
With the development of computer vision and high-precision 3D model reconstruction, used for the measurement 
and 3D reconstruction of the geological landslides, acquiring a high-precision relative orientation basing multiple 
images is crucial and the key point to ensuring and improving the accuracy of 3D model and space position. 
Currently, the conventional relative orientation model includes five independent parameters. For the linear relative 
orientation model, there are nine parameters to construct the linear space geometric relationship between the 
imaging and space point. To eliminate the impact of more parameterization and improve the accuracy and stability 
of solved parameters for the conventional direct relative orientation model, a new relative orientation model with 
seven constraints is proposed and validated in this paper. The additional constraints are derived from the orthogonal 
property of the rotation matrix of a stereo imaging pair and associated with the least squares adjustment to obtain a 
high-precision result of the relative orientation. Through the accuracy assessment using space position, it is revealed 
that the new proposed model is more advantage for the conventional type of direct relative orientation, especially at 
3D model reconstruction and close range photogrammetric and applications for the geological landslides measurement.

Con el desarrollo del entorno computacional y la alta precisión del modelo de reconstrucción tridimensional, utilizados 
para la medida y reconstrucción de despredimientos geológicos, es crucial la obtención de la orientación relativa de 
alta precisión basada en imágenes múltiples y es el punto clave para asegurar y mejorar la exactitud del modelo 3D y la 
posición espacial. Actualmente el modelo de orientación relativa incluye cinco parámetros independientes. En el modelo 
linear de orientación relativa hay nueve parámetros para construir la relación geométrica espacial linear entre el sondeo 
y la posición espacial. Para eliminar el impacto de más parametrización y mejorar la exactitud y la estabilidad de los 
parámetros resueltos el modelo de orientación relativa convencional, este artículo propone y valida un nuevo modelo 
de orientación relativa con siete restricciones. Las restricciones adicionales se derivan de la propiedad ortogonal de la 
matriz de rotación de la imagen estéreo y se asocian con el ajuste de los cuadrados mínimos para obtener un resultado 
de alta precisión de la orientación relativa. Al medir la exactitud con la posición espacial se revela que el nuevo modelo 
propuesto tiene más ventajas que aquel de orientación relativa directa, especialmente en el modelo de reconstrucción 
3D y en las aplicaciones fotográmetricas de rango cercano para la evaluación de desprendimientos geológicos. 
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 Introduction

Relative orientation is the process of recovering the position and 
orientation of one image with the other in an individual image space 
coordinate system (Läbe & Förstner, 2006), which is a classic topic in satellite 
photogrammetry, computer vision, and 3D model reconstruction. With the 
development of the study fields, a higher accuracy of relative orientation 
model is demanded and is a crucial process for ensuring and improving the 
accuracy of relative orientation. For the 3D measurement and space model 
reconstruction in the geological landslides, basing on multiple images, the 
accuracy of relative orientation directly determined the accuracy of the 
reconstructed 3D model, whose accuracy can reach the accuracy with the 
laser scanner in precision, theoretically. Therefore, the high-precision relative 
orientation model is a key point for the various applications basing on space 
relative orientation (Horn, 1990; Mikhail, Bethel & McGlone, 2001).

Many attentions are concentrated on solving relative direction 
elementary with the linear methods, such as eight-point algorithm, five-point 
algorithm, and singular value decomposition (Longuet-Higgins, 1987; Philip, 
1996; Faugeras, 1993; Hartley & Zisserman, 2003). Longuet-Higgins was the 
first to discover that the position and orientation of one image with the other 
is contained in the essential matrix (Longuet-Higgins, 1987). In that paper, 
an eight-point algorithm is proposed to estimate an essential model with 
the limitation that it will introduce significant error because of noises in the 
image. To get the more definite essential matrix, Nistér proposed five-point 
algorithm (Nistér, 2004). The five-point algorithm estimates essential matrix 
by calculating the root of polynomial ten times. There are also methods 
on singular value decomposition (Taylor & Kriegman, 1995; Ma, Soatto, 
Kosecka & Sastry, 2004; Hartley & Zisserman). Although homogeneous 
algebraic representation and singular value decomposition strategy can 
calculate relative direction elementary efficiently, it is a significant error in 
the result because of unmatched conjugate points. When there are outliers 
among the conjugate points, the least squares iterative method is one of the 
best choices for more accuracy results of relative orientation elementary. 
The least squares iterative method will decrease the adverse influence of the 
outliers by the iterative process. 

