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5ResumenEl problema de ontrol de sistemas de gran esala y en red se resuelve normalmente divi-diendo el problema y apliando ténias loales de modelamiento y ontrol a subsistemasmás pequeños y más manejables . Dado que una partiión no es natural, los subsistemas noneesariamente interambian la informaión apropiada y los ontroladores no se omportanomo deberían. La falta de ooperaión hae que los ontroladores interatuen de manerainesperada lo ual no fue onsiderado en la fase de diseño. Como resultado de ello, el sis-tema ompleto puede ser muy fragil e inluso ser inestable en presenia de perturbaionesno modeladas. Atualmente, es bien sabido que on el �n de obtener un funionamientoóptimo global de un sistema, es neesario medir, estimar y atuar en base a la informaiónglobal. Haer estas tareas es difíil e implia un serio ompromiso entre la omplejidady �abilidad, este ompromiso debe ser negoiado on el �n de obtener resultados reales yapliables.En los problemas de ontrol de sistemas de gran esala, la e�ienia, la tratabilidad delontrol y el modelo son puntos laves: es neesario alular una buena aión de ontroly simular el sistema de una manera preisa, teniendo en uenta que todos los subsistemasno neesariamente tienen el mismo omportamiento dinámio, y la simulaión de todoel sistema puede tener una alta arga omputaional. Una partiión jerárquia basadaen la dinamia temporal puede ser propuesta on el �n de reduir el tamaño y la argaomputaional del problema. En ese sentido y on el �n de haer frente a estos problemas,el uso de ontrol distribuido en el que el sistema se subdivide en varias subregiones esneesario. También habrá una distribuión temporal de los ontroladores, lo que resultaen una estrutura jerárquia en la que los ontroladores de nivel inferior se oupan dela dinámia rápida en una región pequeña y en el que los ontroladores de nivel másalto uidan de las dinámias más lentas y haen la oordinaión sobre una región másgrande. Así que en la on�guraión anterior, los sistemas de mayor funionalidad residenen niveles más altos, mientras que en los niveles inferiores de las unidades individuales,deben garantizar funiones espei�as. Además del seguimiento de referenias y objetivoseonómios que se onsideren explíitamente.En esta tesis se presenta un enfoque de ontrol jerárquio apliado a sistemas de granesala mediante el ontrol preditivo basado en modelo por zonas. Este método utiliza unaintegraión de la optimizaión dinámia en tiempo real (DRTO) y el ontrol preditivobasado en modelo por zonas. En general, el ontrol de las diferentes variables se estableeen una referenia de�nida, pero en oasiones, esto puede afetar la viabilidad de la soluiónes espeial uando el sistema está altamente interonetado. En general en los sistemas degran esala las variables no neesariamente deben estar en una referenia espeí�a, allí esuando se utiliza el ontrol por zonas, donde las variables de salida se mantienen en unazona determinada. Control por zonas es un enfoque que ayuda a enontrar una soluiónfatible, ya que libera las variables para estar en una zona espei�a y no en una referen-ia �ja. En el enfoque de ontrol jerárquio propuesto, en la apa superior se soluionandos problemas: una optimizaión dinámia en tiempo real (DRTO) y una optimizaióndinámia en tiempo real robusta (RDRTO), por medio de estos problemas de optimizaiónes posible enontrar los limites (desde el punto de vista eonómio) y trayetorias de refer-enia optimas para el oordinador (apa intermedia). El oordinador alula las variablesde entrada jerárquias y referenias de salida que estan siempre en la zona espei�ada,



6esta informaión es tomada por los ontroladores de los subsistemas (apa inferior) paragenerar las variables de entrada que se van a apliar.Palabras lave: Control jerárquio, ontrol preditivo, ontrol robusto, sistemasde gran esala.



7AbstratThe ontrol problem regarding to large, omplex and networked systems is ommonlysolved by splitting the problem and applying loal modelling and ontrol tehniques to thesmallest and more manageable subsystems. Sine a partition is not natural, the subsystemsnot neessarily exhange the appropriate information and ontrollers do not behave as theyshould. The lak of ooperation auses that the ontrollers interat in unexpeted waysthat were not onsidered in the design phase. As a result, the full system may have fragilityand even instability in presene of unmodelled disturbanes. Currently, it is well knownthat in order to obtain a global optimal operation of a system it is neessary to measure,to estimate, and to at based on global information. Doing these tasks is di�ult andimplies a very serious trade-o� between omplexity and reliability. This ompromise mustbe negotiated in order to obtain real implementable results.In the ontrol problems in large sale systems, the tratability of the ontrol and the models,as well as the e�ieny are key issues: it is neessary to ompute a good ontrol input andto simulate the system in an aurate way, but given that all subsystems not neessarilyhave the same behaviour and time dynamis, and the simulation of the whole system anhave a high omputational ost, a temporary partition an be proposed in order to reduethe size and the omputational burden of the problem. In order to deal with these issuesthe use of a spatially distributed ontrol approah where the system is subdivided intoseveral subregions is neessary. There will also be a temporal distribution of the ontrol,resulting in a hierarhial struture where the lower-level ontrollers take are of the fastdynamis in a small region, and where the higher-level ontrollers take are of the slowerdynamis and the oordination over a larger region. So in the previous on�guration,systems of higher funtionality reside at higher levels, while at lower levels the single units,must guarantee spei� funtions. In addition to traking ontrol, eonomial objetivesare onsidered expliitly.In this thesis a hierarhial ontrol approah applied to large sale systems is presentedusing model preditive ontrol with zone ontrol. This approah uses an integration ofdynami real time optimization (DRTO) and model preditive ontrol with zone ontrol.Generally the ontrol of di�erent variables is set to a de�ned set point, but sometimes,this ould a�et the feasibility of the solution, when the system is highly interonneted,it is di�ult to follow a given set point, but sometimes the variables do not need to be atertain set point, that is when zone ontrol is used, where the output variables are on-trolled within a determined zone. Zone ontrol is an approah that helps to �nd a feasiblesolution, beause it releases the variables to be in a ertain zone and not to a determinedpoint. In the proposed hierarhial ontrol approah, in the upper layer two problems aresolved: The dynami real time optimization (DRTO) and a Robust Dynami Real timeoptimization (RDRTO), by means of these optimization problems it is possible to �ndthe limits (eonomial point of view) and optimal referene trajetories for the oordina-tor (middle layer) that alulates hierarhial input variables and output referenes thatare always into the designed zone, this information is taken by the subsystems ontrollers(lower layer) to generate the input variables are to be applied.Keywords: Hierarhial ontrol, Model preditive ontrol, Robust Control, largesale systems
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CHAPTER 1
Introdution
Large sale systems are frequently omposed of several subsystems with speial harateris-tis suh as omplex dynamis, a large number of atuators, sensors and a strong interon-netion suh that the loal ontrol deisions have a deep impat in the system operation.There exist many examples of large sale systems suh as power valleys, transportationsystems and proess plants among others. The partiularities of large sale systems o�erseveral problems that must be approahed for the designer of an overall ontrol system, inorder to ahieve a safe, e�ient and robust operation. If these features are not satis�edserious disasters and malfuntions ould our (suh as the breakdowns of the power gridin North Ameria and in Italy in 2003) [1℄.In order to handle the mentioned problems and to deal with the omplexity of the ontroltask, a hierarhial ontrol struture where the ontrol tasks are distributed over timeand spae is proposed. In this approah, ontrol systems of supervisory and strategifuntionality will be loated at higher deision levels (or layers), while at lower levelssingle ontrol units must guarantee operational objetives. In this way, we will developmethods for designing ontrollers for large-sale systems based on a hierarhial ontrolframework. There are several works in hierarhial ontrol with MPC as the reported in[2, 3, 4℄, however, we propose the use of robust optimization and Model Preditive Control(MPC) with zone ontrol, whih have already proven its usefulness for ontrol of small-sale systems, but whose performane for the ontrol of large-sale systems has yet to bedetermined due to omputational, oordination, and ommuniation problems.This hapter presents the motivation for the researh addressed in this thesis. In Setion 1.1a desription of the type of systems onsidered in this thesis (large sale systems) and thedi�erent approahes for ontrolling these systems are shown. In setion 1.2 a disussion ofthe use of hierarhial ontrol for large sale systems and a motivation on the use of modelpreditive ontrol with zone ontrol is presented. In setions 1.3 and 1.4 the aademi andindustrial impat of this thesis is explained. Finally, setion 1.5 presents the objetives ofthis work and in setion 1.6 the thesis outline and the main ontributions of this researhare shown.
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CHAPTER 1. INTRODUCTION 21.1 Control of large sale systemsThe design of ontrollers for omplex nonlinear systems is a very hard task that rapidlybeomes intratable aordingly with the system dimension [5℄. If the system beomeslarge-sale the ontroller design turns to be intratable and several problems suh as thelak of an e�etive mathematial framework upon the modeling, simulation and ontrolbeome apparent [6℄ generating high omputational requirements. This is an importantproblem beause it does not allow real-time implementations in ontrol. Other problempresented by large-sale systems is the possible existene of unmodeled dynamis, due tomodel redutions [7℄ or the diret deision of the model developer. The lak of representa-tion of ertain dynamis (usually faster dynamis) ould lead to some e�ets in the stabilityor performane of the system.In order to minimize omputational requirements a large-sale system is deomposed intoseveral subsystems [8℄. This deomposition brings two approahes to ontrol the system.One of them is based on total deentralization of ontrol tasks. This approximation takesevery subsystem and designs a ontrol poliy without onsidering the possible interationsamong subsystems. With this approah an optimal ontrol solution is not found, possi-bly there exists a poor ontroller design and �nally the ability of handling input/outputonstraints is restrited. This approah is preferred often for reliability reasons and sim-pliity of design [8℄. The other approah is splitted in deomposition-oordination anddeomposition-ooperation methods and both are used for optimization purposes. Themain problem with these methods arises from the ommuniation and bandwidth limita-tions. The deomposition-oordination methods reated a base for hierarhial deompo-sition when they were extrapolated to multilevels to deal with more ompliated ontrolproblems [9℄.1.2 Hierarhial ontrol for large sale systemsSine the seventies [10℄, hierarhial strutures have been a strategi form to provide solu-tions in desription and ontrol of large and more ompliated problems. Current paradigmof ontrol uses a mathematial representation of the system as an important resoure togenerate an optimal ontrol poliy. This mathematial representation is an important issueto ahieve the goal of generating an adequate deomposition. Until 1970 there were threeways reported to hierarhize a system [10℄. These ways are still being used and they arebased on three heuristi priniples: the ability to make abstrations from reality, ability todi�erentiate the omplexity level in a set of objetives and the ability to make deisions.Control of large, omplex, networked systems is invariably performed by applying loalmodeling and ontrol tehniques to the smaller, more manageable subsystems of whihthey are omprised. There is little ooperation between loal ontrollers i.e. not alwaysthe loal ontrollers share information, often from the design phase, in spite of their possibleinteration in many unexpeted ways. As a result, the full system may display fragilityand even instability in the fae of disturbanes or unertainties. Currently, it is wellknown that in order to obtain global optimal operation of a system it is neessary tomeasure, to estimate, and to at based on global information. Doing these tasks is di�ult



CHAPTER 1. INTRODUCTION 3sine a very serious trade-o� between omplexity and reliability must be negotiated inorder to obtain real implementable results. In general, entralized systems o�er globaloptimizing strategies but they are omputationally expensive or even intratable, sinethey need large and detailed models overing the whole system. These appliations demandregular maintenane and retuning. However, suh tasks are very di�ult for large systemsbeause they demand long periods of testing and tuning, due to the omplex nature of thesystem and the strong assumption of total interation among units. On the other hand,deentralized systems tend to demand less e�orts during maintenane and model updatingbut at the expense of a sub-optimal operation.For both the ontrol and the models tratability and e�ieny are key issues: It's neessaryto ompute a good ontrol input and to simulate the system in an aurate way, within agiven time period. This results in a trade-o� between auray and optimality on the onehand, and omputational e�ort on the other hand. In order to deal with these issues the useof a spatially distributed ontrol approah where the system is subdivided into several sub-regions, eah ontrolled by a separate ontroller. There will be also a temporal distributionof the ontrol, resulting in a hierarhial struture where the lower-level ontrollers respondto the fast dynamis in a small region, and where the higher-level ontrollers take are of theslower dynamis and the oordination over a larger region. In a similar way as the ontrol isspatially and temporally distributed, we will also use multi-level, multi-resolution models,i.e., models with various levels of spatial and temporal aggregation. So in the proposedset-up systems of higher funtionality reside at higher levels, while at lower levels the singleunits, or loal agents, must guarantee spei� funtions. At any level, the loal agents mustnegotiate their outomes and requirements with lower and higher levels. The topology ofthe system and of the information exhange between subsystems either at the same levelor at di�erent levels of the hierarhy an be �xed or partially modi�ed as a funtion of theoperating onditions while satisfying the safety and integrity requirements.For this reason there is a need for developing ontrollers that expliitly aount for theproperties of distributed proess systems, in order to design highly e�ient, stable, androbust algorithms whih drive distributed systems to eonomial optimality (to maintainthe plant operation near an eonomi optimum) in the presene of disturbanes and otherexternal/internal hanges. Furthermore, robustness requirements will also be onsideredfor dealing with the intrinsi deentralized struture of the ontrol system, with plantunertainty. A further robustness issue an also be due to the impossibility for some unitsto guarantee the performane required by higher deision levels.In this way, robust hierarhial ontrollers for omplex large-sale system are developed inthis thesis. The main goal is to ahieve an optimal oordination of the lower layers of thehierarhial deomposition avoiding high omputational requirements, reahing the level ofauray required in the system representation and aommodating the ontrol, modelingand simulation problems of the subsystems in the mathematial framework available. Inorder to ahieve that, zone ontrol onept is used in this thesis. In the next setion ModelPreditive Control with zone ontrol is introdued and its potential for appliation to largesale systems is shown through two simulation examples.



CHAPTER 1. INTRODUCTION 41.2.1 Model Preditive Control with zone ontrolThrough the optimal multivariable ontrol strategies that exist and an be used in theproblem, the one that is well studied and suitable for this type of problem is the ModelPreditive Control (MPC), beause is an optimal ontrol strategy that an handle on-straints. MPC an also manage the strong interation between the states in large saleand networked systems, a partiular harateristi in multivariable ontrol that is di�ultto handle. Among the di�erent MPC approahes available in the literature, there is oneof speial interest. Generally the ontrol of di�erent variables is set to a de�ned set point,but sometimes, this ould a�et the feasibility of the solution, when the system is highlyinteronneted, it is di�ult to follow a given set point, but sometimes the variables do notneed to be at ertain set point, but within a range that is when zone ontrol is used, wherethe output variables are ontrolled to remain inside a zone. Zone ontrol is an approahthat helps to �nd a feasible solution, beause it relaxes the variables to be in a ertainzone and not in a �xed point. Often zone ontrol is used for ontrolling omplex systemswhere:
• Interations among state, input and output variables have a high omplexity.
• The manipulated variables are not enough to drive all states and/or inputs to thedesired values.
• There exists high unertainty in the system parameters and strutureFurthermore, it an be used in systems where smooth ontrol ations are required insteadof regulating the outputs and/or states to a desired value [11℄. Therefore, MPC with zoneontrol is used in ases where some onstraints must be relaxed, or when a soft losed-loop operations is desired. For example, in real large sale systems where the omplexityof interations is di�ult to handle (as is the ase of large hemial plants), MPC withzone ontrol beomes an e�etive ontrol alternative. In addition, relaxation of the dynamimodel onstraints makes the MPC with zone ontrol more robust than the traditional MPC[12℄. Several approahes have been reported in the literature. In [13℄ a omplete survey ofindustrial MPC appliations with zone ontrol is desribed. In this thesis, spei�ally twoalternatives for implementing MPC with zone ontrol are explored:1. De�ning upper and lower soft onstraints.2. Using the set-point approximation of soft onstraints to implement the upper andlower zone boundaries.The main drawbak of these algorithms is the lak of nominal stability. In fat, thesestrategies were applied to a �uid atalyti raking system in [14℄, but despite of theaeptable performane the losed-loop stability annot be proved (the ontrol systemkept swithing between the two alternative modes even when in�nite horizon MPC wasused). Addressing the stability downside of MPC with zone ontrol, in [15℄ the authorsproposed a ontrol strategy where eonomi steady state targets were inluded. Withthis ontribution, lassial stability proofs were extended to the zone ontrol strategy byonsidering the output set-points as additional deision variables of the ontrol problem.



CHAPTER 1. INTRODUCTION 5However, it is required the system to be stable in order to guarantee the onditions of thestability proofs (the authors onsidered a null ontroller as loal ontroller). In order toextend the results of [14℄, in [12℄ the authors proposed a robust MPC with zone ontrol. Inthis approah, multi-model unertainty was assumed. In this diretion the ontrol objetiveof the zone ontrol is analyzed as a set of objetives or target set in the output spae. Thiswas motivated by the fat that there is no preferene about seleting one point over anotherinside the operating zone. In the next subsetions two examples will be shown in order tomotivate to use model preditive ontrol with zone ontrol. The �rst is a typial examplein hierarhial ontrol and was used by Tatjewski in [16℄ to illustrate di�erent multilayerarhitetures in proess optimization. The seond one is a four-tank proess, an examplepreviously used in the development of distribute ontrollers [17℄ and by means of this theimportane of zone ontrol in large sale systems is established.1.2.1.1 MPC with zone ontrol for a Polymerization reatorIn order to show the performane of MPC with zone ontrol, in this setion a polymerizationjaketed ontinuous stirred tank reator (see Figure 1.1) is used [16℄. The main idea is toompare the performane of a linear MPC with zone ontrol versus a nonlinear MPC underdisturbanes. The output variable is the number average moleular weight y = NAMWwhih will be ontrolled by manipulating the inlet initiator �ow rate u = FI . The maindisturbane in the proess is the unmeasured feed �ow of the monomer and solvent stream
d = F . The ontrol objetive of the proess is to maintain the output of the proess ina spei� value (quality spei�ations) under unmeasured disturbanes. The fundamentalnonlinear proess model is as follows:

M

Monomer Initiator

PolymerFigure 1.1: Polymerization reator
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ẋ1 = 10(6 − x1)− 2.4568x1

√
x2

ẋ2 = 80FI − (0.10225 + 10F )x2

ẋ3 = 0.0024121x1
√
x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√
x2 − 10x4

NAMW =
x4
x3In order to �nd the operating point of steady-state operation we onsider the disturbane

F = 2 m3/h. With this the optimum operating point is,
xss = [5.6602, 0.0597, 0.0010, 34.0173]T

uss = 0.0150

yss = 3.3905 × 104The onventional nonlinear MPC formulation used in this example is as follows:
min
uk

Np∑

j=1

‖(y(k + j) − yss‖2Q +

Np∑

j=0

‖u(k + j)‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃subjet to:
x(k + j + 1) = f(x(k + j), u(k + j))

y(k + j) = g(x(k + j), u(k + j))

2× 104 ≤ y(k + j), j = 0, . . . , Np

0.0035 ≤ u(k + j) ≤ 0.033566, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

(1.1)
Now, the MPC optimization problem for implementing the zone ontrol in the polymer-



CHAPTER 1. INTRODUCTION 7ization reator is as follows:
min

uk,yref,k

Np∑

j=1

‖(y(k + j) − yref,k‖2Q +

Np∑

j=0

‖u(k + j)‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃subjet to:
x(k + j + 1) = Ax(k + j) +Bu(k + j)

y(k + j) = Cx(k + j) +Du(k + j)

2× 104 ≤ y(k + j), j = 0, . . . , Np

0.0035 ≤ u(k + j) ≤ 0.033566, j = 0, . . . , Np

3.3× 104 ≤ yref,k ≤ 3.5 × 104

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

(1.2)
where uk = [uT (k), . . . , uT (k + Np)]

T be the ontrol sequene trajetory, with Np thepredition horizon and Q ∈ R
1×1, R ∈ R

1×1 and S ∈ R
1×1 are positive de�nite weightingmatries. Note that in the MPC with zone ontrol formulation the sequene of referenevalues yref,k onstitutes an additional deision variable of the optimization problem andthis is subjet to a onstraint 3.3 × 104 ≤ yref,k ≤ 3.5 × 104 (zone). The zone ontrolonept is used in this thesis with the essential goal of inorporating this extra variable tothe optimization problem.Simulation results: In order to evaluate the ontroller performane, a hange in the feed�ow of the monomer (2 m3/h to 1 m3/h) was done at 5 h of the simulation test. It isimportant to note that the hange in the feed �ow is 100%, this is a big hange for theproess. Figures 1.2 and 1.3 present the simulation results. Figure 1.2 shows the numberof average moleular weight (NAMW ) for both ontrollers. Although the disturbanesprodued signi�ant hanges in the ontrolled variables (the overshoot is signi�antly large), it is important to note how the on�guration with the onventional MPC (Figure 1.2 (a))annot rejet these e�ets and a sustained osillation is present, while the MPC with zoneontrol (Figure 1.2 (b)) �nds another set point inside the zone avoiding the disturbane anddrives the ontrolled variable to the new desired value without overshoot and steady-stateerror. Figure 1.3 shows the behavior of the ontrol ations: the onventional MPC (Figure1.3 (a)) has an input variable with very fast hanges, while the ontrol ation of the MPCwith zone ontrol (Figure 1.3 (b)) is very soft whih ould be a better operation for thatkind of variables than the fast responses that ould damage the atuator system.Generally speaking, with this example we have demonstrated how the zone ontrol givesfreedom to the outputs of the systems (inside the spei� zone) with the purpose of rejetdisturbanes, while a onventional ontroller (in this ase a MPC) tries to maintain thesystem in the same operating point whih ould drive the system to unstable operation.Thereby the zone ontrol onept an play a key role in hierarhial ontrol for large salesystems.
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Figure 1.2: Behavior of the number average moleular weight (NAMW) of the polymeriza-tion reator under disturbanes at 5 h in F : (a) Conventional MPC, (b) MPC with zoneontrol
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Figure 1.3: Behavior of the inlet initiator �ow rate of the polymerization reator underdisturbanes at 5 h in F : (a) Conventional MPC, (b) MPC with zone ontrol1.2.1.2 Deentralized MPC with zone ontrol for a four-tank proessThe four-tank proess is a laboratory plant that has been designed to test ontrol tehniquesusing industrial instrumentation and ontrol systems. The plant is a hydrauli proess offour interonneted tanks inspired by the eduational quadruple-tank proess proposed byJohansson et al.[18℄. The proess onstitutes a simple multivariable system with highlyoupled nonlinear dynamis that an exhibit transmission zero dynamis. The ontrolobjetive is to regulate the levels of the lower tanks to their desired values, by manipulatingthe �ows feeding the tanks. Figure 1.4 shows an shemati diagram of the quadruple tankproess.In �rst plae, a model given by (1.3) was derived [18℄. In this model hi(t), Ai and aiwith i ∈ {1, 2, 3, 4} refer to the level, ross setion and the disharge onstant of i-th tank,respetively; qj(t) and γj with j ∈ {a, b} denote the �ow and the ratio of the three-way



CHAPTER 1. INTRODUCTION 9valve of j-th pump, respetively; and g is the gravitational aeleration. The values of theparameters of the system used for the simulations are shown in Table 1.1.
dh1(t)

dt
= − a1

A1

√

2gh1(t) +
a3
A1

√

2gh3(t) +
γa
A1
qa(t)

dh2(t)

dt
= − a2

A2

√

2gh2(t) +
a4
A2

√

2gh4(t) +
γb
A2
qb(t)

dh3(t)

dt
= − a3

A3

√

2gh3(t) +
1− γb
A3

qb(t)

dh4(t)

dt
= − a4

A4

√

2gh4(t) +
1− γa
A4

qa(t)

(1.3)

1 2

3 4

Figure 1.4: Shemati diagram of the quadruple tank system [18℄.In order to show the advantages of the MPC with zone ontrol over the typial MPC, twosimulations tests are made.
• First test:The �rst one test is a deentralized MPC sheme. The idea is to follow the set pointsproposed in [17℄. The mathematial formulation of eah loal ontroller in this testis as follows,
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hmax 1.36 m Maximum level in all ases
hmin 0.2 m3/h Minimum level in all ases
qmax 3.26 m3/h Maximum �ow of qa and qb
qmin 0 m3/h Minimum �ow of qa and qb
Ai 0.06 m2 Cross-setion of the tanks
γj 0.3 Split ratio of the 3-way valve of qa and qb
h01 0.6042 m Linearization level of tank 1
h02 0.6042 m Linearization level of tank 2
h03 0.296 m Linearization level of tank 3
h04 0.296 m Linearization level of tank 4
q0j 1.63 m3/h Linearization �ow of qa and qb
Ts 5 s Sample time
ai 1.31 × 10−4 m2 Disharge onstant of the tanksTable 1.1: Values of the parameters of the system used in the simulations.

min
uki

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j)− yref,i‖2Qi
+

Np,i∑

j=0

‖∆ui(k + j)‖2Si
+ ‖xi(k +Np)‖2Q̃isubjet to:

xi(k + j + 1) = Aiixi(k + j) +Biiui(k + j)

yi(k + j) = Cix(k + j) +Diui(k + j)

umin ≤ ui(k + j) ≤ umax

ymin ≤ yi(k + j) ≤ ymax

‖ui(k + j)− ui(k + j − 1)‖ ≤ ∆umax
i (1.4)

• Seond test:The seond simulation test is a deentralized MPC sheme when one of the ontrollersis a MPC with zone ontrol. In this ase a MPC with zone ontrol is responsible ofmaintaining one output of the system in a non-onstant zone i.e. in a variable zone,while the other output follows a �xed set point. The idea with the variable zone is toshow that zone ontrol an handle the variations in the additional deision variable
yiref,k , this is the ase of the hierarhial struture proposed in this thesis, where thelimits of the MPC with zone ontrol are alulated by an upper layer and these arenot onstant in the time. Mathematial formulation of the MPC with zone ontrolis shown below.
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min

uki
,yiref,k

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j)− yiref,k‖2Qi
+

Np,i∑

j=0

‖∆ui(k + j)‖2Si

+ ‖xi(k +Np)‖2Q̃isubjet to:
xi(k + j + 1) = Aiixi(k + j) +Biiui(k + j)

yi(k + j) = Cix(k + j) +Diui(k + j)

umin ≤ ui(k + j) ≤ umax

ymin ≤ yi(k + j) ≤ ymax

ymin
iref,k

≤ yiref,k ≤ ymax
iref,k

‖ui(k + j) − ui(k + j − 1)‖ ≤ ∆umax
i

(1.5)
As this is a motivational example, some mathematial details about the ontroller formula-tions are not given in this hapter. A omplete mathematial formulation of the ontrollersused here an be found in hapters 3 and 4. Spei� details about the four-tank proessas the linear models and operating points an be found in Alvarado et al [17℄.Simulation results: Figure 1.5 shows the results of the �rst test. Note that at
6000 seg the level of the �rst tank (Figure 1.5 (a)) an not reah the set point and theinput signal of this ontroller (qa) is saturated, i.e the loal ontroller for the �rst tankan not drive the system to the referene, while the ontroller of the seond tank (Figure1.5 (b)) drives the system to the set point. Then the �rst tank is unable to reah thedesired value beause sine the input of seond tank is not taken into aount for the �rstontroller, beoming into a disturbane.Now, if the level of the �rst tank is assumed as the most important variable in the system,it is possible to give some freedom to the seond level. In this sense a MPC with zoneontrol an be used for the seond tank, with a variable zone implemented for this purpose.The main goal is to maintain the level of the �rst tank in a �xed referene value, while thelevel of the seond tank remains in the spei� variable zone. The Figure 1.6 shows thesimulation results of the deentralized MPC with zone ontrol. The Figure 1.6 (a) showsthe level of the �rst tank. Note how the ontroller drives this variable to the �xed setpoints, while in Figure 1.6 (b) the level of the seond tank remains in the zone thanks tothe MPC with zone ontrol. Finally, we an say that through this example it is possibleto illustrate the utility of the MPC with zone ontrol for interonneted systems. Thisexample onstitutes a motivation for using zone ontrol in this thesis, in order to designhierarhial ontrol systems for large sale systems.1.3 Aademi impat of the thesisIn the last deades, tehnologies have been developed to solve operational problems atdi�erent levels in the hierarhial ontrol sense. However, most of them are isolated teh-niques, eah one targeting a single problem exlusively and independently of the problems
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Figure 1.5: Evaluation of the ontrol test of the deentralized MPC with zone ontrolshemeat other levels. In this thesis we throw light on some unsolved issues in the �eld of hierarhi-al ontrol, by the proposition of a novel hierarhial ontrol strategy that ombines robustoptimization and Model Preditive Control with zone ontrol. A new tool is developed to�nd ranges of variables of interest of the large sale systems and a new algorithm for robustontrol is established. Finally, this algorithm is extended to the MPC with zone ontroland the eonomial ase, and asymptoti stability and robust onstraints satisfation areprovided.1.4 Industrial impat of the thesisToday industries thrive on the performane of advaned ontrol systems. In a ompetitionbased eonomy, most of the developments in advaned ontrol appliations aim at bettereonomi performane of the ontrol system. For this reason, in addition to performingfundamental researh on hierarhial ontrol of large-sale systems, we also onentrateon appliations. The sope of hierarhial ontrol of large-sale systems is very broad andinludes soially and eonomially relevant appliation �elds suh as proess plants, powernetworks, road tra� networks, logisti systems, and autonomous vehile systems. In thisthesis in partiular, we will onsider appliations on, hemial plants and hydro-power
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Figure 1.6: Evaluation of the ontrol test of the deentralized MPC with zone ontrolshemevalley operations. It is important to mention that the method that will be developed inthis thesis is generi and will thus also be appliable to a wide range of other senarios.1.5 ObjetivesThe main objetives of this dissertation are summarized in the following lines.
• To propose a methodology of hierarhial ontrol that onsiders the zone ontrol ofthe outputs of the systems improving the performane.
• To develop a robust optimization method that allows to generate non-onservativelimits at the system output.
• To design at least one ommuniation strategy between layers of the hierarhialstruture that allows the solving of real time optimization problems applied to om-plex systems.



CHAPTER 1. INTRODUCTION 141.6 Overview of the thesis1.6.1 Thesis outlineThis thesis is organized in 7 hapters. Figure 1.7 presents an overview of them as well asthe way they relate to eah other.
Chapter 1

General Introduction

Chapter 2

Hierarchical structures in control

Model Predictive 

Control (MPC) 

Economic Optimization 

 (DRTO)

Chapter 4

Strategies for Hierarchical 

Robust  Control

Hierarchical Robust 

Control for coordination

Hierarchical Robust Integration 

of MPC with zone control

and DRTO

Chapter 5

Chapter 3

Robust Optimization:

Robust Quadratic Programming 

approach

Robust Economic MPC

Robust MPC 

Robust MPC with

 zone control

Chapter 6

Hierarchical robust real

time optimization with

zone control

Chapter 7

Conclusions and 

Future workFigure 1.7: Overview and onnetion between the di�erent hapters in this thesisA brief desription of eah hapter is given as follows:
• Chapter 2: This hapter presents a literature review of hierarhial strutures inontrol. This hapter serves as a basi for the following hapters that are based inhierarhial ontrol.
• Chapter 3: This hapter presents a novel min-max MPC, min-max MPC withzone ontrol and min-max Eonomi MPC. These new formulations are based inAppendix A where algorithms for Robust Quadrati Programming are presented,and the solution of the robust quadrati program is obtained by transforming theprogram into a Seond Order Cone Program under di�erent unertain sets. Finally,this hapter presents one example of every robust ontroller in order to illustrate theadvantages of every approximation
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• Chapter 4: In this hapter a Hierarhial Robust Integration of MPC and DRTOis presented. The main idea is to ombine the robust MPC approahes presentedin hapter 3 and the zone ontrol onept with the lassial hierarhial struturepresented in hapter 2. The main advantages of the strategy presented here arethe ability of handling unertainties, the takling of di�erent objetives (Eonomi,environmental), and the inlusion of the dynami behavior of the system. In thisway these approahes improve the strutures reported in the literature.
• Chapter 5: In this hapter a Hierarhial Robust Control for oordination is pre-sented. This strategy arises in problems where the upper layer of the hierarhialstruture proposed in hapter 4 is not neessary. In this way in this hapter initiallyan example is used a motivation to use this strategy. Spei�ally, the example isa Hydro Power Valley(HPV), this system is a typial large sale benhmark thatis used to prove ontrol behaviour [19℄, beause it has several harateristis whihestablish some ontrol hallenges.
• Chapter 6: In hapter 4 some strategies for hierarhial robust ontrol using zoneontrol were presented. However, a problem arises from these strutures. The prob-lem lies in how to alulate the limits (zone) of the MPC with zone ontrol. Generallythese limits orrespond to physial limitations of the proess, nervertheless, this isnot always the ase, and the development of a riteria to alulate these onstraintsis required. A reasonable riterion ould be the zone where the linearization is agood approximation to the nonlinear system or physial limitations of the proess,however, a better hoie an arise from the eonomi point of view. In this sense themost remarkable ontribution of this thesis is a hierarhial robust strategy where thelimits of the MPC with zone ontrol are alulated based in an eonomial riterion,whih is presented here. This hapter ends with the appliation of the hierarhialmethodology to a large sale hemial plant, that serves as benhmark to test thestruture proposed.
• Chapter 7: Finally, this hapter gathers the onluding remarks and future works.1.6.2 Contributions of this thesisThe main ontributions of this dissertation an be summarized as follow.
• In appendix A a new solution of Robust Quadrati Programming (RQP) under di�er-ent unertain sets is proposed. This approah takes into aount unertainty in thequadrati, linear and onstant term of the quadrati optimization problem. The mainontribution of this setion is the onversion of the the RQP problem into a SeondOrder Cone Programming (SOCP) problem. In this sense, the robust optimizationproblem an be transformed into a onvex problem with polynomial omplexity.
• In setion 3.2 the result of the appendix A is extended to a new Robust Model Pre-ditive Control formulation that inherits all onvexity and omplexity properties ofthe original RQP problem. There are two important ontributions in this setion, the�rst one is about the unertainty representation. For the robust MPC proposed weassume unertainty in the free and fored response; although this type of unertainty



CHAPTER 1. INTRODUCTION 16an be expressed in typial forms reported in the robust MPC literature, in thissense the unertainty representation presented here is fairly omplete. The seondand most remarkable ontribution in this setion is the way to �nd the parametersof the unertain sets. A novel method to obtain these parameters based in mappingsbetween the unertainty of the free and fored response and the unertainty in thequadrati, linear and onstant term of the quadrati optimization problem is pro-posed. Finally, the bene�ts of the proposed ontroller are shown using an illustrativeexample.
• In setions 3.3 and 3.4 the results of the new robust MPC of the setion 3.2 is used topropose new formulations for Robust MPC with zone ontrol and Robust EonomiMPC. As in setion 3.2, a new way to �nd the parameters of the unertain sets isstated. Finally, the proposed ontrollers are tested through two appliation examples.
• In Chapter 4 a Hierarhial Robust Integration of MPC and DRTO is proposedis proposed. This hapter ombines the robust ontrollers of Chapter 3 with thehierarhial strutures revised in the Chapter 2. The strategy proposed use DynamiReal time Optimization (DRTO), robust ontrol and a deentralized MPC sheme,the idea with this sheme is to give su�ient tools and alternatives to ontrol alarge sale system taking into aount both eonomial and traking objetives, andunertainties. Finally, the strategy is tested in a hain of two reators and �ashsystem.
• In Chapter 5 a Hierarhial Robust Control for oordination is proposed. In this di-retion two hierarhial robust strutures are proposed. The �rst one takes a robustMPC with zone ontrol as oordinator, while in the lower layer of the hierarhialstruture a deentralized sheme is employed. The seond one takes a Robust Dy-nami Real Time Optimization (DRTO) layer as oordinator while in the lower layera deentralized sheme based in MPC with zone ontrol is used. Finally, the strategyis tested in a Hydro Power Valley(HPV).
• In Chapter 6 the main ontribution of this dissertation is presented. In this Chaptera hierarhial struture using robust optimization and zone ontrol is presented.By means of robust optimization we alulate the limits of the MPC with zoneontrol, with the idea of determining the eonomi limits for this ontroller. Thisstrategy gives freedom from an eonomial point of view to the loal ontroller ofthe hierarhial struture. An important aspet to highlight is that the hierarhialsolution proposed here an be seen as a general hierarhial robust struture for largesale systems, beause little variations over this struture an produe a lassialhierarhial representation suh as those shown in hapter 2. Finally, in this haptera ase of study is used to illustrate the proposed method.



