based on the combination of spectrallants, i.e. combinations of
several moments of different orders, so-calfggkectral KurtosigSK) (Antoni, 2006. In
particular, when it is consider the Wold-Cramer decompasiof non-stationary signals, it

is possible to define a signgt) as the response of the system with time-varying impulse
responséi(t, s), excited by a signad(t). Then,y(t) can be presented as

y(t) = f H(t, f)eZtdz(f) (4.15)
whereH(t, f) is the Fourier transform of the time-varying impulse resgeh(t, s) anddZ(f)
is the spectral process associated vg(th. In (4.19, the transfer functiom(t, f) may be
interpreted as theomplex enveloper complex demodulatef the procesy(t) at the fre-
guencyf. Then, ifH(t, f) is conditioned to a given random variahtethat governs its time
variations, the B-order instantaneous moment that measures the strengtie einergy of
the complex envelope at tinteand frequencyf, can be defined as

Somy(t, 1) £ E {H(t, £)dZ(F)*" |} /d f = [H(t, )" - Sore (4.16)

Nonetheless, whehl(t, f) is time stationary and independent of tg(f), the zh-order
spectral moment can be defined by the ensemble averaging mnaneahat is, Sony(f) =
E{Spn(t. 1)}, and therefore, the fourth-order spectral cumulant of a @NBessy(t), is
defined as follows:

Cay(f) = Suy(f) - 2S5(f), f=#0. (4.17)

It can be shown that the higher deviation of a process frons&anity, the higher its fourth-
order cumulant. Therefore, the energy-normalised foartter spectral cumulant provides a
measure of the impulsivity of the probability density funatof the process at frequendy
So, the SK is defined as

. Ca(f) _ Sa(f)
Mg @ sz -2

f #0. (4.18)

Since the high values thaf( f) may take at whose frequencies where the prog@ppresent
an impulsive behavior, the SK could be used as a filter fund¢tiseparate the non-stationary
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part of the signal from the stationary part. In that senseemthe signay(t) is character-
ized by impulsive componengt), and buried in additive stationary noigg), the resulting
measurement(t) = z(t) + n(t) has a spectral kurtosis

_ k)
[1+p(F)
wherex,(f) is the spectral kurtosis d{t) andp(f) = P,/P; the noise-to-signal ratio. In
conclusion, the optimal filter that maximises the similabetween the filtered component
and the true noise-free signal, i.e. the Wiener filter, isstipgare root of the SK. Whereas the
optimal filter that maximises the SNR of the filtered signahweut regard to its shape, i.e.
the matched filter, is a narrow band filter at the maximum valusK (Randall and Antoni
2011).

ky(F) = (4.19)

4.2 Experimental setup

The goal of the experiments that are presented below cemsigt demonstrate the capability
of the proposed SRCKIBT model in ChapteR as a blind cyclostationary signal extraction
method. To this end, a set of rolling element bearing sigasdsused because are one of
the most mechanisms present in the machines and theirdaiduses a frequently machine
breakdown Randall and Antoni2011). Usually, the bearing faults start as small pits or
spalls, and give sharp impulses in the early stages covermgry wide frequency range
(even in the ultrasonic frequency range to BEA@. Several types of bearing faults had been
studied inRandall and Anton{2011); Randall(2011), yet the experiments tested in this
chapter are focused on localised faults that are charaetehy a precise location of small
pits, determining the nature of the impulsive responseenvthration signal.

In the concrete case of localised bearing faults, its madefay be carried out as a cy-
clostationary process taking into account that the possibfects are governed by a cyclic
frequency Randall et al.2001). In particular, each cyclic frequency may be approximated
in accordance with the geometrical properties of the rgletement bearings and the shaft
rotational speed, of the machine, as is shown in Tallel

In Table4.1, mis the number of rolling elementf) andd are respectively the bearing
pitch and ball diameters; is the contact angle of the load from the radial plane. Thé fau
frequencies above are based on kinematic relationshipsnésg that there is no frequency
slip, yet it is always present having a variation from thecakdted frequency of up to 4

2% (Smith and Randagll2015. The main spectral characteristics from outer race, inner
race, and rolling elements, which may be identified in thestope spectrum arel@ylor,
1994): i) BPFO and harmonics, sidebands spaced aii) BPFI and harmonics, sidebands
spaced af;, harmonics off,; Andiii) BS F and harmonics (even harmonics often dominant),
sidebands spaced &T F, harmonics oFTF.
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Table 4.1:Rolling element bearing fault frequencies

Ball pass frequency, outer race: BPFO= mTf' (1 - % cos<,p)

Ball pass frequency, inner race: BPFI = TF (1+ & cosy)

Fundamental train frequency (cage speedTF = % (1 - % cos<,p)

Ball spin frequency: BSF= 2 [1 - (g cosso)zl

Therefore, the cyclic frequencies corresponding with ingdaults, includingBPFO, BPFI,
andBS F, are evaluated in the envelope of the order compongpily according to4.9). A
graphical description of the experimental setup is showkign4.1, where both methodolo-
gies discussed in this chapter are displayed: the propd@€&KE_OT model and the spectral
kurtosis.

