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Brown Representability and Spaces

over a Category

Representabilidad de Brown y espacios sobre una categoŕıa
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equivariant cohomology theories, with emphasis on Bredon cohomology with
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Resumen. Probamos un teorema de representabilidad de Brown en el con-
texto de espacios sobre una categoŕıa. Discutimos dos aplicaciones a la repre-
sentabilidad de teoŕıas de cohomoloǵıa, con énfasis en cohomoloǵıa de Bredon
con coeficientes locales.
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goŕıa, cohomoloǵıa de Bredon con coeficientes locales.

1. Introducción

In this note we present a proof of the Brown Representability Theorem in the
context of spaces over a category, Theorem 4.1.

As an application of the representability result we describe an equivariant
generalization of Steenrod Square operations for Bredon cohomology with local
coefficients, and describe induction structures.

There are several proofs of representability results in the literature. The
approach given in the setting of compactly generated triangulated categories
[16, Theorem 4.1, p. 206], together with the usual constructions of the homotopy
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categories of genuine equivariant spectra as triangulated categories yield several
particular instances of similar results.

The earliest realization of this program (without the model/triangulated
category machinery) has been outlined in [10].

In a slightly different context, L. Gaunce Lewis Jr. sketches the main steps
to be done to achieve Brown Representability for RO(G)-graded Cohomology
theories for a compact Lie group G in chapter XIII of [11]. However, there are
no constructions of the G-equivariant stable homotopy category as a triangu-
lated category for an infinite discrete group G. Hence, other approaches to the
representability of equivariant cohomology theories need to be studied.

After collecting necessary preliminary results, spaces and spectra over a
small category C are discussed in Section 2. In Section 4, the notion of a C-
cohomology theory is introduced and the main result, Theorem 4.1 is proved.

Theorem. 4.1 LetH∗C : C−Pairs→ Z−Mod be a C-cohomology theory defined
on contravariant C-spaces. Then, there exists a contravariant C-Ω-spectrum EHC
and a natural transformation of C-cohomology theories

HnC (X) −→ [X,EHC (n)]C

consisting of group isomorphisms.

Natural transformations between C-cohomology theories are obtained as
maps of the representing objects in the homotopy category, Lemma 4.16. Equiv-
ariant Cohomology theories out of a functor defined on small groupoids, taking
values on Ω-spectra, and sending equivalences to weak homotopy equivalences
are constructed in [7, Proposition 6.8, p. 95].

Given a G-equivariant cohomology theory, the orbit Category Or(G) is con-
structed, and an Or(G)-cohomology theory is associated in Section 4. Special-
izing to the orbit category, Theorem 4.1 gives Corollary 5.3, which is a partial
converse to the construction of equivariant cohomology theories by functors
taking values on the category of Ω-spectra.

Corollary. 5.3 Let H∗− be an equivariant cohomology theory and let G be a
discrete group. Let H∗Or(G) be the Or(G)-cohomology theory defined on Or(G)

spaces by applying to a Or(G) pair (X,A) an Or(G)-cellular approximation(
X ′, A′

)
of the G-pair (̂X,A). In symbols:

H∗OrG(X,A) = H∗G
(

̂(X ′, A′)
)
.

For any n ∈ Z, the construction G 7→ EHOr(G)
(n)(G/G) sends a group

isomorphism to a weak homotopy equivalence.

Another consequence of Theorem 4.1 is Corollary 5.8, which describes Steen-
rod square operations in Bredon Cohomology with local Z/2-coefficients.
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Corollary. 5.8 Let M be a local coefficient system with values on Z/2-modules
and H∗ZOr(G)( ,M) be Bredon cohomology with coefficients in M . The Steen-

rod square operations Sqk correspond to Or(G)op × E-homotopy classes of
Or(G) × E-maps Sqk ∈

[
YHZ∆G(X)n,M

, YHZ∆G(X)n+k,M

]
Or(G)op×E between the

representing objects constructed either in Theorem 4.1 or [2].

Although the more general approach via triangulated categories of [16] does
certainly give a proof of the main Theorem 4.1, we keep the arguments el-
ementary and close to the classical exposition of Brown, aiming to address
the described applications in the study of equivariant cohomology theories, as
understood in [7], as opposed to the more sophisticated RO(G)-Graded set-
ting of [11]. On the other hand, the comparison to recent developments in the
study of the representability of Bredon Cohomology with local coefficients [2],
as well as the construction of the Steenrod Square operations do profit from
the elementary exposition given here.

The description of the natural transformations described in Corollary 5.8
plays a role in the construction of a spectral sequence to compute twisted
equivariant K-Theory for proper actions of infinite discrete groups in [1].

2. Spaces and Modules over a Category

We refer the reader to [4] for further reference and for the proof of the results
in this section. All spaces have the compactly generated topology, in the sense
of [12]. This is necessary for the construction of mapping spaces.

Definition 2.1. Let C be a small category. A covariant (contravariant) pointed
C-space over C is a covariant (contravariant) functor C −→ Spaces to the cate-
gory of compactly generated, pointed spaces.

A C-map f : X → Y between C-spaces is a natural transformation consisting
of continuous maps. We will denote by X ∧ Y the smash product of pointed
spaces.

Let I+ be the constant C-space assigning to each object the interval [0, 1]
with an added disjoint base point. A homotopy of pointed C-maps f0, f1 : X →
Y is a map of C-spaces H : X ∧ I+ → Y which restricted to X ∧{j}+ gives the
maps fj for j = 0, 1.

A C-map i : A → X is said to be a cofibration if it has the homotopy
extension property.

The following definition extends the notion of a CW-complex to pointed
spaces over a category.

Definition 2.2. Let C be a small category. A pointed C-CW complex is a
contravariant C-space together with a filtration

X0 ⊂ X1 ⊂ · · · = Xn
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such that X = colimnXn and each Xn is obtained from the Xn−1 by a pushout
of maps consisting of pointed maps of C-spaces of the form∐

i∈In morC(−, ci)+ ∧ Sn−1

��

// Xn−1

��∐
i∈In morC(−, ci)+ ∧Dn // Xn

Here, the space mor(−, ci) carries the discrete topology, ci is an object in C and
i is an element of an indexing set In. And + denotes the addition of a disjoint
basis point to the space.

