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Title

Analysis of the Forecasting Performance of the Threshold Autoregressive Model

T́ıtulo

Análisis de la Capacidad de Pronóstico del Modelo Autorregresivo de Umbrales

Abstract

In this investigation, we analyze the forecasting performance of the threshold autoregressi-

ve (TAR) model. To this aim, we find the Bayesian predictive distribution from this model,

and then, we conduct an out-of-sample forecasting exercise, where we compare forecasts

from the TAR model with those from a linear model and nonlinear smooth transition

autoregressive, self-exciting threshold autoregressive and Markov-switching autoregressive

models. For this empirical forecast evaluation, we: i) use the U.S. and Colombian GDP,

unemployment rate, industrial production index and inflation time series, which lead us

to estimate and forecast forty models; and, ii) use evaluation criteria and statistical tests

that are mostly employed in literature. We also compare the in-sample properties of the

estimated models. For the overall comparison, we find a satisfactory performance of the

TAR model in forecasting the chosen economic time series, and a shape changing charac-

teristic in the Bayesian predictive distributions of this model that may capture the cycles

in the economic time series. This gives important signals about the forecasting ability of

the TAR model in the economic field.

Resumen

En esta investigación, se analiza la capacidad de pronóstico del modelo Autorregresivo de

Umbrales (TAR). Para esta finalidad, se encuentra la distribución predictiva Bayesiana,

y luego, se conduce un ejercicio de pronóstico fuera de la muestra, donde se comparan

los pronósticos del modelo TAR con auqellos de un modelo lineal y de los modelos no

lineales Autorregresivo de Transición Suave, Autorregresivo de Umbrales Auto-Excitado y

Autorregresivo de Cambio de Régimen. Para esta evaluación de pronósticos emṕırica, i) se

utilizan las series del PIB, el desempleo, el ı́ndice de producción industrial y la inflación de

Estados Unidos y Colombia, lo cual lleva a estimar y pronosticar cuarenta modelos; y, ii)

se utilizan criterios y test estad́ısticos los cuales on ampliamente aplicados en la literatura.

De igual manera, se comparan las propiedades dentro de la muestra de los modelos estima-

dos. Para todo el ejercicio de comparación, se encuentra un comportamiento satisfactorio

del modelo TAR para pronosticar las distintas series económicas, y se encuentra una ca-

racteŕıstica de cambio de forma en la distribución predictiva del modelo TAR que puede

capturar los ciclos presentados en las series económicas. Esto arroja importantes indicios

sobre la capacidad de pronóstico del modelo TAR en el campo económico.

Keywords: Bayesian predictive distributions; Forecasts comparison; Threshold autoregressive mo-

del; Linear model; Nonlinear model.

Palabras clave: Distribuciones predictivas Bayesianas; Comparación de pronósticos; Modelo au-

torregresivo de umbrales; modelo lineal; modelo no lineal.



To God and my Family for their endless love and support.



I thank Professor Fabio Nieto for his guidance and support, Professor Sergio Calderón

for his suggestions and the Universidad Nacional de Colombia for its support.



Contents

List of Tables IX

List of Figures XIV

Introduction XXI

1. Forecasting Models 1

1.1. Threshold autoregressive model . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2. Forecasting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Self-exciting threshold autoregressive model . . . . . . . . . . . . . . . . . . 6

1.2.1. Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2. Forecasting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Smooth transition autoregressive model . . . . . . . . . . . . . . . . . . . . 8

1.3.1. Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2. Forecasting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4. Markov-switching autoregressive model . . . . . . . . . . . . . . . . . . . . 10

1.4.1. Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2. Forecasting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Autoregressive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1. Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.2. Forecasting procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Evaluation criteria 14

2.1. Unbiased forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Uncorrelated forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Relative mean square error . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Theil’s U statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5. Diebold-Mariano test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6. Forecast encompassing test . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7. Graphical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Selection of the data 19

3.1. Unemployment rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



Contents vii

3.2. Gross domestic product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3. Industrial production index . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4. Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Out-of-sample forecast evaluation 23

4.1. Empirical results for the United States economic time series . . . . . . . . . 24

4.1.1. Unemployment rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2. Gross domestic product . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3. Industrial production index . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.4. Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2. Empirical results for the Colombian economic time series . . . . . . . . . . 56

4.2.1. Unemployment rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2. Gross domestic product . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3. Industrial production index . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.4. Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Conclusions 83

A. Theoretical Background 84

A.1. Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.2. Bayesian Predictive Distributions . . . . . . . . . . . . . . . . . . . . . . . . 85

B. General review of the models estimation for the change in the U.S. unem-

ployment rate 86

B.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 90

B.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 92

C. General review of the models estimation for the annual growth rate of the

U.S. real GDP 93

C.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 99

C.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D. General review of the models estimation for the annual growth rate of the

U.S. Industrial Production Index 106

D.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 106

D.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 112

D.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 115

D.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents viii

E. General review of the models estimation for the growth rate of the U.S.

quarterly CPI 119

E.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 124

E.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 126

E.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 128

E.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

F. General review of the model estimation for the change in the Colombian

unemployment rate 131

F.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 131

F.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 136

F.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 138

F.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 140

F.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

G. General review of the model estimation for the annual growth rate of the

Colombian GDP 143

G.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 143

G.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 148

G.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 150

G.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 151

G.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

H. General review of the models estimation for the biannual growth rate of the

Colombian Industrial Production Index 155

H.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 155

H.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 160

H.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 162

H.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 164

H.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

I. General review of the models estimation for the growth rate of the Colombian

CPI 167

I.1. Estimation of the TAR model . . . . . . . . . . . . . . . . . . . . . . . . . . 167

I.2. Estimation of the SETAR model . . . . . . . . . . . . . . . . . . . . . . . . 172

I.3. Estimation of the STAR model . . . . . . . . . . . . . . . . . . . . . . . . . 174

I.4. Estimation of the MSAR model . . . . . . . . . . . . . . . . . . . . . . . . . 175

I.5. Estimation of the AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography 179



List of Tables

4.1. Model adequacy. U.S. unemployment rate case. . . . . . . . . . . . . . . . . 32

4.2. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3. Relative MSE of forecasts. U.S. unemployment rate case. . . . . . . . . . . 33

4.4. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . 33

4.5. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . 34

4.6. Theil’s U statistic. U.S. unemployment rate case. . . . . . . . . . . . . . . . 35

4.7. Summary of the forecasting performance of the TAR model. U.S. unem-

ployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8. Model adequacy. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.9. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.10. Relative MSE of forecasts. U.S. GDP case. . . . . . . . . . . . . . . . . . . 39

4.11. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.12. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.13. Theil’s U statistic. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . 41

4.14. Summary of the forecasting performance of the TAR model. U.S. GDP case. 42

4.15. Model adequacy. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . 45

4.16. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



List of Tables x

4.17. Relative MSE of forecasts. U.S. indpro case. . . . . . . . . . . . . . . . . . . 45

4.18. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.19. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.20. Theil’s U statistic. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . 47

4.21. Summary of the forecasting performance of the TAR model. U.S. indpro case. 48

4.22. Model adequacy. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.23. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.24. Relative MSE of forecasts. U.S. CPI case. . . . . . . . . . . . . . . . . . . . 52

4.25. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.26. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.27. Theil’s U statistic. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . 53

4.28. Summary of the forecasting performance of the TAR model. U.S. CPI case 54

4.29. Model adequacy. Colombian unemployment rate case. . . . . . . . . . . . . 57

4.30. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . 58

4.31. Relative MSE of forecasts. Colombian unemployment rate case. . . . . . . . 58

4.32. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . 59

4.33. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . . . 60

4.34. Theil’s U statistic. Colombian unemployment rate case. . . . . . . . . . . . 61

4.35. Summary of the forecasting performance of the TAR model. Colombian

unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.36. Model adequacy. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . 65

4.37. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.38. Relative MSE of forecasts. Colombian GDP case. . . . . . . . . . . . . . . . 66



List of Tables xi

4.39. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.40. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.41. Theil’s U statistic. Colombian GDP case. . . . . . . . . . . . . . . . . . . . 68

4.42. Summary of the forecasting performance of the TAR model. Colombian

GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.43. Model adequacy. Colombian indpro case. . . . . . . . . . . . . . . . . . . . 70

4.44. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.45. Relative MSE of forecasts. Colombian indpro case. . . . . . . . . . . . . . . 71

4.46. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.47. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.48. Theil’s U statistic. Colombian indpro case. . . . . . . . . . . . . . . . . . . 74

4.49. Summary of the forecasting performance of the TAR model. Colombian

indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.50. Model adequacy. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . 76

4.51. p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.52. Relative MSE of forecasts. Colombian CPI case. . . . . . . . . . . . . . . . 77

4.53. DM test when (a) H1 : Forecasts from competing model (F2) are better

than forecasts from TAR model (F1) and (b) H1 : F1 are better than F2;

MDM test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better

than F2. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.54. CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses

F1. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.55. Theil’s U statistic. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . 80

4.56. Summary of the forecasting performance of the TAR model. Colombian

CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.1. Set of possible number of regimes for the real data. U.S. unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



List of Tables xii

B.2. Posterior probability function for the number of regimes for the real data.

U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3. Posterior probabilities for the autoregressive orders in the real data. U.S.

unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.4. Parameter estimates for the TAR model. U.S. unemployment rate case. . . 90

B.5. Parameter estimates for the SETAR model. U.S. unemployment rate case. . 91

B.6. Parameter estimates for the STAR model. U.S. unemployment rate case. . . 92

B.7. Parameter estimates for the MSAR model. U.S. unemployment rate case. . 92

C.1. Set of possible number of regimes for the real data. U.S. GDP case. . . . . 95

C.2. Posterior probability function for the number of regimes for the real data.

U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.3. Posterior probabilities for the autoregressive orders in the real data. U.S.

GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.4. Parameter estimates for the TAR model. U.S. GDP case. . . . . . . . . . . 97

C.5. Parameter estimates for the SETAR model. U.S. GDP case. . . . . . . . . . 100

C.6. Parameter estimates for the STAR model. U.S. GDP case. . . . . . . . . . . 102

C.7. Parameter estimates for the MSAR model. U.S. GDP case. . . . . . . . . . 103

D.1. Set of possible number of regimes for the real data. U.S. indpro case. . . . . 108

D.2. Posterior probability function for the number of regimes for the real data.

U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D.3. Posterior probabilities for the autoregressive orders in the real data. U.S.

indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

D.4. Parameter estimates for the TAR model. U.S. indpro case. . . . . . . . . . 110

D.5. Parameter estimates for the SETAR model. U.S. indpro case. . . . . . . . . 113

D.6. Parameter estimates for the STAR model. U.S. indpro case. . . . . . . . . . 114

D.7. Parameter estimates for the MSAR model. U.S. indpro case. . . . . . . . . 116

E.1. Set of possible number of regimes for the real data. U.S. CPI case. . . . . . 121

E.2. Posterior probability function for the number of regimes for the real data.

U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E.3. Posterior probabilities for the autoregressive orders in the real data. U.S.

CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

E.4. Parameter estimates for the TAR model. U.S. CPI case. . . . . . . . . . . . 123

E.5. Parameter estimates for the SETAR model. U.S. CPI case. . . . . . . . . . 125

E.6. Parameter estimates for the STAR model. U.S. CPI case. . . . . . . . . . . 127

E.7. Parameter estimates for the MSAR model. U.S. CPI case. . . . . . . . . . . 128

F.1. Set of possible number of regimes for the real data. Colombian unemploy-

ment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

F.2. Posterior probability function for the number of regimes for the real data.

Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . 134

F.3. Posterior probabilities for the autoregressive orders in the real data. Colom-

bian unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

F.4. Parameter estimates for the TAR model. Colombian unemployment rate case.135



List of Tables xiii

F.5. Parameter estimates for the SETAR model. Colombian unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

F.6. Parameter estimates for the STAR model. Colombian unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

F.7. Parameter estimates for the MSAR model. Colombian unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

G.1. Set of possible number of regimes for the real data. Colombian GDP case. . 145

G.2. Posterior probability function for the number of regimes for the real data.

Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

G.3. Posterior probabilities for the autoregressive orders in the real data. Colom-

bian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

G.4. Parameter estimates for the TAR model. Colombian GDP case. . . . . . . . 147

G.5. Parameter estimates for the SETAR model. Colombian GDP case. . . . . . 149

G.6. Parameter estimates for the STAR model. Colombian GDP case. . . . . . . 150

G.7. Parameter estimates for the MSAR model. Colombian GDP case. . . . . . . 152

H.1. Set of possible number of regimes for the real data. Colombian indpro case. 157

H.2. Posterior probability function for the number of regimes for the real data.

Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

H.3. Posterior probabilities for the autoregressive orders in the real data. Colom-

bian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

H.4. Parameter estimates for the TAR model. Colombian indpro case. . . . . . . 159

H.5. Parameter estimates for the SETAR model. Colombian indpro case. . . . . 161

H.6. Parameter estimates for the STAR model. Colombian indpro case. . . . . . 163

H.7. Parameter estimates for the MSAR model. Colombian indpro case. . . . . . 164

I.1. Set of possible number of regimes for the real data. Colombian CPI case. . 169

I.2. Posterior probability function for the number of regimes for the real data.

Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

I.3. Posterior probabilities for the autoregressive orders in the real data. Colom-

bian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

I.4. Parameter estimates for the TAR model. Colombian CPI case. . . . . . . . 171

I.5. Parameter estimates for the SETAR model. Colombian CPI case. . . . . . . 173

I.6. Parameter estimates for the STAR model. Colombian CPI case. . . . . . . 174

I.7. Parameter estimates for the MSAR model. Colombian CPI case. . . . . . . 176



List of Figures

4.1. (a) Time plot of the change in the U.S. quarterly unemployment rate and

(b) time plot of the growth rate of U.S. quarterly real GDP. . . . . . . . . . 25

4.2. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . 27

4.4. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. unemployment

rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . 28

4.6. Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . 29

4.8. Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . 30

4.10. Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.11. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. unemployment rate case. . . . . . . . . . . . . . . . . . . . . . 31

4.12. 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. unemploy-

ment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.13. (a) Time plot of the annual growth rate of U.S. real GDP and (b) time plot

of U.S. term spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



List of Figures xv

4.14. 1 to 8-step predictive distributions of the annual growth rate of the U.S. real

output, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. GDP case. 43

4.15. (a) Time plot of the annual growth rate of U.S. quarterly industrial produc-

tion index and (b) time plot of U.S. term spread. . . . . . . . . . . . . . . . 44

4.16. 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. indpro case. 49

4.17. (a) Time plot of the growth rate of U.S. quarterly CPI and (b) time plot of

U.S. term spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.18. 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. CPI case. . 55

4.19. (a) Time plot of the change in the the Colombian monthly unemployment

rate and (b) time plot of growth rate of Colombian ISE monthly index. . . 57

4.20. 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. Colombian

unemployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.21. (a) Time plot of the annual growth rate of Colombian GDP and (b) time

plot of Colombian term spread. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.22. (a) Time plot of the biannual growth rate of Colombian industrial production

index and (b) time plot of Colombian term spread. . . . . . . . . . . . . . . 70

4.23. (a) Time plot of the monthly growth rate of Colombian CPI and (b) time

plot of Colombian term spread. . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the change in the U.S. unemployment rate. . . . . . . . . . . . 86

B.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the growth rate of U.S. real GDP. . . . . . . . . . . . . . . . . . 87

B.3. (a) Time plot of the change in the U.S. quarterly unemployment rate and

(b) Time plot of the growth rate of U.S. quarterly real GDP. . . . . . . . . 87

B.4. Nonparametric regression between the change in the U.S. unemployment

rate (X) and the growth rate of U.S. real GDP (Z). . . . . . . . . . . . . . . 88

B.5. Time plot of t-ratio of recursive estimates of the AR-3 coefficient in an ar-

ranged autoregression of order 3 and delay parameter 6. U.S. unemployment

rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the annual growth rate of U.S. real GDP. . . . . . . . . . . . . 93

C.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the U.S. spread term. . . . . . . . . . . . . . . . . . . . . . . . 94

C.3. (a) Time plot of the annual growth rate of U.S. real GDP and (b) Time plot

of U.S. spread term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.4. Nonparametric regression between the growth rate of U.S. real GDP (X)

and U.S. spread term (Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. GDP case. . . . . . . 99



List of Figures xvi

C.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

C.7. Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 5 and delay parameter 2. U.S. GDP case. . 100

C.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. GDP case. . . . 101

C.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C.10.Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. GDP case. . . . . . . 102

C.11.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.12.Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. GDP case. . . . . . . 104

C.13.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C.14.Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. GDP case. . . . . . . 105

C.15.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the annual growth rate of U.S. industrial production index. . . 106

D.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the U.S. spread term. . . . . . . . . . . . . . . . . . . . . . . . 107

D.3. (a) Time plot of the annual growth rate of U.S. industrial production index

and (b) Time plot of U.S. spread term. . . . . . . . . . . . . . . . . . . . . . 107

D.4. Nonparametric regression between the annual growth rate of the U.S. in-

dustrial production index (X) and U.S. spread term (Z). . . . . . . . . . . . 108

D.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. indpro case. . . . . . 111

D.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D.7. Time plot of t-ratio of recursive estimates of the AR-5 coefficient in an

arranged autoregression of order 9 and delay parameter 5. U.S. indpro case. 112

D.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. indpro case. . . 113

D.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.10.Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. indpro case. . . . . . 115

D.11.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

D.12.Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. indpro case. . . . . . 116



List of Figures xvii

D.13.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.14.Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. indpro case. . . . . . 117

D.15.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

E.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the growth rate of U.S. CPI. . . . . . . . . . . . . . . . . . . . . 119

E.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the U.S. spread term. . . . . . . . . . . . . . . . . . . . . . . . 120

E.3. (a) Time plot of the annual growth rate of U.S. CPI and (b) Time plot of

U.S. spread term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E.4. Nonparametric regression between the growth rate of U.S. CPI (X) and the

U.S. spread term (Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. CPI case. . . . . . . 124

E.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.7. Time plot of t-ratio of recursive estimates of the AR-9 coefficient in an

arranged autoregression of order 9 and delay parameter 2. U.S. CPI case. . 125

E.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. CPI case. . . . . 126

E.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

E.10.Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. CPI case. . . . . . . 127

E.11.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E.12.Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. CPI case. . . . . . . 129

E.13.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E.14.Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. CPI case. . . . . . . 130

E.15.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

F.1. (a) Autocorrelation function and (b) partial autocorrelation function for

change in the Colombian unemployment rate. . . . . . . . . . . . . . . . . . 131

F.2. (a) Autocorrelation function and (b) partial autocorrelation function for the

growth rate of Colombian ISE index. . . . . . . . . . . . . . . . . . . . . . . 132

F.3. Growth rate of Colombian ISE index lagged 2 months and change in the

Colombian unemployment rate. . . . . . . . . . . . . . . . . . . . . . . . . . 132



List of Figures xviii

F.4. Nonparametric regression between the change in the Colombian unemploy-

ment rate (X) and the growth rate of Colombian ISE index (Z). . . . . . . . 133

F.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian unemployment

rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

F.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . 136

F.7. Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 2 and delay parameter 2. Colombian un-

employment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

F.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian unem-

ployment rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

F.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . 138

F.10.Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian unemployment

rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

F.11.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . 140

F.12.Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian unemployment

rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

F.13.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . 141

F.14.Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian unemployment

rate case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

F.15.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian unemployment rate case. . . . . . . . . . . . . . . . . . . 142

G.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the annual growth rate of Colombian GDP. . . . . . . . . . . . 143

G.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the Colombian spread term. . . . . . . . . . . . . . . . . . . . . 144

G.3. (a) Time plot of the annual growth rate of Colombian GDP and (b) Time

plot of the Colombian spread term. . . . . . . . . . . . . . . . . . . . . . . . 144

G.4. Nonparametric regression between the annual growth rate of the Colombian

GDP (X) and Colombian spread term (Z). . . . . . . . . . . . . . . . . . . . 145

G.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian GDP case. . . 147

G.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . 148



List of Figures xix

G.7. Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 2 and delay parameter 4. Colombian GDP

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

G.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian GDP case. 149

G.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

G.10.Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian GDP case. . . 151

G.11.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

G.12.Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian GDP case. . . 152

G.13.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

G.14.Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian GDP case. . . 153

G.15.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian GDP case. . . . . . . . . . . . . . . . . . . . . . . . . . . 154

H.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the biannual growth rate of Colombian industrial production

index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

H.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the Colombian spread term. . . . . . . . . . . . . . . . . . . . . 156

H.3. (a) Time plot of the biannual growth rate of Colombian industrial production

index and (b) Time plot of Colombian spread term. . . . . . . . . . . . . . 156

H.4. Nonparametric regression between the biannual growth rate of Colombian

industrial production (X) and Colombian spread term (Z). . . . . . . . . . . 157

H.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian indpro case. . 160

H.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . 160

H.7. Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 3 and delay parameter 2. Colombian indpro

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

H.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian indpro

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

H.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . 162

H.10.Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian indpro case. . 163

H.11.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . 164



List of Figures xx

H.12.Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian indpro case. . 165

H.13.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . 165

H.14.Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian indpro case. . 166

H.15.(a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian indpro case. . . . . . . . . . . . . . . . . . . . . . . . . . 166

I.1. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the growth rate of Colombian CPI. . . . . . . . . . . . . . . . . 167

I.2. (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the Colombian spread term. . . . . . . . . . . . . . . . . . . . . 168

I.3. (a) Time plot of the growth rate of Colombian CPI and (b) Time plot of

Colombian spread term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

I.4. Nonparametric regression between the monthly growth rate of the CPI (X)

and the spread term (Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

I.5. Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case. . . . 171

I.6. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

I.7. Time plot of t-ratio of recursive estimates of the AR-3 coefficient in an

arranged autoregression of order 3 and delay parameter 3. Colombian CPI

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

I.8. Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian CPI case. 173

I.9. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . 174

I.10. Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case. . . . 175

I.11. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

I.12. Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case. . . . 176

I.13. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . 177

I.14. Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case. . . . 177

I.15. (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian CPI case. . . . . . . . . . . . . . . . . . . . . . . . . . . 178



Introduction

Forecasting is one of the main objectives of the time series analysis. Different time series

have been used for this purpose, like the economic and financial time series that have been

largely analyzed in the forecasting literature (Granger and Newbold, 1973, 1986; Tsay,

2000; Gooijer and Hyndman, 2006). For the past few decades, it has become relevant in

this field, the study of nonlinear models and their forecasting performance (van Dijk and

Franses, 2003; Meyn and R., 2009), due to the capacity of these models to describe common

behaviors of the economic time series such as business cycle, volatility and uncertainty,

among others (Tiao and Tsay, 1994; Franses and van Dijk, 2000; Clements et al., 2003;

van Dijk and Franses, 2003). This has fostered fairly large studies in which the forecasting

performance of nonlinear and linear models are compared using current macroeconomic

time series (Teräsvirta, 2006), intensifying the macroeconomic forecasts studies (Hansson

et al., 2005).

However, the literature review shows that the forecasting performance of the threshold

autoregressive (TAR) model, in the economic field, has not been studied up to now. That

makes the aim of this thesis about analyzing the forecasting performance of this model

relevant. The TAR model was initially introduced by Tong (1978) throughout the self-

exciting threshold autoregressive (SETAR) model. In recent years, it has been studied by

Nieto (2005) and Nieto et al. (2013), who proposed a Bayesian methodology to fit a TAR

model with an exogenous threshold variable to an observed time series, and Nieto (2008)

and Vargas (2012) who addressed the forecasting stage of this model.

Regarding the literature focused on the forecasting performance of time series models,

when using economic and financial time series, we highlight the studies of Teräsvirta and

Anderson (1992), who analyze the performance of the smooth transition autoregressive

(STAR) and autoregressive models to forecast the industrial production index throughout

the period 1960-1986. Cao and Tsay (1992) compare the SETAR with the generalized

autoregressive conditional heteroskedasticity (GARCH), exponential GARCH and autore-

gressive moving average (ARMA) models, using the volatility of stock returns of the NYSE

and AMEX from 1928 to 1989. Tiao and Tsay (1994) compare the out-of-sample forecasts

from SETAR and AR models, using the United States (U.S.) Real Gross National Product

from 1947 to 1990 period. Later, Montgomery et al. (1998) compare the forecasting perfor-

mance of the SETAR, Markov switching autoregressive (MSAR), autoregressive integrated

moving average (ARIMA) and vector ARMA (VARMA) models, using the U.S. unemploy-
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ment rate from 1948 to 1993. Clements and Krolzig (1998) evaluate the performance of

the MSAR, SETAR and AR models in forecasting the U.S. GNP from 1947 to 1996, and

Clements and Smith (1999) compare the forecasting performance of the SETAR and AR

models, using the exchange rate and GNP in several countries.

In recent years, Clements and Smith (2000) evaluate the forecasting performance of the

SETAR, VAR and AR models, using the U.S. GNP and unemployment rate from 1948

to 1993. van Dijk et al. (2002) compare forecasts from the STAR and AR models, using

the U.S. unemployment rate from 1968 to 1999. Bradley and Jansen (2004) analyze the

forecasts of the STAR and multiple-regime STAR models, using the S&P500 index and

the U.S. industrial production from 1935 to 1997. Franses and van Dijk (2005) examine

the forecasting performance of the STAR, AR and seasonal ARIMA models, using the

industrial production series of 18 OECD countries from 1960 to 2002. Later, Deschamps

(2008) compares the forecasts from STAR and MSAR models, using the U.S. unemploy-

ment rate from 1960 to 2004. Guidolin et al. (2009) evaluate the predictive performance

of the SETAR, STAR, MSAR and GARCH models, using the stock and bond returns in

7 developed countries from 1979 to 2007. Geweke and Amisano (2010) evaluate the out-

of-sample predictive distributions of the stochastic volatility, Markov normal mixture and

GARCH models, using the S&P500 index stock market over the 1972-2005 period.

Thus, based on this literature review, the forecasting performance of the TAR model, using

the Bayesian predictive distributions, will be addressed in the following way: forecasts from

the TAR model will be compared with forecasts from a linear autoregressive model and

nonlinear STAR, SETAR and MSAR models. For this empirical comparison, we will use

the Gross Domestic Product, the unemployment rate, the industrial production index and

the inflation rate from Colombia and the United States. Models will be evaluated in terms

of the properties of unbiased and uncorrelated errors, relative mean square errors, forecast

accuracy and encompassing properties. These evaluation criteria are mostly used in the

literature.

The outline of this thesis is as it follows. Chapter 1 is devoted to the estimation and

forecasting procedure of the TAR, SETAR, STAR, MSAR and lineal models. This Chapter

also presents one of the main contributions of this thesis: it introduces a new computation

of the Bayesian predictive distribution of the TAR model, which was developed in this

study. Chapter 2 briefly describes the evaluation criteria that will be used to evaluate and

compare the forecast performance of the TAR model with that of the competing models.

Then, in Chapter 3 are presented the U.S. and Colombian economic time series, that were

selected for the forecasting evaluation. Additionally, based on the literature review and

the economic theory, we define the threshold variable for each macroeconomic variable, in

order to estimate the TAR model. Chapter 4 presents the other main contribution of this

thesis: the analysis of the forecasting performance of the TAR model against the competing

models. For each macroeconomic time series, we first describe the data. Second, we present

the estimation for each considered model and analyze their in-sample properties. Third,

we present the outputs of the different criteria and statistical tests that were used for the

forecast evaluation. Finally, we draw conclusions about the forecasting performance of the

TAR model.



Chapter 1

Forecasting Models

This Chapter briefly presents the specification, estimation and predictive procedure of the

threshold autoregressive model and the competing models that we have selected for the

forecasting comparison analysis. As we mentioned before, these competing models have

been widely used and studied in the literature related to the forecasting performance of

several time series models using different economic time series.

1.1. Threshold autoregressive model

Nieto (2005) develops a Bayesian methodology to analyze a bivariate threshold autoregres-

sive (TAR) model with exogenous threshold variable and in presence of missing data. This

model is expressed through a dynamical system consisting of an input stochastic process

{Zt} that represents the threshold process, and an output stochastic process {Xt} that is

known as the process of interest. Thus, the TAR model is described as:

Xt = a
(j)
0 +

kj∑
i=1

a
(j)
i Xt−i + h(j)εt, (1.1)

if Zt belongs to the real interval Bj = (rj−1, rj ] for some j; j = 1, . . . , l, where r0 =

−∞, rl =∞ and l is a positive integer number. The real numbers rj ; j = 1, . . . , l − 1, are

known as the threshold values of the process {Zt} and they indicate the number of l regimes

for the process {Zt}. The coefficients a
(j)
i and h(j) are real numbers with j = 1, . . . , l; i =

0, 1, . . . , kj . The nonnegative integer numbers k1, . . . , kl denote the autoregressive orders

of the process {Xt} in each regime. {εt} is a Gaussian zero-mean white noise process

with variance 1, and it is mutually independent of process {Zt}. This model is denoted

TAR(l; k1, k2, . . . , kl), where the structural parameters are l, r1, r2, . . . , rl−1; k1, k2, . . . , kl,

and the nonstructural parameters are a
(j)
i and h(j).

The TAR model has the faculty to describe a nonlinear relationship between variables X

and Z, where the dynamical response of X depends on the location of Z in its sample space.

Besides, by using this model, it is possible to explain certain types of heteroscedasticity in

{Xt} given that a typical path from it may show burst of large values (Nieto, 2005; Nieto

and Moreno, 2016).
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It is assumed, according to Nieto (2005, 2008) that:

i) {Zt} is exogenous in the sense that there is no feedback of {Xt} towards it.

ii) {Zt} is a homogeneous Markov chain of order p, p ≥ 1, with initial distribution

F0(z,θz) and kernel distribution Fp (zt|zt−1, . . . , zt−p,θz), where θz is a parameter

vector defined in an appropriate numerical space.

iii) Those distributions have densities in the Lebesgue measure sense, were f0 (z,θz) and

fp (zt|zt−1, . . . , zt−p,θz) are the initial and kernel densities, respectively.

iv) The p dimensional Markov chain {Zt} where {Zt} = (Zt, Zt−1, . . . , Zt−p+1)
′ for all

t > p − 1, has an invariant distribution fp (z,θz). It is important to remark that a

stationary distribution implies that the paths from Zt are long term stable.

With the assumptions from II) to IV) it is described the dynamic stochastic behavior of

{Zt}.

One of the main characteristics of the TAR model is its likelihood function. To define it,

let y = (x, z) were x and z are the observed data for {Xt} and {Zt} respectively, in the

length period t = 1, 2, . . . , T . Additionally, let θz be the vector of parameters of the process

{Zt} and θx be the vector of all the nonstructural parameters, that is θx = (θ1, . . . ,θl,h)

where h = (h(1), . . . , h(l)) and θj = (a
(j)
0 , a

(j)
1 , . . . , a

(j)
kl

) for j = 1, . . . , l. Conditional on

l, r1, r2, . . . , rl−1, k1, k2, . . . , kl and xk = (x1, x2, . . . , xk) where k = max {k1, . . . , kl}, the

likelihood function is given by the following density function (Nieto, 2005):

f (y|θx,θz) = f (x|z,θx,θz) f (z|θx,θz) , (1.2)

where

f (z|θx,θz) = f (zp|θz) f (zp+1|zp;θz) · · · f (zT |zT−1;θz) ,

with zp = (z1, . . . , zp) and

f (x|z,θx,θz) = f (xk+1|xk, z,θx,θz) · · · f (xT |xT−1, . . . , x1; z,θx,θz) .

Since {εt} is Gaussian, we have

f (x|z,θx,θz) = (2π)
−(T−k)

2

[
T∏

t=k+1

{
h(jt)

}−1]
exp

(
−1

2

T∑
t=k+1

e2t

)
,

where

et =
xt − a(jt)0 −

∑kjt
i=1 a

(jt)
i xt−i

h(jt)
,

and the sequence {jt} is the observed time series for the stochastic process {Jt}. {Jt} is a

sequence of indicator variables such that Jt = j if Zt ∈ Bj for some j = 1, . . . , l. We assume

that there is no relation between θx and θz and that the marginal likelihood function of x

does not depend on θz.
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1.1.1. Model estimation

The identification, estimation and validation of the TAR model is based on the Markov

chain Monte Carlo (MCMC) methods and the Bayesian methodology proposed by Nieto

(2005), when dealing with complete data according to Hoyos (2006)1. Thus, to identify

the TAR model, we follow the next steps.

Step 1. Select a maximum number of regimes l0, and then, the proper thresholds for each

l = 2, . . . , l0, using the minimization of the NAIC criterion2. Intermediate draws

of the nonstructural parameters are generated for all possible combinations of

autoregressive orders.

Step 2. Identify l using again intermediate draws of nonstructural parameters and au-

toregressive orders.

Step 3. Conditional on l, identify the autoregressive orders k1, . . . , kl.

Now, according to Nieto (2005), in the estimation stage it is assumed that the struc-

tural parameters l, r1, r2, . . . , rl−1; k1, k2, . . . , kl are known (identified), so conditional on

them, we estimate the nonstructural parameters of the TAR model using Gibbs sampling.

For complete time series, we must calculate the conditional density p (θ|x, z), where θ is

the vector of parameters of the process {Xt} and {Zt}. This conditional density is ob-

tained by computing the full conditional densities for the unknown parameters a
(j)
i and

h(j) (j = 1, . . . , l; i = 0, 1, . . . , kj) and the parameters of the distribution of {Zt}.

In that sense, let θ = (θx,θz) be the vector of total unknown parameters in the TAR model,

with θz the vector of parameters of the process {Zt} and θx = (θ1, . . . ,θl,h) the vector of

all the nonstructural parameters, where h = (h(1), . . . , h(l)) and θj = (a
(j)
0 , a

(j)
1 , . . . , a

(j)
kl

),

for j = 1, . . . , l.

Thus, following Hoyos (2006), it must be computed the full conditional densities: i)

p (θj |θi; i 6= j; h,θz,x, z) for j = 1, . . . l, ii) p
(
h(j)|h(i); i 6= j;θz,θ1, . . . ,θl,x, z

)
for j =

1, . . . , l, and iii) p (θz|θx,x, z). It is assumed a priori that the parameters among regimes

are independent, θj and h(j) are independent, and θz and θx are also independent (Nieto,

2005). From those full conditional distributions, we extract draws for running the Gibbs

sampling.

Finally, for model checking, it is used the standardized pseudo residuals proposed by Ni-

eto (2005)3, who also suggested to use the CUSUM and CUSUMSQ charts for checking

heteroscedasticity in {εt} and model specification. Additionally, it is used, following Tsay

1 See Nieto (2005) and Hoyos (2006) for more details.
2 The NAIC criterion of Tong (1990) is a normalized AIC criterion, where the AIC criterion is divided by

the effective number of observations. This criterion is defined as NAIC =
∑l

j=i AICj∑l
j=i nj

, where AICj and

nj are respectively the AIC criterion and the number of observations in the jth regimen, and l is the

number of regimes.
3 For each t = 1, . . . , T , let

êt =

(
Xt −Xt|t−1

)
h(j)

,

if Zt ∈ Bj for some j (j; j = 1, . . . , l), where Xt|t−1 = a
(j)
0 +

∑kj

i=1 a
(j)
i Xt−i|t−1 is the one-step ahead

predictor of Xt. The process {êt} is called by Nieto (2005) standardized pseudo residuals.
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(1998), the partial autocorrelation function for checking no serial correlations in the resid-

uals.

1.1.2. Forecasting procedure

Predictive function

Nieto (2008) develops a forecasting procedure for a TAR model based on the Bayesian

analysis and the quadratic loss function criterion, with which the best prediction for the

variable XT+h is obtained by means of the conditional expectation E (XT+h|xT , zT ), where

xT = (x1, . . . , xT ) and zT = (z1, . . . , zT ) are the observations of the respectively variables

Xt and Zt, respectively for t = 1, . . . , T , with T being the length of the sample period and

h ≥ 1 the forecast horizon.

However, Nieto’s (2008) predictive distributions do not contemplate the uncertainty in the

nonstructural parameters. Thus, in this thesis we find the Bayesian predictive distribution

for the TAR model using the joint conditional predictive distribution. This methodology,

which is commonly used in the literature4, is a different proposal than that of Vargas

(2012), reducing the complexity in the definition of this author, and making easier the

computation of the Bayesian predictive distribution for the TAR model. In that sense,

the joint predictive distribution for the TAR model, proposed in this thesis, is a different

and a new contribution to the literature. Under this finding, we are going to evaluate the

forecasting performance of the TAR model using economic time series.

Bayesian Predictive function

The Bayesian predictor of XT+h, under the quadratic loss function criterion, is the condi-

tional expectation E (Xt+h|xT , zT ) , h ≥ 1. However, the analytical expression of this con-

ditional expectation is not always easy to obtain for nonlinear models. In that sense, we fo-

cus on the joint conditional predictive distribution p (xT+1, ..., xT+h, zT+1, ..., zT+h|xT , zT )

from which the marginal predictive distributions p (xT+h|xT , zT ) can be obtained. We

obtain the following Proposition.

Proposition 1.1. Under the assumptions specified in equation (1.1) and assuming that

i) ZT+i and XT+j are independent for all i > j ≥ 0, conditional on xT+j−1 and zT+j,

with the convention that the conditioning set is only zT when j = 0, and ii) the set

{ZT+h−1, . . . , ZT+1} is independent of xT conditional on zT+h and zT , then, for each

h ≥ 1, the joint predictive density of XT+1, . . . , XT+h and ZT+1, . . . , ZT+h given xT and

zT , is

p (xT+1, . . . , xT+h, zT+1, . . . , zT+h|xT , zT ) =∫
p (xT+1, . . . , xT+h, zT+1, . . . , zT+h|xT , zT ,θx, ) p (θx|xT , zT ) dθx, (1.3)

4 Among this forecasting literature, we mention the study of Geweke and Terui (1993), who analyze the

forecast procedure for a SETAR model, and obtain the Bayesian h-step ahead forecast based on the

joint predictive density function. Calderón (2014) also uses this approach, in order to find the predictive

distributions of the Multivariate TAR model.
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where p (θx|xT , zT ) is the posterior distribution of all the nonstructural parameters of the

TAR model, which is obtained following Hoyos (2006), and

p (xT+1, . . . , xT+h, zT+1, . . . , zT+h|xT , zT ,θx)

=
h∏
i=1

p (xT+i|xT+i−1, zT+i,θx) p (zT+i|zT+i−1), (1.4)

with xT+i−1 = (xT , xT+1, . . . , xT+i−1) and zT+i−1 = (zT , zT+1, . . . , zT+i−1).

Proof. Notice that the Bayesian predictive distribution in equation (1.3) is based on the

definition in equation (A.2) in the Appendix A. Therefore,

p (xT+1, . . . , xT+h, zT+1, . . . , zT+h|xT , zT )

=

∫
p (xT+1, . . . , xT+h, zT+1, . . . , zT+h,θx|xT , zT ) dθx

=

∫
p (xT+1, . . . , xT+h, zT+1, . . . , zT+h|xT , zT ,θx) p (θx|xT , zT ) dθx.

Now, we have that:

p (xT+1, . . . , xT+h, zT+1, . . . , zT+h|xT , zT ,θx)

=

h∏
i=1

p (xT+i|xT+i−1, zT+i,θx) p (zT+i|xT+i−1, zT+i−1,θx),

which is defined under the assumptions of the TAR model presented in Chapter 1 and

Proposition 1.1. Additionally, under condition ii) in Proposition 1.1, we have that

p (zT+i|xT+i−1, zT+i−1,θx) = p (zT+i|zT+i−1) ,

which give us the expression in equation (1.3). �

On the other hand, in order to forecast the threshold variable {ZT+h}, Nieto (2008) finds

that:

p (zT+h|zT ) =

∫
· · ·
∫
p (zT+h|zT+h−1, . . . , zT+1, zT )

× p (zT+h−1|zT+h−2, . . . , zT+1, zT )× · · · × p (zT+1|zT ) dzT+1 · · · zT+h−1. (1.5)

From the above Proposition we observe, as Nieto (2008), that the densities in equation

(1.4) satisfy that: i) p (zT+i|zT+i−1) is the kernel density of the Markov chain {Zt}, and

ii) p (xT+i|xT+i−1, zT+i,θx) is a normal distribution with mean a
(j)
0 +

∑kj
m=1 a

(j)
m xT+i−m

and variance
[
h(j)
]2

if zT+i ∈ Bj for some j = 1, . . . , l and for i = 1, . . . , h.

