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Abstract 
Goods distribution processes must reconcile the economic interests of the companies, which seek higher levels of profitability through 
costs reduction and service level improvements, with the negative impacts to society and environment, such as chemical pollution and the 
generation of vehicular congestion and accidents. This paper presents the comparison of three models that analyze the logistics costs 
associated with the distribution of goods and the greenhouse gas emissions generated by such processes. These models use the Vehicle 
Routing Problem (IRP) as the basis for optimizing the logistics activities, from which, through multi-objective approaches the CO2 
emissions are analyzed. As the main result of the article, it can be observed that the multiobjective models allow finding an adequate 
combination between logistics costs and emissions, which is attractive to companies and society. 

Keywords: goods distribution; multiobjective model; collaborative inventory; greenhouse gases. 

Comparación de tres modelos basados en el IRP para reducir costos 
logísticos y emisiones de gases efecto invernadero 

Resumen 
Los procesos de distribución de mercancías deben conciliar los intereses económicos de las empresas, que buscan mayores niveles de 
rentabilidad a través de disminución de los costos y mejoras del nivel de servicio, con los impactos negativos que se producen a la sociedad 
y al medio ambiente, como es el caso de la contaminación química y problemas de calidad de vida, como la generación de congestión 
vehicular y accidentes. En este artículo se presenta la comparación de tres modelos que analizan los costos logísticos asociados a la 
distribución de mercancías y las emisiones de gases efecto invernado que generan dichos procesos. Estos modelos utilizan el Problema de 
Ruteo de Vehículos (IRP) como base para optimizar las actividades logísticas, a partir del cual, mediante enfoques multiobjetivo, es posible 
analizar también las emisiones de gases contaminantes como el CO2. Como principal resultado de la investigación que deriva este artículo, 
se observa que los modelos multiobjetivo permiten encontrar una combinación adecuada entre los costos logísticos y las emisiones de CO2, 
que sea atractivo para empresas y la sociedad. 

Palabras clave: distribución de mercancías; modelo multiobjetivo; inventario colaborativo; gases de efecto invernadero. 

1. Introduction

Transport processes in cities, regions and countries have
increased due to new marketing processes generated by 
globalization and changes in consumers habits. These highly 
dynamic transportation processes generate high costs in 
organizations, which have been studied for many years and 
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have usually sought for their optimization through models 
such as the Travelling Salesman Problem (TSP) or the 
vehicle routing problem (VRP). However, these transport 
processes not only generate economic impacts for 
companies, but also for society and cities, as it generates 
congestion and physical and chemical pollution. For that 
reason, practitioners in charge of these professional areas 
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within companies and also academics must to continue with 
search processes looking for models that will improve both 
the economic and social/environmental conditions for 
companies and society. 

Many authors have argued that collaboration among 
supply chain is one of the main strategies to reduce the cost 
of goods distribution, highlighting the Vendor Managed 
Inventory model -VMI as one of the more important ways 
companies can collaborate. Through VMI the inventory 
quantity can be optimized for multiple companies and from 
there to configure more efficient distribution systems, which 
effectively reduces the costs and the intensity of transport 
activities, as a result of a better allocation of inventory. This 
is the concept behind the Inventory Routing Problem -IRP 
optimization model, which, based on the collaborative 
inventory, allows transportation and inventory costs to be 
reduced simultaneously. 

This paper analyzes the effect of the IRP model on the 
inventory and transportation costs of goods distribution, but 
also considering the effect of CO2 emissions, seeking to 
reduce the greenhouse gas emissions produced by the 
logistics activities. The impact on these variables was studied 
using three optimization processes: the IRP Model, a 
multiobjective model of IRP vs. CO2 emissions and finally a 
multiobjective model that contemplates the IRP background, 
but optimizing separately the inventory and transportation 
costs and also including CO2 emissions as a third objective 
function. 