Since the OT model provides a set of narrow-band compongftjsthe main idea is to eval-
uate if those components may be descriptors of cyclostatyosignals, in particular, when
a bearing fault process is present in the vibration sig(tal To select the most representa-
tive component, it is computed the correlation index (defibg (3.3)) between the envelope
signal ofy(t) and the envelope signal provided by each opgén, namelya,(t) in function

of (4.9). The obtained measure could be understood as a cyclidaiorethat measures the
similarity between each narrow-band decomposition andatvesignal.

To validate the OT approach, three experiments are cartiedlfoich are organized depend-
ing on the machine speed regime, that is, constant or timgaga The first experiment is
performed using the public dataset provided by Case WeBteserve University (CWRU),
which includes different bearing faults under distinctdasones. InSmith and Randall
(2015 a benchmark studied from that dataset is presented, whelrerecording is labeled
depending on the fault is clearly identified or not. The aadje in this experiment is cen-
tered in validating the capability of the proposed approactiata clearly diagnosable and

Blind Signal Extraction Envelope estimation Order selection | Bearing fault frequency

r
{Xk(t)$ Envelo|
| } pe
OT-SRCKF v Xik + X%,k ) Correlation | ’ -BPFO

- BPFI

—) Spectral Kurtosis —) Hilbert transform - BSF

L ——— - - __— — - __ _— _—

y(t)

Figure 4.1: Experimental diagram for BSE using the proposed SRCXFmModel.
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not diagnosable for the specified bearing fault.

The second and third experiment is accomplished aiming lidata the existence of the
bearing faults in the Universidad Nacional de Colombia dataconstant and coast-down
speed operating conditions. The claim in this experimegeigered in the verification of
the results obtained by the novel OCC scheme discussed tio®&c5, because of that
approach is just focused on the frequency-located fauatien. As a complement, the
identification of the bearing defect, allowing to complet€BM system that gives to the
machine operator clear patterns related to the type of damaggent on the system.

4.3 Experiment on test rig 1. Case Western Reserve
University data

The provided signals by CWRU were captured from the test gy in Fig.4.2(a) It
consists of a HP Reliance Electric motor driving a shaft on which a torquasducer and
encoder are mounted. Torque is applied to the shaft by usilympamometer and electronic
control system. The dataset holds different types of faalging in diameter from.007 to
0.028in (0.18-0.71 mm) which were seeded on the drive- and fan-end bearings (SKp-de

1 motor
Fan end
bearing ] ‘

\ . ‘ ==

Drive end Torque
bearing transducer
&

Amplitude

0 0.2 0.4 0.6 0.8 1 3
Time [sec] Frequency [KHz]

(b) (©)

Figure 4.2: Test rig and an exemplary of drive-end bearing signals iraorajed conditioh
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groove ball bearings6205- 2RS JEMand6203- 2RS JEM respectively) of the motor
using electro-discharge machine. Each bearing fault idexkeeparately, and the vibration
signal is acquired at constant speed for motor loads-08 Gorsepower (approximate motor
speeds of 1797-172fpm). On each test, the acceleration was measured in the \ertica
direction on the housing of the drive-end bearing (DE), the-énd bearing housing (FE)
and on the motor supporting base plate (BA). Two differentiga rates were used including
12kHzand 4&Hz, for which the bearing faultBPFO, BPFI, andBS F, and the undamaged
signal are introduced. Further details regarding the ttstig can be found at the CWRU
Bearing Data Center Website

This experiment is focused on two different DE recordingguit@d at 1RHz sampling
frequency, and comprising all bearing faults, taking inteaunt some records analyzed
in Smith and Randal(2015, where all data were characterized and labeled accoxdimigf
six categories: Y1, Y2, P1, P2, N1, and N2. The capital lettdicates if the bearing fault
is clearly (Y), partial (P) or not (N) diagnosable, and theniner provides a grade of dif-
ficulty. An exemplary of the undamaged condition is shown iig. B.2 both in the time
and frequency domain, where it is possible to see that pregomspectral components are
concentrated at the frequency intervalS8[0 1] and [4— 4.5]kHz

Regarding with the bearing faults, the theoretical beafamgdt frequencies ar8PFI =
5.415f,, BPFO = 3.585f,, BSF = 2.357f,, andFTF = 2.357f, which were calculated
based on the kinematic information provided by the beariagufacturer. Therefore, a set
of cursors are located into the envelope spectrum to indpecspectral components that
match with the bearing fault frequencies. In that sense) baaring fault is analyzed using
both the proposed scheme and the SK as filter.

Inner race fault - BPFI

From the set of bearing faults on inner race, there were chtteerecordings DE171 and
DE209, which were labeled fBmith and Randa(R015 as P1 and Y2, respectively. Thereby,
DE171 is considered a signal partially diagnosable as irawer defect, whereas DE209 was
clearly diagnosable but showing non-classic charactesigh either or both time and fre-
guency domains. Analyzed bearing fault signals are showigint.3 where the left column
corresponds with the record DE171 and the right column iDi6209. The time domain
representation (top row) displays a one second signal seigarel it is observed that DE209
exhibit a clear cyclostationary behavior that is charamter by a constant cyclic period. In
contrast, the record DE171 presents an impulsive pattatngimot constant though time.
When the frequency domain is inspected (middle row), it issille to see that the spec-
trum of DE171 is wider than the DE209 spectrum, and presartadnics entirely different

1Case Western Reserve University Bearing Data Center eebsit
http://csegroups.case.edu/bearingdatacenter/home.
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Figure 4.3: Recordings DE171 (left) and DE209 (right) in time domairp(tow), frequency domain
(middle row), and the envelope correlation indexes (bottowy).

amongst themselves. In fact, the DE209 spectrum evincestanaty spaced harmonics by
shaft speed frequency (B®BHz) that characterize an amplitude modulation process. In con
trast, DE171 record just exhibits a pattern similar to wideded noise, hiding any charac-
teristic of the inner race defect.

