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Resumen

La siguiente Tesis de Maestŕıa propone una metodoloǵıa para el análisis de series de tiempo

no-estacionarias con el propósito de filtrado y detección de ruido en reconocimiento de pa-

trones. La metodoloǵıa se encuentra dividida en dos etapas: el análisis de comportamientos

no-estacionarios que recaen en procesos ćıclicos y como diferentes componentes no-periódicos

afectan el análisis de la señal. El segundo enfoque, está centrado en el problema de extracción

de series de tiempo no-estacionarias que afectan procesos estacionarios. Ambos esquemas

están basados en restricciones de (ciclo-)estacionariead y representaciones basadas en sub-

espacios de manera que mediante la evaluación de las dinámicas de la señal sea posible

identificar las componentes no-estacionarias indeseadas. Los resultados se muestran para

cada enfoque de manera independiente por medio de datos sintéticos y reales, el desempeño

obtenido muestra una gran capacidad de detección, rechazo y/o extracción de ruido y arte-

factos en series de tiempo (ciclo-)estacionarias usando restricciones de estacionariedad aśı

como condiciones ćıclicas basadas en la naturaleza de la señal.

Palabras claves: Ciclo-estacionariedad, Non–estacionario, Estacionario, Repre-

sentación Basada en Sub-espacios, Filtrado, Representación Tiempo-Frecuencia.



Abstract

The present Master’s Thesis proposes a methodology for the non–stationary time-series anal-

ysis for filtering and noise rejection purposes in pattern recognition. The methodology is

divided into two different approaches: the analysis of periodic non–stationary behavior that

relies into a cyclic process and how additional non–cyclic non–stationarities disrupt and af-

fect the signal processing. Second approach deals with the problem of non–stationary signal

extraction that affects inherent weak stationary processes. Both frameworks of analysis take

base on (cyclo-)stationary constraints and subspace based representations in order to as-

sess and characterize the signals dynamics to facilitate the identification of the undesired

non–stationary components. Results are shown over each approach with different real and

synthetic data, the obtained performances show high rejection, detection and extraction

capabilities for noise and artifacts in (cyclo)–stationary signals using external and internal

based constraints of analysis and high separation capability for stationary signals.

Keywords: Cyclo-Stationary, Non–Stationary, Stationary, Subpspace Based represen-

tation, filtering, time-frequency representation.
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Part I

Preliminaries



1. Introduction

1.1 Subspace Stationary Analysis for Signal Separation

Separation methods from mixed signals with a priori knowledge are usually required in ap-

plications, such as in speech signal processing, biomedical signal analysis, communication,

econometrics, and neuroscience. Examples of concrete tasks include: to recover radar signals

contaminated with highly moving targets [33] or strong sea-clutter [34], to improve inter-

pretation of geomagnetic measurements aiming at factorizing the observed time series into

meaningful components [38], to filter high frequency activity not related to motor tasks in

EEG data [18], to develop non uniform embedding reconstruction of pathological voices [17],

among others. In those specific contexts, the cornerstone in the filtering task is the separation

model holding certain stochastic constraints imposed to make composite signals statistically

disjoint. This work concerns separation between non-stationary and stationary signals that

inherently assume the stationarity of one of the composite signals. To this end, time vari-

ability of probability function densities may be established as a separability criterion, yet,

the most common approach is based on more relaxed condition, by instance, second-order

statistics invariability along the time, i.e., either the correlation function/power spectrum

or the mean and variance values [5]. However, one of the major concerns in using many of

separation filtering methods, including those devoted to extract non-stationary signals, is

the poor parameter estimation due to influence of non-stationary structure. To avoid the

situation, methods tend to include time-variability of stochastic structure within the esti-

mation model. By instance in [7], separating algorithms are developed by jointly tackling

the non-stationary and temporally correlated mixing coefficients and source signals through

the online Gaussian process. A similar approach is developed in [19], but using continuous

density hidden Markov models. Likewise in [30], evolutionary spectral density functions of

uniformly modulated and strongly narrow-band stochastic processes are modeled. In [25],

assumption is made that the time-frequency distributions of considered input signals do not

overlap. Nonetheless, those methods, mostly, do allow separating signals under very specific

assumed non-stationary properties. A less restrictive separating approach can be developed

grounded in conventional nonparametric subspace analysis that consists of searching such a



1.1 Subspace Stationary Analysis for Signal Separation 3

projection maximally bearing input information when retaining only those data that con-

tribute most to data stationarity representation. As a result, projection provides signals

that are as stationary as possible, while introducing new bias variability measures capable

of quantize the signal stochastic stationarity might posed solutions under less restrictive

assumptions, such at non-specific number of stationary sources, stochastic local stationarity

and convolutive mixture model identification from spectral analysis.

On the other hand, cyclo–stationary signals are a special case of non–stationary processes

that repeat them selves with certain periodicity [12], holding similar definitions to those

of stationary processes but within an specific time lag or period. In the recent years, an

increasing interest of cyclo-stationary signal analysis as been reported [10], from telecom-

munications to vibration signals [40] and biological signals regarding cardiac function [2].

Cyclo–stationary stochastic properties are commonly analyzed by means of the periodicity

in the autocorrelation functions, thus, taking the fourier expansion of such function, referred

as cyclic autocorrelation functions, the periodic nature of the process becomes more visible.

Purely time domain analysis of cyclo–stationary signals is quite complex, since conventional

spectral analysis has been design for stationary signals some problems arises when directly

applied over cyclo–stationary process, such as the concept of two dimensional spectrum.

However, as cyclo–stationary signals are usually local non–stationary, a direct extraction or

separation approach can not be implemented, instead, there is a primordial need for identifi-

cation of the cyclic properties of the phenomena, such as cycle frequency estimation, spectral

coherence, temporal cycle similarity, etc. prior to any separation task[3].



2. Problem Statement

Classic digital signal processing takes upon a common assumption the general stationarity

of the studied signals, restriction under which the signal stochastic properties are time-

invariant. However, biological signals, mechanic signals and some other processes, require

the direct study of the non–stationary components as main source of information as the time-

variant stochastic features are directly related to the underlying studied phenomena[41].

Specifically, non–stationary processes can affect not only assumed narrow sense station-

ary signals, but also non–stationary signals that present with a periodic behavior, as some

other non–stationary components not. This cyclo–stationary processes are usually ana-

lyzed via second order statistics and the component extraction of underlying stationarity,

cyclo–stationarity and non–stationarity is done by blind component extraction methodologies

that work under specific constraints and makes use of a priori given information. However,

when the spectrum of the non–stationary cyclic process overlaps with the non–periodic non–

stationary components spectrum such separation its not an easy task. Moreover, the presence

of such non–stationary corrupting signals might result in inaccurate extracted components

and by consequence any other posterior processing would be compromised. Given this facts,

the unsupervised identification of non–stationary components over cyclo–stationary signals

arises as a first stage of preprocessing task, where based only in external based factors, the

cyclo–stationary features of the signals, a quality criteria over the signal cyclo–stationarity

information is given, aiming to provide information to the consequent processing analysis in

order to either extract the non–stationarities from the cyclic process or reject the signal for

analysis given the low quality and lack of information.

In addition to the cyclo–stationarity analysis, second order statistic are also useful to provide

a signal analysis framework where non–stationary processes are to be separated from under-

lying stationary signal analysis. However, common blind source separation methodologies

require of specific a priori restrictions as multi-dimensional input data, number of stationary

sources, locally stationarity and others [22],[20]. Upon this facts, a one dimensional time–

series stationarity signal analysis becomes necessary, as in a Blind Component extraction

process, where given the studied dynamics of the input data, it becomes possible to identify

underlying stationary and non–stationary process from enhanced representation spaces.
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Generally speaking, used in separation between non-stationary and stationary signals, subspace-

based methods should have as desired properties the following: i) to highlight stochastic

behavior of an underlying random process during projection [26], ii) to ensure established

stochastic constraints dealing with non-stationary signal structure within the projection

framework. As regards the former ability, in [42], several projection methods are consid-

ered for extracting information from non-stationary time series, concluding that a bundle

of methods may lead to much extracted information about the process. But, to match the

stochastic constraints after such a complex transformation may pose a challenge. Rather, to

enhance the time-series representation within the subspace framework, any of the standard

methods for analysis of non-stationary time series can be suitable. In case of the latter

ability, a separation method should be carried out imposing the stochastic constraints upon

the linearly transformed space. However, projection of non–stationary signals is not always

identifiable. Particularly, the most widely used constraint requires that the second-order

statistics time invariability must coincide with the ensemble averages, which is far from

being solved even for linear subspace models. Therefore, to discriminate between stationa-

rity and non-stationarity, we must still evaluate how stochastic restriction holds over the

optimization solution within a given projection framework.



3. Objectives

3.1 General Objective

Develop a feature representation framework based on subspace projections and (cyclo-) sta-

tionarity constraints in order to enhance the detection and/or extraction capabilities of

non-stationary dynamics in time-series.

3.2 Specific Objectives

1. Develop a time-frequency based representation framework that assess the presence

of non-stationary components in biological time-series, using adaptive temporal and

spectral signatures that highlight signal cyclo-stationary features.

2. Develop a subspace based filtering methodology to extract the non–stationary compo-

nents in a given time–series using weakly stationary constraints and stochastic feature

relevance analysis. The proposed scheme would be tested over synthetic and real

time–series in order to enhance results interpretability, this is assessed by means of

non–stationarity measures and spectral analysis of filtered components.

3. Design a time–variant feature representation framework based on subspace signal pro-

jections to assess the signal stationarity behavior under a dynamic recursive environ-

ment. To this, new collected data would update the signal subspace structure taking

into consideration the new information and its relation with previous collected data.



Part II

Detection of Non-stationary

Components using adaptive

cyclo-stationary signal analysis
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In this chapter, common stationary characteristics of signal processing are taken into con-

sideration for analysis using enhanced time–frequency representations. The formulation of

stationary and cyclic stationary signals statistics constraints and how such parameters are

to be used in posterior processing tasks related to the signal pattern recognition processes

is first given. As the cyclo–stationary signal behavior is directly related to the generating

process, several additional constraints are imposed to generate a more adaptive and inter-

pretable analysis. Finally, results are presented using common cyclo–stationary signals, as

those related to cardiological functions. It is highlighted how primary detection of inter-

ference components can affect posterior signal processes as segmentation, feature extraction

and/or classification.

Mathematically, the proposed framework is presented in order to provide a methodology for

cyclo–stationary signal analysis aimed to detect components that are not related within the

signal process information. Generally speaking, cyclo–stationary signals are regarded into

the wide–band spectrum signals, thereby signal filtering is not always a possibility and only

signal rejection or unreliable result alerts are given as options. Blind component extraction of

cyclo-stationary signals, classification, segmentation and any other further signal processing

are out of the scope of the present master thesis and thus only basic procedures as used for

performance analysis.



4. Signal Cyclo–Stationary Analysis

from Second Order Statistics

4.1 Signal cyclo-stationarity definition

Stationarity in the narrow sense, requires the constant behavior of a given set of statistical

moments of a time-series process y (t) ∈ R over a fixed period of time,

lim
τ→T

EEE{|Θ {y (t)} −Θ {y (t + τ)} : ∀τ ∈ T |} − ǫ ≤ 0 , ∀t ∈ T (4-1)

where Θ {·} stands for an statistic value estimator and ǫ ⊂ R+ is a certain small enough

value that express the degree of accuracy of the given stationarity.

Any given time-series, that with an appropriate values of time shifting window τ and degree of

accuracy ǫ fails to convey this constraint is assumed to be non-stationary or more accurately,

does not fulfill weak-sense stationarity. Generally speaking it can be assumed that weak

stationarity is measurable with the first two moments, mean and variance, noted respectively

as Θ ∈
{
µy, σ

2
y

}
.

Additionally to strictly stationary and non-stationary processes, a given stochastic process

whose statistical moment values vary periodically with time [14], generally speaking, a non–

stationary process that repeats itself over fixed windows of time, are classified as cyclo–

stationary processes which arises as the following definition:

Definition 4.1.1. (Cyclo–Stationary Process): Let y (t) be a random signal trajectory, it is

said to be a cyclo–stationary process in the wide sense, with cycle period τc, if the following

cyclo-stationary constraints holds,

EEE{y (t)} = EEE{y (t + τc)} (4-2a)

Ry (t, τc) = Ry

(
t
′

, τc

)
(4-2b)
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with Ry (t, τc) is the correlation function of the time series y defined as,

Ry (t, τc)
∆
=
EEE{(y (t) + µy) (y (t+ τc)− µy)}

σ2
y

(4-3)

Consequently, the definition 4.1.1 can be posed into a more relaxed form, as noted by [12],

where a process is said to be almost cyclo-stationary in the wide sense if there exists a

periodicity frequency α = 1�τc for which the Fourier series expansion coefficients of the

cyclic autocorrelation function are not identically zero [12].

4.2 Cyclic Autocorrelation and Cyclic Frequency Spectrum

Given the Fourier series expansion of the autocorrelation function of a non–stationary pro-

cess,

Ry (t, τc) =
∑

α

Rα
y (t, τc) e

−j2παt (4-4a)

Rα
y (t, τc)

∆
= lim

T→∞

1

T

T
2∫

−T
2

Ry (t, τc) e
−j2παtdt (4-4b)

for a value of cycle frequency α = 0, results in the time-averaged probabilistic autocorrela-

tion function for asymptotically mean stationary processes, which indicates that the cyclic

autocorrelation function is time-invariant for α = 0, however this same condition does not

hold for α 6= 0, rather they are cyclicly repeated as in a sinusoidal modulated function, that

is,

Rα
y (t+ t0, τc) = Rα

y (t, τc) e
j2παt0 (4-5)

And the set of frequencies α for which Rα
y (t, τc) 6≡ 0 is called the cycle spectrum of y (t).