In the calculation process for relative orientation parameters, there are 
two solving methods. One is using iterative calculation with the least square 
adjustment. The method needs to give the initial parameter value. However, 
the initial value cannot be provided in some case, and the range of the given 
initial value will affect the accuracy of the relative orientation (Stewenius, 
Engels & Nistér, 2006). In the worst situation, the wrong initial value will 
cause the equation does not converge and then have no solution, especially 
at close range applications (Li, Liu & Tang, 2007; Pan, 1999; Duane, 1971). 
For large rotation angle of close range images, more strict relative orientation 
method is adopted to restore their relative position (Tang & Heipke, 1994; 
Werner, 2003; Zhang, Huang, Hu, Wan & Lin, 2011). The other method is 
to solve the equation of relative orientation model with one or some accurate 
parameter value directly. For the case, it is also difficult to acquire the few 
specific value which constraints its application for some fields.

In this paper, a new relative orientation model, direct relative orientation 
with seven constraints is proposed to overcome the problems in the models 
described above. In the new model, the initial value is calculated by direct 
relative orientation with a rough Bx. Then, the seven constraints are used 
to control and adjust the solved parameter result during the bundle block 
adjustment. Six constraints are derived from the inherent orthogonal property 
of rotation matrix. The seventh constraint stems from the decomposition of 
baseline. In the experiment, the model correction is validated, and the space 
position assesses the accuracy. Through the experimental result, it is revealed 
that the proposed new model can improve and acquire a higher accuracy of 
relative orientation, and is suitable for large oblique angles and translation 
using the multiple images to measure geological landslides and perform 3D 
reconstruction of the geological landslides.

Conventional model of relative orientation 

1. Coplanarity condition equation

Relative orientation is the process of recovering the position and 
orientation of one image with the other in an individual image space 
coordinate system. Given two images (left and right images) with an overlap 
filed from different viewpoints, a stereo model can be created and reconstruct 
the original epipolar geometry, represented by Figure 1. Assuming a ground 
point M is imaged at two viewpoints S1 and S2, the two image points (m1 and 
m2) are acquired, and the corresponding imaged ray is R1 and R2 respectively. 
The vector distance between the two viewpoints is called baseline B. Basing 
on the epipolar geometry, the vectors R1, R2, and B must be in one plane, 
coplane, whose mathematical expression is represented by Equation 1. 
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Figure 1. The diagram of the epipolar geometry relationship in the stereo images.

Basing on the epipolar geometry, the mathematic model of relative 
orientation can be expressed as follow by coplanarity Equation 3 and 
Equation 17 according to Equation 1.

                                   				                
 (2)

where BX, BY, BZ are components of baseline of a stereo pair [X1 
Y1 Z1]=[x y -f]T and [X2 Y2 Z2]=R[x’ y’ -f]T coordinates of conjugate 
points in the image space coordinate system, (x,y) and (x’,y’) represent 
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2. Direct relative orientation model 

In aerial photogrammetry, the values of BY, BZ, φ, ω, κ are set to 
zero as the initial value, and the accurate value of BX is given to determine 
the scale of the stereo model; otherwise the model scale will be any size. 
However, the initial value of the baseline components (BY, BZ) and the 
rotation angles is unknown in some cases, which will result in a low accuracy 
or an error solution for relative orientation. For this case, direct relative 
orientation model can be used to calculate the orientation parameters and 
perform the relative orientation. For the model of direct relative ordination, 
the value BX needs to be fixed accurately, and then the model derives to a 
linear mathematic construct for calculating the other parameters of relative 
ordination. The direct relative orientation can avoid the iteration calculation 
in the least square adjustment owing to the linear mathematic construct. 
However, two sets of parameter result for the relative ordination can be 
acquired, and need to determine which one is true. 

According to the space image coordinate of the left and right image 
point, the coplanarity condition equation Eq.(2) can be transformed into the 
following linear form of Eq.(3). 

                        					                  (3)

In the Eq. (3), the L1, L2, L3, L4, L5, L6, L7, L8, L9 are the polynomial 
coefficients which are described in Eq. (4), respectively.
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Eq. (5) is obtained by Eq. (3) dividing L5 on both sides.

				                                              (5)

Where 0
5/i iL L L= , 0

5 1L = . Eq. (5) is the basic mathematic model of 
direct relative orientation. This model can directly calculate the eight 
unknowns 0 0 0 0 0 0 0 0

1 2 3 4 6 7 8 9, , , , , , ,L L L L L L L L  with eight or more conjugate points 
without approximate values. 

The baseline parameter BX has no influence on building up a stereo 
model; it can be assumed to be known. Therefore, parameters BY and BZ are 
obtained by the following equations:

    
						                
						                  
						                    (6)

The following equations can get nine elements of rotation matrix R:
                                   

						                  
						                    (7)

Finally, three rotation angles can be decomposed by the 
definition of R [3, 17].