To draw samples of the distribution in equation (1.3), we define the following steps for the

ith iteration:

Step 1. Extract a random draw θ
(i)
x from p (θx|xT , zT ).

Step 2. Extract a random draw z
(i)
T+1 from p (zT+1|zT ).
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Step 3. Extract a random draw x
(i)
T+1 from p

(
xT+1

∣∣∣z(i)T+1,xT , zT ,θ
(i)
x

)
.

Step 4. Extract a random draw z
(i)
T+2 from p

(
zT+2

∣∣∣z(i)T+1, zT

)
.

Step 5. Extract a random draw x
(i)
T+2 from p

(
xT+2

∣∣∣z(i)T+1, z
(i)
T+2, x

(i)
T+1,xT , zT ,θ

(i)
x

)
.

Step 6. Repeat until it is extracted a random draw z
(i)
T+h from

p
(
zT+h

∣∣∣z(i)T+1, . . . , z
(i)
T+h−1, zT

)
, and then, a random draw x

(i)
T+h from

p
(
xT+h

∣∣∣z(i)T+1, . . . , z
(i)
T+h, x

(i)
T+1, . . . , x

(i)
T+h−1,xT , zT ,θ

(i)
x

)
.

Hence, we extract random draws recursively until we have the sets
{
x
(i)
T+h

}
(h ≥ 1; i =

1, . . . , N) and
{
z
(i)
T+h

}
(h ≥ 1; i = 1, . . . , N), N large enough. From those sets we can

compute for XT+h and ZT+h: i) the mean of the predictive distribution, that is a nu-

merical approximation to the point forecast, by averaging each of the xT+l (l = 1, . . . , h)

and zT+l (l = 1, . . . , h) over the N replications, ii) the variance of the predictive distribu-

tion, that give us an approximation to the uncertainty of the forecast and, iii) the credible

intervals for the point forecast.

As we can see, in this forecasting procedure using the Bayesian methodology, we incorporate

the uncertainty of the unknown parameters in the predictive distributions.

1.2. Self-exciting threshold autoregressive model

The self-exciting threshold autoregressive (SETAR) model was introduced by Tong (1978)

and Tong and Lim (1980), in which the threshold variable is the lagged variable Xt−d for

some positive integer d. This model has been extensively analyzed, with the assumption

that the number of regimes and the autoregressive orders are known. Hence, a stochastic

process {Xt} is a SETAR process if it follows the equation:

Xt = Φ
(j)
0 +

pj∑
i=1

Φ
(j)
i Xt−i + ε

(j)
t , if rj−1 < Xt−d ≤ rj , (1.6)

where j = 1, . . . , k are the regimes, with k a positive integer, and the positive integer d is

the delay parameter. The real numbers −∞ = r0 < r1 < . . . < rk =∞ are the thresholds,

Φ
(j)
i with i = 1, . . . , pj ; j = 1, . . . , k, are the coefficients and for each j,

{
ε
(j)
t

}
is a sequence

of independent and identically distributed Gaussian random variables with mean 0 and

variance σ2j (Tiao and Tsay, 1994; Tsay, 2005). The autoregressive orders of the time

series in each regime are denoted by pj .

We can also express the SETAR model in equation (1.6) as:

Xt =

l∑
j=1

(
Φ
(j)
0 + Φ

(j)
1 Xt−1 + . . .+ Φ(j)

pj Xt−pj + ε
(j)
t

)
I (rj−1 < Xt−d ≤ rj) ,

The SETAR model is a piecewise linear autoregressive model, but liable to move between

regimes when the process crosses a threshold (Clements et al., 2003). As this model can
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produce limit cycles, time irreversibility and asymmetric behavior of a time series (Tsay,

1989; Tiao and Tsay, 1994), has been applied to several economic and financial time series

(Tiao and Tsay, 1994; Montgomery et al., 1998; Clements et al., 2003, amog others).

1.2.1. Model estimation

We estimate the SETAR model based on the approach of Tsay (1989), which consists in

the following steps.

Step 1. Specify a linear autoregressive model for the time series. Select a tentative

autoregressive order p by means of the partial autocorrelation function of Xt or

some information criteria, and the set of possible values for the delay parameter

d.

Step 2. Fit arranged autoregressions for a given p and every element d, and evaluate the

null hypothesis of linearity using the nonlinearity test F̂ (p, d) proposed by Tsay

(1989)5. Select the delay parameter d based on the minimum p-value of the F

statistics.

Step 3. For a given p and d, locate the possible threshold values by using the scatterplots

of the standardized residuals versus Xt−d, and the scatterplot of the t ratios of

recursive estimates of an AR coefficient versus Xt−d.

Step 4. Redefine the autoregressive order and threshold values in each regime. We use

the NAIC criterion of Tong (1990).

Step 5. Finally, estimate the model by means of linear autoregression techniques and

check the model.

1.2.2. Forecasting procedure

The optimal one-step ahead forecast from the SETAR model is:

XT+1|T = E (XT+1|X1, X2, . . . , XT ) = Φ
(j)
0 +

pj∑
i=1

Φ
(j)
i XT+1−i, if rj−1 < XT+1−d ≤ rj .

Nevertheless, when the forecast horizon h is greater than one period, an analytic expression

for XT+h is not available, so it is necessary to use simulation techniques such as Monte

5 According to Cao and Tsay (1992, p. S170): ”To detect the threshold nonlinearity, Tsay (1989) pro-

posed another F-test based on the arranged autoregression. The test consists of two steps. First, for a

prespecified AR order p and a threshold lag d, fit recursively an arranged autoregression of order p of

the series Yt. Assuming that the recursion begins with the first b observations, calculate the standardized

predictive residual êt for t > b. Secondly, regress the predictive residual êt on (1, Yt−1,, Yt−2, . . . , Yt−p),

save the corresponding residuals ε̂t, and form the F-statistic

F̂ (p, d) =

(∑
ê2t −

∑
ε̂2t
)
/(p+ 1)∑

ε̂2t/(T − d− b− p− h)

where h = max (1, p+ 1− d) and the summation is summing over t from b+ 1 to T − d−h+ 1. Under

the null hypothesis that Yt is an AR(p) process, the F̂ (p, d) statistic is asymptotically an F distribution

with degrees of freedom p+ 1 and T − d− b− p− h”.
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Carlo or Bootstrap to compute the conditional expectation E (XT+h|X1, . . . , XT+h−1). In

this study, we use the Monte Carlo method6 to obtain the h-step ahead forecast. With

this method, the h-step ahead forecast is simulated k times, with k some large number,

and the value of the forecast is obtained by averaging these k repetitions (Franses and van

Dijk, 2000).

Finally, Tong (1983) defines the sample MSE of the h-step ahead forecasts as:

var (h) =
1

`

T+`−1∑
T0=T+0

(
XT0+h −XT0+h|T0

)2
, h = 1, 2, . . . ,

where ` is the number of h-step ahead forecasts available in the forecasting subsample and

T0 is the forecast origin.

1.3. Smooth transition autoregressive model

The smooth transition autoregressive (STAR) model was first suggested by Chan and Tong

(1986) and then developed by Teräsvirta and Anderson (1992) and Teräsvirta (1994). A

stochastic process Xt follows a STAR model if it satisfies (Teräsvirta and Anderson, 1992):

Xt = Φ10 +

p1∑
i=1

Φ1iXt−i + F (Xt−d)

(
Φ20 +

p2∑
i=1

Φ2iXt−i

)
+ εt, (1.7)

where d is the delay parameter, pj ; j = 1, 2 is the autoregressive order of the jth regime,

Φji; j = 1, 2, i = 1, 2, . . . , pj are the coefficients and εt are iid sequences with mean 0 and

variance σ2. F is a transition function which is bounded between 0 and 1.

We consider two transition function: the logistic function,

F (Xt−d) = (1 + exp {−γ (Xt−d − c)})−1 , γ > 0, (1.8)

and the exponential function,

F (Xt−d) = 1− exp
{
−γ (Xt−d − c)2

}
, γ > 0, (1.9)

where γ and c are respectively the scale and location parameters. In that way, γ determines

the smoothness of the change from one regimen to the other, c is interpreted as the threshold

variable between both regimes, and Xt−d is assumed to be the transition variable (van Dijk

et al., 2002).

The model in equation (1.7) with the transition function in equation (1.8) is the Logistic

STAR (LSTAR), and with the transition function in equation (1.9) is the Exponential

STAR (ESTAR). The LSTAR model can describe phases of contraction and expansion of an

economy, where the transition from one phase to the other may be smooth, and the ESTAR

model can explain an economy which moves from a high or low growth to a more normal

growth, thus, the STAR family models are commonly used for modelling non linearities in

business cycles. Because there is not a strong economic theory to choose between LSTAR or

6 We use the Monte Carlo method taking into account that this method has been extensively used in the

literature (Tiao and Tsay, 1994; Clements and Krolzig, 1998; Clements and Smith, 1999, among others).
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ESTAR models, the choice of those models is based on the data (Teräsvirta and Anderson,

1992).

One characteristic of the LSTAR model is when γ becomes very large, given that the logistic

function F (Xt−d) approaches the indicator function I (Xt−d > c) = 1 if Xt−d > c and zero

otherwise, and consequently, the change of F (Xt−d) from 0 to 1 becomes instantaneous. If

that happens, the LSTAR model becomes a SETAR model with two regimes. When γ → 0,

the logistic function approximates a constant equal to 0.5, and, when γ = 0, the LSTAR

model becomes a linear AR model with parameters Φj = (Φ1j + Φ2j) /2, j = 0, 1, . . . , pj
(van Dijk et al., 2002).

1.3.1. Model estimation

For the forecasting comparison analysis, we fit the Teräsvirta’s (1994) traditional STAR

model with two regimes, given that this model “(. . . ) allows the business cycle indicator

to alternate between (. . . ) two different phases of the business cycle” (Teräsvirta and

Anderson, 1992, p. S120). Hence, the specification of the STAR models we use is based

on the approach of Teräsvirta and Anderson (1992) and Teräsvirta (1994), which consists

on the following steps.

Step 1. Specify a linear autoregressive model for {Xt}.

Step 2. Perform the nonlinearity test for different values of d, and if it is rejected the

null hypothesis of linearity, select the d with the minimum p-value of the F

statistics7.

Step 3. Choose between the LSTAR and the ESTAR models through a sequence of tests

of nested hypothesis8.

7 According to Teräsvirta and Anderson (1992) and Teräsvirta (1994), the test of linearity against the

STAR model, where d is assumed known, is H0 : β2j = β3j = β4j = 0, j = 1, . . . , p, against the

alternative that H0 is not valid in the artificial regression xt = β0 +
∑p

j=1 β1xt−j +
∑p

j=1 β2xt−jxt−d +∑p
j=1 β3xt−jx

2
t−d +

∑p
j=1 β4xt−jx

3
t−d + vt, where vt is an iid sequence with zero mean and variance

σ2
v, and the coefficients βij ; i = 1, . . . , 4, j = 1, . . . , p, are functions of the parameters Φji; j = 1, 2; i =

1, 2, . . . , p; γ, c. The LM statistic based on the above artificial regression is calculated according to van

Dijk et al. (2002).
8 Teräsvirta and Anderson (1992) and Teräsvirta (1994) propose the selection of the models through

a sequence of F tests within the artificial regression use in the nonlinearity test: i) H01 : β4j =

0 vs. H11 : β4j 6= 0; j = 1, . . . , p, ii) H02 : β3j = 0 |β4j = 0 vs. H12 : β3j 6= 0|β4j = 0; j = 1, . . . , p,

and, iii) H03 : β2j = 0 |β3j = β4j = 0 vs. H13 : β2j 6= 0|β3j = β4j = 0; j = 1, . . . , p, where βij ; i =

1, . . . , 4, j = 1, . . . , p, are functions of the parameters Φji; j = 1, 2; i = 1, 2, . . . , p; γ, c. Therefore: i) If

H01 is not rejected and H02 is rejected, the best model is an ESTAR; ii) If H01 is rejected or H02 is not

rejected, there is evidence in favor of a LSTAR model. Rejecting H02 is not too informative to choose

between both models; iii) If H01 and H02 are not rejected and H03 is rejected, the model to choose is the

LSTAR. However, not rejecting H03 and rejecting H02 often suggests an ESTAR model. Additionally,

Teräsvirta (1994, p. 212) indicates that “If the model is a LSTAR model, then typically H01 and H03

are rejected more strongly than H02. For an ESTAR model, the situation may be expected to be the

opposite. I propose the following decision rule. After rejecting the general null hypothesis, carry out the

three F tests. If the p-value of F3 (the test of H02) is the smallest of the three, select an ESTAR model;

if not, choose a LSTAR model”.
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Step 4. Finally, once it has been specified d and the transition function F (Xt−d), es-

timate the parameters in the model by nonlinear least squares and check the

model.

1.3.2. Forecasting procedure

The optimal one-step ahead forecast of XT+1 made at time T is obtained by the conditional

expectation:

XT+1|T = E (XT+1|X1, . . . , XT )

= Φ10 +

p1∑
i=1

Φ1iXT+1−i + F (XT+1−d)

(
Φ20 +

p2∑
i=1

Φ2iXT+1−i

)
,

where F (Xt−d) is the transition function.

As it was mentioned before, for forecast horizons greater than one, h > 1, an analytic

expression for XT+h is not available, thus we use the Monte Carlo method to approximate

the conditional expectation.

The MSE of the h-step ahead forecasts are:

var (h) =
1

`

T+`−1∑
T0=T+0

(
XT0+h −XT0+h|T0

)2
, h = 1, 2, . . . ,

where ` is the number of h-step ahead forecasts available in the forecasting subsample and

T0 is the forecast origin (Deschamps, 2008).

1.4. Markov-switching autoregressive model

The Markov-switching autoregressive (MSAR) model that we consider is based on the

model of Hamilton (1989, 1994), which is widely used in the literature and is given by:

Xt = Φst,0 +

p∑
i=1

Φst,iXt−i + εt , (1.10)

where εt is a sequence of iid normal random variables with zero-mean and variance σ2 and,

the regimen variable st follows an m-state Markov chain, with st independent of εt for all t.

Thus, both the intercept and the autoregressive parameters depend upon an unobservable

st ∈ {1, 2, . . . ,m} with m an integer (Clements and Krolzig, 1998).

A more general specification of the MSAR model allows the intercept, the autoregressive

parameters and the variance of the model to switch. An example of this case is presented

by Tsay (2005), where the transition between states is governed by a hidden two-state

Markov chain, and the time series Xt follows a MSAR model if it satisfies:

Xt =

{
Φ10 +

∑p
i=1 Φ1iXt−i + ε1t, if st = 1

Φ20 +
∑p

i=1 Φ2iXt−i + ε2t, if st = 2,
(1.11)
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where εit, i = 1, 2 are iid random variables with zero-mean and finite variance and are

independent of each other. st assumes values in {1, 2} and is the unobserved first-order

Markov chain with transition probabilities P (st = i|st−1 = j) = pij , with i, j = 1, 2, where

pij is the probability of moving from state j to state i and
∑2

i=1 pij = 1. The unconditional

probability that the two-states process will be in regime 1 at any given date is given by

P (St = 1) = 1−p22
2−p11−p22 , and the unconditional probability that the process will in regime

2 is only 1 minus this value (Hamilton, 1994).

1.4.1. Model estimation

According to Teräsvirta (2006), the estimation of a MSAR model is more complicated

than the estimation of another model such as those mentioned above, because this model

has two unobservable processes: the Markov chain that indicates the regime and the error

process. Therefore, we set the number of regimes in two, taking into account that this

number of regimes is the most used in the literature, related to different economic time

series, and following the suggestions of (Teräsvirta, 2006, p. 431), who argues that “(. . . )

testing linearity against the MS-AR alternative is computationally demanding. (. . . ) Most

practitioners fix the number of regimes in advance, and the most common choice appears

to be two regimes”.

Once it is defined the number of regimes, we estimate the MSAR model under Hamilton’s

(1994) approach, which is by means of maximum likelihood estimation. Thus, through this

estimation technique, the intercepts, autoregressive parameters and transition probabili-

ties governing the Markov chain of the unobserved regimes are estimated (Clements and

Krolzig, 1998). Finally, the model is checked.

1.4.2. Forecasting procedure

According to Teräsvirta et al. (2010), forecasts from the MSAR model can be obtained

analytically by a sequence of linear operations. Thus, the 1-step ahead forecast, given the

information and including the forecast of pj,T+1, is:

XT+1 = E (XT+1|X1, . . . , XT ) =
m∑
j=1

pj,T+1|T (Φj0 + Φj1XT + . . .+ ΦjpXT+1−p) ,

where pj,T+1|T is a forecast of pj,T+1 = P (sT+1 = j|XT ) from p′T+1|T = a′TP, where

aT = (p1,T , . . . , pm,T ) ′ with pj,T = P (sT = j|X1, . . . , XT ) ; j = 1, . . . ,m, m is the number

of states or regimes, and P = [pij ] is the matrix of transition probabilities (Hamilton, 1993;

Teräsvirta et al., 2010).

The h-step ahead forecast for h > 1 can be obtained as:

XT+h = E (XT+h|X1, . . . , XT ) =
m∑
j=1

pj,T+h|T (Φj0 + Φj1XT+h−1 + . . .+ ΦjpXT+h−p) ,

where the forecast pj,T+h|T is calculated from p′T+h|T = a′TPh with

pT+h|T =
(
p1,T+h|T , . . . , pm,T+h|T

)′
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and pj,T+h = P (sT+h = j|X1, . . . , XT ) ; j = 1, . . . ,m (Hamilton, 1993; Teräsvirta et al.,

2010). The row i, column j element of Ph defines the probability that the process will be

in state i at date t+ h given that it is currently in state j (Hamilton, 1993, 1994).

The MSE of the h-step ahead forecasts are:

var (h) =
1

`

T+`−1∑
T0=T+0

(
XT0+h −XT0+h|T0

)2
, h = 1, 2, . . . ,

Given that forecasts from the MSAR model can be calculated analytically, the forecast

region that we have to construct is through the interval symmetric about the mean, which

is usually constructed using the mean plus or minus a multiple of the standard deviation,

that is (Hyndman, 1995):

Rα =
(
XT+h|T − ω,XT+h|T + ω

)
,

where ω is chosen such that P
(
XT+h|T ∈ Rα|X1, . . . , XT

)
= 1− alpha.

1.5. Autoregressive model

A stochastic process Xt follows and AR(p) model if it satisfies:

Xt = φ1Xt−1 + . . .+ ΦpXt−p + εt (1.12)

where {εt} is a white noise series, Φ1, . . . ,Φp are the autoregressive parameters and p is a

non-negative integer number that indicates the order of the autoregressive component.

Now, Φ (B)Xt = εt will define a stationary process if the characteristic equation Φ (B) = 0

has all their roots outside the unit circle. The AR(p) model in equation (1.12) can be

written in the equivalent form

(
1− Φ1B

1 − Φ2B
2 − . . .− ΦpB

p
)
Xt = εt,

or

Φ (B)Xt = εt,

with Φ (B)Xt =
(
1− Φ1B

1 − Φ2B
2 − . . .− ΦpB

p
)
Xt, where B is the backshift operator

such that BiXt = Xt−i.

1.5.1. Model estimation

The estimation of the linear model is based on the procedure of Box et al. (2016) consisting

of model identification, estimation and diagnostic checking.

Step 1. Use the autocorrelation function and partial autocorrelation function to identify

the degree of differencing d and the possible order p. Then, use some information

criteria to determine the order p of the model that minimizes the information

criteria value.

Step 2. Estimate the parameters of the model under the least squares criterion.
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Step 3. Check for possible model inadequacy. When the model is adequate, the residual

series should behave as a white noise.

1.5.2. Forecasting procedure

The h-step ahead forecast from the AR(p) model in equation (1.12), based on the mini-

mum squared error loss function, is the conditional expectation E (XT+h|FT ) with FT the

information available at time T , which can be calculated by means of:

XT+h|T = E (XT+h|FT ) = φ1XT+h−1 + . . .+ ΦpXT+h−p.

This forecast can be computed recursively. The associated h-step ahead forecast error is

eT+h|T = XT+h −XT+h|T .



Chapter 2

Evaluation criteria

In this Chapter, we explain the statistics that are commonly used in the literature to

evaluate and compare the forecasting performance of a TAR model with the forecasting

performance of the competing models.

To this aim, we first evaluate the individual properties for each model and each horizon, of

unbiased forecasts with uncorrelated forecasts errors, which are based on Schuh’s (2001)

suggestions about considering these properties as the basic principles of the economic

forecasting, that are used to evaluate the performance of forecasts. Then, we compare

forecasts from the TAR model with those from the other models, based on the relative

mean square error, the comparison tests of Diebold and Mariano (1995) and Harvey et al.

(1997), and the forecast encompassing tests of Chong and Hendry (1986), Ericsson (1992)

and Harvey et al. (1998). We also evaluate the shape of the predictive distributions in

order to find if they handle the economic cycles.

2.1. Unbiased forecasts

Forecasts should be unbiased. Following Clements (2005), bias is tested by whether the

sample mean of the forecast errors et0+h|t0 = yt0+h − yt0+h|t0 , where h is the forecast

horizon, yt0+h|t0 is the forecast in period t0 + h made at time t0, and yt0+h is the actual

value, is significantly different from zero.

This principle is evaluated by means of the test of Holden and Peel (1989), who evaluate

β0 = 0 in the following regression:

yt0+h − yt0+h|t0 = β0 + ωt0+h,

where β0 is a constant, ωt0+h is an error term that is assumed to be from a series of

independent and identically distributed normal random variables with zero mean, and

under the null hypothesis is equal to the forecast error. Then, it is compared the t-statistic

of the null hypothesis of unbiasedness, that is β0 = 0 to the Student’s t distribution.
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2.2. Uncorrelated forecasts

1-step ahead forecast errors should not be correlated with past errors (Schuh, 2001; Melo

and Núñez, 2004). Hence, correlation is evaluated by means of the Ljung-Box Q statistic

Q = n (n+ 2)
∑k

j=1

ρ̂2j
n−j , where n is the sample size (number of observations) and ρ̂j is

the estimate of the autocorrelation coefficient at lag j and k is the number of lags being

tested. Under the null hypothesis of no serial correlation, Q is asymptotically distributed

as a χ2
1−α,k, where 1 − α is the quantile of the chi-squared distribution with k degrees of

freedom.

2.3. Relative mean square error

In applications, it is often chosen one of the following three measures, which are usually

used to evaluate the performance of the point forecasts: the mean square error (MSE), the

mean absolute deviation (MAD) and the mean absolute percentage error (MAPE) (Tsay,

2005). Following the literature review, we use the MSE, which is defined as:

MSE (h) =
1

`

t0+`−1∑
j=t0+0

(
ej+h|j

)2
, (2.1)

where ` is the number of h-step ahead forecasts available in the forecasting subsample, t0
is the forecast origin, and

ej+h|j = yj+h − yj+h|j , (2.2)

with yj+h|j the forecast of yj+h made a time j, and yj+h the actual value, is the forecast

error.

In the literature, it is common to compare the relative MSE, which is defined as the MSE

given by a model divided by the MSE of the benchmark model. If the relative MSE is

greater than 1, then the MSE of the model is greater than the MSE of the benchmark

model. But, if the relative MSE is less than 1, this model has a smaller MSE than the

benchmark model. Following the literature review, we use this measure for the out-of-

sample forecasting comparison.

2.4. Theil’s U statistic

Theil (1966) proposes the following measure of forecast performance:

U =

√
1
`

∑t0+`−1
j=t0+0

(
ej+h|j

)2√
1
`

∑t0+`−1
j=t0+0 (yj+h − yj−1+h)2

, (2.3)

where ej+h|j and yj+h are those defined in equation (2.2).

Theil’s U statistic compares the root mean square error (RMSE), that is
√
MSE, of the

forecasts, with the RMSE of the “näıve model”, where the latter is the model with no
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changes, that is to say, the forecast is the last observed value (Granger and Newbold,

1986). Thus, if U = 0, we have the perfect forecast. If U < 1, forecasts from the evaluated

model are more accurate than those from the näıve model, but if U ≥ 1, then forecasts

from the evaluated model are as good as or worse than those from the näıve model.

2.5. Diebold-Mariano test

The test of Diebold and Mariano (1995) is widely used in the literature to compare the

point forecast from two competing models. They propose a test to evaluate the equality

of the MSE from two competing forecasts, as a measure of forecast accuracy. The null

hypothesis indicates equal MSE for the two forecasts (equal predictive accuracy), against

the alternative that one model has a smaller MSE (better predictive accuracy) than the

other model9.

Thus, having generated ` h-step ahead forecasts from two different models m1 and m2, we

have two sets of forecast errors
{
e
(mi)
j+h|j

}
(j = t0 + 0, ..., t0 + `− 1; i = 1, 2). The hypothesis

of equal forecast accuracy can be represented as the mean of the difference between the

MSE of the considered models:

d̄ =
1

`

t0+`−1∑
j=t0+0

dj , (2.4)

where dj =
[
e
(m1)
j+h|j

]2
−
[
e
(m2)
j+h|j

]2
. d̄ has an approximate asymptotic variance of (Harvey,

1997):

V
(
d̄
)
≈ 1

`

[
γ0 + 2

h−1∑
k=1

γk

]
, (2.5)

where γk is the kth autocovariance of {dj}, which can be estimated by (Harvey, 1997):

γ̂k =
1

`

∑̀
j=k+1

(
dj − d̄

) (
dj−k − d̄

)
. (2.6)

Then, the Diebold and Mariano (1995) statistic is:

DM =
d̄√
V̂
(
d̄
) , (2.7)

where V̂
(
d̄
)

is obtained by substituting equation (2.6) in equation (2.5), and under the

null hypothesis, this test has an asymptotic standard normal distribution.

Given that the alternative hypothesis indicates that forecasts from one model (let us say,

m1) are better than those from the other model (let us say, m2), we are going to evaluate

separately, the null hypothesis of equal predictive accuracy against both the alternative

9 Moreover, positive (negative) values for the DM test show that one model has a bigger (smaller) MSE

than the other model (Bradley and Jansen, 2004).
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hypothesis when forecasts from m2 are better than those from m1, and the other alternative

hypothesis when forecast from m1 are better than those from m2.

Although Diebold and Mariano (1995) show that the performance of their test statistic is

good for small samples, autocorrelated forecasts errors and forecast errors with non-normal

distributions, this test statistic could be over sized for small number of forecasts and more

than one-step ahead forecasts. Then, Harvey et al. (1997) propose a modified DM test

(MDM), which improves the finite sample performance of the test, by means of:

MDM =

[
`+ a− 2h+ `−1h (h− 1)

`

]
DM, (2.8)

where DM is the Diebold and Mariano (1995) test statistic in equation (2.7). This test

statistic performs much better at all forecast horizons and when the forecast errors are

autocorrelated or have non-normal distribution (Harris and Sollis, 2003). In this case, we

also evaluate both alternative hypotheses, when forecasts from one model are better than

those from the other model and vice versa.

2.6. Forecast encompassing test

Forecast encompassing is when forecasts from one model use all the relevant information

readily available and no other model or information should improve those forecasts. In

other words, forecasts from a model contains useful information that is missing in forecasts

from another model.

One of the most common test statistic to evaluate forecast encompassing is the one pro-

posed by Chong and Hendry (1986) (CH), who develop a test by regressing the h-step

ahead forecast error from the evaluated model m1,
(
e
(m1)
j+h|j

)
, on the h-step ahead forecast

from the competing model m2,
(
ŷ
(m2)
j+h|j

)
:

e
(m1)
j+h|j = αŷ

(m2)
j+h|j + εj+h, (2.9)

for j = t0 + 0, ..., t0 + `− 1 with t0 the forecast origin. The null hypothesis α = 0 indicates

that forecasts from m1 encompass those from m2. It is used a t-statistic for testing α = 0,

and under the null hypothesis the t-statistic has an asymptotic normal distribution (Harris

and Sollis, 2003). According with Clements and Hendry (2002, p. 275) “the rationale

is that, optimally, the error to be made by forecaster 1 should be uncorrelated with all

information available when the forecast is made, while correlation of that error with forecast

2 implies that information in the latter is of some value in anticipating the former”.

Later, Ericsson (1992) (ER) tests the null hypothesis of forecast encompassing by regressing

the forecast error from m1 on the difference in the forecast errors from m1 and m2:

e
(m1)
j+h|j = α

(
e
(m1)
j+h|j − e

(m2)
j+h|j

)
+ εj+h, (2.10)

for j = t0 + 0, ..., t0 + ` − 1. The null hypothesis α = 0 indicates that forecasts from

m1 encompass those from m2. It is used a t-statistic to test α = 0, and under the null

hypothesis, the t-statistic has an asymptotic normal distribution (Harris and Sollis, 2003).
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Harvey et al. (1998) (HLN) propose the following test:

HLN =
c̄√

var(c̄)
, (2.11)

where c̄ = `−1
∑t0+`−1

j=t0+0 cj and cj = e
(m1)
j+h|j

(
e
(m1)
j+h|j − e

(m2)
j+h|j

)
. Under the null hypothesis of

forecast encompassing, that test statistic has an asymptotic standard normal distribution

(Harris and Sollis, 2003).

In addition, Harvey et al. (1998, p. 254) argue that “given a record of past forecast errors,

it is natural to test for forecast encompassing through a simple least squares regression

approach. For one-step-ahead prediction, it may be reasonable to assume, at least as a

reference case, that the forecast errors are not autocorrelated so that the regression based

test is very straight forward to implement. If forecasts are for longer horizons, however,

errors from optimal forecasts will be autocorrelated, for which some allowance is necessary

in the development of valid tests”.

2.7. Graphical analysis

By using graphical analyses, we compare the TAR model with the SETAR and STAR

models based on their ability to describe the predictive distributions of the economic time

series, in terms of their capacity to handle economic cycles. We make this comparison

exercise based on Wong and Li (2000), who study the annual record of the numbers of

Canadian lynx trapped in the Mackenzie River district of north-west Canada, from 1821 to

1934. They find that the shapes of the predictive distributions of the mixture autoregressive

model change over time, being unimodal when the time series is ascending to a peak, and

bimodal when the series is descending to a trough. They explain this behavior, saying that

the values of the troughs are more variable than the values of the peaks, which have either

large or small values.

In that sense, The MSAR and AR models are not considered in this analysis, because fore-

casts from these models are computed analytically, where it is assumed Gaussian innovation

terms, and under this assumption, both the marginal and the conditional distributions of

the time series are Gaussian. Therefore, the predictive distributions of the MSAR and

AR models are unimodal, making not possible identifying shape changing characteristics

in their predictive distributions, which is the objective of this analysis.
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Selection of the data

This Chapter is devoted to present a description of the different macroeconomic variables

used in the forecasting evaluation. We use the following United States (U.S.) and Colom-

bian macroeconomic time series that are commonly used in literature: Gross Domestic

Product (GDP), unemployment rate, industrial production index and inflation.

In addition, to estimate the TAR model, we select the variables that will be the threshold

process. The selection is based on the economic theory and a literature review about

the use of economic indicators as proxies for the output growth, industrial production,

unemployment and inflation.

3.1. Unemployment rate

To fit a TAR model for the unemployment rate, from a macroeconomic point of view,

we based on the analysis of the aggregate demand - aggregate supply (AD - AS) macroe-

conomic model10, which explains the effects of output on the price level and vice versa,

throughout the behavior of the labor market and the relation between goods and financial

markets (Blanchard and Johnson, 2013).

That macroeconomic model, from the aggregate supply side, postulates that those effects

are captured by the following underlying impacts: An increase in output leads to a decrease

in unemployment, which leads to an increase in nominal wages, which leads in turn to an

increase in the price level, which leads to a decrease in the demand for output (Blanchard

and Johnson, 2013), starting over the cycle from the aggregate demand side.

Given that in this general model the output behavior affects the unemployment rate11, we

select as the threshold process the GDP, because it measures the output of an economy

through the value of all final goods and services produced by labor in a period in an

economy. Furthermore, GDP captures expansions and contractions of an economy, that

is, the business or economic cycles, which has been associated with the unemployment

10 AD-AS is based on Keynes’s (1936) general theory of employment, interest and money, although it

incorporates other theories that explain labor, goods and financial markets.
11 Okun’s law argues that a strong enough growth can decrease the unemployment rate, but it must be done

with caution because the economy can overheat and leads in turn to a pressure on inflation (Blanchard

and Johnson, 2013).
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rate in the literature. Montgomery et al. (1998), Rothman (1998), van Dijk et al. (2002),

Deschamps (2008) among others, argue that the U.S. unemployment rate tends to move

countercyclically with the U.S. business cycle. Another remarkable characteristic of the

unemployment rate is that it rises quickly but decays slowly, which suggests that the time

series could be nonlinear (Tsay, 2005).

Regarding the Colombian case, we highlight the studies of Guzmán et al. (2003) and Vivas

(2011), who describe that the unemployment rate also tends to move countercyclically with

Colombian business cycles.

Therefore, we fit a TAR model for the Colombian and U.S. unemployment rate with the

GDP as the threshold process. In the Colombian case, we use the ISE index as proxy of the

GDP, given that the unemployment rate time series is in monthly data and the ISE index,

which is calculated by the Colombian National Administrative Department of Statistics

(referred to as DANE), is a monthly estimate of the Colombian real economic activity.

3.2. Gross domestic product

There is an extensive literature in forecasting the U.S. Gross Domestic Product (GDP).

Among the different several variables used to predict GDP, the term spread, defined as the

difference between long-term interest rates and short-term interest rates on bonds of equal

credit quality (such as government debt), has been used extensively in the literature12.

Authors as Laurent (1988), Harvey (1989), Estrella and Hardouvelis (1991), Stock and

Watson (2003), Elger et al. (2006), Rossi and Sekhposyan (2010) among others, use this

variable to forecast output growth13.

Stock and Watson (2003, p. 173), based on Bernanke and Blinder (1992), say that “the

standard economic explanation for why the term spread has predictive content for output is

that the spread is an indicator of an effective monetary policy: monetary tightening results

in short-term interest rates that are high, relative to long-term interest rates, and these

high short rates in turn produce an economic slowdown”.

In the case of Colombia, the term spread has been also used. Arango et al. (2004) estimate a

logit model to estimate the probability of change between economic expansion and recession

conditioned on the spread and the inflation differential. Arango and Florez (2004) use the

same methodology from Harvey (1988, 1997), who uses the spread to predict the U.S.

consumption growth as proxy of the expected economy growth. Garzón and Tobos (2014)

find, by estimating a VAR from 2000 to 2013 and the Granger causality test, that the

active interest rate and the Colombian peso market exchange rate may help to improve

the forecasts of the Colombian GDP.

12 Different authors mention different variables as leading indicators of the economic activity and the

inflation, such as interest rates, term spreads, unemployment, consumer price and producer price index,

stock returns, dividend yields, exchange rates, money supply, among others.
13 However, the term spread has lost its ability to predict economic activity in the past few decades

(Stock and Watson, 1999, 2003; Estrella and Trubin, 2006; Wheelock and Wohar, 2009; Kuosmanen

and Vataja, 2014). Despite of that, this variable has been used in the U.S. to predict recessions in the

economic activity, and also, it is considered as the best indicator of economic activity and a useful tool

for forecasting (Estrella and Trubin, 2006; Wheelock and Wohar, 2009; Kuosmanen and Vataja, 2014).
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Therefore, based on the above review, we select the term spread as the threshold process

to estimate the TAR model for both the U.S. and Colombian GDP. The term spread for

the U.S. is based on Stock and Watson (2003) and Rossi and Sekhposyan (2010, 2014),

which is defined as the difference between the 10-Year Treasury Constant Maturity rate (as

the long-term government bond rate) and the effective federal funds rate (as the overnight

rate). For the Colombian case, we use the Treasury bonds known as TES, as the long-term

government bond rate, and the inter-bank interest rate as the overnight rate.

3.3. Industrial production index

Throughout the literature review, the industrial production index has been voluminously

used as proxy of the economic activity. Stock and Watson (1989) use the U.S. industrial

production as the output measure, from 1959 to 1985, and find, as a main result, that

money has statistically significant marginal predictive value for the U.S. industrial pro-

duction. Bernanke (1990) finds a satisfactory performance of the paper-bill spread (the

difference between the commercial paper rate and the Treasury bill rate) as predictor of

industrial production and unemployment rate, over the 1961-1986 period. Friedman and

Kuttner (1992) discuss the Stock and Watson’s (1989) study, extending the data of indus-

trial production until 1990, and find that paper-bill spread contains significant predictive

value for industrial production, while money does not have this ability.

Later, Thoma and Gray (1998) find that the federal funds rate, the paper-bill spread and

the M2 are not useful in forecasting the industrial production, when they are used as a

measure of the real economic activity. Based on Friedman and Kuttner (1992), Black

et al. (2000) restate that the paper-bill spread provides information content for industrial

production or real personal income when using data, over the 1959–1997 period. As we

already mentioned, Stock and Watson (2003) and Rossi and Sekhposyan (2010) forecast

the U.S. industrial production growth as a proxy of the output growth and use the term

spread to forecast this variable.

For the Colombian case, Arango et al. (2004) and Arango and Florez (2004) use this index

as proxy of the economic activity.

Based on this literature review, the term spread was considered to help to improve the

forecast of the economic activity. Therefore, we select the term spread defined in the

above Section, as the threshold process for estimating the TAR model for the U.S. and

Colombian industrial production index.

3.4. Inflation

As in the GDP case, there is a widespread literature in forecasting the inflation, and

specifically, in state that the spread between the yields on long and short government

securities helps to forecast inflation. There are different hypotheses that relate the term

structure and inflation. For example, Stock and Watson (2003, p. 795) say that “According

to the expectations hypothesis of the term structure of interest rates, the forward rate (and

the term spread) should embody market expectations of future inflation and the future real

rate”. Kozicki (1998) mentions that, when the term spread is an indicator of monetary
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policy, decreases of this term spread (short-term interest rates are higher than long-term

interest rates), when responding to contractionary restrictive monetary policies, predict

that real activity will slow and inflation will decrease.

For the U.S. case, we highlight the study of Fama (1990) who forecasts the U.S. inflation,

from 1952 to 1988, and finds that the spread between five-year bonds and one-year bonds

helps to forecast changes in the one-year inflation rate. Mishkin (1990) finds that spreads

with long bond rates contain information about future inflation14. Jorion and Mishkin

(1991) and Mishkin (1991) find similar results using data on ten OECD countries. Estrella

and Mishkin (1997) argue that the term spread is an indicator of the state of monetary

policy and helps to forecast inflation at moderate to long horizons. Later, Stock and

Watson (2003) study the predictive content of the term spread for inflation, from 1959 to

1999, and find that the term spread helps to forecast the U.S. inflation in the first period.

Manzan and Zerom (2013) evaluate the U.S. inflation, from 1959 to 2007, and find that

the term spread among other variables helps to forecasts after 1984.

Regarding the Colombian case, in the literature review was not identified studies that uses

the term spread for predicting inflation15.

Nonetheless, we use the term spread as the threshold variable to estimate the TAR model

for Colombia and the U.S., supporting that selection in the above arguments.

14 Nevertheless, he recommends using long bond rates, given that they help to predict inflation.
15 Avella (2001) uses a small-scale macroeconomic model to analyze the influence in short-term of droughts

on Colombian inflation, over the 1990-2001 period. Nuñez (2005) finds that inflation in Colombia, from

1998 to 2003, had been principally affected by supply shocks that had an impact on food prices. Melo

et al. (2016) compute forecasts for Colombian inflation over the 2002-2011 period. They support their

methodology on the inflation estimates of the Central Bank of Colombia, which use some indicators that

affect inflation, such as price of certain foods, improving the predictive performance of their technique.
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Out-of-sample forecast evaluation

This Chapter is devoted to empirically evaluate the predictive performance of the TAR

model. We compare the out-of-sample forecasts from the TAR models with those from the

competing linear and nonlinear models mentioned in Chapter 1, using the macroeconomic

variables mentioned in the previous Chapter.