Definition 2.3. Let f : X → Y be a map between C-spaces. f is said to be
n-connected (or a weak homotopy equivalence) if for all objects c ∈ C, the map
of spaces f(c) : X(c)→ Y (c) is n-connected (weak homotopy equivalence).

We need the following version of the Whitehead Theorem, easily obtained
as a translation to the pointed setting of Theorem 3.4 in [4, p. 222].

Theorem 2.4. Let f : Y → Z be a pointed map of C-spaces and X be a pointed
C-space. The map on homotopy classes of maps between C-spaces induced by
composition with f is denoted by f∗ : [X,Y ]C → [X,Z]C. Then:

• f is n-connected if and only if f∗ is bijective for any pointed C-CW com-
plex with dim(X) < n and surjective for any free C-CW complex with
dim(X) = n.

• f is a weak homotopy equivalence if and only f∗ is bijective for any pointed
C-CW complex X.

There exists a pointed C-CW approximation of every pair of pointed C-
spaces, which is easy to obtain by modifying Theorem 3.7 in [4, p. 223] to the
pointed setting.

We present two useful constructions for spaces over a category. They are
an instance of ends and coends in category theory [9, Chapter IX, 5 and 6].
Well-known constructions like geometric realizations and mapping spaces give
examples of coends.

Definition 2.5. Let X be a contravariant, pointed C, and let Y be a covariant
pointed C-space over C. Their tensor product X ⊗C Y is the space defined by∐

C∈Obj(C)

X(C) ∧ Y (C)/ ∼

where ∼ is the equivalence relation generated by (xφ, y) ∼ (x, φy) for x ∈ X(c),
y ∈ Y (d) and morphisms φ : c→ d.
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BROWN REPRESENTABILITY AND SPACES OVER A CATEGORY 59

Definition 2.6. Let X and Y be pointed C-spaces of the same variance, in the
sense that they are both either covariant or contravariant.

Their mapping space homC(X,Y ) is the space of natural transformations
between the functors X and Y , topologized as subspace of the product of the
spaces of pointed maps ΠC∈Ob(C)Map

(
X(C), Y (C)

)
.

Given a covariant (contravariant) C-space X and a covariant functor F :
C → D, the induction with respect to F is the D-space given by

F∗X = X ⊗
C

morD
(
F (−),−−

)
+

respectively
F∗X = morD

(
−−, F (−)

)
+
⊗
C
X

Given a contravariant (covariant) D-space the restriction to F , F ∗X is the
composition X ◦ F . Both induction and restriction are fucntorial, in the sense
that a morphism of C-spaces (i.e., a natural transformation) f : X → Y induces
morphisms F∗(f) : F∗X → F∗Y , F ∗(f) : F ∗X → F ∗Y given by f ⊗ id, f ◦ F
in the covariant case and id⊗

C
f , respectively f ◦ F in the contravariant case.

Induction and restriction satisfy adjunctions, which are described in [4,
Lemma 1.9, p. 208].

Lemma 2.7. Given a C-space X, a covariant functor F : C → D and a D-space
Y , there are natural adjunction homeomorphisms

• homD(F∗X,Y )→ homC(X,F
∗Y );

• F∗X ⊗
D
Y → X ⊗

C
F ∗Y ;

• Y ⊗
D
F∗X → F ∗(Y )⊗

C
X;

for a C-space and a D-space Y of the required variance.

We now present several instances of categories C which will be relevant for
the later development.

Definition 2.8. Let E be the category with two objects s, t and morphisms
i : s → t, p : t → s such that p ◦ i = ids. An Ex-space, compare [6], is a
covariant functor X : E → Spaces to the category of compactly generated,
Hausdorff spaces. The space B = X(s) is called the base space, E = X(t) is
the total space and the maps X(p) : E → B, X(s) : B → E are called the
projection and the section, respectively.

Definition 2.9. Let G be a group. Consider the category G consisting of only
one object c, and where the morphisms are the elements of G. A contravariant
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(covariant) functor X : G → Spaces is equivalent to giving a compactly gener-
ated, pointed space X := X(c) and a right (left) action of G leaving the base
point fixed.

Definition 2.10. Let F be a family of subgroups of the discrete group G closed
under intersection and conjugation. The orbit category Or(G,F) has as objects
homogeneous spaces G/H for H ∈ F , and a morphism is a G-equivariant map
F : G/H −→ G/K. If X is a pointed G-space, we define the contravariant
Or(G,F)-space associated to X to be the functor G/H 7−→ XH . The covariant
Or(G,F)-space associated to X is the functor G/H 7→ G/H+ ∧G X.

Remark 2.11. The example given in Definition 2.10 has been successfully
used in the literature to describe the homotopy theory of spaces with an action
of a group G and Or(G)-spaces. The level model structure on Or(G) spaces,
with level wise weak equivalences and cofibrations having the left homotopy
extension property is Quillen equivalent to the Homotopy category of compactly
generated, Weak Hausdorff G-spaces, compare [4], [11]. Fibrant objects are
given by free Or(G)-CW complexes. For more on this, we remit the reader to
Section 5.

3. Cohomology Theories Over a Category

The following definition contains a set of axioms for C-cohomology theories.

Definition 3.1. Let C be a small category. A reduced C-cohomology theory
is a sequence of weak C-homotopy invariant, contravariant functors HnC : C-
Pairs→ Z−Mod, together with natural transformations

δn(X,A) : HnC (A)→ Hn+1
C (X,A)

σn(X,A) : HnC (X)→ Hn+1
C
(
Σ(X)

)
(where Σ(X,A) denotes the object wise reduced suspension) satisfying

• The boundary homomorphisms fit into a long exact sequence

· · · −→ HnC (A)
δn(X,A)−−−−→ Hn+1

C (X,A)
p∗−→ Hn+1

C (X)
i∗−→ Hn+1

C (A) −→ · · ·

• For any wedge ∨Xi of pointed C-spaces, the inclusions Xi → ∨Xi induce
an isomorphism

H∗C(∨iXi) ∼= ΠiH∗C(Xi).

• For any pair (X,A), the homomorphisms σn(X,A) are isomorphisms.

