
MULTIVARIATE VOLATILITY MODELS: AN
APPLICATION TO IBOVESPA AND DOW JONES

INDUSTRIAL

Jorge Alberto Achcar1

Edilberto Cepeda-Cuervo2

Milton Barossi-Filho3

The ARCH models (autoregressive conditional heteroscedasticity), introduced by
Engle (1982), and the GARCH (generalized autoregressive conditional heteros-
cedasticity) models, proposed by Bollerslev (1986), are generally applied to model
the volatility of the financial time series (Taylor, 1982; Tauchen and Pitts, 1983;
Bollerslev, 1990; Bollerslev, Chou, and Kroner, 1992; Engle, 2001). However, a
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In statistical literature, important results have been introduced to extend the uni-
variateGARCH model to multivariateGARCH (MGARCH) models. The first
MGARCH model for the conditional covariance matrices was the so-called VEC
model of Bollerslev, Engle, and Wooldridge (1988). The multivariate ARCH
model was proposed by Engle, Granger, and Kraft (1984). Bauwens, Laurent
and Rombouts (2006) are another important reference that discusses MGARCH
models.

Another class of statistical models, the so-called stochastic volatility models (SV),
has been a satisfactory alternative to analyze financial time series, when compared
with GARCH models. SV models are more flexible than model financial time
series, given that they assume two processes for the noise. One process for the
observation and another for the latent volatility. Comparative studies between SV
models and models type GARCH are well known in the literature (see for ex-
ample, Taylor, 1994; Ghysels, Harvey and Renault, 1996; Shephard, 1996; Kim,
Nelson and Startz, 1998). Bayesian Methods using Markov Chain Monte Carlo
(MCMC) are applied to the analysis of financial time series assuming SV models
(see for example, Meyer and Yu, 2000), given the great difficulties in the classical
statistical approach with the complexity of the likelihood function.

From the economic and financial points of view, GARCH models were a very
popular tool for forecasting time series’ behavior. The extensive literature concern-
ing this methodology clearly influenced academic research on this issue. However,
it does not take so much time in order to realize how poor these models fit eco-
nomic and financial time series behaviors. Then a new class of volatility models
was introduced, i.e. stochastic volatility models.

Upon the results provided by them, we have concentrated our attention on stochas-
tic volatility models estimated by Bayesian methods.

Specific attention was given in this paper to multivariate stochastic volatility mod-
els as proposed by Meyer and Yu (2000) and Yu and Meyer (2006). Our concern is
the relationship between two stock markets indexes, IBOVESPA, Brazilian Stock
Exchange Mark, and DJI, New York Stock Exchange Index. Thus relationship is
quite important because it has been a benchmark for investors all over the world
mainly concerning returns on investments alternatives on assets in development
and emerging markets.

Theoretically, there are some economic and financial features that are expected to
prevail after analyzing IBOVESPA and DJI returns time series. First, expected re-
turns’ volatility in emerging markets is higher than development markets returns’
volatility. Second, time series long memory behavior is supposed to last more in
emerging markets and an additional source of volatility due to a causal relationship
can be verified from the development to emerging markets. Finally an asymmetric
behavior concerning stock market returns reinforces the hypothesis there is a lever-
age effect that frequently affects the magnitudes of profits and losses on investing
in stocks in emerging markets.



Multivariate volatility models Jorge Achcar, Edilberto Cepeda, and Milton Barossi-Filho 311

Indeed, the results we have achieved, due to the methodology employed in this
paper, confirm all the features raised by the standard literature on this issue. An
exception on this matter concerns the leverage effect, which was not an explicit
objective of this paper. In fact, combining multivariate stochastic volatility models
and Bayesian methods for estimating those is a successful strategy on demonstrat-
ing the main economic and financial features rose above.

This article is divided into 5 sections. In section 2 we define the MARCH mod-
els, as in Zivot and Wang (2006). This section includes two subsections entitled
Exponentially Weighted Covariance Estimate and Diagonal VEC model. In section
3, the bivariate stochastic volatility models or GSV, are defined. In section 4, log-
returns of IBOVESPA and DJI in a weekly basis form 04/27/1993 to 11/03/2008
are analyzed.

MULTIVARIATE GARCH MODELS

Exponentially Weighted Covariance Estimate
In the multivariate context, cross-correlations of the levels and the volatility series
are also of interest. Cross-correlation in the levels can be modeled using vector
autocorrelation (VAR). Let yt be a k × 1 vector of multivariate time series,

yt = µ+ ϵt, for t = 1, 2, . . . , T (1)

Where µ is a k × 1 mean vector, and ϵt is a k × 1 vector of white noise with zero
mean. The sample covariance matrix is given by

Σ =
1

1− T

∑T

t=1
(yt − ȳ)(yt − ȳ)′ (2)

Where ȳ is the k × 1 vector of the sample mean. Allowing for time varying
covariance and an ad hoc approach, we use exponentially decreasing weights as
follows:

Σt =

∞∑
i=1

λiϵt−iϵ
′
t−i (3)

Where 0 < λ < 1 so that smaller weights are set on lagged observations over the
past history. Since

λ+ λ2 + · · · = 1

1− λ
(4)

the weights are usually scaled so that they sum up to one; that is,
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Σt = (1− λ)
∞∑
i=1

λi−1ϵt−iϵ
′
t−i (5)

Equation (5) can be rewritten to obtain the following recursive form for exponen-
tially weighted covariance matrix:

Σt = (1− λ)ϵt−iϵ
′
t−i + λΣt−1 (6)

This will be referred to as the EWMA model of time varying covariance. From
equation (6), given λ and an initial estimate Σ1, the time varying exponential
weighted covariance matrices can be computed.

