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Resumen 

 

Se presenta el primer censo de mortalidad de comunidades epífitas vasculares llevado a cabo a 

gran escala en el noroccidente de los Andes colombianos. Nuestro objetivo fue identificar los 

principales modos de muerte y las variables que determinan la mortalidad de epífitas. Durante un 

año seguimos el destino de 4.247 epífitas hospedadas por 116 forofitos de 10 bosques localizados 

entre 60 y 2900 m.s.n.m. Nuestros resultados sugieren que la sobrevivencia de las epífitas es 

limitada principalmente por la dinámica del sustrato, constituyendo un riesgo de extinción para 

aquellas especies con ciclos de vida lentos ante la imposibilidad de colonizar nuevos sustratos 

rápidamente. El papel de la evapotranspiración en la mortalidad de epífitas indica el impacto 

directo (limitando el metabolismo) e indirecto (incrementando la mortalidad por factores 

mecánicos) que puede tener el cambio climático en la dinámica de las epífitas. La influencia de 

determinantes locales clarificó el efecto del microclima en la dinámica de estas plantas. 

 

 

Palabras clave: Bosques montanos; Dinámica de comunidades epífitas; Evapotranspiración; 

Microclima del bosque; Supervivencia.  
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Abstract  

 

In this study we present the first census of mortality of vascular epiphyte communities carried out 

at large-scale in mountains of the Andes. Our goal was to identify the main modes of death and the 

determinants variables on epiphytes mortality. During one year, we went behind the fate of 4,247 

epiphytes in 10 forests (116 host trees) located from 60 to 2900 m a.s.l. Our results suggested that 

the survival of epiphytes is limited primarily by the instability of substrate constituting a possible 

risk of extinction for those species with slow life cycles because of the impossibility to colonize 

new substrates quickly. The role of ET in the probability of death of the epiphytes indicated both 

the direct (limitation of the metabolism) and indirect impact (increasing the mechanical mortality) 

that climate change could have on the vascular epiphytes dynamics. The influence of local 

determinants clarified the effect of the microclimate in the dynamics of this non-tree growth 

component of the forest. 

 

 

Keywords: Epiphytes community dynamic; Evapotranspiration; Forest microclimate; Montane 

forest; Survival.  
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1. Introduction 

In tropical forests, vascular epiphytes (i.e., non-parasitic plants that use other plants as 

support) can represent up to 50% of the total richness of vascular species (Kelly et al. 

2004; Benavides et al. 2005). However, at a regional scale, we know very little about the 

causes of the mortality of vascular epiphytes (hereafter simply referred to as epiphytes). 

The establishment and survival of epiphytes depends primarily on various factors that 

operate at different spatial scales. On the one hand, the macroclimatic variation generates 

the main environmental filter for species adaptation, which defines the species distribution 

patterns at regional scales (Gentry & Dodson 1987; Wolf 1994). On the other hand, the 

forest structure and microclimate variation may fine-tune the niche-partitioning associated 

with the humidity, light, and temperature variability within each type of forest (Johansson 

1974; Benzing 1995; Krömer, Kessler & Gradstein 2007). An improvement of our 

understanding regarding the role played by climatic variation at different spatial scales in 

determining epiphyte mortality will aid in developing conservation and management 

programs that aim to avoid species loss and the extinction of this particular growth form 

(Pereira et al. 2010; Mondragón 2011). 

 

As a consequence of the continuing increase in temperature and recurrence of extreme 

climatic events, such as drought and storms (IPCC 2012), it is anticipated that epiphytes 

will be negatively affected (Foster 2001; Colwell et al. 2008). The high sensitivity of 
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epiphytes to the supply of water appears to be one of the most common causes of death 

(Nieder et al. 2000; Zotz & Hietz 2001). In highlands of tropical montane forests (TMF), 

the effect of climate change should be more severe than in lowlands due to the upward 

changes in cloud-based formations and likely increase in evapotranspiration rates (Pounds, 

Fogden & Campbell 1999; Still, Foster & Schneider 1999; Ruiz et al. 2008; Ruiz, 

Martinson & Vergara 2012; Zotz et al. 2010). For example, in montane forests of Costa 

Rica, experimental studies reported that a decrease in the incidence of fog resulted in an 

increase in mortality and a reduction in leaf longevity and production (Nadkarni & Solano 

2002). However, a high proportion of epiphytes display water-saving crassulacean acid 

metabolism (CAM), which must favor their ability to resist strong droughts (Winter & 

Smith 1996; Benzing 1998). In fact, severe droughts have been shown to indirectly 

increase epiphyte mortality by increasing the mortality of the host trees (i.e., the 

phorophyte) rather than by constraining the normal metabolism of the epiphytes. For 

instance, during the El Niño Southern Oscillation (ENSO) between 1997-1998 in the 

lowlands of Panama, the epiphyte mortality was largely driven by external mechanical 

events associated with the tree dynamics, such as fallen trees and branches, rather than by 

negative effects on epiphyte metabolism (Zotz & Schmidt 2006; Laube & Zotz 2007; Zotz 

& Bader 2009). Therefore, the study of the main causes of epiphyte mortality in tropical 

forests along broad climatic gradients could inform us about the expected effect of global 

warming on this quite diverse component of tropical forests. 