As in common stationary and non–stationary signal analysis, the power spectral density of

a given time series y (t) can be defined from the autocorrelation function Ry as,

Sy (f) =

∞∫

−∞

Ry (t, τc) e
−j2πfτcdτc (4-6)

whereas it can be proven that for cyclo–stationary signals, the cyclic autocorrelation of

process y (t) is defined as the time cross-correlation of frequency shifted versions of y (t),
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which leads to the cyclic spectral density and cyclic spectrum as follows:

Sy (f) =

∞∫

−∞

Rα
y (t, τc) e

−j2πτcfdτc
∆
= Sαy (4-7a)

Sy (t, f) =
∑

α

Sαy (f) ej2παt (4-7b)

Broadly, cyclo–stationary processes are characterized by the existence of spectral correlation

within the process and this is parameterized by the cyclic spectral density
{
Sαy
}
or by the

cyclic autocorrelations set
{
Rα

y

}
.

4.3 Time-Frequency Analysis of Cyclo–stationary Signals

Stationary signal analysis provides with a tool for examining the degree to which two wide

sense stationary (WSS) processes are related by time-invariant linear transformations, this

measured, called cross–coherence function ρ (f) is defined by:

ρ (f) =
Sxy (f)

[Sx (f)Sy (f)]
1
�2

(4-8)

The same concept might be applied to almost cyclo–stationary signals where the coherence

function of frequency shifted versions of the process y (t) exhibits cyclo–stationarity if and

only if ραy (f) exists, that is,

ραy (f) =
Sαy (f)

[
Sαy (f + α�2)S

α
y (f − α�2)

]1�2
(4-9)

Equation 4-9 is called the auto-coherence spectral function and it indicates the degree of

spectral coherence of the process y (t) at spectral frequency f and cycle frequency α, with

|ραy (f)| = 1 for completely coherent processes and |ραy (f)| = 0 for completely incoherent

processes at spectral frequency f and cycle frequency α.

However, as the stationary process, any cyclo–stationary process might be affected by any

other non–stationary components that do not have spectral correlation at given cycle fre-

quencies, this means that cycle frequency can vary with time within a limited range of the

fundamental cycle frequency α, this introduces then, the necessity of a time-varying estima-

tion of the cyclic autocorrelation function and by extension the cycle frequency spectrum and

cyclic auto–coherence function. [35] introduced the short-time frequency spectrum by com-
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puting the cyclic autocorrelation function in predefined sliding windows in the time domain,

Rα
y (t, τ) =

t+ζ∫

t−ζ

Ry (t, τ) e
−j2παtdt (4-10a)

Sαy (t, f) =

∞∫

−∞

Rα
y (t, τ) e

−j2πfτdτ (4-10b)

ραy (t, f) =
Sαy (t, f)

[
Sαy (t, f + α�2)S

α
y (t, f − α�2)

]1�2
(4-10c)

It can be seen in equation (4-10c) that the set of coefficients of the cyclic auto–coherence

function {ρyα (t, f)} covers three different domains, spectral frequency, cyclic frequency and

time, yet we can make this a function of time and cycle frequency by integrating the function

over the frequency spectrum to obtain the short–time cycle frequency spectrum (STCFS) as

γy (t, α) =

+∞∫

−∞

ραy (t, f) df (4-11)

It should be remarked that the time window size for computing the STCFS covers [t− ζ, t+ ζ ]

and a necessary condition for the cycle frequency spectrum to exist over this interval is im-

posed as at least two cycles of the periodic non–stationary process must occur over this

interval [12].

In [36] it is pointed out that the time lag parameter of equation (4-10a) can also be dropped

or more accurately set to τ = 0, since the autocorrelation function at cycle frequency of

interest must be approximately equal to those of lagged versions of the signal. Thereby

equations (4-10a) to (4-11) can be written as,

Rα
y (t) =

t+ζ∫

t−ζ

y (t)2 e−j2παtdt (4-12a)

γy (t, α) =
Rα

y (t)

R0
y (t)

(4-12b)

The short time frequency spectrum of equation (4-11) holds then the cycle frequency infor-

mation of the process y (t) in a cycle-frequency time map representation. Thereby, in [35]

it is propose the extraction of the Instantaneous Cycle Frequency (ICF) δy (t) as the cycle
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frequency band greater that zero to which γy (t, α) presents the higher energy concentration,

δy (t) = argmax
α

[γy (t, α)]
δy(t−)+λδ
δy(t−)−λδ

∀t ∈ RT (4-13)

where δy (t
−) indicates the previous value of the estimated ICF and λδ is a cycle frequency

boundary that controls the variational limits of the newer δy (t) to a maximum deviation of

λδ.

4.4 Fast STCFS Estimation

General computation of the short cycle-frequency spectrum with sliding window as in a

short time fourier transform directly trough (4-12a) to (4-12b) is computationally too ex-

pensive [13], however when a defined cycle frequency spectrum is stated as α ∈ [αl, αh] the

direct computation of the STCFS can be achieve by means of recursive operations and inner

products among lagged signal samples and fourier basis of the cycle frequency.

Let y (t) ∈ RT be a non–stationary process with periodicity over the cycle frequency α ∈

[αl, αh] and let ζy be a time window such that 3 complete periods of the non–stationary

behavior are within such window. The unnormalized STCFS of equation (4-12a) for a time

sample point t is given by,

Ry =




1+2ζy∑
k=1

y [k] e−j2παlk
2+2ζy∑
k=2

y [k] e−j2παlk · · ·
T∑

k=T−2ζ

y [k] e−j2παlk

1+2ζy∑
k=1

y [k] e−j2παl+1k
2+2ζy∑
k=2

y [k] e−j2παl+1k
. . .

...

1+2ζy∑
k=1

y [k] e−j2παhk
2+2ζy∑
k=2

y [k] e−j2παhk · · ·
T∑

k=T−2ζ

y [k] e−j2παhk




f×T

(4-14)

Equation (4-14) increase its computational burden complexity as the length of the signal of

the cycle frequency range increases, however it can be seen that the summations required

over each column of Ry, can be directly computed as the inner product of the window vector
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of the signal y and a matrix of Fourier basis functions of α ∈ Rf as follows

Bb
a =

[
(e−j2πaα)

T
(e−j2πa+1α)

T
· · ·

(
e−j2πbα

)T ]
f×2ζ

(4-15a)

Ry =

[ (
y
1+2ζ
1 ·B1+2ζ

1

)
T
(
y
2+2ζ
2 ·B2+2ζ

2

)
T

· · ·
(
yTT−2ζ ·B

T
T−2ζ

)
T

]

f×T

(4-15b)

At this point, the complexity of multiple iterative computations over the different values of

α has been reduced to a matrix based product, yet this procedure can still be reduced such

that for the STCFS at sample point t is obtained by a rank-one update of the previously

sample point t−1, to demonstrate this fact, lets recall the summation based form of equation

(4-14) for a couple of given sample points t, t+ 1

Ry (t) =




t+2ζ∑
k=t

y [k] e−j2παlk

t+2ζ∑
k=t

y [k] e−j2παl+1k

· · ·
t+2ζ∑
k=t

y [k] e−j2παhk




Ry (t+ 1) =




t+1+2ζ∑
k=t+1

y [k] e−j2παlk

t+1+2ζ∑
k=t+1

y [k] e−j2παl+1k

· · ·
t+1+2ζ∑
k=t+1

y [k] e−j2παhk




(4-16a)

Ry (t + 1) =




(
t+2ζ∑
k=t

y [k] e−j2παlk

)
− y [t] e−j2παlt + y [t+ 2ζ + 1] e−j2παl(t+2ζ+1)

(
t+2ζ∑
k=t

y [k] e−j2παl+1k

)
− y [t] e−j2παlt + y [t+ 2ζ + 1] e−j2παl+1(t+2ζ+1)

· · ·(
t+2ζ∑
k=t

y [k] e−j2παhk

)
− y [t] e−j2παlt + y [t+ 2ζ + 1] e−j2παh(t+2ζ+1)




(4-16b)

This vector-matrix based form reduces the computational complexity of the STCFS using

rank-one updates of the cycle spectrum, such that for a new given sample point there is no

need for a matrix inner product but a rank-one update that uses simpler vector sum/rest

operations.
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4.5 Enhanced Estimation of Instantaneous Cycle

Frequency

It should be remarked however, that almost cyclo–stationary processes might hold not only

one fundamental cycle frequency, but also some periodic integers harmonics of its periodic

nature as well as some other cyclic processes that can corrupt the STCFS representation [36].

Additional the variational drift of the cycle frequency can be greater than the predefined

λy criteria. Thus, maximum argument of equation (4-13) can produce wrong estimations of

ICF locating the cycle frequency over a harmonic value of the fundamental cycle frequency

and/or produce an abrupt change of the cycle frequency value if the deviation control pa-

rameter is too large and the signal is contaminated with some artifacts. Given this facts, a

search algorithm that identify the highest energy band in the STCFS and detects the integer

harmonic to which it relates according to the expected cycle frequencies that can be achieved

by the cyclo–stationary process is posed, under the only necessary condition that a priori

knowledge of the highest harmonic value of the expected cycle frequency αf is given.

However there are several cases when the true cycle frequency harmonic can not be found

and is set to zero:

– One single peak in the autocorrelation function of the α marginal means that the

STCFS does not hold any cycle frequency information which can be caused by cor-

rupting noise or badly set boundaries.

– The found prominent peaks are below the expected cycle frequency and cannot be

related to cyclo–stationary process.

– The identified harmonic does not achieve minimum fundamental cycle frequency under

maximum allowed variation

4.6 Interference Detection in Cyclo-stationary Signals

Frequency spectrum of cyclo–stationary process is not only bounded by the cycle frequency

but also by the natures process, generally speaking, filtering or extraction of unwanted com-

ponents that are affecting the process is required as preprocessing task to any posterior signal

analysis, however when signal spectrum is in the same band as the interference spectrum

such task is not easy achievable or sometimes not possible [14]. To this, interference and
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Algorithm 1 Enhanced ICF Search Algorithm

Input: signal y (t) ∈ RT , cycle frequency range of operation α ∈ [αl, αh], initial search deviation λδ, ζ window size and
maximum harmonic value hh. Output: Corrected ICF δ (t) and main harmonic detected h.
Compute Ry (t, α) via the Fast STCFS estimation and obtain γy (t, α). Obtain ICF initial estimate δy0 (t). Compute the
autocorrelation function of STCFS energy envelope as

eRy
(α) =

∑

∀t

Rα
y (t)

R̃eR (α, ν) =
EEE{(eR (α) + µe) (eR (α+ ν) − µe)}

σ2e

Find the set
{

pei : i = 1, . . . , nb

}

most prominent peaks of R̃e (α).
if nb = 1 then

Set h = 0.
else if nb = 2 then

if p2 < αf − 2λδ then

Set h = 0;
else if p2 < 2αf − λδ then

Second peak is most likely to relate the second harmonic, set h = 2.
else if p2 < 3αf − λδ then

Second peak is most likely to relate the second harmonic, set h = 3.
...

else

Set h =
⌊

µδ�αf

⌋

.

end if

else if nb > 2 then

k = 1
while i <= nb do

if pi < αf − iλδ then

Set h = 0; Break while.
else if pi < (i+ 1)αf − λδ then

Set h = 2. Break while.
else if pi < (i+ 2)αf − λδ then

Set h = 3. Break while.
..
.

else

Set h =
⌊

µδ�αf

⌋

.

if h < αf − λδ then

Set h = 0. Break while.
end if

k = k + 1.
end if

end while

end if

if h = 0 then

No identifiable harmonic was found due to estimation problems of the STCFS.
else

δ (t) = δ0y (t)�h.
end if

Return δy (t).
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noise detection arises as a task to identify those signals that are contaminated with compo-

nents that are not related with the cyclo–stationary process in order to detect time intervals

over which the signal is too corrupted to provide information, or signals that have too low

signal to noise ratio and any other processing task could not be reliable given this situation.

Mainly there are two noise or interferences sources that disrupt the natural periodicity of

the non–stationary process: i) High frequency interference and ii) in band time-frequency

interferences.

4.6.1 High Frequency Interference Detection

Cyclo–stationary process usually have a defined frequency spectrum, i.e. phonocardiographic

signals fundamental frequencies are to be below the 150Hz but are even more specific ac-

cording to the heart age, rotating machines cycle frequencies are defined by the load and

discs size, etc. Thus, the fact that external factors modify the cycle frequencies poses the

necessity for a framework methodology that adapts the cyclo–stationary analysis to this ex-

ternal constraints. In [24], an interference detection for phonocardiographic (PCG) signals is

proposed using fixed length windows to perform the detection of high frequency interferences

over the signal.

Given a frequency range of interest [fl, fh] for a given cyclo–stationary process y ∈ RT , any

short duration bursting components whose frequency range exceeds the maximum frequency

allowed or assumed to hold process information is considered high frequency interference.

In [23], this high frequency interference is detected by computing the energy of short time

portions of signal and comparing this value either against the total energy signal or against

the one-cycle energy, this is,

eiy − ẽy ≥ ηh (4-18)

where eiy is the signal energy at a fixed length segment i and ẽy can be either the average

signal energy per cycle (note that a necessary condition here is to know the number of cycles

in the analyzed signal duration) or the total signal energy, that is computed as the Shannon’s

energy as follows [11],

ei =
∑

∀k∈[ai,bi]

−y [k]2 log
(
y [k]2

)
(4-19a)

ẽy = EEE{eiy : ∀i ∈ 1, . . . , nh} (4-19b)

where [a, b] is a non-overlapping signal interval, such that the segment i + 1 is contained
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within ai = bi−1 + 1 and bi = bi−1 + Tl with Tl the minimum window size for detecting

bursting energy peaks higher than the maximum frequency allowed for the cyclo–stationary

process and nh = ⌊T/ (Tl + 1)⌋ and ⌊·⌋ is the nearest integer approximate of its argument.

4.6.2 Time-Frequency Analysis for In-band Interference Detection

Additional to the aforementioned high frequency interferences, cyclo–stationarity is usually

affected by noise and artifacts that overlap with the natural frequency spectrum of the

periodic non–stationary process. This fact makes difficult and sometimes unfeasible the

extraction and filtering of the information related components. Then an identification pro-

cedure that takes into consideration the cyclic nature of the evolutionary process to detect

the existence of corrupting components is presented in [24]. The process takes advantage

of an enhanced subspace representation of the data to detect behavioral changes of the

autocorrelation function over different non–overlapping frequency bands.

