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ABSTRACT 
 

Development and Application of the Method of Distributed Volumetric Sources to the Problem of 

Unsteady-State Fluid Flow in Reservoirs. (December 2007) 

Shahram Amini 

B.S.; M.S., University of Tehran; 

M.S., IFP School (ENSPM) 

Co-Chairs of Advisory Committee: Dr. Peter P. Valkó 
 Dr. Thomas A. Blasingame 
 

 
This work introduces the method of Distributed Volumetric Sources (DVS) to solve the transient and 

pseudosteady-state flow of fluids in a rectilinear reservoir with closed boundaries. The development and 

validation of the DVS solution for simple well/fracture configurations and its extension to predict the 

pressure and productivity behavior of complex well/fracture systems are the primary objectives of this 

research. 
 

In its simplest form, the DVS method is based on the calculation of the response for a closed rectilinear 

system to an instantaneous change in a rectilinear, uniform volumetric source inside the reservoir.  

Integration of this response over the time provides us with the solution to a continuous change (constant-

rate pressure response).  Using the traditional material balance equations and the DVS pressure response 

of the system, we can calculate the productivity index of the system in both transient and pseudosteady-

state flow periods, which enables us to predict the production behavior over the life of the well/reservoir. 
 

Solutions for more complex situations, such as sources with infinite or finite-conductivity (i.e., a fracture), 

are provided using discretization of the source.  This work considers the case of a complex system with a 

horizontal well intersecting multiple transverse fractures as an example to show the ability (and flexibility) 

of the new method.  The DVS solution method provides accurate solutions for complex well/fracture 

configurations — which will help engineers to design and implement optimum well completions. 
 

The DVS solutions has been validated by comparing to existing analytical solutions (where applicable), as 

well as to numerical (simulation) solutions. In all cases the DVS solution was successfully validated — at 

least in a practical sense — specifically in terms of the accuracy and precision of the DVS solution. As the 

DVS method is approximate (at early times), there are small discrepancies which are of little or no 

practical consequence.  In terms of computation times, because of its analytic nature, the DVS method is 

not always optimal in terms of speed for certain problems, but the DVS approach is similar in computation 

speed with commercial reservoir simulation programs. 
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CHAPTER I 
 

INTRODUCTION 
 

1.1 Introduction 
 

In this work we present the development and application of a new solution to the problem of unsteady-

state flow of a slightly compressible fluid in a rectilinear reservoir.  The method of Distributed Volumetric 

Sources (DVS) is developed to solve problems of transient and pseudosteady-state fluid flow.  The basic 

building block of the method is the calculation of the analytical response of a rectilinear reservoir with 

closed outer boundaries to an instantaneous volumetric source, also shaped as a rectilinear body (a 

rectilinear geometry is required for the DVS approach).  The DVS solution provides the time-derivative of 

the pressure response to a continuous source in analytical form (i.e., the derivative of the constant rate 

pressure response function).  This result is integrated over time to provide the required pressure response. 
 

The results from the new solution are combined with the traditional material balance equations and are 

used to predict the production behavior of the system in the form of the dimensionless Productivity Index 

(PI) — for transient, transition, and pseudosteady-state flow behavior (flow regimes).  This approach can 

be used to design optimal completion schemes for a specific well/reservoir configuration. 
 

The new method has been shown to provide a relatively fast and uniformly robust mechanism to generate 

pressure transient solutions and well performance predictions whenever complex well/fracture configura-

tions are considered. 
 

1.2 Objectives 
 

The following objectives are proposed for this work: 
 

� To develop the distributed volumetric source (or DVS) method as a solution to the problem of 

pressure distributions in closed, rectangular reservoirs for the case of a uniform-flux source.   
 

� To develop and validate a series of solutions for pressure behavior of simple and complex well/ 

fracture configurations such as: 
 

— Unfractured vertical wells. 

— Horizontal wells (uniform-flux and infinite-conductivity). 

— Vertically fractured wells (infinite- and finite-conductivity fractures). 
 

� To generate the transient and pseudosteady-state behavior of the productivity index using the DVS 

pressure solution and to validate these results with existing models used in production engineering. 
 

_____________________ 

This dissertation follows the style and format of the SPE Journal. 
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� To demonstrate the applicability of the new solution method in predicting pressure and production 

behavior for a complex well/fracture configuration.  
 

—Horizontal well with multiple transverse fractures, where both horizontal section and fractures 

contribute to the flow. 
 

� To apply the new method as an optimization tool to obtain the best completion scheme for 

development of an example case. 
 

1.3 Statement of the Problem 
 

Most of the solutions for flow problems in porous media have been investigated in a similar manner as the 

classical heat transfer problems — and in fact, many common solutions originated from the heat transfer 

literature.  Along that path, the work of Gringarten and Ramey (1973) is an early application of the 

Green's (source) function for the problem of unsteady-state fluid flow in a reservoir. They introduced 

Green's functions for a series of source shapes and boundary conditions and they showed that the point 

source solution is actually a more general form of the Green's function.  Gringarten and Ramey (1973) 

used the integration of the response for an instantaneous source solution to obtain the response for a 

continuous source solution.  In addition, the application of Newman's (1936) principle in expressing a 

problem into 3 dimensions as the product of three 1-dimensional solutions is also discussed in their work.  
 

The major disadvantage of this method is the inherent singularity of the solution where the source is 

placed.  Since the source is assumed to have no volume (point, line, or plane source), the source is 

considered to be at infinite pressure at any time and it is not possible to calculate the exact pressure as a 

function of time at the point where the source is placed.  The solutions provided for finite reservoir cases 

yield infinite series, which converge very slowly as we approach the coordinates of the source.  This 

makes the process of computation inefficient as we approach the source.  To address this problem, we 

must assume an arbitrary point a certain distance from the source, and compute the solution at that point.  

The solution obtained by using this method is only a function of the distance from the source, regardless of 

the coordinates, so it may raise questions as to the reliability of the solution for anisotropic systems and/or 

complex well completion schemes.  
 

The application of Green's functions was later extended to the case of an unsteady-state pressure 

distribution for more complex well completion schemes (Gringarten, Ramey, and Raghavan 1974; Cinco-

Ley, Samaniego, and Dominguez 1978; Cinco-Ley and Meng 1988; Ozkan 1988 ).  These solutions do not 

suffer the singularity problem (because the line source solution is integrated over the length or area of the 

source) but these solutions still require reference points from which to perform calculations.  Moreover, 

the assumption of the source not having a volume has led us to develop different solutions for each special 

case. 
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The DVS method was developed to remove this singularity problem and provide a faster and more reliable 

solution to the problems of transient and pseudosteady-state fluid flow in a reservoir with closed 

boundaries.  In the DVS method, every source, regardless of its size and dimensions, is assumed to contain 

a volume.  In this case, the initial value of pressure in the source is never infinite.  This assumption 

provides the opportunity to treat any kind of source in a similar way — in other words, the DVS solution 

for a uniform-flux source is unique no matter whether it is a point, a vertical or horizontal well with partial 

penetration, or a well with a vertical fracture.  
 

The main concept in this research is to introduce an instantaneous volumetric source inside the reservoir 

and then to construct the analytical 3-dimensional response of the system as a product of three 1-

dimensional responses based on Newman's principle.  This solution approach will yield the well-testing 

(time) derivative of the response to a continuous source, in an analytical form.  This result can be 

integrated over time to provide the pressure response for a continuous source.  
 

In production engineering application, the productivity of a well is calculated using the pressure response 

of the reservoir in its pseudosteady-state period.  There are numerous studies for different well completion 

schemes — such as horizontal wells and fractured wells — where correlations for the pseudosteady-state 

productivity index are provided for specific cases.  Most of the models developed for complex well 

completion schemes use some type of approximation(s) for the productivity index calculation, and as such, 

have some limitations in practice. 
 

The need for an analytical form of the productivity index (i.e., a solution that is valid for all times) is 

necessitated by the exploitation of lower quality reservoirs (low- and ultra low-permeability reservoirs to 

be exact) where transient flow dominates and pseudosteady-state productivity calculations are less 

applicable in prediction of the production behavior of the reservoir.  The DVS method seems able to fill 

this gap, as it can provide the solution for the productivity index of a general well completion scheme for 

transient as well as pseudosteady-state flow.  
 

1.4 Deliverables 
 

The general derivation of the DVS method and its application to productivity index calculation are 

presented in Chapter II, Appendix A, and Appendix B.  To demonstrate the effectiveness of the DVS 

method in the prediction of the pressure and production behavior of different systems, the DVS results 

have been compared to the existing (analytical) models for the following cases (Chapter III): 
 

� Unfractured vertical wells 

� Horizontal wells (uniform-flux and infinite-conductivity). 

� Vertically fractured wells (infinite- and finite-conductivity fractures). 
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Comparisons are also made with well-known models for the productivity index: (Chapter III) 
 

� Horizontal wells 

� Vertically-fractured wells 
 

Chapter IV provides the application of the new method in the prediction of the behavior of complex 

well/fracture systems.  Specifically, the case of a horizontal well with multiple transverse fractures is 

studied where both the horizontal well section and fractures contribute to the flow.  This case is validated 

using a commercial reservoir simulator.  The DVS and reservoir simulation results compare well, and we 

note for comparison that the DVS computation times are comparable to the reservoir simulation times.  

However, the advantage of the DVS method is the "analytic" nature of this method, which means that the 

DVS method can be used for design, analysis, modeling, and optimization.  While not an objective of this 

dissertation, the DVS method may be useful for developing approximate, closed-form solutions for 

complex well/fracture systems. 
 

In Chapter IV we provide the results of a study to develop an optimum completion scheme, along with the 

correlation plots used to assess the optimal well completion scheme.  The detailed calculations for cases 

with different proppant number are provided in Appendices C through F.  Specifically, the optimum 

dimensionless productivity index (based on the constant rate DVS method) is integrated with the material 

balance equation to provide reservoir performance predictions for cases producing at constant bottomhole 

pressure.  The results of three gas field examples are provided in Appendices G through I. 
 

A summary of the research results and the conclusions of this work are discussed in Chapter V. 
 

1.5 Organization of the Dissertation 
 

The outline of the proposed dissertation is as follows: 
 

� Chapter I  Introduction 
� Introduction 
� Objectives 
� Statement of the Problem 
� Deliverables 

 

� Chapter II  Development of the DVS Method 
� Literature Review  
� Development of Uniform-Flux Solution  
� Solution for Infinite Conductivity Cases 
� Solution for Finite-Conductivity Cases 
� Productivity Index Calculation 

 

� Chapter III  Validation of the Model 
� Comparison with Existing Pressure Models 
� Comparison with Existing Productivity Index Models 
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� Chapter IV  Application of the New Technique to a Complex Well/Fracture Configuration Case 
� Introduction 
� Formulation of the Problem 
� Validation through Simulation 
� Design and Optimization 
� Application to Field Examples 
� Summary 

 

� Chapter V  Summary, Conclusions, and Recommendations for Future Work 
� Summary 
� Conclusions 
� Recommendations for future work 

 

� Nomenclature 
 

� References 
 

� Appendices  
 

� Appendix A  Detailed Derivation of the DVS Method 
� Appendix B  Derivation of Productivity Index from Pressure Data  
� Appendix C  Detailed Results of Calculation for Maximum Dimensionless Productivity 

Index of the Example Case, Proppant Number (Nprop) = 0.001 
� Appendix D  Detailed Results of Calculation for Maximum Dimensionless Productivity 

Index of the Example Case, Proppant Number (Nprop) = 0.01 
� Appendix E  Detailed Results of Calculation for Maximum Dimensionless Productivity 

Index of the Example Case, Proppant Number (Nprop) = 0.1 
� Appendix F  Detailed Results of Calculation for Maximum Dimensionless Productivity 

Index of the Example Case, Proppant Number (Nprop) = 1.0 
� Appendix G  Complete Results of Field Application Whelan Gas Field 
� Appendix H  Complete Results of Field Application Percy Wheeler Gas Field  
� Appendix I  Complete Results of Field Application Appleby North Gas Field 

 

� Vita 
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CHAPTER II 
 

DEVELOPMENT OF THE DVS METHOD 
 

2.1 Literature Review  
 

As noted earlier, Gringarten and Ramey (1973) provided the first application of the Green's function 

approach to the problem of unsteady-state fluid flow in the reservoirs.  The general form of the diffusivity 

equation is written as: 
 

0
),(

),(2 =
∂

∂−∇
t

tMp
tMpη  (2.1) 

 

For production at a prescribed flowrate and homogeneous boundary conditions (constant pressure, con-

stant rate, or a mix of those conditions), They state that the variation of pressure at each point M(x, y, z) 

and time t can be described using a proper Green's function (if available) as follows: 
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Where  
 

∫ −=∆
D

tMpdMMMGMptMp ),('),',()0,'(),( τ  (2.3) 

 

And assuming a uniform initial pressure (pi), we have: 
 

),(),( τMpptMp i −=∆  (2.4) 

 

In the equations given above, M′ and τ are integration variables; D, Dw, and Se denote reservoir domain, 

source domain, and boundaries respectively. 
 