 

In forests, the vertical distribution of epiphytes is strongly determined by changes in 

microhabitat characteristics along the tree profiles (Johansson 1974; Benzing 1995; Zotz 
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2007). Overall, species that inhabit the canopy are subjected to higher temperatures, 

radiation, and wind intensity, and to a reduced availability of water and nutrients, as 

compared with species that are established in the understory (Chazdon & Fetcher 1984; 

Freiberg 1997; Krömer et al. 2007). The internal microclimates also vary between 

phorophytes in relation to the individual size, architecture, and bark characteristics 

(Benzing 1990; Mehltreter, Flores-Palacios & García-Franco 2005; Wagner, Mendieta-

Leiva & Zotz 2015; Woods, Cardelús & DeWalt 2015). For example, variations in leaf 

area can affect stemflow along the trunks (Hölscher et al. 2003), and external branches can 

be drier than central ones (Wagner, Bogusch & Zotz 2013). Furthermore, the tree 

microclimate can also vary over time. In the tropics, falling branches (van der Meer & 

Bongers 1996; Hietz 1997; Gillman & Ogden 2005), bark characteristics (López-

Villalobos, Flores-Palacios & Ortiz-Pulido 2008), and tree phenology (Einzmann et al. 

2014) are factors that should affect the  likelihood of epiphyte death. 

 

Here, we present the first assessment of epiphyte mortality conducted on a large scale in 

the tropical Andean mountains and surrounding lowlands. Using two epiphyte surveys 

performed along a complex environmental gradient in the northwest of Colombia, we 

aimed to quantify the extent to which local and regional factors determine the mortality of 

vascular epiphytes. The main research questions to answer were as follows: 1) How much 

of the total mortality rates can be attributed to either mechanical or natural factors? 2) 

What are the main local and regional environmental determinants of the observed epiphyte 

mortality rates? We hope to improve knowledge regarding the dynamics of this growth 
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form, which has been identified as a potentially highly threatened species in this region as 

a consequence of global change (Duque et al. 2014). 
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2. Methods 

 

2.1 Study region 

 

The study area is located in the northwest region of Colombia between 5º50’ and 8º61’ N 

and 74º61’and 77º33’ W. This region encompasses an altitudinal gradient from sea level to 

4000 m a.s.l. and is highly variable in terms of its topography, climate and soil. The annual 

precipitation in this region ranges from 1000 mm to almost 7000 mm. Likewise, the 

topography and geology are highly variable because of the presence of two mountain 

ranges that influence the patterns of drainage, rainfall and soil fertility on local scales 

(Instituto Geográfico Agustín Codazzi - IGAC 2007). This study was conducted using data 

collected from 10 sites that overlap with 10 permanent 1-ha tree inventory plots. The 

permanent plots were distributed across a large geographical area encompassing 

approximately 64 000 km2, mostly in the province of Antioquia. The plot locations span an 

altitudinal gradient from 60 to 2900 m a.s.l. (Table 1). Overall, the current forest cover 

only accounts for approximately 30% of the original vegetation (Duque et al. 2014).  
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Table 1. Geographical and environmental description of the 10 study sites of epiphytes surveyed in 

Andean forests. 

Site location 
Altitude 

(m a.s.l.) 

Annual 

Precipitation 

(mm yr-1) 

Annual mean 

temperature 

(°C) 

Coordinate N Coordinate W 

Caucasia 62 3298 28.0 8.13367 -74.94286 

El Bagre 67 4260 28.9 7.65606 -74.81517 

Segovia 769 3244 24.7 7.11142 -74.73145 

Amalfi 1006 2946 23.0 6.77662 -75.07618 

Maceo 1023 2886 22.9 6.45800 -74.78675 

Anorí 1783 3255 19.6 6.98711 -75.14333 

Valdivia 2080 3213 18.5 7.07990 -75.47592 

Angelópolis 2183 2221 16.8 6.12092 -75.69156 

Jardín 2525 2841 15.2 5.49247 -75.89862 

Belmira 2887 2723 12.8 6.61203 -75.65433 

 

 

2.2 Epiphytes sampling and assessment of mortality 

 

To assess the mortality rates, vascular epiphytes were tallied twice (2013-2014) at 10 

different sites encompassing a large geographical area that includes the northern part of the 

Andean mountains in Colombia (Fig. 1). At each site, the minimum time that elapsed 

between censuses was 12 months. To sample the epiphytes, we adapted the SVERA 

method proposed by Wolf, Gradstein & Nadkarni (2009), which in principle aims to assess 

the epiphyte richness and abundance. Overall, we explored 512 trees using a nested sample 

at each site consisting of 35 host trees (loading epiphytes). The 35 phorophytes were 

distributed in the following six size classes: 10 trees with a diameter at breast height 

(DBH) > 30 cm and 25 trees in five classes with a smaller size (5-10, 10.1-15, 15.1-20, 

20.1-25, 25.1-30 cm DBH). We included host trees with smooth, hard or sloughing bark, 

and we checked cases in which the selected tree did not have epiphytes as a measure of the 

occupation frequency at each site.  
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Figure 1. Location of the 10 sites surveyed in the northwest of Colombia. 