CHAPTER 2
Hierarhial strutures in ontrol
2.1 IntrodutionHierarhial ontrol has attrated the attention of the ontrol ommunity in the last twodeades. Through these years, di�erent arhitetures have been used for takling the prob-lem of ontrolling a omplete proess of hierarhial form. In general terms the literatureshows �ve patterns that an be identi�ed in hierarhial deomposition. It is possible togenerate several hierarhial levels based on:

• Levels of abstration
• Levels of omplexity
• The deision-making apaity [10℄
• Funtional deomposition of the problem
• Temporal issues as Tatjewski proposed in 2008 [16℄.In general form, the hierarhial modeling task and hierarhial ontroller task ome to-gether, sine the ontroller is designed based on the way the system is represented. Inthis hapter a brief state of the art is presented, however, another states of the art havebeen published. Satollini [20℄ presented a review of arhitetures for distributed and hi-erarhial Model Preditive Control, in the same diretion Ohoa [21℄ and Tatjewski [16℄show di�erent arhitetures for plant wide ontrol. In setion 2.2 a lassi�ation of formsto ahieve a hierarhial deomposition is showed, in this way abstration, omplexity,funtional temporal and deision making layers are explained. Finally, in setion 2.3 theurrent praties in hierarhial operations are desribed together with some multilayerarhitetures that will be used in this thesis.
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CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 182.2 Hierarhial Deomposition2.2.1 Abstration LevelsThis approah takes as basis the human ability to reate abstrations from reality. Herethe system representation is divided in various "strata" where the higher strata has thehigher level of abstration. There is not impliit authority in highest layers instead therewould be mutual interdependene relationships among layers. It is possible to representand to ontrol the system toward the thought of the designer and its ability to representthe real problem in di�erent forms. In this ategory an be lassi�ed the work presentedby Girard and Pappas in 2006 [5℄ where the three layer struture has virtual-ontrol, vir-tual system representation and interpretation layer. The work presented by Abdelmoulaand oworkers in 2008 [22℄ where a three layers hierarhial struture was proposed withmodeling/estimator layer, plani�ation layer and operation layer. All hierarhial deom-position ould be inside this group sine every author has di�erent levels of abstrations,some times very similar to the reality.There are appliations to hybrid systems where di�erent layers an deal with disrete eventsand other layers deal with ontinuous dynamis as shown by Tolani and oworkers in 2004[23℄ in their work on airraft ontrol and by Yasuda in 2008 [24℄ with his work in ontrolof manufaturing proesses.
Coordination, Local, Control,...

LAYER

Organizational, Global, Optimizing, Estimation,...

LAYER

Executing, Specific, follow up, interpretation,...

LAYERFigure 2.1: Abstration levels deomposition2.2.2 Complexity LevelsThe hierarhial struture based on omplexity levels is related with the omplexity of thetask developed at eah level. Inside this, there are mainly optimization tasks, oordinationtasks and exeution levels. These tasks an be ahieved at di�erent temporal and spatialenvironments. There is some authority in higher levels sine in order to ahieve a moreomplex task so they ould require data from the exeution of "easier" tasks in lowerlayers. There are several forms to de�ne the omplexity of eah task, based on the amountof variables, based on nonlinearity aspets, based on ontribution to a global task or basedon the nature of the variables (integer, omplex, et.). An interesting work was presented byBrdys and oworkers in 2008 [25℄ where they de�ne a three level hierarhial struture with



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 19supervision, optimization and follow-up layers. The interesting part is the optimizationlayer where a multi-objetive optimization is developed at three di�erent time sales, thisis a trade-o� among all the dynamis of the system. This approah is presented by severalauthors [26℄, [27℄, [28℄, [29℄, [30℄, [31℄, [32℄, [33℄, [34℄, [16℄, [35℄, [36℄, [37℄ and [38℄.Damba and Watanabi in [39℄, proposed the use of the multi-agent theory and de�ne ahierarhial layer for every agent, the task of eah agent is to limit the ation �eld of itsdiretly subordinated agents. This is analogous to the ontrol by restritions and it bringsthe advantage of relaxing the ontrol requirements at lower layers.Cheng and oworkers in 2005 [40℄ presented an interesting form to solve a deomposition-oordinator problem using multi agent theory, the interesting part of this work is theabsene of any entralized agent, the method is totally distributed and it ahieves an opti-mal ontrol problem solution. This insight is aligned with the tendenies on programming:the use of totally parallel algorithms.
Optimizing/Coordinating layer

Supervisor/Optimizing layer

Executing/Distributed layerFigure 2.2: Complexity levels deomposition2.2.3 Funtional LevelsThis group onerns of spei� funtions more than tasks. This means to deomposea system in several funtional agglomerates of dynamis and to de�ne them an internalontrol struture as sublayer, and the agglomerates would be oordinated by an upperlayer. The funtional deomposition methods are linked with the proess, the optimizingand oordinating layers are not onsidered into this ategory. Tatjeski in 2008 [16℄ proposesthis type of deomposition (Figure 2.3). The funtional deomposition regularly generatesa totally deentralized task at the lowest level.Seki and Naka [41℄ present a methodology to obtain a Controller Group Unit (CGU) thatbeomes a set of funtional subsystems. The features of this deomposition are a loalentralization of deentralized tasks with spatial proximity and a global optimization atthe oordinator layer.Tatara and oworkers [42℄ uses this type of deomposition in battery of reators in series.Something interesting is that they add a new arbitration element between the lower layerand the funtional deomposition layer. This element solves possible on�its betweenadjaent subsystems.



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 20Luo and oworkers [43℄ propose a funtional deomposition imitating the human nervoussystem to ahieve loomotion ontrol in a robot. Other funtional deomposition is usedto design a fault tolerant ontrol system [44℄, and robot oordination [45℄.
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(disturbances)Figure 2.3: Funtional multilayer ontrol struture (taken from [16℄)2.2.4 Temporal levelsTemporal deomposition is linked with the time response of eah system dynamis. Alarge-sale system has some dynamis with time responses in the order of seonds (someatuators), some dynamis with time responses in the order of minutes (dynamis as levelof a tank), some dynamis with time responses in the order of hours (as a produt onen-tration on a hemial reator) and so on. When the ontrol system of a large-sale systemsis designed, sometimes faster or slower dynamis are ignored in order to simplify the design.Negleting fast dynamis most of the time has no e�et on the global behaviour if thesedynamis are stable. On the other hand negleting a slow dynamis assuming interest justin loal temporary events require more attention. In general a temporal deompositionbrings the model apability to onsider all dynamial responses working at di�erent layersand with di�erent models. The method is to �x slow dynamis at higher levels sine thesedynamis require less elaborated models. At the lower layers the fast dynamis are aom-modated in order to ahieve a fast response when an upper level requires it. These modelswill be simple beause they do not require knowledge of the whole system. Regularly thesedeomposition generates optimization at the higher level and oordination at medium level,the lower level just needs an appropiate tuning in traking mode to guarantee stability andgood performane of the whole system [20℄.



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 21There are some large-sale systems where very fast (nano or milliseonds) dynamis oexistwith slow dynamis, in these ases response time and omputing time are important dueto the neessity of optimizing omputing algorithms. Other important aspet in temporaldeomposition is the de�nition of the horizon required for eah layer [16℄ in order to avoidon�its between adjaent layers.
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Figure 2.4: Temporal multilayer ontrol struture (taken diretly from [46℄)Interesting works in this ategory were presented by Tatjewski in 2008 [16℄ where twotemporal levels (fast and slow) are implanted inside a four hierarhial levels (Figure 2.4).This is very ommon in order to put a suessful asade struture together where theupper layer deals with slow dynamis and lower layer deals with faster dynamis. Twoworks in the same diretion were presented by Tatjewski and oworkers in 1988 [47℄ andCirre and oworker in 2009 [28℄ where a lower layer is onerned with the fast rejetionof disturbanes and the upper layer develops an optimization to govern the set pointof the lower ontroller (typial asade struture). Findeisen in 1978 [31℄ presented astruture with feed-forward ations at lower levels in order to inrease the response veloityin fast dynamis and feedbak ations on higher levels, this is in agreement with the atualSattollini's statements [20℄. The Brdys' work [25℄ was disussed in other group but it isimportant to reall the multi objetive optimization at three time sales in order to get atrade-o� among them. Baldea and Daoutidis [26℄ proposed stronger ations where somesupervisor layers an take diret ation on the system in order to ahieve its temporalobjetive, the interesting disussion about two ontrol ations for one ontrol objetive isnot presented.



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 222.2.5 Deision-Making LevelsDeision-making deomposition deals with the generation of deisions based on measure-ments. This type of deomposition is made when there exist a set of options waiting tobe used. One partiular example for this deomposition is the apability to selet amonga set of ontrollers based on di�erent onditions of the systems, this means for instaneto selet a PID ontroller when the system is far from its referene and to swith to pre-ditive linear ontrol when the systems is lose to its referene [48℄. Other appliationswere presented by Boston and oworkers [27℄ to selet between a model based ontrolleror heuristi based model depending on the amount of measurements available. Imazekiand Maeno [49℄ propose a struture where two ontrol ations are omputed, then a "su-pressor" deides whih ation should be applied. Another appliation on roboti an befound at [50℄. This hierarhial deomposition does not have a de�ned struture due to itsombination apability but it has two key layers: a deision maker and a set of availableoptions.
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layerFigure 2.5: Deision-Making deomposition layer2.3 Current Praties in Hierarhial OperationThe operation of large sale systems involves a large number of deisions whih an bedistributed into the alled real time business deision making and automation hierarhy asshown in Figure 2.6. This hierarhial struture has been summarized in many textbooks[51, 52℄ and generally ombine the strutures explained in previous setions. The planninglayer is onentrated on eonomi preditions and gives prodution objetives. This takleaspets suh as the type of produts to make, whih feed-stoks to buy and how muh toprodue and to buy, respetively. The predition horizon in the planning layer is frequentlylong, typially in the sale of months or weeks. Sheduling addresses the timing of ationsand events neessary to exeute the hosen plan. The main objetive here is the viabilityof the operation. The time range in the sheduling is usually in weeks or days. Addition-ally, the planning and sheduling also gives parameters of the ost funtions (for examplepries of produts, raw materials, energy osts) and onstraints (for example amount of



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 23raw material, prodution time). Nowadays, the planning and sheduling alulations areobtained using several mixed integer programming formulations [53℄.
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Figure 2.6: Illustration of the hierarhial operationThese business deisions are delivered to the two-layered proess operation level onsistingof real-time optimization (RTO) and advaned ontrol layer. This two-layered struture isillustrated in Figure 2.7. In the Real Time Optimization (RTO) layer a business deisionsand prodution shedules are implemented, the main idea here is to give the optimaloperating point (set-point) for the lower-level advaned ontrol. Generally, in this layerthe pro�t is optimized based on a nonlinear steady state model of the plant and by meansof real-time data reoniliation and parameter estimation an additional pro�t is sought.The reoniled plant data are used to ompute a new set of model parameters so that themodel represents the plant as aurately as possible at the urrent operating point [54℄.Then the set-point is realulated using the new model parameters to optimize an eonomiost funtion while satisfying the onstraints. Sine the optimization is performed online,RTO provides a mehanism to reat to hanges and rejet long term (days or hours)disturbanes. It is important to highlight that the RTO layer does not manipulate theinputs of the proess. The results of the optimization problem in this layer are used togive the set point to the lower layer. In this way in the hierarhial struture of Figure2.7 the lower-level advaned ontroller is able to adjust the inputs to keep the proess atthe desired set-points at all times. These set-points are �ltered by a supervisory systemthat usually inludes the plant operators and forwarded to the advaned ontrol layer [55℄.In the last 40 years, an usual industrial pratie was to use PID ontrollers in the lowerlayer. This type of ontrollers are able to keep the output of the system at the desiredset-point and rejet some disturbanes. However, there are several problems with PIDontrollers, the major di�ulties are to tune and deouple the PID ontroller for multi-input-multi-output (MIMO) systems. Hene, as it was mentioned in hapter 1 the optimalmultivariable ontrol strategies that exist and it is well studied in literature is the ModelPreditive Control (MPC) [56℄. MPC has some important features suh as its apability tohandle onstraints and to manage the strong interation between the states in large saleand networked systems. MPC has been widely adopted by the industrial proess ontrol



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 24ommunity and implemented suessfully in many appliations [13℄.
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Figure 2.7: Illustration of RTO and advaned ontrol strutureCurrently, most MPC ontrollers still use linear models to predit the states trajetories.This implies a ritial limitation in the hierarhial struture desribed here, sine theset-points are alulated from the optimization problem based in a nonlinear model in theRTO layer and these are often inonsistent and unreahable when viewed from the dynamilayer. The reason of that are the disrepanies between the models used for steady-stateoptimization and dynami regulation. Several researhers [57℄ have reported the problemsdue to the modeling inonsisteny in di�erent layers of the hierarhy. Partiularly, thesteady-state gains are di�erent. Additionally, the RTO does not use all degrees of freedomin the dynami layer whih may yield suboptimal set-points. An important aspet to



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 25mention is that the layers have di�erent time sales suh that the RTO layer is delayed[58℄. Moreover, if the proess is operated over a wide range of onditions, a �xed modelidenti�ed at a steady-state is usually not su�ient to have the preditability to over theoperating range.2.3.1 Dynami Real Time Optimization (DRTO)Motivated by the previous fats, the onept of a dynami real time optimization (DRTO)is introdued by [59℄. This strategy is shown in Figure 2.8. Instead of deomposingthe hierarhial struture into RTO (steady state optimization) and advaned dynamiregulation, DRTO optimizes the same eonomial performane of the RTO layer, butthis time is over a predition horizon (dynami optimization) and alulates the optimaltrajetories of the ontrol ations. The DRTO has substantially the same formulation usedin nonlinear model preditive ontrol, However an eonomi objetive is hosen to give aneonomially optimal operation at all times. The main idea is to translate the eonomialobjetive into proess ontrol objetives, whih is the goal of a ontrol struture synthesis�rst stated by Morari et al. [60℄. As a result, the two-layered struture is merged into aentralized deision-making and ontrol layer. Therefore the problems assoiated with thetwo-layered operation struture disussed in setion 2.3 disappear [55℄.Several researhers have ontributed to re�ne the DRTO formulations to improve the eo-nomial performane. Zanin et al. [14℄ proposed a formulation and solution strategy andimplemented them on a �uidized bed atalyti raker. Adetola and Guay [61℄ proposedan MPC design approah that integrates RTO and MPC together. Würth et al. [62℄proposed an in�nite-horizon formulation for eonomially-oriented NMPC and Diehl et al.[63℄ also analyzed the nominal stability property of a general eonomially-oriented NMPCformulation assuming strong duality.2.3.2 Multilayer arhitetures for plant wide ontrolThis setion is diretly taken of the work of Ohoa et al. [21℄. In this way, Ohoa et al. tookthe work of Findeisen et al.[64℄, who lassi�ed the hierarhial ontrol into multilayer andmultilevel (In the multilayer ase the ontrol of a system is split into algorithms (layers),whereas in the multilevel ase ontrol is divided into loal goals and the ation of eah loalontrol unit is oordinated by an additional superior unit) and propose to subdivide themultilayer (or hierarhial) arhiteture into: with oordination (Figure 2.9) and withoutoordination (Figure 2.10). Both multilayer arhitetures are omposed by at least twodi�erent layers, i.e. an optimization (RTO) and a ontrol layer (MPC).2.3.2.1 Multilayer arhiteture with oordinationIn this arhiteture, a oordinator is inluded between the RTO and the MPC layers.Usually, this oordinator drives information from both layers, and it must �nd the setpoints for eah loal ontroller lose to the global solution found by the RTO layer, i.e,the responsibility of eah MPC is traking the loal set points, by alulating the vetorof manipulated variables for eah operating unit. Details about this type of arhiteture
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Figure 2.8: Illustration of DRTOan be found in [65℄, [66℄, [67℄, [68℄. An important �nal mention should be done aboutthe di�erene between the multilayer with oordination and the distributed arhitetures.In some sense, both shemes inlude a kind of oordination, in the distributed ase theoordination onsists on exhanging some information between the loal MPCs, whereasin the multilayer with oordination, the loal MPCs are not diretly ommuniated amongthem but ommuniated through the RTO layer.An important aspet to highlight in this arhiteture is the handling of model unertainty.Sine modeling unertainty is unavoidable in industrial problems, the multilayer arhite-ture with oordination should handle it, however there are no important ontributions inthis diretion, obviously MPC strategy an introdue feedbak into the system, and it is



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 27well known that feedbak ontrol an provide some degree of robustness against perturba-tions (even if the ontroller is not spei�ally designed for this task). However, the preseneof onstraints and the impliit form of the ontrol law make robustness analysis of MPControl loops a very di�ult task [69℄. As a result, only few approahes for analyzing ro-bustness of nominal MPC have appeared in the literature. For this reason in the followinghapters robust hierarhial approximations will be developed for large sale systems.
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Figure 2.9: Multilayer arhiteture with Coordination for Plantwide Control2.3.2.2 Multilayer arhiteture without oordinationWhen no oordination is used between the optimization and ontrol layers, it is more suit-able to replae the RTO by a DRTO layer, in order to aount for the dynami nonlinearbehavior of the proess. The DRTO layer is in harge of alulating the optimal set pointsfor the proess outputs, whih are sent diretly to the ontrol layer. Then, the ontrollayer alulates the set of vetors of manipulated variables for being applied in the proess.Kadam et al. [70℄ inlude examples of multilayer arhiteture without oordination. Al-though this strategy seems to be attrative, the entralized nature of the ontroller is a veryimportant drawbak on large sale systems. For this reason the Multilayer arhiteturewithout oordination is not onsidered as an feasible strategy in this thesis. Finally, it isimportant to mention the estimation bloks shown in Figures 2.9 and 2.10. These bloksare ating as swithes for realling the optimization and ontrol layers, when a ertainondition are met. Some typial onditions for these bloks are presented in the setion4.3.1.2.



CHAPTER 2. HIERARCHICAL STRUCTURES IN CONTROL 28

....
subsystem 2 subsystem nsubsystem 1

State 

Estimator

State 

Estimator

DYNAMIC REAL TIME OPTIMIZATION

N)MPC

Upper layer

Coordinator

Figure 2.10: Multilayer arhiteture without Coordination for Plantwide Control2.4 SummaryIn this hapter a literature review of hierarhial strutures in ontrol were presented. Thishapter serves as a literature review for the following hapters that are based in hierarhialontrol. In hapter 3 robust MPC is studied and used in hapter 4, 5 and 6 to proposehierarhial robust strategies for large sale systems based in the strategies seen in thishapter.



CHAPTER 3
Robust Model Preditive Control
3.1 IntrodutionIn engineering, when a problem is formulated as an optimization problem, usually theavailable data are not preisely known. This data unertainty is due their random nature,measurement errors, or many other reasons. In general, the unertainty in the data annotbe ignored; Ben-Tal and Nemirovski [71℄ show that a small perturbation on data anmake the nominal optimal solution of the optimization problem senseless from a pratialviewpoint. Therefore, there is a real need of a methodology apable of to �nd a robustsolution that helps to minimize the e�et of data unertainty in an optimization problem.In this way, the appendix A presents some algorithms for Robust Quadrati Programming(RQP). The solution of the robust quadrati program is obtained by transforming theproblem into a Seond Order Cone Program [72℄. In this appendix, the unertaintiesinlude the Hessian matrix, the linear term and the onstant term of the ost funtion underdi�erent unertain sets and the problem is reformulated as a seond order one program(SOCP). The algorithms developed in appendix A are extended in this hapter to min-maxMPC, min-max MPC with zone ontrol and Eonomi MPC. The hapter is organized asfollows: In setion 3.2 a new algorithm for Robust MPC onsidering unertainty in the freeand fored responses is presented, this algorithm is based in RQP and it is extended toRobust MPC with zone ontrol in setion 3.3 and Robust Eonomi MPC in setion 3.4.3.2 Robust Model Preditive ControlControlling a system with onstraints in the ontrol ations and states is one of the mostimportant problems in ontrol theory, but also one of the most hallenging. Anotherimportant topi is robustness against unertainties in a ontrolled system. For this reasonsolving a ontrol problem with onstraints and unertainties an be a very hard task. Themain question in robust ontrol is how to exploit knowledge about unertainty. Typialknowledge an be bounds on unertain parameters in the system. Obviously, it is notpossible apture all unertainties in pratie, but we an try to apture the most importantand aount for these. The next fat is how to inorporate the knowledge of the unertainty29



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 30in the optimization problem of the MPC, given that the alulated ontrol law is basedon an on-line optimization problem. In this way, a min-max Model Preditive Controlapproah for disrete time unertain systems is proposed in this setion. Min-max strategyin model preditive ontrol (MPC) allows omputing the optimal ontrol ations wherethe worst-ase performane with respet to the unertainties is assumed. Unfortunatelymin-max formulations of preditive ontrollers often produe an intratable optimizationproblem with exponential omplexity as the number of states, inputs, and outputs of thesystem inrease. In this setion a min-max algorithm for a ertain type of model unertaintyis derived. The transformation of the original problem into a seond-order one programis the most remarkable feature, meaning that the min-max problem is written as a onvexprogram. The result is an optimization problem with polynomial omplexity.3.2.1 Modelling UnertaintyTo ignore the unertainty in ontrol problems is generally a bad idea, beause small hangesin the parameters of the model ould modify the behavior of the model. In this sense theunertainty must be inluded and taken into aount during the design proess of theontroller, i.e. it is neessary to modeling the unertainty. The next setions presentsome of the unertainty models that are most important in the MPC literature, inlud-ing parametri and polytopi unertainty, strutured feedbak unertainty and ellipsoidalunertainty.3.2.1.1 Parametri and Polytopi UnertaintyLinear Parameter-Varying Systems: Linear Parameter-Varying (LPV) systems [73℄are systems of the form
x(k + 1) = Ek +Ak(θ)x(k) +Bk(θ)u(k) (3.1)where A(·) and B(·) are matries in terms of the parameter θ ∈ Ψ, where Ψ is a ompatset. At any time k, the parameter θ may take any value in Ψ. Thus, the system (3.1) istime-varying in general. LPV systems arise when the model parameters are not exatlyknown, or whose parameters may vary with time or with the system operating point.Polytopi Systems: Another way of modeling unertainty is the so-alled polytopi un-ertainty [69℄. This type of unertainty is desribed by the time-varying system
x(k + 1) = Ek +Akx(k) +Bku(k) (3.2)where

[Ak, Bk] ∈ Ψ = Convh {[A1, B1] , . . . , [AL, BL]} (3.3)
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[Ak, Bk] ∈ Ψ =

L∑

i=1
µi [Ai, Bi] with L∑

i=1
µi = 1Polytopi unertainty models are often used when a number of "extreme" system dynamisare known, whih then represent the verties [Ai, Bi] in (3.3) [74℄. These extreme systemdynamis an be obtained by identifying an unknown system through a su�iently largenumber of measurements, or by modeling a system under di�erent extreme operatingonditions.Relationship Between LPV and Polytopi Systems [74℄: Here, there exists a diretonnetion between LPV and polytopi system desriptions: If the set Ψ is polytopi, andif A(·) and B(·) in (3.1) are a�ne funtions of θ , i.e.

A(θ) = Aθ,0 +

nA∑

i=1

Aθ,iθi

B(θ) = Bθ,0 +

nB∑

j=1

Bθ,jθj

(3.4)then it is easy to represent a LPV system as a polytopi system. In this ase, the vertexpairs [Ai, Bi] in (3.3) are the mappings [A(θ1), B(θ1)] , . . . , [A(θL), B(θL)], with θi beingan enumeration of the L verties of Ψ. To see this, note that under an a�ne mappingpolytopes are again mapped into polytopes, and that the verties of the original polytopesare mapped into the verties of the image polytopes [75℄.3.2.1.2 Regular setsIn this ase the unertainty set Ψ is represented by a regular n-dimensional region. Often,this region is an ellipsoid de�ned by the maximum allowable norm of the unertainty. Inthis sense, it is possible to formulate the next sets A and B suh that Ψ , A× B, with
A =

{

A0 +

nA∑

l=1

Alµl | ‖µ‖2 ≤ 1

}

B =

{

B0 +

nB∑

r=1

Brνr | ‖ν‖2 ≤ 1

} (3.5)where A0 and B0 an be assumed as the mean values of the unertainties.



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 323.2.1.3 Strutured Feedbak UnertaintyAnother model unertainty framework in the Robust MPC literature is the so-alled stru-tured feedbak unertainty [69℄. This type of unertainty is based on Linear FrationalTransformations (LFT), whih are a well-known framework in Linear Robust Control [76℄.The basi idea of the strutured feedbak unertainty model is to divide the unertainsystem into two omponents. The �rst omponent, a LTI system, inludes the informationthat is known about the system, and the seond omponent (a feedbak loop), inorpo-rates all of the unertainty that appears in the model. To be spei�, onsider the followinglinear time-invariant system:
x(k + 1) = Ax(k) +Bu(k) +Bpp(k)

y(k) = Cx(k) +Du(k)

q(k) = Cqx(k) +Dqu(k)

p(k) = ∆q(k)

(3.6)where extra variables are added to the system state x, the ontrol input u, and the systemoutput y . The feedbak interonnetion of this system is illustrated in Figure (3.1).
Figure 3.1: Unertainty desription by means of LFT.There is a large number of possible auses for Strutured Feedbak Unertainty. Theseauses inlude unknown parameters, unknown or negleted dynamis and nonlinearities[76℄. The authors of [73℄ furthermore point out that the framework of strutured feedbakunertainty an also be used to desribe LPV systems [74℄.In general terms the systems overed in this work are onstrained unertain systems of theform
x(k + 1) = Ek + (Ak + δAk)x(k) + (Bk + δBk)u(k)

y(k) = Fk + Ckx(k) +Dku(k)

θ , (δAk, δBk) ∈ Ψ

(3.7)where δAk ∈ R
nx×nx , δBk ∈ R

nx×nu and ‖θ(k)‖2 ≤ ρ is a bounded unertainty. Note thatthe model (3.7) overs almost all models used in min-max MPC shemes. For example itis possible to transform the system (3.7) in (3.6) de�ning the matries ∆, Cq, Dq and Bp
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∆ =

[
δA 0nx×nu

0nu×nx δB

]

, q(k) =

[
Inx

0nu×nx

]

︸ ︷︷ ︸

Cq

x(k) +

[
0nx×nu

Inu

]

︸ ︷︷ ︸

Dq

u(k), Bp =
[
Inx Inu

] (3.8)Now, let x∗(k) and u∗(k) denote the state and ontrol ations orresponding to the urrentoperating point. The unertainty in A and B matries an be propagated to the free andfore responses [72℄ by means of the predition sequene of the output y(k) as (3.9).
yk = (Γ + δΓ)

︸ ︷︷ ︸Free Response+ (Λ + δΛ)uk
︸ ︷︷ ︸Fored Response (3.9)The relation among δAk, δBk with δΓ, δΛ is explained in appendix C. Note that δAkand δBk are mapped as an unertainty in δΓ and δΛ, this fat is important to use RQPin min-max MPC. Our next step is to use these sets of predited states. The prevailingapproah in robust MPC, and robust ontrol in general, is to solve min-max problems, i.e.,solve problems where worst-ase senarios are aounted for. Clearly, this is a onservativeapproah, but it is one of the few ways we have to plae the word robustness in a well-de�ned mathematial framework.3.2.2 Min-max MPCThe idea behind Min-Max Model Preditive Control (also: Minimax MPC) is to optimizerobust performane. That is, instead of minimizing nominal performane the ontroller isdesigned to minimize the worst-ase performane ahievable under any admissible uner-tainty. Min-Max MPC was introdued in the seminal paper of Campo and Morari [77℄ andsine then has beome a very popular way of formulating Robust MPC problems. MostRobust MPC methods that have been developed following on the initial ideas of Campoand Morari are essentially based on the minimization of the worst-ase performane. Thereis a vast amount of literature on min-max MPC, so let us just mention a few referenes that�t as referene reading to this thesis. In open-loop and losed-loop min-max MPC [78℄,in enumeration tehniques in min-max MPC synthesis [79, 80, 81℄ and in LMI-based ap-proahes to min-max MPC [73℄. Now, onsider a system desribed by a nonlinear invariantdisrete time model,

x(k + 1) = f(x(k), u(k), θ(k))

y(k) = g(x(k), u(k), θ(k))
(3.10)where x(k) ∈ R

nx is the system state, y(k) ∈ R
ny is the system output, u(k) ∈ R

nu isthe urrent ontrol vetor and θ(k) ∈ R
nd are the unertainties presents in the model.We assume that the funtion model f(x(k), u(k), θ(k)) is ontinuous in x, u and θ. Thesystem is subjet to hard onstraints on state x(k) ∈ X, output y(k) ∈ Y, input u(k) ∈ U
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nx , Y ⊂ R

ny , U ⊂ R
nu and Ψ ⊂ R

nd are losedsets. Then, the min-max ontroller design problem onsists of obtaining a ontrol law thatminimizes a given performane ost index
max

Θk∈Ψ
Np
JNp(xk, uk,Θk) (3.11)where xk = [xT (k), . . . , xT (k + Np)]

T is the state trajetories, JNp(xk, uk,Θk) de�nes theost of the problem, and a sequene of ontrol inputs uk = [uT (k), . . . , uT (k + Np)]
T isobtained assuming the unertainty Θk = [θT (k), . . . , θT (k+Np)]

T maximum value. Robustnonlinear preditive ontrol problem is written as a min-max optimization problem, insuh optimization problem a nonlinear model of the system is used to foreast the statetrajetories. The foreasting is done along a predition horizon Np. As a onsequene, asequene of ontrol inputs uk is obtained. Sine uk is obtained assuming the disturbanes
Θk maximum, uk is the worst-ase ontrol ation. Mathematially, this is expressed as(3.12) ([82, 83℄). Subsequently di�erent robust MPC designs have been proposed, forexample those proposed in [84, 85, 86℄.

min
uk

max
Θk∈Ψ

Np
JNp(xk, uk,Θk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j), θ(k + j))

y(k + j) = g(x(k + j), u(k + j), θ(k + j))

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖2 ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖2 ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(3.12)
where ΨNp is determined by the assumed unertainty model, with ‖θ(k)‖2 ≤ ρ a boundedunertainty in the system dynamis. In (3.12) JNp(xk, uk,Θk) is given by:

JNp(xk, uk,Θk) =

Np∑

j=1

L(x(k + j), u(k + j)) + V (x(k +Np))where L(·) is the stage ost, and V (·) is the terminal ost. Sometimes this funtion penalizesthe deviation of the predited output y(k) from its orresponding referene value yref . Thestability of the ontroller (3.12) an be assured assuming that the lose loop system has aLyapunov funtion V (·), this fat will be disussed in setion 3.2.4. In the next setion ane�ient alulation of the worst ase ost will be explained based on the RQP approah.