 
2.  Inventory collaboration and optimization processes  

 
Collaboration in logistics and supply chain is understood 

as the joint effort of several organizations seeking to obtain 
superior benefits to those that can be found separately. For 
this the companies cooperate in processes such as 
transportation, inventory management, storage, facility 
design, information exchange and other logistics activities 
[1-3]. Since many years supply chain collaboration has been 
developed through approaches such as Quick Response 
(QR), Efficient Customer Response (ECR), Continuous 
product Replenishment (CPR), Vendor Managed Inventory 
(VMI), Planning, Collaborative Forecasting and 
Replenishment (CPRF) and Centralized Inventory 
Management, among others [3-5]. 

According to Díaz-Batista and Pérez-Armayor [6], 
inventory collaboration in supply chains produces a lower 
total annual cost than when companies work individually, 
generating performance improvements in the entire supply 
chain [7-9]. The main problem lies in the allocation of 
inventory and transportation, which has been studied by 
multiple authors [10-12], for what the most used techniques 
are the VMI [13] and the IRP [14]. Through the IRP it is 
possible to simultaneously assign the inventory quantity and 
the routes to supply a set of customers that collaborate with 
one or several suppliers [14-17]. 

In the IRP model, the inventory is assigned to the 
customers in the planning periods and from there the routes 
are assigned to its supply [18-20]. For this, it is required that 
the supplier, who makes the supply decisions, know the 
information about customer demands, inventory levels and 

other parameters for the stock management and also the 
transportation process information, from which generates the 
routes are generated [21]. Campbell and Savelsbergh [22] 
studied the IRP model for long-term decision-making 
approaches, using a decomposition scheme of two-step 
decisions: in the first one the inventory is assigned and in the 
second the routes are generated. Other authors have 
performed schemes for the simultaneously allocation of 
inventory and routes generation [1,15,21]. 

The joint assignment of inventory and transportation can 
be performed using multiobjective optimization approaches, 
as it is made in the works of Pechlivanos [23], Chen and Lee 
[24], Liang [25], Liao et al. [26], Afshari et al., [27], Shankar 
et al. [28], Nekooghadirli et al [29], Andriolo et al., [30], 
Pasandideh et al., [31] and Pasandideh et al ., [32]. 

Both for the IRP or multiobjective solutions there are 
require heuristic and metaheuristic techniques. The most 
used heuristic and metaheuristic for solving these 
optimization problems are Simulated annealing, Genetic 
algorithms, Evolution algorithms, Evolutionary 
programming, Artificial immune system algorithm, Particle 
swarm optimization and tabu search [33,34]. 

Particularly, to solve multiobjective optimization models, 
the main methods are: MOGA (Multi- Objective Genetic 
Algorithm), NSGA y NSGA-II (Nondominated Sorting 
Genetic Algorithm), SPEA y SPEA2 (Strength Pareto 
Evolutionary Algorithm), PAES (Pareto Archived Evolution 
Strategy) y PESA (Pareto Envelope-based Selection 
Algorithm), MO-VNS (Multiobjective Variable 
Neighborhood Search), DEPT (Differential Evolution with 
Pareto Tournaments), MO-TLBO (Multiobjective Teaching-
Learning-Based Optimization), MOABC (Multiobjective 
Artificial Bee Colony), among others [33,34-37]. 

 
3 Methodology  

 
In order to analyze the impact of the distribution 

processes on greenhouse gas emissions, different distribution 
processes were designed from three mathematical 
optimization processes: 
• IRP Model. 
• Multiobjective analysis using as objective functions the 

IRP and the CO2 emissions. 
• Multiobjective model using the IRP background, but 

optimizing as separate objective function the inventory 
and transportation costs and also including CO2 emissions 
as a third objective function. 
For the three optimization processes, the same parameters 

were used and two genetic algorithms were used for its 
development. The first is a genetic algorithm specially 
configured for the solution of the IRP model, which evaluates 
the jointly allocation of inventory and transport routes, as is 
presented in Arango et al. [21]. For the multiobjective 
analysis an algorithm based on the NSGA2 is used, similar to 
what is presented in [14,37,38]. 

