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Abstract

This dissertation studies the role of the network structure on the emergence and mitigation of crit-
ical phenomena in complex power networks. In particular, the event to consider is the emergence
of cascading failures due to congestion mechanism. The main contributions of this thesis are the
proposal of a vulnerability analysis framework to study network influence on critical phenomena
and the design of a control framework combining Network theory with Markov Decision Processes
and Stochastic Games in order to choose best strategies to reduce the impact of cascading failures.
The vulnerability analysis framework includes the identification of main properties influencing
cascading failures triggering and propagation, the study of the central role of cut-sets in cascad-
ing propagation and the proposal of new metrics to evaluate global and local vulnerability. The
control framework includes control strategies to generate worst-case failure scenarios and optimal
solutions for damage control on those scenarios employing the dynamic setting of transmission
lines capacity. This dissertation is developed around these two contributions, as is described in the
following.

The first part of this thesis studies the influence of the network connectivity in failure triggering
and propagation. Network science theory had been used to study relevant network connectivity
properties. A methodology based on the connectivity properties is evaluated to measure the net-
work robustness. A cascading failures model based on hybrid systems theory is proposed to define
the congestion mechanism and describe the structure-function power network interdependence.
The network Cut-sets (CS) identified as central elements for failures propagation are used to pro-
pose a critical link identification algorithm evaluated over the Quasy Stable State (QSS) approach
of the proposed cascading failures model.

The second part of this dissertation proposes a network-based vulnerability analysis frame-
work and propose a control framework to integrate network properties, electric properties, event-
triggered failures, and control. Several algorithms are developed to evaluate different triggers and
propagation events. The framework is developed analytically by the integration of Networks theory
with Markov Decision Processes and Stochastic Games. Finally, using the previously obtained re-
sults about connectivity and vulnerability, a control strategy is designed to mitigate the damage of
failures propagation by dynamically control the transmission lines capacity. An attacker-defender
stochastic game framework is used to formulate the control problem. In the problem, the defender
selects lines which are the best candidates to apply transmission capacity control as a response to
the imminent risk of cascading failures related to the attacker actions. To solve the control problem,
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we propose a system of multi-population state-dependent replicator dynamics where their fitness
change with the long term discounted expected reward in the game. The solution of the replicator
equations converges to the Nash equilibrium of the game and coincides with the best strategy for
control the cascading failures damage related to worst scenarios produced by optimal attacks.

Keywords: Cascading Failures, Complex Networks, Decision Making, Network Congestion,
Power Systems.



Resumen

Esta disertación estudia el rol que la estructura de la red y su dinámica tiene en la ocurrencia
de fenómenos crı́ticos y su posible mitigación con aplicación particular en sistemas de potencia
siendo estos modelados como redes complejas. En particular se considera como fenómeno critico
la propagación de fallas en cascada debidas a mecanismos de congestión. La contribuciones prin-
cipales de esta tesis son la integración del concepto de conjuntos de corte y métricas de congestión
en el análisis de vulnerabilidad de redes durante eventos de falla, y la propuesta de una estrategia de
control para disminuir el impacto de la propagación de fallas en red mediante el control dinámico
de la capacidad de las lı́neas. La disertación se desarrolla alrededor de estas dos contribuciones
como se describe a continuación.

La primera parte de esta tesis estudia la influencia de la conectividad de la red en la generación
y propagación de fallas en cascada en las redes de potencia. Teorı́a de redes complejas es utilizada
para evaluar diferente propiedades de conectividad de la red y la evaluación de su cambio bajo la
influencia de escenarios de falla diseados es asimilado como medida de robustez de la estructura.
Los conjuntos de corte (Cut-sets) de la red son identificados como elementos propagadores de
fallas en la red y un algoritmo de identificación de elementos crı́ticos basado en esta teorı́a es
propuesto. Un modelo de fallas en cascado dinámico basado en teorı́a de sistemas hı́bridos es
propuesto para describir el mecanismo de propagación de fallas por congestion.

La segunda parte de esta tesis desarrolla un framework de evaluación de vulnerabilidad de re-
des de potencia sujetas a fallas en cascada y propone estrategias de control para mitigar el dao
causado por estos fenómenos. El modelo de fallas en cascada propuesto en la parte previa es sim-
plificado hasta una versión de estado cuasi estable (Quasy Stable State) e integrado en algoritmos
de ataques de red para evaluar diferentes eventos detonantes y su propagación. El framework se
desarrolla analı̀ticamente tras integrar teorı́a de redes complejas, procesos de Markov y juegos es-
tocá sticos. Finalmente usando información en cuanto a la interacción entre propiedades eléctricas
y estructurales y la evaluación de vulnerabilidad de la red, se propone una estrategia de mitigación
de impacto de la propagación de fallas en red mediante estrategias de control dinámico de la ca-
pacidad de transmisión de las lı́neas.

El framework de vulnerabilidad es integrado en un juego estocástico de atacante-defensor,
donde el defensor selecciona las mejores candidatas para control de capacidad de transmisión
como respuesta a amenazas de disparo de efectos en cascada debidas a acciones del atacante. Para
solucionar el problema de control de vulnerabilidad de la red formulado como juego estocástico
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de descuento de recompensa en el largo plazo se propone un conjunto de ecuaciones de replicador
multi-poblaciones acopladas en estado. La solución de las ecuaciones converge a la solución del
juego de suma cero, convergiendo a la vez a su equilibrio de Nash.

Palabras Clave: Congestion en Redes, Fallas en Cascada, Redes Complejas, Sistemas de Po-
tencia, Toma de Decisiones.
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Preliminaries



Chapter 1

Introduction

1.1 Motivation

Climate change, natural hazards, intentional/malicious attacks, accidents equipment failures, and
thigh coupling with communication technologies have pushed governments and industry to de-
velop new politics and strategies aiming to decrease the vulnerability of power systems infrastruc-
ture and improve their resilience. The development of flexible frameworks to identify the broad
spectrum of grid attributes, as well as threats and hazards to grid components and to characterize
the behavior and vulnerability of essential infrastructure components adequately is the common
denominator expected for most of the new strategies proposed by the scientific community.

Studies on power grid vulnerability and recovery have been developed by governments (Carlson
et al., 2012) and the scientific community (National Academies of Sciences & Medicine, 2017).
The main recommendation observed on current studies is the necessity to shifts the focus strictly
from physical components to grid structure and operations and their role in enhancing the reliability
and resilience of the energy supply. To do this, efforts should be directed to obtain an accurate and
detailed descrition of grid attributes (e.g., connectivity, topology, and configuration, physical asset
properties and operational characteristics, critical assets and load, interdependenties with other
infrastructure), to provide an essential starting point for the analysis and assessment of enhanced
approaches to resilient grid operations.

Consequently, complex network science has become a useful tool to transform traditional vul-
nerability assessment approaches. Previous studies had evidenced a lack of integration between
functionality and structural properties of networks in grid assessment and operation. The discon-
nection between structure and functionality in the traditional framework presents challenges for
the scientific community looking to propose frameworks able to identify possible cascade propa-
gation and trigger by considering both structure and electrical properties. Besides, new approaches
should consider other challenges for grid analysis like size, complexity, parameters identification,
and network evolution during operation and contingencies. Most approaches have suggested an
increase in dependency on communication and data technology. However, this approach rises also
the risk to potential cyber attacks in the grid by recognizing the system topology and vulnerabil-
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ities. It is clear, therefore, that new vulnerability frameworks considering the grid attributes need
to be developed and tested, including information regarding threats and hazards. The new frame-
works will provide the basis from which to select and conduct vulnerability assessments and to
determine grid assets that affect overall network vulnerability.

Cascading failure models play a leading role in the development of these vulnerability analy-
sis frameworks. The cascade mechanism generally used is the overloaded branches propagation.
Overload failures generally propagate through undetectable paths as a result of self-organized in-
teractions in the system. The models that include network and electrical properties perform well to
describe the cascading effect. However, they are not aimed to differentiate between failure triggers
effects and failure propagation path. The interplay between the network flow reorganization and
transmission capacity allows some unpredictable small disturbances to produce massive failures.
Identifying and including in the models trigger and propagation mechanisms provide useful infor-
mation about the overall system resilience. It is also found that single, small, vulnerable set implied
in the failure propagation of a large-scale outage can be determined. Despite the many vulnera-
bility frameworks and cascading failure models found in the literature, the problem of identifying
how failures propagate in terms of time and space, what are the main cascade trigger events, and
how to model the cascading failure patterns effectively in the power network remain open. A good
insight into the interplay of electrical and structural properties as well as its use to recognize net-
work vulnerability is relevant to continue the study of this problem and contribute to improving
future networks resiliency.

Vulnerability assessment frameworks primary purpose is to bring useful information for the
design and application of control strategies that mitigate failures damage by the choosing of proper
actions over local components that change global behavior. Network reinforcement, topology
changing, load shedding, dispatch, controlled system separation are some of the strategies used for
the mitigation of cascading failure effects. Analysis of network dynamics under a given control
policy had been studied recently; however, control design is still less understood. Prediction of
possible failures, cascade propagation, vulnerable elements, and relevant properties should be part
of an informed and predictive selection of control actions.

This dissertation aims to integrate network-based properties of power networks into a vulnera-
bility and analysis framework for power networks, where network dynamics can be identified and
controlled in order to predict and modify the system risk. The control framework and the strategy
proposed to mitigate the failures damage are directly related to information obtained and under-
stood from the network-based vulnerability analysis of the power network. Due to the dynamical
and stochastic nature of the phenomena, the control framework integrates stochastic theory with
evolving network models in order to get optimal control strategies that applied locally at each in-
stant respond to diminish future failure risk. The primary motivation of this integrated framework
is the possibility of considering the network as a whole system evolving dynamically in time and
be able to modify its dynamic behavior by predicting its future behavior. This approach will give
light about the process of evolution of cascading and possible strategies to mitigate the cascading
propagation and damage.
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1.2 Research Questions and Objectives

This dissertation aims to study the vulnerability of power networks during cascading failure events
and to control its effects by using network-based approaches. The following key research questions
motivate the main research goal of this thesis:

Q1 How the dynamical properties of networks change across a critical transition?

Q2 How to design control actions that can handle critical changes in network dynamics?

Q3 How to reduce the impact of dynamical changes in networks under critical transitions?

Besides, the research results fulfill the following specific objectives:

O1 Design a model that includes transitions in network dynamics and its structure.

O2 Analyze the structural and dynamical properties of network dynamics under critical transi-
tions.

O3 Propose a control methodology by considering the nature of the critical phenomena in net-
works.

O4 Apply the proposed control methodology in power networks.
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1.3 Thesis Outline

The dissertation is developed in four parts

I Preliminaries.

II Network connectivity and the cascading collapse of power network.

III Cascading collapse attacks and defense.

IV Concluding remarks.

Part II develops objectives O1 and O2. Part III develops objectives O2 and O3
Given that the approach of this research is mainly applied to power networks, the Objective O4

is fulfilled at long all the chapters of this dissertation.
The contents of Chapters 2 - 9 are summarized as follows:

Chapter 2: Literature Review and Background

This chapter presents a literature review covering all the topics of this dissertation. First, it presents
recent results in the use of Network science methods to approach power systems problems. Then,
the literature on recent results in the study of cascading failures in power networks is described.
Finally, a literature review for vulnerability assessment strategies and control in power networks is
presented.

Chapter 3: Strength of Connectivity and Robustness of Power Networks

This chapter treats the study of structural and functional connectivity properties of power net-
works. Usually, structural properties as node degree and centrality are evaluated for random and
target failures. However, when the power network is considered, the appropriated properties to
evaluate vulnerability and robustness should consider structural and functional properties at the
same time. In this chapter, it is proposed to use connectivity measures as, natural connectivity,
edge connectivity, and minimum cut-sets to evaluate the vulnerability of networks when a failure
process is present. This chapter partially answers the research question Q1 and fulfills objective
O2.

Chapter 4: Modeling Network Evolution during Cascading Failures

A cascading failures process based on congestion that can be used to complement analysis in
Chapter 3 is presented here. This chapter proposes the hybrid dynamical model of cascading
failures in complex networks. The model shows the interplay between network evolution and
node dynamics due to constraints in transmission capacity. Therefore the model presents how can
network dynamics evolve due to changes in control actions in controlled nodes, state variables, and



1.3 Thesis Outline 6

network structure. A case study is presented to validate the novel model. This chapter partially
answers the research question Q1 and fulfills objective O1.

Chapter 5: Identification of Cascading Propagation Paths

This chapter evaluates the influence of edges in cascading propagation due to its connectivity. The
analysis predicts possible propagators by the use of cut-sets metrics established in Chapter 3. Cas-
cading failures are modeled by applying a Quasy Stable State (QSS) approach of the model in
Chapter 4. It is shown that the failures propagators are the critical edges identified by its connec-
tivity properties and nodes connecting these edges results in the most affected during failures. This
fact makes the cut-set measure a suitable candidate to predict and control the influence of elements
affecting failures propagation. This chapter partially answers the research question Q3 and fulfills
objective O2.

Chapter 6: A Minimum Cut-Set Vulnerability Analysis of Power Networks

This chapter deals with the issue of considering the influence of some elements on the triggering of
cascading failures in power networks. To this end, this chapter presents a vulnerability assessment
framework combining network-based methods with sequential attacks and cascading failure pro-
cess. Moreover, it is shown how to solve the minimum cardinality attacks problems bring lights to
identify the vulnerable elements that generate the cascading. Furthermore, attack efficiency metrics
are developed to evaluate the edges vulnerability and compare them over networks with different
properties. This chapter partially answers the key research question Q3 and fulfills objectives O1
and O2.

Chapter 7:Markov Decision Process Model of Cascading Attacks in Power Network

This chapter presents an analytical approach to the problem of attacks in power networks. One
of the main drawbacks of vulnerability analysis methods is the misleading of attacks and threats
models that emulate hazards that could move the network to a critical point. The approach in-
tegrates network-based methods with Markov decision processes in order to predict the network
evolution during cascading failures and identify the most suitable targets to attack achieving the
maximum damage to the network. After the best attack is analytically identified, ideas about the re-
inforcement of some target edges are developed to reduce the attack impact. This chapter partially
answers the research questions Q2 and Q3 and fulfills objective O3.

Chapter 8: Dynamic Line Rating Defense Against Cascading Attacks: A Stochastic Network
Game

This chapter proposes a control method to defend power networks against cascading failure attacks.
Network-based methods are integrated within a stochastic game to identify the best defender to re-
spond against the best possible attack. Dynamic control of line transmission capacity is proposed
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as an alternative to alleviate congestion produced by trigger attacks reducing the impact of the
attack. Suitable candidates for dynamic line rating are generated by the optimal solution of the
stochastic game. Moreover, it is shown how the stochastic game solution can be approached dy-
namically opening opportunities to develop at future distributed control reinforcement strategies.
This chapter answers the key research questions Q2 and Q3, and fulfills objectives O3

Chapter 9: Contribution and Concluding Remarks

This chapter draws the concluding remarks of this dissertation and proposes some open research
questions as future work. The key research questions presented in Chapter 1.2 are also addressed
in this chapter.
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1.4 Publications

The following publications had resulted from the thesis contributions. This document does not
cover some of them.

Networks Interdependency

• C. Caro-Ruiz, P. Lombardi, M. Richter, A. Pelzer, P. Komarnicki, A. Pavas, E. Mojica- Nava,
Coordination of optimal sizing of energy storage systems and production buffer stocks in a
net zero energy factory, Applied Energy, Volume 238, 2019, Pages 851- 862, ISSN 0306-
2619, doi: https://doi.org/10.1016/j.apenergy.2019.01.125.

Cascading Failures in Power Networks

• C. Caro-Ruiz, A. Pavas, E. Mojica-Nava, A Hybrid Systems model of Cascading Failures
in Power Networks, to appear in the 2019 IEEE 4th Colombian Conference on Automatic
Control (CCAC), Medellı́n, October 2019

• C. Caro-Ruiz, J. Ma, A. Pavas, E. Mojica-Nava, PowerNet - A Toolbox for Network based
Analysis of Power Systems, to appear in the Latin American Conference on Complex Net-
works LANET-2019, Cartagena, Colombia, August 2019.

• C. Caro-Ruiz, J. Ma, D.J. Hill, A. Pavas, E. Mojica-Nava,”Qualifying Transmission Line
Significance on Cascading Failures using Cut-sets, to appear in The 13th IEEE PowerTech
2019, Milano, Italy, June 2019.

• C. Caro-Ruiz, J. Ma, D.J. Hill, A. Pavas, E. Mojica-Nava, A Minimum Cut-Set Vulnerability
Analysis of Power Networks, Submitted to Sustainable Energy, Grids and Networks, 2019

Voltage Instability and Collapse in Power Networks

• C. Caro-Ruiz, A. Pavas and E. Mojica-Nava, ”Voltage distributed control for power networks
with DERs,” in Proc. of the 2016 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), Minneapolis, MN, 2016, pp. 1-5,
doi: 10.1109/ISGT.2016.7781154.

• C. Caro-Ruiz, A. Pavas and E. Mojica-Nava, ”Controllability criterion for random tree net-
works with application to power systems,” in Proc. of the 2016 IEEE Conference on Control
Applications (CCA), Buenos Aires, 2016, pp. 137-142, doi: 10.1109/CCA.2016.7587834.

• C. Caro-Ruiz and E. Mojica-Nava, ”Centrality measures for voltage instability analysis in
power networks,” 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC),
Manizales, 2015, pp. 1-6, doi: 10.1109/CCAC.2015.7345182.
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• C. Caro-Ruiz and E. Mojica-Nava, ”Voltage collapse analysis in a graph theoretical frame-
work,” 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM),
Montevideo, 2015, pp. 667-672, doi: 10.1109/ISGT-LA.2015.7381236.

Network Transitions and Desynchronization

• C. Caro-Ruiz, A. Pavas and E. Mojica-Nava, ”Desynchronization of pulse-coupled oscil-
lators in cycle networks: A hybrid systems approach,” in Proc. of the 2017 IEEE 3rd
Colombian Conference on Automatic Control (CCAC), Cartagena, 2017, pp. 1-5, doi:
10.1109/CCAC.2017.8276398.

• C. Caro-Ruiz, D. Téllez-Castro, A. Pavas and E. Mojica-Nava, ”Self-organi- zation in net-
works: A data-driven koopman approach,” 2017 IEEE 3rd Colombian Conference on Auto-
matic Control (CCAC), Cartagena, 2017, pp. 1-6, doi: 10.1109/CCAC.2017.8276384.

• Claudia Caro-Ruiz, Andrés Pavas, Eduardo Mojica-Nava , Hybrid Model of Pulse- Cou-
pled Oscillators in Dynamic Networks, in Proc. of the 1st Latin American Conference on
Complex Networks LANET, Puebla, México, 2017.

• Claudia Caro-Ruiz, Andrés Pavas, Eduardo Mojica-Nava, Criticality in Complex Networks:
A Hybrid Systems Approach, in Proc. of the Conference on Complex Systems CCS, Cancun,
Mexico, 2017.



Chapter 2

Literature Review and Background

”The problem with experts is that they do not know what they do
not know (Taleb, 2007).”

Nassim Nicholas Taleb
The Black Swan: The Impact of the Highly Improbable

2.1 Complex Power Networks

Complex networks represent the behavior of nature and human systems displaying signs of order
and self-organization. They exist ubiquitously and at every scale (Newman, 2003). Examples
include biological and ecological systems, societies, and technological networks like the Internet,
the Power grid, and Transportation. Mostly, they have a large number of interacting parts, whose
collective behavior cannot be inferred from the behavior of its components. Also, the interaction
between components can be as significant as the parts themselves (Porter & Gleeson, 2016).

Self-organization is an implicit mechanism governing the behavior of complex networks. Even
if the dynamics are tending to a stable and cooperative regime, or if it is tending to criticality (see
(Noël, Brummitt, & D’Souza, 2014), (Y. Wang, Fan, Lin, Lai, & Wang, 2016)), the dynamics in
networks are subjected to the emergence of local patterns of behavior that changes in a discontin-
uous way. In particular, critical transitions in networks are a significant indicator of complexity
in system dynamics, as is described by (Dorogovtsev, Goltsev, & Mendes, 2008). Any system
dynamics approaching its critical region shows a keen sensitivity to external perturbations and
parameter variations of its micro-scale dynamics. By this, stability, and predictability of system
dynamics can change significantly. Control and operation actions designed for systems out of the
critical regime cannot manage these changes correctly.

Spatial patterns can arise before a critical transition. For instance, scale-invariance distributions
of avalanche clusters occurrence, the general trend towards increasing spatial coherence, and the
increasing of nodes cross-correlation as is presented in (Scheffer et al., 2009). Also, work in (Moon
& Lu, 2015) shows a way to rebuild network properties by using spatial patterns and coherency
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of the network near a critical transition. Moreover, the identification of changes in local patterns
can be used to predict the occurrence of transitions, as described by (Zhang, Kuehn, & Hallerberg,
2015). Most of the described results concern to general models, but most of the patterns and
shifts in real large scale complex systems cannot be identified analytically because dimension and
complexity evade the modeling and identification process. However, analytical tools based on
probability theory and graph theory have been developed to identify main properties governing
these systems.

A set of graph theoretical tools, such as degree distribution, centrality measures, assortative,
homogeneity between others, have been used to qualify these interactions (Newman, 2003). These
structural properties describe the network in a steady-state. Beyond the structure, if the network
has non-equilibrium dynamics (Nicolis, Prigogine, et al., 1977), the state of each node is governed
by its dynamics and the coupling between node dynamics. The change in intrinsic dynamics of a
component depends not only on its current state but also on those of its neighbors, and the network
encodes which elements interact with each other and how strongly they interact (Porter & Gleeson,
2016). Also, it not only can affect the component dynamics, but also these dynamics influence the
network structure and global dynamic processes over it. During the last decades, researchers have
studied the structural and algebraic properties from networks. However, a lack still exists in the
understanding of control principles to govern it and analytical tools to approach them.

Besides, some strategies to study dynamic and control properties have been studied. Properties
such as degree distribution, homogeneity, size, and its dynamics make the control of networks
a challenging topic. First approaches to network control are related to controllability (Y.-Y. Liu
& Barabási, 2016), (Gao, Liu, D’Souza, & Barabási, 2014), (Caro-Ruiz, Pavas, & Mojica-Nava,
2016). Complex networks present intrinsic dynamical properties as nonlinearity, dissipative dy-
namics, multiple equilibriums, high phase-space dimensionality, constraints on the possible control
interventions, decentralized behavior, noise in the dynamics, and parameters uncertainty (Motter,
2015). A combination of these properties makes that possible actions by the understanding and
manipulation of such systems have a different character when compared to traditional control prob-
lems. Studying the problem includes three topics: controllability, steering the network dynamics
to desired states, and controlling collective behavior (Y.-Y. Liu & Barabási, 2016).

Controllability measures the impact of network topology on control and the energy required to
applied it (Y.-Y. Liu, Slotine, & Barabási, 2011), (Zhao & Cortes, 2016). Steering problem has
been approached by applying perturbations to parameters and state variables (Cornelius, Kath, &
Motter, 2013), by mapping the control problem to a combinatorial optimization problem of the
network, and by using geometrical properties of the structure to modify its state (L.-Z. Wang et
al., 2016). Also, collective behavior has been approached, mainly focused on pinning control and
synchronization (Yu, Chen, & L, 2009).

Steering network dynamics and controlling collective behavior in networks is of significant in-
terest. This issue concerns the design of tools for control network dynamics through the desired
state. A large number of interacting parts, the impossibility to model its entire behavior, the rele-
vance of interactions and self-dynamics, and the appearance of not inferrable collective dynamics
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from the actions of the elements themselves restricts the control of complex networks. Results
in (Cornelius et al., 2013) explain that each desirable state has a basin of attraction represent-
ing a region of initial conditions whose trajectories converge to it. Based on this idea, they use
an approach of compensatory perturbations, but it requires prior knowledge of dynamics. Open
questions in this method are the study of the favorable rate of this approach in systems with pa-
rameter uncertainty and noise. Also, it is required to devise how to choose the optimal control set
of elements accessible to compensatory perturbations so that control objectives like the number of
pinning nodes or the amount of energy can be minimized. Other approaches use perturbation of
the system parameters and geometrical control.

Controlling collective behavior is one of the most studied problems in networks. The collective
behavior problem is similar to controllability, but it requires that control actions applied to these
pinning nodes contribute to collective synchronized behavior. Usually, the solution focuses on the
adaptation of control gains and coupling gains from pinned nodes. Some other research directions
in control of complex networks are: control of multilayer networks (Brummitt, D’Souza, & Leicht,
2012), (Y.-Z. Chen et al., 2015), control of adaptive networks (Y. Wang et al., 2016), stability of
complex networks, and control of complex networks under critical phenomena (Noël et al., 2014),
(Y.-Z. Chen, Huang, & Lai, 2014), (Brummitt, Barnett, & D’Souza, 2015). In this research, we
focus on the analysis of network dynamics under critical phenomena and its control.

Up until now, progress in those issues had been made by the use of graph theory. The ap-
proach manly centers on the study of the relationship between the network’s graph topology and
linear dynamic properties networks. It presents some results for controllability by solving match-
ing problems (Gao et al., 2014), and some results on stability and stabilizations through relations
between spectral properties and zero dynamics in networks (Torres & Roy, 2014). Also, central-
ity measures have been used to specify the role of nodes on stability and controllability proper-
ties (Pasqualetti, Zampieri, & Bullo, 2014). Statistical physics approach uses mainly probability
models as the configuration model and branching process to study changes in network behavior
in terms of some defined control variables (Noël, Brummitt, & D’Souza, 2013). A few control
theory analytical tools as Master stability functions (H. Sun & Hill, 2008), Lyapunov exponents,
energy cost, and structural controllability (Yuan, Zhao, Di, Wang, & Lai, 2013) have been used
to describe rigorously the observations raised statistically for controllability and stability of linear
networks. Moreover, the multi-agent approach uses consensus and population dynamics theory to
solve problems in synchronization and pinning control (Ramı́rez-Llanos & Martnez, 2014), (Awad,
Chapman, Schoof, Narang-Siddarth, & Mesbahi, 2015).