The instantaneous Green's function (i.e., the Green's function corresponding to an instantaneous source of 

unit strength) is written for an infinite one-dimensional, linear reservoir with uniform initial pressure and 

constant pressure boundaries as follows:  
 











 −−=
t

ii

t
tiiG

ii ηπη 4
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exp

2

1
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2
 (2.5) 

 

Where the source is assumed to located at point i′.  Gringarten and Ramey also showed that the proposed 

function meets all the properties expected for a Green's function.  
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As the system is infinite, with only a single instantaneous point source, the first integral of the right hand 

side of Eq. 2.2 becomes a point and the second integral vanishes.  In this case, we can write the following 

expression for the pressure variation: 
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After developing the response for an infinite one-dimensional system with an instantaneous source, 

Gringarten and Ramey discuss the fact that developing a general solution for a continuous source is 

possible by integrating the instantaneous source response over time.  They also developed solutions for 

constant rate or constant pressure boundary conditions for finite reservoir systems using the method of 

images.  Gringarten and Ramey (1973) also discussed the applicability of Newman's principle and 

demonstrated the application of this principle where the solution for a 3-dimensional reservoir system can 

be obtained as the product of the solutions for three 1-dimensional reservoir systems.  They used this 

approach to generate a series of solutions for different cases of boundary conditions and different source 

shapes (uniform-flux sources only). 
 

The application of Green's function was later extended by Gringarten, Ramey, and Raghavan (1974) to the 

case of an unsteady-state pressure distribution created by a vertical well with an infinite conductivity 

vertical fracture. They generated this solution by dividing the fracture into M segments, assuming each 

segment as a uniform-flux source.  Writing the pressure response as the sum of the variations caused by 

each uniform-flux segment (i.e., the superposition principle) yields: 
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Assuming an infinite conductivity vertical fracture leads to the condition where the pressure must be 

constant along the fracture-face (which is in contact with the reservoir).  Equating the pressure response 

caused by each uniform-flux segment, and imposing the constant rate constraint implies that: 
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Gringarten, Ramey, and Raghavan (1974) provided the solution to the system of equations (which yields 

the pressure distribution and the contribution of each segment to the total flow) for two conditions — one 

early-time condition where the assumption of uniform-flux fracture is valid, and a late-time condition 

where the contributions from each segment (qm) are stabilized (i.e., no longer a function of time). 
 

As an aside, they also provided the solution for a uniform-flux fracture in a finite reservoir with no-flow 

boundary.  They also showed that the solution to pressure behavior for an infinite-conductivity fracture in 

the same closed boundary reservoir can be calculated at the point x= 0.732 xf of the uniform-flux case. 
 

Following this effort, Cinco-Ley, Samaniego, and Dominguez (1978) developed the solution for a well 

with a finite-conductivity vertical fracture in an infinite-acting reservoir using the discretized fracture 

approach and application of the Green's function for the pressure solution for the reservoir.  Equating the 

pressure and flow between the reservoir and the fracture leads to a system of equations that can be solved 

using the discretization of Eq. 2.8 in both space and time.   
 

Later, Cinco-Ley and Meng (1988) introduced a more general solution for the pressure transient behavior 

of a finite-conductivity hydraulic fracture in a dual-porosity medium in the Laplace domain. They used the 

application of the source and Green's function in calculation of the fracture pressure (Eq. 2.9) in 

combination with a pressure drop function for calculation of pressure losses because of the fluid flow in 

the finite-conductivity vertical fracture (Eq. 2.10). 
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It should be noted that Eq. 2.10 is derived assuming incompressible flow in the fracture — which was 

shown by Cinco-Ley, Samaniego, and Dominguez (1978) to be valid for practical values of production 

time.   
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Using the Laplace transform of the Eq. 2.10 and discretization of the integrals in the space, Cinco-Ley and 

Meng (1988) developed the following result: 
 

Dj
Dff

fDjfDj

ij

i
Dj

Dff

Dj

n

i

x

x

DjfDiwD

x
sbk

sq
x

sqxix
x

bk

dxssfxxKssfxxKsqsp
Di

Di

)(
)(

8
)(

)(])(
2
)(

[
)(

'])()'()()'([)(
2

1
)(

2

1

2

0
1

0

1

ππ =∆+∆−+∆+

++−−

∑

∑ ∫
−

=

=

+

 (2.11) 

 

Combining Eq. 2.11 with the identity for the sum of dimensionless rates to be equal to unity, and writing 

this identity in the form of the Laplace transform yields: 
 

∑
=
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n

i
fDi s

sq
1

1
)(  (2.12) 

 

Combining Eq. 2.11 and Eq. 2.12 leads to a system of (n+1) equations and (n+1) unknowns — which 

represents the contribution of flow from each fracture segment to the total flow and the dimensionless 

wellbore pressure. 
 

A new form of the point source solution was introduced by Ozkan (1988) where he developed a point 

source solution in Laplace domain in order to remove the limitations of the Gringarten and Ramey (1973) 

model in considering the wellbore storage and skin effects.  Obtaining the solution for a dual-porosity 

medium was made possible using this new solution in Laplace domain.  The Ozkan’s source function 

approach lets the user obtain solutions for a wide variety of complex well and/or fracture configurations, 

but this approach is limited to the infinite conductivity and uniform-flux cases. 
 

Yildiz and Bassiouni (1991) developed the transient pressure solution for a partially-penetrating well using 

the combination of Laplace transformation and the method of separation of variables.  The solution is 

expressed in the form of infinite Fourier-Bessel series in the Laplace space.  
 

Azar-Nejad, Tortike, and Farouq-Ali (1996a, 1996b, 1996c) studied the steady-state and transient potential 

distribution around sources with a finite length using the point source solution (developed by Muskat), for 

the cases of uniform flux and uniform potential (infinite conductivity).  They introduced the Discrete Flux 

Element (DFE) method similar to the discretization of source used by Gringarten, Ramey, and Raghavan 

(1974) and Cinco-Ley, Samaniego, and Dominguez (1978) to model the infinite and finite-conductivity 

fractures, respectively.  Azar-Nejad, Tortike, and Farouq-Ali (1996a, 1996b, 1996c) applied their model to 

predict the productivity index for partially-penetrated vertical wells as well as horizontal wells.  The 

method was then extended to wells with irregular geometries to evaluate the effect of the well path on 

productivity index of such wells. 
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The estimation of the productivity performance for well/fracture systems has been subject of numerous 

studies.  Some of these studies are reviewed for this work to illustrate the methods used and to provide a 

basis for comparing the results from our new DVS method to the results which can be obtained from the 

existing models. 
 

Babu and Odeh (1989) developed a general, approximate method for prediction of the productivity of a 

horizontal well in a rectilinear reservoir of closed or constant pressure boundary.  The Babu-Odeh solution 

uses a Fourier series solution for the rate-dependent pressure solution and this result requires several 

simplifying assumptions in order to obtain an expression for the pseudosteady-state productivity for a 

horizontal well in an anisotropic homogeneous medium.  In such cases, the Babu-Odeh solution is very 

similar to the results developed for a vertical well.  Babu and Odeh (1989) report an estimated error of 3 to 

10 percent, depending on the penetration ratio of the well. 
 

Goode and Kuchuk (1991) introduced another solution for productivity of a horizontal well in a reservoir 

with no-flow and constant-pressure boundaries. Their solution is expressed in the form of an infinite series 

and a simplified solution for a "short" horizontal well was presented in their study. 
 

Chen and Asaad (2005) developed a rigorous solution for estimation of the productivity of horizontal wells 

as well as fractured wells for both uniform-flux and uniform-pressure (infinite conductivity).  They 

presented a rigorous (analytical) solution as well as simplified forms (for estimating the productivity index 

for the various wellbore conditions). 
 

Economides, Oligney, and Valkó (2002) present a discussion regarding the optimal design of a hydraulic 

fracture treatment job.  They present graphs describing how the dimensionless productivity index can 

change as a function of fracture conductivity, proppant number, and the penetration ratio — for a system 

consisting of a fully-penetrating vertical fracture in a square (closed) reservoir.  
 

Meyer and Jacot (2005) provide a new solution methodology for the estimation of the pseudosteady-state 

productivity index based on a formulation which uses a reservoir/fracture "domain resistivity" concept. 

This solution is capable of accounting for piece-wise continuous linearly-varying fracture conductivity, 

which enables us to consider the effects of skin, proppant tail-ins, over-flushing, and chocked flow. 
 

2.2 Development of Uniform-Flux Solution  
 

The first step of our approach is to develop the pressure response of a rectilinear reservoir with closed 

boundaries for an instantaneous withdrawal from the source.  The porous media is assumed to be an 

anisotropic, homogeneous reservoir (shaped like a box).  The "box" is oriented in line with the three 

principal directions of the permeability field.  The source is assumed to be a smaller rectilinear box with 
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its surfaces parallel to the reservoir boundaries.  The "source box" is assumed to have the same properties 

as the reservoir.  The schematic of the basic DVS system is shown in Fig. 2.1.  

 
 

 
 
 

Figure 2.1 — Schematic of the Model. 
 

The instantaneous (unit) withdrawal is distributed uniformly in the volume of the source.  This assumption 

is unique to the DVS model and is the fundamental characteristic of this approach. 
 

As shown in Fig. 2.1, the model is described with the following parameters: 
 

� Reservoir dimensions in the x, y, and z directions respectively ),,( eee zyx . 

� Reservoir permeability in principal axes ),,( zyx kkk . 

� Coordinates of the center point of the source ),,( zyx ccc . 

� The half-lengths of the source in the x, y, and z directions respectively ),,( zyx www . 
 

The pressure response for an instantaneous source at any point ),,( DDD zyx  is referred to in dimensionless 

form as ),,,;( DDDDD tzyxparsboxp −δ .  For this "box-in-box" method. the box-pars variable contains all the 

parameters needed to properly describe the reservoir model.  
 

For an anisotropic, homogeneous reservoir with an internal source, the diffusivity equation can be written 

as: 
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Where the following initial and boundary conditions are used in this work: 
 

Initial Condition (IC): (uniform pressure in the reservoir system) 
 

ipzyxp =)0,,,(  (2.14) 

 

Boundary Conditions (BC):  
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Where 
 

t

i
i c

k

φµ
η = , i = x, y, and z (2.16) 

 

And ),,,( tzyxQ in Eq. 2.13 is the source function — which, for the instantaneous source, is written as: 
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)(tδ and )(xH in Eq. 2.17 represent the Dirac delta function and the Heaviside unit-step function, 

respectively.  The homogeneity of the diffusivity equation and its boundary conditions dictates that the 3D 

pressure derivative solution can be obtained using Newman's principle (a product of three 1D solutions. 
 

),(),(),(),,,( DDDDDDDDDDD tzZtyYtxXtzyxp =δ  (2.18) 

 

In Eq. 2.18, the X, Y, and Z terms represent the solutions of 1D problems (in X, Y, and Z) with the source 

distributed along a finite section of the "linear" reservoir.  The detailed derivation of the DVS solution is 

provided in Appendix A.  The final form of 1D solution is written as: 
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To obtain the response of the reservoir for a continuous unit source, distributed uniformly in the small 

(source) box, we numerically integrate the pressure derivative solution over time: 
 

ττδ dzyxptzyxp
Dt

DDDDDDDDuD ∫=
0

),,,(),,,(  (2.20) 

 

To obtain the wellbore flowing pressure, we can calculate ),,,( DDDDuD tzyxp  at the geometric center of 

the well.  Since the solution is not singular, we do not have to select an arbitrary surface point (as is 

ordinarily done with Green's function solutions). 
 

2.3 Solution for Infinite-Conductivity Cases 
 

In the cases where we have an infinite or finite conductivity condition (e.g., horizontal wells and wells 

with hydraulic fractures) we must divide the source into n uniform-flux segments as prescribed in 

(Gringarten, Ramey, and Raghavan 1974; Cinco-Ley, Samaniego, and Dominguez 1978; Cinco-Ley and 

Meng 1988).  Fig. 2.2 shows an example of how the source in Fig. 2.1 can be discretized into 9 segments. 
 

 

 

 
Figure 2.2 — Discretization of the Rectangular Source. 

 

 
For a source with an infinite conductivity, our primary assumption is that of a uniform pressure over the 

source.  Knowing that the pressure at each segment of the source is defined as the sum of the pressure 

drops for the other segments (i.e., the superposition of pressure effects), we can write: 
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In Eq. 2.21, qDj represents the source strength of the segment j and pDi,j represents the dimensionless 

pressure calculated at the center of segment i as if the source is put in the segment j. Fig. 2.2 presents an 

example of how pD1,6 is calculated.  The pressure pDi,j can be calculated using the uniform flux solution for 

a continuous source as introduced in Section 2.2.  The problem can be written in the matrix form as: 
 

[ ] 0bqA =−⋅  (2.22) 

 

We use the notation A to describe these (n × n) matrices containing pDi,j terms as its elements. q is the 

vector of source strengths and b is the vector where its elements are all equal to pD,wf (the wellbore flowing 

pressure) since all dimensionless pressures are equal because of the infinite conductivity assumption.  The 

calculation procedure for cases with an infinite conductivity source is as follows: 
 

1. Divide the source into proper number of segments (n) 

2. Construct the matrix of pDi,j terms for the series of dimensionless time values as discussed in Section 

2.2 and Appendix A.  At this stage we should have m matrices of size (n × n) where m represents the 

number of time steps at which we would like to calculate the pressure responses.  