Afterwards, a set of harmonics (obtained by the algorithesented in Sectio.2.]), is
used to compute the proposed OT decomposition. The harsangcdisposed, regarding
orders normalizing each one with respect to the shaft spedeigs. 4.3(c) and4.3(f) for
the recordings DE171 and DE209, respectively. As a resuitta of 34 and 47 order
components are obtained from each record. It is worth ndahiagthe ¥t order is added
to set a reference associated to the shaft speed, and therhesndisplayed are the most
representatives from the author’s point of view.

In the bottom row of the Figd.3the envelope correlation indexes between the obtagEd
order components and the raw siggé) for both recordings are shown. The covariance
parameters used to carry out the SRCRFF algorithm wereg? = 104, qf = 107, and

r = 10712, for the vibration signals analyzed in this experiment.slbbserved that there
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Figure 4.4: Exemplary of the order components with the highest envetopeelation index for both
inner race fault recordings from CWRU data.

are more order components correlated with the originaladignthe record DE209 than in
DE171, assuming a threshold abQand if the envelope correlation works as an indicator
of cyclostationary processes, the highest order compar@nelated with the signal may
exhibit the fault condition. In that sense, F#§4 displays the six order components more
correlated with the raw data, proving that a modulation pssagoverns each one.

After performing a visual inspection of the relevant ordemponents and its envelopes,
it is determined that the highest correlated order compiooaptures the cyclostationary
dynamic that allows identifying the BPFI frequencies, aedde, the inner race defect. A
comparison with SK approach is given in Figsband4.6for the records DE209 and DE171,
respectively. In particular, the record DE209 evincesrtyeaoth theBPFI frequency, the
second harmonic dPFI, and the sidebands spacedrbly (beingn = {1, 2, 3, 4}) from the
BPFI frequencies.

From a visual inspection in FigL.5, it is possible to see that the cyclostationary signal ob-
tained by the proposed scheme apparently exhibit a cychialaer more impulsive, yet the
filtered signal by SK presents a higher amplitudBBF | frequency. The envelope spectrum
is normalized to the unity to highlight the comparison bedweoth approaches, since in the
time domain the obtained signal with SK has a higher ampditudonetheless, the signal
provided by SRCKEOT displays the main spectral components that allow distsigng

the inner race defect.

Similarly, when the BSE approaches are applied to the DE®&T4, dt is shown in Fig4.6
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Figure 4.5: Identification of the BPFI frequencies on the envelope spatfrom DE209 using both
SK (left) and proposed SRCKOT (right) approaches.
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Figure 4.6: Identification of the BPFI frequencies on the envelope spatfrom DE171 using both
SK (left) and proposed SRCKOT (right) approaches.

that it is clearly diagnosable the inner race defect bectnefePF | frequency is perceptible
with high amplitude, and there are multiple sidebands spatBPFI + f,. As a result, both
approaches changes the category from P1 to Y2, taking ictwac the categories defined in
Smith and Randal2015, because th8PFI frequency is differentiable in amplitude from
its sidebands and the shaft speed harmonics. Furtherrhergignal in the time domain does
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Figure 4.7: Recordings DE198 (left) and DE130 (right) in time domairp(tow), frequency domain
(middle row), and the envelope correlation indexes (bottowy).

not exhibit a periodic impulsive behavior.

Outer race fault - BPFO

In this experiment, the DE130 and DE198 were the bearing fghals chosen which
present an outer race defect. Those signals are analyzaddmethe former case presents
a clear characteristics from the considered fault (caieyd), whereas the latter is not di-
agnosable (N2) in accordance wiimith and Randal{2019. In fact, the signals in time
domain show appreciable differences, since from a visiusgdantion, the record DE130 is
governed by a cyclic impulsive behavior, yet the record DEindistinguishable from
noise (right and left columns in Fig.7-(top row), respectively).

The signal spectra, displayed in the middle row of the Eig.exhibit a great differences be-
tween the considered recordings, inasmuch in the case fEQ&0, there are spectral com-
ponents located at high frequency and spacd8REO = 3.585f,, wheref, = 29.93Hz. In
contrast, the spectrum of DE198 presents low amplitudetispg@omponents where the har-
monic 114 of 2%Hz stands out, and there is no evidence of the cyclic fault 'eagy. Other
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Figure 4.8: Exemplary of the order components with the highest envetgpeelation index for both
outer race fault recordings from CWRU data.

important difference between the signals is found aftedyapg the proposed scheme and
computing the envelope correlations, because of the etiwalvalues obtained in DE130 are
higher than the values in DE198 (see the bottom row in &ig. This fact implies that the
obtained order components capture the cyclostationargvi@hgenerated by modulations
between the cyclic fault and shaft frequencies.