An essential attribute from complex networks that is not commonly considered in most of the
approaches found in the literature is criticality (Kuehn, 2015). It depicts the main properties that
have not been considered in the design of control for complex networks before. It stresses that it
is not just a matter of dimensionality; it is a matter of multiscale dynamics complexity (Kuehn,
2011). For dynamical processes over networks, the system out of equilibrium will have some
identifiable instabilities. Representative changes will occur when dynamics approach a critical
transition. Also, global changes in dynamic network behavior arise only upon strong coupling
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when each component leaves its natural stable state. Those scenarios can be used to define signif-
icant qualitative and quantitative changes affecting the control design and restricting the steering
actions. By considering instabilities in network dynamics, it is possible to understand the mech-
anisms that govern dynamics on networks and how it preserves or not these characteristics near
critical transitions (Bak, Tang, & Wiesenfeld, 1988), (Dorogovtsev et al., 2008). Also, this ap-
proach gives clues about the design of control strategies capable of dealing with rough properties
as dissipative dynamics and multiple equilibria (Brummitt et al., 2015), (Gao, Barzel, & Barabási,
2016).

Nowadays, there exists an increasing interest in the research of power systems from the complex
network perspective. New techniques of modeling and analysis have been developed to capture the
whole power network structure complexity (Pagani & Aiello, 2013). These techniques comprise
both the requirements in structure and dynamics (P. Hines, Blumsack, Sanchez, & Barrows, 2010;
P. Hines, Cotilla-Sanchez, & Blumsack, 2010; Caro-Ruiz & Mojica-Nava, 2015a, 2015b; Sanchez,
Caire, & Hadjsaid, 2013). The deep understanding and application of complex network framework
in power systems are essential to the advancement in the design and control of these techniques
(Hill & Chen, 2006).

By considering instabilities in control principles, it will be possible to advance the understand-
ing of the mechanisms that govern dynamics on networks and how they preserve or not this charac-
teristic near critical transitions (Bak et al., 1988), (Dorogovtsev et al., 2008). Also, this approach
will give clues about the design of distributed control strategies capable of dealing with rough
properties as dissipative dynamics and multiple equilibria, which are poorly looking at in standard
approaches (Brummitt et al., 2015), (Gao et al., 2016).

2.2 Cascading Failures

For power networks, the problem of instabilities and network dynamics can be mainly studied by
the cascading failure effect. This phenomenon in power networks have the properties of scale-
invariance, self-organization, and propagation patterns from the critical transition in the power
network. General cascading failures models are related to the property of Self-Organized Critical-
ity (SOC). The SOC in systems is related to the dynamic of a system tending to a critical point.
Thus, the macroscale behavior of the network displays a spatial and temporal scale-invariance char-
acteristic. It means that a power law indicates that the stationary state or attractor is critical. SOC
behavior is present in many examples in nature as landscapes, forest fires, geodesic formations,
and earthquakes. SOC concept studies usually apply sandpile models. The classical Bak-Tang-
Wiesenfeld sandpile model SOC model has been presented in (Goh, Lee, Kahng, & Kim, 2003).
In (Corral & Dı́az-Guilera, 1997), a dynamical approach to the sandpile model is presented. In
(Blanchard, Cessac, & Krüger, 1997) and (Blanchard, Cessac, & Krüger, 2000), the dynamical
properties of this model are studied. Another model presented in the literature is the Bak-Sneepen
Model (Bak & Sneppen, 1993). The Bak-Sneppen model is a simple mathematical model of bi-
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ological macroevolution. It describes the adaptation process of interacting species. The entire
model evolves to a self-organized criticality state where periods of not evolution alternate with
avalanches of extinctions producing evolutionary changes. Extinctions of all sizes, including mass
extinctions, maybe a simple consequence of ecosystem dynamics (Bak & Sneppen, 1993). Be-
cause of the modularity and higher interactions in scale-free networks, localized behavior is very
uniform. Results from (Dobson, Carreras, Lynch, & Newman, 2001) presents an application of
this model for the analysis of cascading failures in power systems. Also, a theory for optimization
has been developed based on this model (Lu, Chen, Chen, Chen, & Zeng, 2016). Applications of
sandpile models had been extended through literature, however more detailed models are required
for the application in complex power networks.

Several models had been proposed using a complex networks approach. Sandpile modes and
disease spread were two frameworks commonly used to model the failures spread (Hoffmann &
Payton, 2014). Those models based on agents interaction across a network structure bring lights to
the problem of cascading collapse in networks. They result useful for different infrastructures but,
for power systems analysis, they are laking on considering the functional connectivity produced
by agents dynamic and functional connectivity (Cupac, Lizier, & Prokopenko, 2013).

For the power system, cascading failure models play a central role in the vulnerability analysis
framework (Bialek et al., 2016). The cascade mechanism of overloaded branches is generally used
for all vulnerability methodologies. Different deterministic and probabilistic models with the same
cascade mechanism are benchmarked in (Henneaux et al., 2018). This study shows that the cas-
cading risk estimation over several different models is similar, but, a lack of adequate identification
of the critical elements was observed (Zhai, Zhang, Xiao, & Pan, 2017). Also, most of the models
are long-term stationary approaches and does not include node dynamics (Dobson et al., 2001).
Failures events produce immediate transient dynamics on system state, that if considered could
bring light about the possible control actions to be developed on each node in order to reduce the
failure spread. Also, discrete time dynamics for cascading failures in power networks are shown
in (Ba & Savla, 2016) and (Soltan, Mazauric, & Zussman, 2014) The models combine discrete
dynamics with DC power flow and are used to analyze network vulnerability, and propose power
flow routing strategies. Node dynamics are neither considered

Due to the nature of cascading failures events where network functioning affects the structural
connectivity, a hybrid systems approach could be beneficial for the analysis of the system behav-
ior. Classical approaches on power systems stability analysis are based on algebraic differential
equations. Voltage collapse analysis is usually based on this theory. In (Song, Cotilla-Sanchez,
Ghanavati, & Hines, 2016), a hybrid differential algebraic formulation is proposed to include dis-
crete changes in system due to protective relays. Results are promising and include a toolbox in
MATLAB useful for the analysis of the N-K contingencies. Due to the detailed models of ma-
chines included in cosmic, the model could result too slow to be used on large-scale statistical
analyzers.

Different from previous work, in Chapter 4, we propose a hybrid systems model of cascading
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failures in power networks. The proposed model includes angle dynamics and discrete network
evolution due to transmission line congestion. The power network is modeled by an admittance
matrix that changes over time as a response of a jump map where power flow excess in edges
produces a discrete state transition of the adjacency matrix. Chapter 4 is based on the frame-
work defined by (Goebel, Sanfelice, & Teel, 2012) and notation in (Phillips & Sanfelice, 2016).
Hybrid systems models had been proposed to study different self-organization phenomena in net-
works. This theory combined with the analysis of critical transitions has essential applications
in communications, electronic converters, mental diseases, and control over wireless networks
(Dı́az-Guilera & Arenas, 2008). Different self-organization patterns on systems including syn-
chronization (Prignano, Sagarra, & Dı́az-Guilera, 2013), desynchronization (Caro-Ruiz, Pavas, &
Mojica-Nava, 2017),(Phillips & Sanfelice, 2016), and chimera (Wildie & Shanahan, 2012) have
been studied, but models for cascading failures have not been proposed from this approach.

Primary failure mechanism studied in literature is transmission line overload. The mechanism of
overload failures usually propagates through invisible paths as a result of the system self-organized
behavior (Shunkun, Jiaquan, & Dan, 2016). The interplay between network flows reorganization,
and edge capacities allow that some unpredictable small disturbances lead to a massive failure.
Recent results in (Yang, Nishikawa, & Motter, 2017) found that a single, small, vulnerable set is
usually implied in the failure propagation of a large-scale outage. However, the exact solution for
the problem of how failures propagate in time and space in the network remains unknown. A mea-
sure combining topological and electrical properties could partially approach this problem, helping
to identify edges where possible optimal control actions and its similar self-healing technologies
will enhance network resilience.

Network-based methods have been introduced to the power systems analysis to identify the vul-
nerable set (Cuffe & Keane, 2017; Kim, Eisenberg, Chun, & Park, 2017; Pagani & Aiello, 2013).
Generally, vulnerability assessment in power networks is associated with the network structure and
its influence during a sequence of cascading events that may include malfunctions or undesirable
elements operation (Beyza, M, J, & F, 2018), (Saleh, Esa, & Mohamed, 2018). Structural (Motter
& Lai, 2002) and connectivity measures (Ellens & Kooij, 2013; Werho, Vittal, Kolluri, & Wong,
2016) have been proposed to assess network robustness. However, the use of those measures is
limited due to the lack of electrical properties consideration. Combined network-electric central-
ity measures including admittance matrix (P. Hines & Blumsack, 2008), power flow operation
point (Caro-Ruiz & Mojica-Nava, 2015a; Rincón, Pavas, & Mojica-Nava, 2016), electrical dis-
tance (Poudel, Ni, & Sun, 2018), and extended betweenness (Bompard, Pons, & Wu, 2012) have
been proposed to evaluate vulnerability. These measures perform better than pure network based
measures, but they have not been studied during cascading failures events. In Chapter 3, the aim
is to understand how the interplay between the network structure and dynamics affects the failure
propagation. Different graph properties had been studied but mainly related to topology and flow
connectivity at the same time.

Maximum flow measures have shown better approaches, pointing to the relevance of topology
and power flow interaction during cascading events (J. Fang, Su, Chen, Sun, & Lund, 2018). The
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main shortcoming of these existing network-based attempts to measure the network vulnerability
of electrical grids lies in the failure to explicitly incorporate the physical laws governing the power
flow in the network (Z. Wang, Hill, Chen, & Dong, 2017). Most vulnerability measures quan-
tify the element importance as if an element failure or its targeted attack significantly degrade the
network performance. However, they rarely approach the prediction of elements involved in fail-
ure propagation. Besides, the results found in the literature are performed over generic networks
(Shunkun et al., 2016) or include high-cost computational methods (Pi, Cai, Li, & Cao, 2018).

A Cut-set (CS) vulnerability metric is proposed in Chapter 5 to quantify the significance of
transmission lines in the propagation of the cascading overload failures. The power network is
modeled as a weighted undirected graph with transmission lines represented by edges. Line trans-
mission capacity is equivalent to edge weight. CS measures are related to the network robustness
properties on different networks (Marzo, Calle, Cosgaya, Rueda, & Maosa, 2018) and infrastruc-
tures (Le & Sankar, 2016; Psaltoglou & Calle, 2018; Dinh & Thai, 2015). The proposed metric
uses edge power flow capacity of the minimum edge-cut-sets to identify vulnerabilities. If min-
imum cut-set capacity is reduced (or the equivalent cut), power flow will be infeasible and will
generate flow redistributions, edge overloads, and subsequent load disconnection. The measure
identifies all the cut-sets with minimum capacity in the network. Elements from these sets are
fragile because their edge removal reduces transmission capacity and makes power flow infeasible.
As a result, it generates flow redistributions, edge overloads, and subsequent load disconnection.

Compared with previous methods, the CS measure evaluates the role of the line from the com-
bined effect of network topology and flow transmission capacity, identifies edges whose removal
deteriorates the connectivity properties of the network, improves the prediction of failures path
propagation, and reduces the vulnerability forecast the computational cost. At the same time,
the algorithmic setup is proposed for measure calculation and evaluation of the cascading failures
model based on DC-power flow.

2.3 Vulnerability Assessment

As power grids expand and integrate new technologies, their ability to respond and recover from
hazard events play a major role in system planning and operation. Models to anticipate adverse
events, as well as their immediate and long-term resulting consequences, are required to assess
the extent to which the network is prepared for the threats it faces (Carlson et al., 2012). In
this context, three main issues have attracted considerable interest: network-based vulnerability
analysis (Cetinay, Kuipers, & Mieghem, 2018; Wei, Zhao, Huang, & Bompard, 2018; Chu & Iu,
2017; Zhang & Tse, 2015), cascading failures (Cetinay, Soltan, Kuipers, Zussman, & Mieghem,
2018; Soltan, Mazauric, & Zussman, 2017; Dey, Mehra, Kazi, Wagh, & Singh, 2016), and attack
robustness of the power network (Liao, Salinas, Li, Li, & Loparo, 2017; S. Liu, Chen, Zourntos,
Kundur, & Butler-Purry, 2014).

Vulnerability analysis frameworks combining cascading failures and attacks have been pro-
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posed in the literature. Game theory (Cheng, Crow, & Ye, 2016a) and stochastic games combined
with machine learning methods are used to propose vulnerability assessment frameworks (Liao
et al., 2017). In (Moussa, Akaber, Debbabi, & Assi, 2018), a similar approach is presented to
assess vulnerability in cyber-physical systems. Optimization approaches based on N-K contin-
gency, are used in (Bienstock, 2015) to identify operational conditions affecting vulnerability to
cascading failures. An attack strategy under limited network information is shown in (X. Liu & Li,
2017). All these approaches integrated attacks with cascading failures into a vulnerability analysis
framework, but network properties and their influence on the vulnerability were not considered.

Network structural vulnerability is roughly related to the fraction of affected elements (from
failures or external attacks) required to produce cascading failures. For the external adversary,
the finding of such a set of fragile components whose removal would cause high damage to the
network would be rather valuable (S. Liu et al., 2014). For a network operator, the information
about this set of elements at risk and the set relation to network topological properties would serve
to plan effective strategies that enhance network resilience (G. Chen, Dong, Hill, Zhang, & Hua,
2010; J. Fang et al., 2018). Hence, when this small number of elements is attacked, network
vulnerability in terms of cascading failures is revealed. An alternative to identify these elements
and get an effective attack can be approached by combining electric and network properties into
the metrics for the identification of critical elements.

Centrality measures (Nie, Guo, Zhao, & Lu, 2015; Bilis, Kröger, & Nan, 2013), network degree
distribution (Motter & Lai, 2002), and spectral properties have been extensively used to measure
the structural relevance of network components. These methods aim to recognize the vulnerability
of power network topologies to target attacks and the vulnerability rank of the element depending
on its location, interconnections, and intermediation. However, practical applications of these ap-
proaches have not been developed yet because the cascading failure models used to perform the
vulnerability analysis do not include electrical properties (Y. Fang, Pedroni, & Zio, 2017; Zhai et
al., 2017; Z. Wang, Chen, Hill, & Dong, 2016; Cupac et al., 2013). For power systems, a collapse
is not only a matter of breaking network topology. It is also the product of overloads resulting
from cascading failures, the unavailability of transmission paths, disturbances, and network flow
redistribution. Power systems structural vulnerability should aim to identify the fraction of ele-
ments whose disconnection damages the network ability to carry power and breaks irretrievably
the supply/demand balance (Savla, Como, & Dahleh, 2014). For these reasons, interdependence
between electrical and structural attributes in the network should be considered (Z. Wang et al.,
2016; Azzolin, Dueñas-Osorio, Cadini, & Zio, 2018; Z. Wang et al., 2017).

New vulnerability methods propose to combine electrical properties with network-based met-
rics in order to include relevant structural interdependences (Poudel et al., 2018; Caro-Ruiz &
Mojica-Nava, 2015a; Bilis et al., 2013). Vulnerability measures combining edge betweenness,
outage transfer distribution factors and power transfer distribution factors are presented in (Bai &
Miao, 2015) and (Bompard et al., 2012). Although the metrics combine the influence of network
topology on path flows with the electrical coupling between elements, these metrics depend on
DC power flow. The study in (Z. Wang et al., 2017) presents a measure of flow betweenness not
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constrained to linealized power flow. However, these metrics assess separately each element and
do not measure the overall network vulnerability. Effective network resistance is proposed as an
index to measure vulnerability in (Coelho, Paiva, Segatto, & Caporossi, 2018). Likewise, other
methods seek to include flows using maximum flow graph properties, but ignore flow routing con-
straints due to line impedances (J. Fang et al., 2018; Fan, Huang, & Mei, 2016; Ghanbari, Jalili, &
Yu, 2016; Dwivedi & Yu, 2013).

Cascading failure models play a main role in the vulnerability analysis framework (Bialek et
al., 2016). The cascade mechanism of overloaded branches is generally used for all vulnerability
methodologies. Different deterministic and probabilistic models with the same cascade mechanism
are benchmarked in (Henneaux et al., 2018). This study shows that the cascading risk estimation
over several different models is similar, but, a lack of adequate identification of the critical elements
was observed.

Another relevant issue is cascade propagation. Overload failures generally propagate through
undetectable paths as a result of self-organized interactions in the system. In (Guo, Liang, Zocca,
Low, & Wierman, 2018), techniques to identify cascading failure paths are studied based on tree
partitioning. In (P. D. H. Hines, Dobson, & Rezaei, 2017), an influence graph, different from the
physical network, is proposed to model the cascade propagation. In (Carreras, Reynolds-Barredo,
Dobson, & Newman, 2019), a cascading failure model validation is presented for a network of
thousands of nodes, pointing at the relevance of considering properties of network structure in
order to establish suitable strategies for determining cascade propagation and reducing redundant
information. The models that include network and electrical properties perform well to describe
the cascading effect. However, they are not aimed to differentiate between failure triggers effects
and failure propagation path.

The interplay between the network flow reorganization and transmission capacity allows some
unpredictable small disturbances to produce massive failures. Recent results reported in (Dobson
& Newman, 2017) point to the relevance of identifying the difference between initial failure events
and propagation events. Identifying and including in the models the mechanism that contributes
to the cascade propagation provide useful information about the overall system resilience. The
results of (Yang et al., 2017) show that a single, small, vulnerable set is usually implied in the
failure propagation of a large-scale outage. Despite the many vulnerability frameworks and cas-
cading failure models which can be found in the literature, the problem of identifying how failures
propagate in terms of time and space, what are the main cascade trigger events, and how to model
effectively the cascading failure patterns in the power network remain open. A good insight into
the interplay of electrical and structural properties as well as its use to recognize network vulner-
ability is relevant to continue the study of this problem and contribute to improve future networks
resiliency.

This thesis propose a different view of the cascading failures modeling and assessment propos-
ing a deterministic cut-set vulnerability basis for their study. We propose a model where the
difference between the initial event and the propagation mechanism is modeled to show the overall
system resilience. This framework offers a view to identify the possible precursor to cascade prop-
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agation, and measures the risk of propagation associated to each edge, in terms of flow network
connectivity properties. These insights about the cascading likelihood of elements will contribute
to the identification of plausible targets for the deployment of mitigation and reinforcement strate-
gies.

In contrast with previous frameworks where the system is modeled by the incidence graph, we
use a graph-based approach, as in (Savla et al., 2014); there a flow network can represent more
precisely the system and cascade propagation. Flow networks have been used extensively to model
network properties of different supply/demand systems like transportation, communications, and
supply chains. In addition, the duality between flows and cuts in this model can be used to identify
relationships between power flow and network properties. In particular, the Minimum Cut-Set
(MCS) arises as a network measure with potential to be used in power systems analysis. The
MCS has several applications in network connectivity, network reliability, bipartite matching, and
network intrusion detection. Despite its extended use in engineering applications, to the best of
our knowledge, this measure has not been used in vulnerability or attacks analysis framework.

In the context of flow networks, the MCS depends not only on the network structural properties,
but it also considers the lines capacity and distinguishes supply/demand nodes. Different from the
critical links identification metrics available in the literature, the MCS offers information of global
and local network vulnerability at the same time, with good efficiency and low computational costs.
Besides, due to its intrinsic network properties, the attack strategy could be extended to be used
for interdependent networks vulnerability assessment. For cyber-physical systems, the MCS of the
information layer can be attacked with false data injection producing misleading operator actions
and triggering cascading failures. MCS attacks in the control layer can also affect connectivity
between controllers impacting on its coordination capacity or affecting state estimation with the
consequent occurrence of cascading failures in the power network layer (Di Muro et al., 2017).

The main necessities identified from the literature and covered in this thesis are at first, the
definition of a deterministic cascading failure model is proposed based on dynamic flow networks.
The model facilitates to study the influence of structural properties on the power grid. The inclusion
of a cascade mechanism due to overload and network flows is defined by means of the routing
policy generator based on the DC power flow. From this model, a flow bottleneck measuring
cascading potential depending on network congestion is proposed. The measure is used to identify
critical elements by means of the increase in the network cascade potential, reducing the set of
targets to elements into the MCS.

Second, the necessity for a strategy based on the MCS to identify the smallest set of vulnera-
bilities causing a cascading collapse. The strategy should be based on sequential targeted attacks
where targets are selected according to its potential to increase flow bottleneck. Computational al-
gorithms to obtain this including modification for the maximum flow algorithm should be designed
to classify the target edge set. Using this strategy, proposed in the Part II, will be posible to assess
the power grid vulnerability by measuring the damage and size of the attack and identify possible
contrameasures. Also, the proposed strategy derives an upper bound for the exact solution of the
target attack problem.
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A third necessity is validate the effects of the designed attack against several network-based and
electrical based-indices over various IEEE test systems. The main network properties involved in
the system vulnerability reveal insights about an important relationship among: 1) transmission
line capacities, connectivity, and flow bottlenecks; 2) the influence of supply/demand node place-
ment on the resilience, and 3) the tradeoff between network efficiency and robustness. Results in
Chapter 6, 7, and 8 will be cover these necesities.

2.4 Mitigation Strategies

Recently, questions about the control of complex networks became an important research topic.
From the analysis of network dynamics as present in disease spread and synchronization has been
learned that topology affects the dynamical process taking place in networks. In the same way, it
also affects the ability to control them(Gates & Rocha, 2016). Main topics approached by the lit-
erature concerns the many requisites for networks control. In general, three issues are approached
in literature: Controllability, trajectories steering, and control of collective behavior. However, the
research efforts to understand the control principles of complex networks is just beginning.

First approaches to network control are related to controllability. It is related to the minimum
number of external control signals required to steer the system behavior from an initial state to a
desired final state (Y.-Y. Liu & Barabási, 2016), (Gao et al., 2014). Results in literature present re-
sults about the analysis of node characteristics associated with controllability in directed networks
(Campbell, Ruths, Shea, & Albert, 2015) and the optimization of controllability and observability
metrics (Summers, Cortesi, & Lygeros, 2016). Also, some analytical tools designed for the study
of controllability in directed and undirected networks are developed (Y.-Y. Liu et al., 2011), (Yuan
et al., 2013). Also, there exist some results on controllability properties of networks with a spe-
cific structure as circular networks (Nabi-Abdolyousefi & Mesbahi, 2013), random tree networks
(Caro-Ruiz et al., 2016), or networks modeled by bilinear systems (Ghosh & Ruths, 2016).

Previous attempts, developed during this research, to understand the control of complex power
network were on the integration of optimization methods and graph theory for the control of volt-
age and dispatch. In (Caro-Ruiz, Pavas, & Mojica-Nava, 2016), a distributed control strategy based
on state-based potential games was designed to correct voltages out of limits by applying optimal
changes of control variables (active and reactive power flow of DG ). The proposed control consid-
ers under design restrictions related to network controllability and its dependency on the network
structure. In (Caro-Ruiz et al., 2016), we studied the controllability properties of complex net-
works with a random tree structure. Our motivation was the usefulness of these results for the
analysis and control of power systems with radial structure. Random Tree Networks (RTNs) were
used to model the network topology from active power distribution networks. These networks
consist of traditional Medium Voltage (MV) and Low Voltage (LV) feeders, commonly with radial
topology, including some Distributed Energy Resources (DERs). Also, by the inclusion of multi-
ple points of power injection (multiple DERs), we assume the network undirected. In (Caro-Ruiz
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et al., 2019) interdependency between manufacturing processes and power generation integration
were controlled and planned by the use of optimization algorithms. Algorithms to maximize the
matching between RES power generation and flexible demand. These previous results were used
as insights to understand the possible relationship between network-based methods and control
systems for the mitigation of cascading failures.

Control problem for cascading failures in power networks is much less studied and understood
than modeling and vulnerability assessment. The problem mainly focuses on the design of strate-
gies to minimize the load loss or minimize failure propagation. Optimization problems are usually
defined for objective functions oriented to those purposes, and control variables are defined de-
pending on the selected control approach. The strategies found in literature mainly focuses on
load shedding (Ba & Savla, 2017), dispatch (Reynolds-Barredo, Newman, Carreras, & Dobson,
2016), network reconfiguration (Qi, Sun, & Mei, 2015), and controlled sectioning (K. Sun, Hou,
Sun, & Qi, 2019). Frameworks to approach the problem are build mainly from network-based
methods, optimization, control systems, and computational approaches. Control problems are de-
fined in (Bienstock, 2015) as optimization problems that combine electric and network properties
on their constraints. Mainly solutions proposed are based on network-based methods and control
approaches (Bienstock, 2011).

Network-based approaches are mainly focused on the identification of network properties influ-
encing cascading failures and the network reconfiguration strategies to improve those properties.
Results in (Zhou & Elmokashfi, 2018) propose the addition of new nodes and to study its effects
over networks with a different structure. The central observation in this work is the influence of
heterogeneity of networks in its recovery. In (Tang, Liu, & Hao, 2016), a meta-heuristic algorithm
is used to reconfigure the network in order to improve its robustness. The algorithm generates
new connections between nodes to increase redundancy. In (Brummitt et al., 2012), branching
processes are used to estimate the level of connectivity between networks that reduce failure prop-
agation. Opposite results in (Fan et al., 2016) propose the controlled tripping of selected links in
order to stop the propagation of failures. Also, results in (Hoffmann & Payton, 2014) propose
controlled upgrades in the tripping threshold of lines in order to reduce propagation. Most of the
approaches result in useful information about the influence of network structure; however, models
used to simulate cascading failures does not include power flows and system dynamics.