If we assume that ϵt in (6) follows a multivariate normal distribution with zero
mean, and Σt = Cov(ϵt) is treated as the covariance of ϵt conditional on the past
history, the likelihood function of the observed time series can be written as:

logL = −kT
2
log(2π)− 1

2

T∑
t=1

|Σt| −
1

2

T∑
t=1

(yt − µ)′Σ−1
t (yt − µ) (7)

Since Σt can be recursively calculated as in (6), the log likelihood function can
also be evaluated. Thus the mean vector µ and λ can be treated as known in the
model and estimated using quasi-maximum likelihood estimation method, given
the initial value of Σ1.

Diagonal VEC model
The EWMA model is generalized as follows:

Σt = A0 +

p∑
i=1

Ai ⊕ (ϵt−iϵ
′
t−i) +

q∑
j=1

Bi ⊕Σt−j (8)

Where the symbol ⊕ stands for Handamard product, i.e., element by element mul-
tiplication, and every coefficient Ai and Bj has dimension k×k. This model was
first proposed by Bollerslev, Engle, and Wooldridge (1988), and is called diagonal
VEC, or DVEC (p,q) model. In order to understand the intuitive approach behind
DVEC model, let us take the bivariate DVEC (p, q) model into account, given by:[
Σ

(1,1)
t

Σ
(2,1)
t Σ

(2,2)
t

]
=

[
Σ

(1,1)
0

Σ
(2,1)
0 Σ

(2,2)
0

]
+

[
A

(1,1)
1

A
(2,1)
1 A

(2,2)
1

][
ϵ
(1)
t−1ϵ

(1)
t−1

ϵ
(2)
t−1ϵ

(1)
t−1 ϵ

(2)
t−1ϵ

(2)
t−1

]

+

[
B

(1,1)
1

B
(2,1)
1 B

(2,2)
1

][
Σ

(1,1)
t−1

Σ
(2,1)
t−1 Σ

(2,2)
t−1

]
(9)
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Where only the lower triangular part of the system is admitted, with Xij denoting
the (ij)-th element of the matrix X , and ϵ(i) the i-th element of ϵ. The last matrix
can be rewritten as follows:

Σ
(11)
t = A

(11)
0 +A

(11)
1 ϵ

(1)
t−1ϵ

(1)
t−1 +B

(11)
1 Σ

(11)
t−1 (10)

Σ
(21)
t = A

(21)
0 +A

(21)
1 ϵ

(2)
t−1ϵ

(1)
t−1 +B

(21)
1 Σ

(21)
t−1

Σ
(22)
t = A

(22)
0 +A

(22)
1 ϵ

(2)
t−1ϵ

(2)
t−1 +B

(22)
1 Σ

(22)
t−1

So the(ij)-th element of the the time varying covariance matrix depends only on
its own lagged element and the corresponding cross-product of errors. As result
the volatility of each series follows a GARCH process as the covariance process
can also be treated as a GARCH model in terms of the cross moment errors.

BIVARIATE STOCHASTIC VOLATILITY MODELS
(BSV)
Different classes of the multivariate volatility models are introduced in the litera-
ture (see for example Yu and Meyer, 2006). In the present paper we consider six
bivariate models. In order to describe these models, we start by takingN > 1 fixed
integer numbers that resemble the size of the data set. Let Z(t) = (Z1(t), Z2(t))

′,
t = 1, 2, 3 . . . , N be the series recording the result of the same event performed
in two different locations at the same time. (In here , for v a vector or a matrix
we use v′ to indicate the transpose of v.) Consider a vector of latent variables
h(t) = (h1(t), h2(t)), t = 1, 2, 3 . . . , N where hi(t) are defined by the following
autoregressive model AR(1):{

h1(t) = µ1 + η1(1)

h2(t) = µ2 + η2(1)
(11)

and for t = 2, 3 . . . , N{
h1(t) = µ1 + ϕ11[h1(t− 1)− µ1] + η1(t)

h2(t) = µ2 + ϕ22[h1(t− 1)− µ1] + η2(t)

Where 0 < ϕ11, ϕ22 < 1 and also η(t) = (η1(t), η2(t)) has a bivariate normal
distribution with mean vector 0 = (0, 0) and variance-covariance matrix given by
the 2 diagonal matrix diag(σ2

η1
, σ2

η2
).

Consider H′(t), t = 1, 2, 3 . . . , N a 2 × 2 diagonal matrix with individual terms
given by exp(h1(t)/2), exp(h2(t)/2), i.e., H′(t) = diag(exp(h1(t)/2),
exp(h2(t)/2). Let Y′(t) = (Y1(t), Y2(t))

′, t = 1, 2, 3 . . . , N be modeled by:
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Y′(t) = H′(t)ϵ(t) (12)

Where ϵ(t) = (ϵ1(t), ϵ2(t))
′ is the vector of error components having a bivariate

Normal distribution with mean vector 0 and variance-covariance matrix Σϵ given
by:

Σϵ =

(
1 ρϵ
ρϵ 1

)
(13)

With ρϵ ≥ 0. Hence. Y(t). t = 1, 2, . . . , N is such that Y1(t) = exp(h1(t)/2)ϵ1(t)
and Y2(t) = exp(h2(t)/2)ϵ2(t). t = 1, 2, . . . , N are the logarithms of the returns
of Z1(t) and Z2(t) centered around their averages.