The emission factor of a typical vehicle used for the urban 
goods distribution was used to analyze the effect of the CO2 
emission. The vehicle corresponds to a VAN with an average 
city emission of e = 190 g of CO2 / km [39]. This parameter 
is multiplied by the number of kilometers traveled, in order 
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to calculate the amount of CO2 gases emitted. 
The objective function for the IRP model is presented in 

equation 1, subject to a set of constraints as formulated in 
[14,15,21,38]. 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚   ��ℎ𝑖𝑖𝐼𝐼𝑖𝑖𝑡𝑡

𝑡𝑡∈𝜏𝜏𝑖𝑖∈𝑣𝑣′
+ �ℎ0𝐼𝐼0𝑡𝑡

𝑡𝑡∈𝜏𝜏

+ ����𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡 
𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑣𝑣𝑖𝑖∈𝑣𝑣𝑡𝑡∈𝜏𝜏

 (1) 

 
The first term is the sum of the inventory costs, which is 

obtained by multiplying the holding cost ℎ𝑚𝑚 by the amount of 
product 𝐼𝐼𝑚𝑚𝑡𝑡 hold in every time t for every customer i. The 
second term is the inventory costs at the supplier facility 
represented with the sub index 0. Transport costs are 
calculated by multiplying the transport costs 𝑐𝑐𝑖𝑖𝑖𝑖  of traveling 
from node i to j by the binary variable  𝑥𝑥𝑚𝑚𝑖𝑖𝑘𝑘𝑡𝑡 which is equal to 
1 if the vehicle k travel from I to j in the period t and zero 
otherwise. The set v includes all the nodes of the problem and 
𝑣𝑣′ only includes the customers’ nodes. 

In the case of the multiobjective models, the formulation 
of the first model, in which the IRP costs and the CO2 are 
evaluated is presented in equation 2. In equation 5, the 
formulation for the multiobjective model separating transport 
costs, inventory and the CO2 emission is presented. 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐹𝐹(𝑓𝑓1,𝑓𝑓2) (2) 

  

𝑓𝑓1 =    ��ℎ𝑖𝑖𝐼𝐼𝑖𝑖𝑡𝑡

𝑡𝑡∈𝜏𝜏𝑖𝑖∈𝑣𝑣′
+�ℎ0𝐼𝐼0𝑡𝑡

𝑡𝑡∈𝜏𝜏

+ ����𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑣𝑣𝑖𝑖∈𝑣𝑣𝑡𝑡∈𝜏𝜏

 (3) 

  
𝑓𝑓2 =    ����𝑒𝑒 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑣𝑣𝑖𝑖∈𝑣𝑣𝑡𝑡∈𝜏𝜏

 (4) 

 
The Multiobjective model formulation separating 

transport costs, inventory and CO2 emission is: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐺𝐺(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) (5) 
  

𝑚𝑚1 =    ����𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑣𝑣𝑖𝑖∈𝑣𝑣𝑡𝑡∈𝜏𝜏

 (6) 

  

𝑚𝑚2 =    ��ℎ𝑖𝑖𝐼𝐼𝑖𝑖𝑡𝑡

𝑡𝑡∈𝜏𝜏𝑖𝑖∈𝑣𝑣′
+ �ℎ0𝐼𝐼0𝑡𝑡

𝑡𝑡∈𝜏𝜏

 (7) 

  
𝑚𝑚3 =    ����𝑒𝑒 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡  

𝑘𝑘∈𝐾𝐾𝑖𝑖∈𝑣𝑣𝑖𝑖∈𝑣𝑣𝑡𝑡∈𝜏𝜏

 (8) 

 
Those objective functions are restricted to the following 

equations that assure the correct distribution process and 
correspond to the IRP Model constraints, according to 
Arango et al. [15] and Archetti et al., [16]. 