On the other side, control systems approaches are mainly related to the analysis of stability and
feasibility conditions in networks modeled as dynamical discrete-time systems. Work in (Savla et
al., 2014) proposes a cascading failures model in flow networks for a single commodity. Coupling
between network dynamic and flow dynamic is evident in this work. A measure for resiliency is
defined according to the minimum of the possible disturbances in the network. Disturbances are
modeled as cumulative capacity changes for all the links. Flow routing is defined based on local
conditions to improve resilience margin. Results in Chapter 6 will be an extension of work in
(Savla et al., 2014) by the use of flow networks and the proposed flow bottleneck metric. Follow-
ing a similar model, results in (Ba & Savla, 2017) define an optimization problem focused on the
reduction of load shedding required to control the network during cascading failures. The method-
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ology used in this work is mainly connecting computational methods with mathematical properties
of the discrete-time dynamics of the cascading failure model. Work in (Como, 2017) generalize
flow network models first to order dynamical systems and summarize analytical results on the
resilience of those systems and analyze its stability properties; control objective of controllers is
mainly focused on maximizing demand service. However, the analysis is not directly applied to
power systems. Other approaches from control systems suitable to integrate network methods and
control properties are game theory. Results in (Cheng, Crow, & Ye, 2016b) resent a game theory
framework for the analysis of vulnerability in networks. In Chapter 7, we define a framework
to study optimal attacks strategies that generates worst-case scenarios of cascading failures. The
framework in (Cheng et al., 2016b) is extended from analyzing one-stage phenomena to integrate
several stages and evaluate conditions for maximum damage in the long term. The framework
integrate hidden failures models based on network topology evolution and failure probabilities due
to overflows.

Stochastic approaches are also proposed to identify relevant elements influencing vulnerability,
and possible control actions that mitigate failure risk in the long term. Zero-sum stochastic games
are used in (Ma, Yau, Lou, & Rao, 2013) for the integration of failure models and mitigation strate-
gies on power networks. The advantage of this kind of approaches is the possibility to evaluate
several stages f the event and the interaction that the operator can have with the network in order
to mitigate the effect of the failure propagation process. Hidden failures models can be integrated
to predict risk (Liao et al., 2017). Besides, transition probability estimation can be modeled based
on data historical or by the used of transition probability estimation by expert system. Based on
results in (Savla et al., 2014), (Liao et al., 2017), and Chapter 8, we solve the control problem of
minimizing lost of load by defining a stochastic game where optimal defender strategies respond
to works case scenarios and modify network transmission capacity according to the possible fu-
ture effects of cascading failures triggered by the action of the opponent. The integration of flow
networks and stochastic control make suitable the control of cascading failure risk by the solution
of the zero-sum stochastic games.

2.5 Conclusions

In the present chapter, a literature review concerning a network approach for power systems anal-
ysis during cascading failures was presented. Main network properties were established, and the
critical behavior of cascading failures was developed. Models for cascading failures were also
reviewed, and vulnerability assessment frameworks were described in order to define primary ne-
cessities covered in this work. Finally, mitigation strategies were reviewed, and the main results
from the literature used as a base for this work were summarized. Part II will start with the de-
velopment of the obtained results of this research that are based on the literature covered in this
chapter.



Part II

Network Connectivity and the Cascading
Collapse of Power network



Chapter 3

Strength of Connectivity and Robustness of
Power Networks

”Although cascading failures may appear random and
unpredictable, they follow reproducible laws that can be
quantified and even predicted using the tools of network science.
First, to avoid damaging cascades, we must understand the
structure of the network on which the cascade propagates.
Second, we must be able to model the dynamical processes
taking place on these networks, like the flow of electricity.
Finally, we need to uncover how the interplay between the
network structure and dynamics affects the robustness of the
whole system (Barabási et al., 2016).”

Albert-László Barabási
Network Science

Power network upon criticality phenomena and without control will experience uncontrollable
changes in operation and connectivity. To quantify these effects, we should identify main connec-
tivity properties changing under the influence of the event. This chapter aims to investigate the
strength of connectivity and robustness of power systems by evaluating three main properties of
the power systems: natural connectivity, edge connectivity, and flow bottleneck. Natural connec-
tivity property quantifies how robust the network is by measuring its paths redundancy having a
measure of closed walks between components at all lengths. Edge-connectivity property quantifies
how robust the connectivity of the network is against edge failures by measuring how many ele-
ments should fail before the number of network-connected components increases Flow bottleneck
property quantifies how robust the network is by measuring how its transmission capacity varies
during failure events. The properties are studied under failures scenario generated by node-degree
distribution. Several case studies are used to evaluate connectivity.
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3.1 Structural Connectivity

The power system is modeled as a finite undirected weighted graph G such that

G = (V , E) , (3.1)

where the node set V and the edge set E , with cardinality |V| = n and |E| = m, represent buses and
transmission lines, respectively. Also edges connecting nodes vi and vj are denoted by e = (vi, vj).
Let ki be the degree of node vi and kmin, kmax the minimum and maximum degree of the network
respectively. Let the adjacency matrix of G be A = (aij)N×N where aij = aji = 1 if nodes vi and
vj are adjacent and aij = aji = 0 otherwise. Following A is a real symmetric matrix with real
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN . The set { λ1, λ2, · · · , λN} is the spectrum ofG. A set toolbox of
functions in MATLAB based on MATPOWER case files is developed to model the power system
as a network. For more detail about toolbox see Appendix A.

In order to evaluate structural controlability and robustness we describe at next three properties
used to analyse the connectivity of the network: natural connectivity, edge-connectivity, and the
minimum cut set in flow networks. Following the three properties are described.

Natural Connectivity

Redundancy of paths between nodes can be useful to present an intuitive notion of graph robust-
ness Consider a network with a source node and a sink connected by different paths between
them. When one path fails, communication can still exist through alternative paths. The more the
alternative paths in the network, the more robust connection between the nodes. Natural con-
nectivity measures the redundancy of alternative routes as the scaled number of closed walks
of all lengths. A walk of lenght l in a graph G is a sequence of edges and vertices alternated
(v0, e1, v1, e2, v2, . . . , el, vl). A walk is closed if v0 = vl. Considers the weighted sum of numbers
of the shorter closed walks

S =
∞∑
k=0

nl
l!
, (3.2)

where nl is the number of closed walks of length l. By matrix theory

nl =
∑

i1,i2,...,il

ai1i2ai2i3 . . . aili1 = trace(Al) =
N∑
i=1

λli (3.3)
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where λi is the ith largest eigenvalue of A. Then

S =
∞∑
l=0

nl
l!

=
∞∑
l=0

N∑
i=1

λli =
N∑
i=1

∞∑
l=0

λli =
N∑
i=1

eλi (3.4)

The equation above shows that the graph spectrum can be used to obtain the weighted sum of
closed walks of all lengths. Scaling S by the number of nodes as follows,

λ̄ = ln

(
S

N

)
= ln

(
1

N

N∑
i=1

eλi

)
. (3.5)

Then, it is easy to see that natural connectivity increase strictly monotonically as edges are
added and is bounded by

0 ≤ λ̄ ≤ ln((N − 1)e−1 + eN−1) (3.6)

presenting an asymptotic behavior for N → ∞, given by 0 ≤ λ̄ ≤ N − lnN . Then, λ̄ provides a
sensitive metric for robustness during network evolution (Jun, Barahona, Yue-Jin, & Hong-Zhong,
2010).

Edge-Connectivity

For the network in (3.1) connectivity is defined as follows (Newman, 2003),

Definition 3.1.1 Connectivity in the network: The network G is connected if it contains a path
between vi and vj for all vi, vj ∈ V .

Suppose connectivity is a non-decreasing property of G for adding new edges. Then, the global
resilience of G with respect to connectivity can be defined as follows.

Definition 3.1.2 Global resilience: Let connectivity be a non-decreasing property with respect to
adding new edges to network G. The global resilience of G concerning connectivity is the minimum
number µ(G) such that by deleting µ(G) edges from G one can obtain a not connected graph.

Consider the definition of edge connectivity for a graph,

Definition 3.1.3 Edge connectivity: The minimum number of edges µ(G) whose deletion from a
graph G disconnects G.
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Definition 4. By comparing 3.1.2 and 3.1.3 we can suggest the proposition that follows.

Proposition 3.1.1 Global resilience with respect to connectivity in a graph G is equivalent to its
edge connectivity.

By using edge connectivity of graph G, we can evaluate the global resiliency of G as follows.
Considers an edge cut of G as a set S ⊂ E such that every directed path from vi to vj uses at
least one edge fromS. Define |S| as the cardinality of set S. Then, the global resilience (edge
connectivity) µ(G) is

µ(G) = min
S⊂E
|S|. (3.7)

In addition, let be kmin the minimum node degree of G. The upper bound for global resiliency
(edge connectivity) of G is µ(G) ≤ kmin.

Functional Connectivity

Finally, we consider functional connectivity. Given a network G = (V , E , c) with a single source
node vs and a single link node vt, a chain is a set of distinct arcs of G that can be arranged as
eij, ejl, ell, . . . , epq where the nodes vi, vj, vl, . . . , vq are distinct. A chain joins its edge vertices vi
and vq. In addition, considers a chain flow from vs to vt denoted by ζ, xst composed of a chain ζ
and a non-negative number representing the fow along ζ from source to sink. A flow in a network
is a collection of chain flows. A flow has the property that the sum of the xij of all chain flows that
contain any edge eij is not greater than the capacity of that arc ceij , i.e. cij ≥ xij ≥ 0 for alleij ∈
E . A cut set S is a collection of edges which has the property that every chain joining s and j
meets the collection. The value of a cut set S denoted by W (S) is the sum of the capacities of its
individual members. The value of the minimum cut set can be defined as follows.

Theorem 3.1.1 MInimal Cut Converse Theorem(Ford & Fulkerson, 1987)
The minimal value of a cut set W (S) taken from the all cut sets is the maximal flow value obtained
in a network.

Proof 3.1.1 Following the previous Theorem, finding the minimum cut set between vs and vt is the
dual oprimization problem of a Maximum flow problem between the nodes. Then

min
Sst

W (S) = max
esj

xsj. (3.8)

In the following section, we will evaluate the changes in network connectivity, using the prop-
erties described before, for multiple failure scenarios.
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3.2 Study of Random and Target Failures Impact on Connec-
tivity

This section describes the results obtained for the analysis of connectivity changes in power net-
works due to a different kind of failures. First, we define the set of case studies and the methodol-
ogy to generate the failures scenario. In the second part, we evaluate the failures scenario for the
case study and compare changes in the properties described before to identify patterns in connec-
tivity change.

3.2.1 Experimental Setup and Case studies

Algorithms to calculate natural connectivity, edge connectivity and minimum cut ser during fail-
ures escenary are developed. Algorithm 1 summarize the experiment.

Algorithm 1 Function robustness
Input: G = (V , E), A, type
Output: res

1: switch (the value of type)
2: case random:
3: eorden ← edgeList(G,random)
4: case high-high:
5: eorden ← edgeList(G,high-high)
6: case high-low:
7: eorden ← edgeList(G,high-low)
8: case low-low:
9: eorden ← edgeList(G,low-low)

10: end switch
11: res← Connectivity(A)
12: (Gnew, Anew)=delNextEdge(eorden,G)
13: if Enew 6= ∅ then
14: res← [res, robustness(Gnew,Anew, type)]
15: else
16: res← res
17: end if
18: return eorden.

Four failure scenary are shown. First random failures, where failure edge is selected randomly.
High-high scenario removes elements connected between nodes with high degree. High-low sce-
nario removes edges connected between nodes with high degree and nodes with low degree. Fi-
nally, low-low scenary disconnects edges between nodes with low degree. The algorithm is eval-
uated iteratively, until all elements are removed. Each measure is calculated for all the scenarios.
Network edges are ranked acording their connection nodes in order to obtain target list. Metric
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is calculated and graph should be updated to iterate the algorithm over the remaining network.
Depending on the criteria to calculate, other algorithms are used in order to calculate the mea-
sures. More detail about algorithms used to calculate natural connectivity, edge connectivity and
minimum cut set can be seen in the Appendix.

Case studies to evaluate connectivity are IEEE 14-bus, IEEE 30-bus, IEEE 33-bus, IEEE 39-bus,
IEEE 57-bus, IEEE 89-bus, IEEE 118-bus, IEEE 145-bus, and IEEE-300. Networks properties are
summarized in Table 3.1

Table 3.1: Network properties for the studied IEEE testbeds.

|V| |E| 〈k〉 kmax kmin γ load
IEEE 24 24 34 2.83 5 1 1.4167 2850 MW
IEEE 30 30 41 2.73 7 1 1.3667 179.2 MW
IEEE 33 33 37 2.24 3 1 1.1212 3.7 MW
IEEE 39 39 46 2.36 5 1 1.1795 6254.2 MW
IEEE 57 57 78 2.73 6 1 1.3684 1250.8 MW
IEEE 89 89 206 4.62 15 1 2.3146 5727.9 MW

IEEE 118 118 179 3.03 9 1 1.5169 4242 MW
IEEE 145 145 422 2.73 20 1 2.9103 283051.2 MW
IEEE 300 300 409 2.72 11 1 1.3633 23525.8 MW

3.2.2 Results and Discussion

Figure 3.1 presents natural connectivity λ̄ for each one of the power networks described in table
3.1. Networks with the highest natural connectivity are the IEEE 145-bus system with λ̄ = 7.1

and the IEEE 89-bus with λ̄ = 6.2. All other networks have an initial natural connectivity between
λ̄ = 1 and λ̄ = 1.5. Networks with high λ̄ have maximum degree kmax > 10. Other networks have
a lower maximum degree. The system IEEE 300 has poor connectivity, although it is the system
with more edges elements. Natural connectivity seems to be directly connected to network density.
Networks with higher density have higher redundancy than a network with low density.

Figure 3.1a shows changes in λ̄ due to the failure of edges connected between high degree nodes
Edges are ranked according to the degree of their ending nodes and are removed on that order.
Networks with higher λ̄ present significant changes in its connectivity after the removal of the first
ten edges. IEEE 89-bus system reduces its connectivity in more than 25% when less than 10% of
its edges are disconnected. Also, IEEE 145-bus lost almost 1/3 of its redundancy when less than
10% of its edges are disconnected. On the other side, IEEE 118-bus is not sensitive to failures on its
highly connected edges. Figure 3.1b shows changes in λ̄ for the failure of edges connecting nodes
with a high degree to nodes with low degree. Networks are less sensitive to these failures, requiring
almost three times distressed edges to reduce the same proportion of natural connectivity. Changes
in connectivity appear later than in high-high edges failure; however, the transition is faster for this
process.
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Figure 3.1c shows changes in λ̄ for the failure of edges connected between nodes with low
degree. Edges connecting low-low nodes seems to do not influence connectivity or redundancy
of networks. Transition threshold for natural connectivity loss occurs after more than 50% of the
network is affected.

The same behavior can be observed in Figure 3.1d, where natural connectivity changes due to
random edges disconnection are shown. Network connectivity is more sensitive to the random
process than low-low failure process. However, significant changes occur also, for edge failures of
more than 50%.

In general, it is possible to observe that network robustness due to redundancy is related to
the network density and a high node degree. Also, network redundancy is more sensitive to target
failures against edges connecting nodes with a high degree than random failures or failures in edges
connecting nodes with low degree. The existence of a single connected component is assessed by
using edge connectivity. Been power systems with sparse networks with a low average degree and
low density, edge connectivity is a measure of how easily nodes or components can be isolated
from the main component. All the networks present low edge connectivity equal to kmin = 1.

Figure 3.2 presents changes in edge connectivity for the different target and random disconnec-
tion processes. Figure 3.2a shows that target attacks to edges connected between highly connected
components do not change edge connectivity. This result shows that bridges connecting dense
subcomponents in the network do not exist. Thus, redundancy on inter-component connectivity
exists. For the other three cases High-low in Figure 3.2b, low-low in Figure 3.2c and random
process in Figure 3.2d, edge connectivity change very fast because low connected nodes have min-
imum degree producing node isolation once its corresponding edge is disconnected. Even if edge
connectivity does not give information about how redundant network is, it also gives information
about more vulnerable nodes to be easily disconnected from the grid due to a failure process.

Figure 3.3 presents a developed measure of edge connectivity, where connectivity between
supply and demand is measured. MCS gives information about the transfer capacity between
supply and demand nodes. MCS weight is normalized according to its initial weight. Evaluating
the change in the weight of the MCS, we evaluate how functional connectivity, related to power
transfer capability is affected due to different failure or processes.

Figure 3.3a presents changes in the weight of the MCS during the removal process of edges
connected between the nodes with the highest degrees. Different from the results in Figure 3.1
and 3.2, the IEEE 300-bus system behaves more robust to this removal process than the other
networks. It means that edges connecting highly connected nodes do not compose the MCS of
the IEEE-300bus systems but, edges connecting low degree nodes as can be observed in Figure
3.3c where MCS weight change due to the removal of edges connected to low degree nodes. The
network loses the 20% of its transmission capacity five times faster than in 3.3a. The IEEE-89-bus
systems are also sensible to transmission capacity loss due to the removal of edges connecting low
degree nodes. While it lost 30% of the transmission capacity in the high-high process when 102

edges are removed It lost 95% of its transmission capacity with the same number of deleted nodes
in the low-low process. The IEEE 145-bus systems if more fragile to failures in edges connected
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to high degree nodes. It means that the minimum cut set contains more connected nodes than
other networks. The IEEE- 39 system has a single edge connecting generation to load. Then it
lost all its transmission capacity when this single edge connected to low degree nodes failures.
Systems IEEE-30 and IEEE-39 have edges connected between low degree nodes in their minimum
cut set, and then these systems are vulnerable to low-low disconnection process and high-low
disconnection process in Figure 3.3b. Figure 3.3d presents random process. All network present
less fragility to random disconnection process than target processes.

Figure 3.4 present flow bottleneck described by Equation () a ratio between MCS capacity and
network loading present a rate of congestion or flow bottleneck in the network. Closes values
to q = 1 present a condition of flow infeasibility. Figure 3.4a presents the changes in q due
to a random deletion process for the IEEE 300-bus system. In this figure, we can observe how
network congestion increase by the removal of edges selected by random until they achieve a point
where flow infeasibility exist (q = 1). The figure also shows how an increase in load increases
this congestion. Network heavy loaded (4Lload). The network is very close to the limit, and the
removal of 20% of the edges results in flow unfeasibility. Also For network not loaded the Flow
infeasibility point is achieved when 80% of the network is disconnected. Figure 3.4b presents the
flow bottleneck constant changing due to the random deletion process for the IEEE-89 bus system.
When the network is heavily loaded, it is less vulnerable than IEEE-300 system. The network
presents initial lower congestion than IEEE 300-bus system. However, the system IEEE 89-bus
lost faster transmission capacity than the system in Figure 3.4a.

In general, we can observe how network robustness depends on degree connectivity of ele-
ments a network density. Edge-connectivity for power networks is very low due to the low average
degree of networks The minimum cut set combines structural connectivity with transmission ca-
pacity. Networks with a low degree are more fragile to low connected component failures than high
degree connected elements. The minimum cut set gives more information about how functional
capabilities could be affected by the nature of the structure. In order to evaluate this, consider
the measure of flow bottleneck where demand is compared to minimum cut-set weight. Flow bot-
tleneck presents a better measure of changes in functionality depending on changes in structure.
Depending on power demand, changes in the structure can affect more or less the functionality of
the system. Networks heavy loaded will achieve faster the point of failure, but this rate of change
will depend on network structure.

3.3 Conclusions

Three different properties, natural connectivity for redundancy, edge connectivity for connected
components, and the minimum cut set for transfer capacity were used to evaluate the strength
of connectivity and robustness of the power networks. Flow bottleneck dependency on-demand
increase is also assessed. Failures scenario in random and target process are presented. Results
show the necessity to consider the cascading failures scenario and metrics that include changes in
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Figure 3.4: The impact of random failures in transmission capacity for different demand scenario.

structure due to functionality and change in functionality due to the network topology. In general
response to failure changes under this methodology does not consider how the structure can change
the limits of functionality. Also, the network is affected by flows, so it is necessary to model a
failures mechanism that connects changes in structure with functionality and transmission capacity
of the networks. Also, failures strategy in these simulations is only considering trigger failures.
However, failures propagation is not modeled. So it is necessary to model failures consequences for
structures and functionality and also changes the spread of failures. Next chapter will model and
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describe a cascading failures mechanism where changes in structure and functionality are related to
limits in transfer capacity of edges. Besides, results showed the necessity to define metrics able to
be used in the comparison of different graphs and operation conditions. A need to evaluate failures
scenario that relates the reflect functionality and structure is also found. Finally, they reflect the
necessity to model the network considering its flow capacity and including power flow routing.
Next chapters will develop these approaches.



Chapter 4

Modeling Network Evolution during
Cascading Failures

”Self-organized criticality is a new way of viewing nature...
perpetually out-of-balance, but organized in a poised state (Bak,
1996).”

Per Bak
How Nature Works: The Science of Self-Organized Criticality

Chapter 3 evaluates connectivity evolution due to random and target failures based on nodes
properties. However, to analyze connectivity during failure events for power systems due to the
nature of the failure, connectivity changes should be related to functional properties as transmission
line congestion. A hybrid systems approach could be beneficial for the analysis of system behavior
under these events. In this chapter, we present a model of cascading failures based on congestion in
power networks. The model includes node angle dynamics and discrete network evolution due to
transmission line limits. The power network is modeled by an admittance matrix that experiences
a discrete state transition due to the power flow excess in edges. When edges achieve its capacity
limit, the jump map generates the transition in the matrix configuration, by switching of elements
related to the saturated edge. Finally, we present a case study based on a small cycle network.
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4.1 System Model

Assume that the transmission lines are lossless and the voltage magnitudes are constant at 1.0 unit.
The physical topology of the power network is described by an undirected graph G = (V , E) where
n network nodes indexed in the set i ∈ V = {1, . . . n} and edges set E . Let Vs ⊂ V and Vd ⊂ V
be the set of supply and demand nodes respectively. Transmision nodes without supply or demand
are Vb ⊂ V . Each node holds a time-dependent phase angle state θi : R≥0 → R. Also, consider
a node associated supply-demand vector p := (p1, p2, . . . , pn), where p : RV ; pi > 0 for i ∈ Vs,
pi < 0 for i ∈ Vd, and pi = 0 for i ∈ Vb. We assume pure reactive lines, implying that each edge
(i, j) ∈ E is characterized by its reactance rij = rji > 0. Given the power supply/demand vector
p and reactance values, a power flow is a solution (f, θ) of∑
i∈N (i)

fij = pi, ∀i ∈ V , (4.1)

θi − θj − rijfij = 0, ∀(i, j) ∈ E , (4.2)

where Ni is the set of node neightbors for node i, fij is the power flow from node i to node j. Eq.
(4.1) guarantees flow conservation and (4.2) captures the dependency of the flow on the reactance
values and phase angles. Additionaly, it implies that fij = −fji. When the total supply equals the
total demand on each connected component of G, Eqs. (4.1) and (4.2) have a unique solution and
can be written as the following matrix equation:

LΘ = p (4.3)

where Θ := RV and L ∈ RV×V is the admittance matrix of the system, defined as follows:

lij =


0 if i 6= j and (i, j) /∈ E
−1/rij if i 6= j and (i, j) ∈ E
−
∑

z∈N (i)

li,z if i = j

. (4.4)

Notice that the admittance matrix L is the Laplacian matrix of the graph G and the solution of
the power flow is obtained by

Θ̄ = L†p, (4.5)

where L† is the pseudoinverse of L.
Consider also a time-varying interaction pattern where for (h, k) ∈ V × V , such that h 6= k,

nodes h and k share a flow if ahk = akh ∈ {0, 1} is set to 1. The binary values ahk represent the
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state of edges in G, and they are determined for all indices (h, k) taking values in the index edges
set:

E := {(i, j) : i ∈ V , j ∈ V \ {i}} . (4.6)

Besides, a vector-based on the previous index set is defined as follows

a := (a12, . . . , a1n, . . . , an−1,n−1, an−1,n) , (4.7)

where a ∈ {0, 1}n(n−1). The elements of a describe all the possible pairwise interactions among
nodes in mathcalV Thus, the edges in a are state-dependent, and each node may have a changing
value number of active connections with other nodes. The degree of node i, for each i ∈ V is
defined as follows

ki =
∑
j 6=i

aij. (4.8)

The model proposed in this chapter aims at integrating both a continuous approach of the power
flows (described by suitable variations in state θ) and the discrete variations in the network topol-
ogy pattern concerning to violations on lines power capacity were the state a instantaneous jumps
specify violations). The modeling of the continuous changes and instantaneous jumps of the state
of the power network during cascading failures is based on a hybrid systems framework. Hence,
the state of the system x := (Θ, a,p) evolves in the set:

(Θ, a,p) ∈ X := Rn × {0, 1}n(n−1) × Rn. (4.9)

Respecting the dynamics of the system model, we consider flow equations for the overall state
variable (θ, a, p):
θ̇i =

∑
j∈I\{i} aij (θj − θi) + pi + ui for all i ∈ I

ȧij = 0 for all (i, j) ∈ E
ṗi = 0 for all i ∈ V ,

(4.10)

,
or in their matricial form


Θ̇ = −LΘ + p + u

ȧ = 0

ṗ = 0

(4.11)
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The following observation motives dynamics in (4.10): the equilibrium point of the flow map
in (4.10) is an approached solution of the DC power flow in (4.5). Also, the control action is
event-triggered and are defined as equally distributed loads.