Remark. By definition, we observe that E[Y(t)] = 0 and the variance-covariance
matrix for Y(t) is given by,

ΣY = Var(Y(t)) = H′(t)ΣϵH(t)

=

(
eh1(t) ρϵe

h1(t)/2eh2(t)/2)

ρϵe
h1(t)/2eh2(t)/2 eh2(t)/2

)
(14)

for t = 1, 2, . . . , N . Furthermore, Y(t) = (Y1(t), Y2(t))
′, t = 1, 2, . . . , N has a

bivariate Normal distribution with density

f(Y1(t), Y2(t)|h1(t), h2(t)) =
1

2π
√

(1− ρ2ϵ )e
h1(t)−h2(t)

exp

{
−

1

2(1− ρ2ϵ )

[
Y 2
1 (t)

eh1(t)
+

Y 2
2 (t)

eh2(t)
−

2ρϵY1(t)Y2(t)

eh1(t)/2eh2(t)/2

]}
(15)

Also observe from (11) and the definition of η(t) that the latent variables h(t) =
(h1(t), h2(t)) have normal distributions. In fact the density function of hi(1) is a
normal distribution N(µi, σ

2
ηi) and given hi(t − 1), hi(t) has a density function

N(µi + ϕii[hi(t− 1)− µi], σ
2
ηi) for i = 1, 2 and t = 2, . . . , N .

Stochastic volatility models are introduced in this paper and discussed as follows.

Model I

In this model we assumed that the error coordinates ϵi(t), i = 1, 2 are independent,
i.e., ρϵ = 0. Hence, Y(t), t = 1, 2, . . . , N will have Normal distribution with
mean vector 0 and with variance-covariance matrix as a diagonal matrix given by
Σϵ,0 = diag(eh1(t), eh2(t)).
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Model II

In this version of the model the covariance ρϵ between ϵ1(t) and ϵ2(t) is taken
to be an unknown constant quantity that ought to be estimated. Hence, Y(t),
t = 1, 2, . . . , N will have a Normal distribution with mean vector 0 and variance-
covariance matrix given by (3).

Model III

In a third version of the model we keep the assumption of Model II, except for the
way latent variable h2(t), t = 1, 2, . . . , N , is defined. We assume the presence of
the Granger causality when modeling h2(t) and the latent variable h2(t) is now
given by

h2(t) = µ2 + ϕ21[h1(t− 1)− µ1] + ϕ22[h2(t− 1)− µ2] + η2(t) (16)

Where t = 2, 3, . . . , N and 0 < ϕ21, ϕ22 < 1. Remark. From (16), if ϕ21 ̸= 0,
then the second return Granger causes the volatility of the second return.

Model IV

In this version of the model we take the assumptions of Model II except that an
additional hypothesis on correlation between ϵ1(t) and ϵ2(t) is inserted. In this
way, we assume that ϵ(t) = (ϵ1(t), ϵ2(t))

′ has a bivariate normal distribution
with mean vector 0 and variance-covariance matrix Σϵ(t) a 2 × 2 matrix, for
t = 1, 2, . . . , N , by Σϵ given by

Σϵ(t) =

(
1 ρϵ(t)

ρϵ(t) 1

)
(17)

Where ρϵ(t) = (eq(t)−1)/(eq(t)+1), q(1) = ψ0+σρv(t) and for t = 1, 2, . . . , N ,
we have q(t) = ψ0 + ψ1[q(t− 1)− ψ0] + σpv(t), with v(t), t = 1, 2, . . . , N , in-
dependent and identically distributed quantities with common normal distribution
N(0,1) (see for example Yu and Meyer, 2005). We further assume that q(1) has a
Normal distribution N(ψ0, σ

2
p) and for t = 2, 3, . . . , N , we also assume that given

q(t−1), the quantity q(t) has a normal distribution N(ψ0+ψ1[q(t−1)−ψ0], σ
2
p).

Remark. In this stochastic volatility model with dynamic correlation between the
error components, correlation changes, and volatility as well. Also, we need to
have −1 < ρϵ(t) < 1 in order to have a well defined variance-covariance matrix
Σϵ(t).

Model V

In Model V we take into account the same hypotheses of Model IV, except for
h2(t). For this latent variable we assume the same hypotheses as in Model III.
Therefore, we consider the presence of the Granger causality for the latent variable
h2(t), i.e., h2(t) is given by (16).
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Model VI

In this model we admit a similar setting as that of model I, but error coordinates
ϵi(t), i = 1, 2, have a bivariate Student t distribution with v degrees of freedom,
t = 1, 2, . . . , N . Therefore, the vector ϵ(t) has a density t(0,Σϵ,0, v), where v
represents degrees of freedom and its density function is given by:

f(ϵ(t)) =
Γ[(v + 2)/2]

vπΓ[v/2]
|Σϵ,0|−1/2

(
1 +

1

v
ϵ′(t)Σ−1

ϵ,0ϵ(t)

)−(v+2)/2

(18)

Where Γ(x) denotes a Gamma function.

Remark. Using a heavy tail Student distribution, we allow for the presence of extra
Kurtosis for the distribution of returns. It is also interesting to observe that other
versions for the BSV models can be considered.

BAYESIAN ANALYSIS
In this section we present a Bayesian framework for the models discussed above,
divided into three categories. Those in the so-called Class I, are the models that
have the error vector ϵ(t) = (ϵ1(t), ϵ2(t))

′ normally distributed with mean vector
0 and a constant correlation for the error components model, i.e., the correlation
is either zero or a constant not depending on t. The models falling into this class
are models I, II, and III. In class II, we include models where ϵ(t) is normally
distributed with mean vector 0, but the correlation between ϵ1(t) and ϵ2(t) depends
on time, i.e., models IV and V. Finally, in Class III we have model VI.