Definition 3.2. An Ω-spectrum is a sequence of pointed spaces E = (En)n∈Z
together with structure maps σn : En ∧ S1 −→ En+1, such that the adjoint
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BROWN REPRESENTABILITY AND SPACES OVER A CATEGORY 61

maps ΩEn+1 −→ En are homotopy equivalences. A strong map of Ω-spectra
f : E −→ F is a sequence of pointed maps fn : En −→ Fn compatible with
the structure maps. We denote by SPECTRA the category of Ω-spectra and
strong maps. Recall that the homotopy groups of a spectrum E are defined by

πi(E) = colim πi+k(Ek)

where the structure maps are given as follows:

πi+k(Ek)
∧id−−→ πi+k+1(Ek ∧ S1)

σk∗−−→ πi+k+1(Ek+1).

Definition 3.3. A contravariant (covariant) spectrum over the small category
C is a contravariant (covariant) functor E : C −→ SPECTRA.

Let us recall the following

Definition 3.4. Let (X,A) be a C-pair of the same variance of the C-spectrum
E. We define the cohomology groups EpC(X,A) for a pair (X,A) with coefficients
in the spectrum E, by

EpC(X,A) = π−p
(

homC(X ∪A Cone(A),E)
)
.

If A = ∅, we just drop A from the notation above.

We now discuss an algebraic version of the previous constructions.

Definition 3.5. Let C be a small category and let R be a commutative ring.
A contravariant (covariant) RC-module is a contravariant (covariant) functor
from C to the category of R-modules. A contravariant (covariant) RC-chain
complex is a functor from C to the category of R-chain complexes.

A contravariant RC-module is free if it is isomorphic to an RC-module of
the shape ⊕

i∈I
R
[
morC(−, ci)

]
for some index set I and objects ci ∈ C.

Given a covariant C-module A and a contravariant C-module B, the tensor
product is defined to be the R-module⊕

c∈Ob(C)

A(c)⊗B(c)/ ∼

where ∼ is generated by the typical tensor relation mf ⊗ n = m⊗ fn.

Given two RC-modules A, B of the same variance, the abelian group

homRC(A,B)

is the Z-module of natural transformations of functors from C to R-modules.

The following construction will be needed later:
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Definition 3.6. Given a category C, and an object c, the category under c,
denoted by c ↓ C, is the category where the objects are morphisms ϕ : c → c0
and a morphism between ϕ0 : c → c0 and ϕ1 : c → c1 is a morphism ψ in C
such that ψ ◦ ϕ0 = ϕ1.

Consider the contravariant C-space Bc ↓ C which assigns to an object c in
C the geometric realization of the category c ↓ C.

The contravariant, free ZC-chain complex CZ
∗ (C) is defined as the cellular

Z-chain complex of the C-space Bc ↓ C. In Symbols

CZ
∗ (c) = C∗(Bc ↓ C).

Definition 3.7. Given a C-space (X,A) and a C-Z module M of the same
variance, the n-th C-cohomology of (X,A) with coefficients in M , denoted by
Hn

ZC
(
(X,A);M

)
, is the n-th cohomology of the C-cochain complex obtained

by taking the Z-module of ZC maps between the cellular C-chain complex of a
C-CW approximation (X ′, A′)→ (X,A) and M , in symbols

Hn
ZC
(
(X,A);M

)
:= Hn

(
homZC

(
C∗(X

′, A′),M
))
.

For the orbit category Or(G), the Or(G)-cohomology with coefficients in an
Or(G)-module is known as Bredon cohomology [3].

Remark 3.8. Definition 3.1 specializes to constructions which have been con-
sidered by other authors [13]. For the case X = {•}, A = ∅, this is known as
the cohomology of a category.

In another direction, specializing to the category with one object and just
the identity morphism gives the cellular cohomology of a CW -approximation
of spaces.

4. Representability

In this section we will prove:

Theorem 4.1. Let H∗C : C−Pairs→ Z−Mod be a C-cohomology theory defined
on contravariant C-spaces in the sense of Definition 3.1. Then, there exists a
contravariant C-Ω-spectrum EHC and a natural transformation of C-cohomology
theories

HnC (X) −→
[
X,EHC (n)

]
C

consisting of group isomorphisms.

We introduce the notion of a double-sided map cylinder in the context of
(pointed) C-spaces.

Definition 4.2. Let f, g : X → Y be two pointed maps between pointed C-
spaces. A double-sided mapping cylinder for f and g is a pointed C-space Z
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together with a natural transformation p : Y → Z with the property that for
any map j : Y →W satisfying [j ◦ f ] = [j ◦ g], one has a map j′ : Z →W such
that [j] =

[
j′ ◦ p

]
.

There exists a concrete model for the double-sided mapping cylinder of two
pointed C-maps f, g : X → Z, denoted by Cfg , and defined as the quotient
space

X ∧ I+
∐

Z/(x, 0) ∼ f(x) (x, 1) ∼ g(x) + ∧I+ ∼ +.

An easy consequence of the exact sequence property for pairs in reduced
C-cohomology theories is the following fact.

Lemma 4.3. Let T : C−Spaces −→ Z−Mod be a C-cohomology theory. Let j :
Y → Z be the canonical inclusion of Y into the double-sided mapping cylinder
for the C-maps f, g : X → Y . Then, for every element w ∈ T (Y ) satisfying
that T [g](w) = T [f ](w) in T (X), there exists a v ∈ T (Z) with T [j](v) = w.

The following result is crucial for the representability theorem proved in
this section. One usual reference is [9, page 61].

Lemma 4.4 (Yoneda). Let T : C −→ Set be a contravariant functor defined on
the small category C with values in the category of sets. Then, for every object
c there is a bijection{

Natural transformations morC(−, c) ·−→ T (−)
} ∼= {Elements in T (c)

}
Moreover, the bijection is given by assigning to a natural transformation t :
morC(−, c) → T the image of the map induced by the identity t(ic) : T (c) →
T (c). The inverse map is given by assigning to an element u ∈ T (c) the natural
transformation ϕu : morC(−, c) → T (−) which assigns a morphism f : d → c
the evaluation T (f)(u) ∈ T (d).