The interactions are constrained to pairs of nodes (i, j) sharingan active edge (aij = 1). On the
flow dynamics in (4.11), the network graph remains constant (ȧij = 0) during the flowing of the
hybrid solution.Thus, structure changes of the power network graph are captured by the jumps of
the hybrid solution while leaves the angles Θ unchanged. Jumps only affect the elements aij of a

by following the set of jump rules applied for each (h, k) ∈ E as follows:



θ+
i = θi for all i ∈ V
a+
hk = 1− ahk (Θ, a,p) ∈ Dhk

a+
ij = aij for all (i, j) ∈ E \ {(h, k)}
p+
i = 0 (Θ, a,p) ∈ Dhk ∩ {ki − ahk = 0}
p+
i = pi for all i ∈ V \ {h, k}

(4.12)

According to the above equation, a jump (toggle between 0 and 1) of edge ahk is enabled when
the state (Θ, a,p) belongs to the set

Dhk := {ahk = 1} ∩ {|θh − θk| ≥ ce} for all (h, k) ∈ E . (4.13)

Jump equation in (4.12) shows that across one jump hybrid solutions only experience the change
of one edge (i, j) ∈ E . This performance does not prevent the simultaneous deactivation of mul-
tiple edges. However, the hybrid solution with its multiple jumps conveniently represents such
simultaneous activation/ deactivation. This description of the DC power flow networks enables the
qualitative analysis of its solutions by estimating the impact of edge dynamics by the independent
change of one edge aij at a time under the condition that (θ, a, p) ∈ Dij .

In the jump set Dhk of (4.12), ce > 0 is the line capacity. The connection between nodes
deactivated when the two nodes share a flow superior to the transmission capacity of its connection.
For this reason, jump rule permits the evaluation of sectorized cascades in isolated network areas.
The solution of the dynamics in (4.10) and (4.12) will converge to a unique global stable solution
of the power flow after failures.

The jump dynamics is finally written by compactly representing (4.12) by the update laws:

 θ+

a+

p+

 = gh,k(θ, a, p, u), (θ, a, p, u) ∈ Dhk, ∀(h, k) ∈ E , (4.14)
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which can be grouped together into a set-valued map enabling any of the allowable jumps:

 θ+

a+

p+

 ∈ G(θ, a, p, u) :=
⋃

(h,k):(θ,a,p,u)∈Dhk

ghk(θ, a, p, u), (4.15)

where D :=
⋃

(h,k)∈E Dhk is the jump set of the hybrid dynamics and (θ, a, p, u) ∈ D. Finally,
the hybrid dynamical model includes the flow map (4.10) described in terms of the following
state-dependent Laplacian matrix L(a) ∈ Rn×n:

L(a) := {lij(a)}(i,j)∈V×V , (4.16)

where

lij(a) :=

−aij, if i 6= j,∑
j∈V\{i}

lij(a), if i = j.
(4.17)

Using the above definition, the dynamics in (4.10) can be written compactly as the flow equation: θ̇

ȧ

ṗ

 ẋ = f(x, u) = f(θ, a, p, u), (4.18)

and

f(θ, a, p, u) :=

 −L(a)θ + p+ u

0

0

 , (θ, a, p, u) ∈ C, (4.19)

where flow set

C :=
⋂

(h,k)∈E

X \Dhk (4.20)

is defined according to the state space X defined in (4.9) as the closed complement of the jump
set D. If the state belongs to the interior of the jump set, the definition of C ensures that solutions
to the system dynamics cannot flow. Finally, the power network cascading failure based on hybrid
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systems could be described in the form:

H :

{
ẋ ∈ f(x, u), x ∈ C
x+ ∈ g(x, u), x ∈ D.

(4.21)

In order for the flux to be well defined, the control action u must be balanced concerning the
active link set E . This is ensured by the following definition of the state-dependent control space
U(Θ, a,p):

U(Θ, a,p) = cube(p)
⋂
BL, (4.22)

where

(p+ u) ∈ BL :=

{
u ∈ RV |

∑
i∈V

(pi + ui) = 0, i ∈ V

}
, (4.23)

and cube(p) characterizes the load shedding property and is defined by:

cube(p) :=
{
u ∈ RV |0 ≤ uv ≤ pv for pv ≥ 0

pv ≥ uv ≥ 0 for pv < 0} .

U(Θ, a,p) includes all admissible load shedding controls at state (Θ, a,p). In particular, if all
the supply and demand nodes are disconnected from each other at state (Θ, a,p), then BL = {0},
and in this case U(Θ, a,p) = {0}.

4.2 Case Study

This section presents the behavior of the model for different failure scenarios. The network dy-
namic is shown, and the changes in jump set and the jump map due to failure spread are also
shown.

4.2.1 Case 1: no failure

Considers a cycle graph G with N = 10 with adjacency matrix A0. Each node has an associ-
ated phase state θi and initial condition θ0 ∈ [−0.5, 0.5]. Also, each node has a power value
pi; this value is positive for generator nodes and negative for demand nodes. In this example
p = [1,−1, 1,−1, 1,−1, 1,−1, 1,−1]. The system achieves an equilibrium point where the power
flows are filling ce constraints. Figure 4.1 shows the network flows for no failure case. The nine
flows can be seen in different colors. Every flow achieves the same absolute value; The positive
or negative value assigns a direction to each flow. For example, for generator node v1 flows f12

and f1−10 are positive because power, from node 1, flows through load nodes 2 and 10. During
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Figure 4.1: Solutions to Hn for network flows fij = θi − θj on each edge of a cycle graph G that
asymptotically converge to the solution for the continuos dynamis with random initial conditions
in θ0 ∈ [−0.5, 0.5]. The equilibrium state for θ is the unique solution for p0 where

∑
p0 = 0.

the process, the balance between power and demand is achieved. The phase variables θi for each
node achieves bounded values too. Convergence times and equilibrium points depend on the graph
structure, adjacency matrix weights, and node power values.

4.2.2 Case 2: few failures

In case 2, the initial system condition is the final equilibrium state in Figure 4.1.
A process of failure initiate by outages of the edges connecting demand node 2 to the network.

As a consequence, the system power balance is broken, pgen > pload. The system’s balance occurs,
reducing the generated power by a quantity of δp. The systems move to a different flow balanced
point. However, at this point, trying to achieve equilibria the system does not fill maximum power
conditions. As a result, some edges are disconnected. Figure 4.3 presents the changes in network
topologies as a result of the failures.

In the first stage, node two is disconnected by the edges connecting node 2 with 1 and 3. This
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Figure 4.2: Upper figure depicts jump events for A where edges aij goes to zero when a failure
occurs. Bottom figure shows solutions to Hn for network flows fij = θi − θj on each edge. After
failure process ends, the final connected component stabilizes itself.

jumps occurs by changing a21 and a23 from 1 to 0. The system flows again, but a loss of balance
takes power flows in occurring to disconnect edges, and power flows during the time. The follow-
ing jumps occur by an excess of power in f1,10 and f3,4. Nodes 3 and 1 are now disconnected from
the network. Changes in pi balance power. However conditions in θ takes the flows again up to the
constraints on flows f10−9 and f45. As a result, a new failure event occurs; nodes 4 and 10 are dis-
connected now. Finally, the system stabilizes, and a final connected component remains between
nodes 5, 6, 7, 8, and 9. Figure 4.2 shows jumps in the a state representing changes in network
topology, in time. Also on the bottom side, it shows power flows fij and its jumps, and final stable
state. The final power associated to nodes are p = [0, 0, 0, 0, 0.5, −0.75, 0.5, −0.75, 0.5].

4.2.3 Case 3: cascade failure

In the last case, a cascading failure process occurs disconnecting the entire system. In this case, the
process begins with initial conditions far from the solution point obtained from case 1. As in case
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2, failure process initiated by outages of the edges connecting the demand node 2 to the network.
The sequence of failures originated by this event is shown in Figure 4.7. The order and time of
failure occurrence can be observed in Figure 4.4. The associated changes for each time in fij and θ
can be seen respectively in Figures 4.5 and 4.6 respectively. Node dynamics is not smooth because
of sudden changes occurring in edges.

4.3 Conclusions

The chapter proposes a hybrid dynamical model of cascading failures in power systems. First-
order flow equations are used to model the dynamic behavior of the power flow, and transitions
due to power congestion in lines define the discrete dynamics in network evolution. At the future,
studies of the model can include stability analysis of an output designed function that represents
the state of load during the time. Besides, the framework will include proposed control strategies
to reduce power losses.
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Figure 4.4: Jump events for A where edges aij goes to zero if a failure occurs. All edges of graph
G are disconnected when the cascade failures end
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Figure 4.5: Solutions to Hn for network flows fij = θi − θj on each edge of a cycle graph G. A
cascade failure process occur affecting the stability of the solutions. The failure event occurs in all
the network making every flow goes to zero.Initial conditions are randomized in θ0 ∈ [−0.5, 0.5]
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Figure 4.6: Flows of phase angle θi for every node in G during a cascade failure process. State of
node variables jumps depending on network connectivity
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Chapter 5

Identification of Cascading Propagation
Paths

”My dear, here we must run as fast as we can, just to stay in
place. And if you wish to go anywhere you must run twice as fast
as that (Carroll & DAL, 2015).”

Lewis Carroll
Alice in Wonderland

Prediction of vulnerable lines during cascading failures is an essential issue for power networks.
The identification of critical lines may enable the application of targeted countermeasures and
reduce cascading failure effects. Based on topological information and line power transmission
capacity, we propose the use of cut-sets (CS) to quantify the line significance during cascading
failures phenomenon. We calculate a CS-based measure by the use of the Nagamochi-Ibaraki
algorithm. Then, we compare the CS measure with other network-based and flow-based indices:
the edge-betweenness centrality and the power flow centrality over cascading failures in a Quasy
Stable-State (QSS) approach of the model in Chapter 3. Simulation results show that the CS
measure outperforms in predicting the edges significance for the cascading failure propagation
path.

First, the network model is described. It involves inherent electrical properties regarding the
transmission line capacity of every element. Second, the Nagamochi-Ibaraki algorithm is pre-
sented. This algorithm identifies the critical edges. Third, the cascading failures algorithm is intro-
duced. Cascading failures will be simulated for different failures. Failures propagation paths are
identified. The results are compared with the results of the CS-measure and benchmark measures.



5.1 Network Model 52

5.1 Network Model

We model power networks as finite undirected weighted graphs

G = (V , E , c) , (5.1)

where V and E are the sets of nodes and links, representing buses and transmission lines, respec-
tively, c := [c1, c2, . . . , ce, . . . cM ] is the vector of link capacities and M = |E|. The physical
topology of the grid is described by an n × n weighted adjacency matrix W with elements wij ,
where n is the cardinality of V . For every transmission line connecting bus i and j, wij = ce ,
where e represents the edge between nodes vi and vj . Parallel circuits are simplified to a single
edge with increased capacity.

5.2 Nagamochi-Ibaraqui Algorithm

The Nagamochi-Ibaraki algorithm is a computational method to calculate the edge-connectivity of
a graph G identifying the CS with minimum capacity between all the nodes. The algorithm presents
advantages over other methods that require flows, paths, or network flow direction (Frank, 1994).
Consider the undirected weighted graph in (5.1). Let c(vx, vy) denote the minimum weight of a cut
separating nodes vx and vy. The edge connectivity λ(G) of G is the minimum of c(vx, vy) values
over all the pairs of nodes.

For two disjoint subsets of nodes VX ,VY , let d(VX ,VY ) denote the edges weight sum for edges
connecting VX and VY . Consider a node order v1, v2, . . . , vn of the nodes in G. Vi denotes the set
of the first i elements. A node order is defined as legal if

d(Vi−1, vi) ≥ d(Vi−1, vj), (5.2)

for every pair i, j (2 ≤ i < j ≤ n). If we delete the edges connecting vn and vn−1, the legal
ordering remains legal, i.e., v1, v2, . . . , vn−1 for Ḡ1 := G \ {vn} and v1, . . . , vn−2, vn is legal for
Ḡ2 := G − vn−1. Consider also that

c(vn, vn−1) = d(vn,Vn−1). (5.3)

The algorithm is based on the existence of a legal node order, following (5.2), in the weights of
the cut-set (5.3) and the following observation from (Frank, 1994): Let vx and vy be two nodes for
which d(vx) = c(vx, vy). If there is a minimum cut of G, µ(G) between vx and vy, then µ(G) =

d(vx), and the star of x is such a cut. If no minimum cut of G separates vx and vy, then, shrinking
vx and vy into one node does not destroy any minimum cut. In this case the edge connectivity of G
is equivalent to the edge-connectivity of the shrunken graph.
Algorithm 2 presents the steps of the Nagamochi-Ibaraki Algorithm. In addition, Algorithm 3
identifies the vulnerable edges.
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Algorithm 2 Nagamochi-Ibaraki Algorithm
Input: G = (V , E , c)
Output: µ(G)

1: G1 := G
2: for i = 1 to i = n− 1 do
3: Determine a legal ordering of the nodes of Gi according to (5.2) and (5.3).
4: Put in a list the last node vi of this order along with the value d(vi).
5: Construct Gi+1 from Gi by shrinking the last two nodes of the ordering.
6: end for
7: Choose an element vj of the list for which d(vj) is minimum.
8: return µ(G) = d(vj).

Algorithm 3 counts and identifies the critical edges. If several minimum cut-sets exist in the
graph, the function includes the edges from all the minimum edge cuts. The algorithm deletes one
edge at a time and evaluates Algorithm 2. If the network minimum cut is reduced by removing eij ,
then, the edge eij is added to the critical list.

Algorithm 3 Critical Edges Algorithm
Input: G = (V , E , c)
Output: Ecritic

Find µ(G) by Algorithm 2.
2: for all e ∈ E do

Remove edge e, Ê ← E \ {e}.
4: Ĝ ← (V , Ê).

Find µ(Ĝ) by Algorithm 2.
6: Check µ(Ĝ) < µ(G) .

if YES then
8: increase the number of critical edges s = s+ 1.

Add edge e to the critical edge set Ecritic.
10: end if

end for
12: return Ecritic.

5.3 Cascading Failures Algorithm

The cascading failures process is shown in Algorithm 4. Each simulation starts with the initial
state of the power system before a trigger failure or attack. First, it generates the network-based
model for the power system and calculates the DC power flow by using the input information of
the network described by the tuple C = (B, T,p). The object C includes all the information of the
network structure in the branches matrix T . It also includes the operation supply/demand for each
node in p and buses classification in matrix B.
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After the power flow calculation, the algorithm evaluates the branches overload as the rate of
useRoUe = fe

ce
of every edge, where fe is the power flow on edge e. It also evaluates the maximum

overload, RoU∗= max
e∈E

RoUe. If its value is higher than a defined maximum threshold of overload

in the network, then it disconnects the overloaded edges. Once it finishes, it evaluates if a feasible
flow exists for the system and repeats the process. If the threshold value is not exceeded, the
simulation stops and returns the new state of the network with all its parameters updated.

The algorithm also identifies isolated nodes and dismisses them for a new iteration of the cas-
cade failures algorithm. If the network is separated in several groups of connecting elements, the
algorithm stops and returns the final network state. The algorithm also updates parameters and the
tuple Cnew = (Bnew, Tnew,pnew) to be evaluated by the routing policy generator.

5.4 Experimental Setup

This section presents the benchmark measures to be used. All measures are compared against the
CS-based measure calculated in Section 5.2. Better prediction corresponds to measures closer to
the edges identified with high failure probability. Three metrics are used: edge failure probability,
edge-betweenness centrality, and flow rate of use. The metrics are described in the following. The
edge failure probability ρ(e) is calculated by several iterations of the cascading failures algorithm
resulting in different failure conditions. The edges with a probability of failure ρ(e) ≥ 0.02 are
considered vulnerable, as well as members of the most common cascading failures paths. Edge-
betweenness centrality B(e) counts the shortest paths between a pair of nodes passing through the
edge as:

B(e) =
∑
i 6=j

σij(e)

σij
, (5.4)

where σij is the number of shortest paths from node i to j, and σij(e) is the number of shortest
paths from i to j that pass through edge e. A parameter Rate of Use (RoU ) is defined for each
edge, measuring the edge loading with respect to its capacity

RoUe =
fe
ce

for all e ∈ E . (5.5)

5.5 Results and discussion

The IEEE 30-bus power system is considered a case study. The graph model of the power network
with edge weights assigned depending on edge transmission capacities are shown in Figure 5.1.
The schematic of the system is shown in Figure 5.2. The system has 30 nodes, 41 edges, six gen-
erators, and 20 loads. Its primary power injections come from generators in nodes 2 and 13. Also,
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Algorithm 4 Cascading Failures Simulation
Input: C = (B, T,p)
Output: Ê for all the trials.

while trials ≥ 0 do
2: Initialize the network G based on C = (B, T,p).

Select and apply a random trigger failure e∗.
4: Get power flow f . Check for power flow convergence.

if YES then
6: for all the edges e ∈ E do

Evaluate the rate of use RoUe = fe/ce.
8: end for

Evaluate maximum rate of use, RoU∗= max
e∈E

RoUe.

10: Check condition RoU∗ ≥ 1.
if YES then

12: Disconnect overloaded edges,
Ê := {e ∈ E | RoUe ≥ 1}.

14: Recursively repeat the algorithm.
else

16: return Disconnected edges set Ê .
end if

18: else
Find unintentional disconnected nodes set I where I := {vi | N (vi) = ∅}.

20: Find all the connected components P where,
P = {Vi ⊆ V | for all (i, j), Vi ∩ Vj = ∅ ∧ N (Vi) = ∅}.

22: Check if there is more than one connected component, |P| > 1.
if YES then

24: return G, Ê
else

26: Update the network without the isolated nodes.
Recursively repeat algorithm.

28: end if
end if

30: Merge the data Ê for trial i.
end while

32: return Ê for all the trials.
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Figure 5.1: Network representation of the k-core of IEEE 30- buses power system with k = 2.
The edges thickness represent their weights, i.e., transmission line capacities. Highlighted edges
correspond to the critical elements identified by the CS method.

the higher loads are located on node 2, node 7, and node 8. Highlighted red edges in Figure 5.1 and
Figure 5.2 are the critical edges identified by the CS measure. More vulnerable lines are connected
between them and located in a reduced system area. None of the nodes has a high connectivity de-
gree, and all edges have low capacities. Next, benchmark measures for identification of vulnerable
edges are performed according to (5.4), (5.5) and Algorithm 3. Betweenness centrality, RoUe and
CS results are shown in Figure 5.3a.

Each measure evaluates edges significance depending on its steady-state operation. The edges
significance based on topological and electrical properties is quite different. On the other hand,
some edges, such as e6−28, e10−6 and e12−4, are at a critical significance according to the between-
ness measure, but null significance according to the RoUe centrality. On the other hand, edges
such as e6−8 and e15−23 are at a critical significance according to power flow centrality but have
no significance according to betweenness centrality. Finally, the CS measure identifies significant
edges that none of the previous measures had pointed out: edge e15−18, edge e18−19, e23−24, and
e24−25. The CS measure shows that most of the edges have no significance, and all the significant
edges in the system are placed between nodes v15 to v30.

Cascading failures simulations are performed according to Section 5.3. Experiments for trials =

4000 with different combinations of q-trigger events, q values, and cascading effects are performed.
For each q-trigger, where q is the number of initially disconnected edges, elements are randomly
selected and disconnected. After that, the cascading effects are evaluated following the described
cascade simulation algorithm. After q-trigger edges are removed, the system could continue in the
same state, or cascading failures of different sizes could occur. Cascading failures occur for q = 4.
Below this q value, the network is robust and maintains its function without cascade.
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Figure 5.2: IEEE 30-bus system.

After experiments are performed, a probability of failure is calculated for each one of the edges
according to its participation in cascading propagation. All the edges that exist in the cascading
failures propagation path for more than one trial of cascading failure simulation are identified and
shown in Figure 5.3b. The edge failure probability is also shown on the right side of the figure.
Results show that 34% of the edges participate in cascading failures scenarios, but, only 7.3% of
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the edges have a high probability of failure. Edges found by the experiments and its probability
of participation in a failure event are used to compare the effectivity of the proposed measures and
thus predict the edges in the cascading failures paths. Failure predictions are compared between
the different measures in Figure 5.4.

Betweenness centrality identifies edges with a normalized value of B(e) > 0.5 as vulnerable.
For power flow centrality, lines with RoUe > 0.5 are considered weak. Probability of failure is
also normalized according to its maximum value. Results show that the most significant edge is
identified by RoUe centrality and CS measure. Also, the second most significant is identified by
B(e) centrality and CS measure. RoUe centrality predicts failures in edge 22, edge 29, and edge
30. Betweenness centrality B(e) predicts failures in edge 20, edge 21, edge 29, and edge 32.
The CS measure identifies most of the significant edges: edge 30 and edge 32. Also, CS identify
three significant edges not identified by the other measures: edge 23, edge 33, and edge 35. The
CS measure joins topological and flow-capacity network properties that reflect the consequences
occurring during cascade effects. A hidden failure with high probability is identified in edge 31;
however, it is not predicted by any measure. Possibly, it could be related to a similar effect in the
node neighborhood of the CS edge set.

Figure 5.5 shows the nodes that experiment cascading failures effects. More affected nodes
with the highest probability of failure ρ(v) could be identified by considering the incidence nodes
for edge members of the CS. Node 15, node 23, and node 24 are the most affected. Nodes out of
the CS node set have significantly lower probabilities of failure. All the cascade events consid-
ered are occurring before the network partition. Isolated nodes are considered, but disconnected
components and re-dispatch are not considered at the first stage of the cascade. In this way, the
CS measure proposed in this work gives information about contingencies that the network could
experience before significant unintentional network separation. Even if not all possible events of
failure are predicted, the CS measure helps in cascading failures path prediction and shows es-
sential information about the most vulnerable areas of the network. By combining topological
and electrical properties in the measure and comparing it with experimental setup and cascading
failures simulation, we can state the applicability of the proposed vulnerability measure.

In this work we have presented a CS-based vulnerability measure that consists in identifying the
set of edge-cuts with the minimum capacity in a given power network. A computational method
based on the Nagamochi-Ibaraki algorithm is used to calculate the CS. Computational simulations
of cascading failures for the IEEE 30-bus case study show that the CS method is more effective
in qualifying the significance of an edge than betweenness and power flow centrality. Lines in the
minimum cut-sets are influential in the cascading failures propagation path. If q-triggered failures
of any kind are performed in the network, then, the probability of occurrence of cascading failures
effects on the edges in the cut-sets is higher than in all other edges. The aim of applying the
proposed CS method to power networks is the prediction of edges in the cascading failures path.
This information will be useful to increase the capacity of the network or reinforce its connectivity
and reduce the probability of cascade. For future work, CS methods will be used to improve the
robustness of the power network against cascading failures by considering lines of reinforcement
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5.6 Conclusions

In this chapter we have presented a CS-based vulnerability measure which consists of identifying
the set of edge-cuts with the minimum capacity in a given power network. A computational method
based on the Nagamochi-Ibaraki algorithm is used to calculate the CS. Computational simulations
of cascading failures for the IEEE 30-bus case study shows that the CS method is more effective
in qualifying the significance of an edge than betweenness and power flow centrality. Lines in the
minimum cut-sets are influential in the cascading failures propagation path. If q-triggered failures
of any kind are performed in the network, then, the probability of occurrence of cascading failure
effects on the edges in the cut-sets is higher than all other edges. The aim of applying the proposed
CS method in power networks is towards the prediction of edges in the cascading failure path.
This information will be useful to increase their capacity or reinforce its connectivity and reduce
the probability of cascade. In the following chapters, CS methods will be used to improve the
robustness of the power network against cascading failures by considering lines reinforcement in
planning.



Part III

Controlling Cascading Collapse in Power
Networks



Chapter 6

A Minimum Cut-Set Vulnerability Analysis
of Power Networks

”You may never know what type of person someone is unless
they are given opportunities to violate moral or ethical codes
(Taleb, 2012).”

Nassim Nicholas Taleb
Antifragile: Things That Gain From Disorder

Reducing vulnerability to cascading failures and attacks is a critical challenge for the energy
grid of the future. For this, new frameworks and metrics should be proposed to identify network
characteristics affecting system vulnerability. This chapter studies the minimum cut set (MCS)
vulnerability. The study aims to attack the MCS and evaluate subsequent cascading failures as
the vulnerability analysis framework, allowing the assessment of global and local vulnerability
generated by congestion within the transmission network. Network model and analysis consider
supply/demand placement. The chapter shows an extension of the QSS model to include the re-
dispatch of power flow after cascading failures events. The network evolves either by cascading
failures or sequential attacks. We propose an MCS attack strategy. The strategy is designed to
maximize the attack long-term expected reward while reducing attack sequence duration. We
develop algorithms for identifying targets and updating power flow solutions and system balance
during network evolution. Case studies are used to verify the framework results. A vulnerability
index, based on attacks efficiency, has been proposed to assess the network response to different
targets selection. Finally, we assess the minimum cut-set vulnerability analysis on networks with
different properties and sizes.

6.1 Cascading Failures Model based on Flow networks

The network-based power system model proposed in this work generates valuable information
about connectivity, nodes interaction, network evolution and failures. The model includes the rela-
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tion between network-based characteristics (e.g. graph topology, adjacency matrix, edge weights)
and system-based characteristics, such as generation/load profile, power flows and cascading fail-
ures.

6.1.1 Network-based Characteristics

The power system is modeled as a finite undirected weighted flow graph G such that

G = (V , E , c) , (6.1)

where the node set V and the edge set E , with cardinality |V| = n and |E| = m, represent buses
and transmission lines, respectively. In addition, ct ∈ Rm is a vector with link flow transmission
capacities. In this model, we equate capacities with edge weights. Parallel circuits between buses
are represented by a single edge with the sum of their respective capacities.

6.1.2 System-based Characteristics

For the power network in (7.1), let Vs ⊂ V be the set of supply nodes and let Vd ⊂ V \ Vs be the
set of demand nodes in the network. Transmission nodes without supply or demand are Vb ⊂ V .
Consider a node associated with supply/demand vector p where p ∈ Rn; pv > 0 for v ∈ Vs, pv < 0

for v ∈ Vd, and pv = 0 for v ∈ Vb and
∑
v∈V

pv = 0. Consider a flow vector at time t, f t ∈ Rm where

f te is the flow at edge e and satisfies capacity constrain |f te| < cte on every link e ∈ E and flow
conservation

∑
e∈Etv

f te = pv for every node v where E tv ⊆ E is the set of all incident edges to the node

v. The vector flow f t is defined by a routing policy Ξt. The routing policy defines the magnitude
and direction of every edge flow in the network. In this study, we consider a linear routing policy
such that

f t = Ξtp, (6.2)

where Ξt is an m × n. The matrix Ξt maps the supply/demand profile p onto the power flows
going through each edge. The flow routing will depend on the electric and topological properties
of the power system. In this study, we use a routing policy based on the DC power flow.