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 353.2.3 E�ient alulation of the worst ase ostIn this setion an e�ient alulation of the worst ase ost presented in (3.12) will bedone. The idea is to develop a method based on the RQP approah explained in setionA.2, and the nominal solution of a MPC ontroller.3.2.3.1 Nominal Model preditive ControlThe nominal MPC problem (no unertainty, ‖θ(k)‖2 = 0) is a nonlinear programming(NLP) problem whose solution is hard to �nd in real time. Assuming no unertainty,(3.12) beomes:
min
uk

JNp(xk, uk)subjet to:
x(k + j + 1) = f(x(k + j), u(k + j))

y(k + j) = g(x(k + j), u(k + j))

x(k + j) ∈ X, j = 1, . . . , Np

u(k + j) ∈ U, j = 0, . . . , Np

x(k +Np) ∈ Ω,

‖u(k + j)− u(k + j − 1)‖2 ≤ ∆umax

(3.13)
The stability of the MPC ontroller (3.13) an be assured if the next hypothesis is aom-plished [87℄:Hypothesis 1 (Terminal ost and region). The system x(k + 1) = f(x(k), u(k)) issuh that there exist a neighborhood of the origin Ω ⊆ X whih is an invariant set of thesystem ontrolled by a ontrol law Kf : Ω −→ X, that verify

V (f(x(k + j)),Kf (x(k + j))) − V (x(k + j)) ≤ −L(x(k + j),Kf (x(k + j)))Then, from hypothesis 1 the following Theorem an be formulated:Theorem 1. (Asymptoti stability [87℄)Let a system x(k + 1) = f(x(k), u(k)), suh as that f(0, 0) = 0 and this is subjet to theonstraints x(k + j) ∈ X and u(k + j) ∈ U. Then, if the hypothesis 1 is aomplished,the system ontrolled by the nominal MPC ontroller uMPC = Kf (x(k)) is asymptotiallystable.Proof. See Mayne. et al [87℄In the remaining of this work, it will be assumed that the system an be represented usinglinear models of the form,
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x(k + 1) = Ek +Akx(k) +Bku(k)

y(k) = Fk + Ckx(k) +Dku(k)
(3.14)Where Ek, Ak, Bk, Fk, Ck and Dk are de�ned in appendix B. Assuming linear models ismotivated by the fat that (3.12) reast in robust nonlinear programming (RNLP). Withurrent omputation resoures is almost impossible to �nd the exat solution of RNLPproblems in real time. In this way, in order to obtain (3.14) an algorithm that useslinear time-varying predition models by applying a loal linearization along the nominalinput and state trajetory is used [88℄ (the loal linearization method is explained inappendix B). Loal linear approximation of the state equation is used to develop anoptimal predition of the future states. The output predition is made linear with respetto the undeided ontrol input moves assuming some smoothness in f(·) and g(·), whihallowed the redution of the nonlinear MPC optimization into a quadrati programmingproblem (QP)[88℄. Smoothness onditions are required to guarantee the existene of thelinear approximation and for guaranteeing its quality. In this way, the problem withthe nonlinear MPC approah is avoided, performane analysis may be simpli�ed, andomputational e�ieny is signi�antly improved. Let yk = [yT (k), . . . , yT (k + Np)]

Tdenotes the predition sequene of the output y(k). Then, the predition model has thefollowing form
yk = Γ

︸︷︷︸Free Response+ Λuk
︸︷︷︸Fored Response (3.15)where Γ ∈ R

ny·Np×1 and Λ ∈ R
ny·Np×nu·Np are matries stated in appendix B. Let

JNp(xk, uk) be a quadrati ost funtion
JNp(xk, uk) =

Np∑

j=1

‖(y(k + j)− yref‖2Q +

Np∑

j=0

‖u(k + j)− uref‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃where y(k) ∈ Rny and u(k) ∈ Rnu , Q ∈ Rny×ny , R ∈ Rnu×nu and S ∈ Rnu×nu arepositive de�nite weighting matries. The terminal state penalty Q̃ is obtained by solving aLyapunov equation, this term is added to ensure stability of the ontroller [89℄. Using thevetor notation, it is possible to rewrite the ost funtion in vetorial form, and replaing(3.15) into the expression for JNp(xk, uk), a formulation of (3.13) in a quadrati programform an be written as (3.16).
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min
uk

uTk Puk + 2qTuk + rsubjet to:










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + U(k−1)

∆̃umax − U(k−1)

ỹmax − Γ
−ỹmin + Γ











(3.16)
where P , q, r, Yref , Uref , ũmax, ũmin, ỹmax, ỹmin, ∆̃umax are de�ned as follows:

P = ΛTQΛ +R+∆T
uS∆u

q = (Γ− Yref )
TQΛ− UT

(k−1)S∆u − UT
refR

r = (Γ− Yref )
TQ(Γ− Yref ) + UT

(k−1)SU(k−1) + UT
refRUref

Yref = [yref
T (k), . . . , yref

T (k +Np)]
T

Uref = [uref
T (k), . . . , uref

T (k +Np)]
T

ũmax = [uTmax(k), . . . , u
T
max(k +Np)]

T

ũmin = [uTmin(k), . . . , u
T
min(k +Np)]

T

ỹmax = [yTmax(k), . . . , y
T
max(k +Np)]

T

ỹmin = [yTmin(k), . . . , y
T
min(k +Np)]

T

∆̃umax = [∆uTmax(k), . . . ,∆u
T
max(k +Np)]

T ,Note that r is the minimum ost and annot be hanged during the optimization beause itis independent of uk. Then, the solution of (3.13) an be approximated by the solution of(3.16). In this formulation ∆uuk denote the di�erene between the atual and the previousvalue of the ontrol ation. Hene, ∆u is bidiagonal matrix whose elements are −I and I.As mentioned before, this strategy works under the following assumptions:1. The nonlinearities are smooth, the linear model is a good representation of the plant.2. The ontrol ations do not move the system far away from the region where thelinearization is validOften, these assumptions seem to be restritive. Then, alternatives suh as robust opti-mization based on linear models arise. In Setions below, this approah is desribed.



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 383.2.3.2 Robust MPC problem as a RQPIn this work unertainty in Ak and Bk is onsidered, however, it is possible to propagatethis unertainty in the free and fore responses by means of the predition sequene of theoutput y(k) as (3.17)
yk = (Γ + δΓ)

︸ ︷︷ ︸Free Response+ (Λ + δΛ)uk
︸ ︷︷ ︸Fored Response (3.17)Note that δAk and δBk are mapped as unertainty in δΓ and δΛ. The relation among δAk,

δBk with δΓ, δΛ is shown in appendix C. This setion expands the nominal solution givenby (3.16), and with this purpose unertainty is added. As it was mentioned unertaintywill be restrited to the free and fored response terms (Γ + δΓ) and (Λ + δΛ) where
δΓ ∈ ℜny·Np×1 and δΛ ∈ ℜny·Np×nu·Np unertainties. This is a modi�ation of the workof Espinosa [90, 72℄, where the unertainty was restrited to the fore response. Withthis assumption, the original min-max MPC problem an be onverted to the next RQPproblem (3.18):

min
uk

max
P∈E,q∈F,r∈G

uTk Puk + 2qTuk + r (3.18)where P , q and r are funtion of δΓ, δΛ as follows
P =ΛTQΛ+R+∆T

uS∆u + δΛTQδΛ + ΛTQδΛ + δΛTQΛ

qT =(Γ− Yref)
TQΛ− UT

(k−1)S∆u − UT
refR+ (Γ− Yref )

TQδΛ + δΓTQδΛ + δΓTQΛ

r =UT
(k−1)SU(k−1) + UT

refRUref + (Γ− Yref )
TQ(Γ− Yref ) + (Γ− Yref )

TQδΓ

+ δΓTQδΓ + δΓTQ(Γ− Yref) (3.19)3.2.3.3 Robust MPC problem as a RQP with ellipsoidal unertaintyAs in appendix A.2.1 the unertainties in P , q and r are assumed norm bounded and E, Fand G an be written as
E =

{

P0 +

m∑

ie=1

Pieµie | ‖µ‖2 ≤ 1

}

F =






q0 +

z∑

je=1

qjeνje | ‖ν‖2 ≤ 1







G =






r0 +

nr∑

le=1

rleξle | ‖ξ‖2 ≤ 1









CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 39Then, from (3.19), we have that,
P0 = ΛTQΛ+R+∆T

uS∆u

m∑

ie=1

Pieµie = δΛTQδΛ + ΛTQδΛ + δΛTQΛ

qT0 = (Γ− Yref )
TQΛ− UT

(k−1)S∆u − UT
refR

z∑

je=1

qjeνje = (Γ− Yref)
TQδΛ + δΓTQδΛ + δΓTQΛ

r0 = UT
(k−1)SU(k−1) + UT

refRUref + (Γ− Yref )
TQ(Γ− Yref )

nr∑

le=1

rleξle = (Γ− Yref )
TQδΓ + δΓTQδΓ + δΓTQ(Γ− Yref )Observe that δΓ and δΛ unertainties are re�eted as an ellipsoidal unertainty in P q,and r. Therefore, using the Theorem 4 stated in appendix A, the min-max MPC problembeomes the RQP problem (3.20).

min
uk,wie ,s,d,t

s+ 2qT0 uk(k) + t+ 2d+ ‖r‖2subjet to:
∥
∥
∥
∥
∥

[

2P
1/2
0 uk
s− 1

]∥
∥
∥
∥
∥
2

≤ s+ 1

∥
∥
∥
∥
∥

[

2P
1/2
ie

uk
wie − 1

]∥
∥
∥
∥
∥
2

≤ wie + 1

‖qjeuk‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wie

0 ≤ s










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(3.20)

where r = [r1, . . . , rnr ]
T . It is worth to point out that optimization problem (3.20) isa onvex optimization problem. Therefore, its solution if exists is unique. Moreover, itan be numerially omputed in a �nite number of steps. Then, uk is feasible and thelosed-loop system is stable.Remark 1. Note that in the optimization problem (3.20) it is required to ompute thematries Pie and qje, as well the order of the vetors µ and ν. This an be done from the



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 40initial desription of the unertainty in Ak and Bk, however this is not a easy work beausefrequently is almost impossible to �nd an analyti expression for these ellipsoids. For thisreason in the next paragraph we propose a method to alulate the matries Pie , qje and theorder of the vetors µ and ν by means of algebrai relationships and without informationof the initial ellipsoids.Computing Pie and qje: In order to generalize the problem of omputing Pie , qje and theorder of the vetors µ ∈ R
m and ν ∈ R

z, let δΓ ∈ R
p×1, δΛ ∈ R

p×n, Γ ∈ R
p×1, Λ ∈ R

p×nand Q ∈ R
p×p. For omputing Pie matries, let H ∈ R

n×n with H = δΛTQδΛ+ΛTQδΛ+
δΛTQΛ a symmetri matrix. It is possible to �nd a general expressions for eah elementof the H matrix in terms of the elements of δΛ, Λ and Q with,

δΛ =






δ1,1 · · · δ1,n... . . . ...
δp,1 · · · δp,n




 , Λ =






λ1,1 · · · λ1,n... . . . ...
λp,1 · · · λp,n




 , Q = diag([q1 · · · qp]) (3.21)In this ase, eah element of H is given by (3.22)

Hii =

p
∑

l=1

[
qlδ

2
l,i + 2qlλl,iδl,i

]

Hij =

p
∑

l=1

[qlδl,iδl,j + ql(λl,jδl,i + λl,iδl,j)] , ∀j > i

(3.22)
Note that H =

m∑

ie=1
Pieµie . Hene, the elements of δΛ and the di�erent ombinations ofthese an be assoiated (mapped) with eah element of µ (based in (3.22)) as follows

µie =







qiδi,j for ie = 1, . . . , p · n
qiδ

2
i,j for ie = p · n+ 1, . . . , 2p · n

qiδi,jδi,α for ie = 2p · n+ 1, . . . ,m

(3.23)with α = {j +1, . . . , n}. Thus, the dimension of µ is m = 3
2 (p · n) + 1

2(p · n2). In addition,
H =

m∑

ie=1

Pieµie =










m∑

ie=1
P11,ieµie · · ·

m∑

ie=1
P1n,ieµie... . . . ...

m∑

ie=1
P1n,ieµie · · ·

m∑

ie=1
Pnn,ieµie










(3.24)where
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m∑

ie=1

Pii,ieµie = Hii =

p
∑

l=1

[
qlδ

2
l,i + 2qlλl,iδl,i

]

m∑

ie=1

Pij,ieµie = Hij =

p
∑

l=1

[qlδl,iδl,j + ql(λl,jδl,i + λl,iδl,j)] , ∀j > i

(3.25)Now, note that it is possible to �nd a expression of µie in terms of i and j as follows
µ =





µ(j−1)p+i

µn·p+(j−1)p+i

µκ



 =





qiδi,j
qiδ

2
i,j

qiδi,jδi,α



 (3.26)with κ = 2p ·n+p · (j−1)(n− j
2)+p · (α− j−1)+ i. Note that ‖µ‖2 ≤ 1, then a neessaryondition to use this approah is:

‖µ‖2 =

∥
∥
∥
∥
∥
∥





µ(j−1)p+i

µn·p+(j−1)p+i

µκ





∥
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiδ

2
i,j

qiδi,jδi,α





∥
∥
∥
∥
∥
∥
2

≤ 1 (3.27)Note that qi regulates the previous ondition, therefore an adequate eletion of the matrix
Q an lead to aomplish the ondition (3.27). Hene (3.25) an be written as,

m∑

ie=1

Pii,ieµie = Hii =

p
∑

l=1

[
qlµn·p+(i−1)p+l + 2qlλl,iµ(i−1)p+l

]

m∑

ie=1

Pij,ieµie = Hij =

p
∑

l=1

[
qlµκ+l + ql(λl,jµ(i−1)p+l + λl,iµ(j−1)p+l)

]
, ∀j > i

(3.28)
where κ = p·i

2 (2n − i − 1) + p · (n + j − 1). Aording to equation (3.28) the elements ofthe Pie matries are,
Pii,ie =







2λie−(i−1)p,i for ie = (i− 1)p + 1, . . . , (i− 1)p + p

1 for ie = p · n+ (i− 1)p + 1, . . . , p · n+ (i− 1)p + p
0 for otherwise

Pij,ie =







λie−(i−1)p,j for ie = (i− 1)p + 1, . . . , (i− 1)p + p

λie−(j−1)p,i for ie = (j − 1)p + 1, . . . , (j − 1)p+ p

1 for ie = κ+ 1, . . . , κ+ p
0 for otherwise (3.29)

For omputing the qje matries, let E ∈ R
1×n with E = Γ

T
QδΛ + δΓTQδΛ + δΓTQΛ. It



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 42is possible to �nd a general expressions for eah element of the E matrix in terms of theelements of δΓ, δΛ, Γ and Q,
δΓ =

[
ρ1 · · · ρp

]T
, Γ =

[
σ1 · · · σp

]T
, (3.30)where Γ = (Γ− Yref ). Then eah element of E an be obtained as

Ei =

p
∑

l=1

[
qlδl,iρl + qlΓlδl,i + qlλl,jρl

] (3.31)Note that E =
z∑

je=1
qjeνje , then eah element of δΛ, δΓ and the di�erent ombinations ofthese are assoiated (mapped) with eah element of ν aording to (3.31) of the next form,

νje =







qiδi,j for je = 1, . . . , p · n
qiρi for je = p · n+ 1, . . . , p · n+ p
qiδi,jρi for je = p · n+ p+ 1, . . . , z

(3.32)hene, the order of ν is z = 2p · n + p. Following the same proedure to �nd Pie , theelements of the qje are given by,
q1i,je =







Γje−(j−1)p for je = (j − 1)p + 1, . . . , (j − 1)p+ p

λje−p·n,j for je = p · n+ 1, . . . , p · n+ p
1 for je = p · n+ j · p+ 1, . . . , p · n+ j · p+ p
0 for otherwise (3.33)Note that ‖ν‖2 ≤ 1, then a neessary ondition to use this approah is:
‖ν‖2 =

∥
∥
∥
∥
∥
∥





ν(j−1)p+i

νn·p+i

νn·p+p+(j−1)p+i





∥
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiρi

qiδi,jρi





∥
∥
∥
∥
∥
∥
2

≤ 1 (3.34)Again, note that qi regulates the previous ondition, therefore an adequate eletion ofthe matrix Q an lead to aomplish the ondition (3.34)



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 433.2.3.4 Robust MPC problem as a RQP with polytopi unertaintyIn this ase unertainties in P , q and r are given by polytopes of the form
E = Co{P1, . . . , Pm} =






P : P =

m∑

ip=1

Pipµip ,
m∑

ip=1

µip = 1, µip ≥ 0







F = Co{q1, . . . , qz} =






q : q =

z∑

jp=1

qjpνjp ,

z∑

jp=1

νjp = 1, νjp ≥ 0







G = Co{r1, . . . , rnr} =






r : r =

nr∑

lp=1

rlpξlp ,

nr∑

lp=1

ξlp = 1, ξlp ≥ 0







(3.35)
With this assumption, equation (3.16) beomes (3.36).

JNp(uk) = uTk (P + δP )uk + 2(q + δq)Tuk + (r + δr) (3.36)where
δP =

m∑

ip=1

Pipµip = δΛTQδΛ + ΛTQδΛ + δΛTQΛ

δq =

z∑

jp=1

qjpνjp = (Γ− Yref )
TQδΛ + δΓTQδΛ + δΓTQΛ

δr =

nr∑

lp=1

rlpξlp = (Γ− Yref)
TQδΓ + δΓTQδΓ + δΓTQ(Γ− Yref)

(3.37)
Note that δΓ and δΛ unertainties are re�eted as an polytopi unertainty in P q, and r.Therefore, using the result obtained in setion A.2.2, the min-max MPC problem beomes
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min

uk,wip ,d,t
t+ 2d+ ‖r‖2subjet to:

∥
∥
∥
∥
∥

[

2P
1/2
ip

uk
wip − 1

]∥
∥
∥
∥
∥
2

≤ wip + 1

‖qjpuk‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wip










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(3.38)

Remark 2. As in setion 3.2.3.3 in the optimization problem (3.38) it is neessary theomputation of the matries Pip and qjp also the order of the vetors µ and ν. There aretwo forms to do that, the �rst one by means of algebrai relationships between the unertaindesription and equation (3.37), and the seond one an be done from the initial desriptionof the unertainty in Ak and Bk. In the next paragraphs the two forms are developed.
Computing Pip and qjp:First method: As it was mentioned, this method is based in algebrai relationships be-tween the unertain desription and equation (3.37). The same methodology used in theprevious setion where ellipsoidal unertainty was taken into aount. In this way the re-sult obtained is exatly the same, however a very restritive ondition is imposed. Hene,the matries Pip and qjp are given by:
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Pii,ip =







2λip−(i−1)p,i for ip = (i− 1)p + 1, . . . , (i− 1)p + p

1 for ip = p · n+ (i− 1)p + 1, . . . , p · n+ (i− 1)p + p
0 for otherwise

Pij,ip =







λip−(i−1)p,j for ip = (i− 1)p + 1, . . . , (i− 1)p + p

λip−(j−1)p,i for ip = (j − 1)p + 1, . . . , (j − 1)p+ p

1 for ip = κ+ 1, . . . , κ+ p
0 for otherwise

q1i,jp =







Γjp−(j−1)p for jp = (j − 1)p + 1, . . . , (j − 1)p + p

λjp−p·n,j for jp = p · n+ 1, . . . , p · n+ p
1 for jp = p · n+ j · p+ 1, . . . , p · n+ j · p+ p
0 for otherwise

(3.39)
where

µip =







qiδi,j for ip = 1, . . . , p · n
qiδ

2
i,j for ip = p · n+ 1, . . . , 2p · n

qiδi,jδi,α for ip = 2p · n+ 1, . . . ,m

νjp =







qiδi,j for jp = 1, . . . , p · n
qiρi for jp = p · n+ 1, . . . , p · n+ p
qiδi,jρi for jp = p · n+ p+ 1, . . . , z

(3.40)
with α = {j + 1, . . . , n}, the order of µ is m = 3

2(p · n) + 1
2 (p · n2) and the dimension of νis z = 2p · n+ p. Now, note that,

µ =





µ(j−1)p+i

µn·p+(j−1)p+i

µκ



 =





qiδi,j
qiδ

2
i,j

qiδi,jδi,α





ν =





ν(j−1)p+i

νn·p+i

νn·p+p+(j−1)p+i



 =





qiδi,j
qiρi

qiδi,jρi





(3.41)
where κ = 2p · n + p · (j − 1)(n − j

2) + p · (α− j − 1) + i. From the unertain desription
m∑

ip=1
µip = 1, µip ≥ 0, z∑

jp=1
νjp = 1 and νjp ≥ 0 (an equivalent ondition is ‖µ‖1 = 1 and

‖ν‖1 = 1), therefore a neessary ondition to use this approah is,
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‖µ‖1 =

∥
∥
∥
∥
∥
∥





µ(j−1)p+i

µn·p+(j−1)p+i

µκ





∥
∥
∥
∥
∥
∥
1

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiδ

2
i,j

qiδi,jδi,α





∥
∥
∥
∥
∥
∥
1

= 1

‖ν‖1 =

∥
∥
∥
∥
∥
∥





ν(j−1)p+i

νn·p+i

νn·p+j·p+i





∥
∥
∥
∥
∥
∥
1

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiρi

qiδi,jρi





∥
∥
∥
∥
∥
∥
1

= 1

(3.42)
Again, note that qi regulates the previous ondition, therefore an adequate eletion ofthe matrix Q an lead to aomplish the ondition (3.42)Seond method: This method assumes that the matries of the polytopi unertaintydesription in δP , δq and δr an be found through of the unertainty in Ak and Bk. Let

Ψ the next onvex hull,
[Ak, Bk] ∈ Ψ =

L∑

i=1
µi [Ai, Bi] with L∑

i=1
µi = 1Now, if we suppose that every pair [Ai, Bi] de�nes the following onvex hull Ψ,

[P, q, r] ∈ Ψ =
L∑

i=1
µi [Pi, qi, ri] with L∑

i=1
µi = 1then, the matries of the polytopes of (3.35) Pip , qjp and rlp an be found by means ofevery pair [Ai, Bi] and, equations (3.15) and (3.19). It is important to mention that inthis ase the order of every polytope is the same, i.e m = z = nr = L, with this equation(3.35) is modi�ed as follows,

E = Co{P1, . . . , PL} =

{

P : P =

L∑

i=1

Piµi,

m∑

i=1

µi = 1, µi ≥ 0

}

F = Co{q1, . . . , qL} =

{

q : q =
L∑

i=1

qiνi,
z∑

i=1

νi = 1, νi ≥ 0

}

G = Co{r1, . . . , rL} =

{

r : r =

L∑

i=1

riξi,

nr∑

i=1

ξi = 1, ξi ≥ 0

}

(3.43)
3.2.3.5 Robust MPC problem as a RQP with multi-plant unertaintyOne of the simpler ways to represent model unertainty is to onsider the multi-plantsystem, where we have a disrete set Ψ of plants, and the real plant is unknown, butit is assumed to be one of the members of this set. With this representation of modelunertainty, we an de�ne the set of possible plants as Ψ = {ψ1, . . . , ψn} where eah ψi



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 47orresponds to a partiular plant. Also, let us assume that the true plant whih lies withinthe set Ψ is designated as ψT and there is a most likely plant that also lies in Ψ and isdesignated as ψn. In addition, it is assumed that the urrent estimated state orrespondsto the true plant. The systems overed in this setion are onstrained unertain systemsof the form
x(k + 1) = Aix(k) +Biu(k)

y(k) = Cx(k) +Du(k)

ψi , (Ai, Bi) ∈ ΨLet yk = [yT (k), . . . , yT (k+Np)]
T denotes the sequene of predited values for the output

y(k). Then, the predition model an be written as (3.44).
yk = Γi

︸︷︷︸Free Response+ Λiuk
︸︷︷︸Fored Response (3.44)with Γi = CΦix(k) and Λi = [CHi 0] + [0 D], where C = diag([C, · · · , C

︸ ︷︷ ︸

Np

]), D =diag([D, · · · ,D
︸ ︷︷ ︸

Np

]), and
Φi =








Ai

A2
i...

A
Np

i







, Hi =








Bi 0 · · · 0
AiBi Bi · · · 0... ... . . . ...

A
Np−1
i Bi A

Np−2
i Bi · · · Bi







,With this assumption, the original min-max MPC problem an be onverted to the nextRQP problem (3.45).

min
uk

max
Pi∈E,qi∈F,ri∈G

uTk Piuk + 2qTi uk + ri (3.45)where E = {P1, . . . , Pn}, F = {q1, . . . , qn} and G = {r1, . . . , rn} and Pi, qi and ri are givenby
Pi = ΛT

i QΛi +R+∆T
uS∆u

qTi = (Γi − Yref )
TQΛi − UT

(k−1)S∆u − UT
refR

ri = UT
(k−1)SU(k−1) + UT

refRUref + (Γi − Yref )
TQ(Γi − Yref)

(3.46)Therefore, using the result obtained in setion A.2.3, the min-max MPC problem beomes
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min

uk,w,d,t
w + 2t+ dsubjet to:

∥
∥
∥
∥
∥

[

2P
1/2
i uk
w − 1

]∥
∥
∥
∥
∥
2

≤ w + 1

qiuk ≤ t

0 ≤ w

ri ≤ d










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(3.47)
3.2.4 Robust stabilityAlthough the onvexity an feasibility of the solution of (3.69),(3.38) and (3.47) guaranteessystem stability, is important to make an in-depth disussion about robust stability. Inthis ase, suh disussion omes from the min-max formulation of the MPC, and from thespeial onsiderations that must be taken to guarantee robust losed-loop stability. In thisway, assume the existene of a ompat terminal region Ω ⊆ X, ontrol law Kf : Ω −→ Xand a lass κ funtion γ(·) suh that the following onditions holds ∀x(k + j) ∈ Ω

V (f(x(k+ j),Kf (x(k+ j)), θ(k + j)))− V (x(k+ j)) ≤ −L(x(k+ j),Kf (x(k+ j))) + γ(ρ)where L(·) is the stage ost, and V (·) is the terminal ost. The previous assumptionrequires that for eah x(k+ j) ∈ Ω, f(x(k+ j),Kf ) ∈ Ω, i.e. the set Ω is ontrol invariantunder ontrol law uRMPC = Kf (x(k + j)). Consequently, the following Lemma arises.Lemma 1. If previous assumption holds and the unertainties are modeled by θ(k+j) ∈ Ψ,
‖θ‖2 ≤ ρ, we have that

J∗
i (x(k + j)) − J∗

i−1(x(k + j)) ≤ γ(ρ)Proof. First, the ontroller will be onsider in its min-max formulation, whih an beexpressed as the solution of the following dynami programming problem [91℄:
J∗
i = min

u∈U

{

max
θ(k+j)∈Ψ

{L(x(k + j), u(k + j)) + J∗
i−1(f(x(k + j), u(k + j), θ(k + j)))} | ∀θ ∈ Ψ

}
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0 (x(k + j)) = V (x(k + j)). In order to simplify the notation let x = x(k + j),

u = u(k+ j) and θ = θ(k+ j). Then, in order to prove this lemma mathematial indutionwill be used. for i = 1, ∀x ∈ Ω we have,
J∗
1 (x)− J∗

0 (x) = min
u∈U

max
θ∈Ψ

{L(x, u) + V (f(x, u, θ))} − V (x)

≤ max
θ∈Ψ

{L(x, u) + V (f(x, u, θ))} − V (x)

≤ γ(ρ)Now we suppose that J∗
i (x)− J∗

i−1(x) ≤ γ(ρ), ∀x. Then onsidering the optimality of theontrol law Kf (x) and ∀x yields
J∗
i+1(x)− J∗

i (x) ≤ max
θ∈Ψ

{J∗
i (f(x,Kf (x), θ))− J∗

i−1(f(x,Kf (x), θ))}�nally from hypothesis of the mathematial indution it is veri�ed that
J∗
i+1(x)− J∗

i (x) ≤ γ(ρ)Therefore, the lemma is demonstrated.The stability of the min-max ontroller (3.12) is established in the following theoremTheorem 2. Consider the system x(k+1) = f(x(k), u(k), θ(k)), and suppose that uner-tainties are modeled by θ(k + j) ∈ Ψ, ‖θ‖2 ≤ ρ. Let J∗
i (x(k + j)) − J∗

i−1(x(k + j)) ≤ γ(ρ)and assuming feasibility at the initial state, then the unertain system ontrolled by themin-max MPC ontroller uRMPC = Kf (x(k)) is robustly stable. Furthermore, the optimalost is a Lyapunov funtion.Proof.
J∗
Np

(xk+1)− J∗
Np

(xk) = J∗
Np

(xk+1)−max
θ∈Ψ

{L(x(k),Kf (x(k)))

+ J∗
Np−1(f(x(k),Kf (x(k)), θ))}

≤ J∗
Np

(xk+1)− L(x(k),Kf (x(k))) − J∗
Np−1(xk+1)onsidering the Lemma 1 we have

J∗
Np

(xk+1)− J∗
Np−1(xk+1) ≤ γ(ρ)
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J∗
Np

(xk+1)− J∗
Np

(xk) ≤ −L(x(k),Kf (x(k))) + γ(ρ)therefore J∗
Np

(xk+j) is a Lyapunov funtion of the system. So the stability of the systemis guaranteed by the Lemma 1.3.2.5 Robust Model Preditive for a gantry rane systemIn this setion a Robust Model Preditive for a gantry rane (Figure 3.2) system is presentedand ompared with a nominal MPC under unertainty. The pendulum dynami system hasbeen studied over the years and widely applied to the industry. In general, the importantvariables in the analysis of the rane system are angle, mass of art, mass of objet hungwith art, mass of rope and length of rope. The mathematial model for the gantry raneused here are given by:
rail

Figure 3.2: Gantry Crane.
ml2θ̈ −mlr̈cos(θ) +mglsin(θ) = 0

(M +m)r̈ −mlθ̈ +mlθ̇2θ − Ur = 0
(3.48)For this example, M = 2 Kg is the mass of the art, m = 1 Kg is the mass of the load,

l = 1 m is the length of rope between art and mass of the load, r is the position of theart, g is the earth gravity and Ur is the fore exerted by a motor over the art (see Figure3.2). The objetive of the ontroller is to regulate the angle (θ) and the position (r) ofthe art. The states of the system are x(k) =
[

θ(k), θ̇(k), r(k), ṙ(k)
]T , the outputs are

y(k) = [θ(k), r(k)]T and the input is u(k) = Ur. The linear model of the system an befound if the angle θ is supposed small, with this cos(θ) ≈ 1 and sin(θ) ≈ 0. Then, the
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ẋ =







0 1 0 0
−(M+2m)g

Ml 0 0 0
0 0 0 1

−2mg
M 0 0 0






x+







0
1
Ml
0
1
M






u

y =

[
1 0 0 0
0 0 1 0

]

x;

(3.49)
The ost funtion used for the gantry rane is given by:

JNp(xk, uk) =

Np∑

j=1

‖(y(k + j)− yref‖2Q +

Np∑

j=0

‖u(k + j)‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃where yref = [0, 5]T , Q = 102 · I2×2, R = I1×1, S = 50 · I1×1, and Np = 10. Figure 3.3shows the responses of the nominal MPC. In order to test the nominal MPC, the systemwas initialized at x0 = [0, 0, 0]T , the idea is that the ontroller drives the system to yref .As an be seen in Figures 3.3(a) and 3.3(b) the nominal MPC ontroller moves the systemto the set-point, however the overshot and the stabilization time are onsiderably high.Figures 3.3() and 3.3(d) show the input of the system and the ost funtion of the MPControllerNow, in order to evaluate the performane of the nominal ontroller under unertaintiesthe mass m of the load is hanged in 1 Kg at 50 seg. Figure 3.4 shows the simulationresults. Note that in Figures 3.4(a) and 3.4(b) the ontroller annot drive the system tothe set point due to the unertain in the mass of the load. Figures 3.4() and 3.4(d) showthe input of the system and the ost funtion of the MPC ontroller whih inreases underunertain senario.In order to ontrol the system under unertainties a robust MPC as the one shown in setion3.2.2 is designed. Figure 3.5 shows the simulation results of the Robust MPC. In order totest the robust ontroller the mass of the load was hanged in 4Kg (signi�antly bigger thanin nominal MPC) at 15 seg. There are several fats to mention in this simulation, however,the most important fats are that the stabilization time is short versus the nominal MPCand how the unertainty does not a�et the responses. Figures 3.5(a) and 3.5(b) show thebehavior of the outputs of the system. Note that the system has no overshot in the positionof the rane, also the hange in the mass of the load does not a�et the responses. On theother hand Figures 3.5() and 3.5(d) show the input of the system and the ost funtionof the MPC ontroller whih dereases under unertain senario. Finally, in general termsthe gantry rane example shows the advantages of the robust MPC proposed here over a
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() (d)Figure 3.3: Nominal MPC response: (a) Crane angle (θ), (b) Crane Position (r), ()Control ation (Ur), (d) Objetive funtion.nominal MPC.An important aspet to mention in the simulations results is the osillation present in theobjetive funtion at the start of the simulation. This osillation is beause the angle ofthe rane osillate while the ar reah the set-point position, this fat an be seen in Figure3.6 where a zoom of the rane angle and the objetive funtion was done.3.3 Robust Model Preditive Control with zone ontrolModel Preditive Control (MPC) has gained interest in the ontrol researh ommunity,beause it o�ers more �exibility than other optimization based ontrol shemes. In [13℄a omplete review about MPC approahes is presented. One of the most interesting for-mulations of MPC orresponds to the zone ontrol. In this ontrol strategy the idea is tomaintain the outputs and/or states of the ontrolled system inside a prede�ned operationzone. Then, the ontrolled variables are able to reah a whole set of points. In this dire-tion, this paper proposes a robust MPC with zone ontrol with guaranteed stability. Asin the Robust MPC presented in previous setion, in the proposed MPC with zone ontrolthe resulting min-max problem assoiated with the worst-ase omputation is transformedinto a onvex optimization problem (spei�ally into a seond-order one programming
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nx, y(k) ∈ R

ny , and u(k) ∈ R
nu denote the system states,inputs and outputs respetively. At time step k, let xk = [xT (k), . . . , xT (k + Np)]