Nonetheless, in spite that the envelopes of the order coemgsmbtained from the record
DE198 are not highly correlated with the envelope of the réwation signal, the compo-
nents with higher correlation describe a modulation preegshat may be associated with
the bearing fault, but this behavior is dominated by a lovgdéiency modulator signal. In
Fig. 4.8 the six order components highest correlated with the aaigsngnal are shown,
where it is possible to see a cyclostationary behavior whezecyclic frequency is lower
than the shaft speed at 1th@nd 114h orders. For the sake of obtaining the order compo-
nents, the SRCKIOT free parameters were heuristically fixed@s= 104, g = 10°%, and

r = 107*2, in the DE198 case, whereas for DE130 the values were104, g = 1071% and

r = 1071, As aresult, 25 and 29 order components were extracted frat8D and DE198,
respectively.

As regards the SK comparison, the filtered signal with Skt @efe) and the most relevant
order component (right side) in accordance with the higkestlope correlation are dis-
played in Figs4.9and4.10 In the concrete case of DE130 (F#9), it is observed that
the BPFOfrequency, its harmonics and sidebands spaced, appears with a large ampli-
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Figure 4.9: Identification of the BPFO frequencies on the envelope spectrom DE130 using both
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Figure 4.10: Identification of the BPFO frequencies on the envelope specfrom DE198 using
both SK (left) and proposed SRCKGBT (right) approaches.

tude. The main difference between both approaches liegifath that the second harmonic
of BPFOQOis higher in the envelope spectrum (18obtained employing the proposed ap-
proach. Nonetheless, both SK and SRCR&F approaches are able to clearly diagnosis the
outer race fault.

On the other hand, the blind signals extracted from the ceP&198 using both approaches
exhibit notable differences (see F®§10. In the case of SRCKIOT, the 11th order com-



90

4 Blind cyclostationary signal extraction based on otdmking

ponent gives the best signs of the outer race defect, whichasacterized by a low fre-
guency modulation associated to low sidebands of the frejeeBPFO and BPFQ, i.e.

the frequencieBPFO- f,, BPFO- 2f,, BPFO- 3f,, 2BPFO-6f,, andBPFO- 7f,, and
also, there is a spectral component that matches BRRO, yet its amplitude is small. In
contrast, the filtered signal with SK in time domain is simtlawide-band noise, but the en-
velope spectrum shows that the third harmoni88fOappears as well as some sidebands
like BPFO- 3f, and BPFO+ f,. In conclusion, both methods exhibit some characteris-
tics of the outer race fault, being potentially diagnosdbBt2) according with the categories
provided inSmith and Randall2015.

Rolling element fault - BSF

In the case of rolling element defects, the BSE approachesalidated using the record-
ings DE188 (P2) and DE225 (N1). In particular, when the ddbecomes large enough to
allow movement of the shaft speed, the rolling element $iggeomes modulated with the
machine speed, generating a sideban83$d-at +FTF (Taylor, 1994). Fig. 4.11shows the
analyzed records both in the time and frequency domainsaftdpmiddle rows), where it is
possible to see that the impulsive behavior caused by thaglaims a random process. This
process in the case of record DE225 is virtually indistispable from noise, yet its spec-
trum shows a singular pattern of bearing faults at the fraquénterval [31 — 3.5]kHz and

a modulation process at 48h order with the sidebands spaced:dt = 28.82Hz. Similarly,
the record DE188 exhibits in its spectrum several charasties of bearing faults like mod-
ulation processes localised at the frequency interval {23.5]kHz and sidebands spaced
+nf, = 2873Hz (beingn = {1, 2}) at the 48th and 146h orders.

In Fig. 4.11-(bottom row) the envelope correlation indexes computesvéen the order
components and the raw signal are displayed. For the sakstiofaging the order com-
ponents, the covariances of SRCKH were heuristically fixed ag® = 104, ' = 107,
andr = 1072, in the DE225 case, whereas for DE188 the values were10%, q' = 1072,
andr = 101, As a result, 26 and 30 order components were extracted frEi8B and
DE225, respectively. It is possible to see that the higheiiipulsive behavior, the higher
the envelope correlation; in consequence, the correlatagxes from the record DE188 are
higher than the values in DE225.

The six order component with the highest envelope coraelat shown in Fig4.12 where
the record DE225 evinces modulation processes governeowmsr land upper frequencies
thanf,, yet the interested order componentis theth2®@der. In the case of DE188, the order
components concentrated at the frequency intervalH2.5]kHz are those related with the
predominant modulation process, and because of the ordgoarzents are so closer, these
components are very similar in its waveform.

Afterwards, from the comparison between filtered signalgsigg both SK and SRCKBT,
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Figure 4.11:Recordings DE225 (left) and DE188 (right) in time domairp(tow), frequency domain
(middle row), and the envelope correlation indexes (bottow)).

it is possible to infer that the record DE188 is clearly diaggible (Y2) since it depicts
sidebands of th&S F and BS F spaced atFTF, and multiple harmonics df TF (see
Fig. 4.13. It is worth noting that the filtered signal in time domairhéits a similar wave-
form, yet the signal obtained with SK has a time delay coriogrthe outcome of the pro-
posed approach.

