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ABSTRACT: Making an accurate estimate of quality distribution in a granite deposit is essential, both from a
financial point of view, to determine the profitability of the site, and from an environmental perspective, to focus
operations on the most profitable areas thereby reducing the extent of land affected by such work. Granite is
extracted in blocks whose profitability and value depend on the final size of the slabs, which is an important factor in
defining quality. This article uses a variant of disjunctive kriging in order to determine the quality of granite in one of
the largest reserves in the world—the Porrifio deposit located in northwest Spain. This method, unlike classical
disjunctive kriging, considers random variables that are not necessarily binary. The advantage of using this technique
compared to the classical statistical cokriging technique is that all the qualities are considered as variables with the
same importance and that the sum of quality percentages in a block is one hundred percent. The validity of the
method was tested in a cross-validation process. The results compared favourably with those obtained using ordinary
cokriging and fuzzy kriging.
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RESUMEN: Realizar una estimacion precisa de la distribucion del granito por calidades en un yacimiento es
fundamental, tanto desde el punto de vista econdmico, para determinar la rentabilidad del yacimiento, como
ambiental, para dirigir las labores de extraccion exclusivamente a las zonas mas rentables, reduciendo asi la
extension de los terrenos afectados por dichas labores. El granito es extraido en bloques cuya utilidad y precio
dependen del tamaiio final de roca que se puede extraer de los mismos, que es el factor que define la calidad. En este
articulo se utiliza una variante del krigeado disyuntivo para determinar las reservas de granito por calidades en el
yacimiento de Porrifio, uno de los mas importantes del mundo, situado en el Noroeste de Espafia. El método
utilizado, a diferencia del krigeado disyuntivo clasico, considera variables aleatorias que no son necesariamente
binarias. La ventaja de utilizar esta técnica estadistica frente a las técnicas clasicas de cokriging es que todas las
calidades son consideradas variables de la misma importancia y que se asegura que la suma del porcentaje de las
calidades en un bloque es del cien por cien. La validez del método se ha chequeado mediante un proceso de
validacion cruzada. La comparacion con los resultados obtenidos utilizando cokrigeado ordinario y krigeado difuso
ha sido favorable para el krigeado composicional.

PALABRAS CLAVE: krigeado composicional, cokriging, krigieado difuso, granito, estimacion de calidad.
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1. INTRODUCTION

Granite is an ornamental rock that is widely used in
roofing and for interiors (flooring, worktops, etc),
given its physical, chemical and aesthetic properties.
It is generally quarried from opencast pits in the
form of blocks that are subsequently sawn and cut
into slabs of different sizes and thicknesses
according to end use.

Granite deposit reserves from data collected in the
field can be evaluated using the kriging methods
traditionally used in the metals mining sector [1] [2]
in which the variable to be estimated is continuous.
The estimation method is based on traditional
research methods based on geological maps, a
description of fracturing in quarry fronts and vertical
information provided by borehole sampling [3].
Fracturing is the parameter that ultimately defines
the commercial quality of granite. Four qualities are
usually defined, depending on fracturing intensity:
top quality, secondary quality (both suitable for the
ornamental rock market), construction quality and

aggregate quality [4] [5].

Topographical and geological maps and a
characterization of the structural and textural
parameters of the deposit at various levels are used
to define rock quality and plan exploitation methods
[6]. The fact that each block of granite extracted
from the quarry may have different qualities
conditions the choice of which kriging technique to
use. This same problem occurs with other materials.
For example, Tercan and Ozcelik [7] estimated the
reserves in a Turkish andesite mine, from which the
rock would also be extracted in blocks that could
have different qualities. These authors, however,
distinguished between commercially valid and other
rock using indicator kriging. Recently, fuzzy kriging
has been proposed as a suitable method for
evaluating reserves, as it can account for the fact
that a block may contain different qualities and that
the definition of qualities in the field is subject to
uncertainty [8]. Nonetheless, this method has the
problem of having to define membership functions
that adequately represent the uncertainty in
determining qualities, which are assessed in the field
by geologists.

Fuzzy kriging is a generalization of
traditional methods of kriging in which
imprecise information is typically
incorporated to accompany all the sets of
sample data. These generalisations can be
obtained if the spatial function is considered
to be a fuzzy random function, and, applying
the extension principle of Zadeh [9], kriging
equations are obtained that satisfy non-bias
conditions and minimum prediction variance.
See [10] and [11] for a discussion on fuzzy
kriging fundamentals.

In this research, the problem of determining
the quantities of each quality in granite
blocks is tackled differently, using a kriging
technique called compositional kriging.