Bayesian inference is based on the simulated samples from the joint posterior dis-
tribution obtained using the Gibbs sampling algorithm.

Class I
If model I is considered then the vector of parameters to be estimated is θ1 =
(ϕ11, ϕ22, σ

2
η1, σ

2
η2, µ1, µ2). We assume that ϕii, σ2

ηi
, and µi have as prior dis-

tributions a Beta, an Inverse Gamma, and a Normal distribution, respectively,
i = 1, 2, i.e., ϕii, σ2

ηi, and µi have Beta(aii, bii), IG(ci, di), and N(ei, fi) prior
distributions respectively, where the hyperparameters aii, bii, ci, di, ei, and fi are
known, i = 1, 2. (In here, we are considering the Beta(a, b) and IG(c, d) as the
Beta and Inverse Gamma distributions with means a/(a + b) and d/(c − 1), and
variances ab/[(a+ b)2(a+ b+ 1)] and d2/[(c− 1)2(c− 2)], c > 2, respectively).

When model II is admitted the vector of parameters is θII = (θI , ρϵ). In this case,
we assume that ρϵ has an uniform prior distribution U(-1,1). And the same set of
prior distributions for θI as in the model I, with possibly different values for the
hyperparameters.
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In models I and II, the joint density functions of the latent variables h(t) =
(h1(t), h2(t)), given the vector of parameters θ, is given by

g(h(1)|θ) ∝
∏2

i=1(σ
2
ηl)

−1/2 exp
[
− 1

2σ2
ηl
(hl(1)− µl)

2
]
, t = 1

g(h(t)|h(t− 1), θ) ∝
∏2

i=1

∏N
t=2(σ

2
ηl)

−1/2

e
{− 1

2σ2
ηl

[hl(t)−µl−ϕll(hl(t−1)−µl)]
2}
, t = 2, 3, . . . , N.

(19)

Let θ = θII and take φ = (θ,h), with h = (h(1), h(2), . . . , h(N)). Hence, the
joint distributions of θ and h for Y = (Y(1),. . . Y(N)) in Model II is given by:

L(φ|Y) ∝
N∏
t=1

p(Y(t)|h,θ) ∝ (1− ρ2ϵ )
−N/2e{−

1
2 [

∑N
t=1 h1(t)−

∑N
t=1 h2(t)]}

e

{
− 1

2(1−ρ2ϵ )

[∑N
t=1 Y 2

1 (t)e−h1(t)+
∑N

t=1 Y 2
2 (t)e−h2(t)−2ρϵ

∑N
t=1 Y1(t)Y2(t)e

−h1(t)/2e−h2(t)/2
]}

(20)

When θ = θI , we set ρϵ = 0 in (20).

Therefore, for φ = (θI ,h) or φ = (θII ,h), the joint posterior distribution of the
vector of parameters and h is given by

π(φ|Y) ∝ π(θ)g(h(1)|θ)

(
N∏
t=2

g(h(t)|h(t− 1), θ)

)
L(φ|(Y )) (21)

Where π(θ) is the prior distribution of the vector of parameters with θ = θI , θII ,
L(φ|Y) is the likelihood function of the model given by (20), and g(h(1)|θ),
g(h(t)|h(t − 1), θ), t = 2, 3, . . . , N , are given by the set of recursive functions
(19).

Assuming Granger causality for h2(t) and constant correlation for the errors com-
ponent in model III, the vector of parameters is θIII = (θII , ϕ21). The same
set of prior distributions for θII is taken with possibly different hyperparameters.
Additionally, for the variable ϕ21 we choose a Beta distribution Beta(a21, b21).

The likelihood function of model III is given by 20. The joint posterior distribution
of φ = (θ,h) has also the same expression as in model I and II, i.e., the expression
given by (21) but taking θ = θIII and replacing the density function g(h(t)|h(t−
1),θ), t = 2, 3, . . . , N , by

g(h(t)|h(t− 1),θ) ∝ N∏
t=2

(σ2
η1)

−1/2e

{
− 1

2σ2
η1

[h1(t)−µ1−ϕ11(h1(t−1)−µ1)]
2

}
 N∏

t=2

(σ2
η2)

−1/2e

{
− 1

2σ2
η2

[h2(t)−µ2−ϕ21(h1(t−1)−µ1)−ϕ22(h2(t−1)−µ2)]
2

} (22)
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Class II
Stochastic volatility models with dynamic correlation for the error components are
fit into this class of models. When Model IV is considered the vector of parameters
is θIV = (θI , ψ0, ψ1, σ

2
p). The prior distribution for θI is taken to be the same

as in Class I. The prior distribution for ψ0, ψ1 and σ2
p is a Normal distribution

N(0, f3), Beta distribution Beta(f, g) and Inverse Gamma distribution IG(c3, d3),
respectively, where the hyperparameters c3, d3, f3, f , g are known.