3. For each time step, calculate the source strength vector as the normalized sum of the columns of the 

pseudo-inverse of its corresponding A matrix.  

4. Calculate the dimensionless pressure using Eq. 2-21.  
 

In the cases where we use infinite- or finite- conductivity sources, we assume pseudosteady-state flow in 

the source — which means that there is no accumulation of mass in the source. This enables us to solve 

the A matrix independently for each time step. 
 

2.4 Solution for Finite-Conductivity Cases 
 

For the cases with a finite conductivity source we use the same approach as the infinite conductivity 

source case except that we now have to introduce another term to account for the pressure drop between 

source segments (because of the finite conductivity of the source term).  The matrix notation for this 

system is given by: 
 

[ ] 0bqCA =−⋅+  (2.23) 

 

The (i,j)th element of the C matrix describes the pressure drop in the fracture between the center of the i th 

source and the wellbore reference point due to the j th inflow.  It contains — as a factor — the conductivity 

of the well. The vector b contains the unknown pressure drawdown at the wellbore reference point.  The 

system of equations is augmented with the identity that the sum of strengths should be equal to one.  The 

calculation procedures are similar to what we presented in Section 2.2. 
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To calculate the pressure drop matrix we consider two cases: 
 

� The case where the fluid flow in the source can be assumed to be 1D (e.g., for the case of a 
vertical well with vertically fully penetrating fracture or a horizontal well with a longitudinal 
fracture), and 

� The case where the flow is considered 2D (e.g., for the case of a vertical well with partially 
penetrated fracture or a horizontal well with a transverse fracture). 

 

Examples of 1D and 2D flow geometries are shown in Figs. 2.3 and 2.4,respectively. 
 

 

 

 
 

Figure 2.3 — Example of 1D Flow in the Source. 
 

 

 

 
 

Figure 2.4 — Example of 2D Flow in the Source. 
 

For the case of 1D flow we consider a source discretized by n segments in the primary direction of flow, 

as shown in Fig. 2.5.  Because of our assumption of pseudosteady-state flow in the source, we can express 

the pressure drop between center point of each segment and the reference wellbore pressure using Darcy's 

Law. 
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For example, in Fig. 2.5 we have discretized the source into 6 segments, and the wellbore is located in the 

middle of the segments 3 and 4. 
 

 

 
 

 

Figure 2.5 — Schematic of a Discretized 1D Source. 
 
 

The pressure drop is given as: 
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Since each segment is assumed to be a uniform-flux source, the rate at each segment is a linear function of 

length.  Therefore we can integrate over each segment from the center of i th segment to wellbore by 

summing over each segment in the path.  For the case shown in Fig. 2.5 (for i= 1 to 3), we can write 

(numbering from left to right): 
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Eqs. 2.25 to 2.27 can be written in dimensionless form as: 
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As For this example, for the finite conductivity vertical fracture represented by n = 6 source boxes first we  
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construct the C matrix as:  
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=  (2.31) 

 

In which D is a coefficient matrix which contains the following elements: 
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The three zeros present in the first row of matrix D signify that segments 4 to 6 do not contribute to the 

pressure losses in the fracture from segment 1 to the wellbore reference point because those segments are 

located in the other wing of the source.  For a source of this kind with n segments, the general definition of 

the non-zero elements of the D matrix are:   
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Eq. 2.33 gives us the value of the upper-left quarter of D matrix.  The lower-right quarter is the mirror 

inverse of the upper-left one and the other parts are equal to zero. 
 

The C matrix given above contains the generalized dimensionless fracture conductivity, which is defined 

as:  
 

f

zyf
genfD Lxk

wwk
C

)2)(2(
, =  (2.34) 

 

Where the term )2)(2( zyf wwk can be considered as a generalized conductivity expressed with the cross 

sectional area available for flow in the fracture.  After construction of the C matrix, the calculation 

procedure to obtain strengths and the dimensionless pressure is the same as discussed in Section 2.3.  
 

For the case of 2D flow in the source, a finite-difference formulation can be applied to solve the flux 

problem within the source.  Discretizing Darcy's law as shown in Fig. 2.6, we have: 
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Or in dimensionless format, Eq. 2.35 becomes: 
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Figure 2.6 — Schematic of a Finite Difference Presentation of a 
Continuous System. 

 

 
Where the terms qi,j  and qDi,j represent the net production and dimensionless production from the block (i, 

j) respectively.  Writing similar equations for each segment of the source and arranging these into a matrix 

form gives us: 
 

DD qpM =.  (2.37) 

 

DD qMp 1−=  (2.38) 

 

Eq. 2.38 shows how the dimensionless pressure drops are determined by segments' strengths.  This 

indicates that the C matrix in this case is actually the inverse of matrix M.  It should be noted that for the 

special case of the horizontal well with transverse fracture, the well block pressure calculated by this 

method has to be "corrected" to flowing wellbore pressure using Peaceman (1978) formula. 
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The dimensionless form of the Peaceman (1978) formula (which relates the wellbore pressure with the 

grid pressure) is given by: 
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 (2.39) 

 

Where ∆x and ∆z represent the well block size in the x and z directions, respectively.  Fig. 2.7 shows an 

example of a finite conductivity source divided into 9 segments with the wellbore located in the 5th 

segment. 
 

 

 

 
 

Figure 2.7 — Example of a Discretized 2D Source. 
 
 

An example of the D matrix for the discretized source, as shown in Fig. 2.7, is given by: 
 



































=

875.0375.0250..0375.0000.0125.0250.0125.0125.0

375.0583.0375.0167.0000.0167.0125.0083.0125.0

250.0375.0875.0125.0000.0375.0125.0125.0250.0

375.0167.0125.0583.0000.0083.0375.0167.0125.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0

125.0167.0375.0083.0000.0583.0125.0167.0375.0

250.0125.0125.0375.0000.0125.0875.0375.0250.0

125.0083.0125.0167.0000.0167.0375.0583.0375.0

125.0125.0250.0125.0000.0375.0250.0375.0875.0

D
 (2.40) 

 

Fig. 2.8 is a graphical representation of the D matrix with the colors, in gray scale, showing the 

coefficients schematically for the example described above (black represents the largest value and white 
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represents the zero coefficient). We note that all of the elements of the row corresponding to the well 

block are equal to zero, which indicates that there is no pressure drop — other than the correction using 

Peaceman formula (which relates the wellbore and block pressures). 

 
 

 
 
 

Figure 2.8 — Graphical Representation of the D Matrix for 2D Flow in 
Fracture 

 

2.5 Productivity Index Calculation 
 

Apart from the well-test analysis applications, use of the new solution in the prediction of productivity 

behavior for a well/fracture system is considered in this work.  We  cast the results into a transient/pseudo-

steady-state productivity index form and then we compare these results with the well-known productivity 

models for different well/fracture systems. 
 

The application of DVS method is not limited to prediction of the pressure behavior of well/fracture 

configurations.  The pressure data calculated from the DVS method can be used to predict the productivity 

index (PI) behavior of the system.  The productivity index and in particular, the pseudosteady-state 

productivity index of a system is a measure of the capability of the system to produce the fluid from a 

reservoir.  Comparison of pseudosteady-state productivity indexes of two completion schemes can be used 

to establish which completion drains the reservoir most efficiently. 
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The definition of dimensionless productivity index of a system using the dimensionless pressure and time 

data as it is discussed by Ramey and Cobb (1971), and the dimensionless productivity index is stated as: 
 

DAtradD
D tp

J
π2

1

, −
=  (2.41) 

 

The detailed derivation of Eq. 2.41 is presented in Appendix B.  We note that although Eq. 2.41 is derived 

for the case of a constant production rate, this solution has also been proved to be correct for a system 

producing at a constant wellbore pressure condition.  To compute the variable-rate performance as a 

function of time (constant flowing pressure case), we use the following procedure: 
 

1. Calculate the average reservoir pressure and flowing pressure.  Starting from zero time, the average 

reservoir pressure is equal to the initial pressure (i.e., uniform pressure initial condition).   

2. Assuming the productivity index is constant for the chosen time interval, we can calculate the 

corresponding flowrate of the system using Eq. 2.42: 
 

)( , wfiavgii ppJq −=  (2.42) 

 

Assuming that the flowrate is constant over a given time interval, we can calculate the incremental 

cumulative production over that time interval as the rate multiplied by the time interval.  For the 

(total) cumulative production profile, we simply add the incremental cumulative production values. 
 

3. The average reservoir pressure for the (i+1)th time interval can then be calculated by subtracting 

ip∆  from the pressure of the i th time interval.  For the pseudosteady-state flow assumption, 

this ip∆ represents the reduction in the average reservoir pressure of the system due to the fluid 

withdrawal during the i th time interval, and ip∆ is calculated using the material balance equation as: 
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Steps 1–4 are repeated for each time interval — which yields the calculated flowrate profile as a function 

of time.  For gas reservoirs, a similar procedure can be followed using the gas material balance equation 

for a volumetric dry gas reservoir and the gas inflow performance equation, which are given by: 
 












−=

G

G

z

p

z

p p

i

i 1  (2.44) 

 

)]()([    
1

 
1424

1
wfavgDyx pmpmJhkk

T
q −=  (2.45) 

 



 

 

22 

Where in Eq. 2.45 q represents the gas production rate in MSCF/D and T is reservoir temperature in °R.  

Eq. 2.44 is known as the material balance equation for a volumetric gas reservoir and Eq. 2.45 represents 

the inflow performance of a gas well. )( pm is the pseudopressure function, which is defined as: 

 

∫=
p

pi

dp
z

p
pm

µ
2)(  (2.46) 

 

Where µ and z are the gas viscosity and the gas compressibility, respectively. The subscript i represents 

the reference pressure of which we integrate the pseudopressure function and it is chosen arbitrarily, 

typically the reference pressure is the base pressure or the pressure at standard conditions. 
 

At each time step, assuming the average pressure is constant for that time step, we calculate the product-

ion rate at that time step using the dimensionless productivity index and the calculated pseudopressure 

values.  Knowing the rate, we can calculate the cumulative gas production and the new average pressure. 

This is an iterative process for the gas case since the compressibility factor (z) and gas viscosity (µ) are 

functions of pressure, but usually the convergence is quite fast because of the small changes in pressure 

incurred at each time step. 
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CHAPTER III 
 

VALIDATION OF THE MODEL 
 
 

3.1 Introduction 
 

To show the applicability of the new DVS method, results of this method are validated using comparisons 

with existing solutions for several simple well configurations (e.g., vertical well with full and partial 

penetration, horizontal well, and fractured wells with finite- and infinite-conductivity fractures).  In this 

effort we not only validate the pressure response, but we also validate the productivity index function 

using the existing models.  All procedures discussed in Chapter II were programmed in the 

MATHEMATICA (Version 5.2, Wolfram Research Inc. 2005) programming/computation language. 
 

3.2 Validation with Pressure Models 
 

Fully Penetrating Vertical Well  
 

For this case we have two well-known representations — the line source and the cylindrical source 

solutions.  Both solutions can be combined with the method of images (Raghavan 1993) to produce 

bounded reservoir responses.  Also, it is well-known that the medium-late time solution is not sensitive to 

the actual source geometry (i.e., the transition period between which neither the source nor the boundaries 

control the pressure response).  In Fig. 3.1 we provide a comparison between the results of the line- and 

cylinder-source solutions and the DVS method solution.  Except at very early times, we note very good 

agreement between the DVS solution and the line- and cylinder-source solutions.  
 

To represent the actual well by a box source, we have to define the wx and wy parameters, which are the 

widths of the hypothetical source box.  Detailed numerical experimentation has revealed that the following 

relation provides the best results: 
 

wyx 1.4444rww ==  (3.1) 

 

We note that in Fig. 3.1, the DVS solution is much closer to the cylindrical source solution than to the line 

source solution, suggesting that the DVS is something of an approximation for a cylinder, but not a line. 
 