Let y (t) be a cyclo–stationary process with fundamental cycle frequency αi, such that in a

time window Tt, that covers at least 3 complete cycles is possible. And let Ω (t, ω) be its

time-frequency representation constructed is such way that no cross-terms exist, two different

time-spectral signatures are then posed as necessary condition for interference free signals:

– EEE{ρy (i, i+ 1)} ≤ ηρ with i = 1, . . . , nt − 1

– sign
(
θ
(j)

yi − θ
(j+1)

yi

)
= const with i = 1, . . . , nt and j = 1, . . . , nf .

where nt = ⌊T/ (Tt)⌋ and nf the number of desired frequency ranges.

To this end, let the energy envelope of the given cyclo–stationary process be,

ǫy (t) =
∑

∀ω

|Ω (t, ω)|2 (4-20)

The most prominent peaks of the energy envelope identify those components related to the

fundamental components of the cyclic behavior, such that the similarity among cycles is used

as an indicator of the existence of corrupting components. To this end, the radial measure

ρy (y
i,yi+1) among the energy autocorrelation function of two consecutive non–overlapping

signal segments that contains at least 2 complete cycles is used,

ρy
(
yi,yi+1

)
=

〈Ryi (ti, τ) , Ryi+1 (ti+1, τ)〉∥∥Ryi (ti, τ)
∥∥ ∥∥Ryi+1 (ti+1, τ)

∥∥ (4-21)

where i = 1, . . . , nt is the number of available consecutive non–overlapping windows in T .

Hence, whenever the value of the radial distance exceeds a given threshold ηρ. It should
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be notice that the window size must be fixed prior to any procedure and thus requires of

previous knowledge or estimation of the fundamental cycle frequency.

In addition to the temporal signature that measures how similar or dissimilar are consecutive

segments or cycles of the processed signal, spectral similarity also serves as an indicator of

interference components that disrupt the normal cyclo–stationarity of the process at hand

in a given segment. Spectral similarity is then quantified by means of the peak alignment

over different non-overlapping consecutive spectral bands distributed along the frequency

spectrum of the cyclo–stationary signal.

That is, for a frequency range bounded by the process features with low and high frequencies

[fl, fh], we define a fixed number of bands of interest 1, . . . , nf , then the enhanced time-

frequency representation Ωy (t, f) over the frequency range of the given signal y (t) is divided

into nf different sub-bands representations, for each of which the autocorrelation function of

the energy envelope is obtained as in equation (4-20) and stacked all together into a matrix

form,

Ai =
[
R1

yi (t, τ) , R2
yi (t, τ) , · · · , R

nf

yi

]T
(4-22)

where the superindex i = 1, . . . , nt. In [24] its pointed out that for completely cyclo–

stationary processes the matrix A should demonstrate a strong linear dependency among

rows, since peaks of each band envelope autocorrelation function must be almost perfectly

aligned one to another and the peaks shapes within bands should exhibit a monotonic be-

havior that can be exemplified by means of the eigenvalues of the matrix A. However, since

real processes are not completely but instead almost cyclo–stationary, this condition is re-

laxed by computing the eigenvalues of sub-matrixes of matrix A, that is, linear dependency

and monotonicity is checked within fixed portions of the signal spectrum instead of the full

spectrum at once:

Ai
j =

[
Rj

yi , R
j+1
yi , · · · , Rj+nb

yi

]
T

(4-23)

with j = 1, (nf − knb) + 1, . . . , nf − nb + 1 and k = ⌊nf/nb⌋.

Thus, by means of the eigenvalue decomposition set
{
λ
(j)
k

}
∀k = 1, . . . , nb of each sub-matrix,

where k indicates the eigenvalue place in descending order associated with the j sub-matrix

using the time-spectral signature is obtained:

θiλ (j) =

(
λ
(j)
2

λ
(j)
1

)2

(4-24)
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The time-frequency signature based on cyclo–stationarity features requires then that the

spectral signatures ρiλ (j) holds a given monotonicity either by increasing or decreasing values

values as the spectral frequency bands increases, so that one of the following relationships

must hold,

θiλ (j) < θiλ (j + 1) < . . . < θiλ (nf) (4-25a)

θiλ (j) > θiλ (j + 1) > . . . > θiλ (nf) (4-25b)

If neither of the previous conditions are accomplished, the signal segment is assumed to

hold spectral non–stationarities that do not meet cyclo–stationary constraints and therefore

signal is corrupted, that is, if neither (4-25a) or (4-25b) holds, the parameter criteria is set

ηθ = 1, on the other hand ηθ = 0.

4.7 An Enhanced High Frequency Interference Detection

based of Adaptive Window size

Usually, high frequency interference detection is done prior any other analysis by means

of sliding non–overlapping windows and the Shannon’s energy of equation (4-19a). Yet,

we propose using a adaptive window size computed using external information and a bias

sigmoid curve that adjust the size value so that existence of complete cycles is fulfilled.

Thereby equations (4-19a) and (4-19b) become,

nh (a) =

⌊
T

Tαh
+ 1

⌋
(4-26a)

Tαh
(a, βa, κa, ca) = βa +

1− βa
1 + e−κa(a−ca)

(4-26b)

where the parameter a is fixed according to external factors that regulate the maximum

expected frequencies, βa sets the lower asymptote value, κa sets the value for which the

function starts growing and ca the settling value for the higher asymptote. An example of

a sigmoid function to regulate window size in phonocardiographic signals based on age is

shown in figure 4-1,

After computing signal segments energy, same condition as in static procedure is applied,

such that any segment that exceeds the predefined ηh threshold value is marked as a bursting

energy component that does not relate with the cyclo–stationary process and whenever the

number of segments is considered too large signal is considered as too corrupted for reliable
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Figure 4-1: Sigmoid Penalty Function for PCG signals using age a as penalty factor, βa = 0.6,
κa = 1.5 and ca = 8

analysis.

4.8 Time-Frequency Analysis for In-Band Interference

Detection using Adaptive Constraints

Almost cyclo–stationary processes do not hold an static and specific cycle frequency over

time, instead the cycle frequency can present a drift over the real estimated value do to

external factors that have not been taken into consideration so far, i.e. in cardiological related

signals, the Heart Rate Variability (HRV) influences the length of the cardiac cycle trough

time causing non–periodic increase or decrease in the cycle frequency while for rotating

monitoring systems and vibrations signals, such drift might be caused by an increase in the

number of revolutions per minute, a fault in the mechanisms among others. Additionally to

this drawback, the necessary condition of the number of cycles within the signal generates

either supervised monitoring process, or the necessity of additional information, such as exact

cycle frequency with minimum deviation or additional simultaneously recorded signals that

provide such information (such as electrocardiogram for PCG signals). To overcome this, we

propose an adaptive interference detection scheme that uses non–supervised estimation of

cycle frequencies and window size estimation based upon external factors and cyclic features.

As in section §4.6.2, consecutive cycles are compared by means of a similarity measure

computed as the radial distance among the energy autocorrelation functions. However the

necessary condition of at least 3 complete cycles within the segment of analysis must not

be fulfilled given the time-variant nature of the cycle frequency, not mentioning that to any

change of signal process such window must be reseated to this constraint, or just work under

the wrongful assumption of this number of cycles. Similar to the adaptive high frequency

interference detection an adaptive window size parameter is here introduced as an alternative
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to this drawback, not only using external information that can be automatically set but also

taking into consideration the time-variant behavior of the cycle frequency obtained through

algorithm 1.

For a cyclo–stationary process y (t) which holds time-variant cycle frequency αi (t), the

Gompertz function [28] is used as adaptive time signature window,

Tt (at, κt, βt, ct) = κte
(βtectat ) (4-27)

where κt sets the upper asymptote value, βt < 0 sets the x -axis displacement, ct < 0 sets

the growing rate and at is a external related parameter fixed accordingly to the maximum

expected frequency of the cyclo–stationary process. To incorporate the variant information

of the cycle frequency, parameters κt and ct are interchanged by four times the value of

the cycle frequency at sample point of analysis and its standard deviation among the whole

available duration of the process respectively.

It should be remarked that instead of the common approach which requires a prior fixed

length for any window based analysis, the adaptive windows can evolve with the process

nature, such as if the external parameters change the temporal computation of the windows

size is capable to detect and adapt itself to this changes.

An example of this function with different combinations of the parameters is shown in Figure

4-2 for PCG signals, where the parameter at is the age of the heart muscle.
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Figure 4-2: Sigmoid Functions for Adaptive Time-Frequency Signatures Windows Estimation�−
στd = 0.005, �− στd = 0.05, �− στd = 0.075 and �− στd = 0.1

4.8.1 Peak Alignment and Spectral Autocorrelation Coherence

Peak alignment is also considered as a criteria for interference presence, however, taking

the first frequency band autocorrelation function, proposed by [24], as reference might lead
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to false peaks if there is major interference in this band, thereby a proper selection of

the reference band is required, we propose a correlation based approach, with the average

correlation coefficient criteria, ̺i =
1
nb

nb∑
j=1

Rij , where R is the correlation coefficients matrix:

Rij

(
eix (Tt) , e

j
x (Tt)

)
=

EEE{eix (Tt) e
j
x (Tt)} −EEE{eix (Tt)}EEE{e

j
x (Tt)}

(
EEE{(eix (Tt))

2} −EEE{eix (Tt)}
2
) 1

2

(
EEE{
(
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)2
} −EEE{ejx (Tt)}2

) 1
2

The reference band index is then Ir = argmax
i

{̺i}. Having defined the reference band

autocorrelation function, the most prominent peaks of each band are extracted and compared

against those of the reference, a peak of the autocorrelation function rjx is considered aligned if

its within 75ms of any peak in the reference autocorrelation function rIrx , i.e., let p
j ∈ R1×M

and pIr inR1×N be the most prominent peaks of the j−th band and the reference band

respectively, the peak alignment criteria is defined as ψp =
1
nb

nb∑
j=1

EEE{pj}, where,

pjm =

{
1
∥∥pjm − pIrn

∥∥
2
≤ ηψ ∀n = 1, . . . , N

0 Otherwise
(4-28)

Finally, in addition to temporal and spectral periodicity criteria, the spectral and temporal

energies of the signal segments are also indicators of not only non-cyclic related events, but

also of signal amplitude attenuations. Therefore, the correlation coefficient between the

time-series segments and a reference cycle segment (chosen within the signal with duration

Tt, periodicity parameter ρIrχ > 0.8, ρIrθ = 1 and percentage of align peaks ≥ 90%), is used

in a template matching procedure, where the correlation coefficient χ
(
Ωrefrms (f) ,Ω

j
rms (f)

)

among the frequency marginal of the reference segment and the frequency marginal of the

analyzed segment is considered as noise free if χ ≥ ηχ, where ηχ is a threshold value, and

the frequency marginal is defined as,

Ωirms (f) =

√∫
|Ωi (f, t)|2 dt (4-29)

where Si (f, t) is a time-frequency representation of the segment yi (t).



5. Validation Results
In this section, real data time-series are used in order to assess and validate the cyclo–

stationarity analysis through the estimation of time–variant cycle frequency estimation under

different noise conditions. To this end, phonocardiographic signal (PCG), an acoustic cyclo–

stationary process related to the mechanical function of the heart muscle, is used.

PCG time–series cyclo–stationary analysis and interference detection based on cyclo–stationary

constraints is aimed to enhance segmentation procedures required as pre-processing stage,

given the wide signal spectrum such interference can not be filtered from the process with-

out loss of information [8], thus interference detection process would result a signal quality

assessment methodology capable of identifying interference–free signals. Performance is eval-

uated in terms of interference detection capability under different noise conditions, accuracy

of the estimated cycle frequency and enhancement in the segmentation procedure comparing

between the conventional non-constrained framework and the proposed adaptive framework.

5.1 Non–Stationarity Analysis in PCG Time-Series

5.1.1 Database

The used heart sound database for murmur detection belongs to the Signal Processing and

Recognition Research Group at the Universidad Nacional de Colombia-Manizales. The

database holds records of 60 patients: 27 patients ages 3 to 10, 16 patients ages 10 to

14 and 17 patients 14 years old and onwards.

From each patient a 20 second duration phonocardiographic (PCG) signal was recorded in

each of the four traditional auscultation focuses (aortic, mitral, pulmonary and tricuspid)

using both, bell and diaphragm, modes. Some signals were dismissed due to acquisition

quality but holding at least one signal per focus1. Signals were recorded at a 44.1kHz

sampling rate and 16 bit resolution with an electronic stethoscope and Meditronr software,

the acquisition was done in noisy environments as those of health care centers. The database

was then divided into 4 sets according to each age range each holding 4 subsets according to

1A total of 453 signals from the 453 are available for segmentation evaluation performance
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the auscultation focuses; each signal hold the annotations marks of the onsets and endings

of the hearts sounds present in each signal so an estimated of the heart rate and by inference

the average cycle frequency, Table 5-1 summarizes the database setting.

Table 5-1: Database Description

Ages
Focuses

Aortic Mitral Pulmonary Tricuspide Total

0 to 3 16 17 14 11 58
3 to 10 51 48 45 38 182
10 to 14 25 25 25 25 100

14 and older 30 27 30 26 113

Total 122 117 114 100 453

PCG signal present components in a lower frequency range than the original sampling fre-

quency, therefore a 8-th order Tchebychev filter with a down-sampling process is implemented

with a central cut-off frequency fc = 1102.5, that is a down-sampling factor of 20. Thus

resulting in a sampling frequency f̂s = 2205Hz. Finally the amplitude of each signal was

normalized with the absolute maximum of each PCG recording.

5.1.2 Performance Measures

The performance of the proposed cyclo–stationary analysis for detecting the presence of

interferences is assessed in two stages: first, by means of sensitivity the cycle–frequency

estimation:

se =
ic

ic + iu
(5-1)

where ic and iu are the correct and uncorrect number of ICF estimations.

Secondly as the database does not hold any kind of annotations regarding the quality of the

signals, a first process of database depuration is performed using hard interference detection

parameters with the proposed scheme (which is depicted in Figure 5-1).