 

 

The epiphytes were mapped using binoculars, and in all possible cases, they were collected 

either by climbing or with poles and ladders in the surroundings of the tallied host trees. 

For each phorophyte, all of the vascular epiphytes (i.e., epiphytes, nomadic vines, primary 

hemiepiphytes, facultative epiphytes, accidental epiphytes; Benzing 1990; Zotz 2013) 

were mapped, recorded, and in some cases photographed. Groups of plants that grew in 

colonies that were spatially differentiated were considered to be different individuals 

because the distinction of the ramets in the field carries a high degree of uncertainty and 

logistical effort (Nadkarni 1984). For each individual epiphyte plant, we recorded the 

following characteristics: azimuth, height above ground at the attachment site, size, and 

the i-th branch of the tree in which it was found. We only included plants with an 

approximate size that was greater than or equal to 5 cm because they are difficult to 

identify, but orchids of all sizes were included. Although all of the individuals were 

assigned to taxonomic morphotypes, the botanical resolution of the dataset employed to 

assess the mortality rate was 57.6% at the species level, 38.3% at the genus level, 2.4% at 

the family level, and 1.6% unidentified. All of the collected vouchers were deposited in the 

Herbarium of the University of Antioquia (HUA). 
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The plant demography greatly depends on the sampling size. Therefore, we applied two 

filters before analyzing the epiphyte mortality in each phorophyte to avoid sampling noise 

and bias due to a small sample size. First, during the second census, we classified all of the 

branches and stem sections as reliable or non-reliable according to the visual accuracy 

from the ground for each stem section or branch. Only those branches classified as 

reliable, which indicates that we were able to check the location of all of the plants with a 

certainty of approximately 95% or more, were selected. Second, after selecting all of the 

reliable branches, we included only those phorophytes that had loaded 10 or more 

epiphytes. Therefore, 116 of 350 phorophytes were used to analyze mortality at a regional 

scale after applying these two filters. None of the phorophytes from one site could be 

included after applying the two filters, and therefore, that site was eliminated from the 

analysis. For each phorophyte, we recorded the geographical position, the DBH, the total 

height (HTree), and the number of branches (BranchNum).  

 

Two types of mortality were defined. 1) Natural mortality consisted of all of the plants that 

perished in situ. In most cases, they were identified as plants or the parts of plants without 

photosynthetically active tissue by the naked eye. 2) Mechanical mortality was defined as 

mortality caused by mechanical factors such as falling branches or entire plants, detached 

bark, or any external factor such as the effects of animals or winds. These individuals were 

considered dead because the likelihood of surviving on the forest floor is very small 

(Matelson, Nadkarni & Longino 1993). 

 

 

2.3 Local and regional determinants of epiphytes mortality 

 

The forest structure variability was employed as a surrogate for the microclimate on a local 

scale. All of the variables were obtained from 1-ha permanent plots, which, excluding one 

site (Angelópolis), overlapped the location of the phorophytes. All of the plots were 100 m 

x 100 m. In each plot, all of the woody plant individuals (shrubs, trees, palms, and tree 
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ferns) with a DBH ≥ 10 cm were mapped, tagged, and measured. All individuals with a 

DBH between 1 and 10 cm were counted in a 40 x 40 m subplot located near the center of 

each plot. The structural variables that were considered as likely determinants of epiphyte 

mortality were as follows: basal area of individuals with a DBH ≥ 5 cm (AB: m2 ha-1); 

number of canopy individuals (DBH ≥ 10 cm; Ind10); number of understory individuals (5 

≤ DBH < 10 cm); and maximum height (Hmax). Hmax was calculated as the average of 

the 10 largest trees in each plot. At the individual phorophyte level, we also included the 

following as likely explanatory factors: HTree, BranchNum, mean height of epiphytes in 

the phorophyte (MHP) and estimated mean size of epiphytes (MSP) (see Table S1 in 

Supporting Information for details). 

 

As likely regional determinants of epiphyte mortality, we used the main climatic variables 

estimated at each site at a spatial resolution of 30 arc-s (c.  1 X 1-km resolution). The 

variables employed were as follows: actual evapotranspiration (AET, mm yr-1); mean 

diurnal temperature range (MDT: mean of the monthly range (max temp - min temp)); 

temperature seasonality (TS: standard deviation * 100); annual temperature range (ATR); 

annual precipitation (AP); precipitation in the driest month (PDM); and precipitation 

seasonality (PS: coefficient of variation)). The actual evapotranspiration was obtained 

from the Global Soil Water Balance Geospatial Database (http://www.cgiar-csi.org; 

Trabucco & Zomer 2010) and is referred to as the loss of water from the soil by 

evaporation and transpiration. All of the other climatic variables were downloaded from 

the WorldClim Database (http://www.worldclim.org; Hijmans et al. 2005) (see Table S1 

for details). 