                                          
					   
						                     (8)

According to Eq. (6), L5 can be positive or negative, which does not 
affect the values of BY and BZ. However, there are two sets of possible 
solutions for the rotation angles φ, ω, κ. One of the two solutions only can 
be used to acquire the real configuration of relative orientation. Therefore, 
the degree of the two angles φ and ω are used to determine and select a true 
solution, which should satisfy the following range represented in Eq. (9).

                                          
						                     (9)

3. Model of direct relative orientation with constraints

During the conventional model of direct relative orientation, the 
eight parameters 0 0 0 0 0 0 0 0

1 2 3 4 6 7 8 9, , , , , , ,L L L L L L L L  can be calculated when the 
value of BX is fixed. It is evident that the Eq. (3) is linear, so the values of 
eight parameters can be determined uniquely without the parameters 
correlation. For the model, the parameters of rotation R and baseline B 
in the relative orientation are only constrained by the model equation, 
but not constrained by the relationship among the parameters, which 
will decrease the accuracy and stability of the parameter result and then 
reduce the accuracy of relative orientation.

In the computer vision, it is well known that epipolar equation x’TEx=0, 
rank-two constraint det(E)=0, and trace constraint 2EETE-trace(EET)E=0 
are utilized to solve essential matrix E. In the epipolar equation, the x’ and 
x represent the normalized image coordinates of conjugate points from the 
left and right images, respectively. The essential matrix E can be calculated 
through the matrix multiplication between the translation T and rotation 
R, E=TR. For the solving method, the nine components in the rotation R 
is constrained by orthogonal property of rotation matrix included implicitly in 
these equations. However, the elements in the baseline B are not limited. Also, 
the solving method in the computer vision yields nine homogeneous polynomial 
equations of degree 3, and the nine similar polynomial equations are correlated.

Different with the conventional model of direct relative orientation 
and the essential matrix in computer vision that normalized image points 
as observations, a new relative orientation model, direct relative orientation 
model with seven constraints, is proposed and validated. In the new model, 
the original image point coordinate of conjugate points and focal lengths f 
are used, and the constraint includes the components relationship in rotation 
R and baseline B for improving and ensuring the accuracy and stability of 
relative orientation. The seven constraints are represented by Eq. (10). 

                    

								      
			    			     

						                   (10)

The proposed new model of direct relative orientation with seven 
constraints consisted of Eq. (2), (3) and (10). The model selects the 
initial nine parameters of direct relative orientation as unknowns, 
and seven constraints are considered to improving and ensuring the 
accuracy of the solved parameters.

4. Solution of direct relative orientation with constraints

In the process of calculation of parameters in direct relative orientation 
with constraints, assuming Eq. (2) is not equal to zero and an error v is in the 
equation, thus the Eq. (2) is derived to Eq. (11) basing on the Eq. (3). 

                    
 						                   (11)
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Then, differential form of the Eq. (11) is represented by Eq. (12). The 
F0 is the approximate value of F, and dBX, dBY … dc2, dc3 is the variation of 
the 12 unknown parameters for relative orientation. Thus, the error equation 
is described as Eq. (13).

					                                    (12)
                        

							         	
						                  (13)

Where V, X, L represent the observation vector, parameter variation 
value, and the free vector, respectively. 

To improve and ensure the accuracy of the solved parameters, the 
seven independent constraints described above, are considered, and its 
equation is expressed by Eq. (14). 

            B • X + W = 0			                             (14)

B and W are the coefficient matrices and the observation vector of 
constraint condition in the bundle block adjustment, which are represented by 
Eq. (15) and Eq. (16), respectively.

    				  

						                  (15)

               

 								      
				                                                    (16)

Combining the error equation of observation and the equation of constraint 
condition, the error equation with constraint condition is expressed in Eq. (17).

                                             
(17)

According to the least square with restrictions, the 12 unknown parameters 
can be computed and express by the Eq. (18).

                                             
(18)

In the Eq. (18), the U, K, and Wu can be acquired by the follow Eqs. (19).
                                         
								      

						                    (19)

5. Experiments and results

Data and Experiment

The indoor close range images with large oblique angles are used for 
experiments to validate the correctness and accuracy of the proposed new 
model of direct relative orientation with seven constraints. The stereo 
image pair was acquired by a non-calibrated Sony IMX135 camera with 
a pixel size of 1.12 μm which is shown in Figure (2). The numerous 
conjugate points from the left and right image were detected using SURF 
match model, and the error match points were removed to obtain the 
reliable relative orientation results as is shown in Figure 3. From the 62 
high-precision matched points, the six conjugate points were selected and 
used to validate the model correctness and assess the result accuracy of 
the relative orientation. The baseline length was measured as 0.55m.  

Figure 2. The stereo images are taken by the same camera. The first image 
above is taken from the left then the other is on the right.

Figure 3. The result of feature point detected on the stereo pair.