Definition 4.5. A functor T : C → Set naturally equivalent to morC( , c) for
a fixed object c ∈ C is called representable. An element u ∈ T (c) associated to
idc under such a natural correspondence is called universal element. In case of
a functor T defined on the category of C-spaces, and a C-space Y representing
T , the C-space Y is said to be a classifying object.

Definition 4.6. Let T be a contravariant, C-homotopy invariant functor de-
fined on the category of C-pairs, and taking values in the category of abelian
groups.

• T is said to have the exact sequence property if the following holds: For

any sequence of C-pairs, A
i−→ X

j−→ (X,A) the induced sequence

T (X,A)
T (j)−−−→ T (X)

T (i)−−−→ T (A)

is exact.
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• T is said to satisfy the wedge axiom if for any family of C-spaces Xi,
the inclusions Xi → ∨Xi induce abelian group isomorphisms T (∨Xi) ∼=∏
T (Xi).

Notice in particular that this is the case for a C-cohomology group in a fixed
degree T := HqC(,∅).

Since we are dealing with functors defined on the homotopy category of C-
spaces, the morphism sets appearing on the left hand side of the isomorphism
described in the Yoneda Lemma are given by C-homotopy classes of maps, de-
noted by [−,−]C . Moreover, since we are dealing mostly with free C-complexes,
we will detect the isomorphism of the functor with a representable functor on
free cells.

Definition 4.7. Given a group-valued functor T satisfying the exact sequence
property and the wedge axiom defined in the category of contravariant C-spaces
and a C-space Y , an element u ∈ T (Y ) is said to be n-universal if the function
ϕu :

[
morC(−, c)+ ∧ Sq, Y )

]
C → T

(
morC(−, c)+ ∧ Sq

)
given by the Yoneda

Lemma is an isomorphism for q < n and an epimorphism for q = n and all
objects c ∈ C.

We describe briefly the strategy for the proof of Theorem 4.1. We will use
the Yoneda Lemma, the wedge and the exact sequence property to construct
C-spaces Yi, as well as elements ui, which are i-universal for all i. This will
provide a free C-CW complex Y with an element u, which gives via the Yoneda
Lemma an isomorphism of the functor T = HqC(,∅) with the representable
functor [−, Y ]C . We will be able to verify that the suspension axiom gives a
structure of a contravariant Ω-spectrum on this C-space.

Lemma 4.8. Let Y be a C-space, let T be a functor satisfying the exact sequence
property and the wedge axiom. Pick up an element u ∈ T (Y ). Then, there is
a C-CW complex Y1 = Y ∨α morC(−, c)+ ∧ S1 obtained by attaching pointed
C-cells to Y and a 1-universal element u1 ∈ T (Y1) with u1|Y = u ∈ T (Y ).

Proof. We denote by Y1 = Y ∨α morC(−, c)+ ∧ S1 the space obtained by
attaching a copy of the pointed 1-cell for every element α ∈ T

(
morC(−, c)+ ∧

S1
)
.

From the wedge axiom one gets T (Y1) ∼= T (Y ) × ΠαT
(
morC(−, c)+ ∧ S1

)
.

Take the element u1 ∈ T (Y1) which maps under this equivalence onto
(
u, (α)

)
.

Clearly, u1|Y = u and notice that the natural transformation induced by u1

takes. [
S0 ∧morC(−, c)+, Y1

]
C →

[
S0, Y1(c)

]
+

= {•}

to the set T
(
S0 ∧morC(−, c)+

) ∼= {•} bijectively for every object c.
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The natural transformation
[
morC(−, c)+ ∧ S1, Y1

]
C −→ T

(
morC(−, c)+ ∧

S1
)

is surjective. To see this, let α ∈ T
(
morC(−, c)+∧S1

)
. Let fα : morC(−, c)+∧

S1 −→ ∨αmorC(−, c)+ ∧ S1 be the inclusion. The class [fα] maps under the
transformation to α. �X

Lemma 4.9. Given a C-space Y and an element u ∈ T (Y ), there is a space
Yn obtained by attaching pointed cells of dimension less than or equal to n and
an n-universal element u′n ∈ T (Yn) with u′n|Y = u.

Proof. We assume inductively that we constructed Yn−1 with an element u′n−1

with the above described property for n − 1 instead of n. As before, for β ∈
T
(
morC(−, c)+ ∧ Sn

)
, we consider a copy of morC(−, c)+ ∧ Sn and we put

Y ′n = Yn−1∨
(
∨βmorC(−, c)+∧Sn

)
. The wedge axiom gives T (Y ′n) ∼= T (Yn−1)×

ΠβT (morC(−, c)+ ∧ Sn). We select the element u′n which maps to
(
u′n−1, (β)

)
under this equivalence. As in the previous result, the corresponding map ϕu′n :[
morC(−, c)+ ∧ Sn, Y ′n

]
−→ T

(
morC(−, c)+ ∧ Sn

)
is surjective. We select a

representative fα of every element α ∈
[
morC(−, c)+∧Sn−1, Y ′n

]
with ϕu′n(α) =

0 ∈ T
(
morC(−, c)+∧Sn−1

)
. We attach an n-cell of type morC(−, c)+∧Dn with

fα as attaching map and obtain the space Yn.

The space Y ′n together with the inclusion j : Y ′n ↪→ Yn is a double-sided

mapping cylinder for the diagram ∨αmorC(−, c)+ ∧ Sn−1
c−→−−→
i

Y ′n ↪→ Yn, where

i is the map given by fα on each summand α and c is the map given by ∨fα.
Notice that u′n satisfies T [c](u′n) = T [i](u′n). From Lemma 4.3, one gets an
element un ∈ T (Yn) satisfying un|Yn−1 = un−1. We claim that un has the
desired property.

