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Abstract   
Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental 
planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, 
they were used to predict deforestation associated with new roads, such as the “Variante Porce” road and the “El Bagre-San Jacinto del 
Cauca” road in the department of Antioquia. ANN Training was carried out online using the back-propagation algorithm, part of the R 
software. The predictive capacity was evaluated using the area under the receiver operator characteristic curve (AUC). Also, a network that 
showed the best predictive capacity for the deforestation surface was generated for the baseline scenario and the simulated scenario 
incorporating the new roads. The comparison of scenarios suggested that new roads would increase the probability of deforestation for 
approximately 103.729 ha of forest. 
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Aplicación de redes neuronales artificiales en la modelación de la 
deforestación asociada a nuevos proyectos de infraestructura vial 
 

Resumen 
La deforestación tropical es un proceso continuo causado principalmente por la construcción de nuevas vías, las cuales sin una planificación 
ambiental adecuada contribuyen a la pérdida de biodiversidad. Dado que las redes neuronales artificiales (RNAs) tienen la capacidad de 
capturar relaciones no lineales, se utilizaron para predecir la deforestación asociada a nuevas vías, como la Variante Porce y la vía El Bagre-
San Jacinto del Cauca, en el departamento de Antioquia. El entrenamiento de las RNAs se realizó en modo on line con el algoritmo de 
retropropagación, en el software R. La capacidad de predicción se evaluó con el área bajo la curva ROC (AUC) y con la red que presentó 
mejor capacidad predictiva se generó la superficie de deforestación para el escenario base y el escenario simulado incorporando las nuevas 
vías. La comparación de escenarios indica que las nuevas vías incrementarían la probabilidad de deforestación de aproximadamente 
103.729 ha de bosque. 
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1.  Introduction 
 
Due to biogeographic conditions, Colombia has a great 

amount of biodiversity, but it is unfortunately among the top 
ten countries that have shown important loss of forest habitat. 
It has an annual destruction rate of 0.5% [1]. It is calculated 
that by the year 2050 almost 80% of species extinction will 
be the result of deforestation [2]. This is an ongoing cycle in 
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Latin America that is brought about by the development of 
road infrastructure projects [3], which, without suitable 
environmental planning, contribute to the fragmentation of 
forests and biodiversity loss. 

The main failures of environmental impact studies such 
as the descriptive nature of the assessments, the lack of 
measurable indicators and the absence of quantitative 
predictions [4] do not allow the potential impacts of new 
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roads to be rigorously established, which could compromise 
the conservation of valuable resources in the long-term. 
These assessments should be complemented with spatial 
analysis models that help predict potential changes in the 
landscape caused by the construction of a road. 

Statistical models have been widely used to model 
deforestation in the tropics, [5, 6] mainly in the Amazon 
[7,8]. Various pieces of research that included these models 
had identified the places most susceptible to deforestation 
and the main determinants. There has been no deep analysis 
or estimation of the condition of forests after the construction 
of new road infrastructure projects; this would help to 
improve the local management and conservation of forests. 

Statistical models are attractive for decision makers due 
to their methodological stability and long application history. 
However, for these types of models, a priori assumptions 
should be made about the relationship between variables, 
which could not exist. The main advantage in the use of 
ANNs to make predictions is that this type of assumption is 
not required as they have the ability to capture nonlinear 
relationships. They can, therefore, be a more appropriate 
instrument when emphasis is placed on self prediction and 
not on the underlying relationships between independent and 
dependent variables [9]. 

ANNs have been widely applied in medicine and 
molecular biology. At the beginning of the 1990s the first 
studies were reported in the areas of ecology and 
environmental sciences [10]. Khoi and Murayama [11] used 
ANNs to predict the areas most vulnerable to deforestation, 
Larsen [12] used ANNs to evaluate the response of forest 
ecosystems in the presence of high amounts of carbon 
dioxide and ozone, and Pijanowski et al. [13] constructed an 
ANN model to predict changes in coverage and land use on 
a national scale. 

The objective of this research is to construct neural 
network models, evaluate and choose the best model based 
on its performance (highest AUC value) to predict 

deforestation from 1980-2000, and evaluate the change in the 
probability of deforestation for a scenario that simulates the 
construction of new roads. 

 
2.  Methodology 

 
2.1.  Study area  

 
The study area includes the Bajo Cauca and Northeast 

sub-regions of the department of Antioquia (Fig. 1) which 
contain six and ten municipalities and have a total area of 
8.585 km2 and 8.645km2 respectively. These sub-regions are 
mainly devoted to mining and cattle ranching and have only 
marginal agricultural production [14]. These regions still 
have forest areas with a great diversity of natural resources; 
however, their geographical locations has led to them being 
involved in the planning of new road infrastructure projects 
aimed to improve the department´s connectivity with the 
northern part of the country. Therefore, it is an interesting 
zone to develop spatial deforestation models as a way of 
reducing the impacts caused by the construction of new 
roads.  