Partially Penetrated Vertical Well 
 

Using the solution proposed by Yildiz and Bassiouni (1991) for the transient pressure behavior of a 

partially penetrated vertical well as our reference for comparison to the DVS solution, we present the 

comparison of their solution and the DVS solution in Fig. 3.2.  We note differences only in the early 

behavior — which are due to source size, the location of the observation point, and (ultimately) the nature 

of the flow in the near vicinity of the well. 
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Legend :
 

 pD, Cylindrical Source Solution

  pD, Line Source Solution

  pD, DVS Method

  p'D,  Cylindrical Source Solution

 p'D,  Line Source Solution

 p'D, DVS Method

Calculation Parameters :
 

A= 40 Acres
rw= 0.33 ft
xe= ye= 1320 ft

Well Schematic :

Comparison of DVS Solution for a Fully Penetrated Vertical Well With Line So urce and Cylindrical Solutions

 

 
 

Figure 3.1 — Comparison of the DVS Results With Line Source and Cylindrical Source Solutions:  Vertical Well in 
a Bounded Reservoir (In the Box-in-Box Model wz=ze/2, wx = wy =0.477 ft, and the actual value of ze 
is irrelevant) 
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Legend :
 

  pD, Yildiz & Bassiouni Infinite Acting Solution (SPE 21551)
  pD, DVS Method, Closed Reservoir 
  p'D, Yildiz & Bassiouni Infinite Acting Solution (SPE 21551)
  p'D, DVS Method, Closed Reservoir 

 

Calculation Parameters :
 

rw= 0.50 ft
kx= ky= 10kz

h= 20 ft
hp= 10 ft
hb= 10 ft
xe= ye= 2500 ft (Closed System) 

Well Schematic :

Comparison of Results From DVS Method and Yildiz's Solution for a Partially Penetrated Vertical Well

 
 
 

Figure 3.2 — Comparison of DVS Results with Yildiz's Model for a Partially-Penetrating Vertical Well (Box-in- 
Box Model), h, hp, and hb are represented by ze, 2wz, and cz- wz respectively. 
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Differences observed at late times are due to the effect of boundaries imposed on the DVS solution.  

Recalling that the Yildiz and Bassiouni (1991) solution is only valid for transient flow, it would be far from 

trivial to develop a method-of-images solution for a boundary case using this solution.  We recorded the 

computation times for each solution computed on a typical desktop computer with Pentium IV processor — 

the DVS solution required 1.23 seconds, compared to 436.1 seconds for the Yildiz-Bassiouni solution. 
 

Uniform Flux Horizontal Well  
 

Ozkan (1988) presented a method to compute the performance of a horizontal well and specifically, he 

developed a series solution in Laplace domain for a fracture with uniform flux and adjusted the solution to 

obtain the performance of a horizontal well.  In this work we used the results given in Table 2.6.2 of Ref. 6 

for comparison purposes. 
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 pD, Gringarten's Solution
 pD, Ozkan's Solution
 pD, DVS Method
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xeD= 20

CalCulation Parameters :
 

xeD= yeD

xwD= ywD= zwD= 0.50
LD= 10.0

rwD = 2×10
-3

Well/Reservoir Schematic :

Comparison of Dimensionless Pressure Results From 
DVS Method With Gringarten's and Ozkan's Solution 

for a Horizontal Well With Uniform Flux

 
 

 

Figure 3.3 — Comparison of DVS Results with Ozkan‘s and 
Gringarten’s Solutions for a Horizontal Well in a 
Bounded Reservoir, Uniform Flux Solution (In the Box-
in-Box Model xeD= xe/wx , yeD= ye/wx ,  and LD= ze/wx ). 
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Fig. 3.3 shows the graphical presentation of the solutions by Gringarten, Ramey and Raghavan (1974) and 

Ozkan (1988) compared to the DVS for the case of uniform flux horizontal well with various horizontal 

penetrations.  For the DVS represen-tation of the horizontal well, Eq. 3.1 is used to obtain the wy and wz 

widths of the source box.  The data given in Ozkan (1988) omits the very early time period of the solution, 

so we do not observe any differences between the DVS solution and the reference solutions.  
 

Fully Penetrating Vertical Fracture (Uniform-Flux and Infinite-Conductivity Fracture) 
 

In Figs. 3.4 and 3.5 we present the results of the widely accepted Gringarten, Ramey and Raghavan (1974)  

(Green's function) solution for the case of vertical well with a fully-penetrating vertical fracture along with 

our DVS results for the uniform flux fracture case (Fig. 3.4) and the infinite conductivity fracture case (Fig. 

3.5).  The DVS solution results presented in Fig. 3.4 are calculated with a single uniform box source (the wy 

width is selected to be "sufficiently small" (10-6ye.) as to not distort the solution).  The DVS solution results 

presented in Fig. 3.5 were obtained using the uniform-flux solution with the "equivalent observation point" 

(0.732 xf) for the infinite conductivity fracture case.  For these particular cases, the analytical and DVS 

results are indistinguishable. 
 

The computation times for these cases are as follows: 
 

� DVS Method: 
— Uniform-flux fracture (84.73 seconds). 
— Infinite conductivity fracture (542 seconds). 

� Gringarten Solution: 
— Uniform-flux fracture (520.1 seconds). 
— Infinite conductivity fracture (815.1 seconds). 

 

Fully Penetrating Vertical Fracture (Finite-Conductivity Fracture) 
 

As a natural progression, we need to compare our new DVS solution to the case of a vertical well with a 

finite-conductivity vertical fracture in an infinite acting reservoir.  The reference solution for this case is 

given by Cinco-Ley, Samaniego, and Dominguez (1978) — and we also note that we will require a 

"discretized" fracture solution for this case due to the finite conductivity of the fracture (i.e., the fracture 

has to be treated as a separate "reservoir to account for the non-trivial pressure drop in the fracture).  The 

comparison of results is presented in Fig. 3.6.  For the DVS solution we divided the fracture into 32 

segments.  From Fig. 3.6 we note a very good comparison of the DVS solution and the results of Cinco-

Ley, Samaniego, and Dominguez (1978) — except at early times where the source of the volume affects 

the solution. 
 

In Fig. 3.7 we present the distribution of the computed source strengths along the lateral coordinate in one 

fracture wing.  For pseudosteady-state (late times), the stabilized strength distribution profiles computed by 

the DVS method are somewhat similar to the "U-shaped" distributions shown by Cinco-Ley, Samaniego, 

and Dominguez (1978) We believe that this is a relatively minor issue, and that the DVS solution is 

validated for this case, except at very early times.  For comparison, the DVS solution required a 

computational time of 689 seconds and their solution required a computational time of 9632 seconds. 
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Legend :
 

  pD, Gringarten's Solution SPE 4051
  pD, DVS Method

 

xeD= 2

xeD= 4

xeD= 20

xeD= 10

Comparison of Dimensionless Pressure From DVS Method and Grin garten's Solution
for a Uniform-Flux Fracture ( xeD=  xe/xf)

Well/Fracture Schematic :

 

 
 

Figure 3.4 — Comparison DVS Results with Gringarten, Ramey and 
Raghavan (1974) Solution for a Vertically Fractured Well 
in a Bounded  Reservoir; Uniform Flux Solution (xeD= 
xe/wx in the Box-in-Box Model). 
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Legend :
 

 pD, Gringarten's Solution SPE 4051
  pD, DVS Method

 

xeD= 2

xeD= 4

xeD= 20

xeD= 10
Well/Fracture Schematic :

Comparison of Dimensionless Pressure From DVS Method and Gring arten's Solution
for an Infinite-Conductivity Fracture ( xeD=  xe/xf)

 
 
 

Figure 3.5 — Comparison of DVS Results with Gringarten, Ramey and 
Raghavan (1974) Solution for a Vertically Fractured Well 
in Bounded Reservoir; Infinite Conductivity Solution. 
(xeD= xe/wx in the Box-in-Box Model). 

 



 

 

29 

 

10
-1

10
0

10
1

10
2

 D
im

en
si

on
le

ss
 P

re
ss

ur
e,

 
p

D
 

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 Dimensionless Time Based on Fracture Half-Length, tDxf

 

xe 

ye 
xf 

Legend :
 

 Cinco-Ley and Samaniego, SPE 6014
 DVS Method (C fD = 1.60)

CfD= 0.2 π π π π 
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Well/Fracture Schematic :
 

Comparison of DVS Solution to Cinco's Solution for a Vertically-Fractured Well with CfD= 1.6)

 
 

 

Figure 3.6 — Comparison of DVS with Cinco-Ley, Samaniego, and 
Dominguez (1978) Results for Finite Conductivity 
Fracture. 
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   tDA= 6.4X 10
-6

   tDA= 6.4X 10
-5

   tDA= 6.4X 10
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   tDA= 6.4X 10
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0
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Calculation Parameters :
 

CfD= 1.6
Ix= xf/xe=  0.25

Well/Fracture Schematic :
 

Contribution to FLow of Each Fracture Segments for Different Values of Dimen sionless Time

 
 

 

Figure 3.7 — Distribution of the Contribution of Different Segments to 
Total Production at Various Times, Finite Conductivity 
Vertical Fracture of Full Vertical Penetration for Half the 
Fracture (CfD =1.6 and Ix = 0.25, n = 32). 
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3.3 Validation with Productivity Index Models 
 

The results of our DVS method can be used to calculate the transient as well as the pseudosteady-state 

productivity index for a given well/reservoir configuration.  The method of calculation for the dimen-

sionless productivity index (JD) is provided in Appendix B.  To validate the applicability and reliability of 

the results obtained from the DVS method for the case of a horizontal well, we used the work of Chen and 

Asaad (2003). They validated their work using the results taken from Babu and Odeh (1989) and from 

Goode and Kuchuck (1991) for the case of horizontal well. Chen and Asaad later extended their correlation 

to fractured wells. We compare our DVS results for the examples A1, B1, and B2 given by Chen and 

Asaad (2003). Table 3.1 provides the reservoir/fluid properties used for the calculation and Table 3.2 

present the results of our comparative study. 

 

Table 3.1 — Reservoir/Fluid Properties Used for Example Cases of 
Chen and Asaad (2003) (Comparison of Different 
Pseudosteady-State Productivity Index Correlations). 

 
 

Reservoir/Fluid Properties  Unit  A1  B1  B2 
Drainage Length in x, 2xe  ft  2640  2000  4000 

Drainage Length in y, 2ye  ft  2640  4000  2000 

Formation thickness, h  ft  45  100  200 

Horizontal well length, Lh  ft  1475  1000  1000 

Well location in x, xw  ft  1320  1250  1500 

Well location in y, yw  ft  1320  3000  1000 

Well location in z, zw  ft  22.5  50  150 

Wellbore radius, rw  ft  0.33  0.25  0.25 

Formation volume Factor, B  RB/STB  1.05  1  1 

Fluid viscosity, µ  cp  7.5  1  1 

Horizontal permeability in x, kx  md  350  200  100 

Horizontal permeability in y, ky  md  350  200  100 

Vertical permeability, kz  md  70  50  20 
 

 

From Table 3.2 we can see that for this case (a horizontal well), we have obtained excellent agreement 

between the results of different methods (our DVS solution, the Chen and Asaad (2003) solution, and the 

Babu and Odeh (1989) solution). This agreement is consistent for both the uniform-flux and infinite-

conductivity horizontal well cases. Further to this effort, we compared our DVS solution with the Chen and 

Asaad (2003) solution for the case of a vertically-fractured well (uniform flux and infinite conductivity 

cases are considered). We do note that for case B2 the difference between solution results rises to around 

10 percent (compared to less than 1 percent difference for all of the other cases). We suspect that the 

discrepancy is due to the approximations used in the Chen and Asaad (2003) formulation, which tend to 

show higher error in cases where the horizontal penetration of the vertical fracture is relative small. 
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Table 3.2 — Comparison of DVS Results with Various Pseudosteady-
State Productivity Index Correlations. 

 
 

PI (STB/D/psi) 
Case Method A1 B1 B2 

Babu-Odeh11 11.40 41.50 31.90 

Chen-Assad13
 Simple 

11.45 41.79 32.21 

Chen-Assad13
 Full 

11.44 41.66 33.26 
Uniform Flux 

DVS  
11.44 41.68 33.35 

Goode-Kuchuk12 13.00 N/A N/A 

Chen-Assad13
 Simple 

12.99 43.75 32.94 

Chen-Assad13
 Full 

12.99 43.61 34.84 

Horizontal 

Well 

Infinite Conductivity 

DVS  
12.75 43.23 34.86 

Chen-Assad13
 Simple 

14.10 56.63 73.36 
Uniform Flux 

DVS 
14.07 56.40 79.09* 

Chen-Assad13
 Simple 

16.51 60.30 77.29 

Fractured 

Well 
Infinite Conductivity 

DVS 
16.10 59.35 87.16* 

 

The production behavior of a vertical well with finite-conductivity fracture has been discussed extensively 

in Economides, Oligney, and Valkó (2002). They provide practical guidelines on how to design a fracture 

treatment which should yield the maximum productivity index.  Fig. 3.8a provides a "zoom view" of the 

dimensionless productivity index for a system consisting of a vertically fractured well with full vertical 

penetration varies as a function of fracture conductivity and the proppant number (here noted as Np, NProp 

elsewhere).  The "full view" is presented in Fig. 3.8b.  Fig. 3.8a and 3.8b are provided as "design charts" to 

obtain the optimum fracture (i.e., the highest productivity index) for a constant fracture volume (which is 

represented by the proppant number).  
 

To validate the results obtained from the DVS method for the case of a well with a finite-conductivity 

vertical fracture, we assume a proppant number of 0.1.  The proppant number is a measure of the fracture 

volume (Eq. 3.2), and the fracture conductivity is a measure of the ratio of fracture length over fracture 

width (Eq. 3.3).  
 

x

yf
fD kw

wk
C =  (3.2) 

 

reservoir

wingsfracture
prop kV

kfV
N −= 2,2

 (3.3) 
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Figure 3.8a — (zoom view) Dimensionless Productivity Index of a 

Vertically Fully Penetrated Fracture as a Function of 
Fracture Conductivity and Proppant Number (From 
Economides, Oligney, and Valkó 2002). 