The experiment includes the follow procedures. 1) The 62 
conjugate points were used to calculate the parameters of the relative 
orientation of the stereo image pair. 2) Basing on the image space 
coordinate of the left image, the space coordinate of the object points 
corresponding to the selected six conjugate points were calculated 
using the result of the relative orientation and the forward intersection 
in photogrammetry. 3) The six object points were linked to 15 line 
segments during permutation and combination, and the distances of 
the 15 line segments were accurately measured as a real value. 4) To 
validate and assess the accuracy of the result of relative orientation, 
the distances of the 15 line segments were calculated using the space 
coordinate of the six object points, and compared with the measured 
true value. Then, the accuracy is assessed with the standard deviation.
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Results and Analysis

For validating and assessing the accuracy of the result of relative 
orientation, the six object points (p1, p2, p3, p4, p5, p6) are selected and used 
to calculate the space coordinate basing on the image space coordinate of the 
left picture. The selected six object points are illustrated in Figure 4. 

Figure 4. Six object points are selected for validating the accuracy of relative 
orientation.

 

During the forward intersection, the space coordinates of the six 
object points was calculated with the result of relative orientation, the 
rotation matrix R, and translation matrix T. The space coordinates of 
the six object points represent in Table 1

Table 1. Three-dimensional coordinates of 6 object points (unit: m)

To validate the correctness and assess the accuracy of the 
proposed new model, direct relative orientation with seven constraints, 
the distances of the six object points calculated with their space 
coordinate were compared with the corresponding measured distances, 
and the error rates were calculated and represented in Table 2. The first 
column shows the line segment composed of two points, such as (p1, 
p2), and the calculated distance and exact distance are in the second, 
third column, respectively. 

Table 2. Error rate of the observed distance respect to the distance in real (unit: m)

In addition, the curve of the error rates is calculated and shown in 
Figure 5. The blue square and curve represent the error rate of each line 
segment and the curve of error rates, respectively. 

Figure 5. Error rate of the distance. 

From Table 2, it is evident that the minimum error of distances reaches 
0.001 m and the maximum error is 0.0057 m. In the Figure 5, the range of 
error rates is between the -3% and +3%. The standard deviation of the distance 
accuracy is calculated and reaches 0.0031 m. 

In the least squares adjustment, a wrong initial value will result in a very low 
precision of relative orientation, and even cause non-convergence or convergence 
to an error result. To overcome this problem, a reasonable initial value of parameters 
(BY, BZ, a1, a2, a3…c2, c2, c3) is calculated and acquired by direct relative orientation 
using a rough BX. In the procedure, the value BX can be an arbitrary value that is 
greater than zero. Then, the initial value of parameters in the relative orientation are 
used in the model of direct relative orientation with seven constraints to calculate 
further and adjust the parameters with the least squares adjustment, improving and 
ensuring the accuracy and stability of relative orientation. 

Owing to the seven constraints, the error rate of distance used to 
assess the accuracy of relative orientation ranges for from -3% to +3%, and 
the standard deviation of the distance reaches 0.0031 m that describes the 
range error composed of two points. Therefore, the standard deviation of the 
point can be the half of distance error, 0.0015 m. Furthermore, the point is 
three dimensions; thus the standard deviation in each direction is 0.0005 m 
for the relative orientation. For a non-calibration and general camera sensor, 
the accuracy of relative orientation is excellent basing on the model of 
direct relative orientation with seven constraints, and the residual error may 
include the image distortion, match error of conjugate point, measurement 
error of image point, calculation error and random error. The residual error 
is from various factors and needed to eliminate with other methods to 
improve the accuracy of relative orientation further.
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Conclusion

In this paper, a new relative orientation model, direct relative 
orientation with seven constraints is proposed and validated to improve 
the accuracy and stability of relative ordination and overcome the 
problems for the large oblique angle and translation and without the 
initial value. The constraints are derived from the inherent orthogonal 
property of rotation matrix and the vectors in space translation. Also, the 
procedure for solving direct relative orientation with seven constraints 
consists of the acquirement of initial value with direct relative orientation, 
the least square adjustment with seven constraints, and calculation of six 
relative orientation decompositions. The rough error is detected with data 
snooping techniques and used to analyze the residues of observations and 
the variance and covariance matrix of parameters.

During the experimental result and analysis, the model of direct 
relative orientation with seven can obtain a high accuracy than the 
conventional method in some cases, such as the large oblique angle and 
translation and without the initial value. In the cases, some result of the 
conventional method has very low accuracy or wholly wrong. However, 
the problems can overcome during the model of direct relative orientation 
with seven constraints. That means the proposed model can increase the 
applied field of relative orientation such as close range photography, 
low altitude oblique photography and 3D model reconstruction and 
measurement of the geological landslides with multiple images.
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