 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐺𝐺(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3) (9) 

  
𝐼𝐼0𝑡𝑡 = 𝐼𝐼0𝑡𝑡−1  + 𝑟𝑟0𝑡𝑡−1 −��𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡−1

𝑖𝑖∈𝑣𝑣𝑘𝑘∈𝐾𝐾

 (10) 

  
𝐼𝐼0𝑡𝑡 ≥��𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑣𝑣

𝑌𝑌𝑖𝑖𝑘𝑘𝑡𝑡

𝑘𝑘∈𝐾𝐾

 (11) 

  
𝐼𝐼𝑖𝑖𝑡𝑡 = 𝐼𝐼𝑖𝑖𝑡𝑡−1 + ��𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑣𝑣𝑘𝑘∈𝐾𝐾

 −   𝑑𝑑𝑖𝑖𝑡𝑡 (12) 

𝐼𝐼𝑖𝑖𝑡𝑡 ≥ 0 (13) 
  

𝐼𝐼𝑖𝑖𝑡𝑡 ≤ 𝐶𝐶𝑖𝑖  (14) 
  

𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡 ≤ 𝐶𝐶𝑖𝑖 − 𝐼𝐼𝑖𝑖𝑡𝑡 (15) 
  

𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡 ≤ 𝐶𝐶𝑖𝑖𝑌𝑌𝑖𝑖𝑘𝑘𝑡𝑡 (16) 
  

�𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑣𝑣

 ≤ 𝑄𝑄𝑘𝑘 (17) 

  
�𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑣𝑣

 ≤ 𝑄𝑄𝑘𝑘𝑌𝑌0𝑘𝑘𝑡𝑡 (18) 

  
� 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑣𝑣,𝑖𝑖<𝑖𝑖

+   � 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑣𝑣,𝑖𝑖<𝑖𝑖

= 2𝑦𝑦𝑖𝑖𝑘𝑘𝑡𝑡 (19) 

  
��𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑆𝑆𝑖𝑖∈𝑆𝑆

≤   �𝑦𝑦𝑖𝑖𝑘𝑘𝑡𝑡

𝑖𝑖∈𝑆𝑆

− 𝑦𝑦𝑚𝑚𝑘𝑘𝑡𝑡    ∀ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑡𝑡   𝑆𝑆 ⊆ 𝑉𝑉 (20) 

  
𝑞𝑞𝑖𝑖𝑘𝑘𝑡𝑡 ≥ 0; 𝑄𝑄𝑘𝑘 ≥ 0; 𝐼𝐼𝑖𝑖𝑡𝑡 ≥ 0; 𝑑𝑑𝑖𝑖𝑡𝑡 ≥ 0; 𝐶𝐶𝑖𝑖  ≥ 0; (21) 

 
For an explanation of the restrictions, readers may refer 

to [15-16] and [18]. 
The input parameters are obtained from the instance of 15 

customers and one supplier proposed by Archetti [16], 
increasing the amount of inventory that can be stored in each 
of the customers, as a strategy to produce better distribution 
costs and decrease the CO2 Emission. These parameters are 
presented in Table 1. 

 
4.  Results 

 
The IRP model, in which transport and inventory costs 

are added, generates a distribution process in which is not 
necessary to supply all the customers in all the periods. This 
produces a decrease in transport costs generated by an 
increase in inventory costs. The distribution plan that is 
generated from the best individual of the genetic algorithm 
used to solve the model is presented in figure 1. In the gray 
part is shown the inventory quantity that must be delivery to 
each of the customers, while in the unlabeled part the 
distribution sequence is presented. 

This way, for period 1 only customers 1, 14, 10, 12, 13, 
15, 6 and 9 should be served in that sequence. The quantities 
to be delivery are 128, 260, 108, 184, 220, 219, 30 and 88, 
respectively. 

This distribution process generates a total cost of $ 
2839.7, of which $ 468.2 correspond to inventory costs and 
produces a CO2 amount of 454.39 g. 

 
Table 1. 
Input parameters 
Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Demand 
each Period 32 36 91 52 76 10 85 79 22 36 68 46 55 65 73 
Inventory 
Cost ($)/100 2 3 3 2 2 3 4 4 2 4 2 2 2 3 2 
Initial 
Inventory 32 72 182 52 152 20 85 79 22 72 136 46 55 65 146 

X position 237 180 141 163 282 455 326 235 412 113 266 257 363 158 423 
Y position 182 332 388 188 374 296 332 432 488 46 302 23 22 81 95 
Source: The authors. 
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In the multiobjective model in which both the IRP costs 
and the CO2 emission are simultaneously optimized. A single 
optimal individual is produced, which is presented in figure 
2. This result generates a cost of $ 2851.5, of which $ 463.9 
are inventory cost and a CO2 emission of 453.6 g that is 
virtually identical to the solution generated by the IRP model. 
However, this solutions corresponds to a distribution system 
that assigns inventory and routes to customers in a different 
way than the IRP model does. For this reason, a slight 
decrease in CO2 emissions is generated, as a consequence of 
an increase in the distribution costs. 