T and
uk = [uT (k), . . . , uT (k +Np)]

T be the state trajetory and the ontrol sequenes, with Npthe predition horizon. Let JNp(yref,k, xk, uk) denotes the ost funtion, yref,k being thesequene of referene values for the ontrolled variables. Assume the funtion f(x(k), u(k))
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(a) (b)Figure 3.6: Robust MPC response under unertainty in mass of the load: (a)Zoom in theCrane angle (θ), (b) Zoom in the objetive funtion.desribing the state trajetories and g(x(k), u(k)) desribing the system outputs are on-tinuous, where x(k) ∈ X, y(k) ∈ Y, and u(k) ∈ U de�ne the feasible values for the states,inputs and outputs of the system, with X ⊂ R
nx, Y ⊂ R

ny and U ⊂ R
nu losed sets.Let yref,k ∈ Yref with Yref ⊂ R

ny also losed. Then, the MPC optimization problem for
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min

uk,yref,k
JNp(yref,k, xk, uk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j))

y(k + j) = g(x(k + j), u(k + j))

x(k + j) ∈ X, j = 0, . . . , Np

y(k + j) ∈ Y, j = 0, . . . , Np

u(k + j) ∈ U, j = 0, . . . , Np

x(k +Np) ∈ Ω

yref,k ∈ Yref

‖u(k + j)− u(k + j − 1)‖2 ≤ ∆umax

(3.50)
where JNp(xk, uk) =

Np∑

j=1
L(x(k + j), u(k + j)) + V (x(k +Np)). The stability of the MPController (3.50) an be assured by means of the following theorem:Theorem 3. (Asymptoti stability of the MPC with zone ontrol)Let a system x(k + 1) = f(x(k), u(k)), suh as that f(0, 0) = 0 and this is subjet to theonstraints x(k + j) ∈ X and u(k + j) ∈ U. Then, if the hypothesis 1 is aomplished, thesystem ontrolled by the nominal MPC ontroller uMPC−ZC = Kf (x(k)) is asymptotiallystable.Proof. Suppose that u∗k and y∗ref,k orrespond to the optimal solution of the problem (3.50)at time step k, x∗k the optimal sequene of the states and J∗

Np
(xk) the ost orresponding to

u∗k. Now, onsider the following variables ũk = [u∗(k+1)T , . . . , u∗(k+Np)
T , uf ]

T , y∗ref,k, if
uf ∈ U is assumed, learly ũ(k+ j) ∈ U and y∗ref,k ∈ Yref . Sine there are no disrepaniesbetween the predition model and the real system x(k + 1) = x∗(k + 1), and applying ũk,the predited state x̃k satis�es that x̃(k + j) = x∗(k + j). Therefore, x̃(k + j) ∈ X. Let
J̃Np(xk+1) the ost orresponding to the feasible sequene ũk. Then

J̃Np(xk+1)− J∗
Np

(xk) =− L(x(k), u∗(k))

+ {L(x̃(k +N + 1), uf ) + V (x̃(k +N))− V (x∗(k +N))}Sine x̃(k + N) = x∗(k + N), then x̃(k + N + 1) = f(x∗(k + N), uf ), and uf ∈ U, it ispossible to dedue that
J̃Np(xk+1)− J∗

Np
(xk) =− L(x(k), u∗(k))

+ {L(x̃(k +N), uf ) + V (f(x∗(k +N), uf ))− V (x∗(k +N))}Then from hypothesis 1 we have
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J̃Np(xk+1)− J∗

Np
(xk) ≤ −L(x(k), u∗(k))

J∗
Np

(xk+1)− J∗
Np

(xk) ≤ J̃Np(xk+1)− J∗
Np

(xk) ≤ −L(x(k), u∗(k))therefore J∗
Np

(xk+j) is a Lyapunov funtion of the system.Now, sine the optimization problem (3.50) reast in nonlinear programming, and thesolution of this lass of problems is not always feasible in real time and if f(·) and g(·)are assumed C1 lass funtions, viz. ontinuous and di�erentiable funtions, then, thereexists a linear approximation of f(·) and g(·) as in (3.14). With this approximation, thenominal problem (3.50) an be transformed into a quadrati programming (QP) prob-lem, with yk = [yT (k), . . . , yT (k + Np)]
T the sequene of predited values for the output

y(k) and the predition model written as. (3.15). Commonly, in MPC with zone ontrol
JNp(yref,k, xk, uk) penalizes the deviation of the predited output y(k) from its orrespond-ing referene value yref,k. Let JNp(yref,k, xk, uk) be the quadrati ost funtion

JNp(yref,k, xk, uk) =

Np∑

j=1

‖(y(k + j)− yref,k‖2Q +

Np∑

j=0

‖u(k + j) − uref‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃where Q ∈ R
ny×ny , R ∈ R

nu×nu and S ∈ R
nu×nu are positive de�nite weighting matries;

uref is the referene value for the inputs, suh that the pair (yref,k, uref ) de�nes an optimaloperating point for the system (often omputed o�ine or by an upper layer in a hierarhialontrol sheme); and Q̃ is obtained by solving a Lyapunov equation. The terminal statepenalty term ‖x̃(k + Np)‖2Q̃ is added for assuring the losed-loop stability of the system(hypothesis 1). Using the predition model (3.15), the linearized version of (3.50) is givenby (3.51). This version orresponds to a QP optimization problem whose solution an bee�iently obtained in real time appliations.
min

uk,yref,k
r + 2qT

[
uk
yref,k

]

+
[
uTk , y

T
ref,k

]
P

[
uk
yref,k

]subjet to:










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











yref,min ≤ yref,k ≤ yref,max

(3.51)
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P =

[

ΛTQΛ+R+∆T
uS∆u −ΛTQI

−ITQΛ I
T
QI

]

q =
[

ΓTQΛ− UT
(k−1)S∆u − UT

refR −ΓTQI
]

r = ΓTQΓ + UT
(k−1)SU(k−1) + UT

refRUrefand
Uref = [uref

T (k), . . . , uref
T (k +Np)]

T

ũmax = [uTmax(k), . . . , u
T
max(k +Np)]

T

ũmin = [uTmin(k), . . . , u
T
min(k +Np)]

T

ỹmax = [yTmax(k), . . . , y
T
max(k +Np)]

T

ỹmin = [yTmin(k), . . . , y
T
min(k +Np)]

T

∆̃umax = [∆uTmax(k), . . . ,∆u
T
max(k +Np)]

T ,Hene, the MPC with zone ontrol strategy works under the following assumptions:1. The system nonlinearities are smooth. Then, the linear model is a good representa-tion of the system in a neighborhood of the linearization point.2. The ontrol ations are suh that they do not move the system outside the neighbor-hood where the linear model is valid.These assumptions, in general seems to be restritive. Then alternatives suh as robustoptimization based on linear models arise. In setions below, this approah is desribed.3.3.2 Min-Max MPC with zone Control (RMPC-ZC)Min-max MPC with zone ontrol is a kind of robust MPC strategy where the worst-asesenario is formulated for a de�ned disturbane model. In general, a nonlinear model ofthe system is used to predit the trajetories of the system and its outputs. Based onthese preditions a sequene of ontrol ations uk and referene values yref,k are obtained.But in this ase both uk and yref,k orrespond to the best performane under the worstunertainties. Let Θk = [θT (k), . . . , θT (k+Np)]
T denote the sequenes of unertainties over

Np, with ‖θ(k)‖2 ≤ ρ. Mathematially, min-max MPC with zone ontrol is formulated as(3.52). Based on this formulation, several approahes have been reported in the literature



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 58as the proposed in [11, 12℄.
min

uk,yref,k
max

Θk∈Ψ
Np
JNp(yref,k, xk, uk,Θk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j), θ(k + j))

y(k + j) = g(x(k + j), u(k + j), θ(k + j))

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

y(k + j) ∈ Y, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

yref,k ∈ Yref , ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖2 ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖2 ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(3.52)
where ΨNp is determined by the assumed unertainty model. Due to the min-max MPCreast in robust nonlinear programming (RNLP), and sine the urrent omputation re-soures do not provide enough omputational power for having an exat solution of RNLPproblems in real time, linear models are used for omputing equivalent solutions for (3.52).An alternative for omputing these equivalent solutions onsists on transforming the origi-nal optimization problem into a robust quadrati programming problem, whih has e�ientmethods for omputing its solution.3.3.3 Robust MPC with zone Control as a RQP problemConsider the nominal solution given by (3.51). Sine this solution is based on linear modelsthere exists a high unertainty in the degree of representation that this model has of thesystem behavior. For this reason, model unertainty will be onsidered and restritedto the free and fored response terms (Γ + δΓ) and (Λ + δΛ) where δΓ ∈ ℜny·Np×1 and
δΛ ∈ ℜny·Np×nu·Np are ellipsoidal unertainties. With this assumption, equation (3.51)beomes (3.53).

min
uk,yref,k

max
P∈E,q∈F,r∈G

r + 2qT
[
uk
yref,k

]

+
[
uTk , y

T
ref,k

]
P

[
uk
yref,k

] (3.53)where P , q and r are in terms of δΓ, δΛ as follows
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P =

[

ΛTQΛ+R+∆T
uS∆u + δΛTQδΛ + ΛTQδΛ + δΛTQΛ −ΛTQI − δΛTQI

−ITQΛ− I
T
QδΛ I

T
QI

]

qT =
[

ΓTQΛ− UT
(k−1)S∆u − UT

refR+ ΓTQδΛ + δΓTQΛ+ δΓTQδΛ −ΓTQI − δΓTQI
]

r = (Γ + δΓ)TQ(Γ + δΓ) + UT
(k−1)SU(k−1) + UT

refRUref3.3.4 Robust MPC with zone ontrol as a RQP problem with ellipsoidalunertaintiesAs in setion A.2.1 assume that unertainties in P , q and r are norm bounded and E, Fand G an be written as
E =

{

P0 +
m∑

ie=1

Pieµie | ‖µ‖2 ≤ 1

}

F =






q0 +

z∑

je=1

qjeνje | ‖ν‖2 ≤ 1







G =






r0 +

nr∑

le=1

rleξle | ‖ξ‖2 ≤ 1





Then P0, n∑

ie=1
Pieµie , q0, z∑

je=1
qjeνje , r0 and nr∑

le=1

rleξle be de�ned as
P0 =

[

ΛTQΛ+R+∆T
uS∆u −ΛTQI

−ITQΛ I
T
QI

]

m∑

ie=1

Pieuie =

[

δΛTQδΛ +ΛTQδΛ + δΛTQΛ −δΛTQI

−ITQδΛ 0

]

qT0 =
[

ΓTQΛ− UT
(k−1)S∆u − UT

refR −ΓTQI
]

z∑

je=1

qjevj =
[
ΓTQδΛ + δΓTQΛ+ δΓTQδΛ −δΓTQI

]

r0 = UT
(k−1)SU(k−1) + UT

refRUref + ΓTQΓ

nr∑

le=1

rleξle = ΓTQδΓ + δΓTQδΓ + δΓTQΓ

(3.54)
Observe that δΓ and δΛ unertainties are re�eted as an ellipsoidal unertainty in P , qand r. Therefore, Min-Max MPC with zone ontrol problem beomes the RQP problem(3.55).
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min

uk,yref,k,wie ,s,d,t
s+ 2qT0

[
uk
yref,k

]

+ t+ 2d+ ‖r‖2subjet to:
∥
∥
∥
∥
∥
∥




2P

1/2
0

[
uk
yref,k

]

s− 1





∥
∥
∥
∥
∥
∥
2

≤ s+ 1

∥
∥
∥
∥
∥
∥




2P

1/2
ie

[
uk
yref,k

]

wie − 1





∥
∥
∥
∥
∥
∥
2

≤ wie + 1

‖qj
[
uk
yref,k

]

‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wie

0 ≤ s










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











yref,min ≤ yref,k ≤ yref,max

(3.55)

where r = [r1, . . . , rnr ]
T . It is worth to point out that the optimization problem (3.55)is a onvex optimization problem. Therefore, its solution always exists and is unique.Moreover, it an be numerially omputed in a �nite number of steps.Computing Pie and qje: To alulate the Pie matries, we have that,

m∑

ie=1

Pieµie =







m∑

ie=1
P1,ieµie

m∑

ie=1
P2,ieµie

m∑

ie=1
P3,ieµie

m∑

ie=1
P4,ieµie







(3.56)where P1,ie ∈ R
n×n, P2,ie ∈ R

n×N , P3,ie ∈ R
N×n and P4,ie ∈ R

N×N . Then from (3.54)
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m∑

ie=1

P1,ieµie = δΛTQδΛ + ΛTQδΛ + δΛTQΛ

m∑

ie=1

P2,ieµie = −δΛTQI

m∑

ie=1

P3,ieµie = −ITQδΛ

m∑

ie=1

P4,ieµie = 0following the same proedure that in setion 3.2.3.3, we have the next result for every Pl,ie(l = 1, 2, 3, 4) matrix,
P1ii,ie =







2λie−(i−1)p,i for ie = (i− 1)p + 1, . . . , (i− 1)p+ p

1 for ie = p · n+ (i− 1)p + 1, . . . , p · n+ (i− 1)p + p
0 for otherwise

P1ij,ie =







λie−(i−1)p,j for ie = (i− 1)p+ 1, . . . , (i − 1)p+ p

λie−(j−1)p,i for ie = (j − 1)p + 1, . . . , (j − 1)p + p

1 for ie = κ+ 1, . . . , κ+ p
0 for otherwise

P2ij,ie =

{
−1 for ie = (i− 1)p + j, . . . , (i− 1)p + j + ( p

N − 1)N
0 for otherwise

P3ij,ie =

{
−1 for ie = (j − 1)p + i, . . . , (j − 1)p + i+ ( p

N − 1)N
0 for otherwise

P4ij,ie = 0

(3.57)
where κ = p·i

2 (2n − i− 1) + p · (n + j − 1), the order of µ is m = 3
2(p · n) + 1

2(p · n2) andwith ‖µ‖2 ≤ 1 as neessary ondition to use this approah, namely,
‖µ‖2 =

∥
∥
∥
∥
∥
∥





µ(j−1)p+i

µn·p+(j−1)p+i

µκ





∥
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiδ

2
i,j

qiδi,jδi,α





∥
∥
∥
∥
∥
∥
2

≤ 1To alulate the qje we have that,
z∑

je=1

qjeνje =

[ z∑

je=1
q1jeνje

z∑

je=1
q2jeνje

] (3.58)where q1,je ∈ R
1×n and q2,je ∈ R

1×N . Then from (3.54)
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z∑

je=1

q1je νje = ΓTQδΛ + δΓTQΛ + δΓTQδΛ

z∑

je=1

q2je νje = −δΓTQIfollowing the same proedure that in setion 3.2.3.3, we have the next result for every ql,je(l = 1, 2) matrix,
q1i,je =







Γje−(j−1)p for je = (j − 1)p+ 1, . . . , (j − 1)p + p

λje−p·n,j for je = p · n+ 1, . . . , p · n+ p
1 for je = p · n+ j · p+ 1, . . . , p · n+ j · p+ p
0 for otherwise

q2i,je =

{
Γje−(j−1)p for je = (j − 1)p + 1, . . . , (j − 1)p + p

0 for otherwise (3.59)
where the order of ν is z = 2p · n + p. Note that ‖ν‖2 ≤ 1, then a neessary ondition touse this approah is:

‖ν‖2 =

∥
∥
∥
∥
∥
∥





ν(j−1)p+i

νn·p+i

νn·p+p+(j−1)p+i





∥
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiρi

qiδi,jρi





∥
∥
∥
∥
∥
∥
2

≤ 13.3.5 Robust Model Preditive ontrol with zone ontrol for a Contin-uous Stirred Tank ReatorIn this Setion robust linear MPC with zone ontrol (RMPC-ZC) is applied to a ContinuousStirred Tank Reator (CSTR). The model of this proess was presented in [92, 93℄. TheRMPC-ZC used was the same de�ned by (3.20). In this simulation, it was assumed thatan irreversible exothermi reation A → B takes plae in the reator. Just a liquid phasewas onsidered. The heat produed by the reation is removed by a ooling jaket. Thedynami behavior of this systems is desribed by (3.60).
dCa

dt
=
q

v
(Ca0 − Ca)− k0Ca exp

(−E
RT

)

dT

dt
=
q

v
(T0 − T ) + k1Ca exp

(−E
RT

)

+ k2
qc
v

(

1− exp

(−k3
qc

))

(Tc0 − T )

dV

dt
= q − k4

√
V

(3.60)



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 63In (3.60), onstants k1, k2, and k3 are de�ned as follows:
k1 = −∆Hk0

ρCp
, k2 =

ρcCpc

ρCp
, k3 =

ha
ρcCpcThe objetive of the ontroller is to regulate the volume V and the temperature T ofthe liquid inside the reator. Suh objetive is arried out by manipulating the inlet�ow rate q and the oolant �ow qc. The inlet temperature and onentration to thereator T0, Ca0 respetively; also the inlet temperature of the oolant �ow Tc0 are assumedas unmeasured disturbanes. Moreover, the molar onentration of A (denoted by Ca)is assumed unmeasured. Table 3.1 presents the parameters used in the simulation. InParameter Value

k0 7.2 × 1010 min−1

k4 10 L/(min ·m3/2)
E/R 1× 104 K
T0 350 K
Tc0 350 K
∆H −2× 105 al/mol

Cp, Cpc 1 al/(g ·K)
ρ, ρc 1× 103 g/L
ha 7× 105 al/(min ·K)
Ca0 1 mol/LTable 3.1: Values of the reator parametersnominal onditions the manipulated variables assume the values q = 100 L/min, and qc =

103.37 L/min. At the same onditions T0 = 350 (K), Ca0 = 1 mol/L and Tc0 = 350 K.Consequently, the CSTR model admits three steady states. For simulations purposes itwas assumed the problem of ontrolling the CSTR around the steady state assoiated tothe following values: h = 100 L, T = 438.54 K and Ca = 0.1 mol/L. The simulation wasperformed along 40 minutes (simulated time). During this period hanges in the valuesof the unmeasured variables were done. Spei�ally, after 5 minutes a disturbane in theoperating inlet onentration Ca0 of 35% was performed. Finally, after 20 more minutes adisturbane in the temperature of the oolant �ow Tc0 of 10% was done.Figures 3.7 present the simulation results. Figures 3.7 (a) and 3.7 (b) show, that theRMPC-ZC rejeted the disturbanes preformed during the simulation. Although distur-banes produed signi�ant hanges in the ontrolled variables, the RMPC-ZC drove themagain to their desired values. Figure 3.7 (d) presents the behaviour of the ost funtionalong the simulation. Clearly, despite of the disturbanes the ost funtion always on-verges to zero. This fat is important in order to hek the stability of the proposedontroller.Also the nominal MPC with zone ontrol results is presented, Figures 3.8 (a) and 3.8(b) show that the MPC with zone ontrol rejeted the disturbanes, even with strongperturbation, but if the variables have fast hanges, the di�erene with the RMPC-ZCis the way it treats the variable, beause RMPC-ZC seems smoother and onservative,Figures 3.7 (a) and 3.7 (b) show that variables have a slow response but the variables seemto be far from the zone limits, while Figures 3.8 (a) and 3.8 (b) show very fast variables



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 64with referenes that are near the zone limits. Then, both ontrollers an aomplish theobjetive of maintaining the variable into the zone. The appliability of eah ontrollerwill depend on the system harateristis and the nature of the output variable: whenthe operation needs to be very onservative, RMPC-ZC would be an interesting option.Figures 3.7 () and 3.8 () show the behavior of the input variables, MPC with zone ontrolhas input variables with very fast hanges, while RMPC-ZC has input variables that arevery soft whih ould be a better operation for that kind of variables in presene of fastresponses.
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CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 66power management on smart grid an be found in [96, 98, 99℄, and for the design of sustain-able poliies for mitigating the e�ets of limate hange [100℄. A distributed appliationof eonomi MPC to a nonlinear hemial proess network an be found in [101℄, andthe analysis of Lyapunov stability for an eonomi nonlinear MPC for yli proesses ispresented in [102℄. Paper [103℄ fouses on the development of a Lyapunov-based eonomimodel preditive ontrol (LEMPC) method for swithed nonlinear systems, and the useof diret methods to formulate the nonlinear ontrol problem as a large-sale NLP wasproposed in [104℄.In spite of the reent advanes in Eonomi MPC, there are still many open questions.Issues suh as the best design for the ontrol system with eonomi goal while assuringlosed-loop stability and onvergene, or the quanti�ation of the losed-loop performaneof the MPC are still hallenges [94℄. In this sense, an eonomi MPC formulation withrobustness harateristis is proposed and its performane under unertainty onditions isexplored. Several works have onsidered onstrained MPC operation dealing with uner-tainty and disturbanes [105, 106, 107, 108, 109, 110℄. However, there are few appliationof eonomi MPC in presene unertainties suh as the work of Hovgaard et al. [111℄where a probabilisti onstraints and Seond Order Cone Programming (SOCP) are usedtogether with eonomi MPC for power management of a refrigeration system.3.4.1 Problem statementConsider a system desribed by a nonlinear invariant disrete time model,
x(k + 1) = f(x(k), u(k), θ(k))

y(k) = g(x(k), u(k), θ(k))
(3.61)where x(k) ∈ R

nx is the system state, y(k) ∈ R
ny is the system output, u(k) ∈ R

nu isthe urrent ontrol vetor and θ(k) ∈ R
nd are the unertainties presents in the model.We assume that the funtion model f(x(k), u(k)) is ontinuous. The system is subjet tohard onstraints on state x(k) ∈ X, output y(k) ∈ Y, input u(k) ∈ U and θ ∈ Ψ for all

k ≥ 0, where X ⊂ R
nx , Y ⊂ R

ny and U ⊂ R
nu are losed sets. The steady state, inputand output of the plant (xs, us, ys) are suh that the ondition xs = f(xs, us) in (3.61) isaomplished. The min-max ontroller design problem onsists of obtaining a ontrol lawthat minimizes a given performane ost index

max
Θk∈Ψ

Np
Jeco(xk, uk,Θk) (3.62)where xk = [xT (k), . . . , xT (k +Np)]

T is the state trajetories, Jeco(xk, uk,Θk) de�nes thestage ost and a sequene of ontrol inputs uk = [uT (k), . . . , uT (k + Np)]
T is obtainedassuming the unertainty Θk = [θT (k), . . . , θT (k +Np)]

T maximum value.



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 673.4.2 Nominal Eonomi MPC (EMPC)The Eonomi Model Preditive Control has substantially the same formulation used innonlinear model preditive ontrol, however an eonomi objetive is hosen to give aneonomially optimal operation at all times. The Eonomi Model Preditive Controlproblem is de�ned as follows:
min
uk

Jeco(xk, uk)subjet to:
x(k + j + 1) = f(x(k + j), u(k + j))

y(k + j) = g(x(k + j), u(k + j))

x(k + j) ∈ X, j = 1, . . . , Np

u(k + j) ∈ U, j = 0, . . . , Np

x(k +Np) ∈ Ω

‖u(k + j)− u(k + j − 1)‖2 ≤ ∆umax

(3.63)
About the stability of the eonomi MPC, the typial Lyapunov arguments to prove asymp-toti stability of MPC annot be used in this ase, beause the optimal ost is not nees-sarily dereasing. In Diehl et.al. [63℄, asymptoti stability onditions for eonomi MPCare stated using Lyapunov arguments.The objetive of this setion is to merge the eonomi MPC proposed in [63℄ with thenew min-max MPC approah previously explained, in suh way that the merged ontrollerpreserves the advantages of both formulations. Again, sine the optimization problem(3.63) reast in nonlinear programming, and the solution of this lass of problems is notfeasible in real time and if f(·) and g(·) are assumed C1 lass funtions, viz. ontinuousand di�erentiable funtions, then there exists a linear approximation of f(·) and g(·) as in(3.14). With this approximation, the nominal problem (3.66) an be transformed into aquadrati programming (QP) problem, with yk = [yT (k), . . . , yT (k + Np)]

T the sequeneof predited values for the output y(k) and the predition model written as. (3.15). As itwas mentioned, in Eonomi MPC Jeco(xk, uk) penalize an eonomi objetive to providean eonomially optimal operation at all times. Let Jeco(xk, uk) be the next typial ostfuntion [62℄
Jeo,k(xk, uk) = Np∑

j=0

[
nu∑

ii=1

cu,iiuii(k + j) +

ny∑

io=1

cy,ioyio(k + j)uio(k + j)

] (3.64)where cu,ii and cy,io are pries assoiated with energy and raw materials, Np is the predi-tion horizon, ny is the number of outputs and nu is the number of inputs of the system. Inorder to ensure onvergene, strong duality must be ful�lled [63℄. In [54℄ this fat is usedto propose a method to enfore onvergene. This method inludes a modi�ation of theoriginal stage ost funtion as follows:
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Jeo,k = Jeo,k + Np∑

j=0

α(x(k + j), u(k + j))This modi�ation aims to ensure strong duality or strit dissipativity of the problem. Forpratial purposes, the most simple hoie of α(·) is the following traking form,
α(x(k + j), u(k + j)) = ‖(y(k + j)− ys‖2Q + ‖u(k + j) − us‖2R + ‖∆u(k + j)‖2Swhere Q, R and S are hosen as the minimum required to ahieve strit dissipativity[54℄. It is important to note that adding α(·), the eonomi objetive is modi�ed and theeonomi ontroller is ontaminated with a traking term, and for this reason a dereasein eonomi performane is expeted. This derease in performane onstitutes a trade-o�for stability [54℄. In this way the problem stated in (3.63) is modi�ed with a new objetivefuntion Jeo,k. Now, replaing (3.15) into the expression for Jeo,k and making somealgebrai operations it is possible to obtain a formulation of (3.63) with the modi�ed ostin a quadrati program form like this

min
uk

r + 2qTuk + uTk Puksubjet to:










I
−I
∆u

∆u

Λ
−Λ











uk(k) ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(3.65)
where r = (Γ − Ys)

TQ(Γ − Ys) + u(k − 1)TSu(k − 1). Note that r with Ys ∈ R
ny×Np ,

Ys = [yTs , . . . , y
T
s ]

T is the minimum ost and annot be hanged during the optimizationbeause it is independent of uk. Then, the solution of (3.63) an be approximated by thesolution of (3.65).In (3.65) P , q, ũmax, ũmin, ỹmax, ỹmin, ∆̃umax are de�ned as follows:
P = ΛTCca + ΛTQΛ +R+∆T

uS∆u

q = Cop + ΓTCca − UT
s R+ (Γ− Ys)

TQΛ− u(k − 1)TS∆uwhere Cop and Cca are blok diagonal matries where the elements of the diagonals are
Cu = [cu,1, · · · , cu,nu ] and Cy = diag([cy,1, · · · , cy,ny

]
) and
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ũmax = [uTmax(k), . . . , u

T
max(k +Np)]

T

ũmin = [uTmin(k), . . . , u
T
min(k +Np)]

T

ỹmax = [yTmax(k), . . . , y
T
max(k +Np)]

T

ỹmin = [yTmin(k), . . . , y
T
min(k +Np)]

T

∆̃umax = [∆uTmax(k), . . . ,∆u
T
max(k +Np)]

T ,Again, in this formulation ∆uuk(k) denotes the di�erene between urrent and previousvalue of the ontrol ation. Hene, ∆u is a bidiagonal matrix whose elements are −I and
I. This strategy works under the following assumptions:1. The nonlinearities are smooth, the linear model is a good representation of the plant,2. The ontrol ations do not move the system far away from the region where thelinearization is valid.3.4.3 Min-Max Eonomi MPCThis setion shows the formulation of the Robust nonlinear Eonomi Model PreditiveControl (REMPC). REMPC problem is written as a min-max optimization problem. Insuh optimization problem a nonlinear model of the system is used to foreast the statetrajetories. The foreasting is done along a predition horizon Np. Mathematially, thisis expressed as (3.66). Subsequently di�erent robust REMPC designs have been proposed,for example this one was presented in [111℄.

min
uk

max
Θk∈Ψ

Np
Jeco(xk, uk,Θk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j), θ(k + j))

y(k + j) = g(x(k + j), u(k + j), θ(k + j))

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖2 ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖2 ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(3.66)
where ΨNp is determined by the assumed unertainty model, with ‖θ(k)‖2 ≤ ρ a boundedunertainty in the system dynamis.



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 703.4.4 Robust Eonomi MPC as a RQP with ellipsoidal unertaintyConsider the nominal solution given by (3.65). Sine this solution is based on linear modelsthere exists a high unertainty in the degree of representation this model have of the systembehavior. for this reason, model unertainty will be onsidered and restrited to the free andfored response terms (Γ+ δΓ) and (Λ+ δΛ) where δΓ ∈ ℜny·Np×1 and δΛ ∈ ℜny·Np×nu·Npare ellipsoidal unertainties. With this assumption, the original min-max MPC probleman be onverted to the next RQP problem (3.67):
min
uk

max
P∈E,q∈F,r∈G

uTk Puk + 2qTuk + r (3.67)where P , q and r are in terms of δΓ, δΛ as follows
P = ΛTCca +ΛTQΛ +R+∆T

uS∆u + δΛTQδΛ + ΛTQδΛ + δΛTQΛ+ δΛTCca

qT = Cop + (Γ− Yref )
TQΛ− UT

(k−1)S∆u − UT
refR+ (Γ− Yref )

TQδΛ + δΓTQδΛ + δΓTQΛ

r = UT
(k−1)SU(k−1) + UT

refRUref + (Γ− Yref)
TQ(Γ− Yref ) + (Γ− Yref )

TQδΓ

+ δΓTQδΓ + δΓTQ(Γ− Yref ) (3.68)Now assume that unertainties in P , q and r are norm bounded and E, F and G an bewritten as
E =

{

P0 +

m∑

ie=1

Pieµie | ‖µ‖2 ≤ 1

}

F =






q0 +

z∑

je=1

qjeνje | ‖ν‖2 ≤ 1







G =






r0 +

nr∑

le=1

rleξle | ‖ξ‖2 ≤ 1





Then, from (3.68), we have that,
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P0 = ΛTCca + ΛTQΛ +R+∆T

uS∆u

m∑

ie=1

Pieµie = δΛTQδΛ + ΛTQδΛ + δΛTQΛ + δΛTCca

qT0 = Cop + (Γ− Yref )
TQΛ− UT

(k−1)S∆u − UT
refR

z∑

je=1

qjeνje = (Γ− Yref)
TQδΛ + δΓTQδΛ + δΓTQΛ

r0 = UT
(k−1)SU(k−1) + UT

refRUref + (Γ− Yref )
TQ(Γ− Yref )

nr∑

le=1

rleξle = (Γ− Yref )
TQδΓ + δΓTQδΓ + δΓTQ(Γ− Yref )Observe that the unertainties δΓ and δΛ unertainties are re�eted as an ellipsoidal un-ertainty in P q, and r. Therefore, Min-Max MPC problem beomes the RQP problem(3.69).

min
uk,wie ,s,d,t

s+ 2qT0 uk + t+ 2d+ ‖r‖2subjet to:
∥
∥
∥
∥
∥

[

2P
1/2
0 uk
s− 1

]∥
∥
∥
∥
∥
2

≤ s+ 1

∥
∥
∥
∥
∥

[

2P
1/2
ie

uk
wie − 1

]∥
∥
∥
∥
∥
2

≤ wie + 1

‖qjeuk‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wie

0 ≤ s










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(3.69)

where r = [r1, . . . , rnr ]
T . It is worth to point out that the optimization problem (3.69)is a onvex optimization problem. Therefore, its solution always exists and is unique.Moreover, it an be numerially omputed in a �nite number of steps.