2. MATERIALS AND METHODS

2.1 The Porrifio Batholit

The reserves estimated in this research are
located in Spain’s most important and one of
the world’s most important granite
deposits—the Rosa Porrifo batholith situated
in the province of Pontevedra (northwest
Spain). Supplying technically and
aesthetically high-quality ornamental rock,
the licensed area measures 6.8 km” and a
total of 39 companies operate there. A
detailed description of this batholith can be
found in [8]. An aerial photograph of the
Porrifio batholith is provided in Figure 1.
Given the size of the batholith and the
textural homogeneity of the rock, this deposit
is expected to be profitable for a considerable
period of time (over 30 years). Nonetheless,
it is clear that as greater depths are reached in
the deposit, its capacity for supporting all the
companies operating there will be diminished
and mergers are therefore likely. It is thus
important to make an accurate estimate of the
reserves to enable medium-term decision
making by the companies.
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Figure 1. Aerial photograph of the Porrifio batholith
clearly showing, in the lower left part, some of the
warehouses used to store and transform the granite

The rock is cut using diamond wire, which
conditions the size of the primary block (10 mx10
mx10 m, i.e., 1000 rn3). The block is then further
cut, using diamond wire, perforation and shape
blasting, to obtain commercially sized slabs.
Depending on the degree of fracturing, qualities are
assigned, with each 1000- m® block capable of
representing different qualities. Four granite
qualities are defined as follows:
- Quality 1: Rock that can be extracted in
volumes that are sufficiently large to be able to
obtain slabs for cutting with disk saws, in other
words, rock with few fissures and yielding
blocks of 6 to 12 n’.
- Quality 2: Rock that produces blocks of less
than 6 m3 but still suitable for sawing, with
discontinuity spacing of over 2 m.
- Quality 3: Fractured rock that produces semi-
blocks (less than 4 m’), with discontinuity
spacing of less than 2 m.
- Quality 4: Fractured rock with market value
only as aggregate.

Knowing the quality of each block prior to cutting is
clearly important, as it enables more realistic
financial forecasting and more rational exploitation
in the medium-to-long term.
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2.2 Reserve evaluation
2.2.1 Data collection

For the documentation and field data-
collection phase, the mining parameter of
interest for defining rock quality (and
therefore for estimating reserves) was the
level of rock mass fracturing, given that
textural features—such as grain
heterogeneity and the presence of
phenocrystals, weathering bands or black
knots—have little bearing on the quality of a
granite as homogeneous as that of the studied
deposit. The fractures in the exploitable area
were assessed on the basis of the following:
1) A map to scale 1:3,500 that included
topographical and geological details and
information on fractures. Fractures were
directly observed at outcrops and
represented on the map.
2) A description of seven continuous core
boreholes (total perforation 304.35 m)
furnishing vertical information on the
non-accessible parts of the deposit.
3) A description of the fractures obtained
from profiles of the areas being exploited.
The  fractures were  characterized
according to direction, dip, spacing,
opening, filling and roughness, for a total
of 312 diaclases and 41 faults.

Figure 2 depicts the map of granite qualities
and a number of profiles obtained at outcrops
(P1 to P6). Along with the borehole data, this
information was the basic input to the study.

a—

Figure 2. Map of granite qualities constructed
from outcrops. Darker tones correspond to higher
qualities of granite. White circles represent the
location of the boreholes
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2.2.2 Compositional kriging

Composite data are a set of non-negative vectors
such that the sum of their components is a constant
k This constant is normally &= 100 when working
with percentages, or k= 1 when the data is given as
proportions. Denoting as xe Dc R the centroid of

a primary block in domain D of the real space R?, d
=1,2,3, we can define the composite random

function as Z(X)Z(ZI(X), Z (X)), in such a

IREE R

way that the  one-dimensional variables

Z.(X),j=1,...,p reflect the ;j—th component of

J
the composition. Note that ZJ(X) >0 and

iZj(X)zk Vxe DcRY.
J=1

Given a sampling realization
{#(x).2(x).....2(x,)} for the composite random
function Z X) , where each

Z(X,.)=(q(x,),zz(xl.),...,zp(x,)) is a composite
datum, the aim is to infer the value of Z (x;)) for a

new location of interest x;.