 

 

2.4 Data analysis 

 

The annual mortality rates were estimated at the individual phorophyte level. For each 

phorophyte we estimated the annual mortality rate, the natural mortality rate and the 

mortality rate due to mechanical factors. We estimated the mortality rate in each 
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phorophyte using the equation recommended by Sheil, Burslem & Alder (1995) in 

relatively short periods (~1 year) defined as follows: 

 

m (% yr-1) = 1- (N1/N0) ^ (1/t), 

 

where N0 and N1 are the number of epiphyte individuals found in the initial and final 

census, respectively, and t is the average annualized time that elapsed between the two 

censuses. The overall difference between the mechanical and natural mortality was 

evaluated using the Mann-Whitney test (α = 0.05). 

 

To investigate the local and regional determinants of the epiphyte mortality rates, a 

generalized linear model (glm) was constructed (Zuur et al. 2009). A logistic regression 

analysis for proportional data with a binomial distribution of the error was applied to 

determine whether the probability of death was related to the explanatory variables. We 

fitted the same model for total mortality (mechanical and natural factors together), only 

mechanical, and only natural factors. Due to a greater number of zeros than ones in the 

probability of death (i.e., many phorophytes with a low rate of epiphyte mortality), we 

used the complementary log-log link function (clog-log) as suggested by Zuur et al. 

(2009). To avoid incorrect conclusions, we analyzed outliers, homogeneity, normality, 

collinearity, interactions, and the independence of covariates and data (Zuur, Ieno & 

Elphick 2010). To obtain a set of explanatory variables without collinearity, we calculated 

the variance inflation factor (VIF) by removing one variable at a time and recalculating the 

VIF values. This process was repeated until variables with VIF values less than 3 were 

attained (Zuur et al. 2009). In addition, we considered the second order interactions 

between all of the selected covariates and performed the variable selection again, 

according to the collinearity. Given the high collinearity between the variables that were 

initially considered to build the final models, we based all of the analyses on only four 

climatic variables (MDT, TS, ATR, AET), one variable related to forest structure (Ind10), 

four phorophyte variables (MHP, MSP, HTree, BranchNum), and the interaction between 
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MSP and BranchNum.  Therefore, the initial glm to test our hypothesis regarding the 

determinants of mortality was follows: 

 

(Pi) = β0 + β1 (MDT) + β2 (TS) + β3 (ATR) + β4 (AET) + β5 (Ind10) + β6 (MHP) + 

Β7 (MSP) + β8 (HTree) + β9 (BranchNum) + β10 [(MSP) × (BranchNum)] + ε, 

 

where Pi is the probability of death in the i-th phorophyte, and β values are model 

parameters. 

 

The most parsimonious model was selected using the backward stepwise model selection 

procedure based on the Akaike Information Criterion (AIC) (Crawley 2012). The analysis 

of residuals in the final model was performed for the residuals of the deviance, which is 

recommended for data with many zeros in the response variable (Pierce & Schafer 1986). 

One phorophyte was removed from the analysis because it was classified as highly 

influential in accordance with the Cook distance (larger than 1; Fox 2002). The removed 

phorophyte was a fallen tree for which the mortality rate was 100%. To analyze the effect 

of each significant explanatory variable that remained in the final model, we conducted a 

sensitivity analysis to predict the probability of death within the observed range of values 

while maintaining the other explanatory variables fixed at their average. Finally, we used 

the geoR package in R (Diggle & Ribeiro Jr 2007) to perform a variogram analysis to 

assess the spatial autocorrelation in the residuals. All of the analyses were conducted using 

R 3.1.2 (R Core Team 2014).  

 





 

3. Results 

 

3.1 Types of mortality 
 

Among the 116 surveyed phorophytes, 4,247 epiphytes were located in 654 branches and 

stem sections. Among all of the phorophytes, we recorded 248 dead epiphytes, which was 

represented by a regional annual mean mortality rate for all of the surveyed phorophytes of 

7.50 ± 11.66% yr-1 (mean ± S.D.; Table 2). The mean average mortality rate per 

phorophyte due to mechanical factors (5.58 ± 11.37% yr-1) was significantly higher 

(Mann-Whitney: 8711; p<0.001) than that due to natural causes (1.91 ± 3.22% yr-1) (Table 

2). At the family and genus level, the epiphyte mortality was highly proportional to the 

abundance, but this relationship was not observed at the species level (Fig. 2). The 248 

dead epiphytes belonged to 23 out of 39 families that were recorded in the first census. 