Consequently, we estimate a TAR model with the procedure of Section 1.1, and we com-

pute its forecasts as it was mentioned in Proposition 1.1. The estimation and forecasting

procedures for the competing models are based on Chapter 1. It is highlighted that it

has been found in the literature that a satisfactory in-sample fit it is not a guarantee of

out-of-sample good forecasts performance, even for linear models, when using economic

time series (Clements and Hendry, 1996, 1998). In fact, there is a considerable literature

that finds that although nonlinear models fit better than linear models within-sample, their

forecasting performance is often no clearly better than that of linear alternatives (Clements

and Krolzig, 1998; Clements and Smith, 2000; Clements and Hendry, 2002; Franses and

van Dijk, 2005, among others).

In that sense, it becomes more relevant to check the out of sample forecasts performance

of each model, than to assess which model could describe better a time series within the

estimation sample. This gives the possibility to analyze forecasts from models with not

completely satisfactory in-sample properties, but that do not provide enough grounds for

questioning the adequacy of the fitted models. Thus, we present a summary of the in-

sample properties in terms of the good, regular and bad adequacy of each model, but

principally, we focus on the out-of-sample forecasts performance of all models.

After the model estimations, we present the results of the forecasting performance for the

TAR and competing models using the evaluation criteria mentioned on the previous Chap-

ter16. The out-of-sample forecasts comparison is based on a sequence of rolling forecasts.

In this procedure all the data set X = (x1, x2, . . . , xT ) with T the size of the total sample,

is divided in two subsamples. The first subsample of the data, called the estimation sub-

sample Xa = (x1, x2, . . . , xt0), is used to estimate the model, and the second subsample,

the forecasting subsample Xb = (xt0+1, xt0+2, . . . , xT ), is used to assess the forecasting

performance of the model, where t0 is the forecast origin. Then, a new data point is moved

16 We use the RATS package (V. 7.1) for doing the above tasks.
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from the forecasting subsample into the estimation subsample, and another sequence of

forecasts are computed again. This procedure is repeated throughout the sample, rolling

forward the forecast origin one-step ahead (Tsay, 2005)17.

According to this design, it is hold back 30% of the total sample for the forecasting sub-

sample. This is based on Granger (1993), who prefers to hold back a substantial amount of

post-sample data, at least 20% of the data. Once the size of the subsamples are established,

models are estimated at once, although the new data incorporated into the estimation sub-

sample is used in generating the forecasts as mentioned above18. For the TAR, SETAR and

STAR models, multi-step ahead forecasts are obtained via simulation of 2000 realizations

at each step, where the mean of those realizations (which is considered as an estimate of

the mean of the predictive distributions) is treated as a point forecast19.

We remark here that the forecasting performance of the TAR model, compared with several

models, has not been studied before in the literature, in the knowledge of the present

author. Therefore, this study could give us important signals about the forecasting ability

of a TAR model in the economic field.

4.1. Empirical results for the United States economic time

series

4.1.1. Unemployment rate

Description of the data

We use the change in the seasonally adjusted U.S. quarterly unemployment rate, Xt =

ut − ut−1, retrieved from the Bureau of Labor Statistics of the U.S. Department of Labor,

over the 1948:02-2016:03 period (274 observations). This data set allows us to study the

behavior of the series from post second world war to the currently available data, so we can

count with a considerable set of information for the estimation and forecasting procedure.

This period also allows us to contrast the U.S. unemployment with the U.S. business cycle

and output growth. For the U.S. output growth, we use the growth rate of the seasonally

adjusted quarterly real GDP (the first difference of the logarithm of the series), in billions

of chained 2009 Dollars20, retrieved from the U.S. Bureau of Economic Analysis over the

same period.

17 This procedure has been commonly used in the literature focused on evaluate different models and

their forecast performance for several economic time series, such as Cao and Tsay (1992); Clements and

Krolzig (1998); Montgomery et al. (1998); Stock and Watson (1999); van Dijk et al. (2002); Clements

et al. (2003); Deschamps (2008); Kolly (2014), among others.
18 Some studies that use this technique are those of Cao and Tsay (1992); Clements and Krolzig (1998);

Koop and Potter (1999); van Dijk et al. (2002); Deschamps (2008) and Teräsvirta et al. (2010).
19 We ran different experiments with 5000, 10000 and 20000 realizations and found that the forecasts are

similar.
20 This is a measure used to express real prices. Real prices are referred to prices that have been adjusted

to remove the effect of changes in the purchasing power of the dollar. This measure, introduced by

the U.S. Department of Commerce in 1996, is based on the average weights of goods and services in

successive pairs of years. The “chained” word is because the second year in each pair (and its weights)

becomes the first year of the next pair.
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Figure 4.1 shows the U.S. unemployment rate and the growth rate of the U.S. quarterly

real GDP. To compare, the shading areas denote the business cycle contractions from

peak to trough, based on the National Bureau of Economic Research (NBER)21. The

unemployment rate presents a countercyclically behavior with the U.S. business cycle,

since the unemployment rate increases during contractions and decays during expansions

periods. Tsay (2005) suggests that those characteristics indicate a nonlinear dynamic

structure of the series. Regarding the growth rate of the real GDP, we can see more

positive than negative growths during the analyzed period, where negative growths are in

accordance with upwards of unemployment rate.

Figure 4.1.: (a) Time plot of the change in the U.S. quarterly unemployment rate and

(b) time plot of the growth rate of U.S. quarterly real GDP.

We use as the training subsample, the data from 1948:02 to 1995:04 (191 observations). The

remaining observations are reserved for the out-of-sample forecasting evaluation. Then, a

sequence of 1 to 8-step ahead forecasts are generated from the forecast origin 1995:0422.

Afterwards, the forecast origin is moved one period ahead and forecasts are generated

again. This procedure is repeated until we compute 82 1-step ahead forecasts, 81 2-step

ahead forecasts, and so on until 75 8-step ahead forecast. We use this methodology for the

rest of the time series.

Estimation of the TAR model

Based on the estimation procedure in Appendix B.1, the fitted TAR model for the change

in the U.S. unemployment is given by:

21 Information available at the National Bureau of Economic Research web page: http://www.nber.org/

cycles.html.
22 The selection of the forecast horizon for quarterly time series is based on the literature review.

http://www.nber.org/cycles.html
http://www.nber.org/cycles.html
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Xt =



0.32 + 0.51Xt−1 + 0.10Xt−2 − 0.21Xt−3 − 0.24Xt−4

+0.10Xt−5 + 0.18Xt−6 − 0.17Xt−7 + 0.95Xt−8

+0.76Xt−9 − 0.16Xt−10 − 0.36Xt−11 + 0.12εt, if Zt ≤ 0.19

0.03 + 0.5Xt−1 − 0.04Xt−2 − 0.07Xt−3 + 0.03εt, if 0.19 < Zt ≤ 1.00

−0.25 + 0.07εt, if Zt > 1.00

This model could represent periods in the economy of i) contraction, where growth rates

of the GDP less than 0.19% has the greatest increases in the unemployment rate; ii) stabi-

lization, where the regime with growth rates of the GDP between 0.19 and 1.00%, shows

low increases and decreases in the unemployment rate; and iii) expansion, where growth

rates of the GDP greater than 1.00%, exhibits the greatest decreases in the unemployment

rate.

When we check the residuals, in Figure 4.2 we observe that the standardized residuals

and squared standardized residuals signal that the noise process is white, and the Ljung-

Box statistics for checking “whiteness” are, respectively, Q (8) = 5.891(0.659) and Q (8) =

5.373(0.717) with the number in parenthesis denoting the p-value. Figure 4.3 reports

that the CUSUM (with 5% percent of significance) and CUSUMSQ (with 1% percent of

significance) behave well, which indicates that there is no statistical evidence for model

misspecification or heteroscedasticity in {εt}23.

Figure 4.2.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case.

23 The significance bands established for the CUSUM and CUSUMSQ are used hereafter, for checking the

residuals in the other models and time series.
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Figure 4.3.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. unemployment rate case.

Estimation of the SETAR model

Based on the estimation procedure in Appendix B.2, the estimated SETAR model for the

change in the U.S. unemployment rate is given by:

Xt =

{
0.21Xt−1 + εt, if Xt−6 ≤ −0.2

0.67Xt−1 − 0.21Xt−3 + εt, if Xt−6 > −0.2

This model could represent periods in the economy of i) stability, where the first regime

contains minor variations in the unemployment rate, and ii) instability, where the second

regime shows sharp movements in the unemployment rate.

Figure 4.4 shows that the standardized and squared standardized residuals of the model sig-

nal that some nonlinear structure in the data is not explained by the model. Furthermore,

the Ljung-Box statistics are, respectively, Q (8) = 11.777(0.161) and Q (8) = 25.849(0.001).

Figure 4.5 presents the CUSUM and CUSUMSQ, indicating that there is no statistical ev-

idence for model misspecification but some heteroscedasticity in {εt}.
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Figure 4.4.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. unemployment

rate case.

Figure 4.5.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. unemployment rate case.

Estimation of the STAR model

Based on the results in Appendix B.3, the estimated STAR model for the change in the

U.S. unemployment rate is given by:

Xt = −0.09 + 0.43Xt−1 − 0.20Xt−4 + F (Xt−6) (4.24− 0.56Xt−1 − 3.37Xt−2) + εt,

where

F (Xt−6) = (1 + exp {2.34×−1.39 (Xt−6 − 1.26)})−1 .

When we check the residuals, Figure 4.6 shows that the standardized and squared stan-

dardized residuals of the model signal that the noise process is white, and the Ljung-Box

statistics are, respectively, Q (8) = 12.736(0.121) and Q (8) = 16.787(0.032). Figure 4.7
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reports the CUSUM and CUSUMSQ, indicating that there is no statistical evidence for

model misspecification but some heteroscedasticity in {εt}.

Figure 4.6.: Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case.

Figure 4.7.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. unemployment rate case.

Estimation of the MSAR model

Following Appendix B.4, the estimated MSAR model for the change in the U.S. unemploy-

ment rate is given by:

Xt =

{
−0.07 + 0.28Xt−1 + 0.09Xt−2 − 0.12Xt−4 + ε1t, if st = 1

0.09 + 0.79Xt−1 − 0.28Xt−2 − 0.24Xt−4 + ε2t, if st = 2.

The conditional mean of Xt for regime 1 is -0.11 and for regime 2 is 0.18. Hence, the

first state represents the expansionary periods in the U.S. economy, and the second state
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represents the contractions. The sample variances of ε1t and ε2t are 0.03 and 0.17, respec-

tively24.

When we check this model, Figure 4.8 shows that the standardized and squared standard-

ized residuals of the model slightly signal that some nonlinear structure in the data is not ex-

plained by the model, and the Ljung-Box statistics are, respectively, Q (8) = 57.784(0.000)

and Q (8) = 2.919(0.939). Figure 4.9 reports the CUSUM and CUSUMSQ, which indicate

that there is statistical evidence for model misspecification and heteroscedasticity in {εt}.

Figure 4.8.: Partial autocorrelation function of the fitted MSAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case.

Figure 4.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. unemployment rate case.

24 The state transition probability p(i, j) gives the probability of moving to state i from j. Thus,

the probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.07(0.03) and

p (st = 1|st−1 = 2) = 0.09(0.05), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.56 and that it is in regime 2 is

0.44. The coefficients also allow us to identify that the probability that an expansion is followed by

another expansion period is p (1, 1) = 0.93, and that the probability that a contraction is followed by

another contraction period is p (2, 2) = 0.91.
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Estimation of the AR model

We estimate an AR(3) model for the change in the US unemployment rate25, which is

given by:

(
1− 0.730B + 0.118B2 + 0.144B3

)
Xt = at, σ̂2a = 0.10.

The standard errors of the coefficients are 0.07, 0.09, and 0.07, respectively. When we check

the residuals, Figure 4.10 shows that the standardized and the squared standardized resid-

uals slightly signal that some linear structure in the data is not explained by the model, and

the Ljung-Box statistics are, respectively, Q (8) = 19.011(0.015) and Q (8) = 23.570(0.003).

Figure 4.11 shows the CUSUM that indicates there is no statistical evidence for model mis-

specification, and the CUSUMSQ that shows statistical evidence for heteroscedasticity in

{εt}.

Figure 4.10.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. unemployment rate

case.

Figure 4.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. unemployment rate case.

25 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.000), Phillips Perron (PP) (p−value =

0.000) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.055 and Critical value =

0.463, the change in the unemployment rate is stationary at the 5% significance level.
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Table 4.1 shows a summary of the model adequacy of the analyzed models. Globally, it is

observed that the TAR and STAR models exhibit a reasonable in-sample fit.

Model adequacy AR TAR SETAR STAR MSAR

White noise 2 1 2 1 2

Model specification 1 1 1 1 2

Homoscedasticity 3 1 2 2 3
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.1.: Model adequacy. U.S. unemployment rate case.

Forecasting evaluation

As it was mentioned in Chapter 2, firstly we are going to evaluate the individual properties

for each model and each horizon. Table 4.2 shows Holden and Peel’s (1989) (HP) unbiased

test and Ljung-Box’s Q correlation test, which were described in Section 2.1 and 2.2,

respectively. It is observed that, at the 10% significance level, forecasts errors of all models

are unbiased, and only the SETAR and STAR exhibit forecasts errors that, globally, are

not autocorrelated at horizons greater than 1 period.

(a)

Horizon AR TAR SETAR STAR MSAR

1 0.921 0.252 0.747 0.540 0.811

2 0.856 0.229 0.476 0.537 0.798

3 0.825 0.203 0.680 0.429 0.742

4 0.872 0.260 0.481 0.506 0.790

5 0.876 0.298 0.224 0.758 0.741

6 0.909 0.275 0.836 0.530 0.772

7 0.965 0.199 0.700 0.317 0.811

8 0.995 0.223 0.766 0.413 0.814

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.000 0.000 0.000 0.000 0.000

2 0.658 0.000 0.210 0.376 0.000

3 0.000 0.000 0.553 0.036 0.000

4 0.000 0.000 0.221 0.196 0.000

5 0.000 0.000 0.721 0.485 0.000

6 0.001 0.000 0.821 0.790 0.000

7 0.527 0.000 0.891 0.603 0.000

8 0.000 0.000 0.033 0.158 0.000

Cells highlighted green have a p–value less than 0.1.

Table 4.2.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. unemployment rate case.

Secondly, we compare, at the 10% significance level, forecasts from the TAR model with

those from the other considered models. Table 4.3 shows the relative MSE of forecasts

from the estimated models, using the lineal model as the benchmark model. For the overall

comparison, the TAR model and the linear model are very close in MSE. We observe that

the MSAR model has the smallest MSE among all the estimated models, except the 1

period horizon, where the MSE of the SETAR model is much better.
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Horizon MSE AR TAR SETAR STAR MSAR

1 0.053 1.000 1.127 0.943 0.956 1.117

2 0.079 1.000 1.065 1.243 1.981 0.764

3 0.101 1.000 0.937 1.438 1.933 0.602

4 0.106 1.000 0.893 1.800 2.068 0.575

5 0.103 1.000 0.950 1.848 1.932 0.600

6 0.101 1.000 0.947 1.261 1.700 0.613

7 0.100 1.000 0.946 1.481 1.582 0.627

8 0.101 1.000 1.010 1.723 1.771 0.631

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.3.: Relative MSE of forecasts. U.S. unemployment rate case.

Table 4.4 shows the results of the DM test of Diebold and Mariano (1995) and the modified

DM test (MDM) of Harvey et al. (1997), where both of them evaluate the null hypothesis

that indicates equal predictive accuracy (equal MSE) for the two evaluated forecasts. Here-

after, the benchmark model is the TAR, so we can evaluate its performance with respect to

the performance of the other models. We analyze both directions of the test, thus, tables

(a) and (c) in Table 4.4 shows the p-value of the DM and MDM tests with the null of

equal accuracy versus the alternative that says that forecasts from the competing models

are more accurate than the TAR model (the competing model has a smaller MSE); while

tables (b) and (d) shows the p-value for the null of equal accuracy versus the alternative

that says the TAR model is more accurate than the competing models (the TAR model

has a smaller MSE). In general, we observe that forecasts from the TAR model are more

accurate than those from the SETAR and STAR models, and there is not a significant

difference with the MSAR and AR models, using the DM and MDM tests.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.328 0.286 0.266 0.477

2 0.310 0.752 0.999 0.159

3 0.827 1.000 0.998 0.148

4 0.990 1.000 1.000 0.146

5 0.864 1.000 1.000 0.126

6 0.827 0.984 1.000 0.148

7 0.828 0.974 1.000 0.164

8 0.424 0.993 0.999 0.127

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.672 0.714 0.734 0.523

2 0.690 0.248 0.001 0.841

3 0.173 0.000 0.002 0.852

4 0.010 0.000 0.000 0.854

5 0.136 0.000 0.000 0.874

6 0.173 0.016 0.000 0.852

7 0.172 0.026 0.000 0.836

8 0.576 0.007 0.001 0.873

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.354 0.314 0.289 0.481

2 0.335 0.731 0.996 0.193

3 0.766 0.999 0.993 0.186

4 0.971 1.000 1.000 0.182

5 0.807 1.000 1.000 0.165

6 0.776 0.998 1.000 0.184

7 0.783 0.981 1.000 0.200

8 0.428 0.998 1.000 0.160

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.646 0.686 0.711 0.519

2 0.665 0.269 0.004 0.807

3 0.234 0.001 0.007 0.814

4 0.029 0.000 0.000 0.818

5 0.193 0.000 0.000 0.835

6 0.224 0.002 0.000 0.816

7 0.217 0.019 0.000 0.800

8 0.572 0.002 0.000 0.840

Cells highlighted green have a p–value less than 0.1.

Table 4.4.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than F2.

U.S. unemployment rate case.
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When checking the encompassing tests, we also evaluate both directions of these tests as

it was done by Clements et al. (2003) and Bradley and Jansen (2004), that is, one model

encompasses the other and vice versa. The analysis is as follows: (i) if the TAR and the

competing models encompass each other, then no one is better than the other; but (ii)

if the TAR model encompasses (does not encompass) the competing model and it is not

encompassed (is encompassed) by the latter, then the TAR model is better (is not better)

than the competing model.

Table 4.5 shows the forecast encompassing tests of Chong and Hendry (1986) (CH), Er-

icsson (1992) (ER) and Harvey et al. (1998) (HLN). All of these tests evaluate the null

hypothesis of forecast encompassing. Table 4.5 suggests in general, at the 10% significance

level, that under the CH criteria, the TAR model could be encompassed by the competing

models for the 4 and 5-step ahead forecast, in general. However, the ER and HLN tests

shows that the TAR model encompasses the AR, SETAR and STAR models, while those

competing models do not encompass the TAR model. Therefore, forecasts from the TAR

model contain all the relevant information with respect to the forecasts from these three

models. The MSAR model is the only one that encompasses the TAR model.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.035 0.016 0.017 0.044

2 0.111 0.267 0.385 0.000

3 0.086 0.366 0.621 0.003

4 0.068 0.043 0.069 0.002

5 0.273 0.081 0.081 0.001

6 0.138 0.203 0.234 0.000

7 0.188 0.531 0.844 0.002

8 0.735 0.918 0.524 0.004

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.064 0.153 0.033 0.004

2 0.007 0.163 0.041 0.000

3 0.440 0.421 0.255 0.352

4 0.363 0.903 0.793 0.202

5 0.436 0.891 0.789 0.341

6 0.155 0.366 0.639 0.064

7 0.023 0.193 0.349 0.029

8 0.385 0.571 0.765 0.770

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.177 0.076 0.058 0.438

2 0.136 0.248 0.299 0.017

3 0.812 0.259 0.972 0.006

4 0.297 0.047 0.073 0.004

5 0.748 0.101 0.078 0.001

6 0.805 0.158 0.217 0.007

7 0.693 0.516 0.969 0.011

8 0.168 0.684 0.289 0.001

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.729 0.717 0.730 0.509

2 0.615 0.013 0.000 0.958

3 0.019 0.000 0.000 0.565

4 0.000 0.000 0.000 0.548

5 0.013 0.000 0.000 0.458

6 0.012 0.000 0.000 0.653

7 0.007 0.000 0.000 0.689

8 0.316 0.000 0.000 0.362

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.160 0.142 0.124 0.234

2 0.072 0.143 0.826 0.053

3 0.404 0.150 0.514 0.086

4 0.842 0.982 0.954 0.086

5 0.376 0.969 0.968 0.074

6 0.399 0.091 0.905 0.078

7 0.343 0.265 0.515 0.091

8 0.076 0.340 0.130 0.081

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.353 0.341 0.352 0.244

2 0.310 0.005 0.000 0.521

3 0.039 0.000 0.000 0.685

4 0.001 0.000 0.000 0.690

5 0.011 0.000 0.000 0.722

6 0.048 0.000 0.000 0.654

7 0.057 0.000 0.000 0.638

8 0.202 0.000 0.000 0.750

Cells highlighted green have a p–value less than 0.1.

Table 4.5.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

U.S. unemployment rate case.

Table 4.6 reports the Theil’s U statistic. In general, we find that all models have the same
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predictive performance of the näıve model, where the MSAR model has the smallest values

of the test, and the TAR model has, generally, the second smallest values.

Horizon AR TAR SETAR STAR MSAR

1 0.998 1.060 0.969 0.976 1.055

2 1.206 1.245 1.345 1.698 1.055

3 1.361 1.317 1.631 1.892 1.055

4 1.392 1.315 1.868 2.002 1.055

5 1.368 1.334 1.860 1.902 1.060

6 1.353 1.316 1.519 1.764 1.059

7 1.336 1.299 1.626 1.680 1.058

8 1.332 1.339 1.749 1.773 1.059
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.6.: Theil’s U statistic. U.S. unemployment rate case.

Now, we present a summary of the above forecasts comparison evaluation. Regarding

the individual properties, all models have unbiased forecasts, but only the SETAR and

STAR present uncorrelated forecasts errors. Additionally, Table 4.7 indicates how many

models are outperformed by the TAR model, in terms of their forecasting performance,

at each forecast horizon and for each evaluation criteria. It is observed that, under the

relative MSE criteria, the TAR model outperforms more than 2 models, although the

MSAR model has the smallest MSE. The DM and MDM statistics suggest that forecasts

from the TAR model are more accurate than those from the SETAR and STAR models,

while differences in MSE of forecast between the TAR, MSAR and AR models are not

statistically significant.

Also, it is observed that the TAR model encompasses the AR, SETAR and STAR models.

That is, given that forecasts from the TAR model are available, the competing models

provide no further useful incremental information for prediction (Clements and Hendry,

2002). Finally, forecasts from the TAR model have, after forecasts from the MSAR, the

smallest Theil’s U statistic at horizons greater than 2 periods ahead. Thus, we can say

that forecasts from the TAR model have a good performance for predicting the U.S. unem-

ployment rate, given that this model appears to be marginally preferred to the competing

models.
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Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 0 0 0 0

2 2 1 2 2

(SETAR, STAR) (STAR) (STAR, AR) (SETAR, STAR)

3 3 2 3 2

(SETAR, STAR, AR) (SETAR, STAR) (SETAR, STAR, AR) (SETAR, STAR)

4 3 3 3 3

(SETAR, STAR, AR) (SETAR, STAR, AR) (SETAR, STAR, AR) (SETAR, STAR, AR)

5 3 2 3 3

(SETAR, STAR, AR) (SETAR, STAR) (SETAR, STAR, AR) (SETAR, STAR, AR)

6 3 2 3 3

(SETAR, STAR, AR) (SETAR, STAR) (SETAR, STAR, AR) (SETAR, STAR, AR)

7 3 2 3 3

(SETAR, STAR, AR) (SETAR, STAR) (SETAR, STAR, AR) (SETAR, STAR, AR)

8 3 2 2 2

(SETAR, STAR, AR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.7.: Summary of the forecasting performance of the TAR model. U.S. unemploy-

ment rate case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distributions of the time series26, in terms of the capacity

to handle cycles. As it was mentioned in Chapter 2, we make this comparison exercise

based on Wong and Li (2000), who suggest that the predictive distribution is unimodal

when the series is ascending to a peak and bimodal when the series is descending to a

trough.

Figure 4.12 shows the predictive distributions for horizons from 1 to 8, when the forecast

origin is 2008:03. Based on the business cycle contractions from peak to trough of the

NBER, there is a business contraction from 2007:04 to 2009:02. According to this, the

predictive distributions of the TAR model tend to be bimodal when the time series is in a

trough between 2008:04 and 2009:02 (positive increments of the unemployment rate) and

become more unimodal when the time series is regaining an expansionist trend (negative

increments of the unemployment rate). The predictive distributions of the SETAR and

STAR models do not tend to be bimodal when the time series is in the peak. This suggests

that the predictive distributions of the TAR model seem to handle cycles of the times series

reasonably well.

26 Hereafter, for all models and all the economic time series, we generate the 1 to 8-step predictive distri-

butions for the U.S. and Colombian cases, using the Monte Carlo approach with 2000 replications.
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(a)

(b)

(c)

Figure 4.12.: 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. unemploy-

ment rate case.



4.1 Empirical results for the United States economic time series 38

4.1.2. Gross domestic product

Description of the data

We use the annual growth rate of the seasonally adjusted U.S. quarterly real output, in

billions of chained 2009 Dollars, from 1955:03 to 2016:03 (245 observations), measured by

the U.S. Bureau of Economic Analysis. As the threshold value, we use the term spread

defined in Section 3.2 over the same period, that is, the difference between the 10-Year

Treasury Constant Maturity rate as the long-term government bond rate, and the effective

federal funds rate as the overnight rate.

For the forecast comparison, we denote Xt = [log(GDP t)− log(GDP t−4)] ∗ 100 as the

annual growth rate of the real GDP, and Zt = (govt − overnightt) the spread term, where

govt is the 10-Year Treasury Constant Maturity rate, and overnightt is the effective federal

funds at time t. Both series are plotted in Figure 4.13 that shows a similar behavior of

these series during contractions periods. The shading areas denote the business cycle

contractions from peak to trough.

Figure 4.13.: (a) Time plot of the annual growth rate of U.S. real GDP and (b) time plot

of U.S. term spread.

We use as the training subsample, data from 1955:03 to 1998:02 (172 observations). The re-

maining observations are reserved for the out-of-sample forecasting evaluation. A sequence

of 1 to 8-step ahead forecasts are generated until we compute 73 1-step ahead forecasts,

down to 66 8-step ahead forecast.

Estimation of models

Based on results in Appendix C, Table 4.8 shows that globally, the TAR model presents

the best reasonable in-sample fit.
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Model adequacy AR TAR SETAR STAR MSAR

White noise 3 1 2 3 2

Model specification 1 1 1 1 3

Homoscedasticity 3 2 3 3 3
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.8.: Model adequacy. U.S. GDP case.

Forecasting evaluation

Table 4.9 shows that at the 10% significance level, only forecasts errors of the TAR model

are unbiased, and only the SETAR and STAR exhibit forecasts errors that, globally, are

not autocorrelated at horizons greater than 4 periods.

(a)

Horizon AR TAR SETAR STAR MSAR

1 0.001 0.601 0.016 0.019 0.016

2 0.000 0.689 0.072 0.001 0.013

3 0.000 0.432 0.107 0.004 0.006

4 0.000 0.373 0.091 0.016 0.006

5 0.000 0.302 0.042 0.000 0.006

6 0.000 0.202 0.034 0.000 0.004

7 0.000 0.180 0.015 0.000 0.003

8 0.000 0.163 0.000 0.000 0.003

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.406 0.000

3 0.000 0.000 0.036 0.193 0.000

4 0.000 0.000 0.099 0.021 0.000

5 0.000 0.000 0.272 0.189 0.000

6 0.000 0.000 0.509 0.304 0.000

7 0.000 0.000 0.314 0.727 0.000

8 0.000 0.000 0.581 0.776 0.000

Cells highlighted green have a p–value less than 0.1.

Table 4.9.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. GDP case.

Now, we present the forecast comparison at the 10% significance level. Table 4.10 shows,

for the overall comparison, that the TAR model and the linear model are very close in

MSE of forecasts, but the MSAR model has the smallest MSE among all the estimated

models, except for the 1-step ahead forecast, where the MSE of the TAR model is much

better.

Horizon MSE AR TAR SETAR STAR MSAR

1 0.546 1.000 0.957 1.654 1.124 0.995

2 1.579 1.000 0.976 2.034 2.700 0.348

3 2.917 1.000 1.051 1.845 2.305 0.184

4 4.399 1.000 1.079 1.928 1.971 0.124

5 5.059 1.000 1.081 1.841 1.478 0.109

6 5.265 1.000 1.048 1.630 1.442 0.106

7 5.233 1.000 1.063 1.511 1.730 0.107

8 5.062 1.000 1.105 1.913 1.798 0.112

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.10.: Relative MSE of forecasts. U.S. GDP case.
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Henceforth, we define the TAR model as the benchmark model. Table 4.11, that shows

the results of the DM and MDM tests, suggests that forecasts from the TAR model are

more accurate than those from the SETAR and STAR models, and there is no significant

difference with those from the AR model. However, forecasts from the MSAR model are

more accurate than those from the TAR model.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.642 0.943 0.792 0.629

2 0.580 0.987 1.000 0.004

3 0.356 0.985 0.990 0.003

4 0.293 0.994 0.955 0.003

5 0.307 0.991 0.958 0.002

6 0.383 0.979 0.980 0.003

7 0.347 0.984 0.998 0.002

8 0.241 0.998 0.999 0.003

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.358 0.057 0.208 0.371

2 0.420 0.013 0.000 0.996

3 0.644 0.015 0.011 0.997

4 0.707 0.006 0.045 0.997

5 0.693 0.009 0.042 0.998

6 0.617 0.021 0.020 0.998

7 0.653 0.016 0.002 0.998

8 0.759 0.002 0.001 0.997

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.643 0.900 0.743 0.630

2 0.579 0.967 0.997 0.014

3 0.354 0.965 0.993 0.010

4 0.301 0.987 0.961 0.009

5 0.337 0.986 0.955 0.007

6 0.402 0.999 0.965 0.008

7 0.373 1.000 0.994 0.007

8 0.282 1.000 0.996 0.009

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.357 0.100 0.257 0.370

2 0.421 0.033 0.003 0.986

3 0.646 0.035 0.007 0.990

4 0.699 0.013 0.039 0.991

5 0.663 0.014 0.045 0.993

6 0.598 0.001 0.035 0.992

7 0.627 0.000 0.006 0.993

8 0.718 0.000 0.004 0.991

Cells highlighted green have a p–value less than 0.1.

Table 4.11.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. U.S. GDP case.

Table 4.12 shows, under the CH test, that the TAR model could encompass the linear

model. However, under the ER and HLN tests, the TAR, SETAR, STAR and AR models

do not encompass each other, so forecasts from all models contain all the same useful

information for prediction. Only the MSAR model do encompasses the TAR model.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.940 0.783 0.737 0.974

2 0.988 0.676 0.766 0.123

3 0.732 0.814 0.847 0.097

4 0.622 0.903 0.708 0.067

5 0.517 0.965 0.724 0.057

6 0.422 0.819 0.603 0.058

7 0.385 0.745 0.503 0.079

8 0.357 0.412 0.445 0.075

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.129 0.911 0.895 0.370

2 0.074 0.714 0.500 0.270

3 0.020 0.638 0.159 0.053

4 0.012 0.562 0.165 0.025

5 0.005 0.332 0.014 0.013

6 0.003 0.384 0.015 0.060

7 0.001 0.134 0.002 0.004

8 0.001 0.018 0.000 0.005

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.002 0.003 0.000 0.005

2 0.000 0.019 0.033 0.000

3 0.000 0.001 0.001 0.000

4 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000

7 0.000 0.000 0.009 0.000

8 0.000 0.007 0.012 0.000

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.000 0.000 0.000 0.001

2 0.000 0.000 0.000 0.446

3 0.000 0.000 0.000 0.727

4 0.000 0.000 0.000 0.358

5 0.000 0.000 0.000 0.337

6 0.000 0.000 0.000 0.826

7 0.001 0.000 0.000 0.357

8 0.001 0.000 0.000 0.431

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.001 0.039 0.010 0.001

2 0.016 0.068 0.090 0.000

3 0.017 0.029 0.043 0.000

4 0.017 0.022 0.020 0.002

5 0.017 0.012 0.014 0.001

6 0.018 0.001 0.022 0.001

7 0.012 0.001 0.033 0.001

8 0.009 0.020 0.041 0.001

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.003 0.036 0.064 0.005

2 0.000 0.005 0.001 0.213

3 0.000 0.003 0.009 0.631

4 0.000 0.005 0.019 0.792

5 0.001 0.002 0.002 0.797

6 0.001 0.000 0.002 0.584

7 0.001 0.000 0.000 0.787

8 0.001 0.000 0.000 0.757

Cells highlighted green have a p–value less than 0.1.

Table 4.12.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

U.S. GDP case.

Table 4.13 shows that the MSAR model is the only one, among all the evaluated models,

that has a better predictive performance than the näıve model, and the TAR model has

the third-best values of the Theil’s U statistic.

Horizon AR TAR SETAR STAR MSAR

1 0.905 0.885 1.164 0.959 0.903

2 1.528 1.510 2.180 2.511 0.901

3 2.079 2.131 2.823 3.156 0.892

4 2.535 2.634 3.521 3.560 0.892

5 2.535 2.808 3.664 3.282 0.892

6 2.735 2.800 3.491 3.284 0.890

7 2.706 2.791 3.327 3.560 0.887

8 2.649 2.785 3.664 3.552 0.888
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.13.: Theil’s U statistic. U.S. GDP case.

As a summary of the above forecasts comparison evaluation, it is observed that only the

TAR model has unbiased forecasts, but the SETAR and STAR present uncorrelated fore-

casts errors for some forecast periods. Additionally, Table 4.14 let us observe a satisfactory

performance of the TAR model. According to the Relative MSE of forecast and the DM
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and MDM tests, the TAR model has better MSE of forecasts than the SETAR and STAR

models. Regarding the encompassing tests, only the MSAR model encompasses the TAR

model, while the other models contain all the same useful information for prediction than

the TAR model. Additionally, forecasts from the MSAR model are more accurate than

those from the näıve model.

Therefore, from this out-of-sample forecasts comparison, we can conclude that the TAR

model could forecasts the growth rate of the real GDP with a good performance, given that

of the alternatives, the TAR model appears to be marginally preferred to the competing

modes, except the MSAR model that seems to be more competitive according with these

tests.

Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 4 1 2 4

(AR, SETAR, STAR, MSAR) (SETAR) (AR, STAR) (AR, SETAR, STAR, MSAR)

2 3 2 0 3

(AR, SETAR, STAR) (SETAR, STAR) (AR, SETAR, STAR)

3 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

4 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

5 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

6 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

7 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

8 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.14.: Summary of the forecasting performance of the TAR model. U.S. GDP case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the growth rate of the real GDP, in terms of

the capacity to handle cycles. Figure 4.14 shows the predictive distributions for horizons 1

to 8, when the forecast origin is 2008:04. Based on the business contraction from 2007:04 to

2009:02, which is determined by the NBER, the predictive distributions of the TAR model

tend to be bimodal when the time series is in a through (negative growths of the real

GDP), and become more unimodal when the time series is regaining an expansionist trend

(positive growths of the real GDP). The predictive distributions of the SETAR and STAR

models slightly capture this behavior. This pattern of the predictive distributions is also

observed in other parts of the time series. This suggests that the predictive distributions

of the TAR model seem to handle cycles of the times series reasonably well.
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(a)

(b)

(c)

Figure 4.14.: 1 to 8-step predictive distributions of the annual growth rate of the U.S.

real output, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. GDP

case.
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4.1.3. Industrial production index

Description of the data

We analyze the annual growth rate of the seasonally adjusted U.S. quarterly industrial

production index (indpro), from 1960:01 to 2016:03 (227 observations), which was retrieved

from the Federal Reserve Bank of St. Louis (FRED). As the threshold value, we use the

term spread defined in Section 3.2 over the same period.

For the forecast comparison, we denote Xt =
[
log(Indprot)− log(Indprot−4)

]
∗ 100 as the

annual growth rate of the industrial production index (indpro), and Zt, the spread term

defined as the difference between the 10-Year Treasury Constant Maturity rate and the

effective federal funds. Both series are plotted in Figure 4.15 that shows a similar behavior

during contractions periods of these series. The shading areas denote the business cycle

contractions from peak to trough.

Figure 4.15.: (a) Time plot of the annual growth rate of U.S. quarterly industrial pro-

duction index and (b) time plot of U.S. term spread.

We use as the training subsample, the data from 1960:01 to 1999:04 (160 observations).

The remaining observations are reserved for the out-of-sample forecasting evaluation. By

using the procedure mentioned at the beginning of this Chapter, a sequence of 1 to 8-step

ahead forecasts are generated until we compute 67 1-step ahead forecasts down to 60 8-step

ahead forecast.

Estimation of models

Based on the estimation procedure in Appendix D, Table 4.15 shows that, in general, the

TAR shows the best reasonable in-sample fit.
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Model adequacy AR TAR SETAR STAR MSAR

White noise 2 2 3 3 3

Model specification 2 1 1 1 3

Homoscedasticity 2 2 2 2 2
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.15.: Model adequacy. U.S. indpro case.

Forecasting evaluation

Table 4.16 shows the HP unbiased test and Ljung-Box’s Q correlation test. At the 10%

significance level, only forecasts errors of the AR model are unbiased, and only the SETAR

and STAR exhibit uncorrelated forecasts errors at horizons greater than 3 and 5 periods,

respectively.

(a)

Horizon AR TAR SETAR STAR MSAR

1 0.840 0.000 0.000 0.000 0.001

2 0.853 0.000 0.000 0.000 0.001

3 0.822 0.000 0.000 0.000 0.001

4 0.771 0.000 0.000 0.000 0.002

5 0.769 0.000 0.000 0.000 0.002

6 0.760 0.000 0.000 0.000 0.004

7 0.823 0.000 0.000 0.000 0.006

8 0.912 0.000 0.000 0.000 0.009

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.065 0.059 0.000

4 0.000 0.000 0.166 0.068 0.000

5 0.000 0.000 0.178 0.081 0.000

6 0.000 0.000 0.135 0.121 0.000

7 0.000 0.006 0.405 0.668 0.000

8 0.000 0.002 0.727 0.528 0.000

Cells highlighted green have a p–value less than 0.1.

Table 4.16.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. indpro case.

Now, we present the forecast comparison, also at the 10% significance level. Table 4.17

shows globally, that the TAR model has MSE smaller than those for the linear and SETAR

models, but the MSAR model has the smallest MSE among all the estimated models, except

at horizons of 1 period, where the MSE of the STAR model is much better.

Horizon MSE AR TAR SETAR STAR MSAR

1 3.352 1.000 0.739 0.559 0.434 0.508

2 15.140 1.000 0.701 0.925 0.846 0.114

4 50.300 1.000 0.685 0.944 0.764 0.035

5 68.231 1.000 0.562 0.865 0.632 0.026

6 81.172 1.000 0.494 0.615 0.493 0.022

7 87.856 1.000 0.455 0.529 0.437 0.020

8 87.565 1.000 0.456 0.561 0.412 0.020

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.17.: Relative MSE of forecasts. U.S. indpro case.

Henceforth, we define the TAR model as the benchmark model. Table 4.18 indicates that
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forecasts from the TAR model are more accurate than those from the SETAR at horizons

greater than 1, and there is no significant difference with forecasts form the STAR and AR

models. However, forecasts from the MSAR model are more accurate than those from the

TAR model.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.755 0.004 0.028 0.006

2 0.765 0.992 0.914 0.017

3 0.781 0.988 0.879 0.016

4 0.777 0.970 0.765 0.016

5 0.862 0.981 0.789 0.015

6 0.893 0.920 0.494 0.014

7 0.906 0.916 0.425 0.015

8 0.898 0.983 0.316 0.022

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.245 0.996 0.972 0.994

2 0.235 0.008 0.086 0.983

3 0.219 0.012 0.121 0.984

4 0.223 0.030 0.235 0.984

5 0.138 0.019 0.211 0.985

6 0.107 0.080 0.506 0.987

7 0.094 0.084 0.575 0.985

8 0.102 0.017 0.684 0.978

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.748 0.004 0.032 0.015

2 0.761 1.000 0.893 0.042

3 0.780 0.999 0.863 0.040

4 0.778 0.977 0.745 0.041

5 0.838 0.979 0.772 0.042

6 0.851 0.926 0.495 0.037

7 0.856 0.903 0.436 0.039

8 0.844 0.991 0.338 0.050

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.252 0.996 0.968 0.985

2 0.239 0.000 0.107 0.958

3 0.220 0.001 0.137 0.960

4 0.222 0.023 0.255 0.959

5 0.162 0.021 0.228 0.958

6 0.149 0.074 0.505 0.963

7 0.144 0.097 0.564 0.961

8 0.156 0.009 0.662 0.950

Cells highlighted green have a p–value less than 0.1.