The diagram commutes

[
morC(−, c)+ ∧ Sq, Yn−1

]
C

j∗|Y n−1
//

ϕun−1
))

[
morC(−, c)+ ∧ Sq, Yn

]
C

ϕun
uu

T
(
morC(−, c)+ ∧ Sq

)
,

with j∗ an isomorphism for q ≤ n−2, since the cell structure in lower dimensions
remains unaffected. Thus, in that range, ϕun−1

is an isomorphism, as well as
ϕun . This is actually the situation for q = n− 1. The surjectivity of the map is
clear. Now, let f : morC(−, c)+∧Sn−1 −→ Yn be a representative of an element
in kerϕun

. Because of the surjectivity of j∗, there is a map α : morC(−, c)+ ∧
Sn−1 → Yn−1 such that j∗

(
[α]
)

= f . Then, ϕun−1
(α) = 0, and α represents

one of the attaching maps used to define Yn. It follows that j∗(α) = 0 and f
is nullhomotopic. The surjectivity in the case q = n is a consequence of the
corresponding property for ϕu′n . �X
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Remark 4.10. Notice that the construction proposed here depends on the
choice of maps fαi representing elements αi for T

(
morC(−, c)+ ∧ Si

)
, giving

the attaching maps to obtain Yi+1 out of Yi, as well as the subsequent choice
of elements β ∈ ker j∗ : T (Yi)→ T (Yi−1).

Corollary 4.11. Given a C-space Y and an element u ∈ T (Y ), there is a C-CW
complex Y ′ obtained from Y by attaching cells, together with an ∞-universal
element u′ ∈ T (Y ′) satisfying u′|Y = u.

Proof. From Lemma 4.9, we get a sequence of spaces Yn, linked with maps
in : Yn −→ Yn+1, one each obtained from the previous one after an attachment
of pointed cells. The space Y = hocolim

n
Yn is a pointed C-CW-complex. We

get also n-universal elements un one each extending the previous one. From
Lemma 4.3 for the pairs (Yn+1, Yn), there exists an element u ∈ T (Y ) satisfying
u|Yn

= yn. The morphism ϕu :
[
morC(−, c)+∧Sq, Y

]
−→ T

(
morC(−, c)+∧Sq

)
is an isomorphism for every q. �X

The following result analyses uniqueness of the spaces obtained with this
construction

Proposition 4.12. Let Y and Y ′ be free C-CW complexes with ∞-universal
elements u ∈ T (Y ), u′ ∈ T (Y ′). Then there is a (weak) C-homotopy equivalence
h : Y −→ Y ′.

Proof. Let Y0 = Y ∨Y ′. From the wedge axiom one gets T (Y0) ∼= T (Y )×T (Y ′).
There exists a unique element u0 ∈ T (Y0) being mapped into (u, u′) via the
wedge isomorphism and restricting to u0. From Corollary 4.11 we get a space
Y ′′ with an ∞-universal element u′′. We denote by j the composition of the
inclusion Y ↪→ Y0 ↪→ Y ′′. In the commutative diagram

[
morC(−, c)+ ∧ Sq, Y

]
C

ϕu′′
))

j∗
//
[
morC(−, c)+ ∧ Sq, Y ′′

]
C

ϕu
uu

T
(
morC(−, c)+ ∧ Sq

)
,

the descending arrows are isomorphisms. It follows that the homotopy sets
are isomorphic for every q. Then, as a consequence of Theorem 2.4 one gets a
C-weak homotopy equivalence Y → Y ′′ and hence a C-homotopy equivalence
between Y and Y ′. �X

Finally, we state the following technical results, which are the last require-
ments to finish the proof.
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Lemma 4.13. Let (X,A) be a C-CW pair. Then, for a map g : A −→ Y , an
universal ∞-element u ∈ T (Y ) and an element v ∈ T (X) with T [g](u) = v|A,
there exists an extension f : X −→ Y with T [f ](u) = v.

Proof. We consider X ∨ Y and (v, u) ∈ T (X ∨ Y ) under the canonical equiv-

alence. Then, if Z is a double-sided mapping cylinder for the maps A
k−→ X →

X ∨ Y , A
g−→ Y → X ∨ Y with structural map j : X ∨ Y −→ Z, we get from

Lemma 4.3 an element w ∈ T (Z) satisfying T [j](w) = (v, u). We can apply
Corollary 4.11 to obtain a pointed C-CW complex Y ′ obtained from Z and an
∞-universal element extending w. Due to Proposition 4.12, there exists a map
h : Y ′ −→ Y being a C-homotopy equivalence. Now define f ′ as the composi-

tion X
i−→ X ∨ Y j−→ Z

i′−→ Y ′
h−→ Y and notice that the maps f ′ ◦ i and g are

homotopic, due to the property of double-sided mapping cylinders. The map
A ↪→ X is a C-cofibration. In particular, if H is any homotopy between f ′ ◦ k
and g, the problem

X
i0

))

f ′

))A

id∧i0
((

i

66

X ∧ I H
// Y

A ∧ I
k∧id

66

H

55

admits a solution H. We define f(t) = H({1})× t) and T [f ](u) = v. �X

Proposition 4.14. Given a C-space Y , and u ∈ T (Y ), which is an∞-universal
element, then ϕu induces a natural isomorphism [X,Y ] ∼= T (X).

Proof. We prove that the morphism ϕu is surjective. Let v ∈ T (X). Then we
apply Lemma 4.13 to the C-pair (X,+) and the map ρ : + −→ Y to get a
map f : X −→ Y with T [f ](v) = u. Now, let us prove the injectivity. Suppose
we have [g0], [g1] ∈ [X,Y ]C with ϕu

(
[g0]
)

= ϕu
(
[g1]
)
. We consider the space

X ′ = X ∧ I+/{+} ∧ I+. Now we consider the subspace A = X ∧ ∂I+/{+} ∧ I.
The space A is homeomorphic to X ∨X. Define the map g : A −→ Y by g =
g1∨g0. We consider the element v′ naturally assigned to

(
T [g0](u), T [g1])(u)

)
∈

T (X)×T (X) ∼= T (X ∨X) and u. We apply then Lemma 4.13 to this situation.
One gets a map f : X ′ −→ Y extending g with the property that T [f ](u) =(
T [g0](u), T [g1](u)

)
. Let ρ : X ∧ I+ −→ X ′ be the quotient map and define

H : X ∧ I+ −→ X by the composition f ◦ ρ. This gives a C-homotopy between
g0 and g1. �X

We now collect all results in this section, leading to a proof of Theorem 4.1.
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End of the proof of Theorem 4.1

LetH∗C be a C-cohomology theory and let αq ∈ HqC
(
mor(−, c)+∧S0

)
be an arbi-

trary element. Consider the space W0 obtained as the wedge
∨
αq mor(−, c)+ ∧

Sq and let iαq : mor(−, c)+ ∧ Sq → W0 the inclusion of the summand in-
dicated by αq. Because of the wedge axiom, there exists an element u0 ∈
HqC
(
mor(−, c)+ ∧ S0

)
such that i∗α(u0) = αq. Applying Corollary 4.11 and

Proposition 4.12 to the element u0, the space W0 and the functor HqC gives a
contravariant C-space YHq

C
.