This provides with a reduced database with the cleanest signals available. Such signals are

used to test the robustness of the methodology under different signal-to-noise ratio levels

to detect the presence of interferences, to this, four types of additive noise processes are

considered:

– Chirp signal: frequency modulated cosine varying frequency from 500Hz up to 900Hz,

to simulate bursting high frequency components.
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Figure 5-1: PCG Signal Noise Analysis Scheme.
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– Colored gaussian noise to overlap PCG natural frequency spectrum, band 25− 400Hz.

– Voice signals of a moving loud speaker, recorded with two microphones, [4].

The noisy signal is constructed by linearly adding portions of noise to randomly selected

segments to the original PCG signal. The sliding nature of the analysis provides then with

annotations of corrupted signal segments, these are used to compute analyzed the detection

capability of the conventional and adaptive frameworks.

Finally, the segmentation procedure of algorithm 2 presented in [6], based on temporal

constraints is used to assess the quality of the detection2.

Algorithm 2 Segmentation Procedure

Input PCG signal x (t), ICF δ (t), to = 0, tf = 3, set i = 1.
Get real onset annotations ξ.
while tf < 20 do

xi = x (τ), τ = {to, tf}.
Get Cycle duration at to, Ci = 1/δ (to) and ǫx(τ) and find its prominent peaks.
Check synchronism conditions.
if The conditions hold then

ξ̂i = p1 − 0.15µδ(t)
else

ξ̂i = p2 − 0.075µδ(t)
end if

to = ξ̂i + Ci, tf = to + 3.
end while

Compute the true and false detection probability using ξ and ξ̂.

Segmentation performance is assessed by means of conventional true and false detection

probabilities [32],

Pd =
ND

ND +NM

, Pf =
NF

ND +NF

(5-2)

where ND are the correctly detected points, NF the number of false points, i.e. a point ζ̂

that is marked as onset but has no correspondence with any of the true points ζ, and NM a

missed point.

As the true segments are manually annotated, a threshold of 15% of the heart rate is used

when comparing the estimated onset and endings of PCG heart sounds to thus of the refer-

ence annotations. Figure 5-2 shows the process of evaluation for segmentation.

2Given a noise-free signal is segmented, taking segments lasting 3s to calculate a time-frequency subspace
representation and its respective energy envelope ǫ (t). The TFR is chosen to be a continuous wavelet
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Figure 5-2: Segmentation evaluation procedure.

5.1.3 Cycle Frequency Estimation of PCG signals

Cycle frequency of cardiac related events is estimated as the inverse of the cardiac cycle

duration, so that the number of complete cardiac cycles counted as the number of both

onset and ending of the hearts sounds is used divided by the duration of the signal, provides

with a general average cycle frequency. However, the cardiac cycle length might vary under

several physiological conditions, usually known as heart rate variability (HRV) thereby, this

average estimate cannot be directly compared with the average of the instantaneous cycle

frequency. Hence, a permission threshold of 15% is used when analyzing the performance

measure of the cycle frequency estimation of PCG signals. Additionally, the αmax value is

manually set to 5Hz, given that the maximum cycle frequency for PCG signals is expected

to be less than 2.5Hz but since signals are expected to be corrupted by noise, the estimated

ICF might be more clear over some harmonic value of the real ICF. The search deviation

for ICF algorithm 1 is set λδ = 0.5Hz, allowing a high rate variation within the 20s signal

duration[36].

The proposed approach that uses the adaptive window length under age constraint (method

A) is compared against the regular fixed size window (method F) with a length of 2s. Results

are shown in Table 5-2, where it can be seen a slight improvement in the sensitivity values

for all PCG signals.

It must be remarked that major improvement is detected in auscultatory focuses with

more interference presence, such as pulmonary and tricuspid, where respiratory and gastro-

intestinal noises usually disrupt the normal heart sound. Two examples of noise contami-

nated signal and clean signal are shown in Figure 5-3, first row depicts the PCG signals,

second row shows the STCFS and last row shown the estimated ICF, it is clearly visible that

interference existence disrupt the cycle time-frequency map and thus no cycle frequency

estimation is possible.

transform (CWT) computed with a complex Morlet wavelet, and scales a are chosen so the frequency
range covers the 25− 600Hz bandwidth.
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Table 5-2: ICF Average Sensitivity (se) per Focus

Ages

Focuses

Aortic Mitral Pulmonary Tricuspid

F A F A F A F A

0 to 3 0.94 0.94 0.88 0.94 0.79 0.93 0.91 0.91

3 to 10 0.90 0.94 0.92 0.94 0.91 1.00 0.87 0.95

10 to 14 0.88 0.84 0.88 0.88 0.88 0.92 0.84 0.84

14 and older 0.90 0.90 0.81 0.93 0.90 0.97 0.85 0.92
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Figure 5-3: STCFS and ICF estimation for contaminated and clean signals.
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5.1.4 Interference Detection in PCG Signals

Noise Detection from high frequency components

The analysis window for high frequency interference detection in the conventional non–

constrained approach is manually set to 100ms, while the proposed approach uses the adap-

tive window length to constraint this window using equation 4-26a. The threshold parameter

is set to ηh = 0.075, thus if in either of the two methods, the energy of a given window ex-

ceeds such threshold, it is marked as noisy, whereas if more than 10 segments are marked

as noisy, the signal is marked as low quality due to high frequency components and thereby

rejected.

Table 5-3: High Frequency Interference Detection Results.

Ages

Focuses

Aortic Mitral Pulmonary Tricuspide

F A F A F A F A

0 to 3 4 5 3 4 5 8 3 5
3 to 10 6 10 7 10 8 12 1 2
10 to 14 1 1 0 0 2 2 1 0

14 and older 1 1 6 6 4 4 2 2

Table 5-3 shows the rejected signals per age per focus using both methodologies, it can

be seen, that adaptive framework rejects a higher number of signals (72) compared against

conventional 54, specifically is the lower age ranges, when observing such signals its was

appreciated a large number of speech components such as crying and voice. An example of

such detection is shown in figure 5-4, where the red depicted segments are marked as noisy

due to a voice detected component.

Even when both methodologies are capable of detecting the segment as noisy, static analysis

does alert the existence of noise and assessed the signal as clean while the adaptive window

analysis adjust itself to determine that this component does not meet energy criteria and

marked the signal as noisy.

In-band Interference Detection

In-band interference detection is carried out over all signals no matter if the high frequency

analysis had detected them as noisy, the only condition to perform this stage was a correct

assessment of the cycle frequency, such that the window lengths used for analysis gave a

proper value (3 full cardiac cycles required). This stage was performed using the parameters
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Figure 5-4: PCG Segment with High Frequency Noise.

stated in Table 5-4

Table 5-4: In-band Analysis Parameterization

Signature
Window Threshold

F A F A

Temporal
Tt = 2.5s
nf = 15
nb = 3

Tt

(
a, 2.4, 4µδ(t),−10,−0.01σδ(t)−1 , αa (0.6)

)

nf = 25
nb = 5

ηρ = 0.7
Spectral ηθ = 0.8
Alignment ηψ = 0.9
Coherence ηχ = 0.8

Figure 5-5 shows an example of noise 5.5(a) and clean 5.5(b) PCG signal segments,

it is visible how interferences affect the homogeneity of the energy autocorrelation function

over the frequency bands, on the other hand, for clean segments, the energy autocorrelation

is very similar among bands and peaks related to heart sound are quite well aligned. There

is to notice in figure 5.5(b), that the first frequency band does not hold the peak alignment

reference, since there is not enough energy concentration over this band, whereas second or

third band serve as a better template.

In–band detection analysis, even when threshold were fixed equally for conventional and

constrained approach, resulted in a different number of rejected signals, while the first one

rejected a lower number of signals, however segmentation performance also resulted in lower

accuracy values. Table 5-5 shows the rejection results for in-band interference,

same as in the high frequency case, there is a increment in the number of rejected signals in

the lower age ranges, an additional reason for this, is that the cardiothoracic apparatus on

infants is less develop and small, which leads to recording several internal sounds related to

gastrointestinal function and pulmonary and respiratory interferences. Moreover, the higher



32 5 Validation Results
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Figure 5-5: Spectral Signatures for noisy and clean PCG segments.

Table 5-5: In–Band Rejected Signals

Ages

Focuses

Aortic Mitral Pulmonary Tricuspide

F A F A F A F A

0 to 3 12 13 9 10 11 11 10 9
3 to 10 37 43 38 38 39 42 27 29
10 to 14 22 21 17 19 21 20 14 16

14 and older 23 23 20 19 19 24 19 18
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frequency rates on infants makes the interferences to disrupt the normal silences of the heart

sounds, such that temporal similarity has low values and spectral coherence its not possible.

The segmentation performance, done as explained in [6], results are shown in Table 5-6

Table 5-6: Segmentation Performance

(a) True Detection Probability.

Ages

Focuses

Aortic Mitral Pulmonary Tricuspide

F A F A F A F A

0 to 3 0.69 0.88 0.67 0.60 0.70 0.70 0.85 0.87

3 to 10 0.62 0.79 0.62 0.61 0.74 0.74 0.64 0.69

10 to 14 0.67 0.74 0.58 0.76 0.79 0.76 0.64 0.73

14 and older 0.77 0.78 0.51 0.58 0.61 0.64 0.72 0.76

(b) False Detection Probability.

Ages

Focuses

Aortic Mitral Pulmonary Tricuspide

F A F A F A F A

0 to 3 0.19 0.04 0.22 0.30 0.12 0.12 0.00 0.02

3 to 10 0.23 0.07 0.17 0.25 0.06 0.15 0.12 0.14
10 to 14 0.15 0.09 0.21 0.04 0.01 0.22 0.19 0.05

14 and older 0.03 0.13 0.32 0.25 0.15 0.25 0.13 0.06

Regarding segmentation performance, even though the number of signals of adaptive non–

stationary PCG analysis is lower, it is important to remark that there is a general increase

in the average true detection probabilities, both when doing a age ranked analysis or an

auscultation focus. Not mentioning that segmentation procedure its only based on temporal

conditions and durations of heart sounds, which indicates that a proper quality assessment

prior to any task might improve analysis results.

5.1.5 Robustness of Cyclo–Stationary Signal Analysis and

Non–Stationarities Detection

Finally, the last experiment is aimed to test the robustness of the interference detection

methodologies, thus only the 98 non–rejected signals provided by the adaptive non–stationary

analysis are used. Under the assumption that such signals have high signal-to-noise ratio

(SNR), signals are contaminated with several noise sources in random segments using four

different SNR values 0, 3, 6, 9dB. The methodology is tested for all stages in a sequential

procedure, first high frequency interference, followed by the ICF estimation and lastly the
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in-band analysis. Table 5-7 shows the rejected signals for conventional (top) and proposed

(bottom) analysis, numbers one to 4 on the second row of both tables identify the ausculta-

tion focuses: 1: Aortic, 2: Mitral, 3: Pulmonary and 4: Tricuspide.

Table 5-7: Noise Analysis

(a) Conventional Analysis, fixed size window.

Ages
0dB 3dB 6dB 9dB

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0 to 3 3 7 3 2 3 7 3 2 3 7 3 2 2 7 3 1
3 to 10 8 10 3 9 8 10 3 9 8 10 3 9 8 9 3 7
10 to 14 4 6 5 9 4 6 5 9 4 6 5 9 4 6 5 9

14 and older 7 8 6 8 7 8 6 8 7 8 6 8 5 7 4 8

(b) Proposed Approach, adaptive window size.

Ages
0dB 3dB 6dB 9dB

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0 to 3 3 7 3 2 3 7 3 2 3 6 2 2 2 6 3 2
3 to 10 8 10 3 9 8 10 3 9 8 9 3 8 8 8 2 7
10 to 14 4 6 5 9 4 6 5 9 4 6 5 9 4 5 5 7

14 and older 7 8 6 8 7 8 6 8 6 6 6 8 5 5 2 5

The threshold parameters were equally set for both frameworks as: ηh = 0.08, ηρ = 0.7, nf =

15, nb = 3, ηψ = 0.8ηχ = 0.8. This analysis its less permissive than the one done for the

whole database given the high SNR assumption of the original signals. It can be seen from

the table that, conventional fixed window analysis, its not capable of adjusting itself to the

induced noise, since even for high values of SNR, it rejects most of the signals (88 out of 98

for 9dB), that is, given that there is an existing interference, it is not capable of detect how

much the interference affects the natural evolution of the time series and has no other option

than to dismiss the signal. On the other hand, the adaptive analysis dismiss only 76 signals,

so even when in those signal noise its detected, the thresholds criteria allows for the signal

to be considered as clean, that is, noise is not that relevant for disrupting the temporal or

spectral signatures.

Finally, the detection capability was also analyzed, observing that both frameworks were

capable of detecting the 99% of the noise portions induced, however, since the adaptive win-

dows, produced with more narrow and accurate windows, has a better localization ability

than the fixed window analysis. This poses then, with early alert functions to the method-

ology, and might be useful in signal acquisition quality assessment.



6. Discussion and conclusion
This chapter presents a analysis framework for detecting the presence of non–stationary com-

ponents in cyclo–stationary processes, the methodology poses several adaptive constraints

that uses the internal cyclic behavior of the process to adjust commonly used parameters

such as window sizes for the subspace representations (time-frequency representations, fre-

quency sub-band analysis and energy envelope matching). Detection of non–stationarities

is compared against non–adaptive methodology and improvement its shown in terms of vi-

sual analysis and posterior processing task. The obtained results, allows to conclude the

following:

i) Introduced adaptive window parameterizations based on internal structure information

must be remarked as an important tool when analyzing cyclo–stationary processes. To

this end, several weighting function are used altogether with external information and

internal structure characteristics so that, analysis takes into consideration the time-

variant nature of the cyclic phenomena. Yet, it is important to have or extract some

other information that relates not only the periodic evolution of the time–series, but

also directly analyze the non–stationarities so that this components can be analyzed in

some cases as part of the process information and are not directly dismissed as noise.