Table 4.18.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. U.S. indpro case.

Table 4.19 shows, under the CH test, that the TAR model could encompass the linear

model for the first 4-step ahead forecasts, and the STAR model at horizon greater than

3. However, under the ER and HLN tests and for the overall comparison, the TAR could

encompass the linear model, while the TAR, SETAR and STAR do not encompass each

other, and the MSAR model could encompass the benchmark model.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.752 0.824 0.411 0.779

2 0.930 0.165 0.907 0.124

3 0.573 0.044 0.594 0.021

4 0.253 0.032 0.503 0.004

5 0.013 0.106 0.367 0.001

6 0.002 0.142 0.222 0.003

7 0.003 0.070 0.128 0.007

8 0.006 0.036 0.090 0.017

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.015 0.613 0.391 0.622

2 0.005 0.461 0.695 0.061

3 0.028 0.015 0.221 0.001

4 0.049 0.001 0.052 0.002

5 0.060 0.002 0.034 0.029

6 0.070 0.023 0.014 0.024

7 0.105 0.022 0.004 0.034

8 0.146 0.017 0.005 0.041

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.179 0.000 0.000 0.000

2 0.246 0.016 0.000 0.000

3 0.247 0.012 0.003 0.000

4 0.227 0.029 0.000 0.000

5 0.427 0.174 0.001 0.000

6 0.610 0.025 0.000 0.090

7 0.688 0.013 0.004 0.000

8 0.595 0.038 0.005 0.000

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.004 0.495 0.493 0.243

2 0.004 0.000 0.000 0.044

3 0.002 0.000 0.000 0.008

4 0.002 0.000 0.000 0.011

5 0.000 0.000 0.000 0.090

6 0.000 0.000 0.000 0.090

7 0.000 0.000 0.013 0.094

8 0.000 0.000 0.062 0.091

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.064 0.000 0.004 0.000

2 0.086 0.014 0.014 0.008

3 0.077 0.012 0.028 0.012

4 0.074 0.021 0.020 0.015

5 0.162 0.116 0.022 0.013

6 0.270 0.046 0.006 0.012

7 0.321 0.055 0.011 0.013

8 0.258 0.054 0.009 0.020

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.036 0.754 0.290 0.873

2 0.053 0.000 0.000 0.903

3 0.060 0.000 0.000 0.935

4 0.061 0.000 0.000 0.948

5 0.051 0.000 0.000 0.901

6 0.048 0.000 0.004 0.910

7 0.045 0.000 0.028 0.897

8 0.048 0.000 0.066 0.888

Cells highlighted green have a p–value less than 0.1.

Table 4.19.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

U.S. indpro case.

Table 4.20 shows that the MSAR model has the smallest value of the test and is the only

model that has a better performance than the näıve model. The TAR model has the

second-best performance at horizons over the 2 and 5 periods.

Horizon AR TAR SETAR STAR MSAR

1 0.898 0.772 0.671 0.591 0.640

2 1.894 1.586 1.822 1.742 0.639

3 2.772 2.273 2.676 2.499 0.638

4 3.406 2.818 3.310 2.978 0.637

5 3.963 2.972 3.686 3.151 0.636

6 4.332 3.046 3.396 3.042 0.636

7 4.523 3.050 3.291 2.989 0.633

8 4.494 3.035 3.367 2.884 0.631
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.20.: Theil’s U statistic. U.S. indpro case.

As a summary, it is observed that only the AR model has unbiased forecasts, and only the

SETAR and STAR models present uncorrelated forecasts errors for some forecast periods.

Additionally, Table 4.21 indicates a satisfactory performance of the TAR model, in general.

According to the Relative MSE of forecast, the TAR model has better MSE of forecasts
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than the AR, SETAR and STAR models. The DM and MDM tests suggest that forecasts

from the TAR model are more accurate than those form the lineal model. Regarding the

encompassing tests, only the MSAR model encompasses the TAR model under the HLN

test, and only the AR model is encompassed by the TAR model. Additionally, forecasts

from the MSAR model are more accurate than those from the näıve model. However, the

TAR model presents a Theil’s U statistic smaller than the SETAR and STAR models.

Therefore, from this out-of-sample forecasts comparison, we can conclude that the TAR

model could forecasts the growth rate of the industrial production index well, given that

of the alternatives, the TAR model appears to be marginally preferred to the competing

modes, except the MSAR model that seems to be more competitive according with these

tests.

Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 1 0 1 1

(AR) (AR) (AR)

2 3 1 1 3

(AR, SETAR, STAR) (SETAR) (AR) (AR, SETAR, STAR)

3 3 1 1 3

(AR, SETAR, STAR) (SETAR) (AR) (AR, SETAR, STAR)

4 3 1 1 3

(AR, SETAR, STAR) (SETAR) (AR) (AR, SETAR, STAR)

5 3 1 1 3

(AR, SETAR, STAR) (SETAR) (AR) (AR, SETAR, STAR)

6 2 1 1 2

(AR, SETAR) (SETAR) (AR) (AR, SETAR)

7 2 1 1 2

(AR, SETAR) (SETAR) (AR) (AR, SETAR)

8 2 1 1 2

(AR, SETAR) (SETAR) (AR) (AR, SETAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.21.: Summary of the forecasting performance of the TAR model. U.S. indpro

case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the time series, in terms of the capacity to

handle cycles. Figure 4.16 shows the predictive distributions for horizons 1 to 8, when the

forecast origin is 2008:04. Based on the business contraction from 2007:04 to 2009:02, the

predictive distributions of the TAR model tend to be bimodal when the time series is in

a through and tend to become unimodal when the time series is begining an expansionist

trend. The predictive distributions of the SETAR and STAR models slightly tend capture

this behavior. This pattern of the predictive distributions is also observed in other parts

of the time series. This suggests that the predictive distributions of the TAR model seem

to handle cycles of the times series reasonably.
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(a)

(b)

(c)

Figure 4.16.: 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. indpro

case.
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4.1.4. Inflation

Description of the data

We analyze, as a proxy of the inflation, the seasonally adjusted U.S. quarterly Consumer

Price Index (CPI), from 1954:04 to 2016:03 (248 observations), which was retrieved from

the Federal Reserve Bank of St. Louis (FRED). As the threshold value, we use the term

spread defined in Section 3.2 over the same period27.

For the forecast comparison, we denote Xt = [log(CPIt)− log(CPIt−1)]∗100 as the growth

rate of the CPI, and Zt, the spread term defined as the difference between the 10-Year

Treasury Constant Maturity rate and the effective federal funds. Both series are plotted

in Figure 4.17, where the shading areas denote the business cycle contractions from peak

to trough.

Figure 4.17.: (a) Time plot of the growth rate of U.S. quarterly CPI and (b) time plot

of U.S. term spread.

We use as the training subsample, data from 1954:04 to 1998:01 (174 observations). The

remaining observations are reserved for the out-of-sample forecasting evaluation. By using

the procedure mentioned at the begining of this Chapter, a sequence of 1 to 8-step ahead

forecasts are generated until we compute 74 1-step ahead forecasts, down to 67 8-step

ahead forecast.

Estimation of models

Based on the estimated models in Appendix E, Table 4.22 shows that, in general, the TAR,

SETAR and AR models show a reasonable in-sample fit.

27 Cecchetti et al. (2000), Stock and Watson (2003) and Banerjee and Marcellino (2006) use quarterly data

for analyzing the inflation.
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Model adequacy AR TAR SETAR STAR MSAR

White noise 1 1 1 1 1

Model specification 1 1 1 1 3

Homoscedasticity 1 1 1 2 3
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.22.: Model adequacy. U.S. CPI case.

Forecasting evaluation

Table 4.23 shows the HP unbiased test and Ljung-Box’s Q correlation test. At the 10%

significance level, only forecast errors of the TAR model are unbiased throughout all the

forecast horizon, followed by the MSAR, AR, SETAR, and STAR models that exhibit

unbiased forecast errors at the beginning of the forecast horizon. Regarding the Ljung Box

test, the SETAR and STAR are the only models whose forecast errors do not have serial

correlation at horizons greater than 2 and 1 periods, respectively.

(a)

Horizon AR TAR SETAR STAR MSAR

1 0.482 0.926 0.586 0.132 0.550

2 0.295 0.783 0.415 0.148 0.739

3 0.178 0.692 0.126 0.034 0.932

4 0.058 0.609 0.036 0.012 0.570

5 0.013 0.633 0.006 0.000 0.277

6 0.005 0.423 0.015 0.000 0.129

7 0.001 0.360 0.005 0.000 0.051

8 0.000 0.309 0.001 0.000 0.020

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.038 0.001 0.015 0.098 0.000

2 0.000 0.000 0.001 0.786 0.001

3 0.015 0.004 0.244 0.691 0.002

4 0.018 0.000 0.473 0.171 0.003

5 0.000 0.000 0.067 0.291 0.003

6 0.002 0.000 0.400 0.235 0.004

7 0.006 0.001 0.276 0.826 0.004

8 0.000 0.001 0.640 0.287 0.005

Cells highlighted green have a p–value less than 0.1.

Table 4.23.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

U.S. CPI case.

Now, we present the forecast comparison, also at the 10% significance level. Table 4.24

shows that the TAR model has smaller MSE than the benchmark linear model at horizons

up until 4 periods, but the MSAR model has the smallest MSE among all the estimated

models.
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Horizon MSE AR TAR SETAR STAR MSAR

1 0.402 1.000 0.944 0.962 1.117 0.884

2 0.506 1.000 0.895 1.089 0.921 0.700

3 0.520 1.000 0.978 1.081 0.968 0.675

4 0.471 1.000 0.991 1.007 1.167 0.740

5 0.409 1.000 1.184 1.149 1.321 0.853

6 0.421 1.000 1.170 1.281 1.371 0.833

7 0.461 1.000 1.215 1.379 1.275 0.773

8 0.469 1.000 1.282 1.299 1.668 0.777

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.24.: Relative MSE of forecasts. U.S. CPI case.

Henceforth, we define the TAR model as the benchmark model. Table 4.25, that shows

the results of the DM and MDM tests, indicates in general that forecasts from the TAR

model are more accurate than those from the linear model at horizons up until 2 periods,

and there is no significant difference with forecasts from the SETAR and STAR models.

However, forecast from the MSAR model are more accurate than those from the TAR

model.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.942 0.641 0.820 0.046

2 0.969 0.960 0.652 0.059

3 0.635 0.827 0.473 0.007

4 0.547 0.545 0.947 0.020

5 0.002 0.413 0.725 0.015

6 0.014 0.774 0.808 0.007

7 0.013 0.812 0.614 0.003

8 0.025 0.527 0.874 0.008

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.058 0.359 0.180 0.954

2 0.031 0.040 0.348 0.941

3 0.365 0.173 0.527 0.993

4 0.453 0.455 0.053 0.980

5 0.998 0.587 0.275 0.985

6 0.986 0.226 0.192 0.993

7 0.987 0.188 0.386 0.997

8 0.975 0.473 0.126 0.992

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.943 0.642 0.822 0.045

2 0.970 0.961 0.653 0.057

3 0.643 0.983 0.472 0.006

4 0.547 0.546 0.949 0.020

5 0.002 0.413 0.727 0.014

6 0.014 0.775 0.810 0.007

7 0.013 0.814 0.615 0.003

8 0.024 0.528 0.875 0.008

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.057 0.358 0.178 0.955

2 0.030 0.039 0.347 0.943

3 0.357 0.017 0.528 0.994

4 0.453 0.454 0.051 0.980

5 0.998 0.587 0.273 0.986

6 0.986 0.225 0.190 0.993

7 0.987 0.186 0.385 0.997

8 0.976 0.472 0.125 0.992

Cells highlighted green have a p–value less than 0.1.

Table 4.25.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. U.S. CPI case.

Table 4.26 shows, under the CH test, that the TAR model could encompass the STAR

model. But under the ER and HLN tests and for the overall comparison, the TAR could

encompass the linear model at horizons up until 3 periods, while the TAR, SETAR and

STAR do not encompass each other, and the MSAR model could encompass the TAR

model at short horizons.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.134 0.206 0.166 0.187

2 0.021 0.021 0.142 0.454

3 0.057 0.044 0.133 0.344

4 0.033 0.084 0.315 0.934

5 0.085 0.207 0.572 0.897

6 0.024 0.035 0.448 0.932

7 0.014 0.064 0.359 0.756

8 0.006 0.037 0.113 0.673

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.027 0.059 0.079 0.115

2 0.007 0.033 0.021 0.174

3 0.009 0.004 0.008 0.222

4 0.001 0.001 0.027 0.808

5 0.000 0.000 0.002 0.435

6 0.000 0.001 0.000 0.177

7 0.000 0.002 0.000 0.272

8 0.000 0.000 0.000 0.052

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.365 0.008 0.525 0.003

2 0.610 0.569 0.000 0.000

3 0.255 0.410 0.027 0.000

4 0.072 0.019 0.000 0.000

5 0.000 0.002 0.000 0.000

6 0.000 0.016 0.000 0.000

7 0.000 0.013 0.000 0.000

8 0.000 0.005 0.031 0.000

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.000 0.001 0.000 0.818

2 0.003 0.000 0.000 0.569

3 0.064 0.009 0.038 0.559

4 0.042 0.010 0.000 0.069

5 0.791 0.006 0.000 0.032

6 0.865 0.000 0.000 0.009

7 0.899 0.000 0.000 0.151

8 0.892 0.003 0.000 0.171

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.213 0.009 0.207 0.000

2 0.701 0.708 0.001 0.023

3 0.112 0.221 0.053 0.002

4 0.054 0.019 0.011 0.000

5 0.000 0.001 0.000 0.000

6 0.000 0.011 0.000 0.000

7 0.000 0.011 0.000 0.000

8 0.000 0.002 0.026 0.000

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.003 0.055 0.099 0.413

2 0.001 0.008 0.033 0.278

3 0.068 0.003 0.006 0.721

4 0.024 0.006 0.000 0.079

5 0.605 0.022 0.002 0.033

6 0.433 0.000 0.000 0.021

7 0.450 0.002 0.001 0.090

8 0.446 0.015 0.000 0.087

Cells highlighted green have a p–value less than 0.1.

Table 4.26.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

U.S. CPI case.

Table 4.27 shows that forecasts from the MSAR model are more accurate than those from

the näıve model, for all the forecast horizon.

Horizon AR TAR SETAR STAR MSAR

1 0.926 0.900 0.909 0.979 0.871

2 1.032 0.976 1.077 0.990 0.863

3 1.039 1.028 1.080 1.022 0.854

4 0.982 0.978 0.986 1.061 0.845

5 0.909 0.990 0.974 1.045 0.840

6 0.918 0.993 1.039 1.075 0.838

7 0.954 1.051 1.120 1.077 0.839

8 0.954 1.080 1.087 1.232 0.841
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.27.: Theil’s U statistic. U.S. CPI case.

As a summary, it is observed that only the TAR model has unbiased forecasts, but the

SETAR and STAR models have uncorrelated forecasts errors for some forecast periods.

Additionally, Table 4.28 indicates a satisfactory performance of the TAR model, in general.

According to the Relative MSE of forecast, the TAR model has better MSE of forecasts

than the AR models at short horizons, and the SETAR and STAR models in general. The
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DM and MDM tests suggest that forecasts from the TAR model are more accurate than

those form the lineal model at short horizons. Regarding the encompassing tests, the TAR

model could encompass the linear model at horizons up until 3 periods, and is encompassed

by the MSAR at long horizons. Additionally, forecasts from the MSAR model are more

accurate than those from the näıve model. However, the TAR model presents a Theil’s U

statistic smaller than the SETAR, STAR and AR models.

Therefore, the results of this out-of-sample forecasts comparison weakly favor the TAR

model for forecasting the growth rate of the CPI. Besides, the MSAR model seems to be

more competitive, according with these tests. Nevertheless, the TAR model appears to be

marginally preferred to the other competing modes at short horizons (no more that 3-step

ahead forecasts).

Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 3 1 1 3

(AR, SETAR, STAR) (AR) (AR) (AR, SETAR, STAR)

2 3 2 1 2

(AR, SETAR, STAR) (AR, SETAR) (AR) (AR, SETAR)

3 2 0 1 2

(AR, SETAR) (AR) (AR, SETAR)

4 3 1 0 3

(AR, SETAR, STAR) (STAR) (AR, SETAR, STAR)

5 1 0 0 1

(STAR) (STAR)

6 2 0 0 2

(SETAR, STAR) (SETAR, STAR)

7 2 0 0 2

(SETAR, STAR) (SETAR, STAR)

8 2 0 0 2

(SETAR, STAR) (SETAR, STAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.28.: Summary of the forecasting performance of the TAR model. U.S. CPI case

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the growth rate of the CPI, in terms of the

capacity to handle cycles. Figure 4.18 shows the predictive distributions for horizons 1 to

8, when the forecast origin is 2008:03. Based on the business contraction from 2007:04 to

2009:02, the predictive distributions of the TAR model tend to be bimodal when the time

series has negative values and become more unimodal when the time series is increasing.

The predictive distributions of the SETAR and STAR models slightly capture this behavior.

This pattern of the predictive distributions is also observed in other parts of the time series.

This suggests that the predictive distributions of the TAR model seem to handle reasonably

well cycles of the times series in a better way than those of the other models.
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(a)

(b)

(c)

Figure 4.18.: 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. U.S. CPI case.
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As a global summary for the U.S. case, this empirical evaluation shows that forecasts from

the TAR model outperform forecasts from the competing models at different h-step ahead

horizons, for all the considered economic times series, although in general, the forecasting

performance of this model is not better than that of the MSAR model. According to all the

used evaluation criteria, the TAR model forecasts the unemployment rate better than the

other models, at forecasts horizons greater than 2 periods ahead, and also, it’s the model

with the best in-sample properties. Regarding the GDP, industrial production index and

the CPI time series, forecasts from the TAR model outperform forecasts from the other

models, only according the relative MSE and Theil’s U statistic and for horizons between

1 and 5 periods ahead. However, it prevails as the model with great in-sample properties.

It is also relevant to remark that the TAR model shows a shape changing characteristic

in the Bayesian predictive distributions of this model that may capture the cycles in the

economic time series.

4.2. Empirical results for the Colombian economic time series

4.2.1. Unemployment rate

Description of the data

The data consists on the change in the seasonally adjusted Colombian monthly unem-

ployment rate28 (the first difference of the time series) and, from 2002:02 to 2016:09 (189

observations), and the growth rate of the seasonally adjusted Colombian monthly ISE in-

dex data (the first difference of the logarithm of the time series) over the same period.

This period is chosen due to institutional constraints and the data is respectively obtained

from both the Central Bank of Colombia databases and the DANE. Nonetheless, this is

an interesting period to analyze because the Colombian economy began a recovery period,

with a modified macroeconomic policy, after the financial crisis of the late 90s.

In Figure 4.19 we observe that changes in the unemployment rate are less volatile since 2008

than at the beginning of the analyzed period, while the ISE index allows us to identify the

recovery of the Colombian economy in 2002 after the crisis of the late 90s and the posterior

contraction in 2009 because of the U.S. financial crisis of 2007. For comparison, we use the

business cycle determined by Alfonso et al. (2012), which are the grid areas that denote

the contractions from peak to trough.

28 The Colombian monthly unemployment rate, retrieved from the Central Bank of Colombia, has seasonal

patterns, thus this time series was seasonally adjusted using the X13-ARIMA program of the U.S.

Census Bureau of the U.S. Department of commerce.
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Figure 4.19.: (a) Time plot of the change in the the Colombian monthly unemployment

rate and (b) time plot of growth rate of Colombian ISE monthly index.

Then, we use as the training subsample all the observations from 2001:02 to 2011:12 (131

observations). The remaining observations are reserved for the out-of-sample forecasting

comparison. The selection of the forecast horizon for monthly time series is based on the

literature review. Then, a sequence of 1 to 12-step ahead forecasts are generated from

the forecast origin 2011:12. After that, the forecast origin is moved one period ahead and

forecasts are calculated again. This procedure is repeated until we compute 53 1-step

ahead forecasts, 57 2-step ahead forecasts, and so on until 46 12-step ahead forecasts.

Estimation of models

Based on the estimation procedure in Appendix F, Table 4.29 shows a summary of the

model adequacy of the analyzed models. Globally, it is observed that the TAR and SETAR

models exhibit a reasonable in-sample fit, compared with the other models.

Model adequacy AR TAR SETAR STAR MSAR

White noise 1 1 1 1 2

Model specification 2 1 1 2 3

Homoscedasticity 3 3 3 3 3
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.29.: Model adequacy. Colombian unemployment rate case.

Forecasting evaluation

Table 4.30 shows the HP unbiased test and Ljung-Box’s Q correlation test. In general, at

the 10% significance level, forecasts errors for all the models are unbiased, and only the

TAR, SETAR and STAR shows uncorrelated forecasts errors at horizons greater than 7, 4

and 1 periods, respectively.
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(a)

Horizon AR TAR SETAR STAR MSAR

1 0.408 0.390 0.547 0.447 0.308

2 0.704 0.791 0.807 0.788 0.188

3 0.625 0.836 0.234 0.965 0.142

4 0.662 0.810 0.740 0.913 0.106

5 0.591 0.834 0.990 0.473 0.114

6 0.573 0.849 0.679 0.720 0.132

7 0.671 0.788 0.227 0.493 0.107

8 0.657 0.813 0.668 0.158 0.094

9 0.713 0.726 0.573 0.628 0.079

10 0.633 0.856 0.335 0.692 0.098

11 0.688 0.815 0.970 0.805 0.103

12 0.664 0.809 0.590 0.647 0.115

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.011 0.000 0.035 0.000 0.010

2 0.000 0.118 0.042 0.460 0.011

3 0.002 0.003 0.108 0.898 0.011

4 0.023 0.018 0.082 0.808 0.009

5 0.004 0.001 0.578 0.190 0.010

6 0.000 0.003 0.674 0.461 0.014

7 0.000 0.023 0.134 0.341 0.014

8 0.000 0.100 0.116 0.329 0.014

9 0.000 0.115 0.260 0.769 0.016

10 0.000 0.122 0.531 0.093 0.018

11 0.000 0.652 0.374 0.775 0.020

12 0.004 0.114 0.069 0.278 0.020

Cells highlighted green have a p–value less than 0.1.

Table 4.30.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian unemployment rate case.

Next, we present the forecast comparison, at the 10% significance level. Table 4.31 shows

that in general, the TAR model and the linear model are very close in MSE. We observe

that the linear model has the smallest MSE among all the estimated models, except for

the horizons 6, 7, 8 and 10, where the MSE of the TAR model is much better.

Horizon MSE AR TAR SETAR STAR MSAR

1 0.195 1.000 1.264 1.123 1.160 1.026

2 0.141 1.000 1.658 1.364 2.093 1.519

3 0.180 1.000 1.185 1.354 1.644 1.247

4 0.182 1.000 1.028 1.172 1.402 1.287

5 0.186 1.000 1.010 1.100 1.179 1.299

6 0.189 1.000 0.996 1.163 1.578 1.314

7 0.190 1.000 0.998 1.271 1.688 1.303

8 0.194 1.000 0.998 1.302 1.467 1.308

9 0.194 1.000 1.017 1.208 1.188 1.326

10 0.198 1.000 0.997 1.441 1.749 1.328

11 0.201 1.000 1.000 1.596 1.008 1.338

12 0.203 1.000 1.005 1.139 1.729 1.339

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.31.: Relative MSE of forecasts. Colombian unemployment rate case.

Henceforth, we define the TAR model as the benchmark model. Table 4.32 shows, for the

overall results, that forecasts from the TAR model are more accurate than those from the

SETAR at horizon greater than 5 periods and STAR models at horizon greater than 1

period.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.008 0.065 0.100 0.004

2 0.003 0.066 0.990 0.292

3 0.007 0.905 0.960 0.626

4 0.206 0.883 0.933 0.903

5 0.323 0.795 0.795 0.911

6 0.570 0.883 1.000 0.931

7 0.533 0.982 1.000 0.918

8 0.556 0.981 0.979 0.911

9 0.183 0.994 0.941 0.901

10 0.535 0.994 0.990 0.917

11 0.497 1.000 0.518 0.927

12 0.436 0.809 0.998 0.914

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.992 0.935 0.900 0.996

2 0.997 0.934 0.010 0.708

3 0.993 0.095 0.040 0.374

4 0.795 0.117 0.067 0.097

5 0.677 0.205 0.205 0.089

6 0.430 0.117 0.000 0.069

7 0.467 0.018 0.000 0.082

8 0.444 0.019 0.021 0.089

9 0.817 0.006 0.059 0.099

10 0.465 0.006 0.010 0.083

11 0.503 0.000 0.482 0.073

12 0.564 0.191 0.002 0.086

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.020 0.052 0.029 0.009

2 0.015 0.122 1.000 0.263

3 0.029 0.861 0.948 0.637

4 0.269 0.885 0.968 0.888

5 0.271 0.797 0.774 0.886

6 0.559 0.970 0.999 0.909

7 0.530 0.969 0.999 0.892

8 0.546 0.950 0.950 0.879

9 0.032 1.000 0.943 0.865

10 0.535 0.995 0.991 0.886

11 0.497 1.000 0.519 0.897

12 0.435 0.811 0.998 0.877

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.980 0.948 0.971 0.991

2 0.985 0.878 0.000 0.737

3 0.971 0.139 0.052 0.363

4 0.731 0.115 0.032 0.112

5 0.729 0.203 0.226 0.114

6 0.441 0.030 0.001 0.091

7 0.470 0.031 0.001 0.108

8 0.454 0.050 0.050 0.121

9 0.968 0.000 0.057 0.135

10 0.465 0.005 0.009 0.114

11 0.503 0.000 0.481 0.103

12 0.565 0.189 0.002 0.123

Cells highlighted green have a p–value less than 0.1.

Table 4.32.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. Colombian unemployment rate case.

Table 4.33 shows the forecast encompassing tests of Chong and Hendry (1986) (CH),

Ericsson (1992) (ER) and Harvey et al. (1998) (HLN) that evaluate the null hypothesis

of forecast encompassing. At the 10% significance level, we find that the TAR model

encompasses the SETAR, STAR and MSAR models for some forecast periods.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.136 0.099 0.017 0.060

2 0.000 0.573 0.233 0.615

3 0.922 0.199 0.426 0.629

4 0.319 0.511 0.705 0.578

5 0.959 0.563 0.045 0.630

6 0.140 0.364 0.045 0.640

7 0.272 0.817 0.020 0.540

8 0.355 0.610 0.711 0.557

9 0.707 0.510 0.119 0.538

10 0.737 0.292 0.269 0.534

11 0.256 0.016 0.010 0.624

12 0.930 0.814 0.032 0.593

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000

4 0.880 0.319 0.300 0.069

5 0.765 0.742 0.544 0.076

6 0.484 0.143 0.737 0.281

7 0.524 0.330 0.453 0.193

8 0.431 0.715 0.042 0.075

9 0.876 0.139 0.211 0.020

10 0.665 0.565 0.516 0.230

11 0.695 0.812 0.804 0.085

12 0.794 0.222 0.634 0.085

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.000 0.000 0.348 0.000

2 0.000 0.002 0.745 0.018

3 0.000 0.592 0.572 0.098

4 0.164 0.304 0.033 0.413

5 0.214 0.399 0.020 0.516

6 0.660 0.349 0.571 0.576

7 0.630 0.736 0.688 0.479

8 0.607 0.671 0.046 0.525

9 0.092 0.755 0.336 0.454

10 0.798 0.284 0.010 0.506

11 0.683 0.027 0.050 0.569

12 0.557 0.718 0.014 0.541

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.004 0.921 0.000 0.000

2 0.000 0.804 0.000 0.226

3 0.001 0.003 0.000 0.021

4 0.790 0.000 0.000 0.000

5 0.721 0.016 0.000 0.000

6 0.429 0.000 0.000 0.000

7 0.516 0.000 0.000 0.000

8 0.426 0.000 0.000 0.000

9 0.875 0.000 0.000 0.000

10 0.665 0.000 0.008 0.000

11 0.695 0.000 0.000 0.000

12 0.794 0.016 0.595 0.000

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.003 0.008 0.029 0.003

2 0.003 0.007 0.201 0.037

3 0.003 0.302 0.371 0.059

4 0.086 0.164 0.280 0.200

5 0.090 0.218 0.020 0.250

6 0.329 0.161 0.975 0.282

7 0.317 0.371 0.717 0.229

8 0.306 0.664 0.344 0.250

9 0.052 0.625 0.043 0.213

10 0.399 0.862 0.817 0.243

11 0.342 0.979 0.026 0.275

12 0.283 0.352 0.954 0.260

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.973 0.460 0.693 0.994

2 0.998 0.597 0.000 0.110

3 0.984 0.001 0.001 0.027

4 0.605 0.000 0.003 0.011

5 0.365 0.004 0.001 0.010

6 0.217 0.009 0.000 0.007

7 0.255 0.001 0.000 0.010

8 0.208 0.002 0.000 0.013

9 0.563 0.000 0.000 0.013

10 0.334 0.000 0.001 0.010

11 0.347 0.000 0.006 0.010

12 0.396 0.050 0.000 0.012

Cells highlighted green have a p–value less than 0.1.

Table 4.33.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

Colombian unemployment rate case.

Table 4.34 shows that forecasts from all models are more accurate than those from the

näıve model, where the AR and TAR model have the smallest value of the test.
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Horizon AR TAR SETAR STAR MSAR

1 0.629 0.707 0.667 0.678 0.637

2 0.532 0.685 0.621 0.770 0.656

3 0.596 0.649 0.693 0.764 0.665

4 0.594 0.602 0.643 0.704 0.674

5 0.596 0.599 0.625 0.647 0.679

6 0.596 0.595 0.643 0.749 0.683

7 0.595 0.594 0.671 0.773 0.679

8 0.596 0.595 0.680 0.722 0.681

9 0.592 0.597 0.651 0.646 0.682

10 0.595 0.594 0.714 0.787 0.686

11 0.594 0.594 0.751 0.597 0.687

12 0.594 0.596 0.634 0.782 0.688
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.34.: Theil’s U statistic. Colombian unemployment rate case.

As a summary, it is observed that forecasts errors for all the models are unbiased, and

only the TAR, SETAR and STAR shows uncorrelated forecasts errors at different horizons.

Additionally, Table 4.35 indicates a satisfactory performance of the TAR model. According

to the relative MSE of forecasts, we observe that the linear model has the smallest MSE

at short horizons, and the TAR model has better MSE at middle horizons. The DM and

MDM test suggest that forecasts from the TAR model are more accurate than those from

the SETAR and STAR models. Besides, the TAR model encompasses the SETAR, STAR

and MSAR models for some horizons. Following the Theil’s U statistic, forecasts from AR

and TAR models are more accurate from those from the näıve model.

Therefore, from this out-of-sample forecasts comparison, we can conclude that the TAR

model could forecasts the change in the unemployment rate with a satisfactory perfor-

mance, given that of the alternatives, the TAR model appears to be marginally preferred

to the competing modes.
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Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 0 0 0 0

2 1 1 1 1

(STAR) (STAR) (STAR) (STAR)

3 3 2 3 3

(SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR) (SETAR, STAR, MSAR)

4 3 2 3 3

(SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR) (SETAR, STAR, MSAR)

5 3 2 3 3

(SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR) (SETAR, STAR, MSAR)

6 4 2 3 4

(AR SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR) (AR SETAR, STAR, MSAR)

7 4 2 3 4

(AR SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR) (AR SETAR, STAR, MSAR)

8 4 2 3 4

(AR SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR) (AR SETAR, STAR, MSAR)

9 3 2 2 3

(SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, MSAR) (SETAR, STAR, MSAR)

10 4 2 2 4

(AR SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, MSAR) (AR SETAR, STAR, MSAR)

11 3 2 1 3

(SETAR, STAR, MSAR) (SETAR, STAR) (MSAR) (SETAR, STAR, MSAR)

12 3 2 2 3

(SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, MSAR) (SETAR, STAR, MSAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.35.: Summary of the forecasting performance of the TAR model. Colombian

unemployment rate case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the economic time series. Given that,

according to the literature review, in Colombia there has not been determined yet a business

cycle during the analyzed forecasting period, we use the Bry and Boschan (1971) business

cycle dating algorithm29, using the annual growth rate of the Colombian ISE index as a

measure of economic activity. This algorithm determines a contraction phase from 2013:10

to 2015:02. However, during this period, it is observed a real activity slow down but not

a economic hardship with negative values, in fact, all values of the growth rate of the

Colombian GDP during the forecasting subsample, are positive.

29 This algorithm is the best known algorithm to detect turning points in the monthly time series, which are

used to determine periods of expansions and contractions (Harding and Pagan, 2002). In general, the

Bry-Boschan Algorithm: i) Replaces outliers in a preliminary trend-cycle; ii) Selects preliminary turning

points by finding local maxima and minima of the adjusted trend-cycle; iii) Eliminates consecutive

“peaks” and consecutive “troughs”, by keeping the most extreme in a sequence.
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(a)

(b)

(c)

Figure 4.20.: 1 to 8-step predictive distributions of the change in the unemployment rate

series, for the (a) TAR, (b) SETAR and (c) STAR models. Colombian

unemployment rate case.
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Figure 4.20 shows the predictive distributions for horizons 1 to 8, when the forecast origin

is 2013:08. The predictive distributions of the TAR model tend to be unimodal when

the time series is ascending to a peak (negative increments of the unemployment rate),

although it does not capture the bimodal shape in unstable periods. That behavior could

be explained in the sense that, there is no a strong contraction phase in the Colombian

real activity during the forecasting period, as it was mentioned above. The predictive

distributions of the SETAR and STAR models have the same performance. This pattern

of the predictive distributions is also observed in other parts of the time series.

4.2.2. Gross domestic product

Description of the data

We analyze, as a proxy of the GDP, the annual growth rate of the seasonally adjusted

Colombian monthly indicator of the real economic activity ISE, from 2003:01 to 2016:09

(165 observations), which was retrieved from the DANE. As the threshold value, we use the

term spread defined in Section 3.2 over the same period, that is, the difference between the

ten-year Treasury bonds (TES) as the long-term government bond rate, and the inter-bank

interest rate as the overnight rate. Both series were retrieved from the Central Bank of

Colombia.

For the forecast comparison, we denote Xt = [log(ISEt)− log(ISEt−12)] ∗ 100 as the

annual growth rate of the ISE, and Zt, the spread term defined above. Both series are

plotted in Figure 4.21 that shows a similar behavior during contractions periods of these

series. The shading areas denote the business cycle contractions from peak to trough based

on Alfonso et al. (2012).

Figure 4.21.: (a) Time plot of the annual growth rate of Colombian GDP and (b) time

plot of Colombian term spread.

We use as the training subsample, the data until 2012:06 (114 observations). The remain-

ing observations are reserved for the out-of-sample forecasting evaluation. By using the

procedure mentioned at the begining of this Chapter, a sequence of 1 to 12-step ahead

forecasts are generated until we compute 51 1-step ahead forecasts, down to 40 12-step

ahead forecast.
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Estimation of models

Based on results in Appendix G, Table 4.36 shows that globally, the STAR model presents

the best reasonable in-sample fit, followed by the TAR, SETAR and AR models.

Model adequacy AR TAR SETAR STAR MSAR

White noise 2 2 2 1 1

Model specification 1 1 1 1 3

Homoscedasticity 1 1 1 1 2
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.36.: Model adequacy. Colombian GDP case.

Forecasting evaluation

Table 4.37 shows the HP unbiased test and Ljung-Box’s Q correlation test. Globally, at the

10% significance level, only forecasts errors of the SETAR model are unbiased, and only

the SETAR and STAR exhibit uncorrelated forecasts errors at some forescasts peroiods.

(a)

Horizon AR TAR SETAR STAR MSAR

1 0.076 0.007 0.611 0.048 0.000

2 0.017 0.001 0.456 0.041 0.000

3 0.004 0.000 0.105 0.028 0.000

4 0.004 0.000 0.306 0.009 0.000

5 0.002 0.000 0.686 0.016 0.000

6 0.001 0.000 0.848 0.007 0.000

7 0.001 0.000 0.909 0.001 0.000

8 0.001 0.000 0.955 0.001 0.000

9 0.001 0.000 0.997 0.001 0.000

10 0.001 0.000 0.900 0.001 0.000

11 0.001 0.000 0.730 0.000 0.000

12 0.001 0.000 0.862 0.000 0.000

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.009 0.000

4 0.000 0.000 0.000 0.205 0.000

5 0.000 0.000 0.000 0.796 0.000

6 0.000 0.000 0.001 0.951 0.000

7 0.000 0.000 0.021 0.529 0.000

8 0.000 0.002 0.128 0.629 0.000

9 0.000 0.010 0.123 0.257 0.000

10 0.000 0.039 0.469 0.056 0.000

11 0.000 0.068 0.579 0.000 0.000

12 0.000 0.076 0.701 0.002 0.000

Cells highlighted green have a p–value less than 0.1.

Table 4.37.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian GDP case.

Now, we present the forecast comparison, also at the 10% significance level. Table 4.38

shows in general that the AR model has the smallest MSE among all the estimated models,

follow by the MSAR and TAR models.
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Horizon MSE AR TAR SETAR STAR MSAR

1 0.893 1.000 1.061 1.118 0.984 2.850

2 1.133 1.000 1.257 1.528 1.430 2.699

3 1.242 1.000 1.311 2.082 2.142 2.418

4 1.679 1.000 1.256 2.549 2.148 1.850

5 1.993 1.000 1.229 2.289 2.157 1.592

6 2.239 1.000 1.270 1.767 1.383 1.427

7 2.465 1.000 1.250 2.442 1.367 1.308

8 2.805 1.000 1.237 2.638 1.574 1.172

9 3.047 1.000 1.213 2.912 1.517 1.066

10 3.201 1.000 1.169 2.861 1.658 1.004

11 3.371 1.000 1.138 3.011 1.923 0.976

12 3.490 1.000 1.141 3.374 1.795 0.962

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.38.: Relative MSE of forecasts. Colombian GDP case.

Hereafter, we define the TAR model as the benchmark model. Table 4.39 shows that for

the overall comparison, forecasts from the TAR model are more accurate than those from

the SETAR and STAR models at long horizons, and more accurate than those from the

MSAR model at short horizons, although forecasts from the linear model are more accurate

than those from the TAR model, in general.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.168 0.684 0.283 1.000

2 0.003 0.878 0.804 1.000

3 0.002 0.930 0.990 1.000

4 0.020 0.995 0.998 0.967

5 0.007 0.996 0.994 0.943

6 0.015 0.770 0.637 0.678

7 0.045 0.967 0.629 0.561

8 0.042 0.977 0.883 0.428

9 0.064 0.985 0.809 0.342

10 0.131 0.983 0.946 0.327

11 0.157 0.993 1.000 0.328

12 0.137 0.994 0.999 0.315

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.832 0.316 0.717 0.000

2 0.997 0.122 0.196 0.000

3 0.998 0.070 0.010 0.000

4 0.980 0.005 0.002 0.033

5 0.993 0.004 0.006 0.057

6 0.985 0.230 0.363 0.322

7 0.955 0.033 0.371 0.439

8 0.958 0.023 0.117 0.572

9 0.936 0.015 0.191 0.658

10 0.869 0.017 0.054 0.673

11 0.843 0.007 0.000 0.672

12 0.863 0.006 0.001 0.685

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.166 0.686 0.281 1.000

2 0.003 0.880 0.806 1.000

3 0.001 0.932 0.990 0.999

4 0.019 0.995 0.998 0.929

5 0.006 0.996 0.995 0.944

6 0.030 0.715 0.631 0.641

7 0.077 0.923 0.608 0.548

8 0.086 0.952 0.846 0.446

9 0.132 0.961 0.753 0.384

10 0.186 0.960 0.872 0.370

11 0.221 0.975 0.999 0.369

12 0.198 0.982 1.000 0.363

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.834 0.314 0.719 0.000

2 0.997 0.120 0.194 0.000

3 0.999 0.068 0.010 0.001

4 0.981 0.005 0.002 0.071

5 0.994 0.004 0.005 0.056

6 0.970 0.286 0.369 0.359

7 0.923 0.077 0.392 0.452

8 0.914 0.048 0.154 0.554

9 0.868 0.039 0.247 0.616

10 0.814 0.040 0.128 0.630

11 0.779 0.025 0.001 0.631

12 0.802 0.018 0.000 0.637

Cells highlighted green have a p–value less than 0.1.