The C-spaces
(
EHC (n)(c)

)
:= YHn

C
obtained by the previous construction

give rise to C-Ω-spectra. To check this, notice that for any object c, the nat-
urality of the transformation associates to the suspension isomorphism σX :
HqC
(
morC(−, c)

)
→ Hq+1

C
(
ΣmorC(−, c)

)
a natural isomorphism of representable

functors [
morC(−, c)+, YHq

C

]
C
→
[
morC(−, c)+,ΩYHq+1

C

]
C
.

It follows that there exists a weak C-homotopy equivalence YHq
C
→ ΩYHq+1

C
.

We pick a choice of such maps for all q and c ∈ C. This finishes the proof of
Theorem 4.1.

Natural Transformations of C-Cohomology Theories

In this section we will analyse the behaviour of the previous construction under
natural transformations.

Definition 4.15. Let F : C → D be a a covariant functor between small cate-
gories, letH∗C and K∗D be C- respectively D- cohomology theories defined on con-
travariant C, respectively D-spaces. Given integer numbers n, k, an operation
of type (F,H,K, n, k) is a natural transformation ΘX : KnD(F∗X) −→ HkC(X)
consisting of natural group homomorphisms, which are compatible with long
exact sequences, boundary maps and suspension isomorphisms. In other words,
for every C-map f : X −→ Y the diagram

HkC(X) HkC(Y )
f∗

oo

KnD(F∗X)

ΘX

OO

KnD(F∗Y )

ΘY

OO

Kn
D(F∗(f))

oo

commutes and it is compatible with long exact sequences, boundary operators
and suspension isomorphisms.

We will investigate the behaviour of the representing objects with respect to
operations. First, we notice that the classifying object for the functorKqD

(
F∗( )

)
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defined on the category of C-spaces is given by the C-space YKr
D(F∗( )). This

follows from the fact that universal elements are unique, Proposition 4.12, as
well as the adjunctions described in Lemma 2.7.

Lemma 4.16. Let Θ : K∗D(F∗ ) −→ H∗C( ) be an operation of type
(F,H,K, r, r). Then there is a cellular map FΘ : F ∗YKr

D
−→ YHr

C
, well de-

fined up to C-homotopy inducing Θ.

Proof. For simplicity, we denote the C-spaces YHr
C
, respectively YKr

D(F∗( ))

by YHC , respectively F ∗YKD .

We construct the map inductively on the cell skeleton. Let C be an object in
C. The map F : morC(−, c)+ → morD

(
F (−), F (c)

)
+

assigning to a morphism

ψ in C the morphism F (ψ) gives a map FΘ0
:= f0 : F ∗Y 0

KD → Y 0
HC .

We assume inductively that we constructed natural transformations fq :=
FΘq

: F ∗Y qKD −→ Y qHC for q = 1, . . . , n such that the diagrams

πq
(
Y qHC (c)

)
// HrC

(
morC(−, c)+ ∧ Sq

)

πq
(
F ∗Y qKD (F (c))

)FΘq ∗

OO

// KrD
(
F∗morC(−, c)+ ∧ Sq

)Θ

OO

commute.

Recall that in the proof of Lemma 4.9 we used the intermediate space

Xq
H = Y q−1

HC

∨
α∈Hr

C(morC(−,c)+∧Sq)

morC(−, c)+ ∧ Sq

and group homomorphisms

αH : πq
(
Xq
HC (c)

)
−→ HrC

(
morC(−, c)+ ∧ Sq

)
βK : πq

(
F ∗Xq

KD

(
F (c)

))
−→ KrD

(
F∗morD(−, c)+ ∧ Sq

)
obtained by the q-universality of elements in HrC

(
Y qHC

)
, respectively

KrC
(
F∗
(
Y qKC

))
. We obtained Y q+1

Hr
C

, respectively Y q+1
Kr
D

by attaching cells by

means of the maps in the kernel of these homomorphisms. Notice that our
inductive hypothesis and the fact that the operation is a group homomorphism
imply that ker ΘmorC(−,c)+∧Sq ◦ βK ⊂ kerαK ◦ fq∗ , since the diagram above
commutes. Let us define the map fq+1 as the dotted arrow in the following
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70 NOÉ BÁRCENAS

diagram

∨βH
(
F ∗morC(−, c)+ ∧ Sq

)
∨βH

(
F ∗morC(−, c)+ ∧Dq+1

)

∨αH
(
morC(−, c)+ ∧ Sq

)
∨αmorC(−, c)+ ∧Dq+1

F ∗
(
Y qKD

)
F ∗
(
Y q+1
KD

)

Y qHC Y q+1
HC

fq

fq+1

gq|
gq

.

Here, the map gq maps all wedge factors α to the factor β defined by the
homotopy class of the constant map morC(−, c)+ ∧ Sq,→ YH with image on
the basis point. In this factor, the map gq is defined to be the map F ∧ id :
morC(−, c)+ ∧ Dq+1 → morD

(
F (−), F (c)

)
+
∧ Dq. This finishes the inductive

definition of f . �X

5. Equivariant Cohomology Theories and Natural Transformations

The study of C-spaces and C-cohomology Theories was motivated by equivari-
ant Algebraic Topology, particularly by the examples addressed in Definition
2.10 and Definition 2.9. The notion of C-cohomology theory and the notion of
an operation generalize the notion of an induction structure as well as some
operations in equivariant cohomology theories.

Equivariant Cohomology Theories.