Bromeliaceae (24.2%), Orchidaceae (15.3%), Polypodiaceae (14.9%), Araceae (13.7%), 

and Dryopteridaceae (10.5%) were the families with the highest percentage of dead 

individuals. Guzmania (10.1%, 11 species), Elaphoglossum (10.1%, 11 species), Tillandsia 

(9.3%, 7 species), Anthurium (6.8%, 8 species), and Melpomene (6.0%, 2 species) were 

the genuses with the highest percentage of dead individuals. At the (morpho) species level, 

the 248 dead individuals belonged to 124 out of the total 389 species found in the first 

census, 78 of which had a single dead individual. The species with the largest number of 

dead individuals was Melpomene flabelliformis (4.4%), a fern that belongs to the 

Polypodiaceae family. In all cases, mechanical factors were the overriding cause of 

mortality (Fig. 2). 
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Table 2. Mean annual mortality rate, natural mortality rate and mechanical factors mortality rate 

for vascular epiphytes on 116 sampled phorophytes in 9 sites in Colombian Andes. Superscript 

lower case letters indicate significant differences between the types of mortality (p<0.05). 

Site name 

Annual 

mortality 

rate (% y-1) 

Natural 

mortality 

rate (% y-

1)  

Mechanical 

factors 

mortality 

rate (% y-1) 

Total 

number of 

epiphytes per 

site 

Number of 

phorophytes  

with ≥ 10 

epiphytes 

Caucasia 3.89 ± 5.50 3.89 ± 5.5 0 ± 0 23 2 

El Bagre 9.25 ± 0 0 ± 0 9.25 ± 0 10 1 

Segovia 8.84 ± 8.24 1.36 ± 3.04 7.48 ± 9.18 97 5 

Amalfi 13.01 ± 11.71 5.44 ± 9.42 7.57 ± 13.12 34 3 

Anorí 6.68 ± 6.77 2.79 ± 3.56 3.89 ± 5.24 731 26 

Valdivia 8.37 ± 19.69 0.57 ± 1.57 7.80 ± 19.77 645 25 

Angelópolis 15.64 ± 16.63 2.62 ± 3.88 13.02 ± 16.31 282 10 

Jardín 6.66 ± 7.15 2.78 ± 4.19 3.88 ± 4.64 555 11 

Belmira 4.77 ± 4.05 1.46 ± 1.96 3.31 ± 3.77 1870 33 

Mean ± SD  7.50 ± 11.66 1.91 ± 3.22a 5.58 ± 11.37b 472 ± 596.02 12.89 ± 12.02 
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Figure 2. Proportion of epiphyte individuals with the highest number of dead individuals either by 

natural or mechanical factors at family (A), genus (C), and species (E) level. The numbers on top 

of the bars represent the total number of death individuals. The panels on the right show the ten 

most abundant families (B), genera (D), and species (F) recorded in the first census.  
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3.2 Determinants of epiphytes mortality  

 

Both local and regional factors were found to play a key role in determining the epiphyte 

mortality. The actual evapotranspiration (AET) regional factor and the average height of 

the epiphytes on the phorophyte local factor were both consistently positively associated 

with the probability of death, independent of the cause of mortality. Overall, a higher AET 

and height at which the epiphytes were established on the phorophyte correlated with the 

highest probability of death. This condition remained true for the three cases of mortality 

analyzed: total, natural, and mechanical mortality. The temperature seasonality (TS) was 

negatively associated with natural mortality, while the annual temperature range (ATR) 

was negatively related to mechanical mortality in epiphytes. The height and number of 

phorophytes branches negatively affected the total and natural probability of death, 

respectively. Likewise, the fewer the number of individuals with DBH >= 10 cm, the 

higher was the probability of epiphyte death as a result of mechanical factors (Table 3). 

According to the sensitivity analysis, AET was the most important factor in determining 

the probability of epiphyte death due to either natural or mechanical causes (Fig. 3; see 

Figs S1, S2, and S3). 
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Table 3. Summary from logistic regression model predicting the probabilities of total natural 

mortality, mortality and mechanical factors mortality for vascular epiphytes on 115 sampled 

phorophytes in 9 sites in Colombian Andes. The variables were obtained by mean of backwards 

stepwise model selection procedure based in the Akaike Information Criterion from the initial 

model. 

    
 Type of 

variable 

 
Estimate SE z-value P-value 

Total mortality rate    
    

 

Intercept  NA  -7.8064 0.8866 -8.805 <0.001 *** 

 

Temperature seasonality  Regional  -0.0061 0.0015 -4.134 <0.001 *** 

 

Actual evapotranspiration  Regional  0.0056 0.0010 5.559 <0.001 *** 

 

Average height of the plants on 

the phorophyte 

 
Local 

 
0.0515 0.0206 2.495 0.0126 * 

 

Tree height  Local  -0.0287 0.0138 -2.072 0.0383 * 

Natural mortality rate 
 

 
 

    
 

Intercept  NA  -8.2651 1.6366 -5.050 <0.001 *** 

 
Temperature seasonality  Regional  -0.0079 0.0030 -2.658 0.0079 ** 

 