Table 4.39.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. Colombian GDP case.
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Table 4.40 shows that the linear model encompasses the TAR model at long horizons, but

under the ER and HLN tests, the TAR model encompasses the SETAR and STAR models

at horizons greater than 5 and 8 periods respectively, while the TAR and MSAR model do

not encompass each other.

(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.011 0.011 0.020 0.361

2 0.007 0.015 0.011 0.009

3 0.001 0.006 0.001 0.021

4 0.000 0.000 0.000 0.274

5 0.000 0.000 0.000 0.287

6 0.070 0.059 0.106 0.028

7 0.063 0.037 0.136 0.332

8 0.048 0.024 0.097 0.339

9 0.047 0.009 0.080 0.325

10 0.049 0.013 0.066 0.354

11 0.045 0.005 0.054 0.383

12 0.041 0.002 0.058 0.371

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.058 0.345 0.047 0.000

2 0.018 0.186 0.024 0.000

3 0.007 0.052 0.029 0.000

4 0.004 0.218 0.008 0.000

5 0.002 0.530 0.015 0.000

6 0.118 0.804 0.085 0.000

7 0.127 0.855 0.016 0.000

8 0.105 0.887 0.013 0.000

9 0.107 0.928 0.028 0.000

10 0.117 0.995 0.039 0.000

11 0.111 0.800 0.015 0.000

12 0.101 0.906 0.017 0.000

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.070 0.140 0.033 0.016

2 0.000 0.004 0.084 0.896

3 0.000 0.115 0.681 0.014

4 0.000 0.288 0.532 0.006

5 0.000 0.095 0.505 0.000

6 0.000 0.128 0.010 0.000

7 0.007 0.259 0.017 0.001

8 0.008 0.340 0.044 0.000

9 0.014 0.541 0.132 0.001

10 0.058 0.477 0.358 0.000

11 0.068 0.876 0.934 0.001

12 0.042 0.993 0.672 0.001

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.951 0.013 0.333 0.000

2 0.001 0.000 0.000 0.000

3 0.058 0.000 0.000 0.000

4 0.136 0.000 0.000 0.000

5 0.079 0.000 0.000 0.000

6 0.114 0.003 0.001 0.000

7 0.222 0.000 0.002 0.000

8 0.233 0.000 0.000 0.002

9 0.298 0.000 0.001 0.008

10 0.508 0.000 0.000 0.007

11 0.625 0.000 0.000 0.009

12 0.594 0.000 0.000 0.016

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.033 0.048 0.027 0.994

2 0.001 0.003 0.046 0.448

3 0.000 0.056 0.339 0.057

4 0.006 0.149 0.268 0.044

5 0.001 0.071 0.247 0.004

6 0.003 0.089 0.004 0.013

7 0.014 0.134 0.000 0.006

8 0.012 0.180 0.003 0.004

9 0.023 0.261 0.038 0.001

10 0.059 0.225 0.162 0.000

11 0.071 0.437 0.533 0.001

12 0.056 0.504 0.335 0.001

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.525 0.036 0.166 0.000

2 0.986 0.002 0.003 0.000

3 0.974 0.001 0.000 0.000

4 0.907 0.000 0.000 0.002

5 0.946 0.000 0.000 0.000

6 0.931 0.002 0.028 0.017

7 0.870 0.000 0.025 0.019

8 0.868 0.000 0.004 0.031

9 0.832 0.001 0.008 0.056

10 0.732 0.001 0.001 0.045

11 0.678 0.001 0.000 0.042

12 0.691 0.002 0.000 0.051

Cells highlighted green have a p–value less than 0.1.

Table 4.40.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

Colombian GDP case.

Table 4.41 shows that only at horizons of 1 period, forecasts from all models, except the

MSAR model, are more accurate than those from the näıve model. Globally, the AR model

has the smallest value of the test, and the TAR model has the second-smallest value of the

test at horizons up until 7 periods.
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Horizon AR TAR SETAR STAR MSAR

1 0.935 0.963 0.989 0.928 1.579

2 1.063 1.192 1.314 1.271 1.747

3 1.149 1.316 1.658 1.681 1.786

4 1.344 1.506 2.145 1.970 1.828

5 1.449 1.606 2.192 2.128 1.828

6 1.522 1.715 2.023 1.789 1.818

7 1.580 1.767 2.469 1.847 1.807

8 1.727 1.920 2.804 2.166 1.869

9 1.818 2.002 3.103 2.239 1.877

10 1.843 1.992 3.117 2.373 1.847

11 1.890 2.016 3.280 2.622 1.868

12 1.901 2.030 3.492 2.547 1.865
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.41.: Theil’s U statistic. Colombian GDP case.

As a summary, it is observed that only the SETAR model has unbiased forecasts, and with

the STAR model, are the only models that present uncorrelated forecasts errors for some

forecast periods. Additionally, Table 4.42 let us observe a satisfactory performance of the

TAR model. According to the Relative MSE of forecast and the DM and MDM tests, the

TAR model has better MSE of forecasts than the SETAR, STAR and MSAR models, for

some horizons. Regarding the encompassing tests, only the TAR model encompasses the

SETAR model at all horizons, encompasses the STAR at long horizons and the MSAR at

short horizons. Additionally, forecasts from all models are not more accurate than those

from the näıve model.

Therefore, from this out-of-sample forecasts comparison, we can conclude that the TAR

model could forecasts the growth rate of the real GDP with a good performance, given that

of the alternatives, the TAR model appears to be marginally preferred to the competing

modes.
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Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 2 1 1 2

(SETAR, MSAR) (MSAR) (MSAR) (SETAR, MSAR)

2 3 1 1 3

(SETAR, STAR, MSAR) (MSAR) (MSAR) (SETAR, STAR, MSAR)

3 3 3 1 3

(SETAR, STAR, MSAR) (SETAR, STAR, MSAR) (STAR) (SETAR, STAR, MSAR)

4 3 3 2 3

(SETAR, STAR, MSAR) (SETAR, STAR, MSAR) (SETAR, STAR) (SETAR, STAR, MSAR)

5 3 3 1 3

(SETAR, STAR, MSAR) (SETAR, STAR, MSAR) (STAR) (SETAR, STAR, MSAR)

6 3 0 1 3

(SETAR, STAR, MSAR) (SETAR) (SETAR, STAR, MSAR)

7 3 1 1 3

(SETAR, STAR, MSAR) (SETAR) (SETAR) (SETAR, STAR, MSAR)

8 2 1 1 2

(SETAR, STAR) (SETAR) (SETAR) (SETAR, STAR)

9 2 1 1 2

(SETAR, STAR) (SETAR) (SETAR) (SETAR, STAR)

10 2 1 2 2

(SETAR, STAR) (SETAR) (SETAR, STAR) (SETAR, STAR)

11 2 2 2 1

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR)

12 2 2 2 1

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.42.: Summary of the forecasting performance of the TAR model. Colombian

GDP case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the economic time series. As it was ob-

served in the Colombian unemployment rate case, the forecasting period of the time series

do not show a strong contraction phase (there are only positive values, that is, positive

growth rates of the GDP). Thus, the 1 to 8-step predictive distributions of the TAR,

SETAR and STAR models tend to be unimodal, capturing the stability of the time series.

4.2.3. Industrial production index

Description of the data

We analyze the seasonally adjusted Colombian biannual growth rate of Colombian indus-

trial production index, from 2003:01 to 2016:11 (167 observations), which was retrieved

from the DANE. As the threshold value, we use the term spread defined in Section 3.2

over the same period and mentioned above.

For the forecast comparison, we denote Xt =
[
log(Indprot)− log(Indprot−6)

]
∗ 100 as

the annual growth rate of the Colombian industrial production index (indpro), and Zt,

the spread term. Both series are plotted in Figure 4.22 that shows a similar behavior

during contractions periods of these series. The shading areas denote the business cycle

contractions from peak to trough.
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Figure 4.22.: (a) Time plot of the biannual growth rate of Colombian industrial produc-

tion index and (b) time plot of Colombian term spread.

We use as the training subsample, the data until 2012:06 (114 observations). The re-

maining observations are reserved for the out-of-sample forecasting evaluation. By using

the procedure mentioned in Section 4.1.1, a sequence of 1 to 12-step ahead forecasts are

generated until we compute 53 1-step ahead forecasts, down to 42 12-step ahead forecast.

Estimation of models

Based on results in Appendix H, Table 4.43 shows that, in general, the TAR and STAR

models present the best reasonable in-sample fit.

Model adequacy AR TAR SETAR STAR MSAR

White noise 2 1 2 1 1

Model specification 1 1 1 1 3

Homoscedasticity 1 1 1 1 1
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.43.: Model adequacy. Colombian indpro case.

Forecasting evaluation

Table 4.44 shows the HP unbiased test and Ljung-Box’s Q correlation test. At the 10% sig-

nificance level, forecasts errors of the SETAR model are unbiased, followed by the MSAR,

STAR and AR models for horizons up to 9. Regarding the Ljung Box test, in general,

the TAR, SETAR and STAR are the only models whose forecast errors do not have serial

correlation at horizons greater than 5 periods.
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(a)

Horizon AR TAR SETAR STAR MSAR

1 0.814 0.045 0.706 0.865 0.613

2 0.657 0.047 0.898 0.673 0.776

3 0.546 0.014 0.946 0.752 0.940

4 0.465 0.002 0.882 0.257 0.872

5 0.537 0.000 0.916 0.549 0.783

6 0.444 0.000 0.423 0.178 0.598

7 0.259 0.000 0.240 0.153 0.347

8 0.165 0.000 0.159 0.019 0.238

9 0.083 0.002 0.207 0.036 0.152

10 0.028 0.003 0.117 0.024 0.073

11 0.020 0.002 0.354 0.042 0.056

12 0.013 0.010 0.466 0.169 0.047

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.000 0.000 0.000 0.010 0.000

2 0.000 0.000 0.297 0.000 0.000

3 0.000 0.000 0.400 0.002 0.000

4 0.000 0.001 0.250 0.002 0.000

5 0.000 0.026 0.098 0.010 0.000

6 0.000 0.105 0.739 0.185 0.000

7 0.000 0.282 0.833 0.019 0.000

8 0.000 0.263 0.162 0.279 0.000

9 0.000 0.332 0.004 0.273 0.000

10 0.000 0.361 0.266 0.430 0.000

11 0.000 0.655 0.188 0.603 0.000

12 0.000 0.280 0.482 0.766 0.001

Cells highlighted green have a p–value less than 0.1.

Table 4.44.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian indpro case.

Now, we present the forecast comparison, also at the 10% significance level. Table 4.45

shows, for the overall comparison, the TAR model and the linear model are very close in

MSE, but the MSAR model is the one that has the smallest MSE. The TAR model has

the third-smallest MSE.

Horizon MSE AR TAR SETAR STAR MSAR

1 5.284 1.000 1.017 1.137 1.034 0.991

2 4.649 1.000 1.093 1.369 1.588 1.115

3 5.920 1.000 1.100 1.705 2.182 0.868

4 6.706 1.000 1.150 1.454 2.237 0.767

5 6.353 1.000 1.219 1.874 2.574 0.817

6 7.341 1.000 1.155 1.852 2.643 0.711

7 6.387 1.000 1.244 1.956 2.719 0.784

8 6.574 1.000 1.140 1.755 3.114 0.772

9 6.389 1.000 1.356 1.658 2.507 0.804

10 5.928 1.000 1.032 1.666 2.933 0.858

11 6.378 1.000 1.070 1.617 2.586 0.820

12 6.423 1.000 1.003 1.764 2.747 0.837

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.45.: Relative MSE of forecasts. Colombian indpro case.

Hereafter, we define the TAR model as the benchmark model. Table 4.46 shows in general,

that forecasts from the TAR model are more accurate than those from the SETAR and

STAR at horizon greater than 2 and 1 periods respectively, but forecasts from the MSAR

models are more accurate than those from the TAR model at horizon over 3 and 9 periods.

We also find no significant difference between the TAR and AR MSE of the forecasts.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.422 0.861 0.543 0.370

2 0.213 0.885 1.000 0.539

3 0.189 0.988 0.996 0.087

4 0.120 0.869 0.991 0.031

5 0.067 0.939 1.000 0.034

6 0.153 0.991 1.000 0.011

7 0.071 0.961 0.993 0.020

8 0.195 0.977 1.000 0.038

9 0.137 0.911 0.975 0.057

10 0.448 0.959 1.000 0.251

11 0.364 0.981 1.000 0.124

12 0.493 0.993 0.998 0.185

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.578 0.139 0.457 0.630

2 0.787 0.115 0.000 0.462

3 0.811 0.012 0.004 0.913

4 0.880 0.131 0.009 0.969

5 0.933 0.061 0.000 0.966

6 0.847 0.009 0.000 0.989

7 0.929 0.039 0.007 0.980

8 0.805 0.023 0.000 0.962

9 0.863 0.089 0.025 0.943

10 0.552 0.041 0.000 0.749

11 0.636 0.019 0.000 0.876

12 0.507 0.007 0.002 0.815

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.422 0.861 0.543 0.369

2 0.218 0.827 1.000 0.548

3 0.186 0.989 0.995 0.085

4 0.118 0.872 0.992 0.030

5 0.065 0.941 1.000 0.032

6 0.150 0.992 1.000 0.010

7 0.068 0.963 0.993 0.019

8 0.192 0.978 1.000 0.036

9 0.134 0.913 0.976 0.055

10 0.448 0.961 1.000 0.248

11 0.363 0.982 1.000 0.121

12 0.493 0.993 0.998 0.182

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.578 0.139 0.457 0.631

2 0.782 0.173 0.000 0.452

3 0.814 0.011 0.005 0.915

4 0.882 0.128 0.008 0.970

5 0.935 0.059 0.000 0.968

6 0.850 0.008 0.000 0.990

7 0.932 0.037 0.007 0.981

8 0.808 0.022 0.000 0.964

9 0.866 0.087 0.024 0.945

10 0.552 0.039 0.000 0.752

11 0.637 0.018 0.000 0.879

12 0.507 0.007 0.002 0.818

Cells highlighted green have a p–value less than 0.1.

Table 4.46.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. Colombian indpro case.

Table 4.47 shows, under the CH test, that the TAR model is encompassed by all the com-

peting models, although the TAR model also encompasses the STAR and MSAR models

at some horizons. However, under the ER and HLN tests and for the overall comparison,

none of the models encompasses each other, except at some horizons where the TAR could

encompass the SETAR and STAR models, and could be encompassed at middle horizons

by the MSAR model.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.034 0.024 0.186 0.015

2 0.037 0.212 0.231 0.187

3 0.011 0.064 0.003 0.676

4 0.004 0.042 0.075 0.864

5 0.013 0.880 0.022 0.741

6 0.016 0.159 0.504 0.730

7 0.058 0.053 0.611 0.914

8 0.087 0.075 0.670 0.804

9 0.036 0.148 0.493 0.465

10 0.009 0.026 0.970 0.479

11 0.010 0.097 0.789 0.062

12 0.009 0.059 0.929 0.061

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.355 0.276 0.052 0.276

2 0.672 0.946 0.132 0.127

3 0.532 0.696 0.063 0.670

4 0.700 0.450 0.296 0.812

5 0.734 0.621 0.825 0.347

6 0.488 0.358 0.297 0.358

7 0.497 0.053 0.294 0.382

8 0.167 0.190 0.018 0.153

9 0.597 0.155 0.299 0.680

10 0.044 0.321 0.072 0.065

11 0.026 0.454 0.105 0.052

12 0.007 0.689 0.197 0.022

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.007 0.327 0.081 0.013

2 0.000 0.034 0.032 0.024

3 0.000 0.273 0.699 0.000

4 0.000 0.035 0.369 0.000

5 0.000 0.007 0.575 0.000

6 0.000 0.072 0.006 0.000

7 0.000 0.201 0.031 0.000

8 0.000 0.070 0.005 0.000

9 0.001 0.012 0.003 0.000

10 0.003 0.410 0.022 0.002

11 0.000 0.036 0.002 0.000

12 0.000 0.330 0.048 0.000

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.020 0.003 0.050 0.071

2 0.064 0.000 0.000 0.014

3 0.071 0.000 0.000 0.149

4 0.037 0.000 0.000 0.548

5 0.046 0.000 0.000 0.321

6 0.005 0.000 0.000 0.397

7 0.039 0.000 0.000 0.468

8 0.001 0.000 0.000 0.187

9 0.267 0.000 0.000 0.739

10 0.006 0.000 0.000 0.063

11 0.001 0.000 0.000 0.063

12 0.000 0.000 0.000 0.033

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.014 0.185 0.061 0.027

2 0.005 0.014 0.069 0.024

3 0.001 0.138 0.647 0.001

4 0.000 0.019 0.186 0.000

5 0.000 0.006 0.292 0.000

6 0.000 0.068 0.009 0.000

7 0.000 0.098 0.016 0.000

8 0.000 0.050 0.007 0.000

9 0.002 0.018 0.003 0.001

10 0.001 0.194 0.027 0.000

11 0.000 0.038 0.005 0.000

12 0.001 0.174 0.024 0.000

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.010 0.001 0.028 0.026

2 0.031 0.001 0.000 0.044

3 0.043 0.000 0.000 0.080

4 0.026 0.001 0.000 0.283

5 0.033 0.001 0.000 0.176

6 0.007 0.000 0.000 0.205

7 0.026 0.000 0.000 0.235

8 0.003 0.000 0.000 0.097

9 0.133 0.000 0.000 0.368

10 0.008 0.003 0.000 0.062

11 0.001 0.000 0.000 0.040

12 0.000 0.000 0.000 0.021

Cells highlighted green have a p–value less than 0.1.

Table 4.47.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

Colombian indpro case.

Table 4.48 shows that the MSAR model has the smallest value of the Theil’s U statistic,

followed by the AR and TAR model, and only forecasts from these three models are more

accurate than those from the näıve model at all horizons.
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Horizon AR TAR SETAR STAR MSAR

1 0.765 0.771 0.815 0.778 0.761

2 0.715 0.748 0.837 0.901 0.755

3 0.800 0.839 1.045 1.182 0.746

4 0.845 0.906 1.019 1.264 0.740

5 0.816 0.901 1.117 1.309 0.737

6 0.873 0.938 1.188 1.419 0.736

7 0.812 0.906 1.136 1.339 0.719

8 0.817 0.872 1.082 1.441 0.718

9 0.796 0.927 1.026 1.261 0.714

10 0.759 0.771 0.980 1.300 0.703

11 0.786 0.813 0.999 1.263 0.711

12 0.780 0.781 1.035 1.292 0.713
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.48.: Theil’s U statistic. Colombian indpro case.

As a summary, it is observed that only the TAR model does not have unbiased forecasts,

and only the TAR, SETAR and STAR models have uncorrelated forecasts errors at long

horizons. Additionally, Table 4.49 indicates a satisfactory performance of the TAR model,

in general. According to the Relative MSE of forecast, the TAR model has better MSE

of forecasts than the SETAR and STAR models, and the MSAR has the smallest MSE.

The DM and MDM tests suggest that forecasts from the TAR model are more accurate

than those form the SETAR and STAR models, and forecasts from the MSAR are more

accurate than those from the TAR model at middle horizon. Regarding the encompassing

tests, at some horizons the TAR could encompass the SETAR and STAR models, and

could be encompassed at middle horizons by the MSAR model. Additionally, forecasts

from the MSAR model are more accurate than those from the näıve model. However, the

TAR model presents a Theil’s U statistic smaller than the SETAR and STAR models.

Therefore, from this out-of-sample forecasts comparison, we can conclude that the TAR

model could forecasts the growth rate of the industrial production index well, given that

of the alternatives, the TAR model appears to be marginally preferred to the competing

modes, except the MSAR model that seems to be more competitive according with these

tests.
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Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 2 0 1 2

(SETAR, STAR) (SETAR) (SETAR, STAR)

2 2 1 0 2

(SETAR, STAR) (STAR) (SETAR, STAR)

3 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

4 2 1 1 2

(SETAR, STAR) (STAR) (STAR) (SETAR, STAR)

5 2 2 1 2

(SETAR, STAR) (SETAR, STAR) (STAR) (SETAR, STAR)

6 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

7 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

8 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

9 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

10 2 2 1 2

(SETAR, STAR) (SETAR, STAR) (SETAR) (SETAR, STAR)

11 2 2 0 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

12 2 2 1 2

(SETAR, STAR) (SETAR, STAR) (SETAR) (SETAR, STAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.49.: Summary of the forecasting performance of the TAR model. Colombian

indpro case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the economic time series, in terms of the

capacity to handle cycles. As it was observed in the Colombian unemployment rate case,

the forecasting period of the time series do not show strong contraction business cycle

phase. Thus, the 1 to 8-step predictive distributions of the TAR, SETAR and STAR

models are unimodal, capturing the stability of the time series. However, the TAR model

slightly shows bimodal shapes for the lowest values of the growth rate of the industrial

production index, traying to capture descending periods better than the other models.

4.2.4. Inflation

Description of the data

We analyze, as a proxy of the inflation, the seasonally adjusted Colombian monthly Con-

sumer Price Index (CPI), from 2003:01 to 2016:09 (165 observations), which was retrieved

from the DANE. As the threshold value, we use the term spread defined in Section 3.2

over the same period.
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For the forecast comparison, we denote Xt = [log(CPIt)− log(CPIt−1)]∗100 as the growth

rate of the CPI, and Zt, the spread term defined above. Both series are plotted in Figure

4.23 that shows a similar behavior during contractions periods of these series. The shading

areas denote the business cycle contractions from peak to trough.

Figure 4.23.: (a) Time plot of the monthly growth rate of Colombian CPI and (b) time

plot of Colombian term spread.

We use as the training subsample, the data from 2003:01 to 2012:06 (114 observations).

The remaining observations are reserved for the out-of-sample forecasting evaluation. By

using the procedure mentioned at the begining of this Chapter, a sequence of 1 to 12-step

ahead forecasts are generated until we compute 53 1-step ahead forecasts until 42 12-step

ahead forecast.

Estimation of models

Based on the estimation procedure in Appendix I, Table 4.50 shows that globally, the

SETAR model presents the best reasonable in-sample fit.

Model adequacy AR TAR SETAR STAR MSAR

White noise 1 2 1 1 1

Model specification 1 1 1 1 2

Homoscedasticity 3 3 2 3 3
Cells with number 1 and highlighted green represent good adequacy, 2 and highlighted orange

represent regular adequacy, and 3 and highlighted red represent bad adequacy.

Table 4.50.: Model adequacy. Colombian CPI case.

Forecasting evaluation

Table 4.51 shows the HP unbiased test and Ljung-Box’s Q correlation test. Globally at

the 10% significance level, forecasts errors for all models are unbiased, and only the TAR,

SETAR and STAR exhibit uncorrelated forecasts errors at horizons greater than 3 periods,

in general.
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(a)

Horizon AR TAR SETAR STAR MSAR

1 0.009 0.005 0.000 0.001 0.003

2 0.001 0.001 0.000 0.000 0.003

3 0.000 0.000 0.000 0.000 0.002

4 0.000 0.000 0.000 0.000 0.003

5 0.000 0.000 0.000 0.000 0.003

6 0.000 0.000 0.000 0.000 0.003

7 0.000 0.000 0.000 0.000 0.002

8 0.000 0.000 0.000 0.000 0.002

9 0.000 0.000 0.000 0.000 0.002

10 0.000 0.000 0.000 0.000 0.003

11 0.000 0.000 0.000 0.000 0.001

12 0.000 0.000 0.000 0.000 0.001

(b)

Horizon AR TAR SETAR STAR MSAR

1 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.769 0.000 0.000

3 0.000 0.001 0.305 0.646 0.000

4 0.000 0.126 0.265 0.908 0.000

5 0.000 0.442 0.173 0.906 0.000

6 0.000 0.575 0.866 0.832 0.000

7 0.000 0.705 0.087 0.243 0.000

8 0.000 0.563 0.087 0.393 0.000

9 0.000 0.826 0.021 0.699 0.000

10 0.000 0.811 0.935 0.549 0.000

11 0.000 0.631 0.861 0.359 0.000

12 0.000 0.695 0.668 0.733 0.000

Cells highlighted green have a p–value less than 0.1.

Table 4.51.: p–values of the (a) unbiased test and (b) correlation test for the first 4 lags.

Colombian CPI case.

Now, we present the forecast comparison, also at the 10% significance level. Table 4.52

shows that the MSAR model has smaller MSE than the benchmark linear model, and the

TAR model has the third-smallest MSE.

Horizon MSE AR TAR SETAR STAR MSAR

1 0.039 1.000 1.172 1.209 0.950 1.032

2 0.062 1.000 1.119 1.603 1.209 0.653

3 0.080 1.000 1.025 1.321 1.280 0.515

4 0.089 1.000 0.993 1.283 1.378 0.467

5 0.097 1.000 1.022 1.372 1.355 0.440

6 0.101 1.000 1.041 1.422 1.448 0.429

7 0.105 1.000 1.032 1.378 1.578 0.422

8 0.107 1.000 1.019 1.427 1.374 0.419

9 0.110 1.000 1.048 1.535 1.400 0.416

10 0.112 1.000 1.020 1.570 1.295 0.406

11 0.114 1.000 1.030 1.869 1.242 0.397

12 0.117 1.000 1.007 2.092 1.414 0.396

(1) The column marked by MSE shows the MSE of forecasts from the

AR model. (2) Cells highlighted green are the smallest values for each

forecasts horizon.

Table 4.52.: Relative MSE of forecasts. Colombian CPI case.

Hereafter, we define the TAR model as the benchmark model. Table 4.53 shows for the

overall comparison, that forecasts from the TAR model are more accurate than those

from the SETAR and STAR models at horizons greater than 2 periods, and there is no

significant difference with the linear model. However, forecast from the MSAR model are

more accurate than those from the TAR model.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.016 0.759 0.031 0.016

2 0.057 1.000 0.721 0.001

3 0.324 0.999 0.898 0.000

4 0.560 0.958 0.993 0.000

5 0.185 0.975 0.989 0.000

6 0.121 0.999 0.998 0.000

7 0.111 0.986 1.000 0.000

8 0.234 0.997 0.996 0.000

9 0.069 0.993 1.000 0.000

10 0.229 0.992 0.997 0.000

11 0.109 0.995 0.849 0.000

12 0.382 1.000 0.988 0.000

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.984 0.241 0.969 0.985

2 0.943 0.000 0.279 0.999

3 0.676 0.001 0.102 1.000

4 0.440 0.042 0.007 1.000

5 0.815 0.025 0.011 1.000

6 0.879 0.001 0.002 1.000

7 0.889 0.014 0.000 1.000

8 0.766 0.003 0.004 1.000

9 0.931 0.007 0.000 1.000

10 0.771 0.008 0.003 1.000

11 0.891 0.005 0.151 1.000

12 0.618 0.000 0.012 1.000

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.015 0.761 0.030 0.015

2 0.055 1.000 0.723 0.001

3 0.323 0.999 0.900 0.000

4 0.561 0.960 0.993 0.000

5 0.182 0.976 0.980 0.000

6 0.119 0.999 0.998 0.000

7 0.109 0.987 1.000 0.000

8 0.232 0.967 0.992 0.000

9 0.066 0.994 1.000 0.000

10 0.226 0.975 0.992 0.000

11 0.106 0.995 0.780 0.000

12 0.380 1.000 0.948 0.000

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.985 0.239 0.970 0.985

2 0.945 0.000 0.277 0.999

3 0.677 0.001 0.100 1.000

4 0.439 0.040 0.007 1.000

5 0.818 0.024 0.020 1.000

6 0.881 0.001 0.002 1.000

7 0.891 0.013 0.000 1.000

8 0.768 0.033 0.008 1.000

9 0.934 0.006 0.000 1.000

10 0.774 0.025 0.008 1.000

11 0.894 0.005 0.220 1.000

12 0.620 0.000 0.052 1.000

Cells highlighted green have a p–value less than 0.1.

Table 4.53.: DM test when (a) H1 : Forecasts from competing model (F2) are better than

forecasts from TAR model (F1) and (b) H1 : F1 are better than F2; MDM

test when (c) H1 : F2 are better than F1 and (d) H1 : F1 are better than

F2. Colombian CPI case.

Table 4.54 shows that under the CH test, all the models do not encompass each other.

However, under the ER and HLN tests, the TAR model encompasses the SETAR and

STAR models, but it is encompassed by the linear model at some horizons, in general.

Under the HLN test, the MSAR model could encompass the TAR model.
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(a)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.001 0.001 0.001 0.000

2 0.000 0.013 0.000 0.000

3 0.000 0.000 0.001 0.000

4 0.000 0.000 0.000 0.000

5 0.000 0.004 0.031 0.000

6 0.000 0.023 0.000 0.000

7 0.000 0.001 0.059 0.000

8 0.000 0.009 0.032 0.000

9 0.000 0.076 0.036 0.000

10 0.000 0.080 0.079 0.000

11 0.000 0.961 0.020 0.000

12 0.000 0.418 0.123 0.000

(b)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.006 0.000 0.024 0.001

2 0.000 0.000 0.001 0.001

3 0.000 0.000 0.000 0.001

4 0.000 0.000 0.000 0.001

5 0.000 0.000 0.007 0.007

6 0.000 0.000 0.000 0.003

7 0.000 0.000 0.000 0.003

8 0.000 0.002 0.002 0.002

9 0.000 0.000 0.000 0.004

10 0.000 0.001 0.006 0.004

11 0.000 0.000 0.008 0.001

12 0.000 0.000 0.008 0.000

(c)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.001 0.768 0.000 0.000

2 0.000 0.026 0.337 0.000

3 0.419 0.138 0.922 0.000

4 0.868 0.661 0.384 0.000

5 0.170 0.769 0.437 0.000

6 0.128 0.064 0.174 0.000

7 0.088 0.550 0.010 0.000

8 0.245 0.268 0.225 0.000

9 0.070 0.098 0.078 0.000

10 0.269 0.177 0.307 0.000

11 0.120 0.002 0.821 0.000

12 0.483 0.000 0.159 0.000

(d)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.076 0.090 0.543 0.029

2 0.020 0.000 0.034 0.021

3 0.915 0.000 0.015 0.029

4 0.637 0.007 0.000 0.012

5 0.684 0.000 0.000 0.001

6 0.405 0.000 0.000 0.006

7 0.433 0.000 0.000 0.007

8 0.782 0.000 0.000 0.008

9 0.245 0.000 0.000 0.005

10 0.736 0.000 0.000 0.007

11 0.431 0.000 0.065 0.005

12 0.906 0.000 0.001 0.007

(e)

Horizon TAR - AR TAR - SETAR TAR - STAR TAR - MSAR

1 0.005 0.385 0.002 0.007

2 0.033 0.991 0.178 0.001

3 0.213 0.932 0.539 0.000

4 0.434 0.676 0.810 0.000

5 0.087 0.615 0.784 0.000

6 0.069 0.956 0.921 0.000

7 0.052 0.727 0.995 0.000

8 0.124 0.871 0.903 0.000

9 0.038 0.929 0.970 0.000

10 0.128 0.899 0.858 0.000

11 0.053 0.979 0.590 0.000

12 0.227 0.999 0.919 0.000

(f)

Horizon AR - TAR SETAR - TAR STAR - TAR MSAR - TAR

1 0.946 0.047 0.725 0.961

2 0.903 0.000 0.018 0.988

3 0.543 0.000 0.009 0.991

4 0.324 0.002 0.000 0.998

5 0.660 0.001 0.000 0.999

6 0.799 0.000 0.000 0.998

7 0.783 0.001 0.000 0.997

8 0.609 0.000 0.000 0.997

9 0.880 0.001 0.000 0.998

10 0.634 0.001 0.000 0.998

11 0.795 0.002 0.036 0.999

12 0.454 0.000 0.001 0.998

Cells highlighted green have a p–value less than 0.1.

Table 4.54.: CH test when (a) H0 : F1 encompasses F2 and (b) H0: F2 encompasses F1;

ER test when (c) H0 : F1 encompasses F2 and (d) H0: F2 encompasses F1;

HLN test when (e) H0 : F1 encompasses F2 and (f) H0: F2 encompasses F1.

Colombian CPI case.

Table 4.55 shows that the MSAR model has the smallest value of the Theil’s U statistic,

followed by the AR and TAR models, and forecasts from the TAR models are more accurate

than those from the SETAR and STAR models.
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Horizon AR TAR SETAR STAR MSAR

1 1.036 1.122 1.140 1.010 1.053

2 1.297 1.373 1.643 1.427 1.048

3 1.454 1.472 1.671 1.645 1.044

4 1.534 1.529 1.738 1.801 1.048

5 1.579 1.597 1.850 1.839 1.047

6 1.598 1.630 1.906 1.923 1.047

7 1.610 1.636 1.890 2.022 1.046

8 1.613 1.628 1.927 1.890 1.044

9 1.624 1.663 2.013 1.922 1.048

10 1.643 1.660 2.059 1.870 1.047

11 1.706 1.731 2.332 1.901 1.074

12 1.708 1.714 2.469 2.030 1.075
Cells highlighted green represent the lowest value for each forecast horizon.

Table 4.55.: Theil’s U statistic. Colombian CPI case.

As a summary, it is observed that forecasts errors from all models are not unbiased, and

only the TAR, SETAR and STAR exhibit uncorrelated forecasts errors at horizons greater

than 3 periods. Additionally, Table 4.56 let us observe a satisfactory performance of the

TAR model. According to the Relative MSE of forecasts and the DM and MDM tests, the

TAR model has better MSE of forecasts than the SETAR and STAR models. Regarding

the encompassing tests, the TAR model encompasses the SETAR and STAR models at all

horizons, but it could be compassed by the MSAR model. Additionally, forecasts from all

models are not more accurate than those from the näıve model.

Therefore, from this out-of-sample forecasts comparison, we can conclude that the TAR

model could forecasts the growth rate of the CPI with a reasonable performance, given that

of the alternatives, the TAR model appears to be marginally preferred to the competing

modes.
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Horizon Relative MSE DM - MDM Encompassing tests U-Theil

1 1 0 1 1

(SETAR) (SETAR) (SETAR)

2 2 1 2 2

(SETAR, STAR) (SETAR) (SETAR, STAR) (SETAR, STAR)

3 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

4 3 2 2 2

(AR, SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

5 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

6 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

7 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

8 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

9 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

10 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

11 2 1 2 2

(SETAR, STAR) (SETAR) (SETAR, STAR) (SETAR, STAR)

12 2 2 2 2

(SETAR, STAR) (SETAR, STAR) (SETAR, STAR) (SETAR, STAR)

(1) Cells highlighted green report that the TAR model outperforms 3 or 4 models, highlighted orange report

that the TAR model outperforms 1 or 2 models, and highlighted red report that the TAR model does not

outperform any model. (2) Models in parenthesis are outperformed by the TAR model.

Table 4.56.: Summary of the forecasting performance of the TAR model. Colombian CPI

case.

Finally, we compare the TAR model with the SETAR and STAR models based on their

ability to describe the predictive distribution of the economic time series. As it was men-

tioned before, given that there is not a strong contraction phase during the forecasting

subsample, the 1 to 8-step predictive distributions of the TAR, SETAR and STAR mod-

els tend to be unimodal, capturing the stability of the time series. However, the TAR

model slightly shows bimodal shapes for the lowest values of the CPI, traying to capture

descending periods better than the other models.

As a global summary for the Colombian case, this empirical evaluation shows that forecasts

from the TAR model outperform forecasts from some of the competing models at different

step ahead horizons, for all considered economic times series, although in general, the

forecasting performance of this model is not better than that of the linear model and

the MSAR model. The evaluation criteria let us observe that forecasts from the TAR

model, when using the unemployment rate, outperform those from the competing models

at forecasts horizons greater than 3 periods ahead, and also, it is the model with the best

in-sample properties along with the SETAR model. Regarding the GDP, forecasts from the

TAR model outperform those from the competing models at forecasts horizons between 2

and 7 periods ahead. When using the industrial production index and the CPI time series,
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forecasts from the TAR model only show a better performance than that from the SETAR

and STAR models at all the analyzed forecast horizon, in general. Additionally, given that

the Colombian economic time series do not show a strong contraction phase during the

forecasting period, it was not possible to evaluate the shape changing characteristic in the

Bayesian predictive distributions of the TAR model.



Conclusions

The purpose of this Thesis has been to assess the forecasting performance of the TAR

model. In that sense, we contributed to the literature firstly, by finding the Bayesian

predictive distribution of the TAR model, using the joint predictive distribution that makes

easier the computation of this distributions and reduces the complexity of the definitions of

other approaches; and secondly, by finding important signals about the forecasting ability

of a TAR model in the economic field.

To get those results, we compared the forecasting performance of the TAR model with

that of a linear autoregressive model and nonlinear SETAR, STAR and MSAR models,

using different economic time series of the United States and Colombian economies: the

unemployment rate, the GDP, the industrial production index and the inflation. Therefore,

we estimated 40 models and computed forecasts from all these models.

The results show, globally, good in-sample properties of the TAR model, which means that

the TAR model describes well the characteristics of the economic time series. Additionally,

regarding the forecast evaluation, we found a satisfactory performance of the TAR model

in forecasting all the economic time series, since it outperformed the SETAR and STAR

nonlinear models and the linear model, according to the used evaluation criteria. Regard-

ing the MSAR model, although it has the worst in-sample properties, forecasts from the

MSAR model shows better properties than forecasts from the TAR model. In general,

the TAR model seems marginally preferred to the SETAR, STAR models and AR mod-

els at different forecast horizons, and in some particular cases, to the MSAR model, for

forecasting economic time series, especially, the unemployment rate.

Finally, we found that the Bayesian predictive distributions of the TAR model shows a

shape changing characteristic, with which the TAR model appear to capture business

cycles features of the considered time series better than the other competing models do.

This shape changing quality may suggest that the TAR model can manage cycles in the

economic field and can forecast much better economic time series in contraction periods,

which is important, because it is during this periods that decision and policy makers are

more aware of economic forecasts.

This findings are the base to new fields for research. Some of them are the use of forecasting

combination methods in order to improve forecasts from the TAR model, forecast evalua-

tion during contraction and expansionary periods and reestimating the models throughout

the rolling forecasting procedure, among others.



Appendix A

Theoretical Background

A.1. Gibbs Sampler

Let (X,Y ) be a pair of random variables. We assume that the conditional distributions

f (x|y) and f (y|x) are known, so we can generate a sample from f(x) by sampling these

conditional distributions. Then, we select an arbitrary starting value of Y0 = y0 from the

Gibbs sequence Y0, X0, Y1, X1, . . . , Ym, Xm. The other values of the sequence are obtained

iteratively from Xj ∼ (x|Yj = yj), where the new value Xj = xj is then used to obtain

Yj+1 ∼ (y|Xj = xj), for j = 0, 1, ..,m. This iterative process is called the Gibbs sampling

(Casella and George, 1992). Under some regularity conditions, if m is large enough, the

distribution of Xm converges to f(x) and the final observation of the Gibbs sequence,

Xm = xm, is approximately a random draw from f(x).

The Gibbs sampler proceeds as follows:

i) Take X(t) = (x
(t)
1 , x

(t)
2 , . . . , x

(t)
p ). We define X(0) = (x

(0)
1 , x

(0)
2 , . . . , x

(0)
p ) as the arbi-

trary starting values.

ii) Draw a random sample x
(t+1)
1 from f1

(
x1

∣∣∣x(t)2 , . . . , x
(t)
p

)
.

iii) Draw a random sample x
(t+1)
2 from f2

(
x2

∣∣∣x(t+1)
1 , x

(t)
3 , . . . , x

(t)
p

)
. Note that we use

the value x
(t+1)
1 .

iv) Draw a random sample x
(t+1)
3 from f3

(
x3

∣∣∣x(t+1)
1 , x

(t+1)
2 , x

(t)
4 , . . . , x

(t)
p

)
. Note that we

use the values x
(t+1)
1 and x

(t+1)
2 . Repeat until we draw a random sample x

(t+1)
p from

fp

(
xp

∣∣∣x(t+1)
1 , x

(t+1)
2 , . . . , x

(t+1)
p−1

)
.

v) Generate the burn-in sample (optional).