Such is the case of other applications as vibration monitoring, where the fault diag-

nosis commonly uses blind component extraction technique for separating stationary,

non–stationary and cyclo–stationary process, where the non–stationary process usually

holds information of the fault sources as the signal mixtures is a convolutive process.

ii) Cyclo–stationary process analysis, using subspace based representations is carried out

under a time–frequency approach. The main goal of behind the time-frequency rep-

resentation is to enhance the spectral information related to the time–series, a proper

selection of the TFR stuck out as primal stage, so that the proposed framework. Specif-

ically, when analysing PCG signals, continuous wavelet transform is used, due to its

high resolution for the specific frequency ranges, however, some other spectral represen-

tations might be useful, such as singular spectrum analysis or empirical mode decom-

position. Additionally, the adaptive windows, can be posed into a online methodology

that adapts to the time variance of cyclic features.
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It is important to remark that sequential analysis of temporal and spectral signatures

is not a necessary condition of the methodology, thresholds value can be adjusted to

bias the results into one specific aspect, as an example, since segmentation procedures

use temporal localization and duration of events, the time signature can be given

higher threshold values, whereas if classification were the final application and spectral

features were used, frequency signatures might have greater weight.

iii) State of the art methodology is compared with proposed constrained approach and

evaluated in terms of posterior segmentation analysis for PCG signals. True and false

detection probability values were improved when segmenting the clean signals assessed

by adaptive methodology. To observe the detection capability, several noise sources

were induced to some signals, results proved that adaptive analysis is capable of de-

tecting noise for low and high values SNR values, yet in the last case, the sequential

process allows to determine that interferences do not disrupt natural information of

the cyclo–stationary process, while state of the art framework does not exhibit such

property.

As conclusion, its has been presented a framework for adaptively analyzing the cyclo–

stationary properties of time–series, assessing the presence of non–stationary components

by means of time-frequency subspace representations. The method uses not only internal

information but also external given parameters to adjust the involved parameters so that

temporal and spectral analysis take into consideration time-variant characteristics. Besides,

robustness analysis is tested with assumed high SNR value signals when added with several

interferences and methodology proves to be efficient in assessing this presence under low

signal quality but also determines that for higher, good enough SNR values, information its

not compromised.

Future work includes then, using the framework for assessing and developing quality moni-

toring systems, so that automated online diagnosis and early alert of poor acquisition can be

given. Additionally, accurate cycle frequency estimation based on adaptive windows is to be

used in process of adaptive blind component extraction, where this value is usually manually

fixed and does not take into consideration any time variant, which is a common property

is digital signal processing task. Application of the proposed framework on vibration mon-

itoring systems is also considered for online fault detection. Nonetheless such applications

would require some other subspace based projection more suitable to such tasks, not men-

tioning that in some cases analysis of the stochastic properties from a time approach is not

recommended and an purely spectral analysis adaption is required.
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7. Non–Stationary Component

Extraction from Subspace Stationary

analysis

Signal stationary analysis has been a milestone for digital signal processing and pattern recog-

nition tasks. Filtering and extraction of linearly mixing models based on prior knowledge

are of common requirement in multiple fields of analysis such as communications, biomed-

ical signal analysis, econometrics and time-series data managements and neuroscience. In

such context a major point of interest has been the signal separation of components that

are assumed to be stationary under certain stochastic constraints. To this end, most com-

mon approaches uses weakly stationary conditions as the time invariability of second order

statistics along time, i.e., constant mean and variance values through fixed periods of time

for locally stationary process [5]. Yet, a major concern still relates to the blind extraction

of the non–stationary signals in filtering separation tasks, where the parameter estimation

lacks of physical interpretability. To overcome this drawback, some methods rely on the

dynamic behavior of the stochastic internal structure for a given estimation model. In [7] an

online Gaussian signal processing is used to simultaneously tackle the non–stationary and

the temporal correlation of the mixture model. Whereas in [19] similar work is presented

from a hidden Markov model processing. In [30] a different approach is used to separate

non–stationary signals from a time-frequency based representation but under the necessary

condition that distribution of mixed signals do not overlap in time and frequency.

In this chapter, the Analytic Stationary Subspace Analysis (ASSA) proposed in [20] is used

and extended for one-dimensional time-series formed by linear mixtures of stationary and

non–stationary processes aiming to develop a less restrictive separating approach based on

conventional nonparametric subspace analysis. Stationary signal behavior is highlighted by

means of enhanced data representations and stochastic constraints are put together in joint

subspace analysis to result in projection spaces where signals are as stationary as possible.

Results are shown using synthetic simulated time series where real and estimated stationary

signals are compared by means for degree of correlation and biological real data, specifically
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electroencephalographic signals, where a given measure of non-stationarity is used to assess

the extracted components.

7.1 Signal Stationary Analysis using Subspace Based

Methods

Recall equation (4-1) and similarly to cyclo–stationary process the formal definition of a

weakly stationary process is given by

Definition 7.1.1. (Weak Stationarity) Let y (t) ∈ RT be a random time–series, the stochas-

tic model for weak stationarity of the given process is,

lim
τ→T

EEE{|Θ {y (t)} −Θ {y (t + τ)} : ∀τ ∈ T |} − ǫ ≤ 0 , ∀t ∈ T (7-1)

where ǫ ⊂ R+ is a given small value that relates the degree of stationary accuracy.

The main goal of conventional subspace analysis can defined as searching for a projection

subspace Φ, bearing still as much information of the input process. The separation of

stationary and non–stationary time–variant features can consequently be carried out by

adding the stochastic constraint of Definition 7.1.1. For one dimensional time–series, i.e.

y (t) ∈ RT , the blind component extraction of stationary and non–stationary signals yields

a filtering–separation task defined as follows

Definition 7.1.2. Signal Separability Let xs (t) ⊂ R denote a stationary time-series and

xn (t) ⊂ R be a corrupting non–stationary process. The measured observation process time

series is assumed as the linear mixed process x (t) = xs (t) + xn (t) , t ∈ R ⊂ R. The signal

separation problem is, by definition, to determine the conditions under which an estimate of

the stationary process is obtained from the input measured process x (t) to a given degree

of accuracy, that is,

M{x, ǫ} = x̃s + x̃n (7-2)

where x̃s is the estimated stationary signal fulfilling the inequation (7-1), while the remaining

term xn over-exceeds the a priori degree of accuracy defined by ǫ and should be related to

the non–stationary corrupting process.

Thus, given an observation sample set of assumable second order time–series, x = {x (t)},

with a discrete sampling period ∆t. Its stochastic properties are considered stationary if a
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given estimator Θ ⊂ R on the observed measures does not change when shifted in time trough

a length T , hence to measure the stochastic stationary properties of the given input process,

we define the input stochastic feature matrix as an enhanced subspace based representation

of the given process

Definition 7.1.3. (Input stochastic feature matrix ): Let x (t) ⊂ L2(T ) denote a given

Hilbert random signal such that the following narrow–band decomposition takes place: x
T
7→

{yn : n = 1, . . . , nS}. Therefore, we call the training space a set of nS stochastic feature

vectors {y(m)
n ⊂ R1×T}, where y

(m)
n =

[
y
(m)
n (1), . . . , y

(m)
n (T )

]
, being y

(m)
n (t) the n-th feature

measured from a given m-th observation, with m ∈ nO and n ∈ nS, at a concrete time

instant t. Accordingly, the extracted feature set is arranged into each m-th input stochastic

matrix Y (m)⊂ RnS×T :

Y (m) =




y
(m)
1
...

y
(m)
n

...

y
(m)
nS




=




y
(m)
1 (0) , . . . , y

(m)
1 (t) , . . . y

(m)
1 (T )

...
...

...

y
(m)
n (0) , . . . , y

(m)
n (t) , . . . y

(m)
n (T )

...
...

...

y
(m)
nS (0) , . . . , y

(m)
nS (t) , . . . y

(m)
nS (T )




(7-3)

In order to enhance the time-series representation within the subspace framework, we em-

ploy an adapted version of commonly known nonparametric Singular Spectrum Analysis

(SSA) method as a concrete decomposition method, T . This approach is commonly used

for analyzing hidden structures of time-series and aims at decomposing the original signal

into a sum of the small number of meaningful components [31]. Furthermore, SSA analyzes

hidden relationships among segments of input data making it an suitable tool for character-

izing non-stationary time-series [16]. In Eq. (7-3), the supplied SSA-based extraction of the

stochastic feature set is detailed in Algorithm 3.

7.2 Stochastic Constraints within Subspace-Based Analysis

The linear projection matrix to which the input stochastic matrix holds the most stationary

features is to be find by incorporating stationarity conditions under the projection space to

this the weak stationary constraints are rewritten as follows,

Definition 7.2.1. Stationary Constraints for Input Stochastic Feature Matrix Given an

input stochastic feature matrix Y =
{
Y (m) : m ∈ no

}
and the linear projection matrix
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Algorithm 3 SSA-based extraction of the stochastic feature set

Input: Input time-series object set {y(m) : m ∈ n0}, window lag L ∈ T, number of elementary
matrices nS.
Output: Stochastic feature set, {xn}.

1. Input time-series decomposition

– Embedding : Given a length window L, the trajectory matrix H ⊂ RL×K , is computed by

mapping the input time-series into a sequence of K = T − L lagged vectors, ζ
(m)
i , that is,

H = [ζ
(m)
1 , . . . , ζ

(m)
i , . . . , ζ

(m)
K ], where ζ

(m)
i = [y(m)(i), . . . , y(m)(i+ L− 1)].

– Eigenvalue decomposition: SVD matrix is carried out that is a sum of rank-1 matrices cor-
responding to the n-th eigentriple of the following non-stationary decomposition [16]:

H =
∑

n∈rank(H)

H∗
n (7-4)

where H∗
n = hnhnh

′⊤
n , {hn⊂R+} is the singular value set, hn and h′

n are the right and left
decomposition singular vectors, respectively.

2. Stochastic feature extraction

– Grouping : Once expansion in Eq. (7-4) is carried out, the grouping procedure tends to
partition the nS elementary matrices into the same number of subsets (eigentriple grouping),
being nS = rank(H).

– Diagonal averaging: We map each resultant matrix of Eq. (7-4) into nS additive components

of the initial time-series, x
(m)
n . Afterwards, each stochastic feature x

(m)
n is arranged as the

n-th row vector of the needed m-th input stochastic matrix X(m).

Note: The following condition must be fulfilled: y(m) =
∑

∀n x
(m)
n .
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Φ ⊂ Rns×ns, weak stationary definition is written as,

EEE{Θ
{
ΦTY (m); t

}
: ∀m} = EEE{Θ

{
ΦTY (m); t

}
: ∀t} (7-5)

It is an impose condition then, that the time average of the given estimator Θ {·; t} must

coincide with the ensemble average. Thereby a group-wise stationarity constraints take

place:

Φµ̄Y (m) = Φµ̃Y , (7-6a)

ΦΣY (m)Φ⊤ = ΦΣ̃YΦ
⊤ (7-6b)

where µ̄Y (m) = EEE{y(m)
n : ∀t}, with µ̄Y (m) ⊂ RnS×1, is the n−th stochastic feature vector

mean along the time of the m-th observation, ΣY (m) (n, l)=
(
y
(m)⊤
n y

(m)
l

)
δ (n− l) , {n, l} =

1 . . . nO, with ΣX(m) ⊂RnS×nS , is the diagonal variance matrix of each stochastic feature

of the m−th observation. In the same way, µ̃Y = EEE{µ̄Y (m) : ∀m}, with µ̃Y ⊂ RnS×1, is

the ensemble mean value (i.e., the average computed over all the observations), and Σ̃Y =

EEE{ΣY (m) : ∀m}, with Σ̃Y ⊂ RnS×nS , is the ensemble variance diagonal matrix.

Generally, estimation optimal projection matrix Φ that fulfills the constraints in equation

(7-5) remains an open issue, since non–stationary projection is not always achievable. How-

ever, if a time-constant covariance structure of the stationary and non–stationary process is

assumed, a generalized eigenvalue problem based solution can be posed as developed in [20].

The SSA optimization problem results in an linear projection matrix to which projected

signals are as stationary as possible.

Particularly, an objective function based on the Kullback-Lieber divergence cadn be derive

from the stationarity constraints in equation (7-3), aiming to minimize the distance of the

mean and covariance of the stochastic features among observations. Additionally, in order

to hold an orthonormal projection matrix, the matrix condition ΦΣ̃ΦT = InS
, to this, the

following generalized Rayleigh quotient is cast,





argmin
Φ

{
tr{ΦΞΦT}

}

s. t.: {ΦΣ̃Y Φ
T} = InS

,
(7-7)

And taking into account group–wise stationarity constraints given in Eqs. (7-6a) and (7-6b),

we propose to compute the matrix Ξ as follows:

Ξ = EEE{µ̄Y (m)µ̄T

Y (m) + 2ΣY (m)Σ̃−1
Y Σ

T

Y (m) : ∀m} − µ̃Y µ̃
T

Y − 2Σ̃Y (7-8)
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Here, the matrix Ξ⊂RnS×nS can be interpreted as the variance of the mean and covariance

along all the observations. Thus, objective function optimization in Eqs. (7-7) and (7-8)

aims to preserve the introduced constraints over the entire stochastic feature set through all

the observations. As a result, the optimization problem stated in Eq. (7-7) can be solved in

the form:

ΞΦ = νΣ̃Y Φ, (7-9)

where ν⊂RnS×nS is the set of generalized eigenvalues that along with the projecting matrix

eigenvectors are further used to separate the stochastic feature set fulfilling the restriction

of Eq. (7-5).

7.3 Principal Component Analysis and Projected

Contribution to input Stationarity

As stated before, upon stationary constraints (7-6a) and (7-6b), optimization solution in

Eq. (7-9) provides a set of projected stochastic features {χ(m)
n (t) ⊂ R1×T : n ∈ nS}, that are

as stationary as possible. Therefore, we must compute the contribution to input stationarity

of the stochastic feature set, which is projected through the mapping matrix,

Φ⊤Y (m)=




χ
(m)
1 (t)
...