When the approaches are applied to the record DE225, it slgeso see in Figd.14that the
extracted signal using SK (left part) is not diagnosable)@&lrolling element fault because
there are no frequencies that match w8 F neitherFT F in the envelope spectrum. On
the contrary, the obtained component by SROBF scheme presents some characteristics
of this type of fault like theBS F frequency, its sidebands spaceBTF, and some low
amplitude harmonics of thET F. Moreover, sidebands of tH&S F spaced atf, , and a
dominant component associated with the shaft speed imljcttat the outer race fault is
masked by that frequency. In consequence, the record DE22%lbably diagnosable (P1)
using the proposed approach since the envelope spectrums sliscrete components at the
expected fault frequency but they are not dominant in thetsye.
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Figure 4.12:Exemplary of the order components with the highest envetopelation index for both
rolling element recordings from CWRU data.
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Figure 4.13: Identification of the BSF frequencies on the envelope spetfrom DE188 using both
SK (left) and proposed SRCKET (right) approaches.

In general, from this experiment it could be inferred that tbtained order components,
using the proposed SRCK®T algorithm, comprise relevant information about the repr
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Figure 4.14: Identification of the BSF frequencies on the envelope spetfrom DE225 using both
SK (left) and proposed SRCKOT (right) approaches.

faults and the modulation processes that occur in the vidsraignal, which is very useful
as a vibration analysis tool when the process is cyclostatio In the case of the SK, the
achieved results are consistent with the outcomes repanté&nith and Randal(2015,
when the CWRU data are used.

4.4 Experiment on test rig 2: Universidad Nacional de
Colombia data 2

The goal of this experiment consists of validating that theamed components using the
proposed OT model approach may extract cyclostationamnasghidden in the vibration
signal, as well as to provide support to the novel OCC metlugygpresented in Chapt&r

in the sense, that it is possible detecting the spectraleraritere the faults appear. In that
sense, from the dataset described in Se@iéneach bearing fault signal both in the steady-
state and dynamic regime are analyzed, where the faultdreges areBPFI = 5.4783f,,
BPFO = 35217f,, BSF = 21913f,, andFTF = 0.3913f, . Here, it is worth to notice
that dynamic regime signals are transformed into the aogler domain to perform the
proposed model, since when the shaft speed presents laaigges) e.g. coast-down, the
bearing faults introduce cyclo-non-stationary procesbas are characterized by AM-FM
modulations. Therefore, the assumed model in the SROKFRlgorithm does not converge
to track the instantaneous speed changes, and hence, #recordponents are wrongly
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extracted. For that reason, the bearing fault signals uvaligible speed are analyzed after
performing the angle domain transformation using Comp@eder Tracking (COT) with
the same conditions discussed in Secob.2 It is important to highlight that COT may
introduce errors in the domain transformation generatetth®yesampling, in consequence,
the frequency slip can be higher.

As regards the identification of the bearing faults, eachribgdault signal is randomly
selected, including each one by inner race, outer race, @hdgr element defects. The
following sections describe the analysis of the signalé ltle¢ time and the angle domain,
comparing the OT model approach with the SK.

Inner race fault - BPFI

In Fig. 4.15the bearing fault signals are shown, where the left siddalysghe signal under
steady-state regime in the time domain a2P2. The right side presents the signal under
dynamic regime in the angle domain (top row), being the s$paded normalized to thehl
order. When the spectrum is computed (middle row), itis s $0 see that frequency range
is higher in the steady-state regime, because under dyrragiiwe the signal is resampled
at 32 orders, which implies that the spectral range is [lD0O0Hz approximately. In the
steady-state regime case, the spectrum exhibits an incefaalt characteristic components
concentred at the interval [B— 4]kHzwhere there are the majority of order components to
be tracked. In change, the order spectrum has a few comobetween the 18 and the
15th order which manifest the fault conditions. Nonethelessrdlis no a clear pattern about
the considered defect in both spectra.

The envelope correlation indexes (FHigl5bottom row) allow inferring that in steady-state
regime is clear extracting a component that shows the dafegeuse the envelopes are
highly correlated with the raw signal. However, in the dymacase, the correlation does
not overcome B, and the most correlated components are in medium and Exyudncy,
reducing the possibilities to find tH&PF| frequency.

Aiming to estimate the order components depicted in thetspethe covariances of the
SRCKFOT algorithm were fixed ag?® = 1073, q* = 1078, andr = 10°° in the steady-state
regime, while in the dynamic werg® = 102, q' = 105, andr = 10°. As a result, 27
and 18 order components were obtained, from which the si>ermorrelated are display
in Fig. 4.16 Here, the order components present an impulsive behamersteady-state
regime, yet in coast-down that behavior is not clearly agipted in the highest correlated
components. Nonetheless, an inspection of the enveloptrgspeof the order Zlith allows

to determine the existence of the inner race fault. Besttasprder is related with thBPF |
frequency normalized by the shaft spefed

Afterward, the comparison of the BSE approaches for theimgé&ault signal under steady-
state regime is shown in Fig.17. It is observed that both methods distinguish the inner
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Figure 4.15: Recordings of inner race fault under steady-state (leff)dymamic (right) regimes in
time domain (top row), frequency domain (middle row), aneléhvelope correlation indexes (bottom
row).

race fault since th&PFI and its harmonics are clearly identified in the envelope tspec
Furthermore, spectral components associated with theamis oBPFI and harmonics of
the shaft speed are also detected with a high amplitude hwhdicates that the spall size
generated on the inner race is an advanced stage.

