Reuist a Colomb iana de Matematicas Yolumen V (1971) *Pags. 19·23*

A proof of the *inverse* function theorem.

by
as swell wake Federation in wi

G *ui II ermo 1\ estrepo* S.

The purpose of this note is to give a proof, hopefully new,of the inverse function theorem as an application of the local existence theorem for differential equations. If Ω is an open subset of a Banach space E and $T:\Omega \twoheadrightarrow E$ is of class $C^{\,I}$ then *T* is locally bounded and satisfies a Lipschitz condition at every point.

Theorem. Let Ω be an open subset of the Banach space E and let $T:\Omega\to E$ be a function of class $C^{\textstyle 1}$. Assume that u^-_o = $T^{\textstyle *}(x^-_o)$ is an isomorphism from *E* onto *E*, and let $y_o = T(x_o)$. Then, there exist neighborhoods *V(x o)* and *W(Yo)* such that the equation *T'(x)* = *y* has one and only one solution $x \in V$ for every $y \in W$.

Proof. Let *L(E)* be the space of all continuous linear maps from *E* into *E* and let *Is(E)* be the set of all continuos isomorphisms from *E* onto *E.*

continuity of the map $u \rightarrow u^{-1}$, $u \in Is(E)$. from the fact that $Is(E)$ is an open subset of $L(E)$ and from the T here is a ball $\left. \begin{array}{ll} B_I(x_o) & \text{such that} \quad T'(x) \!\in\! I$ s $(E) & \text{for all} \quad x \!\in\! B_I \quad \text{and a} \end{array} \right)$ $\textsf{constant}$ M_\odot such that $||(T'(x))^{*1}|| < M_\odot$ for all $x \in B_1$. This follow

19

(b) There is a ball $B_2(x_o)$ contained in $B_{\textit{1}}$ such that $T(x)$ = $T(x^\prime)$ implies $x = x'$ if $x, x' \in B_2$. Given $\in > 0$ there is a ball $B(x_o)$ such that

(1)
$$
||T(x) - T(x') - u_o(x - x')|| \leq \in ||x - x'||
$$

for all $x, x' \in B$. To show (1) we define

(2)
$$
G(t) = T(tx + (1-t)x') \cdot tu_o(x - x')
$$

Then,

(3)
$$
G(1) - G(0) = \int_0^1 (T'(tx + (1-t) x') - u_0 \cdot (x-x')) dt
$$

Now, (1) follows from (3) and the continuity of *T'* at u_o . We derive the existence of the ball *B2* from (l). Assume that *fa* every ball $B(x_{0}) \in \Omega$ there are points $x, x' \in B$ such that $x \neq x'$ and $T(x) = T(x')$, Let ϵ_n → 0 \ldots Then, from (1), we can define sequences $\{x_n\}$ and $\{x_n'\}$ con verging to x_0 , and such that $x_n \neq x_n'$, $T(x_n) = T(x_n')$ and

$$
||u_0 \cdot (x_n - x'_n)|| \leq \epsilon_n ||x_n - x'_n||
$$

I mark amendance or constructed the formula of the fact that the family of the Let

$$
w_n = (x_n - x'_n) (||x_n - x'_n||)^{-1}
$$

Then $||w_n|| = 1$, $u_0 \cdot w_n \to 0$. Since $u_0 \in Is(E)$, it follows that $w_{\boldsymbol{n}}^{} \rightarrow 0$. This is a contradiction.

(c) There is a ball $V = B_3(x_o) \in B_2$ such that $||T(x) - y_o|| \ge \beta > 0$ for

some constant β and for all *x* in the boundary of B_3 . Let $a=||u_{\alpha}^{-1}||$. Then, there is a ball $B_3(x_o) \subseteq B_2(x_o)$ of radius *r* such that

$$
T(x) \cdot T(x_0) = u_0 \cdot (x - x_0) + 0(x - x_0)
$$

and

(4)

$$
|| 0(x - x_0)|| \leqslant \frac{1}{2a} || x - x_0 ||.
$$

i Lan Mali Walt - w O i

for all $x \in B_3$. Thus , from (4) we obtain

$$
x - x_0 = u_0^{-1} (T(x) - T(x_0) - 0(x - x_0))
$$

$$
c_{0} = (||x - x_{0}|| < a (||T(x) - T(x_{0})|| + ||0(x - x_{0})||)
$$

Therefore,

$$
||T(x) - T(x_0)|| > \frac{r}{2a} = \beta
$$

for all *x* such that $||x - x_0|| = r$.

(d) Let $W = \{y \mid ||y \cdot y_0|| < \frac{P}{q} \}$. For every $y \in W$ we consider the differential equation

$$
(5) \qquad \qquad \downarrow \qquad \qquad \mathbb{Q}_{\mathbb{Q}} = F\left(\mathbb{Q}\mathbb{Q}\right), \qquad \qquad \mathbb{Q}(0) = x_0
$$

where,

(6)
$$
F(x) = -(S^{d}(x))^{-1} S(x) , S(x) = T(x) - y
$$

 21

Let $[0, a]$ (5). Then, be the maximun interval of existence of the solution of

(7)
$$
s'(\mathbf{\Phi}(t)) \cdot \mathbf{\dot{\phi}} = -s(\mathbf{\dot{\phi}}(t))
$$

Therefore,

(8)

$$
S \bigoplus (t) = e^{-t} S(x_0) , S(x_0) = T(x_0) \cdot y
$$

Let us show that Φ (t) that $|| \Phi(t) - x_{o} || = r$ remains in the ball V^{\parallel} defined in (c). Assume for some $t' > 0$. Then $(\phi(t') = z)$,

$$
|| S(z) || = e^{-t'} || y - y_o || = || T(z) - y || \ge || y - y_o ||
$$

This would imply that $e^{-t'} \geq 1$, $t' > 0$. This is a contradiction. Therefore \oint (*t*) remains in *V*. Next we show that \oint (*t*) exists for all $t > 0$, From

(9)
$$
\oint(t) \cdot \oint(s) = \int_t^s \oint'(z) dz = \int_t^{s'} F(\oint(z)) dz
$$

and (8) we obtain

(10)
$$
\|\boldsymbol{\varphi}(t) - \boldsymbol{\varphi}(s)\| \leq M \|y - \overline{y}_o\| + \|e^{-t} - e^{-s}\|
$$

 $\rightarrow 0$ when $t, s, \rightarrow a$. *(M* is the constant defined in (a)). Therefore $\boldsymbol{\phi}{}_{\left(t\right) }$ can be extended to a continuous function in the closed interval $[0, a]$. Thus, $\oint f(t)$ exists for all $t > 0$ by the local existence theorem for differential equations. Let x^* be the limit of ϕ *(t)*^{ψ} when

t tends to infinity (this limit ex ests by (10)). Then, from (8) , we see that $S(x^*) = 0 = T(x^*) \cdot y$. This concludes the proof.

BIBLIOGRAPHY

1. J. Dieudonné: ,Foundations of Modern Analysis , Academic Press , New York (l960).

Universidad del Valle, Cali, Colombia.