To derive Ξt, following (Cetinay, Kuipers, & Mieghem, 2018), consider the DC power flow
equations of the power network in terms of the network adjacency matrix A,

pv =
n∑
i=1

= avibvi (θv − θi) = θv

n∑
i=1

avibvi −
n∑
i=1

avibviθi. (6.3)

The terms θv and θi are the voltage phase angles at bus v and i. bik is the reciprocal of
the transmission line reactance between buses. Then, consider an auxiliary adjacency weighted
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matrix H, where hvi = avibvi is an edge weight associated with the impedance. Then, the
corresponding matrix representation of the DC power flow equation in the power network is

p =

{
diag

(
n∑
i=1

hvi

)
−H

}
Θ = (D−H) Θ, where D is a weighted degree diagonal matrix.

Introducing the weighted laplacian matrix Q̃ = D−H, the equation can be described as p = Q̃Θ.
Calculating a pseudoinverse Q̃+ of the weighted laplacian it is possible to describe voltage angles
of Θ as a function of pt as Θ = Q̃+p. The flow fe at the edge e between node v and node i can
be determined as fe = bvi (θv − θi), with its related matrix representation f t = B̃>Θ. The term
B̃ is the weighted incidence matrix with b̃ve = hvi if edge flow fe goes from v to i, or b̃ve = −hvi
if edge flow fe goes from i to v and zero otherwise. Then, replacing Θ by the matrix equation
as a function of the pseudoinverse, we get f t = B̃>Q̃+. As a result the routing policy matrix is
Ξt = B̃>Q̃+ with the element ξtij = b̃eiq̃

+
vi.

6.1.3 Network Evolution and Cascading Failures

The network dynamics presented here follows the nomenclature and the model presented in (Savla
et al., 2014). Consider the power system modeled as a flow network in (7.1) with supply/demand
vector p and flows in (7.2) evolving in time. Let Gt = (V t, E t, ct) and f t describe the state of the
system at every time t = 0, 1, . . ., where V t ⊆ V and E t ⊆ E are the active nodes and links at time
t.

For the initial condition of the system (G0, f0), all the elements of the node and edge set start
active, i.e. V0 = V , E0 = E , and f0 is the initial flow. At every time t, network Gt should be
connected. Define Ĝt as the largest connected component in Gt and Ĝ0 ≡ G0. The largest connected
component of the network refers to the biggest connected part of the entire nodes set where a
feasible flow exist. Considering the largest connected component, we are modeling the network in
its natural dynamical behavior. Edge disconnection produced by cascade propagation may generate
uncontrolled component islanding. Uncontrolled islanding or redispatch is considered during the
cascade propagation. In this way, the small connected components could have only load nodes
or unbalanced supply-demand nodes that collapse during the cascade evolution. Attack-defender
threat models could include controlled actions, but defender actions are out of the scope of this
model. The network changes its state as follows. Edges become overloaded when its current flow
exceeds the transmission capacity. All the overloaded edges are disconnected along with all the
edges in small subcomponents isolated from the largest connected component Ĝt. Accordingly,

E t+1 = E t \
{
e ∈ E : f te ≥ ce

}
∪
{
e ∈ E tv : v 6∈ V̂ t

}
. (6.4)

Next, all active nodes v that have no incident edges, along with all those not included in the large
connected component become inactive, i.e.

V t+1 = V t \
{
v ∈ V t : E tv = ∅

}
∪
{
v 6∈ V̂ t

}
. (6.5)
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Nodes and edges disconnection is irreversible. For each e ∈ E , the routing policy in (7.2) deter-
mines its current flow. In addition, the capacity vector ct is changed by a disturbance δt ∈ Rm,

ct+1
e = cte − δte, e ∈ E t. (6.6)

Disturbance δ is defined according to the attack strategy (e.g. single line attack or multiple line
attacks) as will be described in Section 6.2.2. The initial equilibrium flows f0 are generated by
the given routing policy. The network state does not change as long as δt = 0. The initial line
transmission capacity c0 is defined by c0 = αf0, where α is a tolerance parameter and α ≥ 1.

Modelling the power network and its evolution during failures as a dynamic flow network gives
us the advantage to study the influence of the network structure and its interdependency on the
physical properties of the power flow. Connectivity analysis can be considered in terms not only
of structure but also of flow dynamics at the same time.

6.2 Minimum Cut-Set Sequential Attacks

In this section, we present a mathematical model of the attacker, the attacker control problem
modeled as a minimum cardinality optimization problem.

6.2.1 The Minimum Cut Set

Consider an edge cut-set Ŝ ⊆ E of the flow network G as a set of edges such that every flow path
from the supply nodes set Vs to the demand nodes set Vd uses at least one edge from Ŝ. Then, E−Ŝ
disconnects all the elements from Vs to Vd. The edge cut-set has an associated weight defined by
W
(
Ŝ
)

=
∑
e∈Ŝ

ce. Accordingly, the minimum cut-set (MCS) S for the network G can be defined as

the edge cut-set between Vs and Vd with minimum weight as follows:

S :=

{
e ∈ E : W (S) = min

Ŝ⊆E
W
(
Ŝ
)}

. (6.7)

Flow feasibility in the network can be described in terms of the MCS, as it’s defined in the Ford-
Fulkerson minimum cut theorem (Ford & Fulkerson, 1987). The maximum feasible flow value
obtained in a network G is equivalent to the weight W (S). A flow f t is feasible if it satisfies the
edge capacity limit and flow conservation for each node. For a power system modeled as a flow
network, the minimum cut theorem implies that a feasible power flow between supply nodes and
demand nodes exists only if demand profile is equal or lower than the MCS weight. Then the MCS
defines the real transmission capacity of the network.

Definition 6.2.1 The flow bottleneck constant qt measuring the ratio between the transmission
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capacity of the MCS and the power demand is defined as follows

qt =
W (St)∑

v∈Vd∩v 6∈It
pv,

(6.8)

where It is the set of isolated nodes at time t.

The flow bottleneck constant q is defined based on (Taylor & Hover, 2011), where a flow-based
Cheeger constant is proposed to identify Laplacians for flow networks. For the existence of a
feasible flow between Vs and Vd, a sufficient condition can be defined in terms of qt as qt ≥ 1.
For values of qt close to 1 the network presents flow congestion. This means that power demand
value is close to the transmission capacity limit of the network, which in general is subject to the
structure of the network and the placement of supply and demand nodes in it. Higher values of qt

(i.e. qt � 1) represent nonexistence of congestion. The MCS weight represent an upper limit for
transmission in the established network configuration

6.2.2 MCS Attack Strategy

Attacker Model

The attack model assumes a single intruder threatening the network. The attack is repeated in
time. For every stage t the attacker has to choose an action δt. Consider the sequence ∆ =:

(δ1, δ2, . . .) of progressive disturbances representing the external adversary intervention against
the power network. At every stage, the disturbance δt is modeled by δt = Γtct where Γt is an
m ×m matrix and Γt = diag (γ1, γ2, . . . , γm). Disturbance δt is applied in (7.6) generating false
system information about edge transmission capacities. In this work, to emulate edge removal, the
elements γte are equal to 1 if edge e is attacked at the stage t, and zero elsewhere. For future work,
values of γi in [0, 1] could be considered. At every attack stage, a resulting cascade effect and lost
load λt occurs in the network. The lost load is defined by λt =

∑
v∈It∩Vd

pv, where It is isolated

nodes set resulting from the cascading failures at stage t. As a result, the attacker obtains a reward
g(δt) at every stage t.

The most attractive target for the attack at each stage is the edge, whose failure would cause
an increase in the system flow congestion. After the edge attack generates congestion, the system
is more prone to evolve into a cascading failure. To measure the benefit of the attack in the stage
t, we compare the flow bottleneck q after and before the element’s attack. The component that
reduces the value of q is identified as a critical component. Let qe represent the bottleneck when
edge e is attacked. Then, the change in the network congestion is given by ∆qte = qt − qe and the
best attack in the stage t is argmax

e
∆qte. Change in network congestion can be described in terms
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of (6.8) as

∆qte =
1∑

v∈Vd∩v 6∈It
pv

(
W
(
St
)
−W

(
St \ e

))
. (6.9)

Assume that the demand remains constant at the stage t except when edge isolates a demand
node. If e∗ ∈ S, thenW (St)−W (St \ e∗) > 0, and also if e 6∈ S , thenW (St)−W (St \ e) = 0,
following ∆qte∗ > ∆qte for all elements in S. Finally, If edge e∗ isolates a node, ∆qte ≥ 0.
Considering this, the attack reward for the stage t can be described as g(δt) = ∆qte and fills
the following condition

g(δte∗) ≥ g(δte) for all e∗ ∈ S, e 6∈ S. (6.10)

Thus, the reward is zero if qt is not affected or increased by the attack, and higher than zero
if the attack produces an effect on the flow bottleneck.The best targets are the elements in the
MCS. We consider the network as an indifferent agent subject to unpredictable (in most of the
cases) intrinsic technological factors governing whether a cascading failure occurs, i.e. routing
policy, network structure, physical properties or hidden failures, etc. In this way, the network
does not receive any reward for its actions, thus network actions could be better considered as
states. In addition, attacker reward depends only on the rational selection of the strategy with
the best outcome. Time preference is modeled by assuming that future rewards are discounted
at some rate β ∈ (0, 1]. Then, the attacker interaction with the network is a repeated attack in
which a one-stage target is selected at each time for a duration of t∗ stages. The long-term attack

reward is described by U(∆) =
t∗∑
t=0

βtg(δt). In this way, the attacker should observe and form an

estimate of the possible lost load λt and cascade effects and maximize its benefit at every attack
stage δt ∈ argmaxU(∆) = argmin ‖∆‖0. At every stage, the attacker has E as the set of
targets and m = |E| as the number of targets. The reward of an attack against target j depends on
its influence on the flow bottleneck. Consider the flow bottleneck qt defined in (6.8), measuring
the flow bottleneck in the network, where St ⊆ S. Inequality (6.10) relates the flow bottleneck
dependency on the capacity of the MCS. As a result, target selection strategy is dominated by the
selection of MCS elements. Therefore, the target attacked at every stage corresponds to an MCS
capacity reduction by one edge elimination at every step.

The Sequential Attacks Problem

Let G be a power network, p a vector of power supply/demand, and Ξ a routing policy. The network
attack A (G,p,Ξ) is defined as a disturbance sequence ∆ with minimum cardinality producing
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network cascading collapse, i.e.,

A (G,p,Ξ) := min
∆
‖∆‖0

s. t. ∆ ∈ D,
Eq.(7.1)− (7.6)

(6.11)

where D is the feasible attack set and ‖ · ‖0 the L0 norm. Without considering cascading failure
effects at every stage, the feasible set cardinality is |D| = s!, where s is the cardinality of the
minimum cut-set, i.e. s = |S|. The minimum cardinality problem is NP-Hard despite the reduction
of the feasible set of solutions by means of the cascade propagation. The exact solution of the
problem is out of the scope of this work, but we provide a suboptimal solution using simulation-
based optimization. We design a computational algorithm to produce a pool of feasible MCS
attacks D∗ ⊂ D and choose the attack with minimum cardinality A∗ (G,p,Ξ) ∈ D∗. Following
this, we can say that

A (G,p,Ξ) ≤ A∗ (G,p,Ξ) (6.12)

Then, the proposed attack is an upper bound for the optimal solution of (6.11).

6.3 Experimental Setup

In this section, we define attack efficiency metrics and connectivity metrics used to evaluate the
vulnerability of the networks. Besides, computational algorithms are developed to apply the vul-
nerability assessment methodology.

6.3.1 Performance Indices and Measures

First, we measure the attack impact using the residual load λtres = 1 − λt

λinit
where λinit is the

initial demand profile and the lost load λt. Residual load measures the demand in the giant compo-
nent relative to the initial load. Also consider the cumulative fraction of edges attacked ρt = t/m

where one single edge is attacked at a time. Second, a set of measures based on (Requião da Cunha,
González-Avella, & Gonçalves, 2015) is used to compare the performance and attack efficiency
on different networks. The attack efficiency πt = λt,nullres /λtres is measured in terms of the residual
load by comparing it with the residual load λt,nullres resulting from a reference attack strategy. For
the purpose of this paper we choose the random attack strategy as the reference strategy. The quan-
tity increases as the attack strategy turns into a more efficient rather than reference strategy. The
values (ρt

∗
, λt

∗
res) represent the final state of the attack. Based on the efficiency gain, the overall

final performance η = πt
∗ ×
(
ρt
∗,null/ρt

∗), compares how quick the MCS attack strategy collapses
the network with respect to the reference method by comparing the cumulative fraction of attacked
edges ρt of the proposed strategy with the same quantity for the reference strategy ρt∗,null. The
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overall efficiency gain η will be used to benchmark the attack efficiency on several testbeds and
comparing them according to their connectivity properties. To evaluate changes in connectivity
and its relation with the network structure we propose the use of the following propoerties. First,
we propose a connectivity density index ν = s/m measuring the relative size of the minimum
edge cut-set where s is the MCS cardinality and m the cardinality of E . This measure gives us
information about the strength of connection between generator and load nodes according to a
specific network topology. Besides, we propose a measure based on community detection for de-
mand nodes grouping µd =

∑
v∈Vd

kextv /
∑
v∈Vd

kv where kextv is the number of edges that connect node

v to supply nodes and kv is the node degree of v. Values of µd < 1/2 imply that strong coupling
exists between demand nodes connecting them lightly with supply nodes. Other traditional mea-
sures used in this study are network density d = |E|/ (2|V||V − 1|), the average degree 〈k〉, and
algebraic connectivity λ2 .

6.3.2 Simulation Algorithms

We design a set of algorithms to analyse the power grid under the attacks scenario. A sequence
of attacks is applied to the network until the network collapse. For each attack the damage is
calculated in terms of power loss, and new post-contingency network is founded. By the end
of the sequential attack the vulnerability of the network and its component is measured. A pre-
contingency power flow is solved to define edge transimission capacities. Targets to attack are
identified by Algorithm 6 and effects of attacks are calculated by Algorithm 5 . Network vulner-
ability is finally calculated by the proposed metric evaluated for the results of the attacks. The
MCS-based vulnerability method works as follows:

1. Identify the elements of the MCS.

2. Removed a line target from the MCS from the undamaged network structure.

3. Compute the post failure flows and evaluate the cascading failures effect

4. Find the giant components in the damage grid

5. If network is connected and not additional cascading failures occurs evaluates continues to
the next attack in step 1.

6. If network is not fully connected small islanded components with single nodes, without
generator, or disbalanced are isolated.

7. Evaluate again cascading failures until the network achieves balance.

8. Compute attacks damage by quantifying the power loss.

9. Repeated 1 - 8 until network is fully collapsed.
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10. Evaluate the network vulnerability using the results of the sequential attack.

The aim of the recursive simulation in Algorithm 5 is to provide the pool of attacks, generate
the attacks and process the state of the system due to cascading failures. Node islanding due to
cascade propagation is considered in the algorithm. The power network data received include
network connections and impedances.

Algorithm 5 Attacks Algorithm
Input: G = (V, E , c), p, λinit.
Output: A∗ (G,p,Ξ), λt.

Initialize the flow network G0 and the power flow f0; λ0 = 0.
2: Identify the target set S in (6.7).

Set the size of the attack pool |D∗|.
4: while l ≤ |D∗| do

while (λinit − λt) > 0 do
6: Trigger attack δt

Check for flow feasibility f in (7.2).
8: if YES then

recursively evaluate the cascading failure propagation and the network state by (7.1) - (7.6) until
no risk exists or no feasible flow exists.

10: else
Check for node islanding or connected component separation in the network.

12: if YES then
Identify giant component Ĝ. Check for supply nodes in the giant component.

14: if YES then
Recursively evaluate cascading failures and network state by (7.1) - (7.6) until no overload
exists or no feasible flow exists.

16: end if
end if

18: Find and save λt

end if
20: t← t+ 1. Go back to trigger attack.

end while
22: Save data for the attack ∆ on iteration l. l← l + 1

end while
24: Get A∗ (G,p,Ξ) from (6.11) and (6.12).

The algorithm for targets identification determines the edge members of the MCS in G based
on the minimum-cut maximum-flow equivalence. To find the minimum cut-set in a multi-source
multi-sink network, the Ford-Fulkerson algorithm cannot be applied directly. Then, the algorithm
is modified by introducing virtual source and virtual sink nodes, vvis and vvid , respectively. All
the nodes in Vs are connected by edges with infinite capacity to vvis . Additionally, all the nodes
in Vd are connected by edges with infinite capacity to vvid . By adding the new virtual nodes, the
multi-source multi-sink problem flow transfers the problem between supply and demand changes
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to a single-source single-sink problem between vvis and vvid . Subsequently, the MCS is found. A
general description of the process to find the targets is described in Algorithm 6.

Algorithm 6 Algorithm for Targets Identification
Input: G = (V, E , c).
Output: S,W (S).

1: Get the list of supply/demand node sets Vs and Vd.
2: Include virtual nodes for supply vvis and demand vvid , V ← V ∪ {vvis , vvid }.
3: for each supply node v ∈ Vs do
4: Add an edge from the supply node v to vvis ,
5: end for
6: for each demand node v ∈ Vd do
7: Add an edge from the demand node v to vvid ,
8: end for
9: Get S and W (S) by the use of Ford- Fulkerson algorithm between vvis , v

vi
d .

We identify the cascading potential of each edge according to its participation in the flow bottle-
neck increase, which is equivalent to its participation in S. Computation of the cascading potential
of the edges takes at mostO (|E|W (S)) . The subroutine to determine the cascade propagation has
complexity O (τ |V|3), where τ is the number of cascade rounds, i.e. τ = t∗. Given that targets are
identified previously and cascade evolution is evaluated only when a target is attacked, the total
complexity is O (|E|W (S) + log(E) · (τ |V|3)). Most of the approaches from the literature point
out to the problem of the minimum set of attacks (or failures), that cause a cascade with maximum
damage, to be NP-Hard for modeling approaches as random failures, the minimum cardinality
problem, and the set cover problem (Soltan et al., 2017; Seo, Mishra, Li, & Thai, 2015; Moussa
et al., 2018). In this case, our approach reduces the running time to find a suitable set of attacks,
even if complexity increases with the number of elements in the network.

6.4 Results and Discussion

This section demonstrates the results derived for the proposed attack strategy in Section 6.2.2. We
validate the results using the IEEE 30-bus system and the IEEE 300-bus system as case studies.
Additional test systems are also included for attack efficiency analysis, i.e., the IEEE 39-bus,
IEEE 57-bus, and IEEE 89-bus (Bialek et al., 2016). A scenario of edge elimination, based on
different attack strategies, is proposed as a benchmark to evaluate the results of the proposed
strategy. For each strategy one edge is attacked at each step. Four benchmark attack strategies
are used. First, random strategy where the algorithm selects the target edges randomly. After
getting a pool of random attacks, it applies the best strategy. Second, the rich strategy selects as
target edges those connecting higher degree nodes. Third, rich-poor strategy select as target edges
those connecting higher degree nodes with lower degree nodes. Finally, the poor strategy selects as
target edges those connecting lower degree nodes are deleted first. In addition, three different types
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of betweeness are evaluated: Edge betweenees (Coelho et al., 2018), labeled as between which is a
well established topological measure to identify the participation of the edges for the connectivity
of the network; electrical betweeness (Bompard et al., 2012), labeled as electrical b in the results
works on a combination of betweenees centrality and power transfer distribution factors; and flow
betweeness (Z. Wang et al., 2017), labeled as flow betw which combines maximum flow and
power transfer distribution factors with the network betweenness.

Case study - IEEE 30-bus power network

The network description of the IEEE 30-bus power system, containing 41 edges and 30 nodes is
shown in Figure 6.1a. Node color is assigned according to node type: purple color represents sup-
ply nodes, Vs; green color represents demand nodes Vd; and black color represents neutral nodes
Vb. The initial load is λinit = 179.2 p.u.with base power 100 MVA. By the use of Algorithm 6, the
minimum edge cut-set between supply and demand nodes are calculated. Figure 6.1b illustrates
the MCS. The cardinality of the minimum cut-set is s = 15 and its capacity is W (S) = 619 p.u..
Targets are sorted according to results in Algorithm 5. Once the targets list is generated, the first
target attack is performed. Figure 6.2 summarizes the results of our method of attack as compared
to degree-based attacks and random attacks for the IEEE 30-bus system in terms of the residual
load.

Initially, all methods behave similarly but, for the MCS strategy, as flow bottleneck qt increases
as a result of the reduction of the MCS capacity, the cascading effects of edge overload occurs.
After the third attack, bigger cascades occur and the residual load λtres is reduced. After a sequence
of 4 target attacks the network had lost more than 60% of its demand. By the next attack, the
network collapses and λt

∗
res = 0. In the remaining, the final fraction of attacked edges is ρt∗ .

Besides, ρt∗ is the lower bound of deleted edges in the network, because additional edges are
disconnected by the side effects of the cascading failure process. By comparison, in the rich and
poor attack strategy, deleting the same amount of edges, reduce only by 10% of the residual load.
Even comparing with the second best strategy, i.e., electric b, deleting the same number of edges,
reduces 50% the load. Furthermore, it is quite clear that the structure of this network is not simple,
and cascading effects are as unpredictable as in real-world cases. The effect of the attack strategy
on the cascading failure magnitude is quite critical. A sudden transition between 80% of the load
to 0% occurs as an effect of two edge attacks.

Case study - IEEE 300-bus power network

This section presents the IEEE 300-bus power system. The graph representation of the network,
containing in total 300 nodes and 411 edges, is shown in Figure 6.3. Initial load is λinit = 23525.8

p.u. with base power 100 MVA. The parameter α = 5 is used to define the capacity of the edges.
Using Algorithm 6, the minimum edge cut-set between supply and demand nodes is calculated.
Edges highlighted in red represent the elements of the MCS and corresponds to the target edges.
The cardinality of the minimum cut-set is s = 126 and its capacity is W (S) = 124036 p.u.. The
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(a) Nework graph

(b) Layered network for minimum cut-set

Figure 6.1: a) The IEEE 30-bus power system. The transmission line capacities are represented by
the edge width. b) Layered network representation. The elements of the minimum edge cut-set are
the links connecting separated node sets.

network structure has regions with a higher density of demand nodes separated from areas with
a high density of the supply nodes. In addition, high capacity edges can be targeted inside the
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Figure 6.2: Comparison of the effect of degree-based attacks (i.e., rich, rich-poor, poor ranking),
random attack, edge betweenness attack, electrical betweenness attack, flow betweenness attack,
and MCS attack for the IEEE 30- buses power system.

dense supply nodes regions, disconnecting them easily from demand regions. Intermediate nodes
and edges connecting areas are significantly less than interconnections between demand nodes
only. The MCS strategy includes in its target, naturally, the connection corridors between highly
connected areas that after few attacks affect severally the network flow transfer capacity.

The MCS capacity, according to the Ford-Fulkerson minimum cut theorem, defines a condition
for flow feasibility in a network. For a power systems, the feasible power flow between supply and
demand exists if it is less or equal than the magnitude of the minimum cut-set W (S). The initial
flow bottleneck for the IEEE 300-bus is q0 = 5.2720. This initial flow bottleneck for the studied
system is relatively high, which indeed suggests less vulnerability to flow congestion and cascade
effects under given operation conditions.

As qt is reduced, by attacking MCS edges, the flow bottleneck increases and the frontier to
infeasible flows is approached. Even if, temporally, bottlenecking appears to be reduced, the gen-
eral effect of sequential attack is the increasing of the overload risk for all edges in the network.
Once the flow congestion is achieved in the network, most of the edges can be potential targets and
produce big cascade effects. The power demand operating point establishes a value for q0 vulner-
ability. Therefore, what the MCS strategy does is to increase this vulnerability by reducing qt at
every stage t, i.e. qt ≤ q0. Figure 6.4 displays the results of the MCS attack performance in the
system. The results indicate that the MCS strategy outperforms the random and degree-based at-
tacks. Initially, the attack increases the flow bottleneck, but the initial performance is less efficient
than the performance of degree-based attacks. λtres remains stable until the highest flow bottleneck
occurs. When it happens, the cascading failures propagate very fast and λtres drop suddenly, several
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Figure 6.3: The network model of the IEEE 300- buses power system. Edge weights, i.e., trans-
mission line capacities, are represented by the edges’ width. The purple color represents supply
nodes Vs. The green color represents demand nodes Vs. Black color represents neutral nodes Vb.
The edges highlighted in red transmit power flows to serve the entire demand. These red edges
correspond to the elements of the minimal edge cut-set. Red zoom depicts the area with the higher
density of target elements. Black zoom shows the area with few target elements and clustered
demand.

demand nodes are disconnected. By comparison of the MCS collapse attack with rich and poor
attack strategies, with the same number of attacked edges, the strategies reduce only by 50% the
system load. Even comparing MCS with the second best strategy, i.e., electric b, by attacking the
same number of edges, the results has a 20% of the lost load difference. Attacks based on edge
betweenness between performs not quite well because they are not considering flow routing. Flow
betweenness, flow b, is the third best attack improving the results of the pure topological measures,
by considering network maximum flow. The random attack strategy reduces up to 30% of the load
with the same number of attacked edges. Interaction between the MCS attack strategy and the
cascading failure events in the network is quite critical. For this strategy, a sudden transition of
80% in the load lost occurs as an effect of four edge attacks in a network of more than 400 edges.
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Figure 6.4: Comparison between the effect of degree-based attacks (i.e., rich, rich-poor, poor
ranking), random attack, the edge-betweenness attack, the electrical betweenness attack, the flow
betweenness attack, and the MCS attack for the IEEE 300- buses power system.