The notable difference between SK and SRCEF is found in the analysis of the bearing
fault signal under the dynamic regime (see HBid.9. Here, the state-of-the-art method (left
side) overcomes to the proposed approach because of ititsxhilith a proper amplitude,
the spectral components associated BBF | and several sidebands lilgPFI + f,. Nev-
ertheless, the order component with highest envelopelatioe also shows the same fault
frequencies, but the amplitude is very low.

Outer race fault - BPFO

In this experiment, the analyzed bearing fault signals d@resent a clear impulsive compo-
nents in the time and angle domain under both steady-stdt#eramic regimes (see Fig.19
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Figure 4.16:Exemplary of the order components with the highest envetopelation index for both
inner race fault recordings under different regimes from-2tata.
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Figure 4.17: Identification of the BPFI frequencies on the envelope spattfrom bearing fault
signal under steady-state regime, using both SK (left) andgsed SRCKEOT (right) approaches.

top row), and hence, the signals may be confused with thernaded state. In the case of
the steady-state regime displayed in the left side of the &f the spectrum is concen-
trated in a low frequency range and does not show modulatioregses in high frequency,
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Figure 4.18: Identification of the BPFI frequencies on the envelope spattfrom bearing fault
signal under dynamic regime, using both SK (left) and preddSRCKFEQT (right) approaches.

indicating that the fault could be incipient, or the spatiesis slight. Especially, the highest
spectral component is theldHz order that corresponds to a characteristic frequency of the
electromotor, i.e. the number of poles by the shaft speedishHE2(Hz approx. The lack

of modulations is verified in the envelope correlations ot row) between the extracted
components and the raw signal, since the reached valuesidee 02. Unfortunately, that
correlation values imply that the extracted order comptséa not comprise a well-defined
cyclostationary processes or AM modulations generateg/bljcdrequencies.

Similarly, when the machine operates under dynamic regthreepearing signal spectrum
(Fig. 4.19right side) evinces spurious spectral components thabtgmulate modulation
processes at between the orderthlshd 21h. This fact could also be appreciated in the
envelope correlation indexes because that order rangers@aphe highest correlation, im-
proving the achieved valuesl® compared with the correlations in the steady-state regim

For the sake of estimating the set of order components ussn§RCKEOT approach, the
harmonics depicted on the signal spectra are used, olgaartotal of 33 and 22 components
from the bearing signals under the steady-state and dynagiime, respectively. Moreover,
the covariance parameters of the algorithm were heuriltiteed asg? = 1073, g" = 1078,

andr = 107° in the steady-state regime, whereas in the dynamic regienparameters were

of =102, g" = 105 andr = 10°°. As a result, the six components more correlated with the
raw signal are shown in Figt.2Q It is possible to see that the extracted components in the
steady-state regime (Fig.20(a) have a slight impulsive behavior and are governed by an
AM modulation that in some cases are cyclostationary, fstaince, in the order 3&h. A
similar behavior is observed in the dynamic regime (Bi@0(b), yet the modulator signal
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Figure 4.19: Recordings outer race fault under steady-state (left) gndmic (right) regimes in time
domain (top row), frequency domain (middle row), and theetope correlation indexes (bottom
row).

that dominates the cyclicity has a lower frequency.

In the concrete case of the outer race frequency identificati the envelope spectra, the
bearing signal under steady-state regime (Eig1) shows a periodical impact eacliGsec

at time domain, which is also observed in the envelope spcsince the dominant com-
ponents are spaced byH8 That behavior may be better appreciated in the filteredasign
with SK than with the proposed approach, however, that corapbdoes not provide any
information about the analyzed fault, and hence, it actsdiknask that hides the outer race
fault frequency. Nonetheless, some characteristic petigfthis type of fault may be found
in the envelope spectrum such as BieFOfrequency and the first sidebanBBPFO + f,.

In the dynamic regime presented in Hg22, it is complicated distinguishing the outer race
fault characteristics due to inaccuracies generated glihe@ angle domain transformation
(i.e. vagueness caused by COT). Nevertheless, the cydtigfiosed by the filtered signal
using SRCKEOT (right side) allows inferring the existence of modulasahat could be
related to the studied fault. In that sense, it is possiblgetect some spectral components
that match mainly with the lower sidebands of BleF Ofrequency. On the contrary, despite
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Figure 4.20: Exemplary of the order components with the highest envetopeslation index for both
outer race fault recordings under different regimes from2Jtlata.
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Figure 4.21: Identification of the BPFO frequencies on the envelope specfrom bearing fault
signal under steady-state regime, using both SK (left) andgsed SRCKEOT (right) approaches.

the signal filtered by SK (left side) in angle domain does tioinaperceiving an outer race
defect pattern, yet the envelope spectrum depicts somenglitade spectral components
that match with the sidebands BPFQ.