 

 

 
 
 

Figure 3.8b — Dimensionless Productivity Index of a Vertically Fully 
Penetrated Fracture as a Function of Fracture 
Conductivity and Proppant Number (From Economides, 
Oligney, and Valkó 2002). 
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Using the assumed values of the proppant number and the fracture conductivity, we can calculate the 

corresponding fracture half-length.  For this example case the lateral penetration ratio is 0.25, which means 

the fracture length is half the reservoir length.  The value of maximum dimensionless productivity index for 

this case occurs at the fracture conductivity of 1.6 and it is equal to 0.467. 
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Calculation Parameters :
 

CfD= 1.6
Ix= wx/xe=  0.25

Well/Fracture Schematic :

Pseudosteady-State Flow
Region

Transient Flow
Region

Legend :
 

  Dimensionless Productivity Index ( JD)

Dimensionless Productivity Index for a Fractured We ll (CfD= 1.6, Ix= 0.25) as a Function of Dimensionless Time

 

 
 

Figure 3.9 — Dimensionless Productivity Index of the Example Case 
Using DVS Method. 

 
Fig. 3.9 shows the results of an analog case generated using the DVS method.  We note that during 

pseudosteady-state, the calculated dimensionless productivity index is equal to 0.467 which corresponds 

exactly with the value defined by the correlation shown in Fig. 3.8.  This comparison confirms the validity 

of the DVS results for applications such as this (e.g., fractured wells).  Another advantage of the DVS 

method is its ability to very accurately model the productivity index during transient as well as the 

pseudosteady-state flow. 
 

From Fig. 3.9 we note that the character of the dimensionless productivity index for all flow regimes: 

transient, transition, and pseudosteady-state.  Such plots may also be useful for performance predictions. 
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CHAPTER IV 
 

APPLICATION OF NEW TECHNIQUE TO A COMPLEX 

WELL/FRACTURE CONFIGURATION CASE 
 

4.1 Introduction 
 

In this chapter, we apply the DVS method to a case of complex well/fracture completion scheme and we 

demonstrate the utility of the DVS in a production optimization approach.  The case considered in this 

demonstration is that of a horizontal well with multiple transverse fractures in which both the horizontal 

well and the fractures contribute to production.  We first discuss the formulation of the problem and the 

construction of the reservoir model using the DVS method.  To the best of our knowledge, no analytical 

solution exists for this particular case, so we utilize a commercial reservoir simulator to compare our 

results.  The results of our optimization and our sensitivity analysis approach are presented in detail and 

discussed in this chapter.  We also apply the computation procedure described in Chapter II to forecast the 

production performance for the well/fracture completion scheme being considered. 
 

4.2 Formulation of the Problem 
 

The challenge we pose for this Chapter is to use the DVS method to systematically assess the various 

horizontal well/fracture completion schemes that could be used to develop a rectangular reservoir (of the 

size xe × ye × ze).  In this case, transverse fractures (orthogonal to the horizontal well) will be used, but the 

horizontal well is assumed open to flow over the entire reservoir length (i.e., the fractures and the 

horizontal well both contribute to production). 

 

 

 
 

Figure 4.1 — Schematic of the Model's Building Block. 
 

The schematic for this system is presented in Fig. 4.1, which shows a schematic of the building block of the 

model (we can add more fractures to this configuration).  We assume that any/all fractures have the same 

size (2wx × 2wy × 2wz) and are located symmetrically (central to the horizontal well) for the sake of 
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simplicity. The variable nfrac represents the number of transverse fractures and, in principle could be any 

integer from 1 to ∞, but for this study, we limit the number of fractures from 1 to 5. We assume the total 

system is composed of nfrac building blocks connected together in the y direction. Lastly we assume the 

fractures to be of finite-conductivity and the horizontal well to of infinite-conductivity.  
 

As we discussed in Chapter II, the entire source should be divided into sub-sources for cases of finite- 

and/or infinite-conductivity sources.  In this case, we divide the individual fractures into (2nx + 1) by (2nz + 

1) segments and the horizontal well into 2nh segments.  Because the fractures are assumed to be of finite 

conductivity, the C matrix is only calculated for the fracture sub-sources.  We also incorporate Peaceman's 

correction (Peaceman 1978) to account for 2D flow in the fracture. 
 

4.3 Validation Through Simulation 
 

To validate the model, we used the CMG (Version 2005.10, Computer Modeling Group Ltd.) commercial 

reservoir simulator to simulate a rectangular reservoir of the size (1320×1320×100 ft), with horizontal 

permeability of 1 md and permeability anisotropy (kv/kh) equal to 0.1.  The individual fractures are of the 

size (1000 × 0.01 × 80 ft) and have permeabilities of 10,000 md.  For our validation, we consider the case of 

1 fracture and the case of 4 fractures.  Lastly, the horizontal well penetrates the entire reservoir width.  

Table 4.1 presents the reservoir, fracture, and fluid characteristics used for both the simulation model and 

the DVS calculations.  

 
Table 4.1 — Reservoir, Fracture, and Fluid Characteristic Used for 

Simulation Model and DVS Calculations. 
 

 

Reservoir Characteristics: 
  

xe = 1320 ft 
ye = 1320 ft 
ze = 100 ft 
kx = 1 md 
ky = 1 md 
kz = 0.1 md 
φ�= 10 percen 
t 

Fracture Characteristics: 
  

wx = 500 ft 
wy = 0.01 ft 
wz = 40 ft 
kx = 10,000 md 
 

Fluid Characteristics: 
  

µ�= 1.011 cp 
ct = 1.35 ×10-5 psi-1  
 

well Characteristics: 
  

rw= 0.3  ft 
Lh = 1320 ft 
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Figure 4.2 — A 3D View of ¼ of the Simulation Model, (Case of 4 
Transverse Fractures). 

 
 

We have assumed a (7×75×9) grid for simulation model, 1/4 of which is shown in Fig. 4.2.  The horizontal 

well is defined at the center of the reservoir and is open to flow over the reservoir length — the fractures 

are intersected by the horizontal well at the center of the fractures.  The "wellbore blocks" (where the 

horizontal well intersects the fracture) are also refined locally in a (7×7) grid in order to reduce effect of the 

block size. 
 

The simulations were performed assuming a constant production rate — in particular, we specified the 

production rate at 5 stock-tank barrels per day (STB/D) in order to avoid any significant changes in 

simulation results because of changes in fluid properties in the 1000 day production period (this is a 

constant compressibility or "black oil" reservoir model, the basis for most analytical solutions). 
 

From the report of pressures (bottomhole flowing pressure and average reservoir pressure) as functions of 

production time (see Fig. 4.3), we compute the dimensionless productivity index from the simulation data.  

Fig. 4.4 provides a comparison of dimensionless productivity index calculated from simulation and the 

results from our DVS method, plotted as a function of production time.  We note that the results of the 

DVS method and the simulation compare very well during the transition and pseudosteady-state flow 

regimes.  At early times these results differ — our interpretation of this difference is that the two models 

consider the fluid storage in the fracture differently.  There may also issues of gridding, but our contention 

is that the "pseudosteady-state storage" concept used to model the fracture behavior in the DVS solution 
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may not be sufficient to address the early time flux distribution in a finite-conductive vertical fracture (see 

Fig. 3.6 for comparison).  Regardless, we accept that this issue may be significant for some cases. 
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Figure 4.3 — Simulation Output, Well Bottomhole Pressure and 
Average Reservoir Pressure for Cases of 1 Fracture and 4 
Fractures. 
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Legend :
 

           Simulation Results
 DVS, nx= nz= nh= 1
 DVS, nx= nz= nh= 2

 

Well/Reservoir Schematic :

 

 
 

Figure 4.4 — Comparison Between Simulation Results and DVS 
Method's. 
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The computational "run time" for the numerical simulation case was about 32 seconds, while for this case, 

the DVS method required 292 seconds. We believe that if the DVS method were programmed into a more 

traditional programming language (other than MATHEMATICA), then the computational times for the 

DVS method would improve substantially. We recognize the implication that, for this case, the numerical 

simulation model is substantially faster than our DVS method, but we believe that there is a balance of 

speed and potential accuracy in the DVS method.  
 

For the DVS method we considered only two cases of grid sizes, nx= nz= nh= 1, and 2.  Our investigations 

showed that the dimensionless productivity index for pseudosteady-state flow does change as the number 

of segments change, but in most cases this change is negligible (less than 0.1 percent when nx, nz, and nh are 

equal to 2).  We note that the CPU computation times increase quadratically as nx, nz, and nh increase, and 

based on this observation we elected to use nx= nz= nh= 2 (which yields 25 blocks for each fracture source 

and 4 block for the horizontal section). 
 

4.4 Design and Optimization 
 

The DVS method has been shown to predict the productivity index behavior of complex well/fracture 

completion schemes with reasonable (i.e., practical) accuracy.  Considering the semi-analytical nature of 

the method, we could (and should) use the DVS method as an optimization/screening tool to evaluate 

different well design and completion scenarios for reservoir development applications.  To illustrate this 

premise, we provide a demonstration application of DVS method to optimize production for an example 

case. 

 
Table 4.2 — Reservoir and Proppant Characteristics Used for Case 

Study. 
 

Reservoir Characteristics: 
  

xe = 1320 ft 

ye = 1320 ft 

ze = 100 ft 

kx = 1 md 

ky = 1 md 
kz = 1, 0.1, 0.01, 0.001 md 
  

Proppant Characteristics: 
  

dp = 0.005 ft 

ρp = 2.83  

φp = 35 percent 
kf = 10,000 md 
 

 

Table 4.2 provides the characteristics of the reservoir and the fracture proppant we will use for our 

example case.  The challenge we face is how to find the best completion schemes in term of number and 

size of fractures.  The "best" completion scheme will be defined as that which provides us the maximum 
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dimensionless productivity index (production potential), for a constant proppant volume.  In other words an 

optimum design is sought for the constant proppant number (NProp).  
 

For estimating the optimal design parameters, we develop numerous "scenario" cases. The objective is to 

maximize the dimensionless productivity index achieved during the pseudosteady-state flow period. 

Specifically, we will generate production performance cases using the DVS method for different numbers 

of fractures and different values of the proppant number.  Our strategy is to fix the proppant number (as we 

fix the amount of proppant for fracturing) and the fracture half-width (as an integer multiple of proppant 

diameter), we can then obtain a series of fractures with the same volume and width.  

 
Table 4.3 — Range of Variation of Design Parameters. 

 

Fracture Half-Width (wx) = 1dp to 10dp 
  

NProp   = 0.001, 0.01, 0.1, 1.0 
 

Number of Fractures   = 1 to 5 
 

 

Table 4.3 presents the ranges of the parameters we utilize in this study.  Based on the definition of the 

proppant number and the given values of the proppant numbers, the equivalent proppant weights used in 

this study are 1,000, 10,000, 100,000, and 1,000,000 lb, respectively.  Unlike the previous studies we do 

not consider the dimensionless fracture conductivity (CfD) directly, but rather through the use of its 

component variables and the definition of the proppant number.  In this study we vary the fracture dimen-

sions to maintain a constant fracture volume. 
 

All of the results in this study consider the case of a proppant number equal to 1.0 since this is an optimal 

value that can be achieved in practice.  Additional cases (Nprop < 1.0) are presented in Appendices C to F.  

In Table 4.4 we present the mathematically feasible fracture sizes which correspond to the fracture volume 

that can be generated by 1,000,000 lb of proppant.  In Table 4.5 we present corresponding values of the 

dimensionless productivity index (pseudosteady-state flow) as a function of number of fractures and 

permeability anisotropy to illustrate the flow contribution for each configuration. From Table 4.5 it is clear 

that there is no basis for the perception that a fully-penetrating fracture (vertical or horizontal well) should 

yield the maximum productivity.  Although it is correct that a fully-penetrating vertical fracture does yield 

higher productivity for cases with higher permeability contrast, for some cases maximum productivity is 

achieved via a partially-penetrating fracture. 
 

Fig. 4.5 shows the distribution of the dimensionless productivity index (pseudosteady-state flow) as a 

function of number of fractures for the case of a homogeneous reservoir (kx = ky = kz =1 md).  From Fig. 4.5 

we note that an optimal fracture half-width does exist for a given number of fractures, there are also sub-

optima, in which the productivity index is not significantly different than maximum.  These sub-optimal 

half-widths may in fact be easier to implement in practice, so a firm criteria for the what is optimal remains 

in question, and the engineer is encouraged to use Fig. 4.5 (and others like it) as guides, not as an absolute 

design requirement. 
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Table 4.4 — Table of Mathematically Feasible Fracture Sizes for 
Example Case (NProp = 1.0). 