Actual evapotranspiration  Regional  0.0052 0.0019 2.809 0.0050 ** 

 

Average height of the plants on 

the phorophyte 

 
Local 

 
0.0816 0.0395 2.066 0.0388 * 

 

Number of branches of 

phorophyte 

 
Local 

 
-0.0707 0.0301 -2.346 0.0190 * 

Mechanical factors mortality rate 
 

 
 

    

 

Intercept  NA  -3.2222 1.2487 -2.58 0.0099 ** 

 

Annual temperature range  Regional  -0.0236 0.0071 -3.316 <0.001 *** 

 

Actual evapotranspiration  Regional  0.0025 0.0009 2.867 0.0041 ** 

 

Individuals with DBH ≥ 10 cm  Local  -0.0011 0.0006 -1.873 0.0610. 

 

Average height of the plants on 

the phorophyte 

 
Local 

 
0.0376 0.0221 1.699 0.0892. 

. P < 0.10, *P < 0.05; **P < 0.01; ***P < 0.001.       

NA: not applicable. 
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Figure 3. Final model according to the logistic regression analysis for proportional data applied to 

determine whether the probability of death was related to the selected explanatory variables for 

total mortality (A), natural mortality (C), and mechanical mortality (E). Pannels on the right shows 

the sensitivity analysis result for actual evapotranspiration for total mortality (B), natural mortality 

(D), and mechanical mortality (F), when the other significant variables were fixed in their average. 



 

4. Discussion 

 

4.1 Pattern and types of epiphyte mortality 

 

The epiphyte mortality rates reported in this study (7.5 ± 11.7% yr-1), which is the first 

study conducted on a large scale in the neotropics, were within the ranges reported in other 

long-term studies investigating epiphytes on local scales in the lowlands of Panama (≈ 

10.8% yr-1; Laube & Zotz 2006). Mortality rates closer to 8% would require a complete 

community turnover in relatively short time periods (≈12.5 years) to ensure the persistence 

of the species within the epiphyte community. Therefore, epiphyte recruitment, which was 

not assessed in the present study, should be very high to maintain a steady state in these 

communities. These findings suggest that, to keep the pace of mortality, natural 

communities of epiphytes need to be highly dynamic to avoid species loss and exticntions 

of this particular growth form well known by its high degree of endemism (Duque et al. 

2014). 

 

High turnover rates along with an expectedly high susceptibility to water availability 

would suggest that epiphytes are ideal organisms for monitoring the projected effects of 

global warming. However, an average natural mortality rate of 1.9 ± 3.2% yr-1 does not 

allow us to reach any conclusions regarding any striking direct effect of climatic factors, 

which were the only natural cause we were able to identify in the entire survey, as 

prominent determinants of the recorded natural epiphyte mortality. For example, the 

average natural mortality rate observed in our study did not differ significantly from the 

ca. 1% mean mortality rate reported for trees in the tropics (Condit et al. 2006). 

Nonetheless, we must acknowledge that the use of binoculars from the ground to monitor 
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epiphytes could in some cases hamper the observation of herbivory in some epiphytes. 

However, although none of the deaths herein were associated with herbivory or pathogens, 

we must not undervalue these biotic factors. In fact, some studies have shown that 

herbivory can seriously affect the reproductive organs and meristematic tissues in 

bromeliads and orchids (Winkler et al. 2005), as well as kill the majority of individuals in 

a population (Schmidt & Zotz 2000).  

 

External and indirect causes of mortality, such as those produced by mechanical factors, 

were the most important determinants of the epiphyte mortality rates (5.6 ± 11.4% yr-1). 

The importance of the instability and longevity of the substrate as main drivers of epiphyte 

mortality has been previously reported (Benzing 1990; Hietz, Ausserer & Schindler 2002; 

Zotz, Laube & Schmidt 2005; Laube & Zotz 2006; Aguirre et al. 2010). Although 

mechanical factors have also been identified as a key component of the pattern of mortality 

in epiphytes, the detachment of individuals due to the fallen branches and trunks of 

neighboring trees has been rarely discussed. The frequency at which this occurred caught 

our attention and is consistent with the observations of Laube & Zotz (2006) in a lowland 

forest of Panamá and of Benavides & Gutierrez (2011) in forests of the Colombian Andes. 

In the same way that seedlings and juvenile trees in the understory are affected by the 

dynamics of the branches of the largest trees (Clark & Clark 1991; Gillman & Ogden 

2005), epiphytes may also be affected by falling branches, palm leaves, and neighboring 

tree trunks. For example, closeness to large and old trees could increase the probability of 

dead of epiphytes inhabiting the understory. Hence, the increase in forest dynamics can 

indirectly affect the fate of epiphyte communities through tree mortality induced by 

drought (Condit, Hubbell & Foster 1995; Phillips et al. 2009). Nonetheless, further 

research focusing on disentangling the internal causes of forest instability (i.e.. stand 

developmental stage, forest functional traits, topography, among others) will help to 

improve our knowledge regarding the potential causes of epiphyte dynamics, as well as the 

real extent to which they could be used as indicators of climate change. 
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Overall, frequent disturbances of the substrate have been proposed as a factor that 

promotes diversity and the coexistence of various epiphytic species (Benzing 1981). 