100 4 Blind cyclostationary signal extraction based on piageeking

Amplitude
Amplitude

20 40 60 80 100 120 20 40 60 80 100 120
Rotations [samp/rev] Rotations [samp/rev]

— ‘Sigr‘]a]

- -nf

- - -BPFQ g
BPFO + nf,
2BPFQ
2BPFO £ nf, ||
L

— ‘Sigv‘ml

B

- - -BPFQ 1
BPFO +nf,
2BPFQO
2BPFO +nf, ||
T

o
=)

Amplitude
Amplitude

10 15

Figure 4.22: Identification of the BPFO frequencies on the envelope specfrom bearing fault
signal under dynamic regime, using both SK (left) and preddSRCKFEQT (right) approaches.

Rolling element fault - BSF

Fig. 4.23shows the respective bearing signals under the steady{tétcolumn) and dy-
namic regimes (right column), in time and angle domain (tap)r their corresponding spec-
tra (middle row), and the envelope correlation values oletibetween each order compo-
nent and the raw signal (bottom row). Firstly, it is obsertieat the signal in steady-state
regime exhibits a clear cyclostationary behavior, wheneaynamic regime the signal also
depicts an impulsive behavior, and in both cases those aignsharacteristics of a bearing
defect.

Secondly, the spectrum of each regime displays particpkeetsal components that confirm
the information observed in the time and angle domainsidedatly, the spectrum of steady-
state regime has representative spectral componentsiatéheals [32—4] and [55-6]kHz
which commonly are associated to bearing faults. At the same there are several lobes
in the order spectrum at the order intervals fL05] and [25- 30], which gives some clues
about the damage.

Lastly, the envelope correlation indexes allow to estalflisquency bands where there are
more modulated components, where it is worth to highligattigh correlation values, in the
steady-state regime, between the9ii and the 13th orders. Conversely, the correlation
values in the dynamic regime are acceptable, taking intowdcthat the signal has been
resampled, and hence, the highest components may lasttie&¥th to 256Hz

The 54th order is very particular because it exhibits a modulationegated by a low fre-
guency that corresponds T F. Nonetheless, since the idea is to find the order compo-
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Figure 4.23:Recordings rolling element fault under steady-state)(#ftl dynamic (right) regimes in
time domain (top row), frequency domain (middle row), anel¢hnvelope correlation indexes (bottom
row).

nent that better describes the rolling element defect, dyaliinspection the 1&h order is
selected from the six orders with the highest envelope ladioa (see Fig4.24(b). Con-
cerning to the steady-state regime the six order compomeatis correlated with the raw
signal display a similar behavior, being characteristiceaqalic impact spaced at/@sec
The mentioned above order components where estimated fixengovariance parameters
of the SRCKEQOT algorithm as order componentg,= 103, ' = 10, andr = 10°°, and

o = 103, g = 10 andr = 10°%, obtaining a total of 30 and 18 components from the
bearing signals under steady-state and dynamic regingsctvely.

As regards the identification of the outer race fault, bositet® approaches achieve success-
fully to detect theBS Ffrequency and multiple harmonics of tk& F, when the machine
operates in steady-state regime (Fi25). Besides, the visualization of sidebands:&fT F

and +f, are signs that the defect is an advanced stage. In contriash) the bearing fault
signal under dynamic regime is analyzed (Fd¢26), it is found that the proposed scheme
reaches detecting more symptoms about the outer race fiamtthe SK. In consequence,
it is possible to see in the envelope spectrum, obtained momrder component (right col-
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Figure 4.24:Exemplary of the order components with the highest envetopelation index for both
rolling element recordings under different regimes from-BMata.
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Figure 4.25:Identification of the BSF frequencies on the envelope spetfrom bearing fault signal
under steady-state regime, using both SK (left) and prap8s&CKFEOT (right) approaches.

umn), theBS Ffrequency together with several inferior sidebands, anttiphe harmonics
of FTF, being this the dominant frequency. In change, the envedppetrum, of the filtered
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Figure 4.26:Identification of the BSF frequencies on the envelope spetfrom bearing fault signal
under dynamic regime, using both SK (left) and proposed SROCK (right) approaches.

signal with SK (left column), shows only frequencies thatchawith theFTF frequency
and its harmonics.

4.5 Discussion

The obtained results from the experiments presented alvovelp several aspects to high-
light about the studied BSE approaches, taking into acdbanboth methods in most of the
analyzed cases were correctly extracting cyclostatioo@myponents associated with bearing
faults.

On the one handSmith and Randal{20195 recommends that new diagnostic algorithms
must demonstrate the relative advantages against the mankhesults that they reported,
it is chosen the SK filter as the reference approach. In spitteobearing fault detec-
tion methodology does not include the signal preprocesssigg the widely-known Dis-
crete/Random Separation algorithm, it is showed that bygugie SK is possible to assign
the categories provided. Here, it is important to notice thea BSE approaches were tested
in two different types of bearing fault signals, that in oermbs are considered as the clear
and not diagnosable. In that sense, considering the condithat the cited authors proposes
to determine the improvement of the bearing fault detectising the proposed approach it
is possible to change from a partial or not diagnosable tbaity or clearly diagnosable in
some cases. For instance, the record DE198 changes fromR2 the DE188 from P2 to
Y2, and the DE225 from N1 to P1. Nonetheless, regarding thgatational efficiency, SK
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is better than the proposed approach because it perfornas#iigsis in less computing time,
considering that the SRCKBT algorithm is still tested in Matlab© and the computationa
cost depends on the number of order components that arettaBlesides, SK is plug and
play whereas the proposed algorithm still requires thentyioif several parameters such as
the number of harmonids and the covariances of the Kalman recursion.