 
 

nfrac  wx  wy  wz   nfrac  wx  wy  wz 

1  660.0  0.033  50.0  3  660.0  0.025  22.0 

1  622.3  0.035  50.0  3  242.0  0.030  50.0 

1  641.1  0.035  48.5  3  451.0  0.030  26.8 

1  660.0  0.035  47.1  3  660.0  0.030  18.3 

1  544.5  0.040  50.0  3  207.4  0.035  50.0 

1  602.3  0.040  45.2  3  433.7  0.035  23.9 

1  660.0  0.040  41.3  3  660.0  0.035  15.7 

1  484.0  0.045  50.0  3  181.5  0.040  50.0 

1  572.0  0.045  42.3  3  420.8  0.040  21.6 

1  660.0  0.045  36.7  3  660.0  0.040  13.8 

1  435.6  0.050  50.0  3  161.3  0.045  50.0 

1  547.8  0.050  39.8  3  410.7  0.045  19.6 

1  660.0  0.050  33.0  3  660.0  0.045  12.2 

2  660.0  0.017  50.0  3  145.2  0.050  50.0 

2  544.5  0.020  50.0  3  402.6  0.050  18.0 

2  602.3  0.020  45.2  3  660.0  0.050  11.0 

2  660.0  0.020  41.3  4  660.0  0.008  50.0 

2  435.6  0.025  50.0  4  544.5  0.010  50.0 

2  547.8  0.025  39.8  4  602.3  0.010  45.2 

2  660.0  0.025  33.0  4  660.0  0.010  41.3 

2  363.0  0.030  50.0  4  363.0  0.015  50.0 

2  511.5  0.030  35.5  4  511.5  0.015  35.5 

2  660.0  0.030  27.5  4  660.0  0.015  27.5 

2  311.1  0.035  50.0  4  272.3  0.020  50.0 

2  485.6  0.035  32.0  4  466.1  0.020  29.2 

2  660.0  0.035  23.6  4  660.0  0.020  20.6 

2  272.3  0.040  50.0  4  217.8  0.025  50.0 

2  466.1  0.040  29.2  4  438.9  0.025  24.8 

2  660.0  0.040  20.6  4  660.0  0.025  16.5 

2  242.0  0.045  50.0  4  181.5  0.030  50.0 

2  451.0  0.045  26.8  4  420.8  0.030  21.6 

2  660.0  0.045  18.3  4  660.0  0.030  13.8 

2  217.8  0.050  50.0  4  155.6  0.035  50.0 

2  438.9  0.050  24.8  4  407.8  0.035  19.1 

2  660.0  0.050  16.5  4  660.0  0.035  11.8 

3  660.0  0.011  50.0  4  136.1  0.040  50.0 

3  484.0  0.015  50.0  4  398.1  0.040  17.1 

3  572.0  0.015  42.3  4  660.0  0.040  10.3 

3  660.0  0.015  36.7   4  121.0  0.045  50.0 

3  363.0  0.020  50.0  4  390.5  0.045  15.5 

3  511.5  0.020  35.5  4  660.0  0.045  9.2 

3  660.0  0.020  27.5  4  108.9  0.050  50.0 

3  290.4  0.025  50.0  4  384.5  0.050  14.2 

3  475.2  0.025  30.6  4  660.0  0.050  8.3 
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Table 4.4 — Continued. 
 
 

nfrac  wx  wy  wz 

5  660.0  0.007  50.0 

5  435.6  0.010  50.0 

5  547.8  0.010  39.8 

5  660.0  0.010  33.0 

5  290.4  0.015  50.0 

5  475.2  0.015  30.6 

5  660.0  0.015  22.0 

5  217.8  0.020  50.0 

5  438.9  0.020  24.8 

5  660.0  0.020  16.5 

5  174.2  0.025  50.0 

5  417.1  0.025  20.9 

5  660.0  0.025  13.2 

5  145.2  0.030  50.0 

5  402.6  0.030  18.0 

5  660.0  0.030  11.0 

5  124.5  0.035  50.0 

5  392.2  0.035  15.9 

5  660.0  0.035  9.4 

5  108.9  0.040  50.0 

5  384.5  0.040  14.2 

5  660.0  0.040  8.3 

5  96.8  0.045  50.0 

5  378.4  0.045  12.8 

5  660.0  0.045  7.3 

5  87.1  0.050  50.0 

5  373.6  0.050  11.7 

5  660.0  0.050  6.6 
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Table 4.5 — Locus of Maxima for Example as a Function of Number 
of Fractures and Permeability Anisotropy (NProp = 1.0). 

 
 

nfrac  wx  wy  wz  kv/kh  JD, pss, max , 1 fracture  JD, pss, max , Total  Fracture Contribution 

1  547.80  0.050  39.76  1.000  1.7435  1.7435  0.3242 
2  438.90  0.050  24.81  1.000  0.9374  1.8748  0.4239 
3  402.60  0.050  18.03  1.000  0.6989  2.0968  0.5065 
4  384.45  0.050  14.16  1.000  0.5886  2.3544  0.5645 
5  373.56  0.050  11.66  1.000  0.5229  2.6144  0.6072 
1  547.80  0.050  39.76  0.100  1.1816  1.1816  0.4971 
2  438.90  0.050  24.81  0.100  0.6882  1.3764  0.6286 
3  207.43  0.035  50.00  0.100  0.5304  1.5912  0.7197 
4  155.57  0.035  50.00  0.100  0.4605  1.8420  0.7758 
5  124.46  0.035  50.00  0.100  0.4178  2.0890  0.8126 
1  435.60  0.050  50.00  0.010  0.8423  0.8423  0.7268 
2  217.80  0.050  50.00  0.010  0.5705  1.1410  0.8374 
3  170.82  0.043  50.00  0.010  0.4758  1.4275  0.8820 
4  155.57  0.035  50.00  0.010  0.4258  1.7032  0.9042 
5  124.46  0.035  50.00  0.010  0.3939  1.9696  0.9216 
1  435.60  0.050  50.00  0.001  0.7070  0.7070  0.8810 
2  217.80  0.050  50.00  0.001  0.5324  1.0648  0.9320 
3  170.82  0.043  50.00  0.001  0.4570  1.3711  0.9513 
4  155.57  0.035  50.00  0.001  0.4137  1.6547  0.9607 
5  124.46  0.035  50.00  0.001  0.3859  1.9294  0.9680 
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  Legend :
 

 nfrac= 1
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Distribution of Dimensionless Productivity Index as  a Function of 
Fracture Half-Width and Number of Tranverse Fractur es (NProp = 1.0, kx= ky= kz= 1 md)

well/Reservoir Schematic :

 

 
 

Figure 4.5 — Distribution of Dimensionless Productivity Index as a 
Function of Number of Fractures (NProp = 1.0, kx = ky = kz 
=1 md). 
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In Figs. 4.6 to 4.9 we present the fracture contributions to flow (as a fraction of total flow) shown as a 

function of dimensionless time and the number of fractures for the NProp = 1.0 case, as well as for different 

permeability anisotropy ratios (kv/kh). 
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Figure 4.6 — Fracture Contribution to Flow as a Function of 
Dimensionless Time and Number of Fractures (NProp = 
1.0, kx = ky = kz =1 md). 
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Figure 4.7 — Fracture Contribution to Flow as a Function of 
Dimensionless Time and Number of Fractures (NProp = 
1.0, kx = ky = 1 md, kz = 0.1 md). 
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For all cases shown in Figs. 4.6 to 4.9 the early-time production is dominated by the horizontal well, the 

fracture contribution increases during the transient flow period and then stabilizes during the pseudosteady-

state flow period.  We also note that the fracture contribution increases as the permeability anisotropy 

increases (which is logical as less fluid would be produced by the horizontal well for such cases).  

Obviously, the fracture contribution to flow increases with the number of fractures — each fracture simply 

adds to the fracture contribution. 
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Figure 4.8 — Fracture Contribution to Flow as a Function of 
Dimensionless Time and Number of Fractures (NProp = 
1.0, kx = ky = 1 md, kz = 0.01 md). 
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Figure 4.9 — Fracture Contribution to Flow as a Function of 
Dimensionless Time and Number of Fractures (NProp = 
1.0, kx = ky = 1 md, kz = 0.001 md). 
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In Figs. 4.10 to 4.13 we present the behavior of the maximum dimensionless productivity index versus the 

number of fractures, for various cases of the proppant number and a specific case of permeability 

anisotropy.  We note that the dimensionless pseudosteady-state productivity index (JD, pss ,Max) decreases as 

the anisotropy ratio increases — this phenomenon is observed for cases.  This behavior is more severe for 

cases with a lower proppant number.  Decreasing productivity as a consequence of increased anisotropy 

can be attributed to the fact that the production in the horizontal section decreases as the anisotropy 

increases, as discussed by Mukherjee and Economides (1991).  If there is sufficient proppant to achieve an 

efficient (i.e., high conductivity) fracture, then the lost productivity of the horizontal section would be 

compensated for by the increased fracture contribution. 
 

For the specific case of proppant numbers of 1.0 and 0.001, we note a reduction of 59.5 and 26.2 percent in 

JD ,pss, Max.  For the cases of 1 and 5 fractures (and a proppant number equal to 1.0), we have 87.3 and 83.8 

percent loss compared to the same cases for a proppant number equal to 0.001.  These cases illustrate the 

need (if not the absolute requirement) to maximize proppant volume (and proppant placement) for cases of 

high permeability anisotropy.  
 

From Figs. 4.10 to 4.13 we note that JD ,pss, Max increases as the number of fractures increase — and that this 

behavior is consistent for every case.  We also note that the size of the increase in well productivity 

depends directly on the amount of proppant used. 
 

An interesting outcome of this study is that the selection of an optimal well completion is clearly a function 

of all of the major variables — proppant number, number of fractures, and permeability anisotropy.  In 

isolation — for example, the maximizing number of fractures would seem to always be the best choice.  

However, the issue of permeability anisotropy, which is obviously fixed by nature in practice, changes the 

perception that more fractures is always better (see Fig. 4.8 (kv/kh = 0.01) and Fig. 4.9 (kv/kh = 0.001), where 

the profiles essentially flat (i.e., the number of fractures does not significantly influence the  JD,pss,Max 

function).) 
 

The impact of this "sensitivity study" is that any well/fracture design must be considered in terms of the 

objectives (maximize production performance) and the practical limitations of the system (permeability 

anisotropy and fracture treatment size).  We can design the optimal fracture treatment — there will always 

be a clear best case(s), but can we delivery said treatment to the formation?  This work provides the means 

to design optimal treatments for complex well/fracture configurations, but the engineer must consider any 

and all practical limitations of this design for implementation in the field. 
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Figure 4.10 — Maximum Dimensionless Pseudosteady-State 
Productivity Index as a Function of Number of Fractures 
and Proppant Number (kx = ky = kz =1 md). 
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Figure 4.11 — Maximum Dimensionless Pseudosteady-State 
Productivity Index as a Function of Number of Fractures 
and Proppant Number (kx = ky = 1 md, kz =0.1 md). 
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Figure 4.12 — Maximum Dimensionless Pseudosteady-State 
Productivity Index as a Function of Number of Fractures 
and Proppant Number (kx = ky = 1 md, kz = 0.01 md). 
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Figure 4.13 — Maximum Dimensionless Pseudosteady-State 
Productivity Index as a Function of Number of Fractures 
and Proppant Number (kx = ky = 1 md, kz =0.001 md). 
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4.5 Application to Field Examples 
 

To demonstrate the DVS method in a practical example, we have chosen to estimate the productivity 

behavior of the well/fracture system producing at a constant bottomhole pressure (using the procedure 

given in Chapter II) for example gas field cases from East Texas (USA).  The reservoir and fluid data for 

these cases are taken from Magalhaes, Zhu, Amini, and Valko (2007). The field examples were chosen 

because these are low- to very-low permeability reservoirs, and a complex completion scheme of a 

horizontal well with multiple (transverse) fractures are considered the ideal completion scheme for this 

kind of reservoir. The reservoir and fluid properties for the gas field examples are shown in Table 4.6. 

 

Table 4.6 — Reservoir and Fluid Properties for Example Cases. 
 

  Whelan   Percy Wheeler  Appleby North 
Net Pay (ft)  200  200  60 
Horizontal Permeability (md)  0.9  0.05  0.01 
Porosity (percent)  8.8  10.3  8.8 
Initial Pressure (psia)  3500  3000  2800 
Reservoir Temperature(°F)  220  245  254 
Gas Gravity  0.63  0.62  0.61 

 

The following assumptions are applied to all of the field cases: 

� A vertical to horizontal permeability ratio (i.e., kv/kh) of 0.10. 
� A well spacing of 80 acres. 
� A constant bottomhole pressure of 500psia. 

 

We used the correlations given in the Lee, Rollins, and Spivey (2003) text to estimate gas properties such 

as compressibility factor, viscosity, and formation volume factor. Gas-in-place estimates were calculated 

for each field using the given reservoir properties and the drainage area. The gas-in-place (G) estimates for 

these cases are summarized in Table 4.7: 

 

Table 4.7 — Initial Gas-in-Place (G) for Field Cases. 
 