The multiobjective model, in which the transport, 
inventory and CO2 emission costs are analyzed separately, 
generates a set of individuals similar to those presented in 
figures 1 and 2. The set of individuals are produced by the 
non-dominance of the solutions, so it is not possible to argue 
that one solution is better than another and for that reason the 
decision maker, depending on his preference, can take any of 
the individuals solutions produced by the model. Table 2 
presents the results for the 3 optimized objective functions, 
and includes a column adding the inventory and transport 
cost. 

 
 

Inventory 
Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Period 1 128 0 0 0 0 30 0 0 88 108 0 184 220 260 219 
Period 2 0 36 91 208 228 0 340 316 0 0 0 0 0 0 0 
Period 3 0 72 182 0 0 0 0 0 0 0 204 0 0 0 0 
Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Routes sequence 
Routes starts on Depot (0) and ends on it. 

Period 1 0 1 14 10 12 13 15 6 9 0 0 0 0 0 0 0 
Period 2 0 5 8 3 2 4 7 0 0 0 0 0 0 0 0 0 
Period 3 0 3 2 11 0 0 0 0 0 0 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Figure 1. IRP Result -individual solution.  
Source: The authors. 

 
 

Inventory 
Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Period 1 160 0 0 219 0 0 0 0 0 110 0 223 225 271 0 
Period 2 0 0 0 0 0 30 353 338 106 0 0 0 0 0 242 
Period 3 0 139 276 0 288 0 0 0 0 0 245 0 0 0 0 
Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Routes sequence 

Routes starts on Depot (0) and ends on it. 
Period 1 0 1 4 14 10 12 13 0 0 0 0 0 0 0 0 0 
Period 2 0 8 9 6 15 7 0 0 0 0 0 0 0 0 0 0 
Period 3 0 11 5 3 2 0 0 0 0 0 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Figure 2. Multiobjective Model Solution (IRP vs. CO2 emission). 
Source: The authors. 

Table 2. 
Results of the three objective functions multi-objective model. 

Individu
al 

Solution
s 

Transport 
cost 

CO2 
Emissions 

Inventory 
cost 

Total 
cost 

1 3288.4 624.8 445.0 3733.3 
2 4982.8 946.7 404.3 5387.1 
3 5111.9 971.3 403.7 5515.6 
4 3502.8 665.5 413.1 3915.9 
5 5427.4 1031.2 403.7 5831.0 
6 3902.6 741.5 406.9 4309.5 
7 3642.3 692.0 407.5 4049.9 
8 4156.1 789.7 404.9 4561.0 
9 3304.3 627.8 421.3 3725.5 

10 5012.8 952.4 404.2 5417.0 
11 4831.7 918.0 404.8 5236.4 
12 5692.9 1081.7 403.4 6096.3 
13 3580.2 680.2 411.3 3991.5 

Source: The authors. 
 
 
Table 2 shows that the values of total cost and CO2 

emissions for each individual are higher than those reported 
in the solutions for the single IRP model and for the 
multiobjective IRP vs. CO2 emissions. However, inventory 
values in each solution are lower, with a behavior that the 
lower the inventory level the higher the transport cost and the 
CO2 emission, as a consequence of an increase in the 
transportation intensity in order to minimize inventory. 