Hence, the joint likelihood function for θ = θIV of this class of models is given
by

L(θ,h|Y) ∝
N∏
t=1

p(Y(t)|h(t),θ) ∝
{

N∏
t=1

(1− ρ2ϵ (t))
−1/2

}
exp{−

1
2 [

∑N
t=1 h1(t)+

∑N
t=1 h2(t)]}

exp

{
− 1

2

[∑N
t=1

Y 2
1 (t)e−h1(t)

1−ρ2ϵ (t)
+
∑N

t=1
Y 2
2 (t)e−h2(t)

1−ρ2ϵ (t)
−2

∑N
t=1

ρϵ(t)Y1(t)Y2(t)e−h1(t)/2e−h2(t)/2

1−ρ2ϵ ()t

]}

(23)

The joint posterior distribution of φ = (θ,h,q), where θ = θIV and q =
q(1, q(2), . . . , q(N)), is given by

π(φ|Y) ∝π(θ)g(h(1)|θ)

(
N∏
t=2

g(h(t)|h(t− 1),θ)

)

f(q(1)|θ)

(
N∏
t=2

f(q(t)|q(t− 1),θIV )

)
L(φ|Y) (24)

Where π(θ) is the joint prior distribution for θ; g(h(1)|θ) and g(h(t)|h(t− 1),θ)
are defined by (22), f(q(1)|θ) and f(q(t)|q(t − 1),θ) are the Normal density
functions of q(1), and the conditional Normal density function of q(t) given q(t−
1) and L(φ,Y) is the likelihood function defined in 23.

Admitting a stochastic volatility model with dynamic correlation for the error com-
ponents and Granger causality for h2(t), t = 2, 3, . . . , N , in model V, the vector
of parameters here is θV = (θIV , ϕ21). We take the same prior distribution for
θIV except for the parameters ψ0 and ψ1, which now have Gamma distributions
with appropriate hyperparameters. We still set a Beta(a21, b21) prior distribution
for ϕ21.

The likelihood function for this model is also given by 20. The posterior distribu-
tion is similar to 21, the difference is that g(h(t)|h(t − 1),θ), t = 2, 3, . . . , N is
given by (19) with θ replaced by θV .

Class III
In this class of models, we assume that the error components have a bivariate
Student t distribution with v > 2 degrees of freedom. The latent variables h(t) =
(h1(t), h2(t)), t = 1, 2, . . . , N are defined as in model I.
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The likelihood function could be obtained directly from 18 or representing the
bivariate Student t distribution as a mixture of a bivariate Normal distribution and
a Gamma distribution (see for example Bernardo and Smith, 1995).

Following the latter approach, first we have that the distribution for ϵ(t) is given
by,

fϵ(ϵ(t)) =

∫
fNormal(ϵ(t)|µ,ΣY zt)fGamma(zt|α, β)dzt (25)

Where fNormal(ϵ(t)|µ,Σ) denotes bivariate Normal density with mean vector µ
and variance-covariance matrix Σ and fGamma(z)|α, β is a Gamma density with
mean α/β and variance α/β2.

Therefore, take zt = 1/
√
(wt), where wt has as Gamma distribution, Gamma

(λw, λw), and is such that E(wt) = 1 and Var(wt) = λ−1
w . Hence, the conditional

distribution of Y (t) given ΣY and wt is a bivariate Normal distribution with mean
vector 0 and variance-covariance matrix 1√

wt
ΣY , where ΣY is given by 14.

The vector of parameters for Model VI is θV I = (θII , λw) and for w = (w1, w2,
. . . , wN ), the likelihood function of the model is given, for φ = (θIV , h, w), by

L(φ|Y) ∝
N∏
t=1

p(Y(t)|h(t), wt) ∝ (1− ρ2ϵ)
−N/2

{
N∏
t=1

w
1/2
t

}
e{−

1
2 [

∑N
t=1 h1(t)+

∑N
t=1 h2(t)]}

e

{
− 1

2(1−ρ2ϵ )

[∑N
t=1 Y 2

1 (t)w
1/2
t e−h1(t)+

∑N
t=1 Y 2

2 (t)w
1/2
t e−h2(t)

]}

e

{
ρϵ

1−ρ2ϵ

∑N
t=1 Y1(t)Y2(t)w

1/2
t e−h1(t)/2e−h2(t)/2

}
(26)

The prior distributions of θII are the same as used in Class I models (with possibly
different hyperparameters) and we set a prior Gamma distributionGamma(fγ , gγ)
for λw. We also have that fγ and gγ are known hyperparameters.

ANALYSIS OF IBOVESPA AND DOW JONES
INDUSTRIAL TIME SERIES
In this section, we analyze the log-returns of IBOVESPA and DJI in a weekly basis
from 04/27/1993 to 11/03/2008. Figures 1 and 2 show the indicators’ behaviors
and show a large volatility for the last month of 2008 in both cases. For the average
price of shares in the New York stock market, higher spikes in the middle of the
interval correspond to the 2000 stock market crash. For DJI, it is easy to show
that second order moments’ autocorrelation and cross-correlation are significant at
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least up to the first lag, indicating the covariance matrix of DJI and IBOVESPA
may be varying and is serially correlated.

FIGURE 1.
IBOVESPA LOG-RETURNS

Source: own estimations.

FIGURE 2.
DJI LOG-RETURNS

Source: own estimations.
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Using multivariate GARCH model
First, we assume a multivariate GARCH model as introduced in section 2, to
analyze the two time series. When estimating the parameters of the model given
by 5, we found that µ̂ = (µ̂1, µ̂2)

′
= (1.754E − 008,−1.895E − 008)

′
, and

1 − λ̂ = 0.100. In the same way, the parameter estimates of model 6 are µ̂ =
(µ̂1, µ̂2)

′
= (−5.988E − 010,−5.048E − 008)

′
and λ̂ = 0.990.

Table 1 shows the estimates of EWMA models . In this table µ̂ = (µ̂1, µ̂2)
′
,

A(i, j) corresponds to the (i, j)-th element of A0, ARCH(i, j, k) corresponds to
the (j, k)-th element of Ai, and GARCH(i, j, k) corresponds to the (i, k)-th ele-
ment of Bj . In this model µ̂ and its correspondent standard deviation are given
by µ̂1 = 8.468E − 009(0.00082189) and µ̂2 = −3.614E − 007(0.00215481),
respectively.