χ
(m)
nS (t)




In particular, we measure contribution of each mapped feature, χn(t), over all observations

an at every time moment t ∈ T, in terms of projected variability grounded in the non-

stationary reduction dimension method developed in [31]. To this purpose, we introduce an

additional variability measure of projected stochastic feature, defined as follows:

EEE{var{{ΦTY (m); t} : ∀m ∈ nO}} = gn (t) (7-10)

To this, the following variability measure definition is formally given:

Definition 7.3.1. (Variability measure of projected stochastic feature): Contribution of

the n-th projected stochastic feature, gn ⊂ R+, is given in terms of following measure of
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dispersion:

gn = 1− σ′ {gn (t) : ∀t ∈ Tn} , Tn ∈ [(n− 1)T + 1, nT ]. (7-11)

where gn (t) = EEE{λ2i ς
2
i (t) : ∀i} is the amount of variability of the n-th projected stochastic

feature, captured at the moment t, {λi ⊂ R+} and {ςi ⊂ R1×nST} are the eigenvalue and

eigenvector sets computed respectively from the SVD of XΦ. Notation ςi (t) stands for i-th

eigenvector value at t ∈ nST. Besides, σ
′ ⊂ R[0, 1] is a normalized standard deviation. We

denote the projected feature set by YΦ =
[
~χ(1)T · · · ~χ(m)T · · · ~χ(nO)T

]
T, with YΦ ⊂ RnO×nST ,

where each row corresponds to the vectored form of the m−th observation mapping matrix

~χ(m) = vec(ΦTX(m))T.

Derivation of the variability distance of Eq. (7-11) is detailed in A, which basically measures

the inertia of each column-wise feature [1]. Once the variability measure of projected space

is computed, we reconstruct the stationary input matrix by weighting the contribution of

each projected feature, as follows:

Y (m)
s = ΦDiag(g)ΦTY (m), (7-12)

where weighting vector g = [g1 . . . , gnS
] ⊂ RnS×1 comprises contribution of the projected

stochastic feature set, given in terms of its variability. Afterwards, stationary components of

each stochastic feature are extracted. Thus, by considering the bijective property of the SSA-

based decomposition, stationary composite signal of input time-series can be reconstructed

by the inverse transform, that is, Y
(m)
s

T −1

7→ x̂
(m)
s . Lastly, estimated non-stationary residual

signal of input time-series, according to Eq. (7-2), can be obtained as:

x̂(m)
n = x(m) − x̂(m)

s (7-13)



8. Validation Results
Quality of separating filtering task if performed by using an distance-based measure d (xs) x̂s⊂

R+, quantifying similarity that expresses the degree of statistical dependency/independency

between the desired stationary signal xs and its estimate ŷs throughout the considered time

interval t ∈T. To validate the proposed filtering extraction methodology, simulated synthetic

time series and real data are used, whereas the first case the real stationary component xs

is known, correlation coefficient is used as proximity estimation measured:

ρ(xs, x̂s) = cov{xs, x̂s}/σxs
σx̂s

, ρ(xs, x̂s) ⊂ R[−1, 1] (8-1)

where σxs
and σx̂s

are the standard deviation values of xs and x̂s, respectively. The case

|ρ| → 1 occurs when xs and its estimate x̂s tend to perfectly coincide, otherwise, |ρ| → 0.

In case of real data, the true stationary composite signal is not available and to quantify

the degree of signal separation indirect inference methods should be used. Particularly,

since temporal fluctuation in spectral components of the signal time-frequency representation

Sx (ω, t) points out on signal non-stationarity, the degree of stationarity averaged over all

frequency domain is taken as the quality measure [39]:

dx̂ = EEE{d (x̂;ω) : ∀ω ∈ Ω}, dx̂ ⊂ R+ (8-2)

where the vector distance d(x̂;ω) is computed through the marginal frequency distribution

along the frequency domain, that is, d (x̂;ω) = EEE2{1 − Sx̂ (ω, t)/Sx̂ (ω) :∀τ ∈ T} being

Sx̂ (ω)=EEE{Sx̂ (ω, t) , ∀t ∈ T}. In case of stationary signal, the degree of stationarity yields

low and constant values along frequency spectrum, while it increases both its value and

variability in the presence of non-stationarity.

The proposed methodology, termed as Subspace-based Separation with Stationarity Con-

straints (SS-SC) from now on , between non-stationary and stationary signals is carried out

according to the scheme presented in Figure 8-1. The methodology accomplishes the follow-

ing three subsequential stages: i) Extraction of stochastic feature set, ii) Subspace-based

projection under proposed stochastic constraints, and iii) Evaluation of projected contribu-

tion to input stationarity. SS-SC methodology is evaluated on simulated data as well as on
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Motor/Imagery-EEG real data for the purpose of decomposing EEG activity.
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Figure 8-1: Testing experimental setup scheme of the proposed SS-SC methodology of separation
between non-stationary and stationary signals based on subspace analysis

For the sake of comparison, the SS-SC is contrasted against other two similar projection

approaches. Particularly, the Second Order Non-Stationary Sources approach (SONS) [9]

and the Analytic Stationary Subspace Analysis (ASSA) [20] are employed. Besides, along

with the proposed variability measure of projected stochastic feature, in the sequel noted

as gχ ⊂ R[0, 1], another baseline measure is also considered: gx⊂R that is computed as

the standard deviation of projected components. In case of ASSA projection, the measure

gx∈{0, 1} is obtained by setting the weight of the eigenvectors associated with the smallest

eigenvalues as 1 and 0 with the remaining values. For SONS projection, since there is no

an eigenvalue set, the weights are set as the normalized standard deviation of projected

components. Both considered variability measures hold dimension nS × 1.

As a result, six methods are compared for separation between non-stationary and stationary

signals appraising considered projection approaches as well as variability measures, as sum-

marized in Table 8-1. Separation quality is evaluated in two different scenarios: i) nO=1,

i.e., a single observation of a one-dimensional time–series, and ii) nO>1, when several ob-

servations of one-dimensional time-series are available. To ensure the same conditions of

evaluation, in the former scenario, methods one to four have to be carried along with the

enhancement representation stage, due to the inability of the ASSA and SONS subspace

projections to deal with one-dimensional time-series.
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Notation Subspace Variability
projection measure

Method 1 ASSA gx

Method 2 ASSA gχ

Method 3 SONS gx

Method 4 SONS gχ

Method 5 SS-SC gx

Method 6 SS-SC gχ

Table 8-1: Summary of compared subspace-based methods in separation between non-stationary
and stationary signals

8.1 Numerical results on simulated data

Dataset description According to the model of Eq. (7-2), all observed time–series are

generated as linear superposition of simulated stationary and non-stationary sources. As

proposed in [20], the stationary signals are generated by one of the following two models:

either randomly drawn from a normal distribution, i.e., i.i.d. Gaussian N (µs,Σs), where

µs,Σs are respectively the mean and covariance matrices of the normal distribution, or by

an autoregressive moving average model (particularly, a (3, 3) model is used). Parameters

of either representation are randomly sampled from the Normal distribution N (0, 1). The

non-stationary signals are formed by one of the following models: an i.i.d. Gaussian model,

N (µn,Σn) , that includes some induced abrupt changes, whose number is also random

ranging from 10 to 40 within the considered 500 sampling length or from chaotic Lorenz

attractor with parameters also randomly sampled from the Normal distribution. Figure 8-2

shows an example of the generated signals: stationary (see Fig. 8.2(a) and Fig. 8.2(b)) and

non–stationary (Fig. 8.2(c) and Fig. 8.2(d).

For provided SSA-based enhancement of generated time-series set, the number of samples is

set to be T = 500 while the lag parameter is empirically fixed as L = 50.

8.1.1 Performed separation of stationary signals

Quality of signal separation is performed according to the correlation index, ρ(ye, ŷe), given

in Eq. (8-1) and introduced in the case of simulated data. Also, influence of the non-

stationary signal power on estimated quality is considered, varying the following power ratio:

κ = ‖ŷe‖/‖ŷn‖.

At the beginning, stationary separation is carried out over a single observation clipped

from one-dimensional time–series. Figure 8.3(a) shows Correlation index, ρ(ye, ŷe), that is
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(a) Stationary, Gaussian component.

(b) Stationary, ARMA component.

(c) Non-stationary, Gaussian-distributed abrupt changes.

(d) Non-stationary, Chaotic Lorenz attractor.

Figure 8-2: Examples of generated stationary and non-stationary real-valued time series.

computed using the Monte Carlo experiment with 600 repetitions, when the power ratio κ

ranges within interval [0− 10]. As seen, The ASSA projection overperforms slightly, though

not dramatically, both the SS-SC and SONS approaches regardless of the used variability

measure. However, the introduction of the measure gχ improves all projections.

In case of multiple observations, the performed correlation index is computed also in the

Monte Carlo setup over 48 repetitions for different values of κ, where each set contains 30

non-consecutive observations. As seen in Figure 8.3(b), although SS-SC fails if combining

with the gx measure, this projection together with the projected variability measure gχ

clearly gets the best quality. So, one may infer that SS-SC takes better advantage of more

information because of the higher number of observations. Therefore, in the reminder of this

experimental part, we will use only the projected variability measure gχ.

8.1.2 Estimated computational burden

In case of the single observation, SONS algorithm requires for a whitening procedure as well

as time-windowed computations, increasing remarkably the processing time. In contrast,

ASSA only demands of time-windowed computations, decreasing the computational burden.

However, the SS-SC uses a simple weighted stationary projection, making it the fastest. It
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Figure 8-3: Computed correlation index, ρ(ye, ŷe), between original and corresponding estimated
stationary signals of simulated data. Red lines display gx while green lines the gχ measure. Dashed-
dot lines stand for SONS, dashed lines for ASSA, and solid for SS-SC.
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must be quoted that in case of multiple observations, methods 5 and 6 include an additional

stage performing the stochastic feature extraction, increasing computational burden unlike

remaining methods in which sub-space projection is computed directly. To have an idea,

Table 8-2 compares the consumed time over one observation and over a set of 30 observations,

using studied projection approaches. The variability influence calculation is not taken into

consideration because of its relative very low time demand.

nO SONS ASSA SS-SC
1 1.77± 0.073 0.078± 0.005 0.057± 0.003

30 0.68± 0.84 0.02± 0.063 1.6± 0.033

Table 8-2: Computation time [s] of stationary signal separation on dependence of studied projec-
tion approach.

8.2 Application on EEG Motor Movement/Imagery data

8.2.1 Brain computer interface data

As real data, we employ brain computer interface cue-based paradigm dataset that is used

for motor-imagery classification and provided by the Graz University of Technology [37].

EEG data hold recordings of 9 subjects who were asked to perform one of the following

four tasks, at a given cue triggered time: the movement of the left hand (class 1), right

hand (class 2), both feet (class 3), and tongue (class 4). Each subject recording session

includes approximately 5 minutes of reference data (i.e., free of triggers or movements) to

estimate electrooculogram influence. To this, the reference data are divided into 3 blocks:

i) two minutes with eyes open, ii) two minutes with eyes closed, and iii) one minute with

eye movements. Once the subjects were asked to sit in a comfortable armchair in front of

a computer screen, movement trials started after reference recording and were separated by

short breaks. At the beginning of each trial, a fixation cross appeared in the black screen

and short duration acoustic warning tone was also presented. After two seconds, an arrow

cue appeared indicating one of the four class directions (left,right, down, or up). The cross

stayed on the screen for approximately 3 s which triggered then end of the desired movement.

Database supplies labeling of time instants, duration of each reference block, and cue-based

movement. Acquired signals were recorded at sampling rate of 250Hz using 22 Ag/AgCl

electrodes. Recordings were bandpass-filtered within a [0.5− 100]Hz bandwidth.

We consider only the subject #1 in the three-class mode, namely, reference state (labeled as

class 1 ), left hand movement (class 2 ), and right hand (class 3 ). Besides, all observations are
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taken from several trials of the selected Cz EEG channel that is related to the sensorimotor

cortex. Thus, nO trials of one dimensional time-series are obtained. As the preprocessing

stage, enhanced representation of used Cz channel is accomplished with the lag parameter

set to L = 60 and bounded by the empirical rule of thumb L ≥ fs/fm, where fs and fm

are the sampling frequency and minimum desired frequency of representation, respectively.

So, for the motor-imagery task, L is expected to be around the minimum frequency of the θ

band (i.e., 4Hz ).

8.2.2 Performed signal separation over EEG data

A visual illustration of accomplished signal separation using SS-SC is given in Figure 8-4.

The top row shows the oscillograms of an input time–series at hand, as well as separated

stationary and non-stationary signals. Separation is performed in both scenarios: over each

trial individually (single observation mode, namely, trial 19 belonging to the class 1) and

over 49 trials per class (multiple observations). As explained above, the quality of separating

filtration over real data is performed using the degree of stationarity, (see Eq. (8-2)), where

as time-frequency representation the smoothed pseudo-Wigner-Ville distribution (PSWVD)

is computed. As seen, the computed time-frequency representations of separated stationary

(second row) and non-stationary (third row) signals evidence that the separation filtering

task may still work under the assumption that the time-frequency distributions of consid-

ered input time–series overlap. The bottom row displays the estimated degree of stationarity

through time, making clear how the stationary separation method improves its effectiveness

as the observation number increases in both considered scenarios. However, PSWVD cal-

culation may supply collateral cross-terms distorting frequency boundaries, which in turn

results in bursting peaks of the boundary dy values.

Figure 8-5 shows computed quality of separation for all three projections under comparison

(Green lines represent SONS, blue – ASSA, and red–SS-SC). Our basic assumption is that

any movement of either hand must increase non-stationarity of the measured Cz EEG chan-

nel. Hence, in case of reference class 1, the degree of stationarity should be mostly similar

for both input EEG and separated stationary signals. On the contrary, in case of classes

2 or 3, quality values through frequency should be unalike as possible for both input and

separated non-stationary signals. As seen in Figure 8.5(a) showing the estimated values of

d(ŷs; f), of class 1, input (solid lines) and separated stationary (dashed lines) signals keep

very similar trajectory, while the contribution of non-stationary signal (dashed-dot lines) is

very discrete. Overall, the considered projections perform similar quality. For both motor

tasks, Figures 8.5(b) and 8.5(c) shows that separated non-stationary signal has pronounced
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Figure 8-4: Exemplary of computed time-frequency representations of stationary (middle raw)
and non-stationary (bottom raw) signals using SS-SC from Cz EEG channel (class 2). Degree of
Stationarity: (� Original, � Stationary, and � Non-Stationary signal)
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Figure 8-5: Computed values of Degree of stationarity, d(ŷ; f), for separated stationary and non-
stationary signals from Cz Channel. Green lines represent SONS, blue – ASSA, and red – SS-SC.
Solid lines represent input EEG activity, dashed lines – separated stationary signals, and dashed-dot
lines – non-stationary signals.
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contribution, for ASSA and SS-SC (but not for SONS). Besides, non-stationarity of electrical

activity is focalized within two frequency sub–bands: (2− 10)Hz and > 13Hz, at least, for

SS-SC. ASSA projection detects just the first sub–band, while SONS does not at all. This

finding reflects the neural activity of the motor/imagery task in the following spectral bands:

θ (4− 7), α (7− 14), and β (15− 30)Hz, as discussed in [29].