By repeating that iteration m times, we obtain the Gibbs sequence of random variables(
x
(1)
1 , . . . , x(1)p

)
, . . . ,

(
x
(m)
1 , . . . , x(m)

p

)
.
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For m large enough,
(
x
(m)
1 , . . . , x

(m)
p

)
is approximately a random draw from the desired dis-

tribution. By using Monte Carlo Integration on those draws, we can obtain the quantities

of interest.

A.2. Bayesian Predictive Distributions

A feature of Bayesian inference are the predictive distributions which allow us to make

inferences about new observations. Let x and θ be the vector of observed data and pa-

rameters respectively, where θ ∈ Θ. For a given model and before the data x is seen, the

distribution of the unknown observable x is defined as (Gelman et al., 2009):

p (x) =

∫
Θ
f (x,θ) dθ =

∫
Θ
f (x|θ) p (θ) dθ. (A.1)

This distribution is called the prior predictive distribution. Once the data x has been

observed, we can predict a new observation x̃ from the model given x:

p (x̃|x) =

∫
Θ
f (x̃,θ|x) dθ

=

∫
Θ
f (x̃|x,θ) f (θ|x) dθ,

(A.2)

which is defined as the posterior predictive distribution (Gelman et al., 2009). Therefore,

that predictive distribution integrates uncertainty about θ and the future value x̃, both

conditional on x and the assumptions of the proposed model (Geweke and Amisano, 2010).

We note that the predictive distributions do not depend on any unknown quantities but

on the observed data, thus x gives information about θ which gives information about x̃

(Hoff, 2009).



Appendix B

General review of the models estimation for the
change in the U.S. unemployment rate

B.1. Estimation of the TAR model

We use as the variable of interest the change in the U.S. unemployment rate, that is

Xt = ut − ut−1, where ut is the unemployment rate. As the threshold variable, we use the

growth rate of the U.S. real GDP, that is Zt = [log(GDP t)− log(GDP t−1)] ∗ 100. Figure

B.1 and B.2 show that both series have significant autocorrelations for the first number of

lags.

Figure B.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the change in the U.S. unemployment rate.
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Figure B.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the growth rate of U.S. real GDP.

Next, we check the nonlinearity of the series based on Nieto and Hoyos’s (2011) test which

is an extension of Tsay’s (1998) statistic. We test the null hypothesis of AR linearity

against the alternative of bivariate TAR nonlinearity. Under the AIC criterion, we found

that k̄ = 12 is a reasonable autoregressive order for Xt. Under the null hypothesis, the

results of the test let us define the number 0 as the delay parameter of the threshold

variable, thus the input variable for the dynamic system is Zt.

Figure B.3 shows the change in the U.S. quarterly unemployment rate and the growth rate

of the U.S. quarterly real GDP from 1948:02 to 1995:04. The shading areas denote the

business cycle contractions from peak to trough based on NBER.

Figure B.3.: (a) Time plot of the change in the U.S. quarterly unemployment rate and

(b) Time plot of the growth rate of U.S. quarterly real GDP.

We proceed to identify the number of thresholds for the TAR model as indicated in Sec-

tion 1.1. Thus, we specify the maximum number of regimes l0 by means of a regression

function between Xt and Zt that is estimated using a nonparametric kernel approach,

which is presented in Figure B.4. We observe that 3 could be postulated as the possible

maximum regimes for the TAR model, with possible threshold values -1.5 and 1.0 which

could represent periods in the economy of i) contraction, that generates increases in the

unemployment, ii) stabilization, where there is no destruction or creation of employment,
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and iii) expansion, where there is a decrease in unemployment.

Figure B.4.: Nonparametric regression between the change in the U.S. unemployment

rate (X) and the growth rate of U.S. real GDP (Z).

Once we have defined l0, we select the appropriate thresholds for each possible regimen

l = 2, . . . , l0. That requires to generate intermediate draws of the nonstructural parameters.

Thus, we specify the prior densities for the nonstructural parameters according to Section

1.1. In that sense, we define the prior densities for θx where θ0,j = 0̄, V −10,j = 0.01I with

I the identity matrix, γ0,j = 1.5 and β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 0.084 that is the

residual variance of the AR(12) that was fitted to the change in the unemployment rate.

The maximum autoregressive order for all regimes is k̄ = 12, the same value fitted to the

change in the unemployment rate. The prior distributions for both the number of regimes

and the autoregressive orders that we use in the identification of l are π2 = π3 = 0.5 and

p (kil|l) = 0.076 for kil = 0, 1, . . . , 12; i = 1, .., l, respectively.

With that information, we identify the thresholds ri; i = 1, . . . , l− 1 for the l0 − 1 possible

models that we denote from now on Mj ; j = 2, . . . , l0 (model M with j regimes). Thus,

to look for the location of thresholds in each possible regime, we choose the percentiles

5k where k = 1, 2, . . . , 19, with respective values -1.00, -0.44, -0.12, 0.19, 0.32, 0.43, 0.56,

0.70, 0.75, 0.85, 0.94, 1.00, 1.13, 1.33, 1.58, 1.74, 1.93, 2.05, 2.42. Then, we choose the

thresholds of the model M2 and M3 by searching among the set of all possible combinations

of autoregressive orders. The possible thresholds and autoregressive orders for each possible

regime are presented in Table B.1.

` Thresholds Autoregressive orders Minimum NAIC

2 0.75 1, 4 1.16734

3 0.19 1.00 11, 1, 4 0.43985

Table B.1.: Set of possible number of regimes for the real data. U.S. unemployment rate

case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generated
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with a burn-in point of 10% of the draws30. The results showed in Table B.2 allow us to

set l̂ = 3 as the appropriate number of regimes.

` p̂`

2 0.0026

3 0.9974

Table B.2.: Posterior probability function for the number of regimes for the real data.

U.S. unemployment rate case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table B.3, the identified autoregressive orders are k̂1 = 11, k̂2 = 3 and k̂3 = 0. As

before, convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates

with a burn-in point of 10% of the draws, it is observed that the sample autocorrelations

functions decay quickly31.

Regime

Autoregressive

Order
1 2 3

0 8.13×10−5 2.55×10−11 0.4194

1 0.0317 0.1585 0.1923

2 0.0213 0.1604 0.1522

3 0.0134 0.1765 0.1311

4 0.0121 0.1150 0.0159

5 0.0098 0.0536 0.0127

6 0.0065 0.0734 0.0189

7 0.0077 0.0746 0.0164

8 0.0239 0.0604 0.0122

9 0.0997 0.0417 0.0049

10 0.2378 0.0439 0.0080

11 0.2912 0.0164 0.0086

12 0.2451 0.0257 0.0075

Table B.3.: Posterior probabilities for the autoregressive orders in the real data. U.S.

unemployment rate case.

This concludes the identification stage of the TAR model. Consequently, we fit a TAR(3;11,

3,0) with thresholds values r1 = 0.19 and r2 = 1.00, which respectively are the 20th and

60th percentiles of the growth rate of the real GDP. Table B.4 shows the estimates for

30 The convergence of the Gibbs sampler was checked via the stationarity approach, and it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3 decay quickly.

31 We also performed a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and we found that the estimated autoregressive orders are the same

for different priors of the nonstructural parameters, although some of them changed for different priors

of the autoregressive orders.
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the nonstructural parameters, with their respective posterior standard error in parenthesis

and 90% credible interval in brackets32. These results show that not all the coefficients are

significant at the 5% significance level. However, we decided to estimate the model with

all the coefficients, given that that improves the final estimation.

Regime

Parameter 1 2 3

a
(j)
0

0.32 (0.08)

[0.20, 0.45]

0.03 (0.02)

[0.00, 0.07]

-0.25 (0.03)

[−0.30,−0.20]

a
(j)
1

0.51 (0.21)

[0.17, 0.86]

0.51 (0.07)

[0.40, 0.62]

a
(j)
2

0.10 (0.31)

[−0.42, 0.61]

-0.04 (0.08)

[−0.18, 0.09]

a
(j)
3

-0.21 (0.27)

[−0.65, 0.24]

-0.04 (0.07)

[−0.15, 0.08]

a
(j)
4

-0.24 (0.25)

[−0.64, 0.17]

a
(j)
5

0.10 (0.31)

[−0.40, 0.61]

a
(j)
6

0.18 (0.25)

[−0.24, 0.60]

a
(j)
7

-0.17 (0.28)

[−0.62, 0.30]

a
(j)
8

-0.95 (0.30)

[−1.46,−0.46]

a
(j)
9

0.76 (0.31)

[0.26, 1.25]

a
(j)
10

-0.16 (0.28)

[−0.61, 0.30]

a
(j)
11

-0.36 (0.24)

[−0.74, 0.02]

h(j)
0.12 (0.04)

[0.07, 0.19]

0.03 (0.004)

[0.02, 0.03]

0.07 (0.01)

[0.05, 0.09]

Table B.4.: Parameter estimates for the TAR model. U.S. unemployment rate case.

B.2. Estimation of the SETAR model

To fit a SETAR model for the change in the unemployment rate, as it is mentioned in

Section 1.2, and based on the autocorrelation functions in Figure B.1 and the AIC and

BIC criterion, we determine, in the identification stage, p = 3 as the autoregressive order

32 5000 iterates were generated with a burn-in point of 10% of the draws and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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but with the second lag restricted to zero.

Once we have selected the autoregressive model, we check the nonlinearity of the series

based on Tsay’s (1989) test and find that with d = 6, where d is the delay parameter, it is

obtained the minimum p-value = 0.029 of the F statistic F = 3.603, rejecting the linearity

of the series at the 5% significance level.

Then, to determine the number of regimes and the threshold values, we use Figure B.5 that

shows the sequence of the t ratios of a lag-3 AR coefficient versus the threshold variable

Xt−6 in an arranged autoregression of order 3, and we identify that the data can be divided

into two regimes with a possible threshold at Xt−d = −0.2, because of the change on the

slope at approximately this point.

Figure B.5.: Time plot of t-ratio of recursive estimates of the AR-3 coefficient in an ar-

ranged autoregression of order 3 and delay parameter 6. U.S. unemployment

rate case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj =

−0.2 and autoregressive orders AR(1) and AR(3) for each regime, with a NAIC=-439.858.

Therefore, we fit a SETAR(2;1,3) for the change in the US unemployment rate from 1948:2

to 1995:4, with threshold value Xt−6. The estimated parameters and their standard errors

in parenthesis for each regime are shown in Table B.5, where all estimates are significant

at the 5% level.

Regime

Parameter 1 2

Φ
(j)
1 0.21 (0.09) 0.67 (0.06)

Φ
(j)
3 -0.21 (0.06)

Table B.5.: Parameter estimates for the SETAR model. U.S. unemployment rate case.

B.3. Estimation of the STAR model

We estimate the STAR model based on Section 1.3. With the identified p = 12 autore-

gressive order, we evaluate the nonlinearity of the series based on Teräsvirta’s (1994) test

and find that with the delay parameter d = 1, we obtain the minimum p-value = 0.000 of

the F statistic F = 2.6148, which rejects the linearity of the series.
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Then, as we mentioned in Section 1.3, we choose between the LSTAR and the ESTAR

models through a sequence of tests of nested hypothesis (Teräsvirta, 1994), with which

we find that H01 and H03 are rejected with F − stat = 2.0518(0.0246) and F − stat =

3.4756(0.0001) respectively, while H02 with F-stat=31.6644(0.0808) is not rejected at 5%

significance level (the p-values are in parenthesis). According to Teräsvirta (1994), these

results suggest that we must estimate a LSTAR model.

In Table B.6, we show the estimates for the parameters and their respective standard error

in parenthesis, where there are some coefficients that are not significant at the 5% level.

Regime

Parameter 1 2

Φ
(j)
0 -0.09 (0.10) 4.24 (5.67)

Φ
(j)
1 0.43 (0.16) -0.56 (1.41)

Φ
(j)
2 -3.37 (3.90)

Φ
(j)
4 -0.20 (0.05)

γ 1.39 (0.61)

c 1.26 (0.61)

Table B.6.: Parameter estimates for the STAR model. U.S. unemployment rate case.

B.4. Estimation of the MSAR model

Based on Section 1.4, we estimate the MSAR model. Table B.7 shows the estimates of the

parameters of the model and their respective standard errors in parenthesis.

state

Parameter 1 2

Φ
(j)
0 -0.07 (0.04) 0.09 (0.06)

Φ
(j)
1 0.28 (0.12) 0.79 (0.11)

Φ
(j)
2 0.09 (0.11) -0.28 (0.12)

Φ
(j)
4 -0.12 (0.09) -0.24 (0.11)

Table B.7.: Parameter estimates for the MSAR model. U.S. unemployment rate case.



Appendix C

General review of the models estimation for the
annual growth rate of the U.S. real GDP

C.1. Estimation of the TAR model

We use as the variable of interest the annual growth rate of the U.S. real GDP, and as the

threshold variable, we use the spread term defined in Section 3.2. Figure C.1 and Figure

C.2 show that the autocorrelations are significant for a large number of lags.

Figure C.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the annual growth rate of U.S. real GDP.
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Figure C.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the U.S. spread term.

Then, we test the null hypothesis of AR linearity against the alternative of bivariate TAR

nonlinearity. Under the AIC criterion, we found that k̄ = 14 is a reasonable autoregressive

order for Xt. Under the null hypothesis, the results of the test let us define a delay

parameter of 2 for the threshold variable, thus, the input variable for the dynamic system

is Zt−2.

Figure C.3 shows the annual growth rate of the U.S. real GDP and spread term from

1956:01 to 1998:02. The shading areas denote the business cycle contractions from peak

to trough based on NBER.

Figure C.3.: (a) Time plot of the annual growth rate of U.S. real GDP and (b) Time plot

of U.S. spread term.

We specify the maximum number of regimes l0 by means of a regression function between

Xt and Zt, that is estimated using a nonparametric kernel approach and that is presented

in Figure C.4. We observe that 3 could be postulated as the possible maximum regimes

for the TAR model.
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Figure C.4.: Nonparametric regression between the growth rate of U.S. real GDP (X)

and U.S. spread term (Z).

Next, to specify the prior densities for the nonstructural parameters, we define the prior

densities for θx where θ0,j = 0̄, V −10,j = 0.01I with I the identity matrix, γ0,j = 1.5 and

β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 0.819 that is the residual variance of the AR(14)

that was fitted to the annual growth of the real GDP. The maximum autoregressive order

for all regimes is k̄ = 14, the same value fitted to the variable of interest. The prior

distributions for both the number of regimes and the autoregressive orders that we use in

the identification of l are π2 = π3 = 0.5 and p (kil|l) = 0.066forkil = 0, 1, . . . , 14; i = 1, .., l,

respectively.

Then, to look for the location of thresholds in each possible regime, we choose the per-

centiles 5k where k = 1, 2, . . . , 19, with respective values -2.90, -1.51, -0.49, -0.16, 0.28,

0.46, 0.59, 0.68, 0.78, 0.96, 1.12, 1.31, 1.52, 1.66, 1.81, 2.09, 2.39, 2.60, 2.91. The possible

thresholds and autoregressive orders for each possible regime are presented in Table C.1.

` Thresholds Autoregressive orders Minimum NAIC

2 0.68 5, 5 3.70792

3 0.59 0.78 11, 13, 12 3.08316

Table C.1.: Set of possible number of regimes for the real data. U.S. GDP case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generated

with a burn-in point of 10% of the draws33. The results showed in Table C.2 allow us to

set l̂ = 3 as the appropriate number of regimes.

33 The convergence of the Gibbs sampler was checked via the stationarity approach, where it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3 decay quickly.
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` p̂`

2 0.41520

3 0.58480

Table C.2.: Posterior probability function for the number of regimes for the real data.

U.S. GDP case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table C.3, the identified autoregressive orders are k̂1 = 6, k̂2 = 2 and k̂3 = 1. As before,

convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a

burn-in point of 10% of the draws, it is observed that the sample autocorrelations functions

decay quickly34.

Regime

Autoregressive

Order
1 2 3

0 6.10×10−48 0.0024 1.23×10−49

1 0.0652 0.0468 0.7534

2 0.0243 0.2936 0.2222

3 0.0110 0.1595 0.0195

4 0.0001 0.0520 2.80×10−25

5 0.1145 0.0458 0.0001

6 0.2416 0.0237 0.0007

7 0.0979 0.0214 0.0003

8 0.0053 0.0133 9.42×10−18

9 0.0671 0.0928 0.0018

10 0.0874 0.0622 0.0005

11 0.0984 0.0362 0.0009

12 0.0003 0.0300 0.0001

13 0.0945 0.0559 0.0005

Table C.3.: Posterior probabilities for the autoregressive orders in the real data. U.S.

GDP case.

Consequently, we fit a TAR(3;6,2,1) with thresholds values r1 = 0.59 and r2 = 0.78, which

respectively are the 35th and 45th percentiles of the spread term. However, the fitted model

was not appropriate to explain the marginal heteroscedasticity of the data35. Therefore,

34 We also performed a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and we found that the estimated autoregressive orders are the same

for different priors of the nonstructural parameters, although some of them changed for different priors

of the autoregressive orders.
35 When we checked the residuals of the estimated TAR(3;6,2,1), we observed that the standardized and

squared standardized residuals of the model slightly signal that some nonlinear structure in the data

is not explained by the model. The Ljung-Box statistics for checking “whiteness” are, respectively,

Q (8) = 19.796(0.011) and Q (8) = 16.365(0.037) with the number in parenthesis denoting the p-value.
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based on the NAIC criterion36, the estimated model for the change in the annual growth

rate of the U.S. real GDP is a TAR(3;11,13,12) with thresholds values r1 = 0.59 and

r2 = 0.78.

Regime

Parameter 1 2 3

a
(j)
0

-0.66 (0.60)

[−1.63, 0.35]

-2.95 (3.21)

[−8.14, 2.25]

1.64 (0.26)

[1.22, 2.06]

a
(j)
1

1.17 (0.16)

[0.90, 1.43]

0.84 (0.54)

[−0.02, 1.73]

0.98 (0.10)

[0.82, 1.14]

a
(j)
2

-0.08 (0.22)

[−0.43, 0.28]

0.86 (1.87)

[−2.25, 3.93]

-0.05 (0.15)

[−0.29, 0.19]

a
(j)
3

-0.14 (0.22)

[−0.50, 0.22]

-0.97 (3.94)

[−7.38, 5.50]

-0.18 (0.15)

[−0.44, 0.07]

a
(j)
4

-0.44 (0.23)

[−0.82,−0.06]

0.71 (2.67)

[−3.67, 5.06]

-0.55 (0.12)

[−0.75,−0.35]

a
(j)
5

0.47 (0.23)

[0.10, 0.84]

0.04 (0.74)

[−1.12, 1.21]

0.62 (0.14)

[0.40, 0.85]

a
(j)
6

0.09 (0.24

[−0.29, 0.48]

0.13 (1.48)

[−2.27, 2.49]

-0.01 (0.14)

[−0.25, 0.23]

a
(j)
7

-0.16 (0.27)

[−0.60, 0.28]

-0.25 (1.86)

[−3.24, 2.85]

-0.03 (0.14)

[−0.27, 0.20]

a
(j)
8

-0.07 (0.27)

[−0.50, 0.37]

-0.87 (1.83)

[−3.76, 2.08]

-0.42 (0.12)

[−0.62,−0.22]

a
(j)
9

0.21 (0.24)

[−0.19, 0.61]

1.77 (2.74)

[−2.71, 6.23]

0.36 (0.12)

[0.16, 0.55]

a
(j)
10

0.05 (0.25)

[−0.36, 0.45]

-0.49 (1.17)

[−2.42, 1.41]

-0.04 (0.13)

[−0.24, 0.17]

a
(j)
11

-0.09 (0.16)

[−0.36, 0.17]

-0.61 (1.26)

[−2.60, 1.46]

0.07 (0.13)

[−0.14, 0.29]

a
(j)
12

0.07 (1.23)

[−1.94, 2.09]

-0.14 (0.08)

[−0.27,−0.01]

a
(j)
13

0.48 (0.57)

[−0.47, 1.43]

h(j)
1.32 (0.29)

[0.92, 1.86]

0.40 (0.47)

[0.09, 1.18]

0.53 (0.09)

[0.41, 0.69]

Table C.4.: Parameter estimates for the TAR model. U.S. GDP case.

Table C.4 shows the estimates for the nonstructural parameters, with their respective

The CUSUM and CUSUMSQ indicated that there was no statistical evidence for model misspecification

but there was some heteroscedasticity in {εt}.
36 The NAIC criterion for the estimated TAR(3;6,2,1) is 3.718, while for the estimated TAR(3;11,13,12) is

3.022.
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posterior standard error in parenthesis and 90% credible interval in brackets37. These

results show that not all the coefficients are significant at the 5% level. However, we

decided to estimate the model with all the coefficients, given that that improves the final

estimation.

The fitted TAR model for the change in the annual growth rate of the U.S. real GDP is

given by:

Xt =



−0.66 + 1.17Xt−1 − 0.08Xt−2 − 0.14Xt−3 − 0.44Xt−4

+0.47Xt−5 − 0.09Xt−6 − 0.16Xt−7 − 0.07Xt−8 + 0.21Xt−9

+0.05Xt−10 − 0.09Xt−11 + 1.32εt, if Zt−2 ≤ 0.59

−2.95 + 0.84Xt−1 + 0.86Xt−2 − 0.97Xt−3 + 0.71Xt−4

+0.04Xt−5 + 0.13Xt−6 − 0.25Xt−7 − 0.87Xt−8 + 1.77Xt−9

−0.49Xt−10 − 0.61Xt−11 + 0.07Xt−12 + 0.48Xt−13 + 0.40εt, if 0.59 < Zt−2 ≤ 0.78

1.64 + 0.98Xt−1 − 0.05Xt−2 − 0.18Xt−3 − 0.55Xt−4

+0.62Xt−5 − 0.01Xt−6 − 0.03Xt−7 − 0.42Xt−8 + 0.36Xt−9

−0.04Xt−10 + 0.07Xt−11 − 0.14Xt−12 + 0.53εt, if Zt−2 > 0.78

This model could represent periods in the economy of i) contraction, given that this regime

presents the greatest decreases in the growth rate of the real GDP, when spreads are low

due to contractionary monetary policies; ii) stabilization, where stable spread values are

related to minor variations in the growth rate of the real GDP; and iii) expansion, where

this last regime is associated with the greatest increases in the growth rate of real GDP,

when the monetary policy is expansioning.

When we check the residuals, in Figure C.5 we observe that the standardized and squared

standardized residuals signal that the noise process is white, and the Ljung-Box statistics

for checking “whiteness” are, respectively, Q(8) = 3.805(0.874) and Q(8) = 10.351(0.241).

Figure C.6 reports that the CUSUM and CUSUMSQ behave well, which indicates that

there is no statistical evidence for model misspecification but slightly, some heteroscedas-

ticity in {εt}.

37 5000 iterates were generated with a burn-in point of 10% of the draws, and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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Figure C.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. GDP case.

Figure C.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. GDP case.

C.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure C.1 and the AIC and BIC criterion, we

identify p = 5 as the final autoregressive order to fit a SETAR model. Under the Tsay’s

(1989) test we find that with d = 2, it is obtained the minimum p-value = 0.001 of the F

statistic F = 3.834, rejecting the linearity of the series at the 5% significance level.

Figure C.7 shows the sequence of the t ratios of a lag-2 AR coefficient versus the threshold

variable Xt−d in an arranged autoregression of order 5. We identify that data can be

divided into two regimes with a possible threshold at Xt−d = 2.5, because of the change

on the slope at approximately this point.
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Figure C.7.: Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 5 and delay parameter 2. U.S. GDP case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj = 2.29

and autoregressive orders AR(4) and AR(5) for each regime, with a NAIC = 20.769.

Therefore, we fit a SETAR(2;4,5) for the annual growth of the real GDP, with threshold

value Xt−2. The estimated parameters and their standard errors in parenthesis for each

regime are shown in Table C.5 where all estimates are significant at the 5% level, except

the lag-3 AR coefficient of the second regime.

Regime

Parameter 1 2

Φ
(j)
0 1.60 (0.23)

Φ
(j)
1 0.86 (0.10) 1.23 (0.08)

Φ
(j)
2 -0.31 (0.13)

Φ
(j)
3 0.16 (0.13)

Φ
(j)
4 -0.55 (-0.55) -0.50 (0.13)

Φ
(j)
5 0.38 (0.08)

Table C.5.: Parameter estimates for the SETAR model. U.S. GDP case.

In that sense, the estimated SETAR model for the annual growth rate of the U.S. real

GDP, is given by:

Xt =

{
1.60 + 0.86Xt−1 − 0.55Xt−4 + εt, if Xt−2 ≤ 2.29

1.23Xt−1 − 0.31Xt−2 + 0.16Xt−3 − 0.50Xt−4 + 0.38Xt−5 + εt, if Xt−2 > 2.29

This model could represent periods in the economy of i) contraction, where the first regime

contains the decreases in the growth rate of the real GDP, that are signaled in the business

cycle contractions of the NBER, and ii) expansion, where the second regime shows the

greatest increases in the growth rate of the real GDP.

Finally, we evaluate the adequacy of the model. Figure C.8 let us observe that the standard-

ized and squared standardized residuals of the model slightly signal that some nonlinear

structure in the data is not explained by the model, and the Ljung-Box statistics are,
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respectively, Q(8) = 23.636(0.003) and Q(8) = 19.355(0.013). Figure C.9 presents the

CUSUM and CUSUMSQ, which indicate that there is no statistical evidence for model

misspecification but heteroscedasticity in {εt}.

Figure C.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. GDP case.

Figure C.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. GDP case.

C.3. Estimation of the STAR model

With the identified p=12 autoregressive order, we evaluate the nonlinearity of the series

based on Teräsvirta’s (1994) test and find that with the delay parameter d = 4, we obtain

the p-value = 0.0074 for the F statistic F = 1.8646, which rejects the linearity of the series.

When we compute the tests of nested hypothesis of Teräsvirta (1994), we find that at the

5% significance level, H01 is rejected, while H02 is not, with a respective p - value of 0.0199

and 0.0714. H03 is also not rejected with a p-value = 0.2223. These results suggest that

we must estimate a LSTAR model.

Table C.6 shows the estimates for the parameters and their respective standard error in

parenthesis, which are significant at the 5% level, except for the lag-1 AR coefficient of the

second regime and the parameter γ.
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Regime

Parameter 1 2

Φ
(j)
0 0.91 (0.23)

Φ
(j)
1 1.21 (0.13) -0.18 (0.18)

Φ
(j)
2 -0.50 (0.18) 0.56 (0.22)

Φ
(j)
4 -0.54 (0.09)

Φ
(j)
5 0.25 (0.07)

γ 3.29 (2.27)

c 2.57 (0.61)

Table C.6.: Parameter estimates for the STAR model. U.S. GDP case.

Consequently, the estimated STAR model for the annual growth rate of the U.S. real GDP

is given by:

Xt = 0.91 + 1.21Xt−1 − 0.50Xt−2 − 0.54Xt−4 + 0.25Xt−5

+ F (Xt−4) (−0.18Xt−1 + 0.56Xt−2) + εt,

where

F (Xt−4) = (1 + exp {−3.29 (Xt−4 − 2.57)})−1 .

When we check the residuals, Figure C.10 shows that the standardized and squared stan-

dardized residuals of the estimated model signal that some nonlinear structure in the data

is not explained by the model. Furthermore, the Ljung-Box statistics are, respectively,

Q (8) = 26.906(0.000) and Q (8) = 35.247(0.000). Figure C.11 reports the CUSUM and

CUSUMSQ, which indicate that there is no statistical evidence for model misspecification

but heteroscedasticity in {εt}.

Figure C.10.: Partial autocorrelation function of the fitted STAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. GDP case.
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Figure C.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. GDP case.

C.4. Estimation of the MSAR model

Table C.7 shows the estimates of the parameters of the model and their respective standard

errors in parenthesis.

state

Parameter 1 2

Φ
(j)
0 0.42 (0.20) 0.89 (0.29)

Φ
(j)
1 1.26 (0.10) 1.09 (0.11)

Φ
(j)
2 -0.14 (0.15) -0.19 (0.16)

Φ
(j)
3 -0.42 (0.12) -0.24 (0.13)

Φ
(j)
5 0.18 (0.06) 0.01 (0.08)

Table C.7.: Parameter estimates for the MSAR model. U.S. GDP case.

Therefore, the estimated MSAR model for the annual growth rate of the U.S. real GDP is

given by:

Xt =

{
0.42 + 1.26Xt−1 − 0.14Xt−2 − 0.42Xt−4 + 0.18Xt−5 + ε1t, if st = 1

0.89 + 1.09Xt−1 − 0.19Xt−2 − 0.24Xt−4 + 0.01Xt−5 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is -1.59 and for regime 2 is -9.59. The sample

variances of ε1t and ε2t are 0.33 and 2.25, respectively38. Hence, the first state could

represent the stable periods with minor fluctuations in the U.S. economy, and the second

state represents an unstable economy with sharp fluctuations.

Figure C.12 shows that the standardized residuals of the model of the model slightly signal

that some nonlinear structure in the data is not explained by the model. The Ljung-Box

38 The probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.02(0.02) and

p (st = 1|st−1 = 2) = 0.02(0.02), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.52 and that it is in regime 2 is

0.48.
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statistics are, respectively, Q (8) = 92.505(0.000) and Q (8) = 11.006(0.201). Figure C.13

reports the CUSUM and CUSUMSQ, indicating that there is statistical evidence for model

misspecification and heteroscedasticity in {εt}.

Figure C.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. GDP case.

Figure C.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. GDP case.

C.5. Estimation of the AR model

We estimate an AR(5) model for the annual growth rate of the U.S. real GDP39, which is

given by:

(
1− 1.15B + 0.23B2 − 0.02B3 + 0.45B4 − 0.30B5

)
Xt = 3.35 + at, σ̂2a = 0.10.

The standard errors of the coefficients are 0.07, 0.11, 0.11, 0.11, 0.07 and 0.39, respectively.

When we check the residuals, Figure C.14 shows that the standardized residuals and the

squared standardized residuals signal that some linear structure in the data is not explained

by the model, and the Ljung-Box statistics are, respectively, Q (8) = 27.477(0.001) and

Q (8) = 37.612(0.000). Figure C.15 shows the CUSUM indicating that there is no statistical

39 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.028), Phillips Perron (PP) (p−value =

0.001) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.091 and Critical value =

0.463, the growth rate of the U.S. real GDP is stationary at the 5% significance level.
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evidence for model misspecification and CUSUMSQ indicating some statistical evidence

for heteroscedasticity in {εt}.

Figure C.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. GDP case.

Figure C.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. GDP case.



Appendix D

General review of the models estimation for the
annual growth rate of the U.S. Industrial

Production Index

D.1. Estimation of the TAR model

We use the annual growth rate of the U.S. industrial production index as the variable of

interest and the U.S. spread term defined in Section 3.2 as the threshold variable. Figure

D.1 and Figure D.2 show that the autocorrelations are significant for a large number of

lags.

Figure D.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the annual growth rate of U.S. industrial production index.
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Figure D.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the U.S. spread term.

Then, we test the null hypothesis of AR linearity against the alternative of bivariate TAR

nonlinearity. Under the AIC criterion, we found that k̄ = 13 is a reasonable autoregressive

order for Xt. Under the null hypothesis, the results of the test let us define as the delay

parameter of 2 for the threshold variable, thus, the input variable for the dynamic system

is Zt−2.

Figure D.3 shows the annual growth rate of the U.S. industrial production index and

the spread term from 1960:03 to 1999:04. The shading areas denote the business cycle

contractions from peak to trough based on NBER.

Figure D.3.: (a) Time plot of the annual growth rate of U.S. industrial production index

and (b) Time plot of U.S. spread term.

We specify the maximum number of regimes l0 by means of a regression function between

Xt and Zt, that is estimated using a nonparametric kernel approach that is presented in

Figure D.4. We observe that 3 could be postulated as the possible maximum regimes for

the TAR model.
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Figure D.4.: Nonparametric regression between the annual growth rate of the U.S. in-

dustrial production index (X) and U.S. spread term (Z).

To specify the prior densities for the nonstructural parameters, we define the prior densities

for θx where θ0,j = 0̄, V −10,j = 0.01I with I the identity matrix, γ0,j = 1.5 and β0,j = σ̃2

2

with j = 1, 2, 3 and σ̃2 = 1.981 that is the residual variance of the AR(13) that was fitted

to the annual growth of the industrial production index. The maximum autoregressive

order for all regimes is k̄ = 13, the same value fitted to the variable of interest. The prior

distributions for both the number of regimes and the autoregressive orders that we use in

the identification of l are π2 = π3 = 0.5 and p (kil|l) = 0.0714 for kil = 0, 1, . . . , 13; i =

1, .., l, respectively.

Then, to look for the location of thresholds in each possible regime, we choose the per-

centiles 5k where k = 1, 2, . . . , 19, with respective values -3.07, -1.60, -0.59, -0.28, -0.05,

0.28, 0.54, 0.67, 0.76, 0.95, 1.12, 1.32, 1.53, 1.68, 1.82, 2.19, 2.40, 2.64, 2.95. The possible

thresholds and autoregressive orders for each possible regime are presented in Table D.1.

` Thresholds Autoregressive orders Minimum NAIC

2 0.76 2, 2 4.57512

3 0.76 1.12 6, 12, 13 3.95755

Table D.1.: Set of possible number of regimes for the real data. U.S. indpro case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generated

with a burn-in point of 10% of the draws40. The results showed in Table D.2 allow us to

set l̂ = 3 as the appropriate number of regimes.

40 The convergence of the Gibbs sampler was checked via the stationarity approach, where it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l=2,3 decay quickly.
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` p̂`

2 0.02460

3 0.97540

Table D.2.: Posterior probability function for the number of regimes for the real data.

U.S. indpro case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table D.3, the identified autoregressive orders are k̂1 = 5, k̂2 = 5 and k̂3 = 13. As before,

convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a

burn-in point of 10% of the draws, it is observed that the sample autocorrelations functions

decay quickly41.

Regime

Autoregressive

Order
1 2 3

0 1.39×10−50 2.67×10−04 1.41×10−42

1 0.0855 0.0199 2.61×10−11

2 0.0225 0.0155 0.0022

3 0.1106 0.0155 0.0026

4 6.75×10−04 0.0033 3.15×10−06

5 0.3064 0.2116 2.11×10−04

6 0.0103 0.1590 0.0019

7 0.2304 0.1266 9.55×10−04

8 4.62×10−06 0.1473 2.40×10−04

9 0.07764 0.0457 0.0135

10 0.1115 0.0642 0.0058

11 0.0356 0.0214 0.0065

12 5.00×10−04 0.0764 5.68×10−04

13 0.0084 0.0936 0.9654

Table D.3.: Posterior probabilities for the autoregressive orders in the real data. U.S.

indpro case.

Consequently, we fit a TAR(3;5,5,13) with thresholds values r1 = 0.76 and r2 = 1.12, which

respectively are the 45th and 55th percentiles of the spread term. Table D.4 shows the

estimates for the nonstructural parameters, with their respective posterior standard error

in parenthesis and 90% credible interval in brackets42. These results show that not all the

coefficients are significant at the 5% level. However, we decided to estimate the model with

41 We also perform a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and we found that the estimated autoregressive orders are the same

for different priors of the nonstructural parameters and for different priors of the autoregressive orders.
42 5000 iterates were generated with a burn-in point of 10% of the draws, and we find that the autocorre-

lation functions for all the parameters decay quickly, indicating the convergence of the Gibbs sampler.



D.1 Estimation of the TAR model 110

all the coefficients, given that that improves the final estimation.

Regime

Parameter 1 2 3

a
(j)
0

-0.45 (0.40)

[−1.10, 0.21]

0.97 (0.52)

[0.14, 1.80]

1.04 (0.27)

[0.60, 1.48]

a
(j)
1

1.38 (0.12)

[1.18, 1.59]

1.05 (0.26)

[0.63, 1.47]

1.33 (0.13)

[1.12, 1.53]

a
(j)
2

-0.57 (0.21)

[−0.92− 0.23]

-0.25 (0.47)

[−1.00, 0.49]

-0.47 (0.20)

[−0.80,−0.15]

a
(j)
3

0.41 (0.21)

[0.07, 0.75]

0.30 (0.48)

[−0.49, 1.07]

0.09 (0.20)

[−0.24, 0.42]

a
(j)
4

-0.53 (0.21)

[−0.86,−0.18]

-0.83 (0.43)

[−1.53,−0.13]

-0.70 (0.21)

[−1.05,−0.35]

a
(j)
5

0.27 (0.14)

[0.03, 0.51]

0.64 (0.27)

[0.20, 1.08]

0.85 (0.23)

[0.46, 1.23]

a
(j)
6

-0.34 (0.25)

[−0.75, 0.08]

a
(j)
7

0.19 (0.26)

[−0.23, 0.60]

a
(j)
8

-0.78 (0.25)

[−1.20,−0.37]

a
(j)
9

0.88 (0.24)

[0.48, 1.27]

a
(j)
10

-0.29 (0.22)

[−0.65, 0.06]

a
(j)
11

0.17 (0.20)

[−0.17, 0.50]

a
(j)
12

-0.52 (0.17)

[−0.80,−0.24]

a
(j)
13

0.34 (0.10)

[0.19, 0.50]

h(j)
3.21 (0.58)

[2.40, 4.25]

1.27 (0.75)

[0.55, 2.66]

1.02 (0.21)

[0.73, 1.39]

Table D.4.: Parameter estimates for the TAR model. U.S. indpro case.

Therefore, the estimated TAR model for the annual growth rate of the U.S. industrial

production index is given by:
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Xt =



−0.45 + 1.38Xt−1 − 0.57Xt−2 + 0.41Xt−3 − 0.53Xt−4

+0.27Xt−5 + 3.21εt, if Zt−2 ≤ 0.76

0.97 + 1.05Xt−1 − 0.25Xt−2 + 0.30Xt−3 − 0.83Xt−4

+0.64Xt−5 + 1.27εt, if 0.76 < Zt−2 ≤ 1.12

+0.85Xt−5 − 0.34Xt−6 + 0.19Xt−7 − 0.78Xt−8 + 0.889Xt−9

−0.29Xt−10 + 0.17Xt−11 − 0.52Xt−12 + 0.34Xt−13 + 1.02εt, if Zt−2 > 1.12

This model could represent periods in the economy of i) contraction, given that this regime

contains the greatest decreases in the growth rate of the industrial production index, when

spreads are low due to contractionary monetary policies; ii) stabilization, where stable

spread values are related to minor fluctuations in the growth rate of the industrial produc-

tion index; and iii) expansion, where this last regime exhibits the greatest increases in the

growth rate of the industrial production index, when the monetary policy is expansioning.

When we check the residuals, in Figure D.5 we observe that the standardized residuals

and the squared standardized residuals of the model slightly signal that some nonlinear

structure in the data is not explained by the model. Moreover, the Ljung-Box statistics

are, respectively, Q (8) = 11.554(0.172) and Q (8) = 23.988(0.002). Figure D.6 reports that

the CUSUM and CUSUMSQ behave well, indicating that there is no statistical evidence

for model misspecification but there is some heteroscedasticity in {εt}.

Figure D.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. indpro case.



D.2 Estimation of the SETAR model 112

Figure D.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. indpro case.

D.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure D.1 and the AIC and BIC criterion, we

identify p = 9 as the final autoregressive order to fit a SETAR model. Under the Tsay’s

(1989) test we find that with d = 5, it is obtained the minimum p-value = 0.0004 of the F

statistic F = 3.534, rejecting the linearity of the series at the 5% significance level.

Figure D.7 shows the sequence of the t ratios of a lag-5 AR coefficient versus the threshold

variable Xt−d in an arranged autoregression of order 9, and we identify that the data can

be divided into two regimes with a possible threshold at Xt−d = 5.0, because of the change

on the slope at approximately this point.

Figure D.7.: Time plot of t-ratio of recursive estimates of the AR-5 coefficient in an

arranged autoregression of order 9 and delay parameter 5. U.S. indpro case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj = 5.08

and autoregressive orders AR(9) and AR(2) for each regime, with a NAIC = 108.918.