Nonetheless, the recurrence of extreme events (such as drought or strong winds) as a result 

of climate change (IPCC 2012) also could seriously affect the survival of epiphytes (Foster 

2001; Colwell et al. 2008). Thus, the net balance of the epiphyte populations would 

depend on the ability of the species to adapt and recruit other species by mean of short life 

cycles, an accelerated achievement of reproductive maturity or asexual reproduction 

through the clonal spread of individuals derived from plant fragments (Hietz et al. 2002; 

Benavides, Wolf & Duivenvoorden 2013). However, most vascular epiphyte species have 

long life cycles, which can constrain faster recruitment, the capability to colonize new 

substrates, and the likelihood of adapting to global warming conditions (Benzing 1998). 

As a result, it is possible that species with long life cycles and slow achievement of 

reproductive maturity could become extinct on a local scale in a scenario of frequent 

disruptions and droughts. Negative balances in epiphyte populations have already been 

shown under natural conditions when the instability of the substrate was taken into 

account. For example, Hietz (1997) noted that populations of 44 epiphytes species resulted 

in a higher mortality than recruitment when mortality due to fallen branches was included 

in the analysis.  

 

 

4.2 Local and regional determinants of epiphytes mortality 

 

At a regional scale, the actual evapotranspiration (AET) was the main determinant in all of 

the types of mortality analyzed (Table 3). The AET by itself is a natural factor associated 

with the water supply that has direct implications on the probability of epiphyte survival 

(Andrade & Nobel 1996; Nieder et al. 2000; Mondragón, Valverde & Hernández-Apolinar 

2015). Overall, the higher the AET, the lower was the availability of water, which 

suggested an augmentation of the probability of death. The great importance of AET in 

determining the epiphyte mortality highlights the likelihood that future increases in 

evapotranspiration due to global warming could affect the epiphyte communities (Still et 
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al. 1999). However, the response of the epiphytes to the increasing AET rates may differ 

between forest types. In fact, Zotz et al. (2010) noted that some species of bromeliads are 

more vulnerable to drought in moist montane forests than in seasonal lowland forests, 

independently of the high rates of evapotranspiration that occur in the latter. Regional 

differences in drought tolerance are due to morphological and physiological adaptations, 

such as CAM, that enable epiphyte species to survive in habitats with limited moisture 

(Zotz & Bader 2009). 

 

Other climatic regional determinants of epiphyte mortality were the temperature 

seasonality (TS) and the annual temperature range at the sites (ATR; Table 3). The 

negative relationship between these variables and the types of mortality revealed that the 

epiphytes that were well adapted to more constant temperatures were more sensitive to 

unexpected changes in regular climatic conditions. We would expect increases in TS and 

ATR to have a stronger effect in wetter areas with low seasonality than in warmer areas 

with high seasonality. In climates with a high annual variation in temperature, the resident 

species may show a broad climatic tolerance that allows them to survive. Broader climatic 

tolerance may facilitate the success of epiphytes in the wide range of microclimatic 

variations observed at different sites (Wagner et al. 2015). However, the high proportion 

of CAM epiphyte species could significantly increase their resistance and tolerance to long 

periods of poor water availability (Mooney, Bullock & Ehleringer 1989; Winter & Smith 

1996; Zotz & Ziegler 1997). This particular condition suggests that additional empirical 

and experimental studies are still needed to better understand the physiological response of 

epiphytes to more frequent and severe droughts (Zotz & Bader 2009). 

 

The AET was also significantly associated with the probability of epiphyte death due to 

mechanical factors. Increases in AET may proportionally promote partial or total 

desiccation of branches and tree trunks, which were shown to be the main drivers of 

epiphyte mortality. Because 72.2% of the epiphytes died as a consequence of mechanical 

factors, we were intuitively tempted to hypothesize that the AET has a direct effect on the 

forest dynamics and substrate instability and, thus, an indirect effect on epiphyte mortality. 
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However, many functional characteristics of forests, such as the wood density and growth 

rates, could be associated with a variety of factors other than AET, such as the soil and the 

rainfall seasonality (Phillips et al. 1994; ter Steege et al. 2006). For this reason, the 

mechanistic approach by which AET influences epiphyte mortality via mechanical factors 

remains elusive, but the present results shed some light on the expected relationship 

between the forest dynamics and epiphyte mortality. 

 

The average height of the epiphytes on the phorophytes was a significant local scale factor 

for explaining all types of mortality (Table 3). The epiphyte settlement height can be 

assumed to be a surrogate for the microclimatic variation within the forest strata. Our 

findings show that, on average, epiphytes located in higher strata are at a greater risk of 

dying than those located in the lower compartments of the forest. As explained previously, 

the natural mortality of epiphytes inhabiting in the forest canopy could increase due to the 

presence of high climatic variability, which should promote low humidity and tissue 

desiccation (Krömer et al. 2007). Regarding mechanical factors, a higher location on the 

trees systematically increases the probability of downed epiphytes and branches as a result 

of both winds and gravity.  