TABLE 1.
COEFFICIENTS ESTIMATES OF EWMA(1,1) MODELS

Parameter Value Std. Error Parameter Value Std. Error
µ1 8.468E-9 0.0008 ARCH(1, 1) 0.100 0.0137
µ2 -3.614E-7 0.0021 ARCH(2, 1) 0.100 0.0182
A(1, 1) 4.870E-5 0.0000 ARCH(2, 2) 0.1000 0.0211
A(2, 1) 5.448E-5 0.0000 GARCH(1, 1) 0.8100 0.0450
A(2, 2) 2.907E-4 0.0001 GARCH(2, 1) 0.8100 0.0513

GARCH(2, 2) 0.8100 0.0368

Source: own estimations.

For model discrimination, we can use different existing Bayesian criteria. A spe-
cial and popular criterion is given by DIC (Deviance Information Criterion) and
smaller values of it indicate better models (Spiegelhalter, Thomas, Best, and Lund,
2002)). The values of DIC can also be negative. For this model the DIC value is
given by DIC = −6655.965.

Using BSM models
In order to analyze IBOVESPA and DJI time series, we estimate six BSV models
as discussed in section 3. Models’ estimations are carried out through WinBUGS,
which (Spiegelhalter, Thomas, Best and Lund, 1999) simulates samples for the
posterior distribution in each case. From its output we also obtain Monte Carlo
individual estimates for DIC. The following set of prior distribution are assumed:

Model I: Φ11 ∼ Beta(1, 1) , Φ22 ∼ Beta(1, 1), σ1 ∼ IG(1, 1),
σ2 ∼ IG(1, 1), µ1 ∼ N(0, 1), µ2 ∼ N(0, 1).

Model II: Φ11 ∼ Beta(1, 1) , Φ22 ∼ Beta(1, 1), σ1 ∼ IG(7, 1),
σ2 ∼ IG(6, 1), µ1 ∼ N(−8, 1), µ2 ∼ N(−3, 1) , ρ ∼ U(−1, 1).
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Model III: Φ11 ∼ Beta(1, 1) , Φ21 ∼ Beta(1, 1), Φ22 ∼ Beta(1, 1),
σ1 ∼ IG(10, 1), σ2 ∼ IG(5, 1), µ1 ∼ N(−8, 1), µ2 ∼ N(−6, 1) ,
ρ ∼ U(−1, 1).

Model IV: Φ11 ∼ Beta(1, 1) , Φ22 ∼ Beta(1, 1), σ1 ∼ IG(1, 1),
σ2 ∼ IG(5, 1), µ1 N(−8, 0.1), µ2 ∼ N(−6, 0.1), ρ ∼ U(−1, 1),
φ0 ∼ IG(1, 0.1), φ1 ∼ Beta(20, 1), σb ∼ IG(1, 1).

Model V: Φ11 ∼ Beta(1, 1) , Φ21 ∼ Beta(1, 1) , Φ22 ∼ Beta(1, 1),
σ1 ∼ IG(13, 1), σ2 ∼ IG(5, 1), µ1 ∼ N(−8, 1), µ2 ∼ N(−6, 0.1),
ρ ∼ U(−1, 1), φ0 ∼ IG(1, 1), φ1 ∼ IG(1, 1), σb ∼ IG(1, 1).

Model VI: Φ11 ∼ Beta(1, 1) , Φ22 ∼ Beta(1, 1), σ1 ∼ IG(15, 1),
σ2 ∼ IG(5, 1), µ1 ∼ N(−8, 1), µ2 ∼ N(−6, 0.1), ρ ∼ U(−1, 1),
v ∼ IG(1, 1).

It is important to observe all obtained information used before for choosing prior
hyperparameters is taken into account for individually estimating the six models.
So, a sort of empirical Bayesian methodology is applied and this procedure is quite
relevant for convergence of Gibbs sampling algorithm.

A burn-in period of size 5000 is implemented in order to eliminate the effect of
initial values for the iterative procedure used to simulate the Gibbs samples. After
burn-in initial values, we choose every 10th sample for each parameter with a total
of 1000 Gibbs samples admitted to obtain the posterior summaries of interest. The
convergence of the Gibbs sampling algorithm is monitored by time series plots for
the simulated Gibbs samples for each parameter.

In table 2, we have the posterior summaries of interest for the six BSV models.
DIC estimates are automatically obtained from the WinBugs software and they are
based on the 1,000 simulated Gibbs samples, with values: DICI = −7379.36,
DICII = −7600.73, DICIII = −7601.41, DICIV = −7698.80, DICV =
−7750.21, and DICV I = −7595.840, indicating Model V is better fit by the
data.

TABLE 2.
ESTIMATES RESULTS FOR THE MULTIVARIATE STOCHASTIC MODELS ON DJI
AGAINST IBOVESPA (1993-2008) STOCHASTIC VOLATILITY MODELS

Parameter Estimates MSV CC-MSV GC-MSV DC-MSV GDC-MSV t-MSV
µ1 Mean -8.054 -8.051 -8.446 -8.525 -8.483 -8.748

SD 0.572 0.214 0.195 0.269 0.248 0.300
µ2 Mean -3.432 -6.484 -6.482 -6.057 -6.520 -6.427

SD 1.191 0.235 0.271 0.228 0.236 0.456
ϕ11 Mean 0.927 0.939 0.933 0.951 0.955 0.962

SD 0.031 0.019 0.024 0.017 0.017 0.015
ϕ22 Mean 0.986 0.926 0.923 0.918 0.919 0.954