Based on that, we fit a SETAR(2;5,2) for the annual growth rate of the industrial produc-

tion index, with threshold value Xt−5. The estimated parameters and their standard errors

in parenthesis for each regime are shown in Table D.5, where all estimates are significant

at the 5% level, although the lag-3 AR coefficient of the first regime is significant at the

10% level.
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Regime

Parameter 1 2

Φ
(j)
0 0.72 (0.20)

Φ
(j)
1 1.35 (0.10) 1.44 (0.12)

Φ
(j)
2 -0.59 (0.16) -0.49 (0.11)

Φ
(j)
3 0.26 (0.15)

Φ
(j)
4 -0.55 (0.13)

Φ
(j)
5 0.35 (0.09)

Table D.5.: Parameter estimates for the SETAR model. U.S. indpro case.

Thus, the estimated SETAR model for the annual growth rate of the U.S. industrial pro-

duction index, is given by:

Xt =


0.72 + 1.35Xt−1 − 0.59Xt−2 + 0.26Xt−3

−0.55Xt−4 + 0.35Xt−5 + εt, if Xt−5 ≤ 5.08

1.44Xt−1 − 0.49Xt−2 + εt, if Xt−5 > 5.08

This model could represent periods in the economy of i) contraction, where the first regime

contains mostly the decreases in the growth rate of the industrial production index, and

ii) expansion, where the second regime shows mostly the increases in the growth rate of

the industrial production index.

Figure D.8 let us observe that the standardized and squared standardized residuals of the

model signal that some nonlinear structure in the data is not explained by the model.

Furthermore, the Ljung-Box statistics are, respectively, Q (8) = 28.391(0.000) and Q (8) =

23.980(0.002). Figure D.9 presents the CUSUM and CUSUMSQ, indicating that there is

no statistical evidence for model misspecification but some heteroscedasticity in {εt}.

Figure D.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. indpro case.
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Figure D.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. indpro case.

D.3. Estimation of the STAR model

With the identified p = 11 autoregressive order, we evaluate the nonlinearity of the series

based on Teräsvirta’s (1994) test and find that, with a delay parameter of d = 1, we obtain

the p-value = 0.0067 for the F statistic F = 1.9261, which rejects the linearity of the series.

When we compute the tests of nested hypothesis of Teräsvirta (1994), we find that at the

10% significance level, H01 and H03 are rejected, while H02 is not, where the respective

p-value is 0.0605, 0.0116 and 0.2517. These results suggest that we must estimate a LSTAR

model.

In Table D.6, we show the estimates for the parameters and their respective standard error

in parenthesis, which are significant at the 5% significance level, except the parameter γ.

Regime

Parameter 1 2

Φ
(j)
0 0.46 (0.24)

Φ
(j)
1 1.79 (0.16) -0.45 (0.18)

Φ
(j)
2 -1.26 (0.21) 0.67 (0.20)

Φ
(j)
3 0.33 (0.13)

Φ
(j)
4 -0.52 (0.12)

Φ
(j)
5 0.44 (0.11)

Φ
(j)
6 -0.17 (0.07)

γ 16.55 (44.73)

c -2.93 (1.45)

Table D.6.: Parameter estimates for the STAR model. U.S. indpro case.

Consequently, the estimated STAR model for the annual growth rate of the U.S. industrial

production index is given by:
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Xt = 0.46 + 1.79Xt−1 − 1.26Xt−2 + 0.33Xt−3 − 0.52Xt−4 + 0.44Xt−5 − 0.17Xt−6

+ F (Xt−5) (−0.45Xt−1 + 0.67Xt−2) + εt,

where

F (Xt−5) = (1 + exp {−16.55 (Xt−5 + 2.93)})−1 .

When checking the residuals, Figure D.10 shows that the standardized and squared stan-

dardized residuals of the model signal that some nonlinear structure in the data is not

explained by the model. Moreover, the Ljung-Box statistics are, respectively, Q (8) =

21.376(0.006) andQ (8) = 28.559(0.000). Figure D.11 presents the CUSUM and CUSUMSQ,

which indicate that there is no statistical evidence for model misspecification but some het-

eroscedasticity in {εt}.

Figure D.10.: Partial autocorrelation function of the fitted STAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. indpro case.

Figure D.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. indpro case.

D.4. Estimation of the MSAR model

Table D.7 shows the estimates of the parameters of the model and their respective standard

errors in parenthesis.
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state

Parameter 1 2

Φ
(j)
0 0.71 (0.18) 0.36 (0.37)

Φ
(j)
1 1.42 (0.08) 1.32 (0.12)

Φ
(j)
2 -0.47 (0.10) -0.49 (0.14)

Φ
(j)
4 -0.33 (0.09) -0.18 (0.15)

Φ
(j)
5 0.23 (0.07) 0.15 (0.12)

Table D.7.: Parameter estimates for the MSAR model. U.S. indpro case.

Therefore, the estimated MSAR model for the annual growth rate of the U.S. industrial

production index is given by:

Xt =

{
0.71 + 1.42Xt−1 − 0.47Xt−2 − 0.33Xt−4 + 0.23Xt−5 + ε1t, if st = 1

0.36 + 1.32Xt−1 − 0.49Xt−2 − 0.18Xt−4 + 0.15Xt−5 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is -1.66 and for regime 2 is -1.11. The sample

variances of ε1t and ε2t are 0.76 and 5.31, respectively43. Hence, the first state could

represent a contractionary economy with reductions in the growth rate of the industrial

production index, and the second state could represent a more stable economy with major

increases in the growth rate of this macroeconomic indicator.

Figure D.12 shows that the standardized and squared standardized residuals of the model

signal that some nonlinear structure in the data is not explained by the model, and the

Ljung-Box statistics are, respectively, Q (8) = 57.790(0.000) and Q (8) = 20.506(0.009).

Figure D.13 presents the CUSUM and CUSUMSQ, which indicate that there is statistical

evidence for model misspecification and some heteroscedasticity in {εt}.

Figure D.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. indpro case.

43 The probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.05(0.03) and

p (st = 1|st−1 = 2) = 0.06(0.05), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.59 and that it is in regime 2 is

0.41.
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Figure D.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. indpro case.

D.5. Estimation of the AR model

We estimate a SARIMA(2,0,0)×(1,0,0) model for the annual growth rate of the U.S. in-

dustrial production index44, which is given by:

(
1− 1.42B + 0.50B2

) (
1 + 0.39B4

)
Xt = at, σ̂2a = 0.10,

The standard errors of the coefficients are 0.07, 0.07 and 0.08, respectively. When we check

the residuals, Figure D.14 shows that the standardized and the squared standardized resid-

uals slightly signal that some linear structure in the data is not explained by the model, and

the Ljung-Box statistics are, respectively, Q (8) = 33.708(0.000) and Q (8) = 17.445(0.026).

Figure D.15 shows the CUSUM and CUSUMSQ, which respectively indicate that there is

no statistical evidence for model misspecification but there is statistical evidence for some

heteroscedasticity in {εt}.

Figure D.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. indpro case.

44 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.000), Phillips Perron (PP) (p−value =

0.001) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.132 and Critical value =

0.463, the growth rate of the U.S. industrial production index is stationary at the 5% significance level.
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Figure D.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. indpro case.



Appendix E

General review of the models estimation for the
growth rate of the U.S. quarterly CPI

E.1. Estimation of the TAR model

We use as the variable of interest the growth rate of the U.S. CPI, and as the threshold

variable, we use the U.S. spread term mentioned above. Figure E.1 and Figure E.2 show

that the series have significant autocorrelations for a large number of lags.

Figure E.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the growth rate of U.S. CPI.
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Figure E.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the U.S. spread term.

Then, we test the null hypothesis of AR linearity against the alternative of bivariate TAR

nonlinearity. Under the AIC criterion, we found that k̄ = 9 is a reasonable autoregressive

order for Xt. Under the null hypothesis, the results of the test let us define as the delay

parameter of 7 for the threshold variable, thus, the input variable for the dynamic system

is Zt−7. This is in accordance of Schuh (2001, p. 40), who says that “(. . . ) changes in

monetary policy typically affect the economy with a lag of six to 18 months, policymak-

ers must evaluate economic activity in the future to determine the appropriate monetary

conditions today”.

Figure E.3 shows the growth rate of the U.S. CPI and spread term from 1956:03 to 1998:01.

The shading areas denote the business cycle contractions from peak to trough based on

NBER.

Figure E.3.: (a) Time plot of the annual growth rate of U.S. CPI and (b) Time plot of

U.S. spread term.

We specify the maximum number of regimes l0 by means of a regression function between

Xt and Zt, that is estimated using a nonparametric kernel approach and that is presented

in Figure E.4. We observe that 3 could be postulated as the possible maximum regimes

for the TAR model.



E.1 Estimation of the TAR model 121

Figure E.4.: Nonparametric regression between the growth rate of U.S. CPI (X) and the

U.S. spread term (Z).

Next, to specify the prior densities for the nonstructural parameters, we define the prior

densities for θx where θ0,j = 0̄, V −10,j = 0.01I with I the identity matrix, γ0,j = 1.5 and

β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 0.133 that is the residual variance of the AR(9) that was

fitted to the annual growth of the CPI. The maximum autoregressive order for all regimes

is k̄ = 9, the same value fitted to the variable of interest. The prior distributions for both

the number of regimes and the autoregressive orders that we use in the identification of l

are π2 = π3 = 0.5 and p (kil|l) = 0.1 for kil = 0, 1, . . . 9; i = 1, .., l, respectively.

Then, to look for the location of thresholds in each possible regime, we choose the per-

centiles 5k where k = 1, 2, . . . , 19, with respective values -2.95, -1.51, -0.50, -0.18, 0.23,

0.46, 0.59, 0.68, 0.81, 0.96, 1.18, 1.32, 1.57, 1.67, 1.82, 2.10, 2.39, 2.61, 2.92. The possible

thresholds and autoregressive orders for each possible regime are presented in Table E.1.

` Thresholds Autoregressive orders Minimum NAIC

2 0.68 3, 3 1.62567

3 -0.18 1.18 3, 2, 3 1.16958

Table E.1.: Set of possible number of regimes for the real data. U.S. CPI case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generated

with a burn-in point of 10% of the draws45. The results showed in Table E.2 allow us to

set l̂ = 3 as the appropriate number of regimes.

` p̂`

2 0.3068

3 0.6932

Table E.2.: Posterior probability function for the number of regimes for the real data.

U.S. CPI case.

45 The convergence of the Gibbs sampler was checked via the stationarity approach, where it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3 decay quickly.
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Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table E.3, the identified autoregressive orders are k̂1 = 7, k̂2 = 7 and k̂3 = 6. As before,

convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a

burn-in point of 10% of the draws, it is observed that the sample autocorrelations functions

decay quickly46.

Regime

Autoregressive

Order
1 2 3

0 5.73×10−22 3.33×10−47 4.30×10−48

1 7.55×10−04 4.28×10−08 1.19×10−05

2 1.40×10−04 0.0041 0.0037

3 0.1908 0.0481 0.1805

4 0.0955 0.0016 0.0109

5 0.1247 0.1994 0.0590

6 0.2506 0.1275 0.3037

7 0.2797 0.5044 0.3012

8 0.0336 0.0878 0.0729

9 0.0242 0.0270 0.0681

Table E.3.: Posterior probabilities for the autoregressive orders in the real data. U.S.

CPI case.

Consequently, we fit a TAR(3;7,7,6) with thresholds values r1 = −0.18 and r2 = 1.18,

which respectively are the 20th and 55th percentiles of the spread term. Table E.4 shows

the estimates for the nonstructural parameters, with their respective posterior standard

error in parenthesis and 90% credible interval in brackets47. These results show that not

all the coefficients are significant at the 5% level. However, we decided to estimate the

model with all the coefficients, given that that improves the final estimation.

46 We also performed a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and it was found that the estimated autoregressive orders are the

same for different priors of the nonstructural parameters and for different priors of the autoregressive

orders.
47 5000 iterates were generated with a burn-in point of 10% of the draws, and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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Regime

Parameter 1 2 3

a
(j)
0

0.13 (0.22)

[−0.22, 0.49]

-0.04 (0.06)

[−0.14, 0.07]

-0.06 (0.09)

[−0.22, 0.10]

a
(j)
1

0.48 (0.17)

[0.21, 0.75]

0.61 (0.12)

[0.42, 0.80]

0.60 (0.13)

[0.39, 0.81]

a
(j)
2

-0.37 (0.20)

[−0.69,−0.04]

0.24 (0.13)

[0.02, 0.45]

0.21 (0.16)

[−0.05, 0.46]

a
(j)
3

0.67 (0.21)

[0.31, 1.01]

0.13 (0.11)

[−0.06, 0.32]

0.29 (0.16)

[0.03, 0.56]

a
(j)
4

0.004 (0.22)

[−0.3, 0.36]

-0.13 (0.12)

[−0.33, 0.08]

-0.17 (0.17)

[−0.43, 0.11]

a
(j)
5

-0.03 (0.22)

[−0.39, 0.33]

0.19 (0.11)

[0.01, 0.38]

0.10 (0.16)

[−0.17, 0.37]

a
(j)
6

0.16 (0.22)

[−0.21, 0.53]

-0.01 (0.10)

[−0.18, 0.15]

0.15 (0.15)

[−0.11, 0.40]

a
(j)
7

-0.18 (0.17)

[−0.46, 0.10]

0.05 (0.10)

[−0.12, 0.21]

h(j)
0.19 (0.05)

[0.12, 0.29]

0.06 (0.01)

[0.04, 0.09]

0.12 (0.02)

[0.09, 0.16]

Table E.4.: Parameter estimates for the TAR model. U.S. CPI case.

The estimated TAR model for the growth rate of the U.S. CPI is given by:

Xt =



0.13 + 0.48Xt−1 − 0.37Xt−2 + 0.67Xt−3 + 0.004Xt−4

−0.03Xt−5 + 0.16Xt−6 − 0.18Xt−7 + 0.19εt, if Zt−7 ≤ −0.08

−0.04 + 0.61Xt−1 + 0.24Xt−2 + 0.13Xt−3 − 0.13Xt−4

+0.19Xt−5 − 0.01Xt−6 + 0.05Xt−7 + 0.06εt, if −0.08 < Zt−7 ≤ 1.18

−0.06 + 0.60Xt−1 + 0.21Xt−2 + 0.29Xt−3 − 0.17Xt−4

+0.10Xt−5 + 0.15Xt−6 + 0.12εt, if Zt−7 > 1.18

This model could represent i) a first regime characterized by a real activity tightening

associated with minor fluctuations in the inflation; ii) a second regime with an economic

transition with a stable behavior of the inflation; and iii) a third regime with a real activity

increasing associated with major fluctuations in the inflation.

When we check the residuals, in Figure E.5 we observe that the standardized residuals and

squared standardized residuals could signal that the noise process is white, and the Ljung-

Box statistics are, respectively, Q (8) = 6.407(0.601) and Q (8) = 12.677(0.123). Figure

E.6 reports that the CUSUM and CUSUMSQ behave well, which indicates that there is

no statistical evidence for model misspecification or strong heteroscedasticity in {εt}.
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Figure E.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. CPI case.

Figure E.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. U.S. CPI case.

E.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure E.1 and the AIC and BIC criterion, we

identify p = 9 as the final autoregressive order to fit a SETAR model. Under the Tsay’s

(1989) test and we find that with d = 2, it is obtained the minimum p-value = 0.0035 of

the F statistic F = 2.795, rejecting the linearity of the series at the 5% significance level.

Figure E.7 shows the sequence of the t ratios of a lag-9 AR coefficient versus the threshold

variable Xt−d in an arranged autoregression of order 9. We identify that data can be

divided into two regimes with a possible threshold at Xt−d = 1.0, because of the change

on the slope at approximately this point.
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Figure E.7.: Time plot of t-ratio of recursive estimates of the AR-9 coefficient in an

arranged autoregression of order 9 and delay parameter 2. U.S. CPI case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj = 0.98

and autoregressive orders AR(3) and AR(4) for each regime, with a NAIC = -345.436.

Based on that, we fit a SETAR(2;3,4) for the growth rate of the CPI, with threshold value

Xt−2. The estimated parameters and their standard errors in parenthesis for each regime

are shown in Table E.5 where all estimates are significant at the 5% level, except the

constant coefficient of both regimes.

Regime

Parameter 1 2

Φ
(j)
0 0.10 (0.07) -0.02 (0.14)

Φ
(j)
1 0.45 (0.09) 0.83 (0.10)

Φ
(j)
2 0.20 (0.12)

Φ
(j)
3 0.28 (0.08) 0.65 (0.13)

Φ
(j)
4 -0.53 (0.14)

Table E.5.: Parameter estimates for the SETAR model. U.S. CPI case.

Thus, the estimated SETAR model for the growth rate of the U.S. CPI, is given by:

Xt =

{
0.10 + 0.45Xt−1 + 0.20Xt−2 + 0.28Xt−3 + εt, if Xt−2 ≤ 0.98

−0.02 + 0.83Xt−1 + 0.65Xt−3 − 0.53Xt−4 + εt, if Xt−2 > 0.98

This model could represent i) a first regime characterized by a real activity tightening

associated with minor fluctuations in the inflation; and ii) a second regime with a real

activity increasing associated with major fluctuations in the inflation.

Figure E.8 shows that the standardized and squared standardized residuals of the model

could signal that the noise process is white. Furthermore, the Ljung-Box statistics are,

respectively, Q (8) = 11.517(0.174) and Q (8) = 7.190(0.516). Figure E.9 presents the

CUSUM and CUSUMSQ, which indicate that there is no statistical evidence for model

misspecification or strong heteroscedasticity in {εt}.



E.3 Estimation of the STAR model 126

Figure E.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. CPI case.

Figure E.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. U.S. CPI case.

E.3. Estimation of the STAR model

With the identified p = 11 autoregressive order, we evaluate the nonlinearity of the series

based on Teräsvirta’s (1994) test and find that, with a delay parameter of d = 1, we obtain

the p-value = 0.0011 for the F statistic F = 2.2235, which rejects the linearity of the series.

When we compute the tests of nested hypothesis of Teräsvirta (1994), we find that at the

10% significance level, H01 and H03 are rejected, while H02 is not, where the respective p-

value are 0.0870, 0.0016 and 0.1056. These results suggest that we must estimate a LSTAR

model.

In Table E.6 we show the estimates for the parameters and their respective standard error

in parenthesis, where only the lag-3 and lag-4 AR coefficient of the first regime and the

parameter γ are significant at the 5% level.
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Regime

Parameter 1 2

Φ
(j)
0 0.70 (0.80)

Φ
(j)
1 -0.60 (1.09) 1.13 (1.27)

Φ
(j)
3 0.41 (0.08)

Φ
(j)
4 -0.22 (0.08)

γ 1.29 (0.35)

c 0.32 (1.07)

Table E.6.: Parameter estimates for the STAR model. U.S. CPI case.

Consequently, the estimated STAR model for the growth rate of the U.S. CPI is given by:

Xt = −0.60Xt−1 + 0.41Xt−3 − 0.22Xt−4 + F (Xt−1) (070 + 1.13Xt−1) + εt,

where

F (Xt−1) = (1 + exp {−1.29 (Xt−1 − 0.32)})−1 .

When we check the residuals, Figure E.10 shows that the standardized and squared stan-

dardized residuals signal that some nonlinear structure in the data is not explained by the

model. Additionally, the Ljung-Box statistics are, respectively, Q (8) = 13.957(0.083) and

Q (8) = 17.068(0.029). Figure E.11 presents the CUSUM and CUSUMSQ, which indicate

that there is no statistical evidence for model misspecification but some heteroscedasticity

in {εt}.

Figure E.10.: Partial autocorrelation function of the fitted STAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. CPI case.
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Figure E.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. U.S. CPI case.

E.4. Estimation of the MSAR model

Based on Section 1.4, we estimate the MSAR model. Table E.7 shows the estimates of the

parameters of the model and their respective standard errors in parenthesis.

state

Parameter 1 2

Φ
(j)
0 0.04 (0.05) 0.17 (0.11)

Φ
(j)
1 0.57 (0.08) 0.43 (0.12)

Φ
(j)
2 0.33 (0.11) -0.43 (0.12)

Φ
(j)
3 0.16 (0.09) 0.61 (0.12)

Table E.7.: Parameter estimates for the MSAR model. U.S. CPI case.

Therefore, the estimated MSAR model for the growth rate of the U.S. CPI is given by:

Xt =

{
0.04 + 0.57Xt−1 + 0.33Xt−2 + 0.16Xt−3 + ε1t, if st = 1

0.17 + 0.43Xt−1 − 0.43Xt−2 + 0.61Xt−3 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is 0.09 and for regime 2 is 0.29. The sample

variances of ε1t and ε2t are 0.08 and 0.09, respectively48. Hence, the first state could

represent a minor stable economy with minor fluctuations in the CPI, and the second state

could represent a stable economy with increases in the CPI.

When we check this model, Figure E.12 shows that the standardized and squared stan-

dardized residuals of the model signal that the noise process is white, and the Ljung-Box

statistics are, respectively, Q (8) = 12.027(0.150) and Q (8) = 7.980(0.435). Figure E.13

presents the CUSUM and CUSUMSQ, which indicate that there is statistical evidence for

model misspecification and heteroscedasticity in {εt}.
48 The probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.18(0.09) and

p (st = 1|st−1 = 2) = 0.38(0.15), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.68 and that it is in regime 2 is

0.32.
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Figure E.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. U.S. CPI case.

Figure E.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. U.S. CPI case.

E.5. Estimation of the AR model

We estimate an AR(4) model for the growth rate of the U.S. CPI49, which is given by:

(
1− 0.70B + 0.06B2 − 0.46B3 + 0.21B4

)
Xt = 1.03 + at, σ̂2a = 0.14,

The standard errors of the coefficients are 0.08, 0.09, 0.09, 0.09 and 0.26, respectively.

When we check the residuals, Figure E.14 shows that the standardized and the squared

standardized residuals slightly signal that some linear structure in the data is not explained

by the model, and the Ljung-Box statistics are, respectively, Q (8) = 10.004(0.265) and

Q (8) = 17.396(0.026). Figure E.15 shows the CUSUM and CUSUMSQ, which respec-

tively indicate that there is no statistical evidence for model misspecification, but there is

statistical evidence for some heteroscedasticity in εt.

49 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.089), Phillips Perron (PP) (p−value =

0.005) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.374 and Critical value =

0.463, the growth rate of the growth rate of the U.S. CPI is stationary at the 5% significance level.
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Figure E.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. U.S. CPI case.

Figure E.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. U.S. CPI case.



Appendix F

General review of the model estimation for the
change in the Colombian unemployment rate

F.1. Estimation of the TAR model

We use as the variable of interest the change in the Colombian unemployment rate, that

is Xt = ut − ut−1, where ut is the unemployment rate. As the threshold variable, we use

the growth rate of the ISE index, that is Zt = [log(ISEt)− log(ISEt−1)] ∗ 100.

Figure F.1 shows that the series have significant autocorrelations at the first two lags.

Figure F.2 shows that series have significant autocorrelations at lags 1, 4, 9 and 10.

Figure F.1.: (a) Autocorrelation function and (b) partial autocorrelation function for

change in the Colombian unemployment rate.
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Figure F.2.: (a) Autocorrelation function and (b) partial autocorrelation function for the

growth rate of Colombian ISE index.

After that, we test the null hypothesis of AR process linearity against the alternative

of bivariate TAR nonlinearity. We apply the statistic to different lags of the threshold

variable, that is, Zt−d, d = 1, . . . , 10. Under the AIC criterion, we found that k̄ = 3 is a

reasonable autoregressive order for Xt. The results of the test let us define d = 2 as the

delay parameter of the threshold variable, consequently the input variable for the dynamic

system is Zt−2.

Figure F.3 shows the change in the Colombian unemployment rate and in the growth rate

of the ISE index, where the latter is lagged 2 months. We can observe in some periods

the countercyclical behavior between both series, that is, fallings in the ISE index with

raisings in the unemployment rate.

Figure F.3.: Growth rate of Colombian ISE index lagged 2 months and change in the

Colombian unemployment rate.

The next step is identifying the number of thresholds for the TAR model as indicated in

Section 1.1. Thus, we specify the maximum number of regimes l0 by means of a regression

function between Xt and Zt, that is estimated using a nonparametric kernel approach

and that is presented in Figure F.4. We observe that 3 could be postulated as the possible

maximum regimes for the TAR model, with possible threshold values -0.90 and 0.10. Those

possible regimes could represent periods in the economy of i) contraction that generates

increases of unemployment, ii) stabilization where there is no destruction or creation of

employment, and iii) expansion where there is a decrease of unemployment.
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Figure F.4.: Nonparametric regression between the change in the Colombian unemploy-

ment rate (X) and the growth rate of Colombian ISE index (Z).

Once we have defined l0, we select the appropriate thresholds for each possible regimen l =

2, . . . , l0, which requires to generate intermediate draws of the nonstructural parameters.

Thus, we specify the prior densities for the nonstructural parameters as stated in Section

1.1. In that sense, we define the prior densities for θx, with θ0,j = 0̄, V −10,j = 0.01I where

I is the identity matrix, γ0,j = 1.5 and β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 0.31 is

the residual variance of the AR(3) fitted to the change in the Colombian unemployment

rate. The maximum autoregressive order for all regimes is k̄ = 3, the same order fitted

to the change in the Colombian unemployment rate. The prior distributions for both the

number of regimes and the autoregressive orders that we use in the identification of l are

π2 = π3 = 0.5 and p (kil|l) = 0.25 for kil = 0, 1, 2, 3, and i = 1, . . . , l.

With that information, we identify the thresholds ri; i = 1, . . . , l− 1 for the l0 − 1 possible

M models with j regimes, denoted Mj ; j = 2, . . . , l0. Then, to look for the location of

thresholds in each possible regime, we choose the percentiles 5k where k = 1, 2, . . . , 19,

with respective values -0.83, -0.44, -0.33, -0.13, -0.02, 0.10, 0.15, 0.24, 0.32, 0.36, 0.45,

0.50, 0.54, 0.70, 0.89, 0.94, 1.05, 1.15, 1.47. Then, we choose the threshold of model M2

and M3 by searching among the set of all possible combinations of autoregressive orders.

The possible thresholds and autoregressive orders for each possible regime are presented

in Table F.1.

` Thresholds Autoregressive orders Minimum NAIC

2 0.32 2, 1 2.37152

3 0.15 0.54 2, 1, 2 1.95958

Table F.1.: Set of possible number of regimes for the real data. Colombian unemployment

rate case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generated

with a burn-in point of 10% of the draws50. The results showed in Table F.2 allow us to

50 The convergence of the Gibbs sampler was checked via stationarity approach, where it was observed

that sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3, decay quickly.
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set l̂ = 3 as the appropriate number of regimes.

` p̂`

2 0.4298

3 0.5702

Table F.2.: Posterior probability function for the number of regimes for the real data.

Colombian unemployment rate case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based on

Table F.3, the identified autoregressive orders are k̂1 = 3, k̂2 = 0 and k̂3 = 2. Convergence

of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a burn-in

point of 10% of the draws, it is observed that the sample autocorrelations functions decay

quickly51.

Regime

Autoregressive

Order
1 2 3

0 0.0134 0.3067 0.0021

1 0.0220 0.2931 0.1550

2 0.2854 0.2147 0.5280

3 0.6792 0.1856 0.3149

Table F.3.: Posterior probabilities for the autoregressive orders in the real data. Colom-

bian unemployment rate case.

This concludes the identification stage of the TAR model. Consequently, we fit a TAR(3;3,0,),

with thresholds values r1 = 0.15 and r2 = 0.54, which respectively are the 35th and 65th

percentiles of the growth rate of the ISE index. The estimated nonstructural parameters

are showed in Table F.4, with their respective posterior standard error in parenthesis and

90% credible interval in brackets52.

51 We also performed a sensibility analysis where we changed the prior densities for autoregressive orders

and the nonstructural parameters, and we found that autoregressive orders estimated are the same for

different priors of the nonstructural parameters and for different priors of the autoregressive orders.
52 5000 iterates were generated with a burn-in point of 10% of the draws and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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Regime

Parameter 1 2 3

a
(j)
0

-0.04 (0.08)

[−0.17, 0.11]

-0.19 (0.10)

[−0.35,−0.02]

-0.02 (0.08)

[−0.16, 0.11]

a
(j)
1

-0.84 (0.16)

[−1.10,−0.58]

-0.54 (0.15)

[−0.78,−0.30]

a
(j)
2

-0.63 (0.18)

[−0.93,−0.34]

-0.25 (0.17)

[−0.53, 0.02]

a
(j)
3

-0.24 (0.17)

[−0.52, 0.03]

h(j)
0.28 (0.07)

[0.20, 0.40]

0.39 (0.09)

[0.27, 0.56]

0.29 (0.06)

[0.20, 0.41]

Table F.4.: Parameter estimates for the TAR model. Colombian unemployment rate case.

The fitted TAR model for the change in the Colombian unemployment rate, is given by:

Xt =


−0.04− 0.84Xt−1 − 0.63Xt−2 − 0.24Xt−3 + 0.28εt, if Zt−2 ≤ 0.15

−0.19 + 0.39, if 0.15 < Zt−2 ≤ 0.54

−0.02− 0.54Xt−1 − 0.25Xt−2 + 0.29εt, if Zt−2 > 0.54

Each regime of this model could represent periods in the economy of i) contraction, where

the regime shows sharp fluctuations in the unemployment rate when the GDP presents

low growth rates; ii) stabilization, with minor fluctuations in the unemployment rate and

GDP; and iii) expansion, where the regime exhibits several decreases in the unemployment

rate, when the growth rate of the GDP is increasing.

When we check the residuals, in Figure F.5 we observe that the standardized and squared

standardized residuals signal that the noise process is white, and the Ljung-Box statistics

are, respectively, Q (12) = 13.323(0.346) and Q (12) = 7.892(0.794). Figure F.6 reports

that the CUSUM and CUSUMSQ behave well, which indicates that there is no statistical

evidence for model misspecification but some heteroscedasticity in {εt}.
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Figure F.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian unemployment

rate case.

Figure F.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian unemployment rate case.

F.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure F.1 and the AIC and BIC criterion, we

identify p = 2 as the final autoregressive order to fit a SETAR model. Once we have

selected the autoregressive model, we check the nonlinearity of the series based on Tsay’s

(1989) test and find that with d = 2, where d is the delay parameter, it is obtained the

minimum p-value = 0.012 of the F statistic F = 4.594, rejecting the linearity of the series

at the 5% significance level.

Then, to determine the number of regimes and the threshold values, we use Figure F.7 that

shows the sequence of the t ratios of a lag-2 AR coefficient versus the threshold variable

Xt−2 in an arranged autoregression of order 2, and we identify that the data can be divided

into two regimes with a possible threshold at Xt−d = −0.4, because of the change on the

slope at approximately this point.
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Figure F.7.: Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 2 and delay parameter 2. Colombian un-

employment rate case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj =

−0.48 and autoregressive orders AR(2) and AR(1) for each regime, with a NAIC = -

148.819. Therefore, we fit a SETAR(2;2,1) for the change in the Colombian unemployment

rate, with threshold value Xt−2. The estimated parameters and their standard errors in

parenthesis for each regime are shown in Table F.5, where only the lag-1 AR coefficient of

the second regime is not significant at the 10% level.

Regime

Parameter 1 2

Φ
(j)
0 0.30 (0.18) -0.14 (0.06)

Φ
(j)
1 0.11 (0.21) -0.60 (0.10)

Φ
(j)
2 0.44 (0.19)

Table F.5.: Parameter estimates for the SETAR model. Colombian unemployment rate

case.

Thus, the estimated SETAR model for the change in the Colombian unemployment rate,

is given by:

Xt =

{
0.30 + 0.11Xt−1 + 0.44Xt−2 + εt, if Xt−2 ≤ −0.48

−0.14− 0.60Xt−1 + εt, if Xt−2 > −0.48

This model could represent periods in the economy of i) stability, where the first regime

contains minor variations in the unemployment rate, and ii) instability, where the second

regime shows several increases in the unemployment rate.

Figure F.8 shows that the standardized and squared standardized residuals of the model

signal that the noise process is white. Moreover, the Ljung-Box statistics are, respectively,

Q (12) = 15.583(0.211) and Q (12) = 21.397(0.045). Figure F.9 presents the CUSUM and

CUSUMSQ, indicating that there is no statistical evidence for model misspecification but

some heteroscedasticity in {εt}.
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Figure F.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian unemploy-

ment rate case.

Figure F.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian unemployment rate case.

F.3. Estimation of the STAR model

We estimate the STAR model based on Section 1.3. With the identified p = 3 autoregressive

order, we evaluate the nonlinearity of the series based on Teräsvirta’s (1994) test and find

that with a delay parameter of 1, d = 1, we obtain a p-value = 0.072 of the F statistic

F = 1.820, which rejects the linearity of the series.

Then, we choose between the LSTAR and the ESTAR models through a sequence of tests

of nested hypothesis (Teräsvirta, 1994). We find that H01, H02 and H03 with F − stat =

0.648(0.586), F − stat = 2.407(0.071) and F − stat = 2.365(0.074) respectively, are not

rejected at the 5% significance level (the p-values are in parenthesis). Thus, the model we

choose is the LSTAR.

In Table F.6, we show the estimates for the parameters and their respective standard error

in parenthesis, where all estimates, except the parameter γ and c, are significant at the 5%

level.
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Regime

Parameter 1 2

Φ
(j)
1 -0.65 (0.13)

Φ
(j)
2 -0.41 (0.15)

Φ
(j)
3 -0.17 (0.08)

γ 2.79 (4.09)

c -0.60 (0.43)

Table F.6.: Parameter estimates for the STAR model. Colombian unemployment rate

case.

Consequently, the estimated STAR model for the change in the Colombian unemployment

rate is given by:

Xt = −0.17Xt−3 + F (Xt−2) (−0.65Xt−1 − 0.41Xt−2) + εt,

where

F (Xt−2) = (1 + exp {−2.79× 1.48 (Xt−2 + 0.60)})−1 .

When we check the residuals, Figure F.10 shows that the standardized and squared stan-

dardized residuals of the model that the noise process could be white, and the Ljung-Box

statistics are, respectively, Q (12) = 17.611(0.128) and Q (12) = 13.889(0.308). Figure F.11

presents the CUSUM and CUSUMSQ, indicating that there is no statistical evidence for

model misspecification but some heteroscedasticity in {εt}.

Figure F.10.: Partial autocorrelation function of the fitted STAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian unem-

ployment rate case.
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Figure F.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian unemployment rate case.

F.4. Estimation of the MSAR model

Based on Section 1.4, we estimate the MSAR model. Table F.7 shows the estimates of the

parameters of the model and their respective standard errors in parenthesis.

state

Parameter 1 2

Φ
(j)
0 -0.03 (0.05) -0.19 (0.22)

Φ
(j)
1 -0.44 (0.14) -0.61 (0.24)

Φ
(j)
2 -0.11 (0.15) -0.24 (0.28)

Table F.7.: Parameter estimates for the MSAR model. Colombian unemployment rate

case.

Therefore, the estimated MSAR model for the change in the Colombian unemployment

rate is given by:

Xt =

{
−0.03− 0.44Xt−1 − 0.11Xt−2 + ε1t, if st = 1

−0.19− 0.61Xt−1 − 0.24Xt−2 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is -0.02 and for regime 2 is -0.12. Hence, the

first state represents the stable periods in the Colombian economy, with no considerable

movements in the unemployment rate, and the second state represents the expansionary

periods with more decreases in this economic time series53.

When we evaluate this model, Figure F.12 shows that the standardized and squared stan-

dardized residuals signal that the noise process could be white, and the Ljung-Box statistics

53 The probabilities of moving from one state to the other are p (st = 2|st = 1) = 0.93(0.05) and

p (st = 1|st = 2) = 0.28(0.15), where the number in parenthesis is the standard error. Additionally,

the unconditional probability that the process is in regime 1 is 0.79 and that it is in regime 2 is 0.21.

The coefficients allow us to know that the probability that expansion is followed by another expansion

period is p (1, 1) = 0.93, and that the probability that contraction is followed by another contraction

period is p (2, 2) = 0.92.
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are, respectively, Q (12) = 18.921(0.090) and Q (12) = 15.483(0.216). Figure F.13 presents

the CUSUM and CUSUMSQ, indicating that there is statistical evidence for model mis-

specification and heteroscedasticity in {εt}.

Figure F.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian unem-

ployment rate case.

Figure F.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian unemployment rate case.

F.5. Estimation of the AR model

We estimate an AR(2) model for the change in the Colombian unemployment rate54:

(
1 + +0.56B + 0.16B2

)
Xt = at, σ̂2a = 0.3,

The standard error of both coefficients is 0.09. Figure F.14 shows that the standardized

residuals and the squared standardized residuals signal that the noise process could be

white. Fourthermore, the Ljung-Box statistics are, respectively, Q (12) = 18.098(0.113)

and Q (12) = 13.589(0.328). Figure F.15 shows the CUSUM and CUSUMSQ, indicating

54 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.000), Phillips Perron (PP) (p−value =

0.000) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.085 and Critical value =

0.463, the growth rate of the Colombian unemployment rate is stationary at the 5% significance level.
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that there is no statistical evidence for model misspecification but some heteroscedasticity

in {εt}.

Figure F.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian unemploy-

ment rate case.

Figure F.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian unemployment rate case.



Appendix G

General review of the model estimation for the
annual growth rate of the Colombian GDP

G.1. Estimation of the TAR model

We use as the variable of interest the annual growth rate of the ISE, as a proxi of the

GDP, and as the threshold variable we use the Colombian spread term defined in Section

3.2. Figure G.1 and Figure G.2 show that both series have significant autocorrelations for

a large number of lags.

Figure G.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the annual growth rate of Colombian GDP.



G.1 Estimation of the TAR model 144

Figure G.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the Colombian spread term.

Then, we test the null hypothesis of AR linearity against the alternative of bivariate TAR

nonlinearity. Under the AIC criterion, we found that k̄ = 2 is a reasonable autoregressive

order for Xt. Under the null hypothesis, the results of the test let us define as the delay

parameter of 5 for the threshold variable, thus, the input variable for the dynamic system

is Zt−5.

Figure G.3 shows the annual growth rate of the Colombian GDP and the spread term from

2003:06 to 2012:06. The shading areas denote the business cycle contractions from peak

to trough based on Alfonso et al. (2012).

Figure G.3.: (a) Time plot of the annual growth rate of Colombian GDP and (b) Time

plot of the Colombian spread term.

We specify the maximum number of regimes l0 by means of a regression function between

Xt and Zt, that is estimated using a nonparametric kernel approach and that is presented

in Figure G.4. We observe that 3 could be postulated as the possible maximum regimes

for the TAR model.
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Figure G.4.: Nonparametric regression between the annual growth rate of the Colombian

GDP (X) and Colombian spread term (Z).

Next, to specify the prior densities for the nonstructural parameters, we define the prior

densities for θx where θ0,j = 0̄, V −10,j = 0.01I with I the identity matrix, γ0,j = 1.5 and

β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 0.871 that is the residual variance of the AR(2) that

was fitted to the annual growth rate of the ISE. The maximum autoregressive order for all

regimes is k̄ = 2, the same value fitted to the variable of interest. The prior distributions for

both the number of regimes and the autoregressive orders that we use in the identification

of l are π2 = π3 = 0.5 and p (kil|l) = 0.333 for kil = 0, 1, 2; i = 1, .., l, respectively.

Then, to look for the location of thresholds in each possible regime, we choose the per-

centiles 5k where k = 1, 2, . . . , 19, with respective values -3.82, -3.70, -3.44, -3.20, -2.75,

-2.33, -2.01, -1.24, -1.02, -0.34, -0.03, 0.04, 0.30, 0.49, 0.66, 0.79, 0.96, 1.08, 1.28. The pos-

sible thresholds and autoregressive orders for each possible regime are presented in Table

G.1.

` Thresholds Autoregressive orders Minimum NAIC

2 -0.34 1, 1 3.25830

3 -3.20 -0.34 1, 1, 1 2.80465

Table G.1.: Set of possible number of regimes for the real data. Colombian GDP case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generate,

with a burn-in point of 10% of the draws55. The results showed in Table G.2 allow us to

set l̂ = 3 as the appropriate number of regimes.