On the other hand, the experiment considering both stetadg-and dynamic regimes show
that both approaches (SK and SRCKH) provide the needed elements to diagnose the bear-
ing faults. Nevertheless, in the especial case where tiesgeed is varying, both methods
are complementary in the sense that the variable speed emmpcould be estimated using
the SRCKEQT applied to the low-frequency range where the order coraptapreserve the
smooth amplitude change condition. Then, the signal isstcamed into the angle domain
using COT, and the SK filter the signal to extract the cyclomt@ry component that evinces
the bearing fault.

Regarding with the obtained results in the Cha@ewhere the order components of the
bearing signals (described in Sectibd) were classified and labeled as targets or outliers,
it is possible to confirm that effectively the outlier compoits exhibit some characteristic
of the either inner race, outer race or rolling element. bt gense, it was found that the
frequency-located OCC methodology allows to obtain a spe@nge where the fault exists,
and then, if the envelope spectrum of the outliers is contjuteis possible to identify
characteristic patterns from the bearing faults. In sditeere are other approaches that also
provides an informative frequency band about the fault,gleposed methodology could
indicates both shaft and bearing defects. The study of gefects is considered as future
work because that topic is out of the scope of this work.



5 Conclusions and future work

This work proposes novel machine diagnostic strategidsatfeafocused on the processing
of non-stationary vibration signals, with the aim of prawig practical and implementable
analysis tools in the industry. In that sense, it was dismiss diagnostic methodology
that isolates, detects and identifies several faulty carditas the faults on the shaft and
the rolling element bearings. Particularly, the methodgléollows the estimation of the
instantaneous speed and the relevant spectral componamtthie machine, the detection of
the faulty condition, and the identification of the parteuiault. In that sense, the concluding
remarks are described:

* A novel order tracking approach termed SRCRN, that allows estimating the mul-
tiple spectral/order components simultaneously togethtir the instantaneous fre-
guency was presented. The performance of the proposedagbpi® validated both
two laboratory tests and four case studies, providing thevWiing advantagesi) dis-
tinguishing closed-order componenit};estimating the instantaneous speed under dif-
ferent speed variations comprising, start-up, coast-dand speed fluctuations as in
the case of the wind turbinaii) estimating narrow-band spectral components that
may exhibit stationary and cyclostationary processes.elmiess, when cyclic com-
ponents are governed by a variable speed the tracking yailsin this case, the pro-
posed SRCKEOT could still estimate the shaft speed if the signal is dasmsled
until reaching only & order. In general, the proposed OT model is a preprocessing
interesting tool that may describe the overall charadiesi®f a machine.

* A novel OCC methodology, callddequency-located fault detectidimat allow detect-
ing the frequency band where the fault exists was presentedcthis end, a set of
dynamic features, estimated by SRCKH, describe the narrow-band spectral prop-
erties of the signal allowing to determine the existencethedrequency range of the
fault. This kind of information is relevant for machine optar without much experi-
ence in vibration analysis, reducing the time to find thetfaptocess and improving
the maintenance capabilities. The methodology was testedifferent types of data
including unbalance and misalignment under start-up aagtedown operating con-
ditions, and bearing fault detection under permanent aadtedown regimes.

* A methodology to extract blind signals from mechanicalratibns was presented.
The method is based on the cyclostationary properties oh#meow-band spectral
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components obtained using SRCKH, allowing identifying the fault frequencies that
characterize the bearing failures. The achieved resulte e@mpared with the state-
of-the-art BSE approach so-called spectral kurtosis, stpiat our methodology is
comparable, and in some cases, it provides a more compredén®rmation than
SK.

Regarding the future work, there are some issues that caddressed to improve the pro-
posed machine diagnostic framework, including the folligwconsiderations:

* Since the free parameters of the proposed SRCHFapproach are heuristically fixed,

an issue of study is focused on the design and implementaitmptimization methods
that allow estimating those parameters from the vibratignad. This fact will reduce
the time to obtain the best filter response. It is worth notirgg the study of Kalman
filtering is a current research field since the algorithm eogence depends on the
estimation of correct parameters.

The analysis of cyclostationary processes when the madperating conditions are
time-varying has a growing interest in the condition moritg community, and in that
sense, we consider the improvement of the proposed SRGKBpproach to extract
both instantaneous frequency (without downsampling) &edcyclostationary order
components under speed fluctuations.

As regards the OCC methodology, it is important the analgsthe different machine
faults like gears, complex machines, and the validatiorhefrhethod for real-world
applications. This fact will allow increasing the probdilof transforming the ma-
chine diagnostic methodology in a tool useful in the indystr
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