Classical spatial statistical methods enable
forecasting using kriging and the variables

Z(x),i=1,...,n,

(X according to

Zj(x;))=iiiZj(xl.), or using cokriging and the
=1

entire set of variables Z,(x);7=1,....; j=1,..., p,

in accordance with the
. p
Zj()%)zz;zl:li’ij(X,).
==
demonstrated fact that neither of these prediction
methods is guaranteed to preserve the particularities
of the composite data. See [12] and [13] for a more
detailed explanation of these classical prediction
methods.
Walvoort and de Gruijter [14] proposed a prediction
method based on classical approaches. These
authors included in the matrix system the constraints
necessary for the predictions to take values that
would be admissible in the composite random
function. Other authors [15] proposed a
transformation of the sample data

expression

However, it 1is a

1

Z*(X.)= f(z(xl.));i= 1,2,...,n before applying any

of the spatial prediction methods in order to
obtain Z (x). If the function 7 has been

correctly selected, admissible composite data
can be obtained by inverting the

transformation: 2()4) ) =" (% ()q) )) .

For this research we implemented a
compositional kriging method based on the
methodology developed by Tolosana-
Delgado [16] and Tolosana-Delgado et al.
[17]. This procedure can be viewed as a
generalization of the log-normal and normal

kriging techniques in R".

The subset S of R” formed of non-negative
vectors and verifying that the sum of their
components is one, can be equipped with the
inner sum, external product and scalar

product operations: {S,@,®,<~,~> S}. The

space, called a Simplex, is a FEuclidean
( P 1) -dimensional

Delgado [16] demonstrated that the kriging
techniques can be generalized to the
Euclidean simplex space and that optimal
predictors can be obtained for random
functions whose sample spaces are contained
in a simplex. Another interesting fact is that a
Euclidean space allows the selection of an
orthonormal base, the calculation of the real
coordinates of the elements in the simplex
space with respect to this base, and the
application of classical prediction methods.
Changing the coordinates, the predictions can
be expressed as elements in the original
Euclidean space (i.e., the simplex).
Furthermore, the equivalence between
obtaining the predictors in the simplex space
and calculating predictors based on changing
the variable using an orthonormal base has
been demonstrated. It can also be
demonstrated that compositional kriging is
the optimal predictor since it minimizes the
expected Aitchinson distance between the

space. Tolosana-

true composition 2 ( XO) and its prediction

Z(%) [16].
The procedure can be briefly summarized as
follows:



Dyna 161, 2010

a) The sample space of the composite data,
contained in S < R”, is transformed by means of a
change of coordinates in a new dimension space

p—1:

z (Xl) =¥ ln(z(xl.)); i=1,2,...,n
where W is the coordinate-change matrix, of
dimension ( p—1)x p, formed of the vectors of the
orthonormal  base  arranged in

7 (5)=(4 (%) 71 (5))
ln(z(xl.))=(ln(4 (X,.)),...,ln(zp(xl.)))[, and where

the superscript ¢ means transposed.

columns,

(b) Obtained in the Euclidean space R”"' using
traditional cokriging techniques is the prediction

Ak

7 (x).
c) The value of the prediction, 2(,\;) ) € S is given by:

(x)= C(exp(‘{"f (x;))))
with

C((gl,...,gl,)')=[gl/gek,...,gp/gekj[

a normalization operator. This methodology ensures
admissible composite predictions.

For point (b) above, semivariograms, y jj(b)

and (p—l)x(p—Z)/Z
77 (#), have to be calculated and fitted. The

theoretical models selected to model the
experimental semivariograms should verify that the
variance of any linear combination of these
variables is always non-negative. Put another way, it
should be ensured that the prediction variance is
always non-negative. To resolve this problem of
model selection, the linear co-regionalization model
is usually used. To ensure that the variance of any

cross-semivariograms,

linear combination of the variables Zj(x) is always

non-negative, the coefficients of the semivariograms
cannot be chosen randomly but must have certain
conditions verified, and this affects the process of
fitting the theoretical models. See [17], [18] and [19]
for a more detailed discussion on the linear co-
regionalization model.

Following the structural analysis stage, in which the
experimental semivariograms are suitably estimated,

57

cokriging systems are used to estimate the

random function Z~ (X)
Z (0=(Z (02,0 (9): Z(0)=

p-l n

S5 4,2, (5), =1

J=1 i=1
A detailed description of the compositional
kriging algorithm can be found in [20].