Two roads were considered for this research: the “ El 
Bagre - San Jacinto del Cauca” road, 72 Km in length; and 
the “Variante Porce” road that goes from the municipality of 
Yolombo up to the municipality of Zaragoza, approximately 
150 km in length [15]. This road was originally designed in 
the study region to reduce the traveling time from Medellín 
to the coast; however, the feasibility studies were rejected by 
the environmental authorities in the 90s due to environmental 
impact on ecosystems. Their current stance is to rethink the 
assessments since this “Variante” would arrive in Zaragoza 
using 60 km less road than what was proposed in section 2 
(T2) of the “Autopistas de la Prosperidad” (Fig. 1). 
 
 

 
Figure 1. Location of the study area corresponding to the Northeast and Bajo Cauca sub-regions of the Department of Antioquia.  
Source: The autors. 
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2.2.  Data and variables 
 
Land coverage information for the years 1980 and 2000, 

using a scale of 1:25.000, was employed in the deforestation 
modeling. Land coverage information for 1980 was obtained 
after digitalizing more than 500 thematic plates [16] in analog 
format provided by the Ministry of Agriculture of Antioquia, 
and the land coverage for 2000 was the result of an inter-
administrative agreement between the Ministry of 
Agriculture, the Administrative Department of National 
Planning and the “Instituto Geográfico Agustín Codazzi”. 
The information processing and homologation of coverage 
was carried out in a previous study using the Corine Land 
Cover methodology [16], and these were used as the basis to 
identify the changes from forest to no forest. 

Six variables were built in raster format with a 30m pixel 
size. Orrego [16] indicates that it is best suited to represent 
deforestation and those variables that explain its occurrence. 
Variables 
• Euclidian distance to rivers.  
• Euclidian distance to roads. 
• Distance to forest border. 
• Distance that represents the least cost to municipalities. 
• Slope. 
• Agricultural aptitude. 

Although deforestation can be explained by a large 
number of variables, the underlying causes of deforestation 
in the study zone (poverty, poor forest management, 
insecurity in land tenure, etc.), which constitute the 
fundamental elements of the human-environmental 
relationship [17] are more difficult to identify than the 
proximate causes due to the availability of data. Therefore, 
biophysical and accessibility variables were used that provide 
a better spatial representation [18]. 

 
2.3.  Neural network and validation training 

 
The ANN training took place with the software R [19, 20] 

using the AMORE package, which, in turn, uses the back-
propagation algorithm [21].  

The proposed neural network has a unidirectional 
multilayer perceptron structure, with an input layer, a hidden 
layer and an output layer. Each explanatory variable is 
associated with a neuron in the input layer, and one neuron 
was assigned to the output that corresponded to the dependent 
variable. For this last layer, a logistic activation function was 
used because it is a categorical variable that takes values of 
zero and one (1= deforested, 0= not deforested) 

According to the features of the package used, the weights 
start with random values within the range.  

 

±� 𝟑𝟑
𝒆𝒆𝒆𝒆+𝒆𝒆𝒐𝒐

      (1) 

 
Where eo is the number of connections between the input 

layer and the hidden layer, and os is the number of 
connections between the hidden layer and the output layer.  

The training was carried out with a balanced sample of 
250,000 points (3% of the data). That is to say, from this 
sample 50%, of the data corresponds to random deforested 

points and the other 50% to random non-deforested points. 
The selection of this sample was made in order to improve 
the network performance and to be able to make better 
predictions since the learning network tends to be biased 
towards the class that has the majority in the training group 
[22,23] for a non-balanced sample. 

The input data were standardized so that the values were 
in the range (0,1) since this speeds up the neural network 
training [24]. In addition, the standardization enables better 
initializations in the weights, which reduces the possibility of 
finding a local minimum. The data was transformed by using 
the maximum and minimum values in the original data set. 
By standardizing each variable, the ANNs assign equal 
importance to the data, so the problem of variables with 
different relevance due to their value range is avoided. The 
transformation was performed based on the following 
equation.  