SD 0.019 0.021 0.022 0.024 0.021 0.019
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Parameter Estimates MSV CC-MSV GC-MSV DC-MSV GDC-MSV t-MSV
ϕ21 Mean - - 0.024 0.023

SD - - 0.018 0.017
σ1 (itaua1) Mean 7.356 10.730 10.870 13.080 14.980 19.510

SD 1.788 2.429 2.661 2.543 3.158 3.777
σ2 (itaub2) Mean 5.679 4.862 4.840 4.837 4.843 8.891

SD 1.128 0.885 0.977 1.015 0.910 2.359
ρϵ Mean 0.496 0.500 0.505

SD 0.029 0.028 0.030
σρ Mean 2.919 1.208

SD 1.103 0.481
ψ0 Mean 1.209 1.250

SD 0.130 0.112
ψ1 Mean 0.747 0.329

SD 0.075 0.175
ν Mean 4.199

SD 0.931
DIC -7379.36 -7600.73 -7601.41 -7698.80 -7750.21 -7595.84

Source: own estimations.

ECONOMIC ANALYSIS OF THE RESULTS
Financial time series behavior has been an issue extensively discussed in Eco-
nomics. Since Engle (1982), the academic research on this specific topic has been
concerned with stochastic volatility models, especially its ARCH and GARCH
versions. Apart from Engle’s methodology, our concern in this paper is about
bivariate stochastic volatility models estimation applying MCMC Bayesian meth-
ods.

Since the American departure from the Dollar-Gold parity at the beginning of the
seventies, stock market’s volatility has raised concerns demanding more from the
academic researchers. Moreover, the sequence of recent financial crashes awakes
even more the necessity of understanding the meaning of volatility on driving
stocks returns. Recently, the American mortgage crisis showed how sensitive stock
markets are to expectations that directly affect stocks volatility. In fact, US stock
prices dropped 35,5 % on average from the first week of August until the last week
of November last year.

Most of these facts raise the question on what primarily determines the stock prices
behavior. From the economic point of view, market expectation is a major determi-
nant, but the knowledge about some additional stylized facts helps us to shed some
additional light on this matter. Clearly, the bad news involving the credit insolven-
cy of a couple of American banks performed a remarkable role, however market
mood turned into a bear only after Lehman Brother bankruptcy was declared.

In fact this is the effective role of the expectations on the markets, but from that
episode on investors started reacting by selling most of their assets in order to raise
funds for clearing other economic losses. From a ex post point of view it is possible
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to conclude that other facts have also played an special role on blowing stock mar-
ket’s volatility all over the world. Undoubtedly, stock market returns are subject
to excess volatility, what characterizes a leptokurtic stock return distribution. So,
the probabilities of bad and good outcomes were totally distorted from the Normal
distribution perspective.

Second, a shock on volatility persists more than normally expected. This is a time
series phenomenon accurately described by the first order correlation coefficient
of the model’s volatility equation. Brazilian stock market, in particular, is a bench-
mark on persistence, since our best estimates for this coefficient are close to one.
Another remarkable stylized fact concerns the existence of cross-correlation to-
wards assets and markets around the world. Such evidence is sufficient to confirm
how deep last year’s financial crash has impacted assets’ prices and markets.

However, we also know these episodes do not last forever. Contrarily, stock market
returns revert to their normal pace after a while, but this lapse is enough to burn
down significant amounts of wealth invested in these markets. In summary those
are more than sufficient reasons for carefully analyzing combined stock market
portfolio returns volatility.

In order to investigate the stochastic behavior of stock returns volatility, we esti-
mated bivariate stochastic volatility models involving two market indexes time se-
ries: US Dow Jones Industrial (DJI henceforth) and Brazilian IBOVESPA. Created
in 1896 by the editor of The Wall Street Journal, DJI is the second oldest Amer-
ican stock market index and is straightforwardly obtained, because it is based on
a simple average formula for calculating price returns of the 30 biggest and most
important American corporations. In fact, DJI is not a trade mark of the New
York Stock Exchange, but of The Wall Street Journal, then choosing what corpo-
ration will enter or will not is not an issue for NYSE (New York Stock Exchange).
Furthermore, there is no forward determined criterion for making this choice, but
being an American corporation and a market leader in the industry it is included
are two of them.

Brazilian IBOVESPA (São Paulo Stock Exchange Index) is the most important
stock market indicator in South America measuring stocks total returns perfor-
mance. By definition, it is the constant value of a theoretical portfolio established
on January 02, 1968 and based on a hypothetical investment value. No additional
capital inversion was made since then, admitting only adjustments to take account
for corporations’ pay outs. Clearly, IBOVESPA embodies not only stock prices
changes, but also the impact of dividends. In this sense, IBOVESPA is an index
that accounts for stocks’ total return. Differently from DJI, IBOVESPA is calcu-
lated and published by São Paulo Stock Exchange, so there is a clear criterion for
choosing what stocks should be in the theoretical portfolio.

In order to proceed on this sort of analysis, we take the weekly log-returns of US
DJI and Brazilian IBOVESPA from April 27, 1993 to November 03, 2008, a sam-
ple that includes two of the major recent crashes (September 11, 2001 and the
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recent mortgage crisis in USA) in NYSE and consequently BOVESPA. Moreover,
Brazilian stock market has been hit by other episodes mainly after successive inter-
national crisis during the nineties. Characteristically, the stock market in Brazil is
more volatile than that in the USA, and this justifies private interests on obtaining
returns usually higher than those offered by other markets.