55 The convergence of the Gibbs sampler was checked via the stationarity approach, where it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3 decay quickly.
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` p̂`

2 0.3062

3 0.6938

Table G.2.: Posterior probability function for the number of regimes for the real data.

Colombian GDP case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table G.3, the identified autoregressive orders are k̂1 = 2, k̂2 = 2 and k̂3 = 2. As before,

convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a

burn-in point of 10% of the draws, it is observed that the sample autocorrelations functions

decay quickly56.

Regime

Autoregressive

Order
1 2 3

0 1.54×10−11 1.01×10−50 1.87×10−35

1 0.2140 0.1537 0.0597

2 0.7860 0.8463 0.9403

Table G.3.: Posterior probabilities for the autoregressive orders in the real data. Colom-

bian GDP case.

Consequently, we fit a TAR(3;2,2,2) with thresholds values r1 = −3.20 and r2 = −0.34,

which respectively are the 20th and 50th percentiles of the spread term. Table G.4 shows

the estimates for the nonstructural parameters, with their respective posterior standard

error in parenthesis and 90% credible interval in brackets57. These results show that not all

the coefficients are significant at the 5% level. However, we decide to estimate the model

with all the coefficients, given that that improves the final estimation.

56 We performed a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and we found that the estimated autoregressive orders are the same

for different priors of the nonstructural parameters and for different priors of the autoregressive orders.
57 5000 iterates were generated, with a burn-in point of 10% of the draws, and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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Regime

Parameter 1 2 3

a
(j)
0

0.20 (0.47)

[−0.57, 0.98]

0.64 (0.40)

[−0.04, 1.28]

1.43 (0.53)

[0.56, 2.29]

a
(j)
1

0.70 (0.22)

[0.34, 1.05]

0.73 (0.17)

[0.44, 1.01]

0.51 (0.14)

[0.28, 0.74]

a
(j)
2

0.18 (0.22)

[−0.18, 0.53]

0.17 (0.17)

[−0.12, 0.45]

0.20 (0.13)

[−0.02, 0.42]

h(j)
1.51 (0.51)

[0.89, 2.44]

0.41 (0.11)

[0.27, 0.61]

0.94 (0.19)

[0.67, 1.28]

Table G.4.: Parameter estimates for the TAR model. Colombian GDP case.

The fitted TAR model for the annual growth rate of the Colombian GDP is given by:

Xt =


0.20 + 0.70Xt−1 + 0.18Xt−2 + 1.51εt, if Zt−5 ≤ −3.20

0.64 + 0.73Xt−1 + 0.17Xt−2 + 0.41εt, if −3.20 < Zt−5 ≤ −0.34

1.43 + 0.51Xt−1 + 0.20Xt−2 + 0.94εt, if Zt−5 > −0.34

This model could represent periods in the economy of i) contraction, given that this regime

presents the lowest values of the growth rate of the real GDP, when spreads are low due to

contractionary monetary policies; ii) transition, where the regime has minor but positive

fluctuations in the growth rate of the real GDP; during a stable behavior of the spread

term and iii) expansion, where this last regime is associated with the important increases

in the growth rate of real GDP, when the monetary policy is expansioning.

When we check the residuals, in Figure G.5 we observe that the standardized and squared

standardized residuals slightly signal that some nonlinear structure in the data is not ex-

plained by the model, and the Ljung-Box statistics are, respectively, Q (12) = 27.613(0.006)

and Q (12) = 18.715(0.095). Figure G.6 shows that the CUSUM and CUSUMSQ behave

well, which indicates that there is neither statistical evidence for model misspecification

nor heteroscedasticity in {εt}.

Figure G.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian GDP case.



G.2 Estimation of the SETAR model 148

Figure G.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian GDP case.

G.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure G.1 and the AIC and BIC criterion, we

identify p = 2 as the final autoregressive order to fit a SETAR model. Under the Tsay’s

(1989) test and find that with d = 4, it is obtained the minimum p-value = 0.0279 of the

F statistic F = 3.711, rejecting the linearity of the series at the 5% significance level.

Figure G.7 shows the sequence of the t ratios of a lag-2 AR coefficient versus the threshold

variable Xt−d in an arranged autoregression of order 2, and we identify that the data can

be divided into two regimes with a possible threshold at Xt−d = 3.0, because of the change

on the slope at approximately this point.

Figure G.7.: Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 2 and delay parameter 4. Colombian GDP

case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj = 3.19

and autoregressive orders AR(1) and AR(2) for each regime, with a NAIC = -12.958. Based

on that, we fit a SETAR(2;1,2) for the annual growth rate of the GDP, with threshold value

Xt−4. The estimated parameters and their standard errors in parenthesis for each regime

are shown in Table G.5, where all estimates are significant at the 5% level.
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Regime

Parameter 1 2

Φ
(j)
1 1.04 (0.05) 0.67 (0.12)

Φ
(j)
2 0.67 (0.12) 0.31 (0.12)

Table G.5.: Parameter estimates for the SETAR model. Colombian GDP case.

Thus, the estimated SETAR model for the annual growth rate of the Colombian GDP is

given by:

Xt =

{
1.04Xt−1 + εt, if Xt−4 ≤ 3.19

0.67Xt−1 + 0.31Xt−2 + εt, if Xt−4 > 3.19

This model could represent periods in the economy of i) stability, where the first regime

contains the minor increases in the growth rate of the real GDP, and ii) expansion, where

the second regime shows the greatest increases in the growth rate of the real GDP.

Figure G.8 shows that the standardized and squared standardized residuals of the model

slightly signal that some nonlinear structure in the data is not explained by the model. The

Ljung-Box statistics are, respectively, Q (12) = 29.561(0.003) and Q (12) = 22.395(0.033).

Figure G.9 presents the CUSUM and CUSUMSQ, which indicate that there is no statistical

evidence for model misspecification but some heteroscedasticity in {εt}.

Figure G.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian GDP

case.



G.3 Estimation of the STAR model 150

Figure G.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian GDP case.

G.3. Estimation of the STAR model

With an identified p = 13 autoregressive order, we evaluate the nonlinearity of the series

based on Teräsvirta’s (1994) test and find that, with a delay parameter of d = 13, we

obtain the p-value = 0.0064 for the F statistic F = 2.1967, which rejects the linearity of

the series.

When we compute the tests of nested hypothesis of Teräsvirta (1994), we find that at the

10% significance level, H01 is rejected, while H02 and H03 are not, where the respective

p-value is 0.0018, 0.2014 and 0.6787. These results suggest that we must estimate a LSTAR

model.

Table G.6 shows the estimates for the parameters and their respective standard error in

parenthesis, where only the lag-4 AR coefficient of the second regime and the parameter γ

are not significant at the 5% level.

Regime

Parameter 1 2

Φ
(j)
0 0.90 (0.38)

Φ
(j)
1 0.40 (0.16) 0.35 (0.16)

Φ
(j)
2 0.31 (0.11)

Φ
(j)
4 -0.15 (0.10)

Φ
(j)
9 0.46 (0.17) -0.42 (0.18)

Φ
(j)
12 -0.36 (0.09)

Φ
(j)
13 0.23 (0.10)

γ 11.49 (17.76)

c 3.98 (0.30)

Table G.6.: Parameter estimates for the STAR model. Colombian GDP case.

Consequently, the estimated STAR model for the annual growth rate of the Colombian

GDP is given by:
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Xt = 0.90 + 0.40Xt−1 + 0.43Xt−2 + 0.46Xt−9 − 0.36Xt−12

+ F (Xt−13) (0.35Xt−1 − 0.15Xt−4 − 0.42Xt−9 + 0.23Xt−13) + εt,

where

F (Xt−13) = (1 + exp {−11.49 (Xt−13 − 3.98)})−1 .

When we check the residuals, Figure G.10 shows that the standardized and squared stan-

dardized residuals of the model signal that the noise process is white, and the Ljung-Box

statistics are, respectively, Q (12) = 13.437(0.338) and Q (12) = 5.006(0.958). Figure

G.11 presents the CUSUM and CUSUMSQ, which indicate that there is neither statistical

evidence for model misspecification nor heteroscedasticity in {εt}.

Figure G.10.: Partial autocorrelation function of the fitted STAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian GDP

case.

Figure G.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian GDP case.

G.4. Estimation of the MSAR model

Table G.7 shows the estimates of the parameters of the model and their respective standard

errors in parenthesis.
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state

Parameter 1 2

Φ
(j)
0 -0.32 (0.10) 0.83 (0.34)

Φ
(j)
1 0.71 (0.04) 0.71 (0.11)

Φ
(j)
2 0.64 (0.05) 0.16 (0.13)

Φ
(j)
3 -0.51 (0.04) -0.04 (0.14)

Φ
(j)
5 0.31 (0.04) -0.02 (0.10)

Table G.7.: Parameter estimates for the MSAR model. Colombian GDP case.

Therefore, the estimated MSAR model for the annual growth rate of the Colombian GDP

is given by:

Xt =

{
−0.32 + 0.71Xt−1 + 0.64Xt−2 − 0.51Xt−3 + 0.31Xt−5 + ε1t, if st = 1

0.83 + 0.71Xt−1 + 0.16Xt−2 − 0.04Xt−3 − 0.02Xt−5 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is -1.09 and for regime 2 is 2.89. The sample

variances of ε1t and ε2t are 0.01 and 0.97, respectively58. Hence, the first state could

represent unstable periods with minor increases in the real output, and the second state

represents a stable economy with strong increases I the real output.

When we check this model, Figure G.12 shows that the standardized and squared standard-

ized residuals of the model signal that the noise process is white. Moreover, the Ljung-Box

statistics are, respectively, Q (12) = 12.068(0.440) and Q (12) = 4.225(0.979). Figure G.13

presents the CUSUM and CUSUMSQ, which indicate that there is statistical evidence for

model misspecification and some heteroscedasticity in {εt}.

Figure G.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian GDP

case.

58 The probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.59(0.15) and

p (st = 1|st−1 = 2) = 0.17(0.07), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.22 and that it is in regime 2 is

0.78.
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Figure G.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian GDP case.

G.5. Estimation of the AR model

We estimate an AR(2) model for the annual growth rate of the Colombian GDP59, which

is given by:

(
1− 0.66B − 0.21B2

)
Xt = 4.56 + at, σ̂2a = 0.89,

The standard errors of the coefficients are 0.09, 0.09 and 0.66, respectively. When we

check the residuals, Figure G.14 shows that the standardized residuals and the squared

standardized residuals slightly signal that some linear structure in the data is not explained

by the model, and the Ljung-Box statistics are, respectively, Q (12) = 31.400(0.002) and

Q (12) = 13.494(0.334). Figure G.15 shows the CUSUM that indicates there is no statistical

evidence for model misspecification, and the CUSUMSQ that indicates some heteroscedas-

ticity in {εt}.

Figure G.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian GDP case.

59 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.032), Phillips Perron (PP) (p−value =

0.040) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.131 and Critical value =

0.463, the growth rate of the Colombian GDP is stationary at the 5% significance level.
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Figure G.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian GDP case.



Appendix H

General review of the models estimation for the
biannual growth rate of the Colombian Industrial

Production Index

H.1. Estimation of the TAR model

We use as the variable of interest the biannual growth rate of the Colombian industrial

production index, and as the threshold variable, we use the spread term mentioned above.

Figure H.1 and Figure H.2 show that both series have significant autocorrelations for a

large number of lags.

Figure H.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the biannual growth rate of Colombian industrial production

index.
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Figure H.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the Colombian spread term.

We test the null hypothesis of AR linearity against the alternative of bivariate TAR non-

linearity. Under the AIC criterion, we found that k̄ = 7 is a reasonable autoregressive

order for Xt. Under the null hypothesis, the results of the test let us define as the delay

parameter of 5 for the threshold variable, thus, the input variable for the dynamic system

is Zt−5.

Figure H.3 shows the biannual growth rate of the industrial production index and the

spread term from 2003:06 to 2012:06. The shading areas denote the business cycle con-

tractions from peak to trough based on Alfonso et al. (2012).

Figure H.3.: (a) Time plot of the biannual growth rate of Colombian industrial produc-

tion index and (b) Time plot of Colombian spread term.

Then, we specify the maximum number of regimes l0 by means of a regression function

between Xt and Zt, that is estimated using a nonparametric kernel approach and that is

presented in Figure H.4. We observe that 3 could be postulated as the possible maximum

regimes for the TAR model.
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Figure H.4.: Nonparametric regression between the biannual growth rate of Colombian

industrial production (X) and Colombian spread term (Z).

Then, to specify the prior densities for the nonstructural parameters, we define the prior

densities for θx where θ0,j = 0̄, V −10,j = 0.01I with I the identity matrix, γ0,j = 1.5 and

β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 3.809 that is the residual variance of the AR(7) that

was fitted to the biannual growth rate of the industrial production index. The maximum

autoregressive order for all regimes is k̄ = 7, the same value fitted to the variable of

interest. The prior distributions for both the number of regimes and the autoregressive

orders that we use in the identification of l are π2 = π3 = 0.5 and p (kil|l) = 0.125 for

kil = 0, 1, . . . , 7; i = 1, .., l, respectively.

Then, to look for the location of thresholds in each possible regime, we choose the per-

centiles 5k where k = 1, 2, . . . , 19, with respective values -3.82, -3.70, -3.44, -3.20, -2.75,

-2.33, -2.01, -1.24, -1.02, -0.34, -0.03, 0.04, 0.30, 0.49, 0.66, 0.79, 0.96, 1.08, 1.28. The pos-

sible thresholds and autoregressive orders for each possible regime are presented in Table

H.1.

` Thresholds Autoregressive orders Minimum NAIC

2 -0.34 1, 1 4.96476

3 -1.02 -0.03 7, 7, 7 4.38697

Table H.1.: Set of possible number of regimes for the real data. Colombian indpro case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were generated

with a burn-in point of 10% of the draws60. The results showed in Table H.2 allow us to

set =3 as the appropriate number of regimes.

60 The convergence of the Gibbs sampler was checked via the stationarity approach, where it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3 decay quickly.
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` p̂`

2 0.1095

3 0.8905

Table H.2.: Posterior probability function for the number of regimes for the real data.

Colombian indpro case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table H.3, the identified autoregressive orders are k̂1 = 7, k̂2 = 3 and k̂3 = 5. As before,

convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a

burn-in point of 10% of the draws, it is observed that the sample autocorrelations functions

decay quickly61.

Regime

Autoregressive

Order
1 2 3

0 2.80×10−12 0.0018 1.51×10−04

1 0.0347 0.0987 0.0052

2 0.0499 0.1445 0.2346

3 0.1246 0.3307 0.1804

4 0.1323 0.1223 0.1870

5 0.1241 0.0530 0.2692

6 0.0089 0.0095 0.0040

7 0.5256 0.2395 0.1195

Table H.3.: Posterior probabilities for the autoregressive orders in the real data. Colom-

bian indpro case.

Consequently, we fit a TAR(3;7,3,5) with thresholds values r1 = −1.02 and r2 = −0.03,

which respectively are the 45th and 55th percentiles of the spread term. Table H.4 shows

the estimates for the nonstructural parameters, with their respective posterior standard

error in parenthesis and 90% credible interval in brackets62. These results show that not all

the coefficients are significant at the 5% level. However, we decide to estimate the model

with all the coefficients, given that that improves the final estimation.

61 We performed a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and we found that the estimated autoregressive orders are the same

for different priors of the nonstructural parameters and for different priors of the autoregressive orders.
62 5000 iterates were generated with a burn-in point of 10% of the draws, and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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Regime

Parameter 1 2 3

a
(j)
0

0.14 (0.32)

[−0.39, 0.66]

-0.67 (1.34)

[−2.89, 1.47]

1.26 (0.63)

[0.22, 2.29]

a
(j)
1

0.73 (0.15)

[0.48, 0.97]

0.67 (0.39)

[0.03, 1.30]

0.17 (0.17)

[−0.11, 0.45]

a
(j)
2

0.09 (0.16)

[−0.18, 0.35]

0.16 (0.36)

[−0.42, 0.72]

0.34 (0.18)

[0.04, 0.63]

a
(j)
3

0.40 (0.16)

[0.14, 0.67]

0.18 (0.38)

[−0.42, 0.80]

0.04 (0.19)

[−0.26, 0.34]

a
(j)
4

-0.21 (0.16)

[−0.47, 0.06]

-0.04 (0.18)

[−0.33, 0.25]

a
(j)
5

0.12 (0.16)

[−0.14, 0.37]

-0.04 (0.16)

[−0.31, 0.22]

a
(j)
6

-0.62 (0.16)

[−0.89,−0.35]

a
(j)
7

0.38 (0.16)

[0.12, 0.64]

h(j)
4.61 (1.05)

[3.20, 6.57]

6.00 (3.71)

[2.53, 12.70]

4.26 (0.99)

[2.92, 6.09]

Table H.4.: Parameter estimates for the TAR model. Colombian indpro case.

Thus, the fitted TAR model for the biannual growth rate of the Colombian industrial

production index is given by:

Xt =



0.14 + 0.73Xt−1 + 0.09Xt−2 + 0.40Xt−3 − 0.21Xt−4

+0.12Xt−5 − 0.62Xt−6 + 0.38Xt−7 + 4.61εt, if Zt−5 ≤ −1.02

−0.67 + 0.67Xt−1 + 0.16Xt−2 + 0.18Xt−3 + 6.00εt, if −1.02 < Zt−5 ≤ −0.03

1.26 + 0.17Xt−1 + 0.34Xt−2 + 0.04Xt−3 − 0.04Xt−4

−0.04Xt−5 + 4.26εt, if Zt−5 > −0.03

This model could represent periods in the economy of i) contraction, given that this regime

contains the greatest decreases in the growth rate of the industrial production index, when

there is a low spread due to contractionary monetary policies; ii) stabilization, where the

regime shows minor increases in the growth rate of the industrial production index; and

iii) expansion, where the regime exhibits the greatest increases in the growth rate of the

industrial production index, when there is high spread because of expansionary monetary

policies.

When we check the residuals, in Figure H.5 it is observed that the standardized residu-

als and squared standardized residuals of the model signal that the noise process could

be white, and the Ljung-Box statistics are, respectively, Q (12) = 11.647(0.474) and

Q (12) = 16.512(0.169). Figure H.6 reports that the CUSUM and CUSUMSQ behave
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well, which indicates that there is neither statistical evidence for model misspecification

nor heteroscedasticity in {εt}.

Figure H.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian indpro case.

Figure H.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian indpro case.

H.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure H.1 and the AIC and BIC criterion, we

identify p = 3 as the final autoregressive order to fit a SETAR model. Once we select the

autoregressive model, we check the nonlinearity of the series based on Tsay’s (1989) test

and find that with d = 2, it is obtained the minimum p-value = 0.0352 of the F statistic

F = 2.696, rejecting the linearity of the series at the 5% significance level.

Figure H.7 shows the sequence of the t ratios of a lag-2 AR coefficient versus the threshold

variable Xt−d in an arranged autoregression of order 3, and we identify that the data can

be divided into two regimes with a possible threshold at Xt−d = −0.5, because of the

change on the slope at approximately this point.
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Figure H.7.: Time plot of t-ratio of recursive estimates of the AR-2 coefficient in an

arranged autoregression of order 3 and delay parameter 2. Colombian indpro

case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of

rj = −0.79 and autoregressive orders AR(1) and AR(2) for each regime, with a NAIC

= 168.239. Based on that, we fit a SETAR(2;1,2) for the biannual growth rate of the in-

dustrial production index, with threshold value Xt−2. The estimated parameters and their

standard errors in parenthesis for each regime are shown in Table H.5, where all estimates

are significant at the 5% level.

Regime

Parameter 1 2

Φ
(j)
1 0.66 (0.16) 0.62 (0.10)

Φ
(j)
2 0.27 (0.11)

Table H.5.: Parameter estimates for the SETAR model. Colombian indpro case.

Therefore, the estimated SETAR model for the biannual growth rate of the Colombian

industrial production index is given by:

Xt =

{
0.66Xt−1 + εt, if Xt−2 ≤ −0.79

0.62Xt−1 + 0.27Xt−2 + εt, if Xt−2 > −0.79

This model could represent periods in the economy of i) contraction, where the first regime

contains mostly the decreases in the growth rate of the industrial production index, and

ii) expansion, where the second regime shows mostly the increases in the growth rate of

the industrial production index.

Figure H.8 shows that the standardized and squared standardized residuals of the model

signal that some nonlinear structure in the data is not explained by the model. Fur-

thermore, the Ljung-Box statistics are, respectively, Q (12) = 40.662(0.000) and Q (12) =

13.061(0.365). Figure H.9 presents the CUSUM and CUSUMSQ, which indicate that there

is neither statistical evidence for model misspecification nor heteroscedasticity in {εt}.
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Figure H.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian indpro

case.

Figure H.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian indpro case.

H.3. Estimation of the STAR model

With an identified p = 7 autoregressive order, we evaluate the nonlinearity of the series

based on Teräsvirta’s test and find that, with a delay parameter of d = 2, we obtain the

p-value = 0.0041 for the F statistic F = 2.3340, which rejects the linearity of the series.

When we compute the tests of nested hypothesis of Teräsvirta (1994), we find that at the

5% significance level, H01 and H03 are rejected, while H02 is not, where the respective p-

value is 0.0013, 0.0431 and 0.8840. These results suggest that we must estimate a LSTAR

model.

In Table H.6, we show the estimates for the parameters and their respective standard error

in parenthesis, where only the lag-4 AR coefficient of the first regime and the parameter γ

and c are not significant at the 5% level.
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Regime

Parameter 1 2

Φ
(j)
1 0.75 (0.09)

Φ
(j)
3 0.56 (0.16) -0.59 (0.26)

Φ
(j)
4 -0.28 (0.18) 0.66 (0.28)

Φ
(j)
6 -0.62 (0.10)

Φ
(j)
7 0.45 (0.10)

γ 5.16 (7.89)

c 1.10 (1.08)

Table H.6.: Parameter estimates for the STAR model. Colombian indpro case.

Consequently, the estimated STAR model for the biannual growth rate of the Colombian

industrial production index is given by:

Xt = 0.75Xt−1 + 0.56Xt−3 − 0.28Xt−4 − 0.62Xt−6 + 0.45Xt−7

+ F (Xt−2) (−0.59Xt−3 + 0.66Xt−4) + εt,

where

F (Xt−2) = (1 + exp {−5.16 (Xt−2 − 1.10)})−1 .

When we check the adequacy of the estimated model, Figure H.10 shows that the standard-

ized and squared standardized residuals of the estimated model signal that the noise process

is white. Moreover, the Ljung-Box statistics are, respectively, Q (12) = 13.315(0.347) and

Q (12) = 16.618(0.165). Figure H.11 presents the CUSUM and CUSUMSQ, which indicate

that there is neither statistical evidence for model misspecification nor heteroscedasticity

in {εt}.

Figure H.10.: Partial autocorrelation function of the fitted STAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian indpro

case.
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Figure H.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian indpro case.

H.4. Estimation of the MSAR model

Table H.7 shows the estimates of the parameters of the model and their respective standard

errors in parenthesis.

state

Parameter 1 2

Φ
(j)
0 -0.24 (0.28) 0.89 (0.42)

Φ
(j)
1 0.31 (0.10) 0.80 (0.19)

Φ
(j)
2 0.70 (0.10) -0.12 (0.22)

Table H.7.: Parameter estimates for the MSAR model. Colombian indpro case.

Therefore, the estimated MSAR model for the biannual growth rate of the Colombian

industrial production index is given by:

Xt =

{
−0.24 + 0.31Xt−1 + 0.70Xt−2 + ε1t, if st = 1

0.89 + 0.80Xt−1 − 0.12Xt−2 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is -0.35 and for regime 2 is 4.52. The sample

variances of ε1t and ε2t are 1.62 and 5.75, respectively63. Hence, the first state could rep-

resent an unstable economy with decreases in the growth rate of the industrial production

index in average, and the second state could represent a stable economy with increases in

the growth rate of this macroeconomic indicator in average.

When we evaluate this model, Figure H.12 shows that the standardized and squared stan-

dardized residuals of the model signal that the noise process is white. Moreover, the

Ljung-Box statistics are, respectively, Q (12) = 4.767(0.965) and Q (12) = 2.065(0.999).

63 The probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.70(0.24) and

p (st = 1|st−1 = 2) = 0.60(0.25), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.46 and that it is in regime 2 is

0.54.
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Figure H.13 presents the CUSUM and CUSUMSQ, which indicate that there is statistical

evidence for model misspecification and homoscedasticity in {εt}.

Figure H.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian indpro

case.

Figure H.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian indpro case.

H.5. Estimation of the AR model

We estimate an AR(2) model for the biannual growth rate of the Colombian industrial

production index64, which is given by:

(
1− 0.52B − 0.34B2

)
Xt = at, σ̂2a = 4.91.

The standard error of both coefficients is 0.09. When we check the residuals, Figure H.14

shows that the standardized residuals of the model slightly signal that some linear structure

in the data is not explained by the model, and the Ljung-Box statistics are, respectively,

Q (12) = 31.400(0.002) and Q (12) = 13.494(0.334). Figure H.15 shows the CUSUM and

64 As reported by the Phillips Perron (PP) (p − value = 0.002) and Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) (Test statistic = 0.205 and Critical value = 0.463, the growth rate of the Colombian industrial

production index is stationary at the 5% significance level. The Augmented Dickey-Fuller (ADF) p −
value is 0.143.
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CUSUMSQ, indicating that there is no statistical evidence for model misspecification or

heteroscedasticity in {εt}.

Figure H.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian indpro case.

Figure H.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian indpro case.



Appendix I

General review of the models estimation for the
growth rate of the Colombian CPI

I.1. Estimation of the TAR model

We use as the variable of interest, the growth rate of the Colombian CPI, and as the

threshold variable, we use the spread term mentioned above. Figure I.1 and Figure I.2

show that both series have significant autocorrelations for a large number of lags.

Figure I.1.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the growth rate of Colombian CPI.
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Figure I.2.: (a) Sample autocorrelation function and (b) sample partial autocorrelation

function for the Colombian spread term.

Then, we test the null hypothesis of AR linearity against the alternative of bivariate TAR

nonlinearity. Under the AIC criterion, we found that k̄ = 3 is a reasonable autoregressive

order for Xt. Under the null hypothesis, the results of the test let us define as the delay

parameter of 3 for the threshold variable, thus, the input variable for the dynamic system

is Zt−3.

Figure I.3 shows the growth rate of the Colombian CPI and spread term from 2003:04 to

2012:06. The shading areas denote the business cycle contractions from peak to trough

based on Alfonso et al. (2012).

Figure I.3.: (a) Time plot of the growth rate of Colombian CPI and (b) Time plot of

Colombian spread term.

We specify the maximum number of regimes l0 by means of a regression function between

Xt and Zt, that is estimated using a nonparametric kernel approach and that is presented

in Figure I.4. We observe that 3 could be postulated as the possible maximum regimes for

the TAR model.
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Figure I.4.: Nonparametric regression between the monthly growth rate of the CPI (X)

and the spread term (Z).

Next, to specify the prior densities for the nonstructural parameters, we define the prior

densities for θx where θ0,j = 0̄, V −10,j = 0.01I with I the identity matrix, γ0,j = 1.5 and

β0,j = σ̃2

2 with j = 1, 2, 3 and σ̃2 = 0.032 that is the residual variance of the AR(3) that

was fitted to the growth rate of the CPI. The maximum autoregressive order for all regimes

is k̄ = 3, the same value fitted to the variable of interest. The prior distributions for both

the number of regimes and the autoregressive orders that we use in the identification of l

are π2 = π3 = 0.5 and p (kil|l) = 0.25 for kil = 0, 1, 2, 3; i = 1, .., l, respectively.

Then, to look for the location of thresholds in each possible regime, we choose the per-

centiles 5k where k = 1, 2, . . . , 19, with respective values -3.82, -3.69, -3.44, -3.16, -2.71,

-2.32, -1.87, -1.26, -1.03, -0.40, -0.07, 0.02, 0.22, 0.47, 0.66, 0.78, 0.93, 1.08, 1.27. The pos-

sible thresholds and autoregressive orders for each possible regime are presented in Table

I.1.

` Thresholds Autoregressive orders Minimum NAIC

2 -1.03 1, 1 -0.12288

3 -1.03 0.22 1, 3, 1 -0.58614

Table I.1.: Set of possible number of regimes for the real data. Colombian CPI case.

With those possible thresholds and the information mentioned above, we compute the

posterior probability distribution for the number of regimes. 3000 iterates were estimated

with a burn-in point of 10% of the draws65. The results showed in Table I.2 allow us to

set l̂ = 3 as the appropriate number of regimes.

65 The convergence of the Gibbs sampler was checked via the stationarity approach, where it was observed

that the sample autocorrelation functions of the sequences
{
p̂
(i)
l

}
for l = 2, 3 decay quickly.
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` p̂`

2 0.2173

3 0.7827

Table I.2.: Posterior probability function for the number of regimes for the real data.

Colombian CPI case.

Thus, conditional on l̂ = 3, we estimate the autoregressive orders for k1, k2 and k3. Based

on Table I.3, the identified autoregressive orders are k̂1 = 2, k̂2 = 1 and k̂3 = 2. As before,

convergence of the Gibbs sampler was checked via stationarity, and for 5000 iterates with a

burn-in point of 10% of the draws, it is observed that the sample autocorrelations functions

decay quickly66.

Regime

Autoregressive

Order
1 2 3

0 0.0252 0.0047 7.54×10−06

1 0.2118 0.5358 0.2129

2 0.6848 0.0313 0.3954

3 0.0782 0.4282 0.3917

Table I.3.: Posterior probabilities for the autoregressive orders in the real data. Colom-

bian CPI case.

Consequently, we fit a TAR(3;2,1,2) with thresholds values r1 = −1.03 and r2 = 0.22,

which respectively are the 45th and 65th percentiles of the spread term. Table I.4 shows

the estimates for the nonstructural parameters, with their respective posterior standard

error in parenthesis and 90% credible interval in brackets67. These results show that not all

the coefficients are significant at the 5% level. However, we decide to estimate the model

with all the coefficients, given that that improves the final estimation.

66 We performed a sensibility analysis where we changed the prior densities of the autoregressive orders

and the nonstructural parameters, and it was found that the estimated autoregressive orders are the

same for different priors of the nonstructural parameters and for different priors of the autoregressive

orders.
67 5000 iterates were generated with a burn-in point of 10% of the draws, and it was found that the

autocorrelation functions for all the parameters decay quickly, indicating the convergence of the Gibbs

sampler.
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Regime

Parameter 1 2 3

a
(j)
0

0.11 (0.04)

[0.04, 0.18]

0.16 (0.03)

[0.10, 0.21]

0.01 (0.03)

[−0.04, 0.07]

a
(j)
1

0.22 (0.15)

[−0.03, 0.47]

0.32 (0.11)

[0.14, 0.50]

0.69 (0.17)

[0.40, 0.97]

a
(j)
2

0.12 (0.15)

[−0.13, 0.37]

0.15 (0.20)

[−0.18, 0.48]

h(j)
0.04 (0.01)

[0.03, 0.05]

0.01 (0.00)

[0.01, 0.02]

0.03 (0.01)

[0.02, 0.05]

Table I.4.: Parameter estimates for the TAR model. Colombian CPI case.

The fitted TAR model for the growth rate of the Colombian CPI is given by:

Xt =


0.11 + 0.22Xt−1 + 0.12Xt−2 + 0.04εt, if Zt−3 ≤ −1.03

0.16 + 0.32Xt−1 + 0.01εt, if −1.03 < Zt−3 ≤ 0.22

0.01 + 0.69Xt−1 + 0.15Xt−2 + 0.03εt, if Zt−3 > 0.22

This model could represent i) a first regime characterized by negative spreads, that respond

to contractionary monetary policies, and generate a slowdown real activity with minor

fluctuations in the inflation; ii) a second regime with an economic transition with a stable

behavior of the inflation; and iii) a third regime with positive spreads, that respond to

expansionary monetary policies, and produce real activity increases associated with major

fluctuations in the inflation.

When we check the residuals, in Figure I.5 we observe that the standardized and squared

standardized residuals signal that some nonlinear structure in the data is not explained

by the model. The Ljung-Box statistics are, respectively, Q (12) = 34.736(0.001) and

Q (12) = 8.216(0.768). Figure I.6 shows the CUSUM and CUSUMSQ, that indicate that

there is no statistical evidence for model misspecification but there is heteroscedasticity in

{εt}.

Figure I.5.: Partial autocorrelation function of the fitted TAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case.
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Figure I.6.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted TAR

model. Colombian CPI case.

I.2. Estimation of the SETAR model

Based on the autocorrelation functions in Figure I.1 and the AIC and BIC criterion, we

identify p=3 as the final autoregressive order to fit a SETAR model. Once we select the

autoregressive model, we check the nonlinearity of the series based on Tsay’s (1989) test

and find that with d = 3, it is obtained the p-value = 0.0578 of the F statistic F = 2.577,

rejecting the linearity of the series at the 10% significance level.

Figure I.7 shows the sequence of the t ratios of a lag-3 AR coefficient versus the threshold

variable Xt−d in an arranged autoregression of order 3, and we identify that the data can

be divided into two regimes with a possible threshold at Xt−d = 0.09, because of the change

on the slope at approximately this point.

Figure I.7.: Time plot of t-ratio of recursive estimates of the AR-3 coefficient in an ar-

ranged autoregression of order 3 and delay parameter 3. Colombian CPI

case.

We also use the NAIC criterion of Tong (1990), which suggests a threshold value of rj = 0.07

and autoregressive orders AR(2) and AR(1) for each regime, with a NAIC = -370.198.

Based on that, we fit a SETAR(2;2,1) for the monthly growth rate of the CPI, with

threshold value Xt−3. The estimated parameters and their standard errors in parenthesis

for each regime are shown in Table I.5, where all estimates are significant at the 5% level.
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Regime

Parameter 1 2

Φ
(j)
0 0.08 (0.03)

Φ
(j)
1 0.54 (0.16) 0.46 (0.11)

Φ
(j)
2 0.34 (0.17)

Table I.5.: Parameter estimates for the SETAR model. Colombian CPI case.

In that sense, the fitted SETAR model for the growth rate of the Colombian CPI is given

by:

Xt =

{
0.54Xt−1 + 0.34Xt−2 + εt, if Xt−3 ≤ 0.07

0.08 + 0.46Xt−1 + εt, if Xt−3 > 0.07

This model could represent i) a first regime characterized by a real activity tightening

associated with minor fluctuations in the inflation; and ii) a second regime with a real

activity increasing associated with major fluctuations in the inflation.

Figure I.8 shows that the correlations of the standardized and squared standardized resid-

uals of the model could signal that the noise process is white, and the Ljung-Box statistics

are, respectively, Q (12) = 17.405(0.135) and Q (12) = 7.777(0.802). Figure I.9 presents

the CUSUM and CUSUMSQ, indicating that there is no statistical evidence for model

misspecification and there is some heteroscedasticity in {εt}.

Figure I.8.: Partial autocorrelation function of the fitted SETAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case.
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Figure I.9.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted SETAR

model. Colombian CPI case.

I.3. Estimation of the STAR model

With an identified p = 2 autoregressive order, we evaluate the nonlinearity of the series

based on Teräsvirta’s test and find that, with a delay parameter of d = 1, we obtain the

p-value = 0.0648 for the F statistic F = 2.0589, which rejects the linearity of the time

series.

When we compute the tests of nested hypothesis of Teräsvirta (1994), we find that at the

5% significance level, H01 and H02 are not rejected, while H03 is not, where the respective

p-value is 0.7155, 0.4696 and 0.0072. These results suggest that we must estimate a LSTAR

model.

In Table I.6, we show the estimates for the parameters and their respective standard error

in parenthesis, where only the lag-4 AR coefficient of the first regime and the parameter γ

and c are not significant at the 5% level.

Regime

Parameter 1 2

Φ
(j)
1 -0.29 (0.33) 0.93 (0.35)

Φ
(j)
2 0.11 (0.10)

γ 5.08 (10.84)

c -0.14 (0.10)

Table I.6.: Parameter estimates for the STAR model. Colombian CPI case.

Consequently, the fitted STAR model for the growth rate of the Colombian CPI is given

by:

Xt = −0.29Xt−1 + 0.11Xt−2 + F (Xt−1) (0.93Xt−1) + εt,

where

F (Xt−1) = (1 + exp {−5.08 (Xt−1 + 0.14)})−1 .
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When we check the residuals, Figure I.10 shows that the standardized and squared stan-

dardized residuals of the model could signal that the noise process is white. Further-

more, the Ljung-Box statistics are, respectively, Q (12) = 17.640(0.127) and Q (12) =

11.140(0.517). Figure I.11 presents the CUSUM and CUSUMSQ, which indicate that

there is no statistical evidence for model misspecification but there is heteroscedasticity in

{εt}.

Figure I.10.: Partial autocorrelation function of the fitted STAR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case.

Figure I.11.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted STAR

model. Colombian CPI case.

I.4. Estimation of the MSAR model

Table I.7 shows the estimates of the parameters of the model and their respective standard

errors in parenthesis.
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state

Parameter 1 2

Φ
(j)
0 0.02 (0.02) 0.11 (0.04)

Φ
(j)
1 0.43 (0.15) 0.39 (0.15)

Φ
(j)
2 0.10 (0.13) 0.20 (0.17)

Table I.7.: Parameter estimates for the MSAR model. Colombian CPI case.

Therefore, the fitted MSAR model for the monthly growth rate of the Colombian CPI is

given by:

Xt =

{
0.02 + 0.43Xt−1 + 0.10Xt−2 + ε1t, if st = 1

0.11 + 0.39Xt−1 + 0.20Xt−2 + ε2t, if st = 2

The conditional mean of Xt for regime 1 is 0.04 and for regime 2 is 0.18 The sample

variances of ε1t and ε2t are 0.01 and 0.05, respectively68. Hence, the first state could

represent a minor stable economy with minor fluctuations in the CPI, and the second state

could represent a stable economy with increases in the CPI.

When we check the residuals, Figure I.12 shows that the standardized and squared stan-

dardized residuals of the model signal that the noise process is white, and the Ljung-Box

statistics are, respectively, Q (12) = 11.220(0.510) and Q (12) = 0.865(0.999). Figure I.13

presents the CUSUM and CUSUMSQ, which indicates that there is statistical evidence for

some model misspecification and heteroscedasticity in {εt}.

Figure I.12.: Partial autocorrelation function of the fitted MSAR model. (a) Standard-

ized residuals and (b) squared standardized residuals. Colombian CPI case.

68 The probabilities of moving from one state to the other are p (st = 2|st−1 = 1) = 0.18(0.10) and

p (st = 1|st−1 = 2) = 0.78(0.14), where the number in parenthesis is the standard error. Addition-

ally, the unconditional probability that the process is in regime 1 is 0.55 and that it is in regime 2 is

0.45.
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Figure I.13.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted MSAR

model. Colombian CPI case.

I.5. Estimation of the AR model

We estimate an AR(1) for the growth rate of the Colombian CPI69, which is given by:

(1− 0.56B)Xt = 0.16 + at, σ̂2a = 0.04.

The standard errors of the coefficients are 0.08 and 0.09, respectively. When we check the

residuals, Figure I.14 shows that the standardized and the squared standardized residuals

of the model signal that the noise process is white. Moreover, the Ljung-Box statistics

are, respectively, Q (12) = 20.517(0.058) and Q (12) = 8.388(0.754). Figure I.15 shows the

CUSUM, which indicates that there is no statistical evidence for model misspecification,

and the CUSUMSQ that indicates some statistical evidence for heteroscedasticity in {εt}.

Figure I.14.: Partial autocorrelation function of the fitted AR model. (a) Standardized

residuals and (b) squared standardized residuals. Colombian CPI case.

69 As reported by the Augmented Dickey-Fuller (ADF) (p−value = 0.000), Phillips Perron (PP) (p−value =

0.000) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) (Test statistic = 0.119 and Critical value =

0.463, the Colombian CPI is stationary at the 5% significance level.
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Figure I.15.: (a) CUSUM and (b) CUSUMSQ charts for the residuals of the fitted AR

model. Colombian CPI case.
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