 
𝒙𝒙′𝒊𝒊 = (𝒙𝒙𝒊𝒊 −𝒎𝒎í𝒏𝒏𝒊𝒊𝒎𝒎𝒆𝒆) (𝒎𝒎á𝒙𝒙𝒊𝒊𝒎𝒎𝒆𝒆 −𝒎𝒎í𝒏𝒏𝒊𝒊𝒎𝒎𝒆𝒆)⁄    (2) 
 
Using a standardized sample and changing the value of 

the training parameters, network models were trained. As 
Moreira and Fiesler [25] recommended, the values that were 
considered for the training rate were 0.01 and 0.05; both used 
a momentum of 0.5 and a rate of 0.1 with a momentum of 
0.9. Similarly, the number of neurons in the hidden layer 
were adjusted and Hecht-Nielsen´s suggestion [26] was taken 
as the basis. This author states that the use of 2n + 1 hidden 
neurons (with n being the number of input neurons) can 
guarantee perfect adjustment of any ongoing function.  

24 networks were constructed and trained. Due to the 
instability in training and poor error reduction after 5000 
iterations, the cycle was interrupted for all networks, without 
significant accuracy losses. The logistic activation function 
was used for both the hidden layer and for the output layer, 
and the online learning method was used based on its ability 
to work with large training sets [27]. In addition, the network 
convergence is faster compared to the learning method in 
batch mode [28,29]. 

The quality of a model can be assessed in terms of its 
discriminatory capacity, that is to say the ability to predict the 
presence or absence of a feature [30]: in this case the presence 
or absence of deforestation. Therefore, the ROC curve 
(Receiver Operating Characteristic in English) and its 
associated area (AUC) were used. The ROC curve is 
independent of a threshold and provides a unifying criterion 
when evaluating the process of a model [31]. A detailed 
description of the ROC curve´s application to evaluate the 
prediction of land use and land cover change can be found in 
[32]. 

To perform the validation, a random sample that was 
independent from the training set, and had a size of 250,000 
points, was selected. Using the ROCR package [33], the 
AUC values were estimated. This allowed some trends to be 
identified in the network's predictive capacity with respect to 
different sets of parameters (momentum, rate and amount of 
hidden neurons) as well as the best suited ANNs to predict 
deforestation. 

The network that had best predictive capacity was chosen 
from 24-trained networks:  that is to say, the one with the 
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highest AUC value. The deforestation surface for the baseline 
scenario and the simulated scenario were estimated with this 
network under the assumption that they both had similar 
deforestation patterns. For the simulated scenario estimation, 
the new roads were added and the variables distance to roads, 
distance to forest border and distance representing the least 
cost to the municipalities were updated. The original values 
for the other variables were maintained. 

The pixels affected by the new roads were identified by 
overlapping the raster files of the deforestation probability 
surface in the baseline scenario with the estimated surface for 
the simulated scenario.  

 
3.  Results 

 
The networks that showed high AUC values were those 

trained with a lower training rate and greater amount of 
neurons in the hidden layer; this can be observed in Fig. 2. 

The ANN that showed best predictive capacity obtained 
an AUC value of 0.8212 (Table 1). Based on this, a 
deforestation probability surface was generated for the area 
covered by forests in 1980 as well as the deforestation 
probability surface for the simulated scenario. 

The comparison of the scenarios suggests that 1,152,565 
pixels, approximately 103,729 ha of forest (pixel area of 900 
m2), would increase its probability of deforestation (Fig. 3); 
75,622ha showed a low increase (0-0.11), 20.186ha an average 
increase (0.11-0.37), and 7.922ha a high increase (0.37-0.9). 
However, some pixels, approximately 7%, showed a reduction 

 

 
Figure 2. Area under the ROC curve (AUC), with respect to the training rates 
and the number of hidden neurons for a cycle of 5,000 iterations.  
Source: The Autors 

 
 

Table 1.  
Parameters of the five artificial neural networks that showed best predictive 
capacity.  

Momentum Training 
rate 

Hidden 
neurons  Error  AUC 

0.5 0.01 20 0.173348 0.8147 
0.5 0.01 25 0.170802 0.8184 
0.5 0.05 25 0.172912 0.8185 
0.5 0.01 30 0.170392 0.8202 
0.5 0.05 30 0.171380 0.8214 

Source: The Autors 

Figure 3. Location of the areas that had an increase in deforestation 
probability by the Construction of the “Variante Porce”and the road“El 
Bagre-San Jacinto del Cauca”.  
Source: The Autors 

 
 

in the probability of deforestation for the simulated scenario, 
which goes against what was expected based on the literature, 
which indicates that the probability of deforestation increases 
with the proximity to roads [34, 35]. This may be attributable 
to the expected error in the simulation, taking into account 
that the predictive capacity for the best ANN was 
approximately 82%. 