Granger causality effect investigation is carried out and based on weekly data be-
cause most of the relevant movements on returns are restricted to a near past. This
is a very specific feature due to financial time series, and said feature invalidates
any trial to extend returns co-movements beyond longer frequency data. Further-
more, though data are taken in weekly basis, Granger causality is a long term
concept. In this sense we investigate persistence on this causal behavior between
volatility in IBOVESPA and DJI due to co-movements on weekly returns that are
projected onto the future time series data generating process. Truly weekly behav-
ior is persistent over time upon influencing investments decisions.

Then, we estimated six multivariate stochastic volatility models named as ba-
sic multivariate Stochastic volatility (MSV), constant correlation SV (CC-MSV),
Granger causality SV (GC-MSV), dynamic SV (DC-MSV), Granger causality and
dynamic SV (GCC-MSV), and a fat tail SV (t-MSV), and interesting results came
up. The first model accounts for errors independence and normality assumption
concerning the random terms and we label it by MSV. On the sequence, we assume
a non-zero covariance between the two equations errors terms, and covariance is a
number to be estimated and labeled it by CC-MSV. Third, the presence of Granger
causality from DJI to IBOVESPA is taken into account when modeling the latent
variable in model three. In this sense, the volatility of the second return is Granger
caused by the volatility of the first return, raising a theoretical and testable impli-
cation concerning the causality direction between the returns volatility in US and
in Brazil.

A dynamic correlation approach is introduced in the fourth model, which accounts
for the possibility of a dynamic behavior for cross-correlation among assets and
markets. According to Yu and Meyer (2006), this model is labeled as DC-MSV.
Following the two previous models, Granger causality and dynamic correlation
are both introduced in the fifth model. Such a procedure is admitted in order to
capture returns volatility direction of causality and cross-correlation dynamics and
is named GCC-MSV. Finally, a heavy tail Student’s t distribution is introduced
in the original MSV model in order to check for the presence of extra kurtosis in
the returns distributions. Form the financial point of view t-MSV models are less
likely to provide a good fit, once kurtosis is already a fact for stochastic volatility
models, then an excess kurtosis should be a little odd, but not impossible. Excess
kurtosis means stock brokers automatically and dynamically adjust their portfolio
over time, which clearly sounds as an unlikely procedure.



326 Cuadernos de Economía, 31(56), enero - junio de 2012

Estimates of the six models are contained in Table 3. One result strikes most;
the introduction of a correlation between the two volatility equations errors pro-
vides always a better fit. Definitely, models DC-MSV and GCC-MSV are superior,
once their evaluation is based on the DIC criterion. Even CC-MSV is a good fit
when compared to MSV and t-MSV models. A second fact calling attention is
the Granger causality significance measured mainly by GCC-MSV and GC-MSV
models.

Persistence on volatility is a result that strikes us most, though it may rise some
questioning concerning structural breaks. Since returns on IBOVESPA and DJI are
calculated on weekly basis and persistence on volatility on financial time series is
a disputable fact, structural break is a long run feature. Clearly, some persistence
on volatility is due to the time series correlation, a phenomenon captured by the
coefficients ρϵ and σp, estimated for GC-MSV and GDC-MSV models.

As expected an excess kurtosis model does not fit quite well. Moreover, excess
volatility for the Brazilian stock market would be a difficult task to justify, once
the volatility behavior in this market is already excessive (This can be seen by the
estimated coefficients for σu1 and σu2) compared to other stock markets.

Concerning the theoretical risk-return relationship, the estimated coefficients for
means and volatilities confirm what should be expected. Once we empirically
verify µ1 < µ2, and σu1 < σu2, agreeing with the portfolio theory, so the volatility
pricing procedure is theoretically based upon.

About volatility persistence, the evidences do not support the hypothesis that Brazil-
ian volatility persists more than American volatility. Except for MSV’s estimates
of ϕ22, the other model’s estimates for the same parameter support the hypoth-
esis that American volatility persistence is greater than Brazilian one. Probably
on introducing the September 11 event in the sample and suppressing part of the
information on US mortgage crisis last year stressed the volatility behavior in US
compared to Brazil. However, though volatility persistence is a fact in the liter-
ature, comparison of this persistence among countries is not an undisputable fact
and differences can frequently arise. Furthermore, a significant part of this persis-
tence can already be captured by ϕ21.

Remarkably interesting are the signal and magnitude of the ϕ21 estimate. This
is a measure for the impact of a shock on the DJI’s volatility over the IBOVES-
PA volatility, which appears to be not as sensitive as we would expect at a first
glance. However, since the estimate of the coefficient is equal to 0.023 it means a
100 % increase in American stock market volatility will have an average impact of
116.4 % over Brazilian stock market volatility. Such interpretation of the result is
amazing, mainly for institutional investors.
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Finally, the dynamics of the volatility spill-over effects are described by the es-
timates of ψ0 and ψ1 in GCC-MSV model4. Clearly, there is a high correlation
starting point (ψ0), which is mitigated by a less than one ψ1 coefficient, suggest-
ing the feasibility of mean reverted spilling-over volatility shocks. Furthermore,
as the integration among international markets becomes tighter, spill-over effects
are more likely to mutually affect stock markets.

Nowadays, negotiations involving Brazilian corporations’ stocks in NYSE are al-
most a complete reality, at least for Petrobrás5 and Vale’s6 shares. The dynamic
behavior of cross-correlation among Brazilian and American stock markets rais-
es a very important issue, because once we assume stock markets integration is a
irreversible fact, then the room for capital controls is none or at least extremely
narrow. Pursuing this sort of economic policy as Brazil just did is an invitation for
corporation’s migration to NYSE. It seems Brazilian economic policy is starting
to deviate from a previous capital markets development commitment.
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