3. RESULTS

The composite data used in this study
consists of a set of n = 35,543 values such
that its p = 4 components added up to one.
Given an orthonormal base for a vector space

3, {el,ez,q}, the
coordinate-change matrix was constructed by
arranging the base elements in columns:

of dimension p -/ =

¥ =(¢.e,¢). Following a study of the

principal components of the sample data, we
obtained the orthogonal base that determined
the main directions of variability in the
observations.  This  base,  previously
normalized, constituted the orthonormal base
that would give rise to the matrix ¥ . As can
be confirmed in [16], the choice of the
orthonormal base has no great bearing on the
final results. However, choosing directions
close to maximum variability aims to reflect
as best as possible underlying behaviour in
terms of granite quality proportions. The
orthonormal base was thus formed of the
following vectors:

¢ =(0.4243,-0.2828,-0.1414,0.8485)'
e, =(0.3518,0.3518,-0.8543,0.1506)'
e, =(-0.668,0.7391,0.0142,-0.0853)'

Given that several components with zero
value were recorded in the sample data, a
positive constant was added in prior to
changing the coordinates

Z(x)= ‘i‘ln(z(xl.)) ;7=1,2,...,n. It should
be borne in mind that adding a constant to the

data to avoid zero values might introduce
some subjectivity in the results since any
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error in the kriging or variance estimations is
exponentially magnified.

In order to fit the linear co-regionalization model,
used were r=2 incorrelated variables with the

following characteristics: y, (]2) pure nugget effect
semivariogram  with  partial sill 1 and
7, (]2) spherical semivariogram with range = 280 m
and  partial  sill 1. The
ﬂ};j,j=1,2,3;r=1,2 that complete the models

coefficients

were fitted using the R freeware [21].
Finally, using cokriging techniques we obtained the

predictions Z(x) and,  after  suitable

transformation, the composite predictions Z( ;).

Figure 3 shows a map of the granite qualities
estimated using composite kriging. The map
corresponds to a height above sea level of 205
meters. It can be seen that quality 4 is the
predominant.

Estimated quality 1 Estimated quality 2

1 1 1 1 1 1
4665500 AT L 10 466550
4 <
4 Ly &
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- -"/ ‘—{; B F 08
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Figure 3. Maps showing the granite quality obtained
using compositional kriging for a height above sea level
of 205 meters. Each map corresponds to one of the
qualities. Darker tones represent a higher quantity of
granite for that quality

The compositional kriging described earlier was
validated using a cross-validation procedure. An
element was removed from the

sample, z( x,);7=1,...,35,543, and  the
prediction é(xl) was calculated using the

remaining data. The squared errors of the
prediction were obtained for each quality
proportion as
SE, =(Zj()(,.)—2j()(,))2; j=1,...,4. These
values are a good indicator of the efficacy of
the prediction method. Table 1 shows
descriptive coefficients calculated for the
squared prediction errors and obtained by
means of cross-validation. Note that

OSSEj <1; j=1..,4, given that the

composite data reflect the proportions for the
different qualities observed in each block.

These results were somewhat improved in
comparison with those obtained using
ordinary cokriging and adjusting the results
to obtain non negative and constant sum
constraints of compositional data. The mean
squared errors were 0.014, 0.025, 0.021 and
0.036 for quality 1 to quality 4, respectively.
The standard deviations were 0.051, 0.055,
0.052 and 0.089, respectively.

Taboada et al. [8] described a fuzzy kriging
study performed using the same database. In
their study, the mean squared errors obtained
in a cross-validation procedure were 0.021,
0.039, 0.053 and 0.037 for quality 1 (top
quality) to quality 4 (aggregate quality),
respectively. The improvement in our
research is evident, as the means have been
reduced by values between 18.9% (quality 3)
and 79.2% (quality 3).

4. CONCLUSIONES

In this research we estimated the reserves in
one of the world’s most important granite
deposits, which sustains a large number of
companies and provides employment for a
significant number of people. Knowledge of
the volume of reserves and distribution in
terms of different quality grades is crucial to
be able to implement rational exploitation
over time and ensure the quarry’s viability in
the medium and long term. The estimation
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method used in this research—compositional
kriging—takes account of the fact that each block
extracted from the quarry is likely to contain granite
of different qualities, and, unlike other prediction
methods—such as classical cokriging—ensures that
the sum of the different qualities is 100% for each
block. Although at first sight the method may appear
to be complex, it is easily implemented in high-level
language programs like R.

The results obtained indicate that the method is an
improvement over other geostatistical methods,
specifically, ordinary cokriging and fuzzy kriging.
Any improvement in techniques to estimate qualities
in granite blocks is of relevance for the companies
quarrying the granite, as there are significant
differences in price for the different quality grades.

Table 1. Mean squared errors and corresponding
standard deviations calculated for each granite quality by
means of cross-validation

SEI SE2 SE3 SE4

No. of
values

used 35,543 35,543 35,543 | 35,543
Mean 0.012 |0.013 |0.011 |0.03
Std.
Deviation | 0.053 {0.056 |0.052 |0.084
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