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 72Computing Pie and qje: This problem is the same as the one in setion 3.2.3.3, theonly di�erene is in the H matrix that has an additional term. Then, for this purpose let
H ∈ R

n×n with H = δΛTQδΛ + ΛTQδΛ + δΛTQΛ + δΛTCca. Then eah element of H isgiven for the next expressions
Hii =

p
∑

l=1

[
qlδ

2
l,i + (2qlλl,i + Ccal,i)δl,i

]

Hij =

p
∑

l=1

[
qlδl,iδl,j + ql(λl,j + Ccal,j )δl,i + qlλl,iδl,j

]
, ∀j > i

(3.70)Following the same proedure that in setion 3.2.3.3, we have the next result for Pie and
qje :
Pii,ie =







2λie−(i−1)p,i + Ccaie−(i−1)p,i
for ie = (i− 1)p + 1, . . . , (i− 1)p + p

1 for ie = p · n+ (i− 1)p + 1, . . . , p · n
+(i− 1)p + p

0 for otherwise
Pij,ie =







λie−(i−1)p,j + Ccaie−(i−1)p,j
for ie = (i− 1)p + 1, . . . , (i− 1)p + p

λie−(j−1)p,i for ie = (j − 1)p + 1, . . . , (j − 1)p+ p

1 for ie = κ+ 1, . . . , κ+ p
0 for otherwise

q1i,je =







Γje−(j−1)p for je = (j − 1)p + 1, . . . , (j − 1)p+ p

λje−p·n,j for je = p · n+ 1, . . . , p · n+ p
1 for je = p · n+ j · p+ 1, . . . , p · n+ j · p+ p
0 for otherwise

(3.71)
where κ = p·i

2 (2n− i− 1)+ p · (n+ j− 1), κ = 2p ·n+ p · (j− 1)(n− j
2 )+ p · (α− j− 1)+ i,the dimension of µ is m = 3

2 (p ·n)+ 1
2(p ·n2) and the dimension of ν is z = 2p ·n+ p. Notethat ‖µ‖2 ≤ 1 and ‖ν‖2 ≤ 1, then a neessary ondition to use this approah is:

‖µ‖2 =

∥
∥
∥
∥
∥
∥





µ(j−1)p+i

µn·p+(j−1)p+i

µκ





∥
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiδ

2
i,j

qiδi,jδi,α





∥
∥
∥
∥
∥
∥
2

≤ 1

‖ν‖2 =

∥
∥
∥
∥
∥
∥





ν(j−1)p+i

νn·p+i

νn·p+p+(j−1)p+i





∥
∥
∥
∥
∥
∥
2

=

∥
∥
∥
∥
∥
∥





qiδi,j
qiρi

qiδi,jρi





∥
∥
∥
∥
∥
∥
2

≤ 1



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 733.4.5 Robust Eonomi MPC for an evaporator systemThe evaporation proess examined in this setion is shown in Figure 3.9. This is a proesswhih removes a volatile liquid from a non-volatile solute, thus onentrating the solution.It onsists of a heat exhange vessel with a reirulating pump. The overhead vapor isondensed by the use of a proess heat exhanger. The details of the mathematial modelan be found in [112℄. The dynami model is given by
LT

LC

Steam

Condensate

Evaporator

Separator

Condenser
Cooling

water

Condensate Figure 3.9: Evaporator system.
ρA

dL2

dt
= F1 − F4 − F2

M
dC2

dt
= F1C1 − F2C2

C
dP2

dt
= F4 − F5

(3.72)
where

F4 =[0.16(F1 + F3)

× (−0.3126C2 − 0.5616P2 + 0.1538P100 + 41.54)

− F1Cp(0.3126C2 + 0.5616P2 + 48.43 − T1)]/λs1

F5 =
2UA2(0.507P2 + 55− T200)CpF200

λs2(UA2 + 2CpF200)

(3.73)



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 74In the above equations ρA is the produt of liquid density and the ross-setional areaof the evaporator (20 kg/m), M is the liquid holdup in the evaporator (20 kg), C is aonstant (4 kg·kPa−1), UA2 is the produt of the heat-transfer oe�ient and the heat-transfer area in the ondenser (6.84 kW·K−1), Cp is the heat apaity of the ooling wa-ter (0.07 kW·kg−1·min−1), λs1 is the latent heat of steam at saturated onditions (36.6kW·min−1·kg−1) and λs2 is the latent heat of evaporation of water (38.5 kW·kg−1·min−1).The operating ost of the evaporator onsists of the ost of eletriity, the ost of steam,and the ost of ooling water [113℄.
J = 1.009(F2 + F3) +

96(F1 + F3)(T100 − T2)

λs1
+ 0.6F200 (3.74)where

T100 = 0.1538P100 + 90

T2 = 0.5616P2 + 0.3126C2 + 48.43

F2 = F1 − F4

(3.75)The inequality onstraints that de�ne the region of feasible operation are the following
−C2 + 35 ≤ 0

40− P2 ≤ 0

P2 − 80 ≤ 0

P100 − 400 ≤ 0

F200 − 400 ≤ 0

(3.76)
The outputs, inputs and disturbanes of the proess are

x = y =

[
C1

P2

]

, u =

[
P200

F200

]

, d =







F1

C1

T1
T200







(3.77)In order to �nd the optimum point of steady-state operation we onsider the followingdisturbane onditions
F1 = 10Kg/min, C1 = 5%, T1 = 40◦C, T200 = 25◦CThe objetive funtion is optimized, subjet to the equality as well as the inequality on-straints. The optimum operating point is,

xss =

[
24.8242
50.3784

]

, uss =

[
193.4500
207.3300

] (3.78)



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 75In order to evaluate the ontroller performane the system was subjet to disturbanes inthe feed �ow rate F1, the feed temperature T1 and the oolant water inlet temperature T200.The results are ompared with an eonomi MPC using nominal models without robustonsiderations. Figure 3.10 show the pro�les of the disturbanes applied to the proess.Figures 3.11 (a), 3.11 (b), 3.12 (a), and 3.12 (b) shows the state pro�les and inputs as wellas the orresponding instantaneous pro�ts of the two losed loop systems (nominal androbust eonomi MPC). Under the mentioned disturbanes the robust eonomi ontrollerhas a good performane in the eonomi sense, but ompared with the nominal ontrollerthere are some important aspets to mention. For example, the response of C2 in the robusteonomi MPC is slower and the drop in this variable dereases the instantaneous pro�tand hene the system under robust eonomi MPC tends to stay at a lower pressure asompared to the nominal eonomi MPC. The orretive ontrol ation resulting from thisdisturbane also inreases the produt omposition, whih in turn, inreases the pro�t. Inorder to ompare the eonomi performane of the di�erent shemes, we take an integralindex (e) based on the di�erene of the instantaneous pro�ts shown in Figure 3.12 (b).Mathematially this riterion is given by:
e =

(∫ 100

0
(IpREMPC

(t)− IpEMPC
(t))dt

)

× 100 (3.79)where IpREMPC
and IpEMPC

denotes the instantaneous pro�t of the robust and nominalshemes. Using this index, the pro�t obtained from robust eonomi MPC is better thanthe nominal eonomi MPC in about 0.9797 %.
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eco−MPC(a) (b)Figure 3.12: Evaporator system: (a) Closed-loop inputs, (b) Instantaneous pro�t.3.5 SummaryThis hapter presents a novel min-max MPC, min-max MPC with zone ontrol and Eo-nomi MPC. These new formulations are based in Appendix A where algorithms for RobustQuadrati Programming are presented, and the solution of the robust quadrati programis obtained by transforming the program into a Seond Order Cone Program under di�er-ent unertain sets. Finally this hapter presents one example of every robust ontroller inorder to illustrate the advantages of every approximation. In a detailed manner,

• In setion 3.2 the result of the appendix A was extended in a new Robust ModelPreditive Control formulation that inherits all onvexity and omplexity properties



CHAPTER 3. ROBUST MODEL PREDICTIVE CONTROL 77of the original RQP problem. There are two important ontribution in this setion,the �rst one is about the unertainty representation. For the robust MPC proposedwe assume unertainty in the free and fored response. This kind of unertaintyan be expressed in typial forms reported in the robust MPC literature, and in thisontext the unertainty representation presented here is fairly omplete. The seondand most remarkable ontribution in this setion is the way to �nd the parameters ofthe unertain sets. We proposed a novel method to obtain these parameters based inmappings between the unertainty of the free and fored response and the unertaintyin the quadrati, linear and onstant term of the quadrati optimization problem.Finally the bene�ts of the proposed ontroller were shown through an illustrativeexample.
• In setions 3.3 and 3.4 the results of the new robust MPC of the setion 3.2 were usedto propose new formulations for Robust MPC with zone ontrol and Robust EonomiMPC. As in the setion 3.2, a new way to �nd the parameters of the unertain setsis stated. Finally, the proposed ontrollers were tested in two appliation examples.



CHAPTER 4
Hierarhial Robust Integration of MPC with zoneontrol and DRTO
4.1 Introdution"Optimization has beome a key area in ontrol theory due to the inreasing need to op-timize plant operations. The optimization riterion ould be to redue operating ost ormaximize pro�t while at the same time meeting produt spei�ations. Consequently, theontrol engineer is faed with the tasks of designing a good ontroller, and also making surethe plant operates at an optimum. With the advent of better ontrollers (that guaranteegood plant ontrol), the fous has now shifted to the regulation of proesses about ondi-tions that provide maximum pro�tability. However, Sine modeling unertainty inevitablyexists in industrial problems, our interest is on the optimization and optimal ontrol ofproesses under unertainty" Adetola et.al [61℄.Nevertheless, in hierarhial ontrol there is no tangible progress in this diretion, mainlydue to the lak of development of e�ient algorithms for robust optimization and robustoptimal ontrol. Thereby, the design of robust hierarhial strategies remains as a hallengefor the ontrol ommunity. In this way this hapter presents an approah to hierarhialrobust ontrol for large sale systems. The sheme proposed is based in the urrent pratiesin hierarhial operation presented in hapter 2, for this reason the strategy presented inthis hapter has similar omponents suh as a dynami optimization and optimal ontrolproblems. This hapter is organized as follows: In setion 4.2 an example that motivatesthe use of robust hierarhial ontrol is presented. In this example a nominal hierarhialontrol as the presented in hapter 2 is studied under unertain onditions. In setion 4.3 ahierarhial robust integration of ontrol and DRTO is shown. This strategy is basially thegeneral robust formulation of hierarhial ontrollers for large sale systems. In this way,in setion 4.3.1 the generalities of hierarhial robust ontrol methodology is explained, theidea of this setion is to show in general terms the methodology and the ommon elementsof all strategies presented in this thesis. Next, every layer of the hierarhial struture withtheir di�erent possible formulations are presented in setions 4.3.2, 4.3.3 and 4.3.4. Finallythe strategy proposed in this hapter is implemented in the example of the setion 4.2.78



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 794.2 Motivation: Hierarhial Integration of MPC with zoneontrol and DRTO for two reators hain and �ash sys-temConsider a plant with two ontinuous stirred-tank reators (CSTRs) followed by a nonadi-abati �ash separator, as shown in Figure 4.1. In eah of the CSTRs, the desired produt
B is produed through the irreversible �rst-order reation A k1→ B, k1 being the Arrheniusonstant of the reation. An undesirable side reation B k2→ C results in the onsumptionof B and in the prodution of the unwanted side produt C (here, k2 is the Arrheniusonstant of this reation). The produt stream from CSTR-2 is sent to a nonadiabati�ash separator to separate the exess of A from the produt B and the side produt C.In the �ash separator, it is assumed that reatant A has the highest volatility and thatit is the predominant omponent in the vapour phase. A fration of the vapour phase ispurged and the remaining stream rih in A is ondensed and reyled bak to CSTR-1. Inorder to operate the system shown in Figure 4.1, the manipulated variables of the systemare the feed �ow rates F0, F1, the ooling duties Qr, Qm, Qb, and the reyle �ow rate D.The measured variables are the level of liquid in the reators Hr , Hm, Hb, the outlet massfrations of A and B xAr, xBr, xAm, xBm, xAb, xBb, and the temperature of the reators
Tr, Tm, Tb. The ontrolled variables are the levels of the reators and the temperatures atthe reators and at the �ash separator. With the purpose of designing a ontroller for thesystem shown in Figure 4.1, a model should be derived. From the �rst priniples of thissystem the evolution of the levels, onentrations, and temperatures at eah devie of theproess an be respetively modelled as follows [114℄:

Figure 4.1: Two reator hain followed by nonadiabati �ash [114℄.
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• Reator 1:

dHr

dt
=

1

ρrAr
[F0 +D − Fr]

dxAr

dt
=

1

ρrArHr
[F0(xA0 − xAr) +D(xAd − xAr)]− k1rxAr

dxBr

dt
=

1

ρrArHr
[F0(xB0 − xBr) +D(xBd − xBr)] + k1rxAr − k2rxBr

dTr
dt

=
1

ρrArHr
[F0(T0 − Tr) +D(Td − Tr)]−

1

Cp
[k1rxAr∆H1 + k2rxBr∆H2]

+
Qr

ρrArHr (4.1)
• Reator 2:

dHm

dt
=

1

ρmAm
[Fr + F1 − Fm]

dxAm

dt
=

1

ρmAmHm
[Fr(xAr − xAm) + F1(xA1 − xAm)]− k1mxAm

dxBm

dt
=

1

ρmAmHm
[Fr(xBr − xBm) + F1(xB1 − xBm)] + k1mxAm − k2mxBm

dTm
dt

=
1

ρmAmHm
[Fr(Tr − Tm) + F1(T0 − Tm)]− 1

Cp
[k1mxAm∆H1 + k2mxBm∆H2]

+
Qm

ρmAmHm (4.2)
• Nonadiabati �ash:

dHb

dt
=

1

ρbAb
[Fm − Fb −D − Fp]

dxAb

dt
=

1

ρbAbHb
[Fm(xAm − xAb)− (D + Fp)(xAd − xAb)]

dxBb

dt
=

1

ρbAbHb
[Fm(xBm − xBb) + (D + Fp)(xBd − xBmb)]

dTb
dt

=
1

ρbAbHb
[Fb(Tm − Tb)] +

Qb

ρbAbHbCp

(4.3)
where Fr = kr

√
Hr, Fm = km

√
Hm, Fb = kb

√
Hb, k1r = k∗1 exp

−E1
RTr , k2r = k∗2 exp

−E2
RTr ,

k1m = k∗1 exp
−E1
RTm , k2m = k∗2 exp

−E2
RTm , xCr = 1 − xAr − xBr, xCm = 1 − xAm − xBm,

xCb = 1 − xAb − xBb, Σ = αAxAb + αBxBb + αCxCb, xAd = αAxAb
Σ , xBd = αBxBb

Σ ,
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xCd = αCxCb

Σ . The values of the parameters of the system used for the simulations areshown in Tables 4.1 and 4.2 [114℄. Moreover, the onstraints of the system variables were:
0 6 F0 6 30, 0 6 F1 6 30 for the feed �ow rates of the CSTRs, 0 6 D 6 30 for the reyle�ow rate, and −200 6 Qr 6 200, −200 6 Qm 6 200, −200 6 Qb 6 200 for the oolingduty of the CSTRs and the adiabati �ash separator.Units Value Desription

ρr ρm ρb [kg/m3] 0.15 Density of the liquid
αA 3.5 Volatility of xA
αB 1.1 Volatility of xB
αC 0.5 Volatility of xC
k∗1 [s−1] 0.02
k∗2 [s−1] 0.018
Ar [m2] 0.3 Cross setion area of the CSTR-1
Am [m2] 3 Cross setion area of the CSTR-2
Ab [m2] 5 Cross setion area of the �ash separator
T0 [K] 313 Temperature of the manipulated �ows
Td [K] 313 Temperature of the reyle �ow
Cp [kJ/(kgK)] 25 Heat apaity of the liquid
xA0 1 Initial onentration of xA at CSTR-1
xB0 xC0 0 Initial onentration of xb, xc at CSTR-1
xA1 1 Initial onentration of xA at CSTR-2
xB1 xC1 0 Initial onentration of xb, xc at CSTR-2
∆H1 [kJ/kg] -40 Heat of reation A −→ B
∆H2 [kJ/kg] -50 Heat of reation B −→ C
E1/R E2/R [K] 150
kr [kg/s−1m−1/2] 2.5
km [kg/s−1m−1/2] 2.5
kb [kg/s−1m−1/2] 1.5Table 4.1: Values of the parameters used in the simulations of the two CSTRs hainfollowed by a nonadiabati �ash system [114℄Parameter Units Value Desription

F0o [kg/s] 1.8562 Feeding �ow of the CSTR-1 at the equilibrium point
F1o [kg/s] 1.8562 Feeding �ow of the CSTR-2 at the equilibrium point
Do [kg/s] 1.8562 Reyle �ow of the at the equilibrium point
Qro [kJ/s] 201.1438 Cooling duty of the CSTR-1 at the equilibrium point
Qmo [kJ/s] 201.1438 Cooling duty of the CSTR-2 at the equilibrium point
Qbo [kJ/s] 0.5565 Cooling duty of the �ash separator at the equilibrium pointTable 4.2: Equilibrium point used to linearize the two CSTRs hain followed by a nonadi-abati �ash model



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 824.2.1 Control strutureFigure 4.2 shows the ontrol struture used in the two CSTRs hain followed by a nonadi-abati �ash. In the upper layer a DRTO problem is solved with a MHE as estimator, whilein the middle and lower layers a MPC with zone ontrol and deentralized MPC shemeare employed. The outputs, inputs and states of the systems are:
y = [Hr, Tr,Hm, Tm,Hb, xBb]

T

u = [F0, F1, Qr, Qm, Qb,D]T

x = [Hr, xAr, xBr, Tr,Hm, xAm, xBm, Tm,Hb, xAb, xBb, Tb]
T
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Filter 3

Scheduling Scheme
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Upper layer

Coordinator
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control

Figure 4.2: Hierarhial Integration of MPC and DRTO for two reators hain and �ashsystem.The eonomial ost funtion of the system is:
Jeco = −(2.5FbxBb − 0.1F0 − 0.2F1 − 0.2(Qr +Qm +Qb)) (4.4)The performane of the proposed ontrol sheme will be evaluated in a very simple senario,



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 83the heat apaity Cp of the �rst and seond reator was inreased a 5%. For this simulation,it was onsidered a sample time of the DRTO layer of 10s with a predition horizon of 30samples, while the sample time of the MPC with zone ontrol was 1s with a preditionhorizon of 30 samples.4.2.2 Simulation Results and DisussionFigures 4.3, 4.4 and 4.5 show the performane of the losed-loop system. In order to testthe nominal sheme under unertainties the heat apaity Cp of the �rst and seond reatorwas inreased a 5%. In Figure 4.3 it is possible to observe how the nominal sheme annotdrive the temperature Tr to the zone and maintain the level Hr in a �xed set-point. TheFigure 4.4 shows the behavior of the CSTR-2, in this Figure is important to highlightthat even though all variables remain in the zone, the nominal sheme has problems toreah the set-points given by the oordinator, and learly the inputs annot follow theset-points. In the nonadiabati �ash we want to maintain the onentration xBb
= 0.3(quality spei�ations), note that the nominal sheme drives the onentration near of thespei�ation, however a o�-set is present. Clearly the nominal sheme annot handle theunertainty of the system. In this sense, a robust sheme must be used. In the followingsetions the a robust sheme than integrates DRTO and Robust MPC is presented.
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CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 85hierarhial struture that onsist of multiple tasks (loal objetives) exeuted at di�erentlevels and time frequenies, with the objetive of maximizing the pro�tability and whilemaintaining a �exible plant operation. In the upper layer of the hierarhial struturethe RTO is stated, this is an optimization problem with an eonomi objetive that usesthe steady state nonlinear model. In the lower layer a robust MPC alulates, based inthe RTO information, the optimal ontrol ations to trak the referenes given by theupper layer. However, proess operation is transient due to the dynami nature of theproess, disturbanes and unertainties, and the desribed proedure requires that the op-timal eonomi operating points must be reoniled with the lower layer in order to give tothe MPC feasible operating points. Besides, sine the MPC generally uses linear models,the disrepanies between linear models and the nonlinear nature of the proess introduemore unertainties to the ontrol system. Robust integration addresses these problems, theproedure is desribed by [120℄ and [46℄ emphasizing in the integration of the eonomi ormanagement level with the MPC level. This integration has some di�ulties as desribedin [121℄:
• The upper level needs to take into aount the problems suh as objetives andonstraints of the lower levels.
• Deomposing the overall objetive into loal objetives at di�erent levels is a hal-lenging task for transient proess operation.
• The operation demands a real integration of RTO and MPC in presene of distur-banes and unertainties.
• The models used in the optimization and in the ontrol layer are not onsistent.
• Sine the eonomi optimization is only arried out when the plant reahes steady-state, the waiting time required to reah a new steady-state leads to a delay foromputing a new set-point. It may thus happen that, due to unertainties, theeonomially optimal operating point of the plant has shifted but the ontroller stilltries to enfore the previously optimal operating point.An alternative to solve the previously mentioned problems in the two-layer approah is anintegration of Dynami RTO (DRTO) and robust MPC. This setion presents the followingontributions to the solution of the problem:
• A formulation of an operational problem involving proess eonomis onstraints andinherent unertainty.
• A lear separation of objetives into an eonomial objetive and a ontrol objetivethat implements the optimal solution in the presene of unertainty.
• A new Robust MPC (RMPC) formulation. The solution transforms the originalmin-max problem into a seond-order one program.
• The use of a loal linearization along the nominal input and state trajetory in orderto avoid the nonlinear dynami optimization in the DRTO layer.
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Figure 4.6: Hierarhial Robust Integration of MPC and DRTOThe struture proposed in this setion is presented in Figure 4.6 and it is based on thework of Helbig et al. [122℄ for integration of dynami real-time optimization (DRTO) andtraking MPC. Due to the omplexity of the proess (large sale systems) unertainty ispresent, therefore the objetive is to ahieve a stable operation under proess unertainties,for this reason a robust ontroller is used as oordinator.4.3.1 Generalities of the Hierarhial Robust Control MethodologyAs it was mentioned before the hierarhial robust ontrol strategies proposed here arebased in the urrent praties in hierarhial operation presented in hapter 2. In generalterms these strutures are omposed by three layers, however as it will be shown in hapter5 some variations an be introdued. Figure 4.7 shows in detail the hierarhial robuststruture. In the upper layer a dynami optimization problem based in the nonlinear modelof the plant is solved, the objetive of this layer is to �nd referene trajetories for the inputsand outputs of the system based on some spei� riterion (eonomi, environmental,et) and send these to the lower layers. In the middle layer a robust ontrol problemis addressed, the main idea with this layer is to handle unertainties of the system andtransform the objetive given by the upper layer by means of the referenes trajetoriesin a robust ontrol objetive. The result of this layer is robust referenes for the lowerlayer where the loal ontrollers are operating. An important aspet to highlight in themiddle layer is that di�erent types of robust ontrol problem an be used, however in ourontribution the robust MPC approahes explained in hapter 3 will be exploited. Finally,



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 87in the lower layer are loal ontrollers, where di�erent shemes ould be used suh asdistributed and deentralized ontrollers.In general terms the proedure to design the hierarhial robust ontrol strategy of Figure4.7 is omposed by 2 stages.
• The �rst one is oriented to loal ontrol design. Two tasks an be identi�ed in thisstage. The main task is the identi�ation of loal ontrol objetives, followed by thedesign of loal ontrol strategies.
• The seond stage is to hoose the appropriate arhiteture to ontrol the system i.emultilayer with or without oordination, and in the ase of a oordination shemeto hose the type of oordinator. The stage 2 an be subdivided in 4 tasks, theyare the seletion of the objetive funtion of the dynami optimization problem,hoie an adequate trigger, the seletion of models for dynami optimization andtraking ontrol problems and the identi�ation of a set of referenes trajetories forthe manipulated variables.In the following setions a brief disussions about some tasks of the Hierarhial RobustControl Methodology will be made.4.3.1.1 Seletion of models for dynami optimization and traking ontrolproblems
• Dynami optimization: The quality of a model for dynami optimization dependsbasially on two fators: The �rst fator is the omputational load of the overall op-timization problem, this determines its potential for online appliations. The seondone is the quality of the solution of the optimization based on approximated model.In order to takle the �rst fator, it is important to remember that in general for thedynami optimization problem with eonomial objetive a nominal model is on-sidered. Hene, the model used for the optimization must have su�ient preditionquality and should over a wide range of dynamis. Therefore, a fundamental pro-ess model is a natural andidate. However for large sales systems it is not alwaysthe best alternative. There are several reason for that, among them the omplexity,the order of the model of the whole plant and the algorithms available to solve thedynami optimization problem. Therefore, other alternatives must be onsidered totakle these problems. In this way model redution and linear - time variant modelsderived from the fundamental proess model arises as an alternative. As in this the-sis robust optimization is used in the hierarhial strutures proposed, the previousmodeling alternatives an be taken for this purpose. The seond fator was studiedby Forbes et.al [123℄ in their paper on model adequay requirements. They talkabout three manners to di�erentiate between alternative models. The most ommonused method is to ompare their apability in prediting key proess variables. Theseond method is to hek the optimality onditions, whih an be done if a solutionof the original problem is available. Finally, it is tested whether the optimizationbased on the approximate model is apable of prediting the manipulated variablesthat oinide with the true optimal trajetories.
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Figure 4.7: Hierarhial Robust Control struture
• Traking ontrol: As the ontrol problem objetive is to trak the ontrolled vari-ables, a purely linear or a linear - time variant model derived from the model usedin the top layer is su�ient. Thereby, this ould provide some onsisteny amongmodels of optimization and ontrol levels.



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 894.3.1.2 TriggersThe aim of proess operation is to maximize pro�t. Hene, proess operation is determinedby eonomi riteria, whih are inorporated in the objetive funtion of the upper layeroptimization. Moreover, the objetive of proess ontrol is to ahieve a stable operationunder proess unertainties, whih should be guaranteed by the robust ontroller in thelower-layer of the hierarhial struture. Thereby, typially a time-sale separation is used,as the upper layer is operating at a lower sampling rate and should only take into aountthe slow trend in the ontrolled variables. However, there are other forms to exeute ortrigger the di�erent task of eah level by means of the so alled triggers (see Figure 4.7).The triggers ful�ll an important mission in the hierarhial struture beause these bloksat like swithes for re-alling the optimization layer and the ontrol layers when a ertainondition is met. As an be seen in Figure 4.7, in the hierarhial struture proposed here,there are two di�erent triggers. The �rst one is the trigger of the optimization layer andthe seond one is the trigger of the oordinator. In general there are four types of triggersdesribed as follows [21℄ :
• Time riterion: in this ase the problem of eah layer is alled periodially at prede-termined frequeny. This is the most used riterion in hierarhial ontrol.
• Disturbanes riterion: This riterion is based on the ourrene of disturbanes, themain drawbak of this riterion is to estimate the unmeasured disturbanes, howeverto ahieve that a Kalman estimator an be used.
• Pro�tability riterion: In this ase the trigger is ativated when some performaneindex dereases below a ertain level.
• Variables deviations riterion: This ase is used mainly in the traking ontrol layerand as the pro�tability riterion the trigger is ativated when the deviations of theontrolled variables from their optimal set points exeeds ertain tolerane.In general, the most attrative trigger is the based in disturbanes beause this o�ersseveral advantages suh as time sale separation, state and disturbanes estimation amongothers. For this purpose, two di�erent state estimators are used in the proposed hierarhialstruture and exeuted on di�erent time-sales. A moving horizon estimator is used at theupper layer at a low sampling rate onsidering a window of measurements over a timehorizon, while a Kalman �lter is used at the lower layer employing the measurement of thelast sampling time only. Below a brief desription of the estimators will be done.Kalman �lter: All model preditive ontrollers explained in this thesis requires to knowthe urrent state of the plant for solving the optimization problem at eah time instant

k. However, in general, only some states are available. Therefore the use of an observeris neessary in order to estimate the state vetor of the plant based in the mathematialmodel of the system and measuring the proess input values and the proess outputs. Theequation of an observer is as follows,
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x̂(k + 1) = Ax̂(k) +Bu(k) + Lx(y(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)
(4.5)where x̂(k) is the estimation of x(k) and Lx ∈ R

nx×nu is the feedbak gain matrix orobserver gain. When Lx is alulated by means of optimal estimation tehniques, theobserver is referred to as Kalman �lter. Consider the following disrete-time model of theplant,
x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)w(k)

y(k) = C(k)x(k) + ν(k)
(4.6)where G(k) ∈ R

nx×nw is a weighting matrix, w(k) ∈ R
nw is the proess noise, modelled as aGaussian white noise with zero mean and ovariane matrixRw ∈ R

nw×nw , and v(k) ∈ R
nyis measurement noise, modelled as a Gaussian white noise with zero mean and ovarianematrix Rv ∈ R

ny×ny . These ovariane matries are given byRw = ε{w(k)w(k)T }Rv = ε{v(k)v(k)T }
(4.7)where ε{·} denotes the expeted value. In addition we have that ε{v(k)v(k)T } = 0 and itis assumed that w(k) and v(k) are not orrelated with x(k) and y(k). Now, the Kalman�lter is de�ned as the observer gain Lx suh that the ovariane of the estimation error

(x(k)− x̂(k)) is minimized, i.e,
min
L

1

2
ε

{
∞∑

k=0

(x(k)− x̂(k))T (x(k)− x̂(k))

} (4.8)The solution of this optimization problem is given by the so-alled Kalman Gain,
L = AQCT

(
CQCT +Rv

)−1 (4.9)where Q is the ovariane matrix of the steady-state estimation error that satis�es theAlgebrai Riati Equation,
Q−AQAT +AQCT

(
CQCT +Rv

)−1
CQAT −GRwG

T = 0 (4.10)Moving Horizon Estimators (MHE): Moving Horizon Estimation (MHE) strategieswere born as a dual problem of the Model Preditive Control (MPC). The basi strategy ofMHE reformulates the estimation problem as a quadrati problem using a moving, �xed-size estimation window. The �xed-size window is needed to bind the omputational e�ort



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 91to solve the problem. This is the main di�erene of MHE with the bath estimation problem(or full information estimator) [124, 125, 126℄. One a new measurement is available, theoldest one is disarded, using the onept of window shifting. Moreover, the main advantageof MHE in omparison with other estimation shemes (like the Kalman Filter) is thestraightforward onstraint addressing inside the optimization problem, and the possibilityto propose the ost funtion. However, as MHE is a limited memory �lter, stability andonvergene issues arise. A review on developments on MHE proedures was published byGaría and Espinosa in [127℄.Assume a large-sale system modeled by means of the following nonlinear di�erene equa-tion:
x(k + 1) = f(x(k)) + g(x(k), w(k))

y(k) = h(x(k)) + ν(k)
(4.11)where some onstraints are imposed over the state variables, disturbanes, and measure-ment noise as follows:

x ∈ X, w ∈ W, and ν ∈ V (4.12)with x(k) and y(k) the state and output at k sample respetively, w(k) is the disturbane ormodel unertainty, and ν is the measurement noise. Also, f : Rn → R
n, g : Rn×R

m → R
nwith g(·, 0) = 0, and h : Rn → R

p. Finally it is assumed that X and W are losed with
0 ∈ W.A linear large-sale onstrained system generating the measurement sequene {y(k)} anbe derived from a linearization around eah operating point of (4.11) as:

x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)w(k)

y(k) = C(k)x(k) + ν(k)
(4.13)where for simpliity x(k) ∈ R

n and w(k) ∈ R
w are the linearized state and unertaintyrespetively, ν(k) ∈ R

p is the linearized measurement noise, and u(k) ∈ R
m denotes thesystem input. Moreover, those variables are onstrained as it is shown in (4.12). Thus, theestimation of the whole state in (4.13) an be formulated as a MHE problem as follows:

min
z,{w(k)}t−1

t−He

t−1∑

k=t−He

ν(k)TRν(k) + w(k)TQw(k) + Ξt−He(z)s.t x ∈ X, w ∈ W, and ν ∈ V

(4.14)with He the moving horizon, z and {w(k)} are the optimization variables: the initial on-dition of the state in the moving horizon, and the model disturbane sequene respetively.
t is the urrent time, and Ξt−He(z) is the arrival ost [128℄.



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 924.3.1.3 Seletion of a set of referenes trajetoriesAs it was mentioned before the upper layer of the hierarhial arhiteture provides thetime variant referenes trajetories for ontrol uref and outputs yref . In the ase of thetrajetories for ontrol variables manipulated by the lower level ontrol, these should on-tain, preferably, all of the ontrol variables de�ned for the upper level dynami optimiza-tion problem. Depending on the needs of the proess operation, referene trajetories forsome of the ontrol variables are implemented as feed-forward input without update atthe traking ontrol level. This situation usually arises when a ontrol variable annotbe ontinuously hanged by a ontroller that runs at fast sampling time. However thereare situation where all the ontrol variables annot to have a referene trajetories, forinstane when the system is not square (the number of ontrol variables is smaller thanthe number of output variables) and the traking ontroller an not rejet disturbanes dueto the restrited degrees of freedom of the system. Thereby, Gonzales et.al [129℄ proposea way to hose the number of input variables that an drives the seleted inputs to theirdesired optimal values. The onept of providing input referene trajetories for trakingis similar to the alulation of onstant targets of ontrols and outputs used in MPC [14℄.4.3.2 Upper layer: Dynami Real Time Optimization (DRTO)A dynami optimization problem is onsidered for the optimization and ontrol levels ofthe automation hierarhy presented in hapter 2. The dynami optimization problem isplaed in top of the automation hierarhy and addresses the overall eonomial objetiveto provide the time variant referenes trajetories for ontrol uref and outputs yref . Thesetrajetories are traked by a lower level traking ontroller. The mathematial formulationof the dynami optimization problem is stated as follows:
min
uk

Np∑

j=0

[
nu∑

ii=1

cu,iiuii(k + j) +

ny∑

io=1

cy,ioyio(k + j)uio(k + j)

]

+

Np∑

j=0

α(x(k + j), u(k + j))subjet to:
x(k + j + 1) = f(x(k + j), u(k + j), d(k + j))

y(k + j) = g(x(k + j), u(k + j), d(k + j))

x(k + j) ∈ X, j = 0, . . . , Np

u(k + j) ∈ U, j = 0, . . . , Np

(4.15)
where the input variable uk = [uT (k), . . . , uT (k + Np)]

T is the deision variable for opti-mization and dk = [dT (k), . . . , dT (k + Np)]
T ) are the disturbanes of the problem, thesean be lassi�ed in: hanging model parameters, disturbanes and and external marketonditions. This problem is ommonly referred to as an open - loop optimal ontrol prob-lem, as no feedbak from the proess is expliitly onsidered. In general there are three



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 93di�erent methods to solve the dynami optimization problem 4.15 whih are lassi�ed asfollows:
• Dynami programming methods [130℄
• Indiret methods [131℄
• Diret programming methods [132, 133℄In the ase of dynami optimization for large sale systems, the most suessful methodused is the diret method [134℄. Another important aspet to take into aount in thedynami optimization problem is to state the objetive funtion.4.3.3 Coordinator: Robust Model Preditive Controwith zone ontrolThe oordinator of the hierarhial struture is a robust MPC ontroller with zone ontrolthat was explained in hapter 3. Mathematially, this is expressed as (4.16).

min
uk,yref,k

max
Θk∈Ψ

Np

Np∑

j=1

‖(y(k + j)− yref,k‖2Q +

Np∑

j=0

‖u(k + j)− uref,opt‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃subjet to:
x(k + j + 1) = A(θ)x(k + j) +B(θ)u(k + j)

y(k + j) = Cx(k + j) +Du(k + j)

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

y(k + j) ∈ Y, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

yref,k ∈ Yref , ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖ ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(4.16)

Note that robust MPC with zone ontrol formulation (optimization problem 4.16) an beseen as a robust MPC in the ase when the upper an lower limits of the zone are equal, inthis sense if the hierarhial robust integration of ontrol and DRTO onsider a robust MPCwith zone ontrol as oordinator, this an be seen as a general struture for hierarhialrobust ontrol strategies.