 

The height of the tree, the number of branches, and the abundance of large individuals 

(DAP ≥ 10 cm) were important local scale factors in our model that also affect the 

probability of epiphyte death. Tree size has also been positively related to the height and 

the number of branches per tree, which enhances the three-dimensional conditions that 

facilitate epiphyte settlement (Benzing 1990; Wolf et al. 2009; Benavides et al. 2011). Our 

results suggest that small trees with few branches (i.e., smaller trees) tend to have a higher 

probability of epiphyte death. Higher sensitivity to changes in the microclimate in the 

wetter low part of the forest as well as more influence of fallen branches and trunks from 

the upper canopy can determine the probability of epiphyte death. For example, the 

variability in microclimate generated in trees that drop their leaves during a part of the 

year (i.e., deciduous trees) could influence the probability of epiphyte death for those 

individuals inhabiting beneath the deciduous tree by decreasing the humidity and water 

availability for plants (Einzmann et al. 2014).  
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4.3 Methodological constrains 

 

In the present study, we used phorophytes with a minimum of 10 individuals to obtain a 

sampling size as large as possible and to test the local hypothesis on the phorophyte scale. 

Although our original survey took into account all of the epiphytes in 35 trees at each site, 

the lower abundance and degree of occupation of epiphytes in lowlands compared with 

highlands resulted in an imbalance of the sample sizes in the final dataset between these 

two altitudinal categories. Because the demographic analysis was quite sensitive to the 

sample size, the application of the two filters (reliable branches and 10 individuals) 

allowed us to improve both the accuracy and precision of the statistical modelling. The 

most evident constraint, which was associated with the application of the first filter, was 

the use of binoculars from the ground to tally and monitor the epiphytes. The use of 

binoculars may have resulted in an underestimation of the total epiphyte species richness 

of ca. 20% (Flores-Palacios & García-Franco 2001). In our case, the sampling strategy 

employed should have promoted more significant undersampling in the forest canopy than 

in the understory, which could have biased the focus of our study to the middle and lower 

strata of the forests. This assertion is supported by the observed average epiphyte 

settlement height in phorophytes of 5.7 ± 4.4 m (range of 0.001 m to 20.1 m). This type of 

sampling bias could have resulted in an underestimation of the probability of epiphyte 

mortality in relation to the height of the trees. Although we acknowledge the sampling 

limitations of our study, we do not think that they invalidate the main conclusions of the 

study. In fact, we think that they should be used as a reference for future studies 

investigating epiphyte dynamics on a large scale in the tropics. 

 

To conclude, the majority of the long-term epiphyte studies have focused on the dynamics 

of one or a few populations (Mondragón 2011). To date, in the neotropics, we are only 

aware of approximately three studies that have evaluated epiphyte dynamics at the 

community level, and all of them were conducted in lowland forests on a local scale 
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(Schmit-Neuerburg 2002; Laube & Zotz 2006, 2007). Although the Andean forests have 

been shown to be one of the most enriched regions for epiphyte species worldwide, the 

present study represents the first attempt to record and understand epiphyte dynamics on a 

regional scale. In the Andean forests, together with global warming, the high rates of 

deforestation and landscape transformation (Etter & van Wyngaarden 2000; Rodríguez 

Eraso, Armenteras-Pascual & Alumbrerosa 2013) will increase the threat to and 

vulnerability of epiphytes (Duque et al. 2014). However, the dynamics of non-tree growth 

forms have been practically ignored in most assessments of plant dynamics, despite the 

knowledge that they are an important component of the forest diversity (Gentry & Dodson 

1987; Kelly et al. 2004; Benavides et al. 2005). For these reasons, we hope to foster the 

development and inclusion of new ideas regarding the functional roles epiphytes and other 

non-tree growth forms play in forests. Concomitantly, we would like to highlight the likely 

utility of these organisms in monitoring the capability of plant communities to adapt and 

survive in response to the ongoing global change.  
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Appendix 1 

 

 

Sensitivity analysis for the determinant variables of the mortality for vascular epiphytes on 115 

sampled phorophytes in 9 sites in Colombian Andes. The curves show the effect of each variable in 

the probability of mortality when the others are left fixed in their average values. 
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Appendix 2 

 

 

Sensitivity analysis for the determinant variables of the natural mortality for vascular epiphytes on 

115 sampled phorophytes in 9 sites in Colombian Andes. The curves show the effect of each 

variable in the probability of mortality when the others are left fixed in their average values. 
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Appendix 3 

 

 

Sensitivity analysis for the determinant variables of the mechanical factors mortality for vascular 

epiphytes on 115 sampled phorophytes in 9 sites in Colombian Andes. The curves show the effect 

of each variable in the probability of mortality when the others are left fixed in their average 

values. 
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