9. Discussion and conclusions
The main goal of the present chapter is to supply a complex of separation filtering algorithms

between stationary and non-stationary signals from a given time-series. For this purpose,

we suggest the Subspace-based Separation with Stationary Constraints, which lies in the

hypothesis that enhancing the input signal representation together with additional stationary

constraint over the projected space should improve quality of the separation filtering task.

The obtained results evidence the following aspects to take into consideration:

i) Introduced time-series enhancement for extracting the set of time-variant features

should be regarded as an important factor for highlighting stochastic signal struc-

ture. To this end, features are extracted using singular spectrum analysis that allows

analyzing relationship among segments of the input time-series. Nevertheless, other

dynamic decomposition techniques may be used providing their bijective property, i.e.,

there exists an inverse transform that allows returning to the input space. Among

others, some time-frequency/scale representations or Empirical Mode Decomposition

are to be further contemplated.

ii) Stationary signal separation is carried out by imposing stochastic constraints to the

matrix projection. The main goal behind subspace projection is to reveal the simpler

structure that underlies it, besides of mitigating noise influence on the input signal.

As the baseline projection, the SONS approach is considered that diagonalises simul-

taneously sample covariance matrices obtained from segments of the input time-series.

Yet, SONS approach requires solving much computationally expensive non–convex

optimization procedures. To overcome this issue, the ASSA projection is also consid-

ered that embraces an objective function based on the Kullback-Leibler divergence to

compute both the mean and covariance through an introduced set of time segments.

However, to improve quality of signal separation, we propose the SS-SC that uses ob-

jective function aiming to minimize the distance of the mean and covariance but across

the entire observation ensemble.

iii) Along with the assumption usually made that the non-stationarities are measurable

in the first two statistical moments, we also introduce evaluation of how the imposed
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stationary constraints hold over the projected space. In practice, the projected space is

empirically truncated into a lower dimension. But performed separation may degrade

on depend on the used heuristical reduction (not mentioning the difficult to fully

automate such a procedure). To cope with this situation, we make clear how each

projected feature contributes to the stationarity of the input time-series. As a result,

separating filtering task grounds on those reconstructed features better fulfilling the

imposed stochastic constraints.

iv) Six methods are compared for separation between non-stationary and stationary signals

appraising three projection approaches for two variability measures. Because of practi-

cal considerations, besides of convectional multi-observation case, separation quality is

evaluated in case of one-dimensional time-series single observation. Obtained numer-

ical results on simulated data show that every method may reach similar separation

quality, though, the proposed variability measure improves performed separation, as

seen in Figure 8-3. In turn, carried out validation on real brain computer interface

data shows that the proposed SS-SC takes better advantage of more information when

having higher number of observations and it is the only method able to separate elec-

trical activity focalized within two frequency sub–bands, while ASSA method discover

just the first one, and SONS does not at all.

v) In terms of computational burden, SS-SC is the fastest when performing the single

observation task, since used projection allows computing projected space without ac-

complishing the partition procedure of input time-series. Still, the needed additional

stage performing stochastic feature extraction that must be carried out for each ob-

servation makes the SS-SC the most time consuming method. Therefore, proposed

separating quality improvement is paid with a reasonable amount of increased compu-

tational cost, as seen in Table 8-2.

As the concluding remarks, this work proposes the Subspace-based Separation with Station-

ary Constraints to discriminate between stationary and non-stationary signals. The method

lies in the hypothesis that enhancing the input signal representation and introducing an

additional stationary constraint over the projected space should improved quality of the

separation filtering task. Besides, to evaluate how stationary restriction holds over the opti-

mization solution within a given projection framework, we introduce a variability measure of

projected stochastic feature. Carried out validation on both simulated and real data shows

that SS-SC takes better advantage of more information from the higher number of obser-

vations. Nonetheless, proposed in this work separating quality improvement is paid with a
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reasonable amount of increased computational cost.

Future work includes investigation of a more powerful projection that allows discriminating

among strong focalized either in time or frequency non-stationary dynamics as well as a

generalization of the stationary constraints for multiple channels and multivariate time-

series. Application of the proposed separation method in more specific Motor/Imagery-EEG

contexts is also to be further considered. Nevertheless, a more suitable quality measures

should be developed to decompose electrical activity into meaningful components.



Part IV

Novel Recursive Stationary Signal

Analysis from Time–Variant Feature

Representation
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In practice, stationary signal separation serves as a primary filtering task that permits dis-

tinguishing among different components based only upon the signal stochastic properties.

Thereby, design and implementation of fast and recursive signal separation methodologies

is usually required. In this section, a fast recursive method for stationary signal separation

is presented, using recursive subspace analysis the computational burden of separation task

is reduced by means of rank-one updates of the eigenvector structures of the subspaces.

The stochastic decomposition of initial input data and its respective initial subspace repre-

sentation serves as base model for stationary signal separation, however, as non–stationary

processes appear, the recursive nature of the representation, updates at each sample step the

stationary subspace. Additionally, previously introduced variability measure is also updated

within the new window signal representation, thus process structure variation is taken into

consideration sequentially at each stage.

Recalling the signal separation problem of Definition 7.1.2, the recursive nature of the pro-

posed scheme, poses as an online solution for stationary signal separation analysis, thus

equation (7-2) is rewritten as,

M
{
x (t) , ǫ,Ψt−

}
= ˜xs (t) + x̃n (t) (9-1)

where Ψt− is the stationary subspace at time instant t−.



10. Recursive Signal Stationary

Analysis using Subspace Based

Methods

Online signal separation is carried out by means of recursive decomposition of the input

signal. However, this can be very time-consuming task if the whole whole analyzed signal is

required in addition to the respective nature of the representation. In [27], a recursive SSA

methodology is proposed using rank-one updates of the eigen–structure of the trajectory

matrix (hankel matrix) H = {ςk : k ∈ T}, with Hy ∈ RL×K, recall Algorithm 3.

In the static conventional SSA, the stochastic components of the input signal are elicited

by projection of the trajectory matrix onto the eigen–space defined by the singular value

decomposition of the covariance matrix D = cov{Hy,Hy,} of Hy [15]. Thus, posing an

online signal analysis under conventional SSA would require updating the trajectory matrix

whenever new data is collected, continuously increasing its size and consequently the com-

putational burden of the eigen-decomposition. In turn, Recursive SSA (R-SSA) makes use

of rank-one update for adjusting a given initial covariance matrix, holding a fixed size.

Particularly, for a given new sample, the sample covariance matrix is approximated by:

Dk =
k − 1

k
Dk−1 +

1

k
ςkς

T

k (10-1)

Thus, by letting Dk−1 = U k−1Σ
(
U k−1

)T
, where U ∈ RL×L and Σ ∈ RL×L are the eigen-

vectors and the eignevalues matrices given by the SVD of matrix D, at instant k ∈ T .

The updated eigen–space can be computed under the perturbation analysis [27] for rank-one
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update matrices as:




pki,j =

(
U k
i ỹ (k)−Dk

i,j

)
k−1, i = j = 1, . . . , w

pi,j = 0, i 6= j
(10-2a)




qki,j =

Uk
i ỹ(k)U

k
j ỹ(k)

k(Dk−1
j −Dk−1

i +pkj,j−p
k
i,i)
, i, j = 1, . . . , w, i 6= j

qi,j = 0, i = j,
(10-2b)

being I a w × w identity matrix. As a result, R-SSA computes the sample stochastic com-

ponents at new samples points k using the updated eigen-space at each sample. Algorithm

4 shows the general outline for computing R-SSA:

Algorithm 4 General Outline for R-SSA

1: Input time–series batch data y ∈ RT0 , window lag size w for trajectory matrix.
2: Initialize D0 and Σ0 eigen-space.
3: while y (k) : k > T0 do

4: Compute perturbation matrices Pk,Qk and update eigen-space Dk = P +Dk−1 and Σk =
Σk−1 + I and normalize eigen-vector space norms.

5: Project sample trajectory matrix onto the eigen-space to elicit principal components Rk and
calculate sample reconstructed stochastic components Xk.

Rk
i =

w∑

j=1

ỹ (k − j + 1)Σk
j (10-3a)

Xk
i =

1

mt

∑

i∈M

ut∑

j=lt

r
k−j+1
i Σk

j (10-3b)

with mk = min (w, Tp), lk = max (w, Tp) and M = w + Tp − 1
6: Output Xk

7: end while

10.1 Non-stationary component extraction

As in section §8, signal stationary component separation is done in a sequential procedure,

where for a given input signal, stochastic feature representation is used for generating a

subspace whereas stationarity of projected components is ensured, additionally, the vari-

ability measure bias the signal reconstruction to those projected components wit highest

stationarity. The newly introduction of recursive signal decomposition, thus poses a similar

process, to which not only fewer parameterizations are required but also allows to maintain
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computational simplicity. Figure 10-1 shows a general outline for an online signal stationary

separation analysis of a given input data y (t).

Figure 10-1: Schemating representation of proposed recursive approach of separating stationary
components

10.1.1 Subspace representation with stationarity constraints under

recursive analysis

As mentioned before, the main goal of conventional subspace analysis is to find a projected

space ΨkXk, bearing still as much information of the given process representation Xk as

possible. As for time-variant recursive features are computed, the subspace structure must

then change an adapt itself to the new introduced representation, thus equations (7-7) to

(7-9) are to be rewritten in terms of the time-variant estimation of the input data,





argmin
Ψk

{
tr{ΨkΞkΨk⊤}

}

s. t.: {ΨkΣ̃k
XΨk⊤} = InS

,
(10-4)

with Ξk given by:

Ξk = EEE{µ̄Xkµ̄⊤
Xk + 2ΣXkΣ̃−1

XkΣ
⊤

Xk} − µ̃Xkµ̃⊤
Xk − 2Σ̃Xk (10-5)

where µ̄Xk = EEE{xkn : ∀t}, with µ̄Xk ⊂ RnS×1, is the n−th stochastic feature vector mean

along the time, ΣXk(n, l) = (xk⊤n xkl )δ(n − l), {n, l} = 1 . . . nS, with ΣX(m)⊂RnS×nS , is the

diagonal variance matrix of each stochastic feature. In the same way

µ̃Xk = 1nS
EEE{µ̄Xk : ∀n} (10-6)
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with µ̃Xk ∈ RnS×1 is the mean value of all stochastic features, and Σ̃Xk = diag{ΣXk} with

Σ̃Xk ⊂ RnS×nS , with Σ̃Xk ∈ RnS×nS is a matrix that comprises in the main diagonal the

variance of each stochastic feature.

Consequently, obtained optimization function can be solved in the form:

ΞkΨk = νkΣ̃XkΨk, (10-7)

where νk⊂RnS×nS is the set of generalized eigenvalues that along with the projecting matrix

eigenvectors are further used to separate the stochastic feature set fulfilling the proposed

stationarity restrictions.

It must be remarked that the recursive separation process (RSS-SC) can be implemented

as an online methodology using either continuous one sample updates or multiple sample

updates as a sliding window, in the latter case, the feature signal representation operates

using each sample at a time to update the stochastic representations, so that equal number

of rank–one updates are required, while the variability and stationary subspace projection

only uses the final stochastic matrix of the operating window, which reduces computational

cost and maintains the stationary reconstruction.



11. Validation Results

11.1 Numerical results on simulated data

In the case of simulated data, the correlation index of equation (8-1) is also used as per-

formance measure, however, given the recursive nature of the process, ρ(k) is computed at

each new sample data. Experiments of proposed filtration task are carried out under three

different power relations, i.e. three SNR levels, that is the power of the non–stationary signal

is half the power of the stationary, same power and 1.25 times (SNR= 3, 0,−1dB).

The initial sample size of the simulated signals is experimentally fixed to 400, that is, these

first samples are used to create the initial stationary subspace as well as the initial stochastic

decomposition and the lag parameter L is set to 50 samples. Experiments were carried

out using different window sizes, i.e., the number of new available samples was varied to

check how well the proposed methodology responded to non–stationarities. Performance is

measured similarly to the previous chapter, using correlation index and DS value.

Yet, it was observed that within a small fraction of samples (for simulated data this was

observed to be around half the lag size) the separation task performed similarly, thus only

results for a 25 samples window (epoch) size are shown. Figure 11-1 shows average corre-

lation index for a total of 600 simulated time–series, where it can be seen that it remains

constant over the number epochs. Moreover there is a great improvement of the stationary

separation task when compared against the static case of previous section for low levels of

SNR.

Methodology is likewise compared against modified ASSA separation method, for which the

epoch size and lag parameters are set to 25 and 50 samples respectively in order to make

results comparable. This comparison is shown in Figure 11-2 for the three levels of SNR,

again it is remarkable how the propose RSS-SC methodology outperforms the results achieved

by ASSA in low SNR levels (−1 and 0), as in the last value 3 even when ASSA holds a higher

average correlation index, RSS-SC average results are still comparable with a reduction in

the standard deviation value, which indicates a more stable and robust methodology.
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Figure 11-1: Epochs Correlation index evolution for 25 samples step size: (� SNR = -1dB, �
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Figure 11-2: Average correlation index for different SNR values.
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11.2 Application on EEG Motor Movement/Imagery data

In this case, all nine subjects were used to observed the performance of RSS-SC methodology

is separating non–stationary stimuli associated components in EEG data for motor-imagery

tasks. On the other hand, the duration of the signal is chosen to be 22.5 seconds, in order to

ensure the existence of several stimulus for each type (auditive, visual and motor/imagery).