The behavior of the three-functions multiobjective model 
differs in its results to the previous models, since in the first 
the transport and inventory costs are added up, so in the 
optimization process the costs are compensated, while in the 
three-functions multiobjective model the algorithm must also 
look for which is the best solution that generates the 
minimum inventory costs without an excessively increase in 
transport costs. In order to compare these solutions, the 
problem was solved supplying all customers in each of the 
periods, what minimizes the inventory costs. For that, the 
Vehicle Routing Problem - VRP was used and solved with a 
genetic algorithm, for that the transport cost is $ 1722.5 for 
each period, which corresponds a total cost of $ 8612.5 for 
the 5 periods. This single VRP cost is higher than the 
transport cost for all individuals produced by the three-
functions multiobjective model and becomes a non-optimal 
solution for the distribution process 

Table 3 presents the results of the three models. The 
individual solution one is selected for the three-function 
multiobjective model (presented in figure 3), which is the 
individual that generates the lowest CO2 emissions for that 
model. 

 
Table 3. 
Comparison of the three models. 

Model Total Cost Inventory 
Cost 

CO2 
Emissions 

IRP. 2839.7 468.2 454.4 

MO-IRP vs. CO2. 2851.5 463.9 453.6 

MO-Three functions  3733.3 445.0 624.8 
Source: The authors. 
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Inventory 
Customer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Period 1 0 167 0 0 0 45 0 0 109 0 0 215 275 0 427 
Period 2 158 0 0 253 0 0 183 316 0 128 317 0 0 386 0 
Period 3 0 0 288 0 329 0 271 0 0 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Routes sequence 
Routes starts on Depot (0) and ends on it. 

Period 1 0 6 9 15 12 13 2 0 0 0 0 0 0 0 0 0 
Period 2 0 4 14 10 1 11 7 8 0 0 0 0 0 0 0 0 
Period 3 0 5 3 7 0 0 0 0 0 0 0 0 0 0 0 0 
Period 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Period 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Figure 3. Individual 1 of the three-function multiobjective model. 
Source: The authors. 

 
 
From the results presented in Table 3, it is possible to 

observe that the total cost, inventory and CO2 emissions for 
the IRP and multiobjective IRP vs. CO2 are very similar, but 
differ with the solution that produced the fewer emissions in 
the three-function multiobjective model. This is caused by 
the reduction of the inventory costs, due to the three-function 
multiobjective algorithm generates solutions that somehow 
represent the best conditions for each of the objective 
functions, this way producing solutions with smaller 
inventory quantities but generating higher transport costs and 
CO2 emissions. 

From this result, it is possible to infer that companies 
must make efforts in collaborative processes that allow to 
simultaneously reduce inventory, transportation and CO2 
emissions, since a local optimum, as is the case of individual 
1 of the three-functions multiobjective model, which 
generates the smallest inventory with a cost of 403.7, what is 
equivalent to a 13% reduction compared to the inventory for 
the IRP vs. CO2 emissions model, is also generating a 138% 
increase in CO2 emissions and a 114% higher distribution 
costs, which is not beneficial for both, companies or the 
environment. 

 
5.  Conclusions 

 
Through inventory collaboration it is possible to reduce 

goods distribution cost for companies, but also to minimize 
the CO2 emission for these logistics activity, which 
contributes to the reduction of pollution problems in cities. 
Based on the results found in this paper, the search for the 
reduction of inventory costs in companies generates large 
increases in logistical costs as well as greenhouse gas 
emissions, which is not beneficial for Company nor the 
environment. 

In this paper, the collaborative process through inventory 
and its effect on the pollutant gases emission are analyzed 
from different models, finding that it is better to use the IRP, 
which combines inventory and transport costs, than the three-
function multiobjective model. This is because the 
multiobjective model, which seeks to simultaneously 
minimize transport, inventory and CO2 emissions, within its 

optimization process, must look for solutions that generate 
adequate relations between these three variables. This leads 
to the production of distribution plans that increase CO2 
emissions and total costs, as a consequence of finding lower 
inventory cost, what is a local optimum that is not good for 
integral logistics. 

As future research lines, it is recommended to use more 
objectives that are important for companies and customers, 
as it can be the service level. Other routing conditions are also 
important to be included in the presented models, as several 
suppliers, backhauls, dynamic conditions and multiple 
distribution levels. Finally it is interesting to include other 
logistics activities in the optimization process, as it can be 
warehousing and purchasing processes. These research lines 
allow to model more realistic situations and improve decision 
making in logistics activities.  
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