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 944.3.4 Lower layer: Deentralized ontrol shemeNow, let the whole system be deomposed into M subsystems where xi(k) ∈ R
nxi , ui(k) ∈

R
nui , and yi(k) ∈ R

nyi are the state, inputs, and outputs of i-th subsystem and that aresubjet to hard onstraints on state xi(k) ∈ Xi, output yi(k) ∈ Yi and input ui(k) ∈ Uifor all k ≥ 0, where Xi ⊂ R
ni , Y ⊂ R

zi and U ⊂ R
mi are losed sets. From this de�nition:

x(k) = [xT1 (k), . . . , x
T
M (k)]T , u(k) = [uT1 (k), . . . , u

T
M (k)]T , and y(k) = [yT1 (k), . . . , y

T
M (k)]T .Let Aii, Bii, Ci,Di be bloks of matries A,B,C,D suh that

xi(k + 1) = Aiixi(k) +Biiui(k)

yi(k) = Cix(k) +Diui(k)Then, eah MPC of the lower layer an be written as (4.17).
min
uki

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j)− yref,i‖2Qi
+

Np,i∑

j=0

‖ui(k + j)− urefi ‖2Ri

+

Np,i∑

j=0

‖∆ui(k + j)‖2Si
+ ‖xi(k +Np)‖2Q̃isubjet to:

xi(k + j + 1) = Aiixi(k + j) +Biiui(k + j)

yi(k + j) = Cix(k + j) +Diui(k + j)

ui(k + j) = urefi +∆ui(k + j)

xi(k + j) ∈ Xi, j = 0, . . . , Np,i

ui(k + j) ∈ Ui, j = 0, . . . , Np,i

xi(k +Np) ∈ Ωi, j = 0, . . . , Np,i

‖ui(k + j)− ui(k + j − 1)‖ ≤ ∆umax
i

(4.17)
where yref(k) = [yTref,1(k), . . . , y

T
ref,M(k)]T , ∆ui(k) = ui(k) − urefi for the i-th ontroller,and Qi, Ri, Si positive de�nite diagonal matries. From the optimization problem (4.17),given the referenes for the inputs and outputs, eah loal ontroller omputes the ontrolations to be loally applied. It is worth to point out that the optimization problem (4.16)and (4.17) have di�erent time resolutions, i.e., optimization problem (4.17) is solved moreoften than optimization problem (4.16). This time-sale di�erentiation is required beausethe use of whole system model makes the upper-layer optimization problem more omplexthan eah loal optimization problem of the lower layer.



CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 954.4 Hierarhial Robust Integration of MPC with zone on-trol and DRTO for two reators hain and �ash systemFigures 4.8, 4.9 and 4.10 show the performane of the losed-loop system under the Hi-erarhial Robust Integration of MPC with zone ontrol and DRTO sheme. In order toompare the robust with the nominal sheme, again the heat apaity Cp of the �rst andseond reator was inreased a 5%. In Figure 4.8 it is possible to observe how all vari-ables of the CSTR-1 remain in the spei� zone under the robust sheme, while the nominalsheme (see Figure 4.3) annot drive the temperature Tr to the zone and maintain the level
Hr in a �xed set-point. In the nonadiabati �ash we want to maintain the onentration
xBb

= 0.3 (quality spei�ations), note that in Figure 4.10 the robust sheme an ahievethis set-point, while the nominal sheme drives the onentration near of the spei�ation,however a o�-set is present (see Figure 4.5). An important feature in the behavior of the�ash with the robust sheme is that this steers the inputs to the set-points, this fat leadsto ahieve the maximum pro�t for the nonadiabati �ash subsystem.
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CHAPTER 4. HIERARCHICAL ROBUST INTEGRATION OF MPC-ZC AND DRTO 97strutures reported in the literature.An example (the two reators hain and a �ash system) was used in this hapter to showthe advantages of the strategy proposed. This example is used in distributed MPC workssuh as Venkat et.al [114℄ and Valenia et.al [135℄. There are two important ontributionsfor this example. The �rst one is the operating point of the system, in the works previouslymentioned the operating point was not realisti (CSTR levels in the order of kilometers).In this way we found by means of the DRTO layer realisti operating points. The seondontribution was desribed in the simulations result, were learly the nominal shemewas not apable to maintain the outputs of the system under the zone while the qualityspei�ations were ahieved.In the following hapter a Hierarhial Robust Control for oordination is presented. Thissheme an be seen as an speial ase of the hierarhial struture proposed in this hapter.However the literature and several appliations lead to formulate the oordinate strategyas an spei� sheme. In this sense, the following hapter use a Hydro Power Valley (HPV)as example in order to justify the need for the tehnique. This system is a typial largesale benhmark that is used to prove ontrol behaviour.



CHAPTER 5
Hierarhial Robust Control for oordination
5.1 IntrodutionIn a very ompetitive eonomi world, prodution systems must �nd the manner to improvee�ieny and produtivity, as they are beoming bigger and omplex. Large sale systemswith networked interation and omplex behaviour are ommon in di�erent engineering ar-eas. They are haraterized by the omplex dynami behaviour, whih make ontrol a veryhard task. The way to avoid omplexity is taking more manageable subsystems, but newhallenges keeps on appearing. Currently, it is well known that in order to obtain a globaloptimal operation of a system, it is neessary to measure, to estimate and to at basedon global information. Hierarhial ontrol is the way to fae the inreasing omplexity,while the large sale system is divided into various subsystems, and ontrolled with loalontrollers, a oordinator ontroller manages the interations between the subsystems andloal ontrollers.Hierarhial Control for oordination is used in several problems in large sale systemssuh as Hydro Power Valleys and tra� systems. For this reason, in this thesis this typeof strategy is studied onsidering unertainties in the system. In this hapter two di�erentstrategies for oordination will be proposed. The �rst one uses robust MPC with zoneontrol as oordinator with a deentralized sheme in the lower layer, while the seondone take deisions based on eonomi riterion i.e the oordinator solves an eonomialoptimization problem (Eonomi MPC) whereas that in the lower layer a deentralizedMPC with zone ontrol sheme is used.In this hapter, the theoretial results are illustrated by using one widely known systemsin the ontrol �eld: The Hydro Power valley (HPV). Basially, the seletion of this asesof study was motivated by the widely use of these systems (as large sale systems) in thetest of Distribute MPC shemes, and beause these systems are su�iently illustrative topresent the onepts introdued in this hapter, and interesting from the point of view ofthe ontrol theory due to the oupling among their dynamis and their nonlinearities.This hapter is organized as follows: In setion 5.2 the motivation to hose the HPV benh-mark as an appliation of the methodology proposed is stated, then, in setion 5.2.1 the98



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 99dynami model of the HPV is explained, onsequently, in setion 5.2.2 the main hallengesof this system are desribed. In setion 5.2.3 the nominal ontrol struture is explained, to�nish with the simulations results of the nominal hierarhial struture over the HPV insetion 5.2.4. Based on the results of the nominal sheme, in the setion 5.3 a hierahialrobust strategy for oordination is presented. Finally, in setion 5.4 a Hierarhial RobustControl for oordination of a HPV is presented.5.2 Motivation: Hierarhial Control with zone ontrol foroordination of a Hydro Power ValleyLarge sale systems problems are reported in literature [136℄ [137℄ [138℄, Hydro PowerValley (HPV) is a typial large sale benhmark that is used to prove ontrol behavior[19℄, beause it has several harateristis whih establish some ontrol hallenges. Inaddition speial ontrol senario is set to de�ne a more di�ult task. Nominal hierarhialontrol would have problems with the di�ult ontrol senario, beause it has more outputvariables than input variables and some output variables must follow a hanging periodireferene, and not a �xed set point.Nominal hierarhial ontrol for oordination approah using MPC will have problems withthe large sale system HPV benhmark, in order to fae the hallenges the HPV has. Inthis way, the nominal formulations should be modi�ed in order to takle this problems.For this reason, in this setion, some mathematial formulations that helps the nominalhierarhial ontrol to have more information about the HPV are presented.5.2.1 Dynami model of the HPVThis mathematial formulation was taken from [136℄. Consider the HPV shown in Fig-ure 5.1. This HPV is omposed by three lakes (Lm, m = 1, 2, 3) where the water is stored,a dut (U1) that onnets two lakes, a river with six dams (Dj , j = 1, . . . , 6), two turbines(Tp, p = 1, 2), and two turbine-pump devies (Cp). The stored water �ows aross dutsfrom one reservoir to another, or from the reservoir to power houses where the potentialenergy of the water is transformed into mehanial energy.The river has a onstant in�ow qin and a onstant tributary �ow qtributary. Moreover, eahdam Dj is equipped with a turbine for eletri power generation. They are loated in theriver and divided it into six reahes (Rj), where reahes R1, R2 and R4, R5 are onnetedwith lakes L1, L3 through turbines T1, T2 and turbine-pumps C1, C2 respetively. Also,lakes L1, L2 are onneted to eah other by the dut U1. This dut is used only fortransporting the water from one lake to another depending on the di�erene of the levels.Let us made the following assumptions about the lakes, reahes, and the river:
• The duts are onneted at the bottom of the lakes (or at the bottom of the riverbed).
• The ross setions of the reahes and of the lakes are retangular.
• The width of the reahes varies linearly along them.
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Figure 5.1: Hydro-Power Valley used as a ase of study.
• The river bed slope is onstant along every reah.Based on these assumptions, the nonlinear, �rst-order Saint-Venant partial di�erentialequations represent the state of the art for modeling one-dimensional river hydrauliswith onstant �uid density [138℄. In these equations, the hydrauli state of the riveris desribed by two variables: the water depth h(t, z) and the disharge q(t, z), bothvarying as a funtion of spae z and time t. Thus, the dynamis of eah reah is given by[136, 138, 137, 139℄

0 = ∂q
∂z + ∂s

∂t

0 = 1
g

∂
∂t

( q
s

)
+ 1

2g
∂
∂z

(q
s

)2
+ ∂h

∂z + If − Io
(5.1)where q = q(t, z), s = s(t, z), h = h(t, z), If = If (t, z), Io = Io(t, z), s(t, z) is the wetsurfae, If (t, z) is the frition slope, Io(t, z) is the river bed slope, and g is the gravitationalaeleration. Sine the ross setions of the reahes and lakes are assumed retangular, thewet surfae and the frition slope are given by (5.2) and (5.3) respetively

s(t, z) = w(z)h(t, z) (5.2)
If (t, z) =

q2(t, z)(w(z) + 2h(t, z))
4
3

k2str(w(z)h(t, z))
10
3

(5.3)where w(z) is the river width, and kstr is the Gaukler-Manning-Strikler oe�ient. Formodeling the lakes, dut, turbines, and turbine-pumps elements, (5.4)-(5.7) were used [19℄:
∂h(t)

∂t
=
qin(t)− qout(t)

S
(5.4)

qU1(t) = SU1sign(H(t))
√

2g|H(t)| (5.5)
pt(t) = ktqt(t)∆ht(t) (5.6)
pC(t) = kC(qC(t))qC(t)∆hC(t) (5.7)where sign(·) is the sign funtion, S is the surfae area of the lake, SU1 is the setion of thedut, kt is the turbine oe�ient, qin(t), qout(t), are the input and output �ows of the lakes
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T y1 = [P1, hL1, hL2]

T2 u2 = [qT2, qC2t, qC2p]
T y2 = [P2, hL3]

T3 u3 = qD1 y3 = [P3, hR1]
T4 u4 = qD2 y4 = [P4, hR2]
T5 u5 = qD3 y5 = [P5, hR3]
T6 u6 = qD4 y6 = [P6, hR4]
T7 u7 = qD5 y7 = [P7, hR5]
T8 u8 = qD6 y8 = [P8, hR6]
TTable 5.1: Input and output variables for eah subsystemrespetively, qt(t) is the turbine disharge, ∆ht(t), ∆hC(t) are the heads of the turbineand the turbine-pump respetively, qU1(t) is the �ow aross the dut U1, pt(t), pC(t) arethe power generated by the turbines and the power generated or onsumed by the turbine-pump elements respetively,

kC(qC(t)) =

{
ktC if qC(t) ≥ 0
kpC if qC(t) < 0is the turbine-pump oe�ient, ktC , kpC are the gains of the turbine-pump devies inturbine or pump mode respetively, qC is the �ow in the turbine-pump elements, and

H(t) = hL2(t)−hL1(t)+hU1, with hL1(t), hL2(t) the levels of the lakes 1 and 2 respetively,and hU1 the height di�erene of the dut.5.2.2 HPV hallengesEquations (5.1) to (5.7) de�nes HPV model, however, this model is not suitable for ontrolpurposes due to its omplexity. So, a disretized version of (5.1)-(5.7) is used. Followingthe notation of [136℄, let hLm(t) denote the level of the m-th lake. Let qTp, qCp denotethe in�ow of the p-th turbine and p-th turbine-pump devie respetively. For the reah
Rj , let QRj = [q1j(t), . . . , qNxj(t)] and hRj = [h1j(t), . . . , h(Nx+1)j(t)] denote the vetor ofout�ows and the vetor of levels at eah spatial partition, Nx being the number of spatialpartitions of the reah. Then, the states vetor x(t) of the HPV an be de�ned as

x(t) = [hTLm(t), QT
Rj(t), h

T
Rj(t)]

Tfor j = 1, 2, . . . , 6, m = 1, 2, 3. Also, let qRj denote the out�ow of the j-th turbine atthe orresponding dam. From [136, 19℄ the HPV of Figure 5.1 an be deomposed in 8subsystems as follows:
• Subsystem 1: lakes L1 and L2, turbine T1, and turbine-pump C1.
• Subsystem 2: lake L3, turbine T2, and turbine-pump C2.
• Subsystems 3-8: reahes R1 to R6 oupled with dams D1 to D6 respetively.



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 102In the Table 5.1 the inputs and outputs of eah subsystem are de�ned.Although disretization of (5.1)-(5.7) provides a suitable model for designing an MPC forthe HPV, the resulting model is a non-linear model. Thus, it should be linearized in orderto obtain an appropriate model for applying the hierarhial ontrol sheme desribed insetion 5.3. Linearizing the disrete expressions for (5.1)-(5.7) matries A,B,C,D of thewhole systems are obtained (disrete versions of (5.1)-(5.7) are in [19℄). One obtained thelinear model of the HPV, some issues arise:
• Referene pro�le: Market requirements ditate that the HPV must follow a referenepro�le of power that an hange eah 1800 s, in this work is used a pro�le that isrepeated for two days of operation, this pro�le is shown in Figure 5.10.
• Following the proedure in [19℄, the dimension of the whole system makes the re-sulting optimization omplex enough to require a system deomposition and/or amodel redution for omputing the zone-ontrol of the upper layer in the proposedhierarhial zone-ontrol sheme.
• The linear models of eah subsystem of the HPV has integrating modes. Thus MPCdoes not guarantee system stability.For dealing with the dimension of the linear model, a model redution method was used forreduing the dimension of the HPV model. The redued order model was found by balanedtrunation using the Hankel norm [140℄. For stabilizing the integrating modes of the linearmodel several approahes have been reported in the literature (see e.g., [141, 142℄). Almostall of them require �nding a fatorization to separate the integrating modes of the HPV.Sine this is not possible in all ases a state feedbak ontrol law was used. This ontrollaw has the form:

ui(k) = −Kixi(k) + vi(k) (5.8)where vi(k) is the new ontrol ation of the stabilized subsystem and Ki ∈ R
nui

×nxi . Aneessary ondition for the existene of the gain Ki is that the pair (Ai, Bi) is ontrollable[143℄. If this ondition is satis�ed, the gain Ki an be omputed as the solution of theequation Ki = R−1
i BT

i Pi(k), where Pi matrix is given by the solution of the Riatti equa-tion [144℄. Adding the proposed state-feedbak ontrol law for eah subsystem, the linearmodel of the i subsystems of the HPV beomes
xi(k + 1) = AKix(k) +Biiv(k)

yi(k) = CKix(k) +Div(k)where AKi = (Aii −BiiKi) and CKi = (Ci −DiKi). Thus, the model of the subsystems ofthe HPV are stable and the MPC an be used with guaranteed stability onsidering vi(k)as optimization variable.5.2.3 Control strutureFigure 5.2 shows the ontrol struture used in the HPV. In the next subsetions every layerwill be desribed.
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MODEL PREDICTIVE CONTROL WITH ZONE CONTROL

........Figure 5.2: Hierarhial Robust Control with zone ontrol for oordination for the HPV5.2.3.1 Upper layer formulationThe upper layer of the proposed ontrol sheme omputes the referene value for theinputs and outputs of eah lower-layer loal ontroller. So, the sum of the ontributions ofthe subsystems must be equal to the power referene established for the HPV. As it wasmentioned the HPV must follow a ertain referene that hange every sample time, for thisreason it is neessary to add the next onstraint to the upper layer optimization problem:
Cpy =

8∑

l=1

Pl = Pref (5.9)where Cp is a seletion matrix and Pi is the power generated by the i subsystem. There-fore, the power and input referenes for eah subsystem are given by the solution of theoptimization problem (5.17).
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min

uk,yref,k

Np∑

j=1

‖(y(k + j)− yref,k‖2Q +

Np∑

j=0

‖u(k + j)‖2R +

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃subjet to:
x(k + j + 1) = Ax(k + j) +Bu(k + j)

y(k + j) = Cx(k + j) +Du(k + j)

Cpy(k + j) = Pref , j = 0, . . . , Np

x(k + j) ∈ X, j = 0, . . . , Np

y(k + j) ∈ Y, j = 0, . . . , Np

u(k + j) ∈ U, j = 0, . . . , Np

x(k +Np) ∈ Ω

ymin
ref ≤ yref,k ≤ ymax

ref

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax, j = 0, . . . , Np (5.10)where Np is the predition horizon, Q ∈ R
ny×ny , R ∈ R

nu×nu and S ∈ R
ny×ny are positivede�nite weighting matries. In (5.17) all omputations are done using a redued ordermodel. It is important to note that in the problem (5.17) the feedbak ontrol law of theeah loal ontroller is not onsidered. This fat leads to inrease the unertainty level inthe problem, speially in the matrix A and B.5.2.3.2 Lower layer formulationThe proposed ontrol sheme uses MPC as loal ontrol laws. These ontrollers are inharge of omputing the hanges of the loal ontrol ations taking as a base-line the refer-ene value provided by the oordinator. With this aim loal models are used for preditingthe loal state trajetories. However, loal models are unstable (HPV have integratingmodes). As it was mentioned an state-feedbak ontrol law is used for stabilizing the loalunstable modes. Thus, eah loal ontrol sheme an be formulated as (5.11).
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min
vki

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j) − yref,i‖2Qi
+

Np,i∑

j=0

‖vi(k + j)− vrefi ‖2Ri

+

Np,i∑

j=0

‖∆vi(k + j)‖2Si
+ ‖xi(k +Np)‖2Q̃isubjet to:

xi(k + j + 1) = AKixi(k + j) +Biivi(k + j)

yi(k + j) = CKix(k + j) +Divi(k + j)

vi(k + j) = vrefi +∆vi(k + j)

xi(k + j) ∈ Xi, j = 0, . . . , Np,i

vi(k + j) ∈ Vi, j = 0, . . . , Np,i

xi(k +Np) ∈ Ωi, j = 0, . . . , Np,i

‖vi(k + j)− vi(k + j − 1)‖ ≤ ∆vmax
i

(5.11)
where Npi is the ontrol horizon, Qi ∈ R

nyi
×nyi , Ri ∈ R

nui
×nui and Si ∈ R

nyi
×nyi arepositive de�nite weighting matries.In order to implement the proposed hierarhial ontrol sheme state estimators are usedto determine the unmeasured states. In the ase of the HPV these state onsists of theinputs �ows of eah segment used for the spatial disretization. For this reason a MovingHorizon Estimator (setion 4.3.1.2) is used as trigger for the robust MPC with zone ontrol,while Kalman �lters are used for the loal ontrollers.5.2.4 Simulation ResultsThe ontrol system designed for the HPV must follow a power referene, while the levelsdepited earlier must be maintained into a ertain zone. The power have a restritivetime dependent referene, while the levels and individual powers an move through a zonedesigned for the orret development of the system. In this way, for the HPV a ontrolstrategies was designed.The nominal hierarhial ontrol struture an manage the power referene problem inthe HPV as an see in Figure 5.3. The Figure 5.4 shows the individual powers of thesystem. With the extra onstrain the ontrollers an follow the total plant power referenefor one day. However, the nominal sheme is able to follow the power referene for onlyone day (Figure 5.3), for the seond day the ontrol system annot maintain the referenepro�le. The main reason for that is that the nominal sheme annot maintain the levelsunder the spei� zone beause the nominal sheme annot handle the unertainty of theproblem, spei�ally in the feedbak law of the loal ontrollers that are not inluded inthe oordinator, i.e the state feedbak of the loal ontrollers an be seen as unertaintiesin the model that use the oordinator. The Figure 5.5 shows as in the �nal of the daythe levels are out of the zone (a big problem in order to follow the same referene for two



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 106days of operation). In Figure 5.6 the input variables are shown. Finally, Figure 5.7 showsthe behavior of the MHE for some states. In this Figure it is possible to note that theMHE has a good performane for the HPV benhmark. In general, from this example it ispossible onlude that the nominal hierarhial ontroller is not able to ontrol the HPV,the levels of the HPV an be out of the zone leading to instability for the seond day ofoperation.
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Figure 5.3: Nominal Sheme: Comparison between the power produed by the HPV withthe power referene
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Figure 5.4: Nominal Sheme: Behavior of the individual powers of the HPV.
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Figure 5.5: Nominal Sheme: Behavior of the levels in the lakes and the levels at the dampsof the HPV.5.3 Hierarhial Robust Control for oordinationAs it was mentioned in the introdution setion, the Hierarhial Control for oordinationis used in many problems in large sale systems suh as Hydro Power Valleys and tra�systems. For this reason, in this thesis this type of strategy is studied onsidering un-ertainties in the system. In this setion two di�erent strategies for oordination will beproposed. The �rst one uses robust MPC with zone ontrol as oordinator with a deen-tralized sheme in the lower layer, while the seond one take deisions based on eonomiriterion i.e the oordinator solves an eonomial optimization problem (Eonomi MPC)whereas that in the lower layer a deentralized MPC with zone ontrol sheme is used.It is important to mention that some aspets of the robust sheme proposed will not bedetailed beause it was desribed in the hapter 4.5.3.1 Hierarhial Robust Control with zone ontrol for oordinationIn this setion a hierarhial robust ontrol with zone ontrol for oordination is desribed.Suh ontrol sheme is illustrated in Figure 5.8. In this Figure the lower layer onsists ona deentralized ontrol sheme, while upper layer has a entralized robust ontroller basedin a redued order model. Sine the lower layer is omposed by several ontrollers without
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Figure 5.6: Nominal Sheme: Control ations
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Figure 5.7: Behaviour of the MHE for some statesommuniation among them, the oordination layer must ompute the ontribution of eahloal ontroller in order to avoid on�its. Reall that in deentralized ontrol shemes
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....Figure 5.8: Hierarhial Robust Control with zone ontrol for oordinationthere is a huge loss of performane due to ompetition among loal ontrollers. So, toavoid suh ompetition, in the hierarhial robust ontrol sheme of Figure 5.8, the upperlayer omputes robust referene values for both inputs uref and outputs yref for the wholesystem. In the lower layer, only loal models are used to ompute the ontrol ations to beapplied to the system. In both layers model preditive ontrol (MPC) strategies are used.But, in upper layer robust zone ontrol poliy is used instead of referene traking. In thefollowing subsetions every layer of the hierarhial struture is detailed.5.3.1.1 Upper layer: Robust MPC with zone ontrolLet x(k) ∈ R
nx, y(k) ∈ R

ny , and u(k) ∈ R
nu denote the system states, inputs and outputsrespetively. At time step k, let xk = [xT (k), . . . , xT (k+Np)]

T and uk = [uT (k), . . . , uT (k+
Np)]

T be the state trajetory and the ontrol sequenes, withNp the predition horizon. Let
JNp(yref,k, xk, uk) denotes the ost funtion, yref,k being the sequene of referene values forthe ontrolled variables. Assume the funtion f(x(k), u(k)) desribing the state trajetoriesand g(x(k), u(k)) desribing the system outputs are ontinuous, where x(k) ∈ X, y(k) ∈ Y,and u(k) ∈ U de�ne the feasible values for the states, inputs and outputs of the system,with X ⊂ R

nx , Y ⊂ R
ny and U ⊂ R

nu losed sets. Let yref,k ∈ Yref with Yref ⊂ R
ny alsolosed. Let Θk = [θT (k), . . . , θT (k +Np)]

T denote the sequenes of unertainties over Np,with ‖θ(k)‖ ≤ ρ. Mathematially, min-max MPC with with zone ontrol is formulated as(5.12).
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min

uk,yref,k
max

Θk∈Ψ
Np

Np∑

j=1

‖(y(k + j)− yref,k‖2Q +

Np∑

j=0

‖u(k + j)‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃subjet to:
x(k + j + 1) = A(θ)x(k + j) +B(θ)u(k + j)

y(k + j) = Cx(k + j) +Du(k + j)

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

y(k + j) ∈ Y, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

yref,k ∈ Yref , ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖ ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(5.12)
where ΨNp is determined by the assumed unertainty model. Due to the min-max MPCreshaped into robust nonlinear programming (RNLP), and sine the urrent omputationresoures do not provide enough omputational power for having an exat solution ofRNLP problems in real time, linear models are used for omputing equivalent solutions for(5.12). An alternative for omputing these equivalent solutions onsists on transformingthe original optimization problem into a robust quadrati programming problem, whihhas e�ient methods for omputing its solution.5.3.1.2 Lower layer: Deentralized ontrol shemeNow, let the whole system be deomposed into M subsystems where xi(k) ∈ R

nxi , ui(k) ∈
R
nui , and yi(k) ∈ R

nyi are the state, inputs, and outputs of i-th subsystem and that aresubjet to hard onstraints on state xi(k) ∈ Xi, output yi(k) ∈ Yi and input ui(k) ∈ Uifor all k ≥ 0, where Xi ⊂ R
ni , Y ⊂ R

zi and U ⊂ R
mi are losed sets. From this de�nition:

x(k) = [xT1 (k), . . . , x
T
M (k)]T , u(k) = [uT1 (k), . . . , u

T
M (k)]T , and y(k) = [yT1 (k), . . . , y

T
M (k)]T .Let Aii, Bii, Ci,Di be bloks of matries A,B,C,D suh that

xi(k + 1) = Aiixi(k) +Biiui(k)

yi(k) = Cix(k) +Diui(k)Then, eah MPC of the lower layer an be written as (5.13).
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min
uki

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j)− yref,i‖2Qi
+

Np,i∑

j=0

‖ui(k + j)− urefi ‖2Ri

+

Np,i∑

j=0

‖∆ui(k + j)‖2Si
+ ‖xi(k +Np)‖2Q̃isubjet to:

xi(k + j + 1) = Aiixi(k + j) +Biiui(k + j)

yi(k + j) = Cix(k + j) +Diui(k + j)

ui(k + j) = urefi +∆ui(k + j)

xi(k + j) ∈ Xi, j = 0, . . . , Np,i

ui(k + j) ∈ Ui, j = 0, . . . , Np,i

xi(k +Np) ∈ Ωi, j = 0, . . . , Np,i

‖ui(k + j)− ui(k + j − 1)‖ ≤ ∆umax
i

(5.13)
where yref(k) = [yTref,1(k), . . . , y

T
ref,M(k)]T , ∆ui(k) = ui(k) − urefi for the i-th ontroller,and Qi, Ri, Si positive de�nite diagonal matries. From the optimization problem (5.13),given the referenes for the inputs and outputs, eah loal ontroller omputes the ontrolations to be loally applied. It is worth to point out that the optimization problem (5.12)and (5.13) have di�erent time resolutions, i.e., optimization problem (5.13) is solved moreoften than optimization problem (5.12). This time-sale di�erentiation is required beausethe use of whole system model makes the upper-layer optimization problem more omplexthan eah loal optimization problem of the lower layer.5.3.2 Hierarhial Robust eonomi ontrol for oordinationThe Figure 5.9 shows the hierarhial robust eonomi ontrol for oordination sheme.There are some works that propose eonomi MPC to ontrol large sale systems suh asthe reported in [145, 146℄, however, the main idea in this thesis, spei�ally in this setionis to take advantage of the MPC with zone ontrol in deentralized shemes as it was shownin hapter 1 together with a robust operation under eonomi objetive. In this regard, inthe upper layer of the hierarhial struture a robust DRTO problem is solved. This layersends to the lower layer robust input referenes. The lower layer has a deentralized shemebased on MPC with zone ontrol. The aim of this layer is to follow the referenes given bythe upper layer while the outputs are in an spei� zone. In the following subsetion theoptimization problem of every layer will be explained.5.3.2.1 Upper layer: Robust DRTOThe mathematial formulation of this layer is stated in (5.15). The objetive funtion of thislayer depends upon the spei� proess addressed. However, it may ontain terms relatedto the produtivity of the proess, raw materials osts, energy onsumption, eonomi
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Figure 5.9: Hierarhial Robust eonomi ontrol for oordinationlosses, et. So, determinate this objetive funtion is not a trivial work. As it was statedin hapter 3 a typial eonomi ost funtion an be as follows [62℄:
Jeco(xk, uk, dk) =

Np∑

j=0

[
nu∑

ii=1

cu,iiuii(k + j) +

ny∑

io=1

cy,ioyio(k + j)uio(k + j)

]

+

Np∑

j=0

α(x(k + j), u(k + j))

(5.14)
where cu,ii and cy,io are pries assoiated with energy and raw materials, Np is the predi-tion horizon, ny is the number of outputs, nu is the number of inputs of the system andthe term α(·) is related to other osts.
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min

uk,yref,k
max

Θk∈Ψ
Np

Np∑

j=0

[
nu∑

ii=1

cu,iiuii(k + j) +

ny∑

io=1

cy,ioyio(k + j)uio(k + j)

]

+

Np∑

j=0

α(x(k + j), u(k + j))subjet to:
x(k + j + 1) = A(θ)x(k + j) +B(θ)u(k + j)

y(k + j) = Cx(k + j) +Du(k + j)

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

y(k + j) ∈ Y, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

yref,k ∈ Yref , ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j) − u(k + j − 1)‖ ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖ ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(5.15)

5.3.2.2 Lower layer: Deentralized MPC with zone ontrol shemeThe mathematial formulation of the deentralized MPC with zone ontrol is stated asfollows:
min

uki
,yiref,k

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j) − yiref,k‖2Qi
+

Np,i∑

j=0

‖ui(k + j)− urefi ‖2Ri

+

Np,i∑

j=0

‖∆ui(k + j)‖2Si
+ ‖xi(k +Np)‖2Q̃isubjet to:

xi(k + j + 1) = Aiixi(k + j) +Biiui(k + j)

yi(k + j) = Cix(k + j) +Diui(k + j)

ui(k + j) = urefi +∆ui(k + j)

xi(k + j) ∈ Xi, j = 0, . . . , Np,i

ui(k + j) ∈ Ui, j = 0, . . . , Np,i

xi(k +Np) ∈ Ωi, j = 0, . . . , Np,i

‖ui(k + j)− ui(k + j − 1)‖ ≤ ∆umax
i

(5.16)
Again here xi(k) ∈ R

nxi , ui(k) ∈ R
nui , and yi(k) ∈ R

nyi are the state, inputs, and outputs



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 114of i-th subsystem and that are subjet to hard onstraints on state xi(k) ∈ Xi, output
yi(k) ∈ Yi and input ui(k) ∈ Ui for all k ≥ 0, where Xi ⊂ R

ni, Y ⊂ R
zi and U ⊂ R

mi arelosed sets. From this de�nition: x(k) = [xT1 (k), . . . , x
T
M (k)]T , u(k) = [uT1 (k), . . . , u

T
M (k)]T ,and y(k) = [yT1 (k), . . . , y

T
M (k)]T and Aii, Bii, Ci,Di be bloks of matries A,B,C,D and

M is the number of subsystems.5.4 Hierarhial Robust Control for oordination of a HPVAs it was stated in setion 4.3.1 the upper layer of the proposed ontrol sheme omputesthe referene value for the inputs and outputs of eah lower-layer loal ontroller. Therefore,the power and input referenes for eah subsystem are given by the solution of the robustoptimization problem (5.17).
min

vk,yref,k
max

Θk∈Ψ
Np

Np∑

j=1

‖(y(k + j)− yref,k‖2Q +

Np∑

j=0

‖u(k + j)‖2R

+

Np∑

j=0

‖∆u(k + j)‖2S + ‖x(k +Np)‖2Q̃subjet to:
x(k + j + 1) = (A+ δAk)x(k + j) + (B + δBk)u(k + j)

y(k + j) = Cx(k + j) +Du(k + j), Cpy(k + j) = Pref

θ(k + j) , (δAk, δBk) ∈ Ψ, ‖θ(k + j)‖ ≤ ρ

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

y(k + j) ∈ Y, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

v(k + j) ∈ V, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

ymin
ref ≤ yref,k ≤ ymax

ref , ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax, Θk ∈ ΨNp , Ψ× · · · ×Ψ

(5.17)
where Np is the predition horizon, Q ∈ R

ny×ny , R ∈ R
nu×nu and S ∈ R

ny×ny are positivede�nite weighting matries. In (5.17) all omputations are done using a redued ordermodel. It is important to note that in the problem (5.17) the feedbak ontrol law of theeah loal ontroller is not onsidered. This fat leads to inrease the unertainty level inthe problem, speially in the matrix A and B.With the modi�ation of the nominal struture, the hierarhial robust ontrol strutureis tested in two days of simulation on the HPV. Figure 5.10 shows the power generated bythe HPV and the power referene for two days. In opposition to the nominal sheme therobust an manage the power referene problem in the HPV, additionally, with the extraonstrain, the ontrol system an maintain the individual powers under the zone followingthe referene given by the oordinator (see Figure 5.11). The Figure 5.12 shows the levelsthe HPV, it is important to note that they are into a designated zone under the robust



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 115sheme. In general terms, the simulations results show that the robust sheme moves theoutput variables to other set points while maintain the outputs in an spei� range, this�exibility permits to ahieve the power referene. Finally, Figure 5.13 shows the inputvariables.
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Figure 5.10: Robust Sheme: Comparison between the power produed by the HPV withthe power referene
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Figure 5.11: Robust Sheme: Behavior of the individual powers of the HPV.
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Figure 5.12: Robust Sheme: Behavior of the levels in the lakes and the levels at the dampsof the HPV.
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Figure 5.13: Robust Sheme: Control ations



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 117This thesis use the HPV benhmark with a di�ult ontrol senario to test a hierarhialrobust ontrol approah. The hierarhial robust ontrol uses 8 MPC as loal ontrollersin the lower layer and one Robust MPC with zone ontrol as oordinator in the upperlayer. HPV ontrol senario shows some hallenges whih ould a�et the performaneof nominal hierarhial ontrol, then some onstraints must be added to the optimizationproblem. An important aspet to highlight in the HPV benhmark is that zone ontrolhelps to release output variables in order to manage the bigger amount of output variablesonsidering the fewer input variables.The use of Robust MPC with zone ontrol approah and some modi�ation to the on-straints used into the ontroller optimization problem, help to solve an extreme omplexontrol senario with good performane. In general terms, the hierarhial robust strutureproposed here is attrative for large-sale proesses, whih often lead to long omputationaltimes during optimization whereas on the other hand short sampling times are required bythe proess. Finally in spite of the big number of states, the linearization and the dramatiredution of the order, the hierarhial ontroller has an aeptable performane.5.5 SummaryIn this hapter a Hierarhial Robust Control for oordination was presented. This strategyarises in problems where the upper layer of the hierarhial struture proposed in hapter4 is not neessary. In this way in this hapter initially an example is used a motivationto use this strategy. Spei�ally, the example is a Hydro Power Valley(HPV), this systemis a typial large sale benhmark that is used to prove ontrol behaviour, beause ithas several harateristis whih establish some ontrol hallenges. From the hierarhialrobust sheme proposed, two hierarhial robust strutures arise. The �rst one takes arobust MPC with zone ontrol as oordinator, while in the lower layer of the hierarhialstruture a deentralized sheme is employed. The seond one takes a Robust Dynami RealTime Optimization (DRTO) layer as oordinator while in the lower layer a deentralizedsheme based in MPC with zone ontrol is used. Finally, the strategy proposed wastested in the Hydro Power Valley(HPV), where the simulation results were very interesting,ahieving a good performane of the sheme following a power pro�le during two days whilethe relevant variables remained in the spei� zoneIn the hapter 4 and 5 some strategies for hierarhial robust ontrol were presented. Themain idea was to ombine the robust MPC approahes presented in hapter 3 and thezone ontrol onept with a lassial hierarhial struture presented in hapter 2. Theprinipal advantages of the strategies presented in these hapters are the ability to handunertainties, to ahieve di�erent objetives (Eonomi, environmental), and take into a-ount the dynami behavior of the system. In this way these approahes improve thestrutures reported in the literature. However, some problems arise from the struturesproposed that uses zone ontrol approah, and the main ompliation lies in how to alu-late the limits (zone) of the MPC with zone ontrol. Generally these limits orrespond tophysial limitations of the proess, nevertheless, not always this is the best hoie, and it isneessary to �nd another way to determine these limits. A reasonable riterion an be thezone when the linearization is valid, however, an interesting riterion an arise from theeonomi point of view. In this sense the most remarkable ontribution of this thesis is a



CHAPTER 5. HIERARCHICAL ROBUST CONTROL FOR COORDINATION 118hierarhial robust strategy where the limits of the MPC with zone ontrol are alulatedbased in an eonomial riterion, and this strategy is presented in hapter 6.