Field  
G  

(BCF) 

Whelan  11.907 

Percy Wheeler  11.495 

Appleby North  2.706 
 

The proppant properties for this study are taken from Tables 4.2 and 4.3 and the cases of 250,000 and 

500,000 lb of proppant were used.  
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For consistency, our study considers 1,000 days of production.  For each scenario, we consider the case 

where both the horizontal well and fractures contribute to flow, and the case where only the fractures 

contribute to flow.  Up to five fractures are considered for each case.  In Table 4.8 we present the optimum 

fracture dimensions and the corresponding maximum dimensionless productivity index (JD, pss,ma) for each 

field case — based on 500,000 or 250,000 lb of proppant and in terms of the number of fractures. 

 

Table 4.8 — Optimum Fracture Dimensions for Field Cases as a 
Function of Proppant Used and Number of Fractures. 
Fully-Penetrating Horizontal Well Contributes to Flow. 

 
 

Field, 
 Proppant Weight (lb)  nfrac  wx  wy  wz  JD, pss,max , Total 

 1  108.8  0.0500  100.0  0.667 

 2  60.5  0.0450  100.0  0.793 

 3  40.3  0.0450  100.0  0.938 

 4  34.0  0.0400  100.0  1.086 

Whelan 
500,000 

 5  27.2  0.0400  100.0  1.231 

 1  54.4  0.0500  100.0  0.625 

 2  32.0  0.0425  100.0  0.734 

 3  21.3  0.0425  100.0  0.856 

 4  16.0  0.0425  100.0  0.982 

Whelan 
250,000 

 5  10.9  0.0500  100.0  1.105 

 1  738.9  0.0100  73.7  1.266 

 2  602.8  0.0100  45.1  1.519 

 3  648.2  0.0050  56.0  1.817 

 4  602.8  0.0050  45.1  2.094 

Percy Wheeler 
500,000 

 5  575.6  0.0050  37.8  2.344 

 1  738.9  0.0050  73.7  1.015 

 2  602.8  0.0050  45.1  1.230 

 3  557.5  0.0050  32.5  1.436 

 4  136.1  0.0050  100.0  1.651 

Percy Wheeler 
250,000 

 5  108.8  0.0050  100.0  1.876 

 1  933.5  0.0194  30.0  3.149 

 2  933.5  0.0097  30.0  4.074 

 3  933.5  0.0065  30.0  5.261 

 4  933.5  0.0050  29.2  6.468 

Appleby North 
500,000 

 5  933.5  0.0039  30.0  7.612 

 1  933.5  0.0097  30.0  3.015 

 2  933.5  0.0050  29.2  3.754 

 3  933.5  0.0032  30.0  4.672 

 4  933.5  0.0024  30.0  5.570 

Appleby North 
250,000 

 5  933.5  0.0019  30.0  6.398 
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It can be seen from Table 4.8 that for higher permeability reservoirs, then full penetration in vertical 

direction (i.e., wz → h/2) is most likely to yield the optimum productivity index. Similarly, for the lower 

permeability reservoirs the tendency changes toward extension in the horizontal direction (i.e., wx → xe/2). 
 

For the case of Wheeler field the optimum results are achieved by fractures with partial penetration in both 

directions (except for the cases with 250,000 lb of proppant and 4 and 5 fractures).  This observation of 

vertical penetration being required in "high" permeability reservoirs is due primarily to the fact that the 

given amount of proppant is not sufficient to achieve efficient fractures.  For the lowest permeability case 

(Appleby North), we observe that the optimum productivity is achieved by fractures which fully penetrate 

the reservoir in both directions (vertical and horizontal) — even in this case, where the amount of proppant 

is insufficient to yield a fracture with the width of at least a single proppant diameter.  
 

Table 4.9 presents our final results for each field case (in terms of performance at 1000 says of production) 

as a function of the amount of proppant and the number of fractures (for the case where the horizontal well 

and fractures contribute to flow, and the case where only the fractures contribute to flow). Specifically, 

Table 4.9 contains the average reservoir pressure, the gas production rate, and the cumulative gas 

production at 1000 days of production.  For reference, the complete set of results is provided for each field 

in Appendices G through I. 
 

The work presented in the remainder of this section is provided to support the observations thus far, and to 

provide a "time-dependent" view of the performance for these cases.  As noted above, the details and the 

complete suite of results for these examples are given in Appendices G through I. 
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Table 4.9 — Results of Field Case Studies, Average Reservoir 
Pressure, Gas Production Rate, and Cumulative Gas 
Production as a Function of the Amount of Proppant, 
Number of Fractures, and Completion Schemes for 
Example Cases. 

 
 

Fracture + Horizontal Well Fracture Only Field, 
 Proppant Weight 

(lb)  nfrac  
pavg 

(psia)  
qg 

(MMSCFD)  
Gp 

(BCF)  
pavg 

(psia)  
qg 

(MMSCFD)  
Gp 

(BCF) 

 1  560.2  0.59  10.05  817.9  1.73  9.15 

 2  535.4  0.40  10.13  620.6  0.95  9.84 

 3  519.3  0.26  10.19  554.4  0.55  10.07 

 4  510.4  0.16  10.22  526.7  0.33  10.16 

Whelan 
 500000 

 5  505.7  0.10  10.23  513.7  0.20  10.21 

 1  573.3  0.68  10.00  923.2  2.04  8.78 

 2  545.9  0.49  10.10  674.7  1.20  9.65 

 3  526.4  0.33  10.16  582.6  0.73  9.97 

 4  514.6  0.21  10.20  541.2  0.45  10.11 

Whelan  
250000 

 5  507.7  0.13  10.23  520.1  0.27  10.19 

 1  1811.4  2.62  4.49  2089.2  2.26  3.40 

 2  1667.9  2.77  5.05  1833.3  2.67  4.40 

 3  1577.5  2.82  5.41  1709.5  2.79  4.89 

 4  1511.8  2.84  5.67  1629.8  2.83  5.20 

Percy Wheeler  
500000 

 5  1464.2  2.84  5.86  1575.1  2.85  5.42 

 1  1976.6  2.45  3.84  2275.4  1.96  2.68 

 2  1860.7  2.62  4.29  2029.2  2.44  3.63 

 3  1761.3  2.74  4.68  1878.1  2.65  4.22 

 4  1660.4  2.78  5.08  1725.6  2.76  4.82 

Percy Wheeler  
250,000 

 5  1572  2.82  5.43  1622  2.81  5.23 

 1  1862.8  0.45  0.89  2089.9  0.34  0.67 

 2  1761.6  0.48  0.99  1869.8  0.45  0.89 

 3  1660.8  0.52  1.09  1717.4  0.52  1.04 

 4  1565.6  0.56  1.19  1599.4  0.56  1.15 

Appleby North 
 500000 

 5  1483  0.59  1.27  1505.6  0.59  1.25 

 1  1911.3  0.45  0.85  2146.1  0.34  0.62 

 2  1834.7  0.48  0.92  1951.8  0.44  0.81 

 3  1758.9  0.52  1.00  1824.7  0.51  0.93 

 4  1682.1  0.56  1.07  1724.7  0.56  1.03 

Appleby North  
250000 

 5  1613.6  0.59  1.14  1644.2  0.59  1.11 
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Fig. 4.14 presents the computed gas production rate as a function of production time for the Whelan field, 

where each fracture stimulation consists of 250,000 lbs of proppant.  The Whelan field has the highest 

permeability of our field cases (0.10 md).  In Fig. 4.14 we can distinguish two distinct flow periods — the 

first flow period is the transient flow period (which has very little rate decline).  The second flow period is 

that of pseudosteady-state or boundary-dominated flow, and we note a much steeper rate decline due to the 

influence of the reservoir boundaries. 
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Figure 4.14 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 250,000 lb Proppant). 

 

For other two field cases (Percy Wheeler and Appleby North), the 1,000 day production period is not 

sufficient time for the reservoir to produce under boundary-dominated flow conditions, even for the cases 

of 500,000 lb of proppant (large, highly conductive fractures).  Figs. 4.15 to 4.18 present the gas rate 

profiles for the Percy Wheeler and Appleby North fields, respectively for the cases of 250,000 and 500,000 

lb of proppant.  For production at 1,000 days, we note that the Percy Wheeler field case shows evidence of 

the start of the boundary-dominated flow, but for the Appleby North field case we can only observe the 

transition into boundary-dominated flow. 
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Figure 4.15 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for Percy 
Wheeler Field (80 Acres Spacing, 250,000 lb Proppant). 
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Figure 4.16 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for Percy 
Wheeler Field (80 Acres Spacing, 500,000 lb Proppant). 
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Figure 4.17 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 250,000 lb 
Proppant). 
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Figure 4.18 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 500,000 lb 
Proppant). 
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In Figures 4.19 to 4.22 we present the computed average reservoir pressure profiles (versus production) 

time for the Whelan and Appleby North fields, for cases of 250,000 or 500,000 lb of proppant.  These 

comparisons are provided to illustrate the influence of the number of fractures, the proppant used, and the 

fractures themselves (comparisons of "fracture + horizontal well" and "fracture only" performance).  The 

primary discriminator for these cases is actually reservoir permeability (Whelan field (0.9 md) and Appleby 

North field (0.01 md)) — ultimately, permeability will be the most influential variable for these 

presentations of computed average reservoir pressure. 
 

The "steepness" of the average pressure decline could be construed as an indicator of the most efficient 

depletion (i.e., the most rapid recovery).  In such a case, the "fracture only" cases for the Whelan field 

comparison (Figs. 4.19 and 4.20) would appear to be the least "efficient" (as would be expected) — 

however; it is our contention that increasing the stimulation (proppant) volume for the "fracture only" cases 

may yield faster depletion, but poor economics.  The most obvious conclusion that can be drawn from Figs. 

4.19 and 4.20 is that the 1 and 2 fracture cases (within the "fracture only" cases) are by far the least 

efficient — hence, the observation that more fractures would always be better is certainly supported by 

these cases, but again, economic (rather than just technical) aspects must be considered to justify such a 

claim.  As for the Appleby North field cases (Figs. 4.21 and 4.22) the comparison of average reservoir 

pressure with time merely confirmed that these cases are not in full depletion. 
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Figure 4.19 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 250,000 lb Proppant). 
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Figure 4.20 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Whelan Field (80 Acres Spacing, 500,000 lb 
Proppant). 
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Figure 4.21 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 250,000 lb 
Proppant). 
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Figure 4.22 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 500,000 lb 
Proppant). 
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Figure 4.23 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 250,000 lb Proppant). 
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In contrast to comparison of the computed average reservoir pressure profiles, comparison of the 

cumulative gas production as a function of time will definitively illustrate "efficient" depletion.  That is, the 

cases with the most rapid depletion (of a fixed resource) will yield the highest return on investment (all 

factors being equal).  In Figs. 4.23 to 4.28 we present the behavior of the cumulative gas production as a 

function of production time for all field cases and differing completions (i.e., proppant volumes and well 

structures). 
 

The most straightforward conclusion we can make is that adding new fractures increases the production and 

accelerates the production of reserves.  We note that the importance of these two issues (production 

increases and reserve acceleration) varies as the permeability of the reservoir changes.  For low 

permeability reservoirs such as the Appleby North field, additional fracture(s) may provide more additional 

reserves (but this is actually only likely in very low permeability scenarios (<0.001 md) and in cases of 

geological reservoir heterogeneity (poor vertical and lateral continuity of the reservoir)).  In a practical 

sense, for homogeneous reservoir systems of low to moderate permeability (>0.01 md), we should expect 

acceleration of reserves when we deploy well completions such as these. 
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Figure 4.24 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 500,000 lb Proppant). 
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Figure 4.25 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Wheeler Field (80 Acres Spacing, 250,000 lb 
Proppant). 
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Figure 4.26 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Wheeler Field (80 Acres Spacing, 500,000 lb 
Proppant). 
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Figure 4.27 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 250,000 lb 
Proppant). 
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Figure 4.28 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 500,000 lb 
Proppant). 
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It is also a general perception that the advantage of placing additional fractures in the reservoir diminishes 

as the number of fractures increases.  This perception is based on the fact that since the total drainage area 

is limited, individual fractures will begin to drainage volumes, and produce less over time.  This is true for 

both cases presented in this study — the case where the horizontal well and fractures contribute to flow, 

and the case where only the fractures contribute to flow.  A practical issue regarding multiple fractures is a 

risk of an adverse event as more and more fractures are added — such as accessing water or damage to the 

wellbore that limits access to all of the created hydraulic fractures. 
 

For all of the cases we consider, the horizontal well adds more to the production performance than adding 

another fracture.  We note this observation because some may opt to drain a given reservoir partition with 

only vertically fractured wells, while others may employ horizontal wells with multiple transverse 

fractures.  It is important to recognize that, in a sensitivity study such as this, the contribution of the 

horizontal well is always relevant, but as Figs. 4.10 to 4.13 illustrate the influence of reservoir anisotropy is 

extremely important, and may minimize or even negate the effects of the horizontal well. 
 

The use of additional proppant is seen to accelerate the recovery of reserves for all the cases studied, but 

the level of improvement is dependent on the reservoir permeability and the well/fracture configuration. 

We generally note positive effects of using more proppant for a larger number of fractures, as more 

proppant should build more efficient fractures.  However; if a given set of fractures can effectively deplete 

the reservoir, then larger treatments would be unjustifiable in an economic sense. 
 