6.4.1 Efficiency Analysis

In this section, attack results are summarized and compared by means of the relationship between
overall attack efficiency gain and the network properties of different power networks. The test sys-
tems are IEEE 30-bus, IEEE 39-bus, IEEE 57-bus, IEEE 89-bus, IEEE 300-bus networks. Figure
6.5 summarizes the results of the attacks for each network by means of the relation between πt and
ρt, i.e., the efficiency gains of MCS attack compared to the null strategy reference which in this
case is the random strategy.

With fewer than 15% of edges attacked with the MCS strategy, the results show, more than
double of efficiency for all the networks. Even in the worst case (IEEE 300) we obtain efficiency
of 4 times with less than 7% edges removed. The best case is IEEE 89 with more than 15 times of
gain with less than 9% of edges attacked. Also, It is possible to observe the existence of a threshold
value for ρt where the attack strategy departs from the null strategy attack. This value corresponds
to the minimum fraction of attacked edges needed to collapse a network, which is lower to what can
be predicted by the other strategies. Using gain values, the overall efficiency gains η is calculated.
The overall efficiency gain measures how fast the MCS attack strategy reaches the end point of
collapse in the network in comparison with the reference method.

Figure 6.6 shows the overall efficiency η as a function of network connectivity properties, i.e.,
connectivity density ν, algebraic connectivity λ2, network density d, and community measure for
demand nodes set µd. The information about measures and attack performance for each system is
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Figure 6.5: Attack strategy efficiency over different power networks.

Table 6.1: Properties and results for for the studied IEEE test cases. Number of nodes (|V|),
number of edges, (|E|), mean degree (〈k〉), connectivity density (υ), edge density (d), algebraic
connectivity (λ2), generator community (µs), load community (µd), fraction of attacked edges
(ρ∗), and the overall efficiency gain of the MCS attack (η).

|V| |E| 〈k〉 υ d λ2 µd ρt
∗

η
IEEE 30 30 41 2.73 0.36 0.09 0.21 0.39 0.12 58.98
IEEE 39 39 46 2.36 0.33 0.06 0.07 0.35 0.08 20.30
IEEE 57 57 78 2.73 0.20 0.05 0.09 0.22 0.14 36.15
IEEE 89 89 206 4.62 0.17 0.05 0.15 0.19 0.09 55.74
IEEE 300 300 409 2.72 0.45 0.01 0.01 0.63 0.06 7.43

summarized in the Table 6.1.
For all the networks, the strategy presents an increase in efficiency. The most vulnerable net-

work to attacks, in general, is the IEEE 300-bus system because it requires the minimum fraction
of deleted edges to collapse. This could also be related to the fact that there are kind of power
system areas; the lines among areas can be subjected to more constraining power exchanges, then
in case of loosing those connecting lines the demand-generation balance is correspondingly com-
promised. Also, the lower efficiency of the strategy could represent a high vulnerability of the
network to any attack strategy. On the other side, the effectiveness of the attack strategy for the
other systems is notable.
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Figure 6.6a shows a direct relation between algebraic connectivity and the increase in attack
efficiency. Networks are actually less robust to this type of combined attacks as the algebraic con-
nectivity increase. Power network effective resistence can be measured in terms of algebraic con-
nectivity. Effective resistence makes reference to how easy is to transmit power between two points
in the network. Networks designed to reduce the transmission paths could produce a detriment of
network robustness. Also, in terms of real applications planning to increase flow transmission
efficiency by adding new lines (higher algebraic connectivity) could result in a more vulnerable
network through the emergency of the Braesss paradox (X. Wang, Ko, Kooij, & Mieghem, 2015),
(Cetinay, Kuipers, & Mieghem, 2018). Figure 6.6b shows the measure µd of the demand nodes
community. Values of µd > 0.5 represent the existence of a demand node cluster. This means that
demand nodes, are more interconnected between them than with supply nodes, implying that few
nodes and edges need to be targeted for attack, producing higher impact for the demand nodes iso-
lation. The proposed attack strategy is less efficient in networks where supply and demand nodes
are highly connected. The connectivity density ν in Figure 6.6c shows a similar behaviour to µd.
Networks with a higher number of connections between supply and demand nodes, will be more
robust against the proposed attack strategy. IEEE 30-bus system is out of the profile. It could be
related to their higher algebraic connectivity. Lower values of network density d, seem to have an
inverse impact with the attacks.

Network density for all studied networks in Figure 6.6d is lower that d = 0.1. This lower level
of density implies that all networks are sparse and have fewer connections than all the possible
number of connections between nodes in the network. According to these results, it is evident that
is not network density, or network efficiency (i.e., algebraic connectivity) what brings more robust-
ness to a power network considering flows. Instead, a low attack impact appears to be related to
distributed placement of supply, closer to points of demand, independency between demand nodes
and lower values of algebraic connectivity, implying a trade-off between efficiency and resilience
of the grid. Resiliency of future power networks should be improved at future by the increase of
the degree at which the system can absorb the impact of system disturbances and using the mini-
mum of the effort to reduce consequences (Francis & Bekera, 2014). In this way, considering the
influence that connectivity density and clustering between load or generation can produce to the
vulnerability of the network can be a first stage for planning networks where its absorptive capac-
ity is improved. Besides, these hybrid network-electric properties could be included in the design
of advanced algorithms for predictive models of failures, resource optimization and placement,
stochastic planning and operation, and distributed smart coordination of switches and reclosers.

6.5 Conclusions

In this chapter, we have presented a minimum cut-set-based attack method which consists of at-
tacking the edge cut-set with minimum capacity connecting supply and demand nodes of a given
power network, then deleting sequentially the edges in this set to get the smallest attack with higher
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impact. Computational simulations of different power networks showed that the MCS method is
more efficient in collapsing the network than traditional procedures based on degree centrality.
Therefore, one may notice that most connected nodes and their edges are not necessarily the most
important for the cascading failure effect and survival. The edges from the minimum cut-set con-
necting supply nodes to demand node set are more important and crucial for the power flow transfer
capacity than structurally highly connected components. If we attack these edges (or their corre-
sponding nodes on the demand nodes set), the produced damage by cascade effects to the network
is greater than using traditional or random methods by eliminating the same number of edges.

The objective of using the proposed MCS attack strategy in the power network is to unveil
its structural vulnerability. Measuring this, we can attain the regime where large cascading fail-
ure effects and consequent loss of load are presented. Hence we can propose to characterize the
vulnerability of the power network by how small a sequence of attacks should be to achieve the
network collapse. In other words, how fast the end point of the attack ρt∗ is achieved. As a result,
it is shown that the efficiency of the attack increases when the connection between demand-node
is denser than the connection to the supply-nodes and the cardinality of the minimum cut-set is
low. Besides, the MCS attack efficacy increases with the algebraic connectivity of the network; the
higher the network efficiency, the more fragile the network is. In the following chapters, connec-
tivity properties depicted in this work will be used to improve the power network resiliency against
cascading collapse by considering them on the design of controlled reinforcement strategies.



Chapter 7

Markov Decision Process based Cascading
Failures Attacks

”The inability to predict outliers implies the inability to predict
the course of history (Taleb, 2007).”

Nassim Nicholas Taleb
The Black Swan: The Impact of the Highly Improbable

The first stage of the attack is information foraging about system structure an operation. This
result in imminent danger if the attacker uses this information to define its targets. Consider an
informed attacker who gets information about network topology and network security operation
limits. Following previous results, this chapter gives a more general analytical approach to the
study of vulnerability in power networks. This chapter aims to integrate network theory and dis-
counted reward Markov decision process in the model of cascading failures attacks. A control
strategy is designed to maximize the attack long-term expected reward while reducing attack se-
quence duration. Attack model identifies the most suitable targets by predicting using a Markov
process for predicting the propagation and consequences of the failure. The immediate reward
is the expected loss of load due to cascade effects. We estimate the state transition probabilities
utilizing a hidden failure model embedded in an Independent edge-dependent network evolution
model. Value iteration algorithms are used for identifying targets at every attack stage. Target
selection is updated depending on network changes. The results provide an optimal attack strategy
with maximum damage considering congestion as a cascade propagation mechanism.

7.1 System Model

The analysis in this chapter is based on the network and the cascading mechanism proposed in
Section 6.1. Using this model, we can estimate the risk of cascade during attacks, and long term
damage produced by the actions. Please refer to this section to considering model and nomen-
clature. The following sections present the attacker model, cascading failure risk and damage
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estimation and criteria to evaluate expected long-term damage.

7.1.1 Network-based Characteristics

The power system is modeled as a finite undirected weighted flow graph G such that

G = (V , E , c) , (7.1)

where the node set V and the edge set E , with cardinality |V| = n and |E| = m, represent buses
and transmission lines, respectively. In addition, ct ∈ Rm is a vector with link flow transmission
capacities. In this model, we equate capacities with edge weights. Parallel circuits between buses
are represented by a single edge with the sum of their respective capacities.

7.1.2 System-based Characteristics

For the power network in (7.1), let Vs ⊂ V be the set of supply nodes and let Vd ⊂ V \ Vs be the
set of demand nodes in the network. Transmission nodes without supply or demand are Vb ⊂ V .
Consider a node associated with supply/demand vector p where p ∈ Rn; pv > 0 for v ∈ Vs, pv < 0

for v ∈ Vd, and pv = 0 for v ∈ Vb and
∑
v∈V

pv = 0. Consider a flow vector at time t, f t ∈ Rm where

f te is the flow at edge e and satisfies capacity constrain |f te| < cte on every link e ∈ E and flow
conservation

∑
e∈Etv

f te = pv for every node v where E tv ⊆ E is the set of all incident edges to the node

v. The vector flow f t is defined by a routing policy Ξt. The routing policy defines the magnitude
and direction of every edge flow in the network. In this study, we consider a linear routing policy
such that

f t = Ξtp, (7.2)

where Ξt is an m × n. The matrix Ξt maps the supply/demand profile p onto the power flows
going through each edge. The flow routing will depend on the electric and topological properties
of the power system. In this study, we use a routing policy based on the DC power flow.

To derive Ξt, following (Cetinay, Kuipers, & Mieghem, 2018), consider the DC power flow
equations of the power network in terms of the network adjacency matrix A,

pv =
n∑
i=1

= avibvi (θv − θi) = θv

n∑
i=1

avibvi −
n∑
i=1

avibviθi. (7.3)

The terms θv and θi are the voltage phase angles at bus v and i. bik is the reciprocal of
the transmission line reactance between buses. Then, consider an auxiliary adjacency weighted
matrix H, where hvi = avibvi is an edge weight associated with the impedance. Then, the
corresponding matrix representation of the DC power flow equation in the power network is
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p =

{
diag

(
n∑
i=1

hvi

)
−H

}
Θ = (D−H) Θ, where D is a weighted degree diagonal matrix.

Introducing the weighted laplacian matrix Q̃ = D−H, the equation can be described as p = Q̃Θ.
Calculating a pseudoinverse Q̃+ of the weighted laplacian it is possible to describe voltage angles
of Θ as a function of pt as Θ = Q̃+p. The flow fe at the edge e between node v and node i can
be determined as fe = bvi (θv − θi), with its related matrix representation f t = B̃>Θ. The term
B̃ is the weighted incidence matrix with b̃ve = hvi if edge flow fe goes from v to i, or b̃ve = −hvi
if edge flow fe goes from i to v and zero otherwise. Then, replacing Θ by the matrix equation
as a function of the pseudoinverse, we get f t = B̃>Q̃+. As a result the routing policy matrix is
Ξt = B̃>Q̃+ with the element ξtij = b̃eiq̃

+
vi.

7.1.3 Network Evolution and Cascading Failures

The network dynamics presented here follows the nomenclature and the model presented in (Savla
et al., 2014). Consider the power system modeled as a flow network in (7.1) with supply/demand
vector p and flows in (7.2) evolving in time. Let Gt = (V t, E t, ct) and f t describe the state of the
system at every time t = 0, 1, . . ., where V t ⊆ V and E t ⊆ E are the active nodes and links at time
t.

For the initial condition of the system (G0, f0), all the elements of the node and edge set start
active, i.e. V0 = V , E0 = E , and f0 is the initial flow. At every time t, network Gt should be
connected. Define Ĝt as the largest connected component in Gt and Ĝ0 ≡ G0. The largest connected
component of the network refers to the biggest connected part of the entire nodes set where a
feasible flow exist. Considering the largest connected component, we are modeling the network in
its natural dynamical behavior. Edge disconnection produced by cascade propagation may generate
uncontrolled component islanding. Uncontrolled islanding or redispatch is considered during the
cascade propagation. In this way, the small connected components could have only load nodes
or unbalanced supply-demand nodes that collapse during the cascade evolution. Attack-defender
threat models could include controlled actions, but defender actions are out of the scope of this
model. The network changes its state as follows. Edges become overloaded when its current flow
exceeds the transmission capacity. All the overloaded edges are disconnected along with all the
edges in small subcomponents isolated from the largest connected component Ĝt. Accordingly,

E t+1 = E t \
{
e ∈ E : f te ≥ ce

}
∪
{
e ∈ E tv : v 6∈ V̂ t

}
. (7.4)

Next, all active nodes v that have no incident edges, along with all those not included in the large
connected component become inactive, i.e.

V t+1 = V t \
{
v ∈ V t : E tv = ∅

}
∪
{
v 6∈ V̂ t

}
. (7.5)

Nodes and edges disconnection is irreversible. For each e ∈ E , the routing policy in (7.2) deter-
mines its current flow. In addition, the capacity vector ct is changed by a disturbance δt ∈ Rm,
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ct+1
e = cte − δte, e ∈ E t. (7.6)

Disturbance δ is defined according to the attack strategy (e.g. single line attack or multiple line
attacks) as will be described in Section 6.2.2. The initial equilibrium flows f0 are generated by
the given routing policy. The network state does not change as long as δt = 0. The initial line
transmission capacity c0 is defined by c0 = αf0, where α is a tolerance parameter and α ≥ 1.

Modelling the power network and its evolution during failures as a dynamic flow network gives
us the advantage to study the influence of the network structure and its interdependency on the
physical properties of the power flow. Connectivity analysis can be considered in terms not only
of structure but also of flow dynamics at the same time.

7.1.4 Attacker Model

The model assumes a single intruder threatening the network. The attack is repeated in time; for
every stage the attacker has to choose an action at. Considers the sequence ∆ =: (a1, a2, ...) of
progressive disturbances representing the external adversary intervention against the power net-
work. At each stage, the disturbance at is modeled by at = Γtct where Γt is an m×m matrix and
Γt = diag (γ1, γ2, ..., γm). Disturbance at is applied in (7.6) simulating the lost of line transmission
capacity or a severe transmission damage by defining the element γte as follows

γte =

{
1, if edge e is attacked;
0, otherwise

(7.7)

Denote by D the set of all feasible attack sequences possible in the network.

7.1.5 Risk Estimation

A standard model of failures estimation due to network congestion is the hidden failures model.
We denote ω(e) as the probability that a functioning edge fails due to congestion mechanism (see
Chapter 4).

Each edge in the network has a failure probability function that is modeled as an increasing
function of the power flow on edge e,

ω(e) =


1, for f te ≥ αf 0

e
1

f0e (α−1)
f te for f 0

e ≤ f te ≤ αf 0
e

0, otherwise
(7.8)

The probability is low initially, well below the line security limit and increases linearly to one
when the line flow is α times of the security limit, as shown in Figure 7.1.
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Figure 7.1: Probability distribution of an edge tripping by a cascading failure propagation effect

Probability ω(e) defines the chance to get a failure in the edge but does not consider the
probability of failure related to previous exogenous failures or attacks events. In order to es-
timate the risk of edge lost triggered by neighboring edges contingency during attacks, an In-
dependent edge-dependent network evolution model is proposed. Assume that the failure of
each individual edge is governed by a random process that is independent of all other edges, i.e.
Pr(e1 ∩ ej) = Pr(ei)Pr(ej) = ω(ei)ω(ej). Let ω(e) denote the probability that any edge , e, that
is part of the network at time t will be removed over the next time step by means of cascade prop-
agation. For any pair Ĝ, Ĝ ′ ∈ Sn , let P (Ĝ ′ | Ĝ) denote the probability that Ĝj+1 = Ĝ ′ given that
Ĝj = Ĝ, and let E denote the set of edges belonging to Ĝ. Then the ”independent edge-dependent”
model yields the graph-to-graph transition probability

P (Ĝ ′ | Ĝ) =
∏

e6∈E ′ ,e∈E

ω(e)
∏

e∈E ′ ,e∈E

(1− ω(e)). (7.9)

In the beginning, all the network edges are active, and there are no failures produced by the
attacker. Then, when the attacker choose a line to attack a∗1, the power network probability to move
to another state where edge a∗1 and other edges e are down is P (Ĝ ′ | Ĝ), the probability that network
moves from its initial topology Ĝ, where {a∗1, e} ∈ E to a new topology Ĝ ′ where {a∗1, e} 6∈ Ē

′ .
Figure 7.2 presents how the transition probability between same states will be different depending
on the action taken by the attacker at stage s and the power flow routed through each edge, network
topology, and trigger event. Probability changes depending on the action taken by the attacker.

It is also defined S(a∗, Ĝ) as a measure of severity of the failures proceeding from an arbitrary
attack a∗ to the network at a particular state Ĝ. Then the risk of the cascading failure due to attack
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a∗ is

R(a∗, Ḡ) = P (Ĝ ′ | Ĝ)S(a∗, Ḡ) (7.10)

Considers Υ as the set of all possible targets to attack, then the cascading failure network risk
under a defined target attack is

R(Ḡ) =
∑
∀a∈Υ

R(a, Ḡ) =
∑
∀a∈Υ

P (Ĝ ′ | Ĝ)S(a∗, Ĝ) (7.11)

Therefore, S(a∗, Ĝ) is a variable that maps an event a∗ to its severity and interpret R(Ĝ) as the
expected value of S(a∗, Ĝ), i.e. E[S(a∗, Ĝ)].
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e2

Ĝ ! Ĝ
0

e1
e3

e2

e3

e5

e2

Ĝ
0

a
∗

!(e1) > 1 > !(e2) > !(e3) > !(e5)

!(e5) > 1 > !(e2) > !(e3) > !(e1)

1 > !(e5) > !(e2) > !(e3) > !(e1)

Ĝ
0

Ĝ
0

Figure 7.2: Changes in network topology due to different targets for the attacks. Depending on the
selected target network will evolve to a new state with an independent probability related to the
hidden failures model in
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7.1.6 Severity of the Attack

The severity of the attack for the selection of a target a∗ at each stage of the attack defined by
S(a∗, Ḡ) is measured considering two parameters: power loss and flow bottleneck. The power lost
is used to define the severity of the attack against a∗ as

S(a∗, Ĝ) = λt =
∑

v∈Is∩Vd

(7.12)

where It is the isolated node set resulting from the cascading failures at stage t. On the other side,
flow bottleneck (see Section 6.2.1 and 6.2.2) can be used also to measure the severity of an attack
by indicating the increase in network congestion due to the target attack against a∗. The severity
of the attaks in terms of floww bottleneck is defined as follows

S(a∗, Ĝ) = ∆qte = qt − qe (7.13)

where qe represents the change in the bottleneck when edge e is attacked and qt its pre-contingency
state.

7.2 Problem Formulation

Following the results shown in Section 6.2.2, we study a strategy that can trigger blackouts with a
minimum of sequential attacks. This strategy is accomplished by increasing the estimated risk of
network cascading failures. For a given set of attacks actions, a defined supply/demand, network
topology, and flow routing strategy over an infinite horizon, the optimal attack sequence that max-
imizes the damage triggered by the attack with the minimum number of attacks is given by the
following optimization problem

max
a1,...,at

∞∑
t=0

βtE[S(a∗, Ĝ)]

s. t. risk estimation (7.11)

at ∈ E t,

(7.14)

for 0 < β < 1 being a rate of discount on the risk (Filar & Vrieze, 1996). Risk is higher if attacks
damage the networks strongly during the firsts attacks. Maximizing the risk estimation metric
implies that target will be selected to increase damage, and produce it fast by minimizing the
number of attacks required to achieve maximum damage propagate failures through the network
easily. It also implies that maximize the cascading failure risk at each stage minimize the number
of required attacks, because of the cumulative sum in the objective function and the proposed rate
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of discount. Relevance of (7.14) to evaluate power grid vulnerability had been studied in Chapter
6.4. The impact of an attack that can damage the network and cause a blackout is shown in Figure
6.4. Different target sets are selected and evaluated based on network properties. The severity of
the attack depends not only in his duration but also in the risk of producing cascading failures at
each stage. As is evident in the previous results, if the attacker manages to increase the cascading
failure risk as soon as is possible by using a carefully constructed attack sequence, he can cause,
very fast, significant damage in the network. Intuitively, to cause a significant impact, the attack
magnitude and damage should be optimized at the same time. Thus the solution of the optimization
problem in (7.14) must strick a balance between attack magnitude and damage. In the following
section, we solve the optimization problem (7.14) using a Markov Decision Process (MDP) based
approach.

7.3 Markov Desicion Process Solution to Multistage Attack

In this section, the optimization problem in (7.14) is cast in an MDP problem and solve it using
value iteration.

7.3.1 Markov Decision Process Model

A state s in the MDP corresponds to the network configuration Ĝ ′ and the actions correspond to
the attackers target selection a. The set of all the possible actions that the attacker can take at state
s is denoted byA(s). The approach is to map the independent - edge-dependent network dynamics
modeled by (7.9) to the state transition probabilities, the risk estimation in (7.12) or (7.13)to the
MDP immediate reward, and the objective function of (7.14) to the MDP’s long term expected
reward. Formally the MDP is defined by a tuple (S, A, q, R) where S is the set of all possible
states, A is the action space of the attacker; q(s, s′ , a) is the probability of transiting from state s
to state s′ under an action a ∈ A of the attacker; R(s, s

′
, a) is the immediate expected reward for

the attacker when it takes an action a ∈ A in state s ∈ S.
MDP state transitions probabilities: We adopt the following approach. Considers an initial

state s0 corresponding to the initial network configuration before attack Ĝ. States s1, ..., se, ..., sm,
where m is the cardinality of E at time t, correspond to network configurations Ĝ ′ where is asumed
to be inactive e 6∈ E . Then, the state transition probability q(s, s′ , a), with s = s0 and s′ = se, is

q(s, s
′
, a) = q(s, se, a) = P (Ĝ ′ | Ĝ) where{e, a} 6∈ Ê ′ ∀a ∈ A(s), e ∈ E(s). (7.15)

The probability of failure for each edge in (7.8) should will depend on the state s and attacker
action a, i.e., ω(e, s, a).

MDP immediate reward: Now, the damage model (either (7.12) or (7.13)) is mapped to the
MDP immediate reward function. Accordingly the immediate expected reward of the MDP is
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given by r(s, s′ , a) = S(a, Ĝ).
Discounted reward state value function and MDP policy: The solution of the MDP corresponds

to a policy π, which is mapping from a state to action. Let {Rt}∞t=0 the sequence of random
rewards of the attacker, with Rt being the reward of the stage t of the attack. The expectation
of Rt is also denoted by Esπ[Rt] := Eπ[Rt|S0 = s] The overall discounted value of the strategy
π = (π(1), ..., π(s), ..., π(N)) selected by the attacker form the initial state s will be defined by

Vβ(s, π) :=
∞∑
t=0

βtEsπ [Rt] (7.16)

where β is the discounted factor.
To evaluate the long-term expected reward, the attacker has an immediate expected reward

R(π) = (R(1, π), R(2, π), . . . , r(N, π))T where for each s ∈ S r(s, π) :=
∑

a∈A(s)

r(s, a)π(s, a).

Considers also the t−step transition probability between states as

Qt(π) =
(
qt(s, s

′
, π)
)N
s,s′=1

(7.17)

Then the value of the strategy f is finaly defined as

Vβ(π) =
∞∑
t=0

βtQt(π)r(π) (7.18)

The previous equation captures the fact that reward output of 1 unit at time t + 1is worth only by
β < 1 of what it was worth at time t. Then π(s, a) will be the probability that the attacker choose
action a ∈ A(s) in state s ∈ S whenever s is visited. In this case the strategy will be pure, i.e.,
π(s, a) ∈ {0, 1} for all a ∈ A(s), s ∈ S.

Optimal policy: The optimal policy maximize the total expected reward, π∗ = argmaxπ Vβ(π)

and the optimal value is V ∗. Finally, the attacker strategy at each stage will be the solution of the
discounted optimal Markov control problem

max Vβ(π)

s.t. π ∈ Ps,
(7.19)

where Ps is the space of control strategies, π(s) = π(s, 1), π(s, 2), ..., π(s,m(s)) and

m(s)∑
a=1

π(s, a) = 1 (7.20)
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7.3.2 Solving the MDP

The attacks problem in (7.19) is solved by dynamic programming. The algorithm storage two
arrays indexed by state: Long term reward value V and attack policy π. The algorithm initiates
randomly the reward value function V and repeats for each state s the following steps until no
further changes take place:

π(s) := argmax
a

∑
s′

Q(s, s
′
, a) (r(s, π) + βV (s∗))

 (7.21)

V (s) =
∑
s′

Q(s, s
′
, π(s))

(
r(s, π) + βV (s

′
)
)

(7.22)

The optimal policy π obtained by backward recursion of (7.21) and (7.22) shows the best targets
to select for each possible state of the network. Attacks are applied sequentially, then attack with
the highest long term reward value is selected and applied to the network. With the new state of the
network, the next attack is recalculated and applied. Figure 7.3 shows the flow chart of the MDP
cascading failures attack, including the MDP algorithm for target selection.