CHAPTER 6
Hierarhial Robust Real Time Optimization withzone ontrol
6.1 IntrodutionAlong this thesis the problem to ontrol large sale systems using hierarhial ontrol wasaddressed. Initially, in hapter 4 we propose some hierarhial robust strategies based inthe onept of zone ontrol and using robust optimization. This strategies were testedin hapter 5 where was demonstrated his potentiality. It is important to highlight thatalthough there are reported some works of hierarhial ontrol for large sale systems suhas [2, 3, 4℄, the use of zone ontrol and robust ontrol (min-max in this ase) have not beenexplored fully. In this sense, this thesis propose a general hierarhial struture to ontrollarge sale systems using robust optimization and zone ontrol, modifying the lassialstrutures in order to handle unertainties suh as loal ontrollers that are not taking intoaount in the model of the proess. However, some questions arise from the hierarhialstrutures proposed. The main question emerge from the zone ontrol onept. As it wasmentioned in the introdutory hapter 1 and hapter 4 the limits or zone of the MPC withzone ontrol are normally hosen based in empirial riteria or in physial onstraints ofthe system (onservative limits). Although, theses riteria works well, there exist anotherattrative zones to be studied. From this point of view we propose to �nd this zones bymeans of optimization problems, i.e we want to �nd the limits of the MPC with zone ontrolby means of a min-min optimization problem (best ase), and a min-max optimizationproblem (worst ase). In the light of this method, it is neessary to hose the objetivefuntion of the problems, in this way we propose an eonomial riterion, i.e the limits ofthe MPC with zone ontrol of the hierarhial struture proposed in this hapter will befound by means of robust optimization with eonomi objetive, of this form, the limitswill be non-onservatives and eonomially feasible. This hapter is organized as follows:In setion 6.2 the hierarhial robust real time optimization with zone ontrol struture isdetailed and tested in an illustrative example. Finally in setion 6.3 the struture proposedis applied to a system omposed by three distillation olumns and three CSTR reators.

119



CHAPTER 6. HIERARCHICAL ROBUST REAL TIME OPTIMIZATION WITH ZONE CONTROL 1206.2 Hierarhial Robust Real Time Optimization with zoneontrolThe Figure 6.1 shows the struture proposed. In the upper layer two optimization problemsare solved in order to alulate the non-onservative limits for the outputs of the system,both optimization problems with di�erent sample time due to the time to solve the min-max optimization problem is higher than the min-min optimization problem. The upperlayer is responsible of sending the limits to the MPC with zone ontrol loated in themiddle layer, this ontroller ats as a oordinator and it is in harge of giving the set-points in a spei� range to the lower layer, when a deentralized sheme is used. In thefollowing, every part of the hierarhial struture will be explained. It is important to notethat some omponents of the struture proposed were explained in previous hapters, inthis sense ertain partiularities of these omponents are not detailed in this hapter.
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Figure 6.1: Hierarhial Robust Real Time Optimization with zone ontrol sheme.



CHAPTER 6. HIERARCHICAL ROBUST REAL TIME OPTIMIZATION WITH ZONE CONTROL 1216.2.1 Upper layer: Generation of non-onservative limits for the outputsof the systemIn the upper layer two optimization problems are solved in order to alulate the non-onservative limits for the outputs of the system. The �rst one problem is a robust opti-mization problem that onsiders model unertainty (min-max optimization problem). Theseond one optimization problem is alled the nominal problem and does not onsidermodel unertainty (min-min optimization problem). The main work of these two layersis to generate a ouple of trajetories (yref,N and yref,R) where the upper and the lowerbound of the MPC with zone ontrol must be seleted. In the next setions the optimizationproblems and the targets and limits seletion blok will be desribed.
• Min-min optimization problemIn this ase we are onsidering the minimum value of the unertainty in the opti-mization problem. The min-min optimization problem is desribed by (6.1).

min
uk

min
Θk∈Ψ

Np
Jeco(xk, uk,Θk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j), θ(k + j))

y(k + j) = g(x(k + j), u(k + j), θ(k + j))

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖ ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(6.1)
An important fat in problem (6.1) is that the min-min problem an be redued to amin problem. With this assumption and using linear time-varying predition models(see appendix B), the problem (6.1) an be expressed as (6.2) (see hapter 3).

min
uk

r + 2qTuk + uTk Puksubjet to:










I
−I
∆u

∆u

Λ
−Λ











uk(k) ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(6.2)



CHAPTER 6. HIERARCHICAL ROBUST REAL TIME OPTIMIZATION WITH ZONE CONTROL 122In (3.65) P , q, ũmax, ũmin, ỹmax, ỹmin, ∆̃umax are de�ned as follows:
P = ΛTCca + ΛTQΛ +R+∆T

uS∆u

q = Cop + ΓTCca − UT
s R+ (Γ− Ys)

TQΛ− u(k − 1)TS∆u

r = (Γ− Ys)
TQ(Γ− Ys) + u(k − 1)TSu(k − 1)where Cop and Cca are blok diagonal matries where the elements of the diagonalsare Cu = [cu,1, · · · , cu,nu ] and Cy = diag([cy,1, · · · , cy,ny

]
).

• Min-max optimization problemThis problem onsider the maximum value of the model unertainty in a optimizationproblem with eonomi objetive. The robust optimization problem is as follows,
min
uk

max
Θk∈Ψ

Np
Jeco(xk, uk,Θk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j), θ(k + j))

y(k + j) = g(x(k + j), u(k + j), θ(k + j))

x(k + j) ∈ X, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

u(k + j) ∈ U, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

x(k +Np) ∈ Ω, ∀θ(k + j) ∈ Ψ, j = 0, . . . , Np

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

θ(k + j) ∈ Ψ, ‖θ(k + j)‖ ≤ ρ

Θk ∈ ΨNp , Ψ× · · · ×Ψ

(6.3)
Note that problem (6.3) was addressed in hapter 3, in these sense, if we onsider alinear time-varying approximation of f(·) and g(·), the min-max MPC problem (6.3)beomes the SOCP problem (6.4) explained in hapter 3.
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min

uk,wie ,s,d,t
s+ 2qT0 uk + t+ 2d+ ‖r‖2subjet to:

∥
∥
∥
∥
∥

[

2P
1/2
0 uk
s− 1

]∥
∥
∥
∥
∥
2

≤ s+ 1

∥
∥
∥
∥
∥

[

2P
1/2
ie

uk
wie − 1

]∥
∥
∥
∥
∥
2

≤ wie + 1

‖qjeuk‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wie

0 ≤ s










I
−I
∆u

∆u

Λ
−Λ











uk ≤











ũmax

−ũmin

∆̃umax + u(k − 1)

∆̃umax − u(k − 1)
ỹmax − Γ
−ỹmin + Γ











(6.4)

For problems (6.1) and (6.3) ΨNp is determined by the assumed unertainty model.
• Targets and limits seletion blok:This blok is in harge to hoose the upper and the lower bounds for the MPC of thezone ontrol and to selet the best target from the eonomi point of view. The mainreason to add this blok to the hierarhial struture is that is not possible determinethe upper and the lower limits a priori from both optimization problem diretly. Forexample we an not say that the robust problem gives the upper bound, sine theworst ase not neessarily generate the largest value (limit) in the output of thesystem. Then, this blok hoose the limits from yref,N and yref,R simply omparingwhih value is greater. On other hand in the lassial hierarhial strutures theupper layer always send targets to the bottom of the hierarhy, in this sense in theproposed struture two targets are generated uref,N and uref,R, therefore one of thesetargets must be seleted. The riterion to selet the target in this work is very simple,the target that generates the best pro�t is hosen to be send to the MPC with zoneontrol.6.2.2 Middle layer: Generation of referenes in a spei� rangeThe oordinator of the hierarhial struture is a MPC ontroller with zone ontrol thatwas explained in hapter 3. Mathematially, this is expressed as (6.5).
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min

uk,yref,k
JNp(yref,k, xk, uk)subjet to:

x(k + j + 1) = f(x(k + j), u(k + j))

y(k + j) = g(x(k + j), u(k + j))

x(k + j) ∈ X, j = 0, . . . , Np

y(k + j) ∈ Y, j = 0, . . . , Np

u(k + j) ∈ U, j = 0, . . . , Np

x(k +Np) ∈ Ω, j = 0, . . . , Np

yref,k ∈ Yref

‖u(k + j)− u(k + j − 1)‖ ≤ ∆umax

(6.5)
For problems (6.1), (6.3) and (6.5), x(k) ∈ R

nx is the system state, y(k) ∈ R
ny is the systemoutput, u(k) ∈ R

nu is the urrent ontrol vetor and θ(k) ∈ R
nd are the unertaintiespresents in the model. The system is subjet to hard onstraints on state x(k) ∈ X, output

y(k) ∈ Y, input u(k) ∈ U and θ ∈ Ψ for all k ≥ 0, where X ⊂ R
nx , Y ⊂ R

ny and U ⊂ R
nuare losed sets.6.2.3 Lower layer: Traking ontrol systemNow, let the whole system be deomposed into M subsystems where xi(k) ∈ R

nxi , ui(k) ∈
R
nui , and yi(k) ∈ R

nyi are the state, inputs, and outputs of i-th subsystem and that aresubjet to hard onstraints on state xi(k) ∈ Xi, output yi(k) ∈ Yi and input ui(k) ∈ Uifor all k ≥ 0, where Xi ⊂ R
ni , Y ⊂ R

zi and U ⊂ R
mi are losed sets. From this de�nition:

x(k) = [xT1 (k), . . . , x
T
M (k)]T , u(k) = [uT1 (k), . . . , u

T
M (k)]T , and y(k) = [yT1 (k), . . . , y

T
M (k)]T .Let Aii, Bii, Ci,Di be bloks of matries A,B,C,D suh that

xi(k + 1) = Aiixi(k) +Biiui(k)

yi(k) = Cix(k) +Diui(k)Then, eah MPC of the lower layer an be written as (6.6).
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min
uki

JNp,i
(xk, uk) =

Np,i∑

j=1

‖(yi(k + j)− yref,i‖2Qi
+

Np,i∑

j=0

‖ui(k + j)− urefi ‖2Ri

+

Np,i∑

j=0

‖∆ui(k + j)‖2Si
+ ‖xi(k +Np)‖2Q̃isubjet to:

xi(k + j + 1) = Aiixi(k + j) +Biiui(k + j)

yi(k + j) = Cix(k + j) +Diui(k + j)

ui(k + j) = urefi +∆ui(k + j)

xi(k + j) ∈ Xi, j = 0, . . . , Np,i

ui(k + j) ∈ Ui, j = 0, . . . , Np,i

xi(k +Np) ∈ Ωi, j = 0, . . . , Np,i

‖ui(k + j)− ui(k + j − 1)‖ ≤ ∆umax
i

(6.6)
where xi(k) ∈ R

nxi , ui(k) ∈ R
nui , and yi(k) ∈ R

nyi are the state, inputs, and outputsof i-th subsystem and that are subjet to hard onstraints on state xi(k) ∈ Xi, output
yi(k) ∈ Yi and input ui(k) ∈ Ui for all k ≥ 0, where Xi ⊂ R

ni, Y ⊂ R
zi and U ⊂ R

mi arelosed sets. From this de�nition: x(k) = [xT1 (k), . . . , x
T
M (k)]T , u(k) = [uT1 (k), . . . , u

T
M (k)]T ,and y(k) = [yT1 (k), . . . , y

T
M (k)]T and Aii, Bii, Ci,Di be bloks of matries A,B,C,D and

M is the number of subsystems.6.2.4 Illustrative example: Isothermal CSTRThis example was taken diretly of [63℄. Consider a single �rst-order, irreversible hemialreation A→ B in the isothermal CSTR shown in Figure 6.2
M

Figure 6.2: Isothermal reatorThe mathematial model of the proess is:
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dCA

dt
=

q

V
(CA0 − CA)− krCA

dCB

dt
=

q

V
(CB0 − CB) + krCA

(6.7)where kr is the rate onstant, CA and CB are the molar onentrations of A and B respe-tively, CA0 = 1 mol/L and CB0 = 0 mol/L are the feed onentrations, and q is the �owthrough the reator. The volume of the reator V is �xed at 10 L. The rate onstant kr is
1.2 L/(mol min). The available manipulated variable is the feed �ow rate. Non-negativityonstraints are imposed on the feed rate. An upper bound of qmax = 20 L/min is imposedon the �ow rate. The eonomial ost funtion of this problem is [63℄,

Jeco(CA, CB , q) = −(2qCB − 0.5q) (6.8)The optimal steady state for this ost is CA = CB = 0.5 mol/L, q = 12 L/min. The statesof the systems are x = [CA, CB ]
T , the output is y = CB , the input of the system is u = q,while the disturbane of the system is d = CA0.6.2.4.1 Simulation resultsFigure 6.3 show the simulations results one the methodology proposed in setion 6.2 isapplied. For this simulation, it was onsidered a sampling time of the RDRTO and DRTOlayers of 10s with a predition horizon of 30 samples, while the sampling time of theRobust MPC with zone ontrol was 1s with a predition horizon of 30 samples. The mainreason to take this example as an illustrative example was the number of publiationsthat report this example, speially in eonomi MPC approahes. In this way, we want to�nd limits for the output of this system when disturbanes or unertainties are presents.For this ase, hanges in the disturbanes of the proess were made as shown in Figure6.3(). Figure 6.3(a) shows the output and referene generated by the MPC with zoneontrol, learly the ontroller drives the output to the set-point. However, in Figure 6.3(b)the limits alulated by the upper layer of the hierarhy are presented, it is important tonote that although the hange in the disturbane was 50%, the limits are basially thesame during the simulation time, when the hange in CA0 is positive. This results is veryinteresting in the sense that not always the limits will be di�erent in the methodologydespite unertainties and disturbanes. Finally, the Figure 6.3(d) shows the input valueand his referene.6.3 Case of study: Chemial PlantThe omplete hemial proess is omposed by three hemial reators type CSTR (Con-tinuous Stirred Tank Reator) that are alled R1, R2 and R3, three non reative binarydistillation olumns alled C1, C2 and C3 and two reyle streams alled RC1 and RC3.Figure 6.4 gives a Proess Flow Diagram (PFD) that helps to understand the followingdetailed desription. It must be lear for the reader that this hemial plant ase presents
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() (d)Figure 6.3: Isothermal CSTR: (a) Output of the system with the referene value. (b)Upper and lower bound generated by the top of the hierarhy. () Disturbanes of theproess. (d) Input of the systemonly dynamis related with the material balane, the energy and momentum dynamis arenot onsidered as relevant issues here. A fresh stream of A and the reyle streams RC1and RC3 are fed to R1 where the reation represented by (6.9) with a kineti onstantk1 is arried out. This step produes a main intermediate produt D and a byprodut
C. The e�uent from R1, assumed as an ideal mixture, is fed to C1 where it is separatedin: top produts rih in A and B alled RC1, and bottom produts rih in C and D. Atthis point the stream RC1 is fed again to R1 and the bottom stream is fed to C2. In C2,the byprodut C and the intermediate proess D are separated. The top produts withhigh onentration of C are byproduts that are removed from the proess. The bottomproduts with high onentration of D are fed to R2. In R2 there is a fresh stream of Efed along with the bottom e�uent from C2 and a new hemial reation represented by(6.10) is arried out with a kineti onstant k2 . The produts and the material withoutreating from R2 pass to R3 to reah a higher onversion. Although the reation in R2 isthe same of R3, in R3 the kineti onstant is k3 that may be di�erent of k2 due to e�etsof temperature and agitation. Then the e�uent from R3 is fed to C3. In C3 the e�uentfrom R3 is separated in bottom produts with high onentration of F whih is the inter-esting produt, and top produts with high onentration of B. This high B onentrationstream is alled RC3 and is fed again to R1.

A+B → C +D (6.9)
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Figure 6.4: Chemial plant.
D + E → F +B (6.10)The di�erent mixtures are onsidered as ideal, there are not reations inside the pipes, thetransportation time in pipes is not onsidered and all the hemial reations are onsideredas elemental. The proess variables onsidered in this benhmark ase will be disriminatedin the following groups:

• Controlled Variables (CV): There is a basi group of variables that ould be used asontrol variables, in order to build the large amount of ontrol strategies that ouldbe proposed. This basi group onsist of the variables depited in Table 6.1.
xR1,D y1
xD1,A y2
xB1,D y3
xD2,C y4
xB2,D y5
xR3,F y6
xD3,B y7
xB3,F y8Table 6.1: Controlled variables

• Manipulated Variables (MV): This proess has 9 manipulated variables depited inTable 6.2.The proposed model for the hemial plant ase is based on �rst priniples, the basimaterial balanes lead the equations desribing the dynami behaviour. This model wasproposed by Sattollini [147℄ and it is presented in appendeix D.
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F0A u1
F0B u2
R1 u3
V 1 u4
R2 u5
V 2 u6
F0E u7
R3 u8
V 3 u8Table 6.2: Manipulated variables6.3.1 Eonomial Aspets6.3.1.1 Cost FuntionIn order to de�ne a proper ost funtion for this plant, eah one of the assoiated ost willbe mentioned. As the plant is divided in six stages, eah stage will have some assoiatedoperational osts in the following way.1. Stage R1: Reation of A + B to produe C + D, by the stoihiometry beomes learthe mole onservation in this reation. The assoiated osts are:

• ost of feeding one fresh lb-mol of A in the stage R1 (ost of A + pumping)
• ost of feeding one fresh lb-mol of B in the stage R1 (ost of B + pumping)
• ost of feeding one lb-mol of B reyled in the stage R1 (pumping)2. Stage C1: Separation of A, B, C and D, in this stage is assumed that hemialreation is not arried out and just physial separation is ahieved, the assoiatedost is:
• ost of feeding one lb-mol of A + B + C + D in the stage C1 (pumping)3. Stage C2: Separation of C + D into C and D, the assoiated osts are:
• ost of feeding one lb-mol of C + D in the stage C2 (pumping)
• possible ost of disposal of C4. Stage R2: Reation of D + E to produe F + B, by the stoihiometry beomes learthe mole onservation in this reation. The assoiated osts are:
• ost of feeding one lb-mol of D in the stage R2 (pumping)
• ost of feeding one fresh lb-mol of E in the stage R2 (ost of E + pumping)5. Stage R3: Reation of D + E to produe F + B, by the stoihiometry beomes learthe mole onservation in this reation. The assoiated osts are:
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• ost of feeding one lb-mol of D + E in the stage R3 (pumping)
• ost of feeding one lb-mol of F + B in the stage R3 (pumping)6. Stage C3: Separation of F + B into F and B, the assoiated ost is:
• ost of feeding one lb-mol of F + B in the stage C3 (pumping)All these osts must be expressed in the orret units, the units seleted in this ase were

[e/lb −moli] where i refers to any omponent. Eq. (6.11) show the units required in thefuntion. Although the �nal expression is expressed in e per hours this is not relevantdue to one pretend to minimize the total ost what is the same to minimize the rate of"generation of osts", due to the linearity of the ost funtion.
[

e

lb−moli

]

∗
[
lb−moli

h

]

=

[
e

h

] (6.11)6.3.1.2 Cost Determination:The osts mentioned above will be stated in this setion. They are based on the quantityof raw material, the degree of separation(�nal disposal),and �nally the pumping ost thatis the same for all omponents. The value of eah ost spei�ed above is de�ned in Table6.3. ITEM COST UNITFresh A (Cf
A) 0.5

[
e

lb−molA

]Fresh B (Cf
B) 0.8

[
e

lb−molB

]Fresh E (Cf
E) 0.8

[
e

lb−molE

]Pumping (Cp) 2.2e−5∆hpumpCKWh (*) [
e

lb−moli

]Disposal of C (CC
d ) 0.2

[
e

lb−mol

](*) Where ∆hpump is the required hange in height by pumping in meters,and CKWh is the ost of KWh in e/KWhTable 6.3: Operational ostsThe assoiated osts are multiplied by the respetive stream, generating the funtion tobe minimized, Eq. (6.12) shows the �nal form of the ost funtion.
feco = Cf

AF0A+C
f
BF0B+C

f
EF0E+Cp(D1+D3+B1+B3)−CC

d D2xD2,C−CB
d B3xB3,F (6.12)The stages and streams were de�ned in Figure 6.4 and the osts were spei�ed in Table6.3.



CHAPTER 6. HIERARCHICAL ROBUST REAL TIME OPTIMIZATION WITH ZONE CONTROL 1316.3.2 Model Redution of the hemial plant: Hankel norm methodFrom a mathematial and system theoretial point of view, Hankel norm redutions areamong the most fany sort of model redution proedures that exist today. It is one ofthe very few model approximation proedures that produe optimal approximate modelsaording to some well-de�ned riterion. The algorithm to �nd the redued order modelby means of Hankel norm an be seen at [140℄. For the hemial plant we ahieve to reduethe original system from 203 to 20 states. This redued order model will be used in theMPC with zone ontrol due to well performanes showed in the work of Marquez et.al[121℄, when a nominal hierarhial ontroller was designed for the hemial plant.6.3.3 Simulation Results and DisussionThe main purpose with this ase of study is to maintain the outputs of the system intoa spei� zone under unertainties and disturbanes in an high dimensional and interon-neted system, trying to maximize the pro�t. Then, the simulation was arry on makingsome hanges in parameters of the model of the system, spei�ally in the reations on-stants k in the �rst and third reator, a hange of 10% of their nominal values, and in theMurphee e�ieny of the third distillation olumn, it was hanged to 90%, and a hange inthe inlet fresh onentration of R1 and R2 at 80 h. For this simulation, it was onsidered asample time of the RDRTO and DRTO layers of 10 h with a predition horizon of 10 sam-ples, while the sample time of the Robust MPC with zone ontrol was 1 h with a preditionhorizon of 100 samples. Figures 6.5 and 6.6 show the simulations results. Figure 6.5 showsthe outputs of the system, the limits given by the upper layer and the referenes generatedby the MPC with zone ontrol. Note that the limits generated in the upper layer of thehierarhy opposite to the illustrative example presented in setion 6.2.4 are not the samefor any output, however, there are limits or zones very lose, even there are times wherethe limits are the same (see Figure 6.5 (a),(d),(f) and (g)), due to this the MPC with zoneontrol generate referenes generally in the upper or lower limit. The hemial plant mainprodut is the ondensed F, for this reason the onentration has to be maintained in highvalues, then, an important aspet to highlight is about the pro�t and xB3,F , note thatfor xB3,F the hierarhial ontroller tries to drive this output to 1. This is the maximumvalue expeted of this output in order to maximize the pro�t. Finally, Figure 6.6 showsthe inputs of the proess, where saturation was avoided in almost all Figures.In general, with this example we demonstrate that the Hierarhial Robust Real TimeOptimization with zone ontrol struture has the ability to ontrol a large sale system,and the alternative of use zone ontrol to release or give freedom to some variables isadequate. On other hand the limits found orrespond to feasible limits from the eonomipoint of view. This is in the same diretion of the lassial strutures where in the upperlayer an eonomial operating trajetory is found. About that, notie that it is not possibleto ompare the hierarhial struture proposed here with lassial or even robust strutures.The main reason is that we found the limits by means of an eonomi riterion, in this waythe other solutions always will be in the zone generated by the Hierarhial Robust RealTime Optimization with zone ontrol struture.
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(g) (h)Figure 6.5: Outputs of the hemial plant6.4 SummaryIn hapter 4 some strategies for hierarhial robust ontrol using zone ontrol were pre-sented. However, a problem arises from these strutures. The problem lies in how toalulate the limits (zone) of the MPC with zone ontrol. Generally these limits orre-
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CHAPTER 6. HIERARCHICAL ROBUST REAL TIME OPTIMIZATION WITH ZONE CONTROL 134spond to physial limitations of the proess, nervertheless, this is not always the ase, andthe development of a riteria to alulate these onstraints is required. A reasonable ri-terion ould be the zone where the linearization has good approximation to the nonlinearsystem or physial limitations of the proess, however, a better hoie an arise from theeonomi point of view. In this sense in this hapter a hierarhial robust strategy wherethe limits of the MPC with zone ontrol are alulated based in an eonomial riterionwas presented. An illustrative example was used in order to illustrate the strategy andto show a partiular ase when the limits found were the same. This hapter ends withthe appliation of the hierarhial methodology to a large sale system, that serves asbenhmark to test the struture proposed.



CHAPTER 7
Conlusions and future work
In this thesis, the problem of design hierarhial ontrollers for large sale interonnetedsystems was addressed. With this purpose, some onepts were reunited and used in orderto propose a hierarhial ontrol struture for large sale systems. The main onept wasertainly zone ontrol. This onept was introdued and used in every hapter of thisthesis, demonstrating that this an be used in several appliations inluding large salesystems. This thesis begins with a literature review about hierarhial deompositions andthe urrent praties in hierarhial operations in hapter 2. From this literature reviewsome researh topis arose, suh as �xed set points in large sale systems without ooper-ation between the loal ontrollers and the robust operations in hierarhial ontroller. Inthis sense the hapter 3 was dediated to robust ontrollers and robust optimization. Themain ontributions of hapter 3 are listed below:

• A new solution of Robust Quadrati Programming (RQP) under di�erent unertainsets was proposed. This approah takes into aount unertainty in the quadrati,linear and onstant term of the quadrati optimization problem. The main ontri-bution of this setion is the onversion of the the RQP problem into a Seond OrderCone Programming (SOCP) problem. In this sense, the robust optimization probleman be transformed in a onvex problem with polynomial omplexity.
• A new Robust Model Preditive Control formulation was proposed. There are twoimportant ontributions in this diretion, the �rst one is about the unertainty repre-sentation. For the robust MPC proposed unertainty in the free and fored responsewas assumed; although this type of unertainty an be expressed in typial formsreported in the robust MPC literature, in this sense the unertainty representationpresented here is fairly omplete. The most remarkable ontribution in the new Ro-bust Model Preditive Control formulation is the way to �nd the parameters of theunertain sets. we proposed a novel method to obtain these parameters based in map-pings between the unertainty of the free and fored response and the unertaintyin the quadrati, linear and onstant term of the quadrati optimization problem.Finally we show the bene�ts of the proposed ontroller using an illustrative example.
• With the results of the new robust MPC, new formulations for Robust MPC with135



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 136zone ontrol and Robust Eonomi MPC was proposed. Again, a new way to �nd theparameters of the unertain sets is stated. Finally, we test the proposed ontrollersthrough two appliation examples.In hapter 4 and 5 some strategies for hierarhial robust ontrol were proposed. The mainidea is to ombine the robust MPC approahes presented in hapter 3 and the zone on-trol onept with the lassial hierarhial struture presented in hapter 2. The prinipaladvantages of the strategies presented in these hapters are the ability of handling uner-tainties, the takling of di�erent objetives (Eonomi), and the inlusion of the dynamibehavior of the system. In this way these approahes improve the strutures reported inthe literature. The main ontributions of hapter 4 and 5 are listed below:
• The �rst result in hapter 4 is a general robust hierarhial strategy that uses Dy-nami Real time Optimization (DRTO), robust ontrol and a deentralized MPCsheme, the idea with this sheme is to give su�ient tools and alternatives to on-trol a large sale system taking into aount both eonomial and traking objetivesand unertainties.
• The �rst result is the hierarhial robust ontrol for oordination. In this diretiontwo hierarhial robust strutures are proposed, the �rst one takes a robust MPCwith zone ontrol as oordinator, while in the lower layer of the hierarhial struturea deentralized sheme is employed. The seond one takes a Dynami Real TimeOptimization (DRTO) layer as oordinator while in the lower layer a deentralizedsheme based in MPC with zone ontrol is used.In Chapter 4 and 5 the potential of appliation of the robust strategies of the Chapter 4and 5 are shown by means of two important appliations in the �eld of distributed systems.These examples illustrate how it is possible to handle unertainties in distributed systemsby means of robust hierarhial ontrollers. The example used in hapter 4 was the tworeators hain and �ash system. A hierarhial robust integration of MPC and DRTOwas applied to this system. There are two important ontributions for this example. The�rst one is the operating point of the system, in previous works the operating point wasnot realisti (CSTR levels in the order of kilometers). In this way we found by meansof the DRTO layer realisti operating points. The seond ontribution was desribed inthe simulations result, were learly the nominal sheme was not apable to maintain theoutputs of the system under the zone while the quality spei�ations were ahieved. Finally,the example used in hapter 5 was the Hydro Power Valley system. This system is usedas benhmark in hierarhial and distributed MPC shemes. A hierarhial robust ontrolwith zone ontrol for oordination was implemented in the HPV. The simulation resultswere very interesting, ahieving a good performane of the sheme following a power pro�leduring two days while the relevant variables remain in the spei� zone.From the strategies for hierarhial robust ontrol using zone ontrol presented in hapter4 and 5 some problems arises. The problem lies in how to alulate the limits (zone) ofthe MPC with zone ontrol. Generally these limits orrespond to physial limitations ofthe proess, nervertheless, this is not always the ase, and the development of a riteria toalulate these onstraints is required. A reasonable riterion ould be the zone when the



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 137linearization has well approximation to the nonlinear system or physial limitations of theproess, however, a better hoie an arise from the eonomi point of view. In this sensethe most remarkable ontribution of this thesis is a hierarhial robust strategy where thelimits of the MPC with zone ontrol are alulated based in an eonomial riterion. Thishierarhial struture was presented in hapter 6, and ombines robust optimization andzone ontrol. By means of robust optimization we alulate the limits of the MPC with zoneontrol, with the idea of determining the eonomi limits for this ontroller. This strategygives freedom from an eonomial point of view to the loal ontroller of the hierarhialstruture. An important aspet to highlight is that the hierarhial solution proposed herean be seen as a general hierarhial robust struture for large sale systems, beause littlevariations over this struture an produe a lassial hierarhial representation suh asthose shown in hapter 2. Finally, in hapter 6 a ase of study was used to illustrate theproposed method.7.1 Future workFrom the development of this thesis several researh problems have been identi�ed, theseproblems are listed below:
• In the �eld of robust ontrol there are basially two future work: From hapter 3,the number of onstraints generated in the proposed Robust MPC method shouldbe redued. The seond one problem is that the method proposed here needs alinealization of the original model, in this thesis a linear time-varying model is used,but this approah not always is the best eletion for example for bath proesses. Inthis ontext the robust optimization method proposed ould be extended to seondorder approximations of the original model.
• In the �eld of hierarhial ontrol, the layer of "Planning and Sheduling" should beadded to the robust hierarhial shemes proposed in this thesis, this layer involvesdisrete deisions, whih needs to be optimized simultaneously with the other layers.Finally, the proposed ontrol shemes must be tested in other large-sale systems inorder to validate its appliability in real systems.