 
4.  Discussion 

 
As the training rate decreased, the AUC value increased, 

but we must bear in mind that even though the networks with 
low training rates show less error, compared with other rates, 
training is slower. Therefore, the value of the learning rate 
should be large enough to allow a quick learning process but 
small enough to ensure their effectiveness. For the current 
research, the training parameters that showed the best 
performance in terms of training times and predictive 
capacity was 0.05 for training rate and 0.5 for the momentum.  

Another alternative for training would be the use of an 
adaptive network with a resilient back propagation algorithm 
in which the rate changes automatically during the training. 
This means that the problem of defining a global training rate 
that is appropriate for the whole learning process [36] is 
avoided. 

The models generated in the training phase did not show 
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wide differences in terms of accuracy; the AUC values were 
between 0.79 and 0.82. This is consistent with Müller and 
Mburu [37] who also found similar results when modeling 
deforestation with different neural network architectures; and 
Okwuashi et al. [38] who simulated changes in land use in 
Lagos, Nigeria for three time periods, obtaining AUC values 
between 0.7574 and 0.7850. 

The evaluation of the potential effect of the two roads 
proposed for the simulated scenario suggests an increase in 
the deforestation probability for 103.729ha of forest. Wilson 
et al. [39] in their study, carried out in the temperate zone 
forests in southern Chile, found an increase in deforestation 
probability of about 27,000ha after simulating the 
construction of a new road. In the central region of México, 
Nelson and Hellerstein [34] simulated the impact of new 
roads on deforestation and demonstrated that access to roads 
significantly influenced the change in land use.  

The results of the research show an increase in the 
probability of deforestation within 6 km of roads; the 
probability diminishes as the distance increases. Mertens and 
Lambin [40] found a negative relationship between proximity 
to roads and deforestation at a distance beyond 7.5 km, and 
Barber et al. [36], in their study undertaken in the Amazon, 
found that 95% of the deforestation occurred within 5.5 km of 
roads. The results suggest that there is an agreement between 
different studies on the spatial pattern of environmental impacts 
resulting from the construction of roads. This offers the 
possibility to develop appropriate models for spatial scales that 
are larger than what is considered in this investigation. 

Other than the immediate impact of road construction 
within or near to forest areas, roads are permanent elements 
of the landscape [41]. So, even when they do not directly 
influence deforestation, they represent a long-term 
determinant to forest conversion. This is the case with the 
simulation of the “El Bagre - San Jacinto del Cauca” road, 
which does not go through forest areas but generates an 
increase in the deforestation probability in the eastern part of 
the study area. This shows that the spatial configuration of 
the scenery is determined, to great extent, by the proximity 
of forests to roads.  

Freitas et al. [41] indicate that although the variable of 
distance to roads is a strong predictor of forest dynamics in 
deforestation processes, the effect can only be detected when 
agricultural expansion has stabilized over a certain period.  
However, the effect of the construction of a new road such as the 
“variante Porce”, which would cross areas with low agricultural 
aptitude could be the increase in mining and excessive wood 
extraction and not the planting of agricultural crops. This is 
disturbing if we take into account that ecological studies suggest 
tropical forest based on poor soils have greater levels of 
biodiversity than those that have better quality soils [42]. 

The simulation shows the areas for which there is an 
increased deforestation probability are associated with the 
roads designed. Consequently, this estimation is a 
conservative one since many paths and temporal trails could 
be built from new roads facilitating access to forests. 
Therefore, the area that will experience an increase in 
deforestation could possibly be greater, which would put at 
risk the environmental services that house the forest 
ecosystems. 

5.  Conclusion 
 
The simulation with the network that presented the best 

predictive capacity during the training process showed an 
increase in the deforestation probability for 103.729ha of 
forest. Although the results cannot be validated with real data 
since the proposed roads have not yet been built, the 
development of this type of analysis provides planners with 
an empirical orientation on the magnitude and location of 
damage. Therefore, after the completion of road projects 
strict surveillance by the environmental authorities is needed 
and the design of policies aimed at creating incentives for 
forest protection, which would enable the population to take 
part in forest conservation activities.  

Although carrying out projections for change through 
empirical deforestation models generates uncertainty, the 
study shows how the ANN has the ability to capture changes 
and trends in terms of deforestation probability. Therefore, 
greater precision can be achieved by developing models for 
shorter time periods that help not to predict the exact location 
of future deforestation, but rather the places that have a high 
risk of conversion. 

Furthermore, the ANNs could be important tools to select 
alternative routes of linear structures since they allow all the 
environmental information for the area in which it is intended 
for the civil work to be located to be integrated. This would 
help environmental science technicians to visualize 
landscape transformation while the location of the linear 
infrastructure is defined. This represents valuable 
information that is useful in order to formulate and 
implement compensation forestry projects under the 
mechanism for reducing emissions for deforestation and 
degradation (REDD). 
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