4.6 Summary 
 

This chapter provides example applications of the DVS method for the prediction of well productivity for 

various complex well/fracture configurations.  Modeling and validation procedures were demonstrated and 

discussed, and example applications to relevant field cases are given.  Our results imply that the most 

effective well configuration is that of a horizontal well with multiple (transverse) fractures, where as much 

as proppant and as many fractures as possible are used.  Obviously this is an ideal scenario, and we need to 

establish an optimal well completion for each individual case — which would be the most technically 

feasible as well as the most economic well completion scheme that yields the highest possible productivity.  
 

The primary objective of this chapter was to demonstrate that the DVS method can be used effectively to 

design and optimize a well completion from a technical standpoint.  We believe that the DVS method has 

been successfully demonstrated and validated for that purpose, and we recognize that such tools must be 

used with the relevant economic constraints.  Our goal was to provide a tool.  We believe that the DVS 

method can be used to effectively design and model virtually any well completion that can be envisioned. 
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CHAPTER V 
 

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 
 

5.1 Summary 
 

The primary purpose of this work is to develop a new method to predict the transient and pseudosteady-

state pressure and production behavior of a closed, rectangular reservoir.  In particular, to develop an 

analytical/semi-analytical solution that can be used to model vertical and horizontal wells with or without a 

variety of hydraulic fractures.  Such a solution can be extended to other cases, but the aforementioned 

cases are the focus of this work. 
 

In this work we performed the following tasks as: 
 

� We developed the method of distributed volumetric sources (DVS) as a solution for the problem of 

pressure distributions in a closed, rectangular reservoir using a uniform flux source (the simplest case 

for such problems).  
 

� Using the DVS solution method, we have successfully developed and validated the solutions for 

pressure behavior of simple and complex well/fracture configurations as follows:  
 

— Unfractured vertical wells 

— Horizontal well (uniform-flux and infinite-conductivity) 

— Hydraulically fractured vertical wells (infinite- and finite-conductivity fractures). 
 

� We have generated the transient and pseudosteady-state productivity index behavior using the pressure 

response results (using the DVS method) and we validated these results using reservoir simulation 

and/or existing analytical/semi-analytical models from the production engineering literature. 
 

� We demonstrated the applicability of the new solution method in predicting production behavior for a 

complex well/fracture configuration — specifically, the case of a horizontal well with multiple trans-

verse fractures, where both the horizontal section and the fractures contribute to production. 
 

� As an application, we applied the DVS method as an optimization/screening tool to obtain the best 

completion scheme for the development of a field example case (estimated multiple production 

performance cases for a reservoir with wells produced at constant bottomhole pressures for various 

completion scenarios). 
 

5.2 Conclusions 
 

We have successfully developed, validated, and demonstrated the DVS method to a practical mechanism 

for the generation of consistent transient and pseudosteady-state solutions for complex well/fracture 

systems.  The DVS method has been shown to provide reliable results with relatively moderate com-

putational effort. 
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As a validation, we utilized the DVS approach to create well/reservoir models for simple cases with well-

known solutions as well as for a complex well/reservoir configuration case that where a reservoir simula-

tion model was used for validation.  The advantage of the DVS method is more obvious for cases with 

significant complexities — such as permeability anisotropy, partial penetration of the source in any of the 

principal directions, and/or additional pressure losses stemming from the particular geometry of the flow 

path inside the sources. 
 

For our particular purposes (production forecasting and optimizing the well completion strategy), we 

wanted to provide a consistent mechanism to generate the transient and pseudosteady-state productivity 

indices.  In such applications the DVS method has been shown to be extraordinarily flexible in model 

construction and the DVS method is comparable in terms of computation speeds with most analytical 

solutions (for simple cases) and the DVS method is competitive with numerical simulation models for 

complex reservoir cases. 
 

5.3 Recommendations for Future Work 
 

The future work on this topic should focus on the application of the DVS method for more cases of 

complex well/fracture schemes.  In this work we demonstrate a single example case of the application of 

the DVS method.  One of the basic assumptions in development of the DVS solution is the assumption of 

the reservoir having closed (no flow) boundaries — future efforts should also consider constant pressure 

and/or mixed boundary conditions.  
 

Also, complex well/fracture completion schemes are typically deployed for the development of economi-

cally-marginal gas reservoirs — those in which non-Darcy (i.e., non-laminar) flow effects can considerably 

affect the production performance of the system.  Incorporation of non-Darcy effects should be considered 

in future research efforts. 
 

Perhaps less important from a research standpoint, but certain important from the application standpoint is 

the issue of computational efficiency.  The DVS method is an analytical/semi-analytical solution approach 

(the "semi-analytical" label applies to cases such as finite-conductivity wells or fractures which require 

discretization of the source), and as such the solutions are direct — but this fact does not guarantee speed or 

efficiency of computations due to the structure and component terms in the DVS solutions.  Optimization 

of DVS solutions in terms of computational speed may be achieved at a cost in accuracy, but in a research 

initiative such as this, we are far more interested in accuracy than speed.  As a suggestion, it is likely that 

the conversion of the DVS method to a more traditional programming language (all of our work is 

performed in Mathematica) will substantially improve computational times. 
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NOMENCLATURE 

 
 

 

Variables 
 

A = matrix of source effects 

b = drawdown vector 

bf = Fracture width, ft 

C = matrix of pressure drop effects  

CfD = dimensionless fracture conductivity 

ct = total compressibility, psi-1 

ctrad = conversion factor 

cx = position of the center of the source in x direction, ft 

cy = position of the center of the source in y direction, ft 

cz = position of the center of the source in z direction, ft 

Dw = source domain 

D = coefficient matrix 

dp = proppant diameter, in 

f = 1D solution to the flow equation 

G = Green's function, initial gas in place, BCF 

Gp = Cumulative gas production, BCF 

H = Heaviside unit step function 

h = Height, ft 

JD = dimensionless productivity index 

JD,trad = traditional definition of dimensionless productivity index 

K0 = Bessel K function of order zero 

k = permeability, reference permeability, md 

kf = fracture permeability 

kx = directional permeability in x direction, md 

ky = directional permeability in y direction, md 

kz = directional permeability in z direction, md 

L = reference length, ft 

M = coefficient matrix of material balance equation 

m(p) = pseudopressure function ∫
p

pref

z

pdp

µ
2  

Nprop = Proppant number, 
reservoir

fracturef

kV

Vk2
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n = number of fracture segments 

nh = number segments in horizontal section 

nx = number of fracture segments in x direction 

nz = number of fracture segments in z direction 

p = pressure, psi 

PD = Dimensionless pressure vector 

pi = initial pressure, psi 

pwf = well flowing pressure, psi 

wDp  = Dimensionless wellbore pressure in Laplace domain 

pδD = dimensionless pressure due to instantaneous source 

PI = Productivity index, STB/d/psi 

puD = dimensionless pressure due to continuous source 

q = source strength, production rate 

fDq  = Dimensionless flow in fracture in Laplace domain 

q = source strength vector 

rw = wellbore radius 

s = Laplace parameter 

Se = Boundary surface domain 

t = time 

t = integrating variable 

tD = dimensionless time  

tDA = dimensionless time with regard to reference drainage volume 

tDA,trad = dimensionless time with regard to fracture half-length 

tDxf = traditional dimensionless time with regard to drainage area 

U = Product of 3 unit step functions 

ut = derivative of function u with respect to time 

uxx = second derivative of function u with respect to position 

Vfracture = Fracture volume, ft3 

Vreservoir = reservoir volume, ft3 

wx = source width in x direction, ft 

wy = source width in y direction, ft 

wz = source width in y direction, ft 

xD = dimensionless length in x direction, x/xe 

xe = length of the outer box, ft 

xf = fracture half length, ft 

xl = dimensionless starting position of the source 
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xu = dimensionless ending position of the source 

yD = dimensionless width in y direction, y/ye 

ye = width of the outer box, ft 

z = Gas compressibility 

zD = dimensionless height in z direction, z/ze 

ze = height of the outer box, ft 
 

Greek Symbols 
 

φ = porosity, fraction 

φp = proppant porosity 

η = diffusivity, 
tc

k

φµ
 

µ = viscosity, cp 

ρp = proppant density 
 

Subscript 
 

f = fracture 

g = gas 

gen = general 

max = maximum 
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APPENDIX A 

 

DEVELOPMENT OF THE SOLUTION 

 

Development of the Model 
 

The model consists of a rectilinear, anisotropic, homogeneous medium with no-flow boundaries with 

boundaries parallel to the main permeability axes. The source is defined as a rectilinear box in the 

surrounding box with the same properties of the main reservoir medium. Fig. A.1 shows the schematic of 

the model. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Figure A.1— Schematic of the Model 

 

For an anisotropic, homogeneous reservoir with internal source, the diffusivity equation can be written as: 
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With the following initial and boundary conditions: 
 

I.C.: 

ipzyxp =)0,,,(  (A.2) 
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Where 

t

i
i c

k

φµ
η = , i = x, y, and z  (A.4) 

),,,( tzyxQ in Eq. A.1 is the source function, which for the instantaneous source can be written as: 
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)(tδ represents the Dirac delta function and )(xH represents the Heaviside unit-step function. 

To simplify the problem we define dimensionless variables as the followings: 
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It should be noted that the dimensionless pressure and time defined in Eqs. A.7 and A.8 have different 

definitions than the traditional definitions of the dimensionless pressure and time. k and L are reference 

permeability and length with the following definitions: 
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Introducing the dimensionless variables to Eq. A.1 and its initial and boundary conditions we have: 
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With 

I.C.: 
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),,( DDD zyxU represents the product of three unit step functions in the three coordinate axes as: 
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Solution of the Problem 

According to our definition of the instantaneous source function and benefiting from the properties of the 

Dirac delta function, we can assume that the source function is only effective at the time (tD= 0) and there is 

no continuous effect of source after this time. Based on this assumption we can transfer the source function 

from the partial differential equation (Eq. A.10) to the initial condition. The two equations are essentially 

equivalent. The new equation with its new initial condition (boundary conditions are still the same as 

described in Eq. A.12) can be written as: 
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This condition describe the system at time (tD= 0), where a unit-strength change is introduced uniformly 

over the source volume. This change raises the dimensionless pressure of the source to the value equal to  
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zDyDxD www8

1
, whereas the rest of the system is still in its initial pressure. This situation is formulated in 

Eq. A.17. 

Regarding to the homogeneity of the main PDE and its initial and boundary conditions, we applied the 

method of separation of variables to solve the problem. In this method we assume that the solution in 3D 

can be described as the product of three 1D solutions in different axes. 

),(),(),(),,,( DDDDDDDDDDD tzZtyYtxXtzyxp =  (A.18) 

Introducing this assumption to Eq. A.16 and A.12 we will have 3 separate simple PDEs as the followings: 
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Eq. A.19 has a solution in the form of an infinite series as: 
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In order to obtain the series coefficients (ain) we have to use the initial condition. It can be seen in Eq. A.17 

that the initial condition function is the product of three separate functions of x, y, and z as the following: 

zD

zDzDDzDzDD

yD

yDyDDyDyDD

xD

xDxDDxDxDD
DDDD

w

wczHwczH

w

wcyHwcyH

w

wcxHwcxH
zyxp

2

)]()([
                             

2

)]()([
                            

2

)]()([
)0,,,(

+−−−−×

+−−−−
×

+−−−−=

 (A.21) 

This leads us to use the following initial condition for a 1D solution as: 
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Using the orthogonality property of the cosine function the values of ains are calculated as: 
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We can define a new dimensionless time for each direction as: 
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The final form of 1D solution can be described as: 
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Apart from the solution in the form of time series, we can describe the solution in 1D as the following 

forms: 
 

- Solution in the form of Jacobian Elliptic Theta function: 
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- Solution in Laplace domain  
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In Eqs. A.26 and A.27 iDl and iDu are defined as the following: 
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, i = x, y, and z, I = X, Y, and Z (A.28) 

 

Each of these representations has advantages and disadvantages. For instance, the Laplace transform 

solution is in closed form, but needs numerical inversion. The Theta function form needs numerical 

integration. The time series form, used in this work, is easy to calculate for moderate and large times, but 

converges slowly for short times. A numerically efficient formulation uses an additional "trick":  
 

The infinite sum is replaced by a finite sum  
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Where  
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and 
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Floor21 maxn
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With this modification the 1D solution is calculated with maximum a couple of thousand terms, and the 

result is very accurate according to the corroboration done both with multi-precision inversion of the 

Laplace transform form and numerical integration of the Theta function form.  
 

And the final solution for dimensionless pressure is: 
 

 ),(),(),(),,,( DzDDyDDxDDDDDD tzZtyYtxXtzyxp =δ  (A.32) 

 

It should be noted that the use of symbol )( Dpδ is to emphasize on the fact that the solution for 

dimensionless pressure is derived for the case where we have an instantaneous source. Solution to a 

continuous source can be derived by integration of the instantaneous source solution over the time. 
 

'

0

' ).( D

t

DDuD tdtpp
D

∫= δ  (