APPENDIX A
Robust Optimization: Robust QuadratiProgramming approah
A.1 Formulation of Robust Optimization ProblemsOptimization problems under parameter unertainty have been a ommon fous of studyof the mathematial programming ommunity. In fat, it has been known that solutionsto optimization problems an show a high sensitivity to unertainties in the parametersof the problem, making the omputed solution highly unfeasible, sub-optimal, or both. Inthis sense, approximations suh as stohasti optimization assumes that the unertaintyhas a probabilisti representation. This approah has its origin in the paper of Dantzigin 1955 [148℄. This thesis onsiders Robust Optimization in a deterministi sense, i.ethe model unertainty is not stohasti. Instead, in order to shield the solution in someprobabilisti sense, a solution that is optimal for any realization of the unertainty in agiven set is onstruted. The motivation for this approah is twofold. First, there are manyappliations where the more appropriated desription of parameter unertainty is set based.Besides this, ahieving a feasible degree of omputational manageability is also the mostimportant aim and motivation. This fat has in�uened the theoretial trajetory of RobustOptimization, and, reently, it has been responsible for its suess in a wide variety of �elds.In this way, the �rst person to investigate expliit approahes to Robust Optimization wasSoyster in 1970 [149℄. This work was foused in robust linear optimization in a situationwhere the olumn vetors of the onstraint matrix were onstrained to belong to ellipsoidalunertainty sets. Few years later Falk [150℄, following the work of Soyster published a workabout inexat linear programs. After these works, the robust optimization ommunity wasrelatively quiet, until the work of Ben-Tal and Nemirovski ([151, 152, 71℄) and El Ghaouiet al. [153, 154℄ in the late 1990s. This work was performed together with advanes inomputing and the development of interior point methods for onvex optimization.A standard optimization problem onsists typially of a given ontinuous objetive funtion
f0 : Rnx × R

nu × R
nθ → R, some ompat sets X ⊆ R

nx and U ⊆ R
nu of feasible pointsand inequalities onstraints f : Rnx × R

nu × R
nθ → R

m . Here, our aim is to minimizethe funtion f0 over the variables whih are in the sets X and U. In other words, we areinterested in an optimization problem of the form,138
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min

x∈X,u∈U
f0(x, u, θ)subjet to:

f(x, u, θ) ≤ 0

x ∈ X, u ∈ U

(A.1)In this notation, f0 and f depend on a parameter θ ∈ R
nθ . If we know this parameterexatly, there is nothing speial about this optimization problem respet to θ. However, ifthat is not the ase, we assume that our information about θ is that this parameter is ina given ompat set Ψ ⊆ R

nθ . In this way, it is neessary to inorporate the unertainty θinto the optimization problem. Basially there are two forms to do this::1. semi-in�nite optimization problem: In this ase the optimization problem (A.1) anbe expressed as:
min

x∈X,u∈U
f0(x, u, θ)subjet to:

fi(x, u, θ) ≤ 0, i ∈ {1, ...,m}, ∀θ ∈ Ψ

x ∈ X, u ∈ U

(A.2)In general, the problem (A.2) has an in�nite number of onstraints. This is whyrobust optimization problems are also alled semi-in�nite optimization problems,beause we have on the one hand in�nite onstraints, but on the other hand a �nitenumber of optimization variables.The most important advantages of the semi-in�nite optimization are:(a) The natural way to extend the notation to vetor or matrix valued funtions fiin ombination with generalized inequalities.(b) In appliations where the unertainty θ is of a stohasti nature, it makes senseto onstraint its own variability. This is the ase where θ is a random variablewith a given probability distribution.2. Worst ase: Another form to take into aount the knowledge about the unertainty
θ in the optimization problem is follow the onept of robust ounterpart, whih hasbeen established by Ben-Tal and Nemirovski [155, 151℄. Here, the assumption is thatwe want to minimize the worst possible value of the funtion f0, i.e., we are interestedin a min-max problem of the form,
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min

x∈X,u∈U
max
θ∈Ψ

f0(x, u, θ)subjet to:
max
θ∈Ψ

fi(x, u, θ) ≤ 0, i ∈ {1, ...,m}

x ∈ X, u ∈ U

(A.3)It is important to highlight that similar to the maximization of the objetive value,in the optimization problem (A.3) it is assumed that the robust ounterpart is like aplayer that always hooses the worst possible value for the funtions f1, . . . , fm.Due to the bi-level struture and the semi-in�nite harater, both formulations (A.2) and(A.3) pose hallenges on the e�ieny of the numerial solution [156℄. Di�erent approahesto onfront these problems have been presented in a large number of artiles. Methodsto solve the semi-in�nite optimization problem inlude disretization of the unertaintyset Ψ and the loal redution approah introdued by Hettih and Kortanek in 1993,[157℄.In both approahes the semi-in�nite optimization problem is approximated by nonlinearprogramming problems with a �nite number of onstraints. In disretization methodsproblem, equation (A.2) is solved on a �nite grid of points Ψ ⊆ Ψ within the unertaintyset. The loal redution approah is based on the worst-ase min-max formulation.A.1.1 Existing Approahes for Robust OptimizationThe last deades, robust optimization has been the enter of interest of many researh�elds suh as ontrol, onvex optimization, mathematial programming and many �elds ofengineering siene. In general, when an optimization problem is formulated, a questionabout whether all parameters and inputs are known arises. In this way, many researhersare attrated by the hallenges of robust optimization. In general terms there are sevenapproahes to the Robust Optimization problems [158℄ whih are listed below:
• Stohasti Programming
• Classial Robust Control Theory
• Convex Robust Optimization
• Nononvex Robust Optimization
• Classial Optimal Control Theory
• Robust Open-Loop Optimal Control
• Robust Closed-Loop ControlAs a substantial part of this thesis is based on onvex optimization, the idea in this hapteris to formulate an optimization problem, and then show that the problem an be shaped assome standard onvex optimization problem. The main property of onvex optimization



APPENDIX A. ROBUST OPTIMIZATION: ROBUST QUADRATIC PROGRAMMING APPROACH 141problems is that it is possible to build algorithms that guarantee an optimal solution, ifone exists, or verify whether there exist no solution. Additionally, it is possible to de-velop algorithms with polynomial omplexity (interior point methods). This means thatthe omputational e�ort required to �nd the solution grows polynomially with respet tothe problem dimensions. In other words, the main objetive of this hapter is to proposee�ient algorithms that sale well with problem size. The introdution of onvex opti-mization, and semide�nite programming in partiular, as a standard mathematial toolhas had, and still has, a profound impat on ontrol and systems theory [159℄. There is agreat amount of literature on onvex optimization. The book of Boyd and Vandenberghe[160℄ helps as an exellent introdution to both mathematial and engineering aspets ofonvex optimization. Another interesting soure is the book of Ben-Tal and Nemirovski[161℄.In the area of Convex Robust Optimization the main developments were done by Ben-Tal and Nemirovski [151℄,[152℄,[71℄ and independently by El-Ghaoui [153℄,[154℄. Theseapproahes help to transform a great number of min-max optimization problems into on-vex optimization problems. A typial assumption in the mentioned works is that theunertainty set is ellipsoidal, whih is in many ases the key for working out robust oun-terpart formulations. A ommon example is a linear program (LP) with unertain data,in this ase the optimization problem an be formulated as a seond order one program(SOCP). However, in the ontrol ontext, polytopi unertainty sets are also a ommonhoie [162, 163℄. The robust onvex optimization �eld has been expanded the last yearsand it is still shows work in progress. However, these developments tend more and moretowards approximation tehniques, where the robust ounterpart problem is replaed bymore tratable formulations, and they also over an inreasing amount of appliations[158℄. For an extensive overview on robust optimization from the onvex perspetive, werefer to the latest book by Ben-Tal, El-Ghaoui, and Nemirovski [155℄.A.2 Robust Quadrati Programming (RQP)Robust programming is a lass of optimization problems where the parameters are un-ertain and belong to a de�ned set. In the last deade, e�ient interior point methodswith polynomial omplexity have been developed for this type of problems. Indeed, theomputational omplexity for the seond-order one program (SOCP) solution (whih isthe method presented in this Setion) is proportional to √
l, with l being the number ofonstraints [72℄. This harateristi makes these algorithms very interesting for large-saleoptimization problems and open possibilities in the appliation of these methods not onlyfor robust optimization but also for plant-wide optimizers . This Setion is based on thework of [90℄ and we will fous our attention in the problem of robust quadrati program-ming (RQP).Let x ∈ R

n denote the deision variables, P ∈ R
n×n be a symmetri positive de�nitematrix, q ∈ R

n and r ∈ R be a oe�ients vetor and a onstant term respetively. Then,the RQP problem is de�ned by (A.4).
min
x

max
P∈E,q∈F,r∈G

xTPx+ 2qTx+ r (A.4)



APPENDIX A. ROBUST OPTIMIZATION: ROBUST QUADRATIC PROGRAMMING APPROACH 142Notie in (A.4) that the unertainties are in P , q and r. Those unertainties are respetivelydesribed by the sets E, F and G .A.2.1 Robust Quadrati Programming with ellipsoidal unertaintiesAssume unertainties in P , q and r are norm bounded. Then, E, F and G an be writtenas
E =

{

P0 +

m∑

i=1

Piµi | ‖µ‖2 ≤ 1

}

F =






q0 +

z∑

j=1

qjνj | ‖ν‖2 ≤ 1







G =

{

r0 +

nr∑

l=1

rlξl | ‖ξ‖2 ≤ 1

}

(A.5)
with P0, Pi ∈ R

n×n, µ ∈ R
m, q0, qj ∈ R

n, ν ∈ R
z, r0, rl ∈ R and ξ ∈ R

nr . Inludingthe unertainty desription in (A.4), the optimization problem (A.4) an be written as anSeond Order Cone Programming (SOCP) problem. Suh problem is an speial ase ofsemi-de�nite programming (SP), but, in SOCP there exist spei� e�ient interior pointmethods for solving it (more e�ient than the methods available for general SP problems).The way to transform the problem (A.4) in a SOCP problem, is stated in the followingtheorem:Theorem 4. Let x ∈ R
n be the deision variables, P ∈ R

n×n be a symmetri positivede�nite matrix, q ∈ R
n and r ∈ R are oe�ients vetor and a onstant term respetivelyof the robust optimization problem (A.4). Then, the problem (A.4) an be written as thefollowing Seond Order Cone Programming (SOCP) problem:

min
x,wi,s,d,t

s+ 2qT0 x+ t+ 2d+ ‖r‖2subjet to:
∥
∥
∥
∥
∥

[

2P
1/2
0 x

s− 1

]∥
∥
∥
∥
∥
2

≤ s+ 1

∥
∥
∥
∥
∥

[

2P
1/2
i x

wi − 1

]∥
∥
∥
∥
∥
2

≤ wi + 1

‖qjx‖2 ≤ d

‖w‖2 ≤ t

0 ≤ w

0 ≤ s

(A.6)
where r = [r1, . . . , rnr ]

T . Observe that in (A.6) the searh spae is extended from the spaeof x to the spaes of s, wi, t and d.



APPENDIX A. ROBUST OPTIMIZATION: ROBUST QUADRATIC PROGRAMMING APPROACH 143Proof 1. In order to prove the theorem, the unertainty desription (A.5) is replaed in(A.4), yielding
min
x

max
‖µ‖2≤1,‖ν‖2≤1,‖ξ‖2≤1

xTP0x+

m∑

i=1

xTPixµi + 2qT0 x+ 2

z∑

j=1

qTj xνj + r0 +

nr∑

l=1

rlξlThe above problem is equivalent to:
min
x

(xTP0x+ 2qT0 x+ r0) + max
‖µ‖2≤1,‖ν‖2≤1,‖ξ‖2≤1

xpiµ+ 2xqiν + rξwhere xpi = [xTP1x, . . . , x
TPmx], xqi = [qT1 x, . . . , q

T
z x] and r = [r1, . . . , rnr ]

T . Applyingthe Cauhy-Shwarz inequality, we have
min
x

(xTP0x+ 2qT0 x+ r0) + max
‖µ‖2≤1,‖ν‖2≤1,‖ξ‖2≤1

‖xpi‖‖µ‖+ 2‖xqi‖‖ν‖+ ‖r‖‖ξ‖Finally the RQP problem (A.4) an be written as an LP problem with quadrati on-straints like (A.7).
min

x,wi,s,d,t
s+ 2qT0 x+ t+ 2d+ ‖r‖2subjet to:

xTP0x ≤ s

xTPix ≤ wi

‖qjx‖2 ≤ d

‖w‖2 ≤ t

(A.7)
where r = [r1, . . . , rnr ]

T . So, the SOCP formulation of (A.7) is as follows:
min

x,w,s,d,t
s+ 2qT0 x+ t+ 2d+ ‖r‖2subjet to:

∥
∥
∥
∥
∥

[

2P
1/2
0

s− 1

]∥
∥
∥
∥
∥
2

≤ s+ 1

∥
∥
∥
∥
∥

[

2P
1/2
i

wi − 1

]∥
∥
∥
∥
∥
2

≤ wi + 1

‖qjx‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wi

0 ≤ s

(A.8)



APPENDIX A. ROBUST OPTIMIZATION: ROBUST QUADRATIC PROGRAMMING APPROACH 144Observe that in (A.8) the searh spae is extended from the spae of x to the spaes of f ,
wi, t and dA.2.2 Robust Quadrati Programming with polytopi unertaintiesIn this ase the unertainties in P , q and r are norm bounded and E, F and G an bewritten as

E = Co{P1, . . . , Pm} =

{

P : P =

m∑

i=1

Piµi,

m∑

i=1

µi = 1, µi ≥ 0

}

F = Co{q1, . . . , qz} =






q : q =

z∑

j=1

qjνj,
z∑

j=1

νj = 1, νj ≥ 0







G = Co{r1, . . . , rnr} =

{

r : r =

nr∑

l=1

rlξl,

nr∑

l=1

ξl = 1, ξl ≥ 0

}where the notation Co{·} is used to denote the onvex hull, with Pi ∈ R
n×n, qj ∈ R

n and
rl ∈ R. Making the same proedure of the previous setion i.e. replaing the unertaintydesription in (A.4), the optimization problem (A.4) onsidering polytopi unertainty anbe written as an Seond Order Cone Programming (SOCP) problem as follows:

min
x,w,d,t

t+ 2d+ ‖r‖2subjet to:
∥
∥
∥
∥
∥

[

2P
1/2
i x

wi − 1

]∥
∥
∥
∥
∥
2

≤ wi + 1

‖qjx‖2 ≤ d

‖w‖2 ≤ t

0 ≤ wi

(A.9)
where r = [r1, . . . , rnr ]

T . Observe that in (A.9) the searh spae is extended from the spaeof x to the spaes of wi, t and d.A.2.3 Robust Quadrati Programming with �nite sets unertaintiesAssume that unertainties in P , q and r are given by
E = {P1, . . . , Pm}
F = {q1, . . . , qz}
G = {r1, . . . , rnr}Again replaing the unertainty desription in (A.4), the optimization problem (A.4) anbe written as,
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min
x

max
i∈E,j∈F,l∈G

xTPix+ 2qTj x+ rl (A.10)with E = {1, . . . ,m}, F = {1, . . . , z} and G = {1, . . . , nr}. With the previous desriptionof the sets, the optimization problem (A.10) an be written as an Seond Order ConeProgramming (SOCP) problem as follows:
min
x,w,d,t

w + 2t+ dsubjet to:
∥
∥
∥
∥
∥

[

2P
1/2
i x

w − 1

]∥
∥
∥
∥
∥
2

≤ w + 1, i ∈ E

qTj x ≤ t, j ∈ F

rl ≤ d, l ∈ G

0 ≤ w

(A.11)
as mentioned before, it is important to highlight that in (A.11) the searh spae is extendedfrom the spae of x to the spaes of w, t and d.



APPENDIX B
Loal linearization
In order to implement a min-max preditive ontrol algorithm, long-term predition ofthe key states is required. Clearly, sine the underlying system is nonlinear, the futurestates (and hene the outputs) are related to the urrent states and urrent/future inputsin a nonlinear fashion. This makes the problem of �nding the optimal input sequenea omplex nonlinear optimization problem. This work propose to make the relationshiplinear via loal linearization using the approah proposed by [88℄.The one-step ahead predition of the states is de�ned as

x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))
(B.1)More generally, the multi-step predition is

x(k + j) := f(. . . (f(x(k), u(k)) . . . ), u(k + j − 1))

x(k + j) := fj(x(k), {u(k + i)}j−1
i=0 )Now, if f(x(k), u(k)) is linearized around some nominal input value u∗(k) we have

x(k + 1) = f(x(k), u∗(k)) +Ak(x(k)− x∗(k)) +Bk(u(k) − u∗(k)) (B.2)where
Ak =

∂f

∂x

∣
∣
x∗(k),u∗(k)

, Bk =
∂f

∂u

∣
∣
x∗(k),u∗(k)It is possible generalize the idea to develop multi-step preditions. Note from (B.1) that

x(k + 2) = f(x(k + 1), u(k + 1)), where x(k + 2) is related in a nonlinear fashion not only146



APPENDIX B. LOCAL LINEARIZATION 147to u(k + 1), but also to u(k) appearing in expression (B.1) for x(k + 1). By appropriatelinearization, it is possible to derive an approximation that is linear with respet to theundeided inputs u(k) and u(k + 1). The linear relationship that approximates the loalbehavior an be obtained by linearizing the expression f(x(k + 1), u(k + 1)) with respetto x∗(k + 1) = f(x(k), u∗(k)) and u∗(k + 1) as follows
x(k + 2) = f(x∗(k + 1), u∗(k + 1)) +Ak+1(x(k + 1)− x∗(k + 1))

+Bk+1(u(k + 1)− u∗(k + 1)),

x(k + 2) = f(f(x(k), u∗(k)), u∗(k + 1)) +Ak+1(x(k + 1)− f(x(k), u∗(k)))

+Bk+1(u(k + 1)− u∗(k + 1)),

x(k + 2) = f2(x(k), u
∗) +Ak+1(x(k + 1)− f(x(k), u∗(k))) +Bk+1(u(k + 1)− u∗(k + 1))(B.3)where

Ak+1 =
∂f

∂x

∣
∣
f(x(k),u∗(k)),u∗(k+1)

, Bk+1 =
∂f

∂u

∣
∣
f(x(k),u∗(k)),u∗(k+1)Note that u∗ is a piee-wise onstant input taking, for instane, values of {u∗(k);u∗(k+1)}at the time interval [k, k + 2]. Note from (B.2) that x(k + 1)− f(x(k), u∗(k) = Ak(x(k)−

x∗(k)) +Bk(u(k) − u∗(k)), then
x(k + 2) = f2(x(k), u

∗) +Ak+1Ak(x(k)− x∗(k)) +Ak+1Bk(u(k)− u∗(k))

+Bk+1(u(k + 1)− u∗(k + 1)),

x(k + 2) = f2(x(k), u
∗) +Ak+1Ak(x(k)− x∗(k)) +

[
Ak+1Bk Bk+1

]
[

u(k)− u∗(k)
u(k + 1)− u∗(k + 1)

](B.4)Carrying out the same derivations for x(k + j) we obtain
x(k + j) = fj(x(k), u

∗) +

j−1
∏

i=0

Ak+i(x(k)− x∗(k))

+
[
∏j−1

i=1 Ak+iBk
∏j−1

i=2 Ak+iBk+1 . . . Bk+j−1

]








u(k)− u∗(k)
u(k + 1)− u∗(k + 1)...

u(k + j − 1)− u∗(k + j − 1)






(B.5)To redue the omputational omplexity, the matries Ak+i and Bk+i an be kept onstant



APPENDIX B. LOCAL LINEARIZATION 148at the initial values of Ak and Bk throughout the predition horizon. Hene, (B.5) simpli�esto
x(k + j) = fj(x(k), u

∗) +Aj
k(x(k) − x∗(k))

+
[

Aj−1
k Bk Aj−2

k Bk . . . Bk

]








u(k)− u∗(k)
u(k + 1)− u∗(k + 1)...

u(k + j − 1)− u∗(k + j − 1)








(B.6)
In order to develop a predition for the output that is linear with respet to the undeidedinput moves, we linearize y(k+ j) with respet to x(k) and u∗(k+ j) and arrying out thesame idea,
y(k + j) = g(x(k), u∗(k + j)) + Ck(x(k + j)− x∗(k)) +Dk(u(k + j) − u∗(k + j)) (B.7)we obtain the output predition. Combine (B.7) with the optimal multi-step preditionequation (B.6) for to obtain the omplete output predition in a Np horizon, let yk =

[yT (k), . . . , yT (k +Np)]
T , then,

yk = Γ
︸︷︷︸Free Response+ Λδuk

︸ ︷︷ ︸Fored Response (B.8)with δuk = [δuT (k), . . . , δuT (k+Np)]
T , δu(k + j) = u(k+ j)− u∗(k+ j), Γ = CΦ and

Λ = [CH 0] + [0 D], where C = diag([Ck, · · · , Ck
︸ ︷︷ ︸

Np

]), D = diag([Dk, · · · ,Dk
︸ ︷︷ ︸

Np

]), and
Φ =








I
I...
I







x∗(k) +








g(x(k), u∗(k))
g(x(k), u∗(k + 1))...
g(x(k), u∗(k +Np))







+








f1(x(k), u
∗)

f2(x(k), u
∗)...

fNp(x(k), u
∗)







+








Ak

A2
k...

A
Np

k







(x(k)− x∗(k))

H =








Bk 0 · · · 0
AkBk Bk · · · 0... ... . . . ...

A
Np−1
k Bk A

Np−2
k Bk · · · Bk







,The loal linearization in (B.5) makes sense only when the omputed inputs {u(k+i)}j−1

i=0 donot deviate muh from u∗. For nonlinear models this an be ahieved by �nding a nominaltrajetory u∗(k+j) whih is as lose as possible to the optimal strategy uoptk (k+j) whih isthe result of the MPC optimization problem. A simple but e�etive hoie is to start with
u∗(k + j) = uoptk−1(k + j), i.e. the optimal ontrol poliy derived at the previous sample.



APPENDIX C
Unertainty desription
The systems overed in this work are onstrained unertain systems of the form

x(k + 1) = Ek + (Ak + δAk)x(k) + (Bk + δBk)u(k)

y(k) = Fk + Ckx(k) +Dku(k)

θ , (δAk, δBk) ∈ Ψ

(C.1)from appendix B we have that Ek = f(x(k), u∗(k)) − Akx
∗(k) and Fk = g(x(k), u∗(k)) −

Ckx
∗(k). In this work ellipsoidal unertainty in Ak and Bk is onsidered, however, it ispossible to propagate this unertainty in the free and fore responses by means of thepredition sequene of the output y(k) as (C.2)

yk = (Γ + δΓ)
︸ ︷︷ ︸Free Response+ (Λ + δΛ)uk

︸ ︷︷ ︸Fored Response (C.2)where Γ + δΓ = C (Φ + δΦ) and Λ + δΛ = [C (H + δH) 0] + [0 D], then δΓ = CδΦ and
δΛ = [CδH 0]. From appendix B we have that the unertainty in Ak and Bk is propagatedlike this,

149
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Φ+ δΦ =








I
I...
I







x∗(k) +








g(x(k), u∗(k))
g(x(k), u∗(k + 1))...
g(x(k), u∗(k +Np))







+








f1(x(k), u
∗)

f2(x(k), u
∗)...

fNp(x(k), u
∗)








+








(Ak + δAk)
(Ak + δAk)(Ak + δAk+1)...

∏Np

i=0(Ak + δAk+i)







(x(k) − x∗(k))

H + δH =







(Bk + δBk) 0 · · · 0
(Ak + δAk)(Bk + δBk) (Bk + δBk+1) · · · 0... ... . . . ...

∏Np−1
i=0 (Ak + δAk+i)(Bk + δBk)

∏Np−2
i=0 (Ak + δAk+i)(Bk + δBk+1) · · · (Bk + δBk+Np

)






Making some algebrai operations, Φ+ δΦ and H + δH an be expressed as,

Φ+ δΦ =








I
I...
I







x∗(k) +








g(x(k), u∗(k))
g(x(k), u∗(k + 1))...
g(x(k), u∗(k +Np))







+








f1(x(k), u
∗)

f2(x(k), u
∗)...

fNp(x(k), u
∗)







+








Ak

A2
k...

A
Np

k







(x(k)− x∗(k))

+








δAk

AδAk+1 + δAk(Ak + δAk+1)...
∑Np

i=1A
Np−i
k δAk+Np−i

∏i−1
l=0(Ak + δAk+Np−l)







(x(k)− x∗(k))

H + δH =








Bk 0 · · · 0
AkBk Bk · · · 0... ... . . . ...

A
Np−1
k Bk A

Np−2
k Bk · · · Bk








+








δBk 0 · · · 0
AkδBk + δAk(Bk + δBk) δBk+1 · · · 0... ... . . . ...

ANp−1
k δBk + (Bk + δBk)ηNp−1 ANp−2

k δBk+1 + (Bk + δBk+1)ηNp−2 · · · (Bk + δBk+Np
)






where
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ηj =

j
∑

i=1

Aj−i
k δAk+j−i

i−1∏

l=0

(Ak + δAk+j−l)�nally δΦ and δH are given by
δΦ =








δAk

AδAk+1 + δAk(Ak + δAk+1)...
∑Np

i=1A
Np−i
k δAk+Np−i

∏i−1
l=0(Ak + δAk+Np−l)








δH =







δBk 0 · · · 0
AkδBk + δAk(Bk + δBk) δBk+1 · · · 0... ... . . . ...

ANp−1
k δBk + (Bk + δBk)ηNp−1 ANp−2

k δBk+1 + (Bk + δBk+1)ηNp−2 · · · (Bk + δBk+Np
)










APPENDIX D
Proess Models of the hemial plant
The proposed model for the hemial plant ase is based on �rst priniples, the basimaterial balanes lead the equations desribing the dynami behaviour. This model wasproposed by Sattollini [147℄.D.1 Dynami model of the reatorsConsider a hemial reator and assume that:

• all the energy phenomena are negligible
• the hydrauli phenomena are all at the steady state
• there is perfet mixing inside the reator;The mass balane of the i-th omponent inside the reator is then given by (D.1).

dc
i

dt
=

1

V





ni∑

j=1

c
I_ij

.q
I_ j

−
n0∑

j=1

c
O_ij

.q
O_ j




+
− k

nr∏

r=1

xr (D.1)where q
I_j

is the volumetri �ow rate of the j-th input, c
I_ji

is the onentration of the i-thomponent in the j-th input �ow rate, V is the reator volume, c
i
as the onentrationinside the reator of the i-th omponent, q

O_j
is the volumetri �ow rate of the j-thoutput, c

O_ji
is the onentration of the i-th omponent in the j-th output �ow rate, n

iis the number of input omponents, n0 is the number of output omponents, nr as thenumber of reating omponents and k as the reation onstant.Assuming that inside the reator there are n omponents, the model will be desribed bya system of n di�erential equations besides one more equation desribing the hydrauliequilibrium, that is shown by ( D.2). 152
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ni∑

j=1

q
I_ j

(t) =

n0∑

j=1

q
O_ j

(t) (D.2)Finally, note that the dynami model previously derived an be expressed in terms of molarfrations xi, instead of onentrations ci by de�ning(D.3).
xi =

c
i

n∑

j=1
c
j

(D.3)Then, with an obvious meaning of symbols, the dynami equations an be written as (D.4)shows.
dxi
dt

=
1

V





ni∑

j=1

x
I_ij

.q
I_j

−
n0∑

j=1

x
O_ij

.q
O_j




+
− k

nr∏

r=1

xr (D.4)and �nally (D.5) shows the relation among molar frations.
n∑

j=1

xj = 1 (D.5)D.2 Dynami model of the distillation olumnsThe simpli�ed model of the tray distillation olumn here onsidered assumes that it isomposed by �ve setions:1. Condenser2. Enrihing setion3. Feed tray4. Stripping setion5. Reboilerwhere the enrihing and stripping setions an be omposed by a variable number of trays.Assume that the mixture is formed by N omponents and let
• xi is the liquid molar fration of the i-th omponent (i=1,...,N);
• yi is the vapor molar fration of the i-th omponent (i=1,...,N);
• αi volatility of the i-th omponent (i = 1,...,N);
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• αij relative volatility of the i-th omponent with respet to the j-th omponent (i; j= 1,...,N).Straightforward omputations allow to onlude that the relation among the liquid andthe vapor molar frations is given by the set of linear equations shown in (D.6).

ΨY = Γ (D.6)where,
Ψ =

















1 + α1N
x1

xN

α1N
x1

xN

... α1N
x1

xN

α2N
x2

xN

1 + α2N
x2

xN

... α2N
x2

xN

.

.

.

.

.

.

.

.

.

α(N−1)N
xN−1

xN

α(N−1)N
xN−1

xN

... 1 + α(N−1)N
xN−1

xN

















Y = [y1, y2, ..., yN−1]
T

Γ =

[

α1N
x1
xN

, α2N
x2
xN

, ...α(N−1)N
xN−1

xN

]TThe mathematial model of the olumn is derived under the fundamental assumption thatthe energeti phenomena are negligible, so that only mass balane equations are used.Moreover, the following simplifying hypothesis are introdued.
• The pressure inside the olumn is onstant
• The vapor �ow rate V an be diretly manipulated (the reboiler has no dynamis)
• The liquid (R) and vapor (V ) �ow rates are onstant inside the olumn
• The hydrauli dynamis is negligible with respet to the dynamis of the onentra-tions
• The vapor hold-up on the trays is negligible with respet to the liquid hold-up;
• The Murphee e�ieny is onstant for any (i-th) omponent and any (j-th) tray, as(D.7) and (D.8) show (the user an modify the e�ieny in order to make more realthe proess).

Eji =
yji − y(j−1)i

y∗ji − y(j−1)i

= 1 (D.7)
y∗ji =

αiN .xi
1 + (αiN − 1)xi

(D.8)The mass balane for any tray and for any i-th omponent is:



APPENDIX D. PROCESS MODELS OF THE CHEMICAL PLANT 1551. Stati balane of the �ow rates at the ondenser:
V = R+D (D.9)2. Stati balane of the �ow rates at the reboiler:

V +B = R+ F (D.10)3. Dynami balane at the reboiler:
H1i

.
x1i = −V y1i + (R+ F )x2i −Bx1i (D.11)4. Dynami balane in the stripping setion:

Hji
.
xji = (R + F )(x(j+1)i − xji) + V (y(j−1)i − yji) (D.12)5. Dynami balane at the feed tray:

Ha
.
xai = Rx(Ne+3)i − (R+ F )xai + V (y(Ne+1)i − yai) + Fxfi (D.13)6. Dynami balane in the enrihing setion:

Hj
.
xji = R(x(j+1)i − xji) + V (y(j−1)i − yji) (D.14)7. Dynami balane at the ondenser:
HNp

.
xNpi = V y(Np−1)i − (R+D)xNpi (D.15)where x1i = xbi, xNpi = xti, Np = Na + Ne + 3 (the total number of trays, inludingreboiler and ondenser), Hj as the liquid hold-up in the j-th tray, Ha as the liquid hold-upin the feed tray, Na as the number of trays in the enrihing setion, Ne as the number oftrays in the stripping setion, xji as the liquid molar fration of the i-th omponent in the

j-th tray, yji as the vapour molar fration of the i-th omponent in the j-th tray, xai asthe liquid molar fration of the i-th omponent in the feed tray, xti as the liquid molarfration of the i-th omponent in the top produt, xbi as the liquid molar fration of the
i-th omponent in the bottom produt, F as the feed �ow rate, xfi as the liquid molarfration of the i-th omponent in the feed �ow rate and αiN as the relative volatility ofthe i-th omponent with respet to the N -th omponent.The omplete model of a distillation olumn with Np trays is then desribed by (D.9) to(D.15) , written for any omponent, besides the additional (D.6), (D.7) and (D.8).
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