Definition 5.1. Let X be a pointed space with a base point preserving action
of the discrete group G. Recall that a pointed G-CW complex structure on
(X,A) consists of a filtration of the G-space X = ∪0≤nXn, X0 = A together
with a choice of a G-fixed base point {•} ⊂ A and for which every space
is inductively obtained from the previous one by attaching cells in pushout
diagrams consisting of pointed maps∐

i S
n−1 ∧G/Hi+

//

��

Xn−1

��∐
iD

n ∧G/Hi+
// Xn
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There exist functors − : G − Spaces+ → Or(G) − Spaces+, called the
fixed point system and ̂ : Or(G) − Spaces+ → G − Spaces+, called the
coalescence functor, between the categories of pointed spaces over the orbit
category Or(G) and the category of pointed G-spaces. They assign to a G-space
the contravariant space of Definition 2.10 and to a contravariant Or(G)-space

the space X̂ := X ⊗
Or(G)

∇, where ∇ is the covariant Or(G)-space defined as

G/H+ on every orbitG/H with the action ofG induced from the left translation
on G/H. These functors are adjoint and take pointed G-CW complexes to
pointed Or(G)-complexes, giving a bijection between cells of type G/H in Y
and pointed cells in the Or(G)-space Y − based at the object G/H. Compare
[4, Theorem 7.4, p. 250] for the unpointed version.

Recall the notion of an equivariant cohomology theory [7].

Definition 5.2. Let G be a group and fix an associative ring with unit R. A
G-cohomology theory with values in R-modules is a collection of contravari-
ant functors HnG indexed by the integer numbers Z from the category of G-
CW pairs together with natural transformations ∂nG : HnG(A) := HnG(A,∅) →
Hn+1
G (X,A), such that the following axioms are satisfied:

(1) If f0 and f1 are G-homotopic maps (X,A)→ (Y,B) of G-CW pairs, then
HnG(f0) = HnG(f1) for all n.

(2) Given a pair (X,A) of G-CW complexes, there is a long exact sequence

· · ·
Hn−1

G (i)
−−−−−→ Hn−1

G (A)
∂n−1
G−−−→ HnG(X,A)

Hn
G(j)−−−−→

HnG(X)
Hn

G(i)−−−−→ HnG(A)
∂n
G−−→ Hn+1

G (X,A)
Hn+1(j)−−−−−→ · · ·

where i : A→ X and j : X → (X,A) are the inclusions.

(3) Let (X,A) be a G-CW pair and f : A → B be a cellular map. The
canonical map (F, f) : (X,A)→ (X ∪f B,B) induces an isomorphism

HnG
(
X ∪f B,B

) ∼=−→ HnG(X,A).

(4) Let
{
Xi : i ∈ I

}
be a family of G-CW -complexes and denote by ji :

Xi →
∐
i∈I Xi the inclusion map. Then the map

Πi∈IHnG(ji) : HnG
(∐

i

Xi

)
∼=−→ Πi∈IHnG(Xi)

is bijective for each n ∈ Z.
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Let α : H → G be a group homomorphism and X be a H-CW complex.
The induced space indαX, is defined to be the G-CW complex given as the
quotient space G×X by the right H-action given by (g, x) ·h =

(
gα(h), h−1x

)
.

An equivariant cohomology Theory consists of a family of G-Cohomology
Theories H∗G together with natural group homomorphisms

indα : HnG
(
indα(X,A)

)
−→ HnH(X,A)

satisfying the following conditions:

(1) indα is an isomorphism whenever kerα acts freely on X.

(2) For any n, ∂nG ◦ indα = indα ◦ ∂nG.

(3) For any group homomorphism β : G→ K such that kerβ ◦ α acts freely
on X, one has

indα◦β = HnK(f1 ◦ indβ ◦ indα) : HnK
(
indβ◦α(X,A)

)
→ HnH(X,A)

where f1 : indβ indα → indβ◦α is the canonical G-homeomorphism.

(4) For any n ∈ Z, any g ∈ G , the homomorphism

indcg:G→G : HnG
(
indcg :G→G(X,A)

)
→ HnG(X,A)

agrees with the map HnG(f2), where f2 : (X,A) → indc(g):G→G(X,A)

sends x to
(
1, g−1x

)
and c(g) is the conjugation isomorphism in G.

We explain the relation of these notions to the naturality considerations in
the previous section.

In [8, Example 1.7, p. 1030], an equivariant cohomology theory is con-
structed given a contravariant functor E from the category of small groupoids
and injective homomorphisms to the category of Ω-spectra, under the assump-
tion that equivalences of groupoids are sent to weak equivalences of spectra.
The idea is the following. Given a G-set S, the transport groupoid GG(S) has
as objects the elements of S. The set of morphisms from s0 to s1 consists of
the elements in G which satisfy gs0 = s1, composition comes from the mul-
tiplication in G. By assigning to an homogeneous space G/H the transport
groupoid we obtain a covariant functor Or(G) → Groupoids. The equivariant
cohomology theory with coefficients in E is defined as

Hp
G(X,A,E) := π−p

(
homOr(G)

(
X−+ ∪

A−
coneA−+,E ◦ GG

))
.

The construction in Section 4 of a homotopy class of a weak map between
spectra realizing an operation defined on cohomology theories over different
categories gives a partial converse to this construction.
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Corollary 5.3. Let H∗− be an equivariant cohomology theory and let G be a
discrete group. Let H∗Or(G) be the Or(G)-cohomology theory defined on Or(G)

spaces by applying to a Or(G) pair (X,A) a cellular approximation (X ′, A′)→
(X,A), followed by the coalescence functor. In symbols,

H∗OrG(X,A) = H∗G
(

̂(X ′, A′)
)
.

For any p ∈ Z, the classifying object construction G 7→ YHp
Or(G)

(G/G) sends a

group isomorphism to a weak homotopy equivalence.