7.4 Results and Discussion

In this section, we evaluate the performance of the MDP attack in the IEEE 30-bus case study. The
immediate reward is evaluated for both, the power loss reward in (7.12) and congestion increase
in (7.13). Also, a fixed strategy to reinforce the transmission capacity of some edges as a measure
to reduce the impact of cascading failure effects is studied. The use of different criteria selects
suitable candidates for reinforcement. The impact of this reinforcement is evaluated by the effect
produced in the attack impact. The IEEE 30-bus systems as has been described in other Chapters
contains, is composed of 41 lines and 30 nodes, including 6 generator nodes and 18 load nodes.
Lines capacity is shown in Table 7.1.

The algorithm shown in Figure 7.3 is used to identify the attacker targets and Algorithm 5 is
used to apply the attack and calculate the network power loss. Figure 7.4 presents the results
of the MDP attack application against the IEEE 30-bus. The green line presents power loss by
selecting the targets randomly. With a 20% of attacked edges, the network only lost 10% of its
load. Blackline presents the results of the MDP attack with the immediate reward of equivalent to
the loss of power. Close to 12% of attacked edges, the power loss is higher than 50%. First attacks
in the sequence do not represent lost for the system. Dotted orange line shows attack results for the
MPD attack with immediate reward congestion criteria i.e., r(s, s′ , a) = ∆q. This attacks strategy
presents better results than the other two. After the second attacker action of the sequence, the
system has lost 40% of the power. When 12% of the edges are attacked, power lost is two times
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Figure 7.3: Algorithm for the MDP attack strategy.

higher than the lost in MDP with λt immediate reward. By the end of the attacks, both behave
the same. Therefore as can be observed, attacks based on the increase of congestion result more
harmful than attacks focussed on immediate loss of the load. Table 7.2 shows the targets selected
for each attack. Attacks in the MDP∆q strategy is focused on the edges connecting nodes in the
MCS (see Section 6.1) while attacks in the MPDλt strategy target edges directly connected to
centers of the load. The attack is not successful due to the redundancy of edges connecting the
load.

Considering the results of this and previous Chapters, the transmission capacity of edges and
network transmission capacity and congestion plays the central role in the vulnerability of the
network to different hazard events triggering cascading failures. In this way, it is interesting to
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Table 7.1: The values of the transmission capacities of the IEEE-30 bus system.

e (from-to) capacity(p.u.) e (from-to) capacity(p.u.)
1 (1, 2) 130 22 (15, 18) 16
2 (1, 3) 130 23 (18, 19) 16
3 (2, 4) 65 24 (19 ,20) 32
4 (3, 4) 130 25 (10, 20) 32
5 (2, 5) 130 26 (10 ,17) 32
6 (2, 6) 65 27 (10, 21) 32
7 (4, 6) 90 28 (10, 22) 32
8 (5, 7) 70 29 ( 21, 22) 32
9 (6, 7) 130 30 (15, 23) 16

10 (6, 8) 32 31 (22 ,24) 16
11 (6, 9) 65 32 (23, 24) 16
12 (6,10) 32 33 (24, 25) 16
13 (9, 11) 65 34 (25, 26) 16
14 (9, 10) 65 35 (25, 27) 16
15 (4, 12) 65 36 (28, 27) 65
16 (12,13) 65 37 (27 ,29) 16
17 (12,14) 32 38 (27, 30) 16
18 (12, 15) 32 39 (29, 30) 16
19 (12, 16) 32 40 (8, 28) 32
20 (14, 15) 16 41 (6 ,28) 32
21 (16, 17) 16

Table 7.2: Targets for each attack scenario.

MPDλt MDP∆q MDP rand
λt con 50%+ MDP electricB

∆q con 50% MDPCS
∆q con 50%+

(8,28) (4,6) (6-8) (2,5) (4,6)
(4,12) (2,6) (8-28) (1,3) (2,6)
(9,10) (2,5) (15-23) (2,4) (2,5)
(9,11) (10,22) (4-12) (2,6) (25,27)

(12,13) (28,27) (12-13) (25,27) (10,22)
(10,17) (27,29) (10-17) ()
(10,22) (25,27) (28-27) ()
(22,24) (2-5) ()

evaluate how by making flexible the capacity value for some edges, the attack impact can be
affected. For this, consider a number k of edges selected under determined criteria in order to
increase its transmission capacity. The increased capacity will be selected for this example as a
minimum required to produce changes in network behavior. In this way, a 10% of the edges had
been selected for reinforcement with an increase of 50% of its operational capacity. Three different
criteria are used to select suitable candidates for the reinforcement. The first strategy is a random
selection of the candidates. The second strategy is the selection of the candidates according to the
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Figure 7.4: Results of the MDP attack application against the IEEE 30-bus without network rein-
forcement

electric betweenness index. Finally, the last strategy is the selection of candidates according to the
cut-set metric for critical links identification described previously.
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Figure 7.5: Results of the MDP attack with λt reward versus the reinforcement strategy

In terms of the Markov Decision Process, the reinforcement of the edges implies the inclusion
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of a defender who fixes a pure strategy against the attacker. Results of the MDP are going to
be the best response from the attacker to the defender fix strategy. The result will be different
for both MDP attacks. Figure 7.5 presents results of the MDP attack with λt reward versus the
reinforcement strategy. For any strategy to select candidates for the capacity increase, the network
vulnerability to the attack is reduced in 50%. All the reinforcement gives the same results. Figure
7.6 presents the results for the MDP attack with ∆q reward versus the reinforcement strategy.
Random reinforce of capacity does not affect the attack impact, as can be seen in the orange
dotted line. On the other side, an increase in capacity of the elements of the CS present a slight
decrease in the vulnerability of the network as can be seen in the dotted black line. The most
atypical case is the reinforcement of the edges selected by its electric betweenness. Increase of
the capacity of these edges impacts the effectivity of the attack in a 90%. Edges with high electric
betweenness selected for reinforcement where (2, 5), (2, 4), (2, 6), (1, 3). Those edges are edges
with the higher capacity in all the network (see Table 7.1). For an increase of 50% on its capacity,
the network transmission capacity improves in more than 20% reducing congestion and increasing
the resilience of the network in this particular operation point.
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Figure 7.6: Lost of load for the MDP attack with ∆q reward versus the reinforcement strategy

By observing these results, it is natural to consider that a possible controlled rating of edges
capacities during contingencies could help to reduce the impact that failures and threats against
some of their elements can produce. Also, an appropriate strategy should be used to select the best
candidates for reinforcement or controlled dynamic capacity rating in order to get the best response
against attacks.



Chapter 8

Transmission Capacity Rating as a Strategy
to Defend the Network Against Cascading
Attacks: A Stochastic Network Game

”The art of war teaches us to rely not on the likelihood of the
enemies not coming, but on our readiness to receive him; not on
the chance of his not attacking, but rather on the fact that we
have made our position unassailable (MAIR, 2007).”

Sun Tzu
The Art of War

Resilience against cascading failures and attacks is one of the significant issues to consider in
the planning and operation of future energy grids. When looking for ways to improve the future
network operation, new defense strategies enriched by the use of network properties information
should be established. Following previous attacks-based vulnerability framework, this chapter
proposes a defense strategy to control the impact of cascading attacks based on dynamic line
rating. A zero-sum Markov game with discounted reward is used to model the cascading attacks-
defense problem. State coupled replicator equations are proposed to solve the stochastic games.
We obtain candidates lines for transmission capability update from the solution of the attack -
defense problem. Case studies are presented to show the effectivity of the defense strategy. By
controlling the transmission capacity dynamically as a response to the threats, the resilience of the
network is improved significantly.

8.1 Defender Model

The defender is an agent that intends to keep the stable state of the power network defending it from
attacks. The available actions for the defender are the set of network edges whose transmission
capacity could be dynamically rated. According to Section 7.1.3 the capacity vector ct is changed
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by a disturbance δt ∈ Rm, related to the threat model described in Section 7.1.4. In this chapter,
Equation (7.6) is modified to include the actions related to the defense strategy. At each stage
the network reinforcement ς te is modeled by ς te = κΦtct where κ is the capacity rating value with
1 ≤ κ ≤ 2, Φt is a m × m matrix and Φt = diag(φ1, φ2, . . . , φm). Reinforcement ς te is used by
modifying Equation (7.6) as follows

ct+1
e = cte − δte + ς te, e ∈ E t. (8.1)

In this way, (8.1) shows the increase of transmission capacity of edge e by defining the element
φte as

φe =

{
1, if edge e is reinforced;
0, otherwise

. (8.2)

The network state does not change as long as ς t = 0 and δt = 0. Disturbance δ is defined
according to the threat model shown in Section 7.1.4. and system model follows the development
used in Chapter 6 and 7. The defender of the power network aims to define the best control actions
that minimize the cascading failure risk in the long term. Next section defines the problem.

8.2 Problem Formulation

Different from the optimization problem proposed for the attacker in Chapter 7, the defender at-
tempts to reduce the estimated risk of the failures in the network depending on its actions and the
attacker strategy. Consider a set of actions for the attacker {a1

1, a
1
2, . . . , a

1
m} and a set of actions

for the defender {a2
1, a

2
2, . . . , a

2
m}. For a given set of attacks actions, a defined supply/demand,

network topology, and flow routing strategy over an infinite horizon, the optimal defense sequence
that minimizes the damage triggered by the attack. Then, the problem for the defender is the op-
posite than the proposed model for the attacker in (7.14). Expected risk should be reformulated as
E[S(a1,∗, a2,∗, Ĝ)] to include the joint actions of defender and attacker.

Also, it should get response according to the best strategies taken by the attacker then the op-
timal defender strategy will depend on the optimal attacker strategy, and the defender will try to
minimize the estimated risk of the cascade as follows

min
(a1,∗,a2,t)

∞∑
t=0

βE[S(a1,∗, a2,∗, Ĝ)] (8.3)

where β is the discounted reward. Defender chooses the best strategy as a response of strategy
fixed by an attacker. However, the attacker will be optimizing its strategy, and the defense problem
should be recast as an attack-defense problem where both agents are trying to optimize its reward,
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for the defender the reduction of risk and the attacker the opposite increase of risk. Next section
presents the recast of the problem as a discounted stochastic game.

8.3 Stochastic Game for Cascading Collapse Control

As described in the previous section, the objectives of the attacker and defender under cascading
collapse conditions are opposite to each other. By recasting the attacker optimization problem,
we can integrate it with the defender problem into a stochastic game of zero-sum played in the
power system. The game is played in a sequence of steps. In the beginning, the game is in a
given state, and the players select actions independently and at the same time. The selection is
based on their information and constraints for the current state. Following, each player receives an
immediate reward that results from the chosen actions and the current state. Payoffs and probability
transitions between states are defined for each state. The game repeats continuously for new stages
by moving between random states depending on the transition probability defined by the strategy
played and the previous stage. During the game, each player is going to maximize its long-term
expected reward. It is defined as the discounted for all stages of the immediate player rewards.

Due to the competition between the defender and the attacker, the control problem is formulated
as a stochastic game Gβ with a set of states indicated by S, where each state s ∈ S is an array
denoting the current status of all the network edges. The status of each edge in Ĝ is defined by its
membership to the edge set Ê . The stochastic game proceeds in a discrete-time sequence. During
the game iterations, each player chooses an action to optimize its objective based on the current
system state. Let be Ai(s) as the set of all the possible actions that player i, been i = 1 for attacker
and i = 2 for defender, can take at state s individually. As explained in Chapter 7.2 and 8.1, for
the attacker each a1 ∈ A1(s) indicates the transmission line to be attacked. On the other hand, for
the defender, each a2 ∈ A2(s) indicates the set of edges to be reinforced. Each action a ∈ Ai(s) is
selected by the attacker and defender with a specific probability denoted by πij(s). The probability
that an edge e fails when attacked, even if it is reinforced or not, is defined by the hidden failures
model in (7.8). Normalized probability of failure is defined as

ˆω(e) =
ω(e)

‖ω‖1

=
ω(e)

|m−1|∑
k=1

|ω(e)|
(8.4)

where 0 ≤ ˆω(e) ≤ 1. These probabilities included in the independent edge dependent model
from (7.9) determine the transition probability between states q(s′ , s, a), for a := (a1, a2), from
state s to s′ under the actions a. As mentioned before, agents objectives are opposite: maximiz-
ing/minimizing the cascading failures risk in the power network. For each step of the game, both
attacker and defender receives an immediate reward defined by the actions taken at state s. Im-
mediate reward will be denoted by r(s, a) and calculated according to attack severity criteria from
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(7.12) or (7.13). in Chapter 7.1.6. The general definition of the discounted stochastic game for
cascading collapse defense is described as follows

Definition 8.3.1 The discounted stochastic game Gδ(n, S,A, q, r, π
1, . . . , πn) has n players and

k states. At each time step t, the game is in a state s ∈ S = (s1, s2, . . . , sk) and each player i
chooses an action ai from its action set Ai(s) depending on its strategy πi(s) (Liao et al., 2017).

The payoff function

r(s, a) :
n∏
i=1

Ai(s) 7→ Rn (8.5)

maps the players joint action a = (a1, . . . , an) to its immediate payoff value.
The transition probability function

q(s, a) :
n∏
i=1

Ai(s) 7→ ∆k−1 (8.6)

determines the stochastich state change, when ∆k−1 is the (k− 1)− simplex and q(s, s
′
, a) is the

transition probability from state s to s
′

under joint action a.

8.4 Optimal Strategies for Defender and Attacker in the Stochas-
tic Game

Here, the stochastic game is presented with the optimal solutions for the zero-sum stochastic game.
A method for the solution of the stochastic game, based on population dynamics, is developed in
order to find the optimal strategy for the defense of the cascading failures attacks.

8.4.1 Optimal Strategy

The optimal strategy refers to the mixed strategy of all actions chosen by the player that maximize
their expected long-term rewards. The optimal strategy is the mixed strategy from all possible
actions chosen by the player that maximize its long-term expected reward. First, consider sta-
tionary strategies where the probability of selecting a specific action does not change in time, i.e.,
π1(s), π2(s) do not change over time. In this way, the solution of the problem brings the stationary
policies for each player on state s.

The function Ri(s, a) is the expected long term reward for player i selecting actions a∗, for
attacker and defender respectively, and νi

s′
(π) the player i expected long-term reward under the
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optimal strategy when game starts at stage s. Thus, ν2
s′

(π) for the defender will be

ν2
s (π) = min

π2(s)
max
π1(s)

∑
a∈A2(s)

∑
a∈A1(s)

π2(s)R2(s, a)π1(s) (8.7)

where is a nonnegative row vector πi(s) = (πi1(s), πi2(s), . . . , πi|Ai(s)| with entries that satisfy the
simplex

∑
a∈Ai(s)

πia(s) = 1 and πia(s) ≥ 0 and

Ri(s, a) = ri(s, a) + δ
∑
s′∈S

q(s
′
, s, a)νi

s′
(π). (8.8)

For the attacker, a dual problem exists. Besides, considers that attack-defense cascading failures
problem as a zero-sum game where

r(s, a) := r1(s, a) = −r2(s, a) (8.9)

for all s ∈ S, a1 ∈ A1(s) and a2 ∈ A2(s). The optimal reward νis(π) can be called also the present
discount value of the ith player expected future rewards under π with initial stage s.

Furthermore, νi
s′

is the present discount value of the ith player expected future rewards under π
with initial stage s′

νi
s′

(π) = P i(s
′
) + δ

∑
z∈S

νiz(π)Qi(s
′
) (8.10)

where the expected reward for player i resulting from the use of the strategies π1 and π2 at state
s
′ define the immediate expected reward P i(s

′
) where for each s ∈ S

P i(s
′
) =

∑
a′∈

∏n
i=1 A

i(s′ )

(
r(s

′
, a
′
)

n∏
i=1

πi
a
′
i
(s
′
)

)
(8.11)

with r(s, a) defined in (8.5).
Also, for a fixed pair of stationary strategies πi and π2, the Markov probability transition matrix

Qi(s
′
) induced by (π1(s), π2(s)) at state s is

Qi(s
′
) =

∑
a′∈

∏n
i=1 A

i(s′ )

(
q(s

′
, z, a

′
)

n∏
i=1

πi
a
′
i
(s
′
)

)
(8.12)

During each stage, the players consider all possible payoffs obtained for the current strategy.
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The current state s is untangled from all other states s′ 6= s and the expected payoff shifts to the
sum of the expected immediate reward value P i(s

′
) in the state s for joint action a and the present

reward values of other states νiz(π). Hence, if players choose joint action a each time the game is
in state s and their fixed strategies for all other states π(s

′
) the discounted reward value for players

will be defined by (8.13),

Ri(s, a) = ri(s, a) + δ
∑
s′∈S

q(s, s
′
, a)νi

s′
(π). (8.13)

Following, the optimal strategy (π̂1, π̂2), which is understood as the Nash equilibrium of the
zero-sum stochastic game is defined.

Definition 8.4.1 Consider a strategy πi = (πi(1), . . . , πi(s), . . . , πi(N) is a block row vector
whose sth block is a nonnegative row vector πi(s) = (πi1(s), πi2(s)), . . . , πi|Ai(s)| with entries that
satisfy the simplex

∑
a∈Ai(s)

πia(s) = 1 and πia(s) ≥ 0. The pair of strategies (π̂1, π̂2) is a Nash

equilibrium point of the discounted stochastic game Gβ if

ν1
s (π1, π̂2) ≤ ν1

s (π̂1, π̂2), ∀ π1 (8.14)

and

ν2
s (π̂1, π2) ≤ ν2

s (π̂1, π̂2), ∀ π2 (8.15)

Hence, by getting the Nash equilibrium for each state s, we can obtain an optimal defender strat-
egy against attacker best strategy. This strategy will define the optimal expected long term reward
for both players. Due to the zero-sum nature of the game, the present value can be generalized to

νs(π) := ν1
s (π) = −ν2

s (π) (8.16)

for all π. Thus the nature of the equilibrium point of the system will be

Definition 8.4.2 A strategy pair (π̂1, π̂2) constitutes a saddle point for the expected game if and
only if for all π1, π2

ν1
s (π̂1, π2) ≤ ν1

s (π̂1, π̂2) ≤ ν1
s (π1, π̂2) (8.17)

Then, the cascading failures attack-defense game is a zero-sum game, and the minimax theorem
guarantees the existence of a saddle point. Next section presents the development of a multi-
population replicator dynamics algorithm designed to determine the optimal solution for the cas-
cading failures stochastic game. Different from population-based algorithms that only focus on the
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limit average stochastic game, this algorithm presents a specific solution for the discounted reward
stochastic game previously not founded in literature. Also, solution of the population dynamics
system is proven to converge to the optimal solution.

8.4.2 State Coupled Replicators for Discounted Reward Stochastic Games

Considers the system of differential equations defining the two-population replicator dynamics as
following (Hennes, Tuyls, & Rauterberg, 2009),

dπi
dt

= πi

[
(Aσ)i − π

′
Aσ
]

dσi
dt

= σj

[
(Bπ)j − σ

′
Bπ
] (8.18)

where A and B are respectively the game payoff matrices for player 1 and 2. The vector of
probabilities π defines the frequency of all puree strategies for player 1. The progress of the
replicator i is calculated by the difference between its payoff (Aσ)i and the average payoff π′Aσ
of the whole population π versus the strategy of player 2.

In the discounted reward stochastic game Gβ with discounted payoff reward Ri(s, a∗), the ex-
pected payoff of an individual playing a pure strategy i in population π against a population σ is
given by

P i(s, ω) =
∑

j∈Ai(s)

ωj ∑
a∈

∏
l6=i

Al(s)

(
Ri(s, a∗)

∏
l 6=i

πla∗l (s)

) (8.19)

where

a∗ = (a1 . . . ai−1, j, ai . . . an). (8.20)

All possible joint actions a with fixed action j are enumerated in the vector a∗. If population πi

represents a population i, for i = 1, 2 respectively as defined in 8.4.1 it is possible to define a
system of differential equations similar to (8.18) where the payoff matrix A is replaced by the
expected discounted reward game payoff Ri(s, a∗) as follows,

Definition 8.4.3 The multi-population state-coupled replicator dynamics are defined by the fol-
lowing system of differential equations:

dπij(s)

dt
= πij

[
P i(s, ej)− P i

(
s, πi(s)

)]
(8.21)

where ej is the jth-unit vector and P i(s, ω) is defined in (8.19) as the expected payoff for an
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individual of population i playing some strategy ω in state s.
where Ri(s, a∗) is the discounted reward function of Gδ(s, π

1, π2),

Ri(s, a∗) = ri(s, a∗) + δ
∑
s′∈S

q(s, s
′
, a∗)νi

s′
(π) (8.22)

and

a∗ = (a1 . . . ai−1, j, ai...an). (8.23)

In total the system has N =
∑

s∈S
∑

i=1 n|Ai(s)| replicator equations.
In order to solve the coupled-state multi population replicator dynamics, a Global Random Start

Algorithm is used to define the initial present discount value of the system. The algorithm behaves
as follows

1. Randomly selects starting points from the space {πia(s), νis(π)} for the replicator equations
in 8.21 and solve them until the solution of the system is founded.

2. Given the size of the space the search of the initial point will be inefficient then it is sufficient
to search the space of probability vectors to choose the starting πia(s).

3. Once the initial probability is chosen, solve the linear system in 8.10to determine the starting
νis(π).

Example: 2-state matching pennies game

Considers the classic game of ”Matching pennies” generalized for a 2-state stochastic game (Hennes,
Kaisers, & Tuyls, 2010). Player 1 and 2 both put a penny on a table simultaneously. In state 1,
If the two pennies come up the same, then player 1 gets both, otherwise player 2. For state 2,
If the two pennies come up the same, then player 2 gets both, otherwise player 1. This game is
represented by the reward matrices that follows

(
r1(s1), r2(s1)

)
=

(
1, 0 0, 1

0, 1 1, 0

)
,
(
r1(s2), r2(s2)

)
=

(
0, 1 1, 0

1, 0 0, 1

)
. (8.24)

Similarly, the transition probabilities between states depending on the actions taken are given by
the matrices Q(s1, s2) and Q(s2, s1)

Q(s1, s2) =

(
1 1

0 0

)
, Q(s2, s1) =

(
0 0

1 1

)
, (8.25)
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The probabilities to stay at the same state after a transition occurs are defined by Q(s1, s1) =

1−Q(s1, s2) and Q(s2, s2) = 1−Q(s2, s1). Coupled state multi-population replicator dynamics
in (8.21) is applied to the game and mixed nash equilibrium are founded with joint strategies π1 =

(0.5, 0.5)), π2 = (c, 1 − c) with c depending on initial conditions.in state 1 and π1 = (0.5, 0.5)),
π2 = (0.5, 0.5) in state 2. Figure 8.1 presents an overview of the state space for the matching
pennies game on each state. A continum of equilibrium points exist in state 1 for player 2 due to
linear dependency of the stochastic replicators.
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Figure 8.1: Overview of the state space for the matching pennies game on each state

Figure 8.2 present multiple trajectory plots for the 2-state matching pennies game departing
from random initial conditions in both states. The results show how all the trajectories converge
close to the continuum of mixed Nash equilibrium points described before. Results confirm the
convergence of the algorithm to the solution of the stochastic game.
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Figure 8.2: Multiple trajectories for the players in the 2-state matching pennies game.

Figure 8.3 shows the convergence of the discounted value of a strategy pair ν1
s (π) = −ν2

s (π)

for each state.
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Figure 8.3: Convergence of the discounted value for the matching pennies game

8.5 Simulation Results

In this section, simulations are performed to demonstrate the efficacy of the proposed defense
scheme. First, the convergence of the proposed coupled states multi population replicator dynamics
algorithm is demonstrated in the IEEE 9 bus system.

Table 8.1: Edge capacity for the studied IEEE 9 -bus system

e 1 2 3 4 5 6 7 8 9
(from-to) (1, 4) (4,5) (5, 6) (3, 6) (6, 7) (7, 8) (8, 2) (8, 9) (9, 4)

capacity (p.u.) 250 250 150 300 150 250 250 250 250

8.5.1 Convergence of CSMP-Replicator Dynamics

This section study the convergence of the proposed coupled multi-population replicator algorithm
using the IEEE 9-bus system and the PowerNet toolbox. Transmission capacity limits for each
edge of the system following Section 7.1.3. Flow limits are presented in Table 8.1. Figure 8.4
presents the configuration of the system.

To initialize the simulation, we set the probability of actions homogeneously distributed with
π1 = 0.125 for all actions π1

j and π2 = 0.125 for all actions π2
j for all the states. Using these initial

probabilities we use the Global Random Start Algorithm and calculate the present value initial
condition., transition probabilities q(s, s′ , a) are calculated and immediate reward for all actions
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Figure 8.4: Network structure of the IEEE 9-bus system

all states as well. The discount factor is β = 0.9. Figures 8.5 and 8.6 shows the dynamic of the
replicators associated with strategies for attacker and defender.

From the results, it is possible to observe for each state a pair of pure strategies for attacker-
defender. These become the primary targets for attack and defense, respectively, for each state. In
particular, in state 1, the attacker tends to attack edge 6, and the defender will reinforce 3. The
probabilities converge to a stationary strategy for both players. A system without control lost all
its load by the attack of a single edge, after apply capacity control by the defender, the time of
collapse is extended from the first stage to the third stage.

Strategies converge for 150 iterations. Converged strategies achieve a Nash equilibrium point.
The strategies obtained can be used as a guide for the defender to select targets for dynamic line
rating in order to reduce congestion of the system. By applying this strategy, the system operator
will diminish the risk of failure propagation and loss of load. Results in Figure 8.7 show how the
present discount changes by employing the action obtained from the replicator method.