Again Cz channel associated to the sensorimotor cortex is used. For initialization, a 400 sam-

ples window size is used with a lag parameter of 60 samples. The epoch size is experimentally

set to half the lag size, given the observed results in the synthetic time–series.

Same as before, the degree of stationarity DS is used as performance assessment measure,

however this value is computed at each epoch, that is, for a 400 samples window each time

new data was collected. Figure 11-3 depicts the signal separation task for a given window

as well as the DS value, upper row depicts in black lines the original EEG signal while

stationary and non–stationary are depicted in green and red lines respectively. Middle rows

show the time-frequency representation of stationary and non–stationary components while

last row shows the DS values for all three components.

In this case, given the time-variant nature of the process, a more wide range of frequency

is used (0 to 90Hz ), and it is also visible the increment of DS value for the non–stationary

component around the 8Hz band. This indicates that it is possible then to detect the

motor/imagery and stimuli based components on the fly, aiming to automatic annotation

BCI systems.

A more illustrative example of this fact its shown in Figure 11-4 where the DS is calculated

at each sample epoch and compared against the duration of the trial. First three sub-figures

are related with the DS of original signal and separated stationary and non-stationary signals,

respectively. As expected, it can be seen higher DS values for the non-stationary signal for

each stimulus. At epoch 50, the auditive signal that indicates the beginning of the trial

generates high DS values, those values decreases during the rest state of the fixation cross.

When the visual cue of the motor/imagery task is given (epoch 67), once again, the DS value

increases and falls when the subject has understood which tasks must execute (epoch 77).

Finally, during the total duration of the executed task, the DS value holds high values.
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12. Discussion and Conclusions
The main goal of present chapter is to develop a recursive approach for separating between

stationary and non-stationary signals from a given time-series. For this purpose, we introduce

a recursive Subspace-based Separation with Stationarity Constraints that is based on the

hypothesis that once enhancing dynamically the input signal, and projecting the enhanced

representation with stationarity constraints, the separation filtering task should be improved.

Obtained results allow remarking the following aspects:

i) Introduced recursive time-series enhancement to extract the set of time-variant fea-

tures of each analyzed window, and it allows highlighting the time-varying statistics

of the input signals. In this way, unlike conventional off-line approaches, the recursive

decomposition allows identifying different stationary and non-stationary processes that

may appear in the analyzed time-series.

ii) Once the decomposition of input segment (epoch) is carried out, the stationarity signal

separation appraises the following steps: first, we compute the subspace projection by

imposing stationarity constraints that helps to reveal hidden structure behind the

characterized time-series as well as to mitigate noise influence.

Finally, we make clear how each projected feature contributes to the stationary of the

input time-series. As a result, filtered stationary signal comprises only the amount of

each projected feature fulfilling the imposed stationarity constraints.

iii) It is worth noting that we propose a recursive (on–line) approach separating stationary

and non-stationary signals. The entire process is carried out by computing an initial

decomposition of a small time-series window, and an initial subspace projection along

with the respective bias factor of each projected feature, which allows to compute the

separation of every epoch. As new data is available, the decomposition is updated

via recursive stochastic feature estimation based upon rank-one perturbation analysis,

which lowers the needed computational complexity since no new eigen-decomposition

in the stochastic components extraction is required. Finally, accuracy rates (correlation

index or stationarity degree) are computed over each new epoch.
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iv) Proposed approach is tested under different scenarios: i) when we have previous knowl-

edge of the real stationary and non-stationary processes that comprises the input sig-

nal (simulated time-series), and ii) when we assume that the input signal has non-

stationary behavior in some segments, but we do not have certainty about the nature

of the recording (real motor/imagery EEG data). In the former case, we test the

proposed approach under several relations between the power of stationary and non-

stationary signal (SNR). Additionally, we compared our results against a state of the

art approach aimed to solve the same task. Results show that our approach is able

to do a better identification of the stationary and non-stationary signals, even for low

SNR values. Additionally, we modify the window size length, in order to show sen-

sitivity of our approach to that parameter, nevertheless, we do not find significative

differences among obtained results. Hence, we do not show such results.

In the latter case, we use as performance measure the degree of stationarity that is

proposed in [39]. In this case, we can see high correspondence between increased

non-stationary activity to the presence of different types of stimulus, where peaks of

non-stationary behavior are expected. Consequently, the proposed approach through

those changes in the stationarity level, could help to infer and identify segments with

relevant information or regions related with specific restrictions in recordings with no

activity markers (labels).

As the conclusions, it is propose a recursive approach based on Subspace projection with sta-

tionary constraints to separate between stationary and non-stationary signals. The method

is based on the hypothesis that updating recursively an enhanced representation of the input

signal, and mapping those features to a subspace under stationarity constraints, we must

be able to obtain a better separation. To assess the validation of our approach, we test it

in both simulated and real data. In both cases, obtained results show that the adaptive

approach allows identifying several dynamics that may appear in the input data.

As future work, we are seeking to extend the approach for multichannel data that allows us

to include separated spaces to solve classification problems.
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Final Remarks



13. Concluding Remarks

13.1 General Conclusions and main Contributions

Design of a cyclo–stationary framework analysis for detecting non–stationarities

In Chapter II the newly introduction of multiple adaptive constraints into the cyclo–stationary

analysis for detecting the presence of interferences was proposed. Multiple constraints were

derived from external and internal process related parameters, it was demonstrated over the

PCG signal analysis that such constraints, improved posterior analysis of segmentations. In

particular, adaptive analysis with hard value thresholds prove to be a very efficient method-

ology for detecting only low quality signals, (low values of SNR), while even when the signals

have several noise sources, if the signal to noise ration is high, the methodology can accept

the interferences since they do not hold information and do not obscure the cyclo–stationary

information, in contrast to the conventional non-constraint approach [24], that has a high

rejection rate even for high SNR values.

Separating Non–stationary components from one and multi–dimensional time series

Most approaches for stationary signal separation, require several prior assumptions regarding

signal power, stochastic properties or local stationarity. The problem of separating from

either one–dimensional or multi–dimensional time series is the treated detailed in Chapter

7, where subspace based representations and multiple stationarity stochastic constraint are

used for solving a general separation problem. The optimization functions presented in [21],

[5], make strong assumptions over the local stationarity and are only stated for multi-channel

time series, which poses a general problem. Additionally, it is a necessary condition to have

an approximate information over the number of stationary sources that is expected.

For tackling such problems a modified, more robust assumption of the optimization function

is the proposed, using strong diagonal separation, it was possible to extract approximate

stationary information, this assumption permitted simultaneously, the generalization of the

methodology for one dimensional time-series, using subspace based projections, particularly

SSA (given its ability to enhance stationary properties) was used for decompose and analyze
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stationary component of input data. The introduction of the variability measured overcame

with the number of sources drawback, since it automatically bias the projected components in

the stationary subspace. This multiple system of constraints, was tested over simulated and

real data, use of one or multiple time-series simultaneously posed no problem for separation

of stationary signals under the proposed scheme and in general it outperformed the state of

the art methods ASSA [21] and SONS [1] with only a minimum of increase in computational

burden.

Posing online and adaptive scheme for non–stationary analysis in cyclo and stationary

processes

Finally, Chapter IV briefly extent the stationary separation methodology into a recursive

scheme, such that online separation procedure is possible. Introduction of recursive or adap-

tive subspace representations into a separation or extraction procedure, arises then as online

solutions for filtering tasks. Regarding cyclo–stationary analysis of Chapter II it can be

extended in the same manner, the adaptive window analysis, only requires an initial window

size and would evolve as more cyclic data is available, while the used assessment signatures

are checked only in the temporal vicinities within portions of the signals. Moreover, if an

online version of either both methodologies is to be implemented into an automatic diagnosis

system for digital signal processing, it would serve as main tool for analyzing the acquisition

condition in real time, since performance measures regarding the presence of non–stationary

components such as DS value could provide red flag alert whenever quality of the recorded

signal lowers.

13.2 Future Work

Cyclo–stationary Blind Component Extraction

The general outline for analyzing non–stationary components over cyclic process presented

in this work, aimed directly only at detection of such components, however the stochastic

and statistic constraints used for cyclo and purely stationary processes are similar in some

sense. Thereby, one might pose a modified version of the separation problem using cyclo–

stationarity constraint of Definition (4.1.1), yet, state of the art methodologies regarding

this problem posed as a primary condition that cyclo–stationary source separation must be

approach from a time-frequency domain. Hence a transformation of the separation problem

is required as primary condition in this line of analysis.
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Multidimensional Online Stationary Component Separation

The general subspace based representations used through this thesis were tested either under

single observation (one channel) time-series or multiple observations (of one channel). Yet,

several multichannel decomposition methodologies exist, and use internal multidimensional

analysis for unfolding hidden stochastic properties of the input data, such a tensor analysis

and multichannel SSA. The introduction of such decomposition techniques into the proposed

separation methodology is then the next step regarding this topic, such generalization would

serve as tool for several real world applications, such as inverse problem solutions in brain

imaging or fault diagnosis and localization.

Generalized outline for measuring degree of stationarity, non–stationarity and

cyclo–stationarity processes

There is an increasing need of performance measures that are comparable between them, for

example DS value uses specific time-frequency representations, and its not comparable with

sliding second and higher order statistics, such as sliding variance, kurtosis or skewness, even

though they both are measuring the temporal variation of the data. It is necessary then to

provide with a general framework that transforms this measures into a common domain,

for example cyclo–stationary analysis commonly uses spectral kurtosis for separating and

evaluating the spectral autocoherence of cyclic process. However, in spite of being in the

same domain (time and frequency) DS and spectral kurtosis are yet not quite comparable,

since there is not a clear form of normalization.
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Appendixes



A. Variability measure of linearly

projected stochastic feature set

We will consider that the stochastic reduction dimension of the projected stochastic fea-

ture set can be carried out as a linear combination of q<p=rank{XΨ} independent basis

functions, where the minimum mean squared error (MSE) is assumed as the evaluation mea-

sure of reduced representation. To this end, we note each column vector of matrix XΨ as

χn(t)∈RnO×1 the t-th time instant of the n-th stochastic feature, measured over all the

observations. Hence, an orthogonal vector set is estimated whose resultant of q weighted

linear combination can approximate χn(t), being q as small as possible, in such a way that

data information is maximally preserved, that is,

min ||χn(t)− χ̂n(t)||
2, (A-1)

where χ̂n(t) is the reconstruction of χn(t) and || · ||2 is the norm squared value.

We can certainly assume that the following orthogonal approximation holds:

χn(t) =

p∑

i=1

ci(t)υi, (A-2a)

χ̂n(t) =

q∑

i=1

ci(t)υi, (A-2b)

where {ci(t) ∈ R} is the representation coefficient set, at the time moment t, and {υi ∈

RnO×1} is the set of orthogonal basis functions.

Consequently, taking into account Eqs. (A-2a) and (A-2b), the MSE value optimizing (A-1)

can be estimated as:

min(χn(t)− χ̂n(t))
⊤(χn(t)− χ̂n(t))

= min

{
p∑

i=q+1

(ci(t)υi)
⊤

p∑

i=q+1

ci(t)υi

}
, (A-3)
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Optimization function in (A-3) can be minimized when maximizing its complement. Specif-

ically, the following expression takes place:

max





(
q∑

i=1

ci(t)υi

)⊤( q∑

i=1

ci(t)υi

)
 = max

{
q∑

i=1

c2i (t)

}
(A-4)

To compute both the representation coefficient and orthogonal basis sets, we perform the

following singular value decomposition XΨ=
∑

∀i λiυiςi, where λi ∈ R is the i-th singular

value, and υi ∈ RnO×1 and ςi ∈ RnST×1 are the i-th left and right singular vectors, respec-

tively. Thus, representation coefficients in Eqs. (A-2a) and (A-2b) are to be derived as

ci(t) = λiςi(t), being ςi(t) the t-th position of the i-th right eigenvector, at time moment t.

As a result, once all the observations are considered, the following variability measure of the

n-th stochastic feature at the t-th time instant is obtained from Eq.(A-4):

gn(t) = EEE{λ2i ςi(t)
2 : ∀i ∈ q} (A-5)

Time-variant behavior of variability measure gn(t) may determine whether the corresponding

stochastic feature is stationary or not. In other words, if inertia of a given column-wise

feature, χ, keeps low throughout time axis, then, one may assume its stationary nature,

otherwise not.



B. Academic Discussion

Within the development of the present thesis the following academic products were obtained:

2014:

[1]. Juan David Martinez Vargas, Cristian Castro Hoyos, Germán Castellanos. “Re-

cursive separation of stationary components by subspace projection and stochastic

constraints.”. Accepted: 22nd International Conference on Pattern Recognition,

ICPR 2014.

2013:

[2]. Cristian Castro Hoyos, Santiago Murillo Rendon, Germán Castellanos. “Heart

Sound Segmentation in Noisy Environments”. Published In: 5th International

Work-Conference on the Interplay Between Natural and Artificial Computation,

IWINAC 2013, Mallorca, Spain, June 10-14, 2013.

[3]. Santiago Murillo Rendon, Cristian Castro Hoyos, Carlos Travieso Gonzales, Germán

Castellanos. “Phonocardiography Signal Segmentation for Telemedicine Environ-

ments”. Published In: 12th International Work-Conference on Artificial Neural

Networks, IWANN 2013, Puerto de la Cruz, Tenerife, Spain, June 12-14, 2013

[4]. Andres Eduardo Castro Ospina, Cristian Castro Hoyos, Diego Peluffo Ordoñez,

Germán Castellanos. “Novel heuristic search for ventricular arrhythmia detection

using normalized cut clustering”. Published In: Engineering in Medicine and

Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE,

Osaka, Japan, 3-7 July, 2013.

2012:

[5]. Cristian Castro Hoyos, Diego Peluffo Ordoñez, Germán Castellanos. “Constrained

affinity matrix for spectral clustering: A basic semi-supervised extension”.

Published In: XVII SYMPOSIUM OF IMAGE, SIGNAL PROCESSING AND
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Technology, Linköping University, Dissertation, 2008
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