Proof. Let α : H → G be a group isomorphism. The induction structure
of H∗− together with the adjunctions in 2.7 give natural transformations of
representable functors

[
α∗
(
morOr(H)(−, c)

)
+
∧ Sn, YHp

Or(G)

]
Or(G)

[
morOr(H)(−, c)+ ∧ Sn, α∗

(
YHp

Or(G)

)]
Or(H)

[
morOr(H)(−, c)+ ∧ Sn, YHp

Or(H)

]
Or (H)

consisting of isomorphisms. Moreover, these can be realized up to homotopy
by a Or(H)-map α∗YHp

Or(G)
→ YHp

Or(H)
. On the other hand α induces homeo-

morphisms of Or(H)-spaces

morOr(H)(−, c)+ ∧Dr → morOr(G)

(
α(−), α(c)

)
+
∧Dr

which fit into a cellular map α : YHp
Or(H)

→ α∗YHp
Or(G)

which is seen to be

a weak Or(H)-equivalence inverse to the previous map. Evaluation at H/H,
respectively G/G gives a weak homotopy equivalence. �X

Remark 5.4. The construction in Section 4 and the consequence in Corol-
lary 5.3 do not give a functor from the category of small groupoids to the
category of spectra and strong maps. All relevant maps, even the described
weak equivalence, are only defined up to weak C-homotopy.
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Operations in Bredon Cohomology with Local Coefficients

We will now introduce an example of a C-cohomology theory, Bredon coho-
mology with local coefficients. Bredon cohomology with local coefficients was
introduced by Moerdijk and Svensson in [13], and with an equivalent approach
by Mukherjee and Pandey [14].

We describe some categories and notations which are relevant to this con-
struction.

Let X be a compactly generated, Hausdorff space. The category of equiv-
ariant simplices of X, denoted by ∆G(X) has as objects continuous maps
σ : G/H × ∆n → X, where ∆n =

{
(x1, . . . , xn) ∈ Rn : Σxi = 1, xi ≥ 0

}
is the canonical n-simplex. A morphism in ∆G(X) between the objects σ1 :
G/H1 ×∆n → X and σ2 : G/H2 ×∆m → X consists of a pair (ϕ, α), where
ϕ : G/H1 → G/H2 is a G-equivariant map, α : ∆m → ∆n is a simplicial
operator and σ1 = σ2 ◦ (ϕ, α).

The equivariant fundamental category of X, πOr(G)(X) is the category
where the objects are G-maps xH : G/H → X and where a morphism consists
of a pair

(
ϕ, [H]

)
where ϕ : G/H1 → G/H2 is a G-map and [H] is the homo-

topy class of a G-homotopy H : I × G/H1 → X between xH1
and xH2

◦ ϕ.
Notice the projection functor p : ∆G(X) → πOr(G)(X) given by assigning to
a higher dimensional simplex ∆n → X the restriction to the last n-th vertex
G/H × enn → X in a fixed ordering en0 , . . . , e

n
n.

A local coefficient system with values in R-modules is a contravariant func-
tor M : πOr(G)(X) → R − Mod. Given a ring R, a discrete group G and a

G-space X, the singular chain complex of X, Csing
∗
(
∆G(X)

)
is the free ∆G(X)-

chain complex which is given on every object C as the cellular chain complex
of the canonical ∆G(X)-cellular approximation of the constant functor {•}

Definition 5.5. Let G be a discrete group and X be a G-space. The Bredon
cohomology groups of X with coefficients in the local coefficient system M
are defined to be the ∆G(X)-cohomology groups of the cochain complex of the
chain complex of natural transformations between the cellular chain complex of
the canonical ∆G(X)-cellular approximation of the constant functor {•} and
the functor p∗M obtained by composing the functor M with the projection
functor p : ∆G(X)→ πOr(G)(X). In symbols,

Hn
Z∆G(X)(X,M) := Hn

(
homZ∆G(X)

(
Csing
∗
(
∆G(X)

)
, p∗M

))
.

Recall the category E of Definition 2.8.

Definition 5.6. Given a contravariant Or(G)×Eop-space E, the contravariant
Or(G)-space B defined by restricting to the full subcategory Or(G)×s is called
the basis of E. Notice that there exists a diagram of Or(G)-spaces p : E → B.
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Given a local coefficient system M on X, Basu and Sen [2] used equivariant
versions of constructions of classifying spaces of crossed complexes to promote
the Or(G)-space X− to an Or(G)×Eop-space with basis denoted by ΦK(π, 1).

The following result is proved in [2, Theorem 6.3, p. 24], and it is an explicit
approach to the representability of a particular C-cohomology theory.

Theorem 5.7. There exists a contravariant functor EMn : Or(G) × Eop →
Ω−SPECTRA with basis ΦK(π, 1) such that given a local coefficient system M
on X, the n-th Bredon cohomology groups with coefficients in a local coefficient
system M for a G-space X are classified by Or(G)× Eop-maps[

X−+ΦK(π,1), E
M
n

]
Or(G)×Eop

.

The previous theorem has the immediate consequence that Bredon coho-
mology with local coefficients is an Or(G) × Eop-cohomology theory. We will
examine some natural transformations defined on it.

Given a local coefficient system consisting of Z/2-modules, Steenrod oper-
ations ∪i : H∗Z∆G(X)(X,M) → H∗+iZ∆G(X)(X,M) on Bredon cohomology with

local coefficients were introduced by Ginot [5, Theorem 4.1, p. 246], and with
an alternative approach by Mukherjee-Sen [15]. Steenrod operations induce
natural transformations

Sqi : H∗Z∆G(X)(X,M)→ H∗+iZ∆G(X)(X,M)

which satisfy Cartan and Adem relations, generalize cup products, and Sqi(f) =
0 holds whenever f ∈ Hm

Z∆G(X)(X,M) with i > m.

Corollary 5.8. Let M be a local coefficient system with values on Z/2-modules
and H∗ZOr(G)( ,M) be Bredon cohomology with coefficients in M . The Steen-

rod square operations Sqk correspond to Or(G)op×E-homotopy classes of Or(G)×
E- maps

Sqk ∈
[
YHZ∆G(X)n,M

, YHZ∆G(X)n+k,M

]
Or(G)op×E

between the representing objects constructed either in Theorem 4.1 or [2].

Acknowledgement. The author thanks an anonymous referee, whose com-
ments improved significantly the presentation of the present work.
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Esta página aparece intencionalmente en blanco


	Introducción
	Spaces and Modules over a Category
	Cohomology Theories Over a Category
	Representability
	Equivariant Cohomology Theories and Natural Transformations