The differential equations system integration dictates the complexity of the algorithm. Also,
for a higher number of nodes, the time to calculate the reward and transition matrix could increase
considerably.
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8.6 Conclusions

Stochastic games could be a useful framework to study defense strategies reducing the risk of fail-
ure in power networks. Optimal strategies responding to possible damage or failure of components
can be studied through this framework. In this chapter, we have investigated defense strategies
against cascading failures attacks in power networks. In particular, we built a zero-sum stochastic
game whose transition probabilities depends on the network structure and hidden failures model.
Different from previous results in the literature, transition probabilities are not estimated constant
and homogeneous but are obtained from the network evolution during cascades. Attack defense
rewards are calculated through cascading failures models proposed in previous chapters. Different
from the results in Chapter 7, this chapter studies the joint actions between attackers and defend-
ers. The strategy enumerates the different network states and the optimal joint strategies achieved
in order to reduce the damage in the network or increase the response window. A coupled state
multi-population replicator dynamics algorithm has been proposed in order to solve the stochastic
game dynamically for each stage. Results extend previous results existing for limit average reward
games to discounted long-term reward games. Algorithm complexity could be highly increased
by the size of the calculation of transition and immediate rewards. Future works will be mainly
focused on the decentralization of the strategy in order to reduce computational times and make it
applicable to multiple stage attacks.
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Figure 8.7: Attack defense strategy at state 9 and present discount value for attacker and defender
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Summary and Contributions



Chapter 9

Contribution and Concluding Remarks

9.1 Contributions

In this thesis, network-based approaches for the analysis and control of critical transitions in power
networks has been presented. It has been introduced how network-based methods had been used
during the last decade to approach power systems problems, in particular for cascading failures
in chapter 2. The first contribution of this thesis studies the connectivity properties of power
networks. Chapter 3 demonstrates how functional properties affect structural connectivity is and
network congestion. Different from results found in literature properties studied in this chapter are
evaluated for the first time in power systems. Network redundancy, bottleneck, and the cut-sets
appear to have a significant role in connectivity changes during cascading failures. Computational
methods in Chapter 5 demonstrate the influence of the cut-sets during cascading failures.

As a second contribution of this dissertation, a new dynamical model of cascading failures
integrating networks, hybrid systems, and power systems has been developed in Chapter 4. The
main advantage of the model is the integration of node dynamics and network dynamics in a single
framework, making more accessible future analysis on the influence of phase compensation for
cascading failure defense. A QSS approach of the model is also proposed in Chapter 6 and used
in Chapter 7 and 8. The model proposed to have several advantages in order to facilitate the
analysis of network properties and its use as design criteria for the attack-defense strategies in
power networks.

As a third contribution of this thesis, Chapter 6 introduce a new network-based vulnerability
analysis of power systems. MCS vulnerability is studied for the first time. The inclusion of multi-
step attacks and target selection based on the MCS improves the vulnerability framework. A new
metric to compare network vulnerability is presented. MCS attacks are compared to other attacks
based on several well-established vulnerability metrics demonstrating its significant role in the
vulnerability of the network.

Connectivity impact on network vulnerability during cascading failures is the main issue ad-
dressed in this thesis. To this end, the fourth contribution of this dissertation, presented in Chapter
7 consist of the logical extension of results in 6 by the modeling and solution of the Markov-based
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attack problem. By this strategy, the most successful and efficient attack triggering cascading fail-
ures in power networks is presented as a Markov decision process. State transitions are defined
based on hidden failures and edge-dependent network evolution. As the fifth contribution of this
thesis, the Markov-based attack model is extended in a Zero-Sum Stochastic game in Chapter 8,
where Nash equilibrium solution is found given the optimal control strategy against cascading
failures attacks. Dynamical line rating is integrated into the defender model presenting as a first
time this approach as a control strategy against cascading failures. As the sixth contribution of this
dissertation, state coupled replicators are proposed to solve stochastic games in networks Chapter
8. Lumped Markov chains are used to model state transitions in order to approach the dimension-
ality problem. State coupled replicators are demonstrated to be useful to select control actions
facilitating its extension at future to distributed control strategies.

9.2 Answering the Research Questions

This chapter answers the research questions postulated in Chapter 1.2 summing up the conclusions
of this dissertation.

Q1 How do the properties of power networks change during a critical transition? One of the
main inconveniences for the control and prevention of critical events in power networks is
the lack of understanding of the cascading mechanism and the network structural and func-
tional changes when approaching or crossing these transitions. The main property studied
in this dissertation in order to understand this property is network connectivity and its influ-
ence on cascade spread. Several issues influencing cascading events have been identified in
this dissertation. It has been shown in Chapter 3 how network connectivity changes due to
different trigger mechanisms. The influence that trigger failures can have on the generation
of the cascading mechanism is highly related to the network properties. Cascading events of
different size are triggered depending on the supply/demand operation point and congestion.
Power flow paths get congested and spread failures by achieving transmission limits at main
connecting elements, i.e., MCS. Supply/demand node placement affects the size of the MCS
and at the same time, network congestion. Flow bottleneck increase moving the system
through a point of flow unfeasibility. Heavily charged networks can be more vulnerable to
failure events that not-loaded networks. Line transmission capacity plays a significant role.
Flow unfeasibility due to capacity constraints presents the primary mechanism to node isola-
tion and power loss. Re-dispatch, without considering network-based transmission capacity
influence significantly the failure mechanism. Another mechanism is related to state jumps
(i.e., voltage angle) occurs during failures. Jumps generate uncontrolled overshoots on node
dynamics that cross risk limits causing cascade jumps.

Q2 How to design control actions that can handle critical changes in power network dynamics?
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A perturbed power network poses operational challenges for which traditional solutions cur-
rently are not efficient. A possible approach to control should create adequate disturbance
to evaluate the reaction of the system to worst-case events. Also, identify main components
affecting the development of this phenomena in order to control its effect. The possible
response of the system should be predicted by inferring transitions of the state and the net-
work. Also, primary triggers and propagation failure precursors should be identified. Mixed
stochastic - network approach is demonstrated to be useful in order to count with the unpre-
dictability of failure event and propagation. Also, considering the constraints and influence
of connectivity in the development. Defense strategies must be designed by the integration
of networks and structural properties as a response of main trigger events. Stochastic dy-
namics and games have been demonstrated as a useful framework to control the network on
this failure regime.

Q3 How to reduce the impact of dynamical changes in power networks under critical tran-
sitions? How to modify the distance from the critical point in power networks dynamics
trough local control actions? Under which conditions it is possible?

Build a threats framework were systems react in different ways to different stimuli. First,
use vulnerability analysis to identify the natural response of the system to cascading fail-
ures events. Stablish the worst case scenario consider the design of a strategy to get the
best response against a failure scenario like that operation conditions and network struc-
ture constraints the possibility to mitigate the failure event. Dynamical line rating can be
useful to reduce the impact of cascading effects, controlling the transmission line capacity
locally dynamically of elements in the propagation paths identified by vulnerability analysis.
Actions should be taken considering long-term consequences that those actions could have
in the cascading failure. Stochastic prediction of long-term results of mitigation actions in
the zero-sum stochastic games should be analyzed in order to select the line candidates for
dynamic control of capacity appropriately.

9.3 Directions for Future Research

Some suggested ideas for future directions are outlined next:

• To design a resilient control strategy for transmission network reconfiguration, considering
generation/demand uncertainty and failure events. Network reconfiguration is proposed as a
strategy to overcome all possible operating scenarios, voltage violations, and line overload in
power networks. The objective of network reconfiguration is to reduce power losses during
operation. The primary concern for its application is the possible loss of connectivity and its
consequences for network security. During this project, we will propose a control strategy
for network reconfiguration where operation under uncertainty of failure events an operation
scenario due to unpredictable generation/load profiles (e.g., DERs, demand response). The
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strategy will work on stochastic games, where network state transitions will be modeled
to include all possible network reconfiguration scenarios, and select better response against
possible uncertain failure events. Research results previously obtained on the modeling on
cascading failure mechanism and stochastic games for systems vulnerability will be used as
main concepts for the proposed research. Case studies will be used to validate the effectivity
of the proposed approach.

• To design stochastic transmission network planning strategies considering network vulnera-
bilities and interdependencies. System operators tend to implement more rapidly resilience-
enhancing technical capabilities and operation strategies that are available today and to speed
the adoption of new capabilities and new strategies as they become available. In this stage,
the idea is to enhance traditional network planning methodologies based on linear program-
ming and stochastic linear programming to include constraint related to connectivity prop-
erties that improve network resilience. Stochastic approaches will be considered in order to
consider the integration of unpredictable renewable energy resources in the planning and use
its variable capacity in favor of network support. Optimization-based approaches combined
with network science theory will be used as a framework. As a main result, the transmis-
sion planning strategy should be tested on failure scenarios with different conditions of the
generation /demand profile.

• To study the influence of network topology and interdependency in system vulnerability
from a control systems perspective Enhance operator understanding of interdependency and
system vulnerability is a crucial task to deal with the emerging threats and challenges that
can only be overcome by integrated risk-management approaches. We are interested in study
vulnerability due to interdependency from a control system approach, where metrics will be
developed to identify the main elements influencing failures spread and the viability of con-
trol responses to reduce the failure impact on the different interdependent infrastructures.
Case studies combining communication, transport, and energy infrastructures will be as-
sessed.
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Blanchard, P., Cessac, B., & Krüger, T. (2000). What can one learn about self-organized criticality
from dynamical systems theory? Journal of Statistical Physics, 98(1), 375–404.



References 117

Bompard, E., Pons, E., & Wu, D. (2012, Sep.). Extended topological metrics for the analysis of
power grid vulnerability. IEEE Systems Journal, 6(3), 481-487.

Brummitt, C. D., Barnett, G., & D’Souza, R. M. (2015). Coupled catastrophes: sudden shifts
cascade and hop among interdependent systems. Journal of The Royal Society Interface,
12(112).

Brummitt, C. D., D’Souza, R. M., & Leicht, E. A. (2012). Suppressing cascades of load in
interdependent networks. Proceedings of the National Academy of Sciences, 109(12), E680-
E689.

Campbell, J., C.and Ruths, Ruths, D., Shea, K., & Albert, R. (2015). Topological constraints on
network control profiles. Scientific Reports, 5.

Carlson, J., Haffenden, R., Bassett, G., Buehring, W., Collins III, M., Folga, S., . . . Whitfield, R.
(2012). Resilience: Theory and application. (Tech. Rep.). Argonne National Lab.(ANL),
Argonne, IL (United States).

Caro-Ruiz, C., Pavas, A., & Mojica-Nava, E. (2016, Sep.). Voltage distributed control for power
networks with ders. In 2016 IEEE Power Energy Society Innovative Smart Grid Technolo-
gies Conference (ISGT) (p. 1-5).

Caro-Ruiz, C., Pavas, A., & Mojica-Nava, E. (2017, Oct). Desynchronization of pulse-coupled
oscillators in cycle networks: A hybrid systems approach. In 2017 IEEE 3rd Colombian
Conference on Automatic Control (CCAC) (p. 1-5).

Caro-Ruiz, C., Lombardi, P., Richter, M., Pelzer, A., Komarnicki, P., Pavas, A., & Mojica-Nava,
E. (2019). Coordination of optimal sizing of energy storage systems and production buffer
stocks in a net zero energy factory. Applied Energy, 238, 851 - 862.

Caro-Ruiz, C., & Mojica-Nava, E. (2015a, Oct). Centrality measures for voltage instability analy-
sis in power networks. In Proceedings of the IEEE 2nd Colombian Conference on Automatic
Control (CCAC) (p. 1-6). doi: 10.1109/CCAC.2015.7345182

Caro-Ruiz, C., & Mojica-Nava, E. (2015b, Oct). Voltage collapse analysis in a graph theoretical
framework. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Latin
America (ISGT LATAM) (p. 667-672).

Caro-Ruiz, C., Pavas, A., & Mojica-Nava, E. (2016). Controllability criterion for random tree
networks with application to power systems. In Proceedings of the 2016 IEEE Conference
on Control Applications (CCA) (pp. 137–142).

Carreras, B. A., Reynolds-Barredo, J. M., Dobson, I., & Newman, D. E. (2019). Validating the
opa cascading blackout model on a 19402 bus transmission network with both mesh and
tree structures. In Electrical and Computer Engineering Conference Papers, Posters and
Presentations. (Vol. 64).

Carroll, L., & DAL, S. (2015). Alice’s adventures in wonderland: 150th anniversary edition.
Princeton University Press.

Cetinay, H., Kuipers, F. A., & Mieghem, P. V. (2018, Sept). A topological investigation of power
flow. IEEE Systems Journal, 12(3), 2524-2532.

Cetinay, H., Soltan, S., Kuipers, F. A., Zussman, G., & Mieghem, P. V. (2018). Comparing the



References 118

effects of failures in power grids under the ac and dc power flow models. IEEE Transactions
on Network Science and Engineering, 1-1.

Chen, G., Dong, Z. Y., Hill, D. J., Zhang, G. H., & Hua, K. Q. (2010). Attack structural vulnera-
bility of power grids: A hybrid approach based on complex networks. Physica A: Statistical
Mechanics and its Applications, 389(3), 595-603.

Chen, Y.-Z., Huang, Z.-G., & Lai, Y.-C. (2014). Controlling extreme events on complex networks.
Scientific reports, 4.

Chen, Y.-Z., Huang, Z.-G., Zhang, H.-F., Eisenberg, D., Seager, T. P., & Lai, Y.-C. (2015). Ex-
treme events in multilayer, interdependent complex networks and control. Scientific reports,
5.

Cheng, M. X., Crow, M., & Ye, Q. (2016a). A game theory approach to vulnerability analysis:
Integrating power flows with topological analysis. International Journal of Electrical Power
& Energy Systems, 82, 29 - 36.

Cheng, M. X., Crow, M., & Ye, Q. (2016b). A game theory approach to vulnerability analysis:
Integrating power flows with topological analysis. International Journal of Electrical Power
& Energy Systems, 82, 29 - 36.

Chu, C., & Iu, H. H. (2017, June). Complex networks theory for modern smart grid applications:
A survey. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 7(2),
177-191.

Coelho, E. P. R., Paiva, M. H. M., Segatto, M. E. V., & Caporossi, G. (2018). A new approach for
contingency analysis based on centrality measures. IEEE Systems Journal, 1-9.

Como, G. (2017). On resilient control of dynamical flow networks. Annual Reviews in Control,
43, 80 - 90.

Cornelius, S. P., Kath, W. L., & Motter, A. E. (2013). Realistic control of network dynamics.
Nature communications, 4.

Corral, A., & Dı́az-Guilera, A. (1997). Symmetries and fixed point stability of stochastic differen-
tial equations modeling self-organized criticality. Physical Review E, 55(3), 2434.

Cuffe, P., & Keane, A. (2017, Sept). Visualizing the electrical structure of power systems. IEEE
Systems Journal, 11(3), 1810-1821.

Cupac, V., Lizier, J. T., & Prokopenko, M. (2013). Comparing dynamics of cascading failures
between network-centric and power flow models. International Journal of Electrical Power
& Energy Systems, 49, 369-379.

Dey, P., Mehra, R., Kazi, F., Wagh, S., & Singh, N. M. (2016, July). Impact of topology on the
propagation of cascading failure in power grid. IEEE Transactions on Smart Grid, 7(4),
1970-1978.

Dı́az-Guilera, A., & Arenas, A. (2008). Phase patterns of coupled oscillators with application
to wireless communication. In Bio-inspired computing and communication (pp. 184–191).
Springer.
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List of Symbols

Φt edges index with reinforcement

φm edges index for reinforcement

a index vector of parwise interactions among nodes

λ̄ natural connectivity

β rate of discount

∆k−1 (k − 1)−simplex

κ capacity rating value

λ(G) edge connectivity

λi eigenvalue i

N (i) set of node neighbours for node i

µ(G) a minimum cut of G

νi
s′

(π) expected long-term reward for player i

πij(s) probability for selection of action j for player i

ρ(e) probability of failure for edge e

σij number of shortest paths from node i to j

σij(e) number of shortest paths from node i to j that pass through edge e

ς te network reinforcement vector

Ai(s) set of actions for player i

B(e) betweenness centrality for edge e

c(vx, vy) minimum weight of a cut separating nodes vx and vy

d(Vi−1, vj) edges weight sum for edges connecting VX and VY
Dhk Jump set

fe power flow of edge e

G(θ, a, p, u) jump map
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Gβ β-discounted stochastic game

kmin minimum node degree

kmax maximum degree

L admittance matrix

l length of a walk in the graph G

L(a) Laplacian matrix

P i(s
′
) immediate expected reward

Qi(s
′
) Markov probability transition matrix for player i

RoUe branches overload

U(Θ, a,p) set of load sheeding control actions

x variable of the state space X

D weighted degree diagonal matrix, D ∈ Rn×n

Q̃+ pseudoinverse of the weighted laplacian matrix Q̃

α tolerance parameter

δt element of the disturbance sequence ∆ = (δt)t∈N

η overall attack performance

γte diagonal element in the e-th row of the disturbance matrix Γt ∈ Rm×m

V̂ t set of nodes in the largest connected component Ĝt at time t

λt lost load

λtres residual load

λ2 algebraic connectivity

λinit system initial load

〈k〉 average degree

A attack sequence

A∗ minimum cardinality attack sequence

D∗ subset of the feasible attack set D

E t set of active edges at instant t

G network graph

Gt network graph at instant t

It set of isolated nodes at the stage t

V t set of active nodes at instant t
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Vb nodes without supply or demand

Vd set of demand nodes

Vs set of supply nodes

µd demand nodes community detection

ν connectivity density index

πt attack efficiency

ρt cummulative fraction of attacked edges at instant t

θv element of the voltage angle vector Θ ∈ Rn

b̃ve element of the v-th row and e column of the weighted incidence matrix B̃ ∈ Rn×m

ξtij element of the i-th row and j-th column of the flow routing policy matrix Ξt ∈ Rm×n

avi element of the v-th row and i-th column of the network adjacency matrix A

bvi reciprocal of the transmission line reactance between buses v and i

ce e-th element of the flow capacity vector ct ∈ Rm

d network density

e e is an element of the edge set E

f te e-th element of the edges flow vector f t ∈ Rm

g(δt) attack reward function

hvi element of the v-th row and i column of the weighted adjacency matrix H ∈ Rn×n

kv node degree

kextv number of edges that connect node v to supply nodes

pv v-th element of the supply/demand vector p ∈ Rn

qt flow bottleneck at the stage t

s cardinality of the minimum edge cut-set S

v v is an element of the node set V

vvis , v
vi
d virtual source and demand nodes

W weight of an edge cut-set Ŝ
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Appendix A

MATLAB Functions for Network-based
Analysis

A.1 Network Model

This section presents a set of MATLAB functions used to work over the MATPOWER case file
structure with network-based tools.

A.1.1 getId

Purpose Generate a list of node names for elements of the node-set defined by the attribute type

Synopsis [list] = getId(net,type)

Description The function getId generates a list with the node names for elements in a node-set
defined by the attribute type. Input net is the MATPOWER case file. Nodes names are
represented by unique strings assigned in net. The type attribute specifies the type of node
element in list. The list of keywords and states for the type attribute value is

• nodes: the list consists of all node names.

• edges: two column list with the node names for the nodes that each edge connects.

• loads: list including the names of the PQ nodes with nonzero load.

• gen: the list consists of all PV node names.

• nogen: the list consists of all PQ node names.

A.1.2 getGraph

Purpose Create an undirected graph representation of a power system.
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Algorithm 7 Function getId
Input: C = (B, T,p), type
Output: list

1: switch (the value of type)
2: case nodes:
3: Generate a list with the network nodes, vlist ← Bid, list← vlist.
4: case edges:
5: Generate a list with the network nodes, elist ← [Tfrom, Tto], list← elist.
6: case gen:
7: for all bi do
8: if bi is slack or bi is PV then
9: Add supply node to the list, vgenlist ← [vgenlist , b

i
id].

10: end if
11: end for
12: list← vgenlist .
13: case loads:
14: for all bi do
15: if bi is PQ and li is not zero then
16: Add demand node to the list, vloadslist ← [vloadslist , biid].
17: end if
18: end for
19: list← vloadslist .
20: case nogen:
21: for bi do
22: if bi is PQ then
23: Add no supply node to the list, vnogenlist ← [vnogenlist , biid].
24: end if
25: end for
26: list← vnogenlist .
27: end switch
28: return List.
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Synopsis [G,adj] = getGraph(net)

Description The function getGraph generates an object Gwith the attributes: Edges and Nodes.
The function identifies multiple edges that are incident to the same two vertices and retains
only one of the edges. Also, the function generates the adjacency matrix A of the graph.
Input net is the power system described in MATLAB case file format.

See Also :
getId.

Algorithm 8 Function getGraph
Input: C = (B, T,p)
Output: G = (V , E), A

1: Get vlist and elist.
2: V ← vlist, list of buses id in C
3: E0 ← elist, list of branches in C
4: E ← E0 \ S , where S ⊆ E0 and S is the set of all repeated edges in E0

5: G ← (V , E) network topology of C
6: A← [aij]N×N whose rows i and columns j are indexed by V(G) and [aij] = 1 if an edge exist.

Otherwise [aij] = 0
7: return G = (V , E), A.

A.1.3 getGraphW

Purpose Create an undirected weighted graph representation of a power system.

Synopsis [G,adjW] = getGraphW(net)

Description The function getGraphW generates an object G with the attributes: Edges, Nodes
and Weights. The function identifies multiple edges that are incident to the same two vertices
and retains only one of the edges. Also, the function generates the weighted adjacency matrix
adjW of the graph. Input net is the power system described in MATLAB case file format.
The edge weights are the MVA emergency ratings in the MATPOWER case file.

See Also :
getId.
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Algorithm 9 Function getGraphW
Input: C = (B, T,p)
Output: G, W

1: c← Tcap, capacity of branches in net
2: Get vlist and elist
3: V ← vlist, list of buses id in net
4: E0 ← elist, list of branches in net
5: E ← E0 \ S , where S ⊆ E0 and S is the set of all repeated edges in E0

6: G ← (V , E , c) network topology of net
7: W ← [wij]N×N whose rows i and columns j are indexed by V(G) and [wij] = ceij if an edge

exist. Otherwise [wij] = 0
8: return G, W

A.1.4 getGraphTrans

Purpose Get the undirected weighted graph graph representation of a power system excluding
generator nodes.

Synopsis [G,adjT] = getGraphTrans(net)

Description The function getGraphTrans generates an object G with the attributes: Edges,
Nodes and Weights. The graph excudes the generation buses. The function identifies multi-
ple edges that are incident to the same two vertices and retains only one of them. Also, the
function generates the weighted adjacency matrix of the graph. Input net is a power system
described in MATLAB case file format. The edge weights are the MVA emergency ratings
in the MATPOWER case file.

See Also :
getId, getGraphW.

Algorithm 10 Function getGraphTrans
Input: C = (B, T,p)
Output: G, Wtrans

1: c← Tcap, capacity of branches in net
2: Get vlist and elist
3: V ← vnogenlist , list of buses id in net without generation
4: E0 ← elist, list of branches in net
5: E ← E0 \ S , where S ⊆ E0, S is the set of all repeated edges in E0

6: ceij ←
∑

eij∈Seij

ceij where Seij ⊆ S is the set of all repeated edges between vi and vj

7: Wtrans ← [wij]N×N whose rows i and columns j are indexed by V(G) and [wij] = cij if an
edge exist. Otherwise [wij] = 0

8: return G, Wtrans
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A.1.5 plotGraph

Purpose Plot graph nodes and edges of the power system

Synopsis [] = plotGraph(G,type, gen, loads, cs, ct)

Description The function plotGraph plots the graph nodes and edges of the power system with
a layout defined in the attribute type. The function input G is the graph object. The type
attribute specifies the type of node element to list. The list of keywords and states for the
type attribute value is

• graph: plot the power network topology identifying, by color labels, the generation,
neutral and load nodes-sets. Requires, as input, the list of generator nodes gen, and
the list of load nodes loads.

• mincut: plot the edges in the minimumcut set separating the generation and load
node-sets. Requires, as input, the node-sets cs, ct and the augmented graph with
source and sink. These can be obtained by the use of the function sourceSink.

Function plotGraph pseudocode is shown at next.

See Also :
getId, getGraphW, sourceSink.

Algorithm 11 Function plotGraph
Input: G = (V , E ,w) , vgenlist , v

loads
list , Cs, Ct, type

Output: Network figure P
1: switch (the value of type)
2: case graph:
3: Generate plot P of G;
4: Highlight in red the supply nodes listed in Bgen

list

5: Highlight in green the demand nodes listed in Bloads
list

6: case mincut:
7: Generate layered plot P of G for source node set Cs, and sink node set Ct;
8: plot edge weights w
9: highlight E in black

10: highlight Cs in red
11: highlight Ct in green
12: end switch
13: return Network figure P
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A.1.6 edgeList

Purpose Get an ordered list of edges

Synopsis [list]= edgeList(G,type)

Description The function edgeList creates an ordered edge list with an attribute type. The
function input G is the graph object. The type attribute specifies the order of the element in
list. The list of keywords and states for the type attribute value is

• random: list of edges in random order.

• high-high: list of edges in sorted order by decreasing node degree for each vertices
where the edge incides.

• high-low: list of edges in sorted order by decreasing node degree and increasing
node degree for each vertices where the edge incides, respectively.

• low-low: list of edges in sorted order by increasing node degree for each vertices
where the edge incides.

Algorithm 12 Function edgeList
Input: G = (V , E), type
Output: eorden

1: for all eij ∈ E do
2: Get degree of vi, δe(vi)←

∑
k

aik

3: Get degree of vj , δe(vj)←
∑
l

ajl

4: Sum the degrees for edge e, De ← δ(vi)e + δ(vk)e
5: end for
6: switch (the value of type)
7: case random:
8: Assign randomly all elements from E to eorden
9: case high-high:

10: Get a sorted list of edges such that eorden ← (e1, e2, ...) such that e1 = eij , e2 = ekl and
δe(vi) ≥ δe(vk), δe(vj) ≥ δe(vl)

11: case high-low:
12: Get a sorted list of edges such that eorden ← (e1, e2, ...) such that e1 = eij , e2 = ekl and

δe(vi) ≥ δe(vk), δe(vj) ≤ δe(vl), De1 ≤ De2

13: case low-low:
14: Get a sorted list of edges such that eorden ← (e1, e2, ...) such that e1 = eij , e2 = ekl and

δe(vi) ≤ δe(vk), δe(vj) ≤ δe(vl)
15: end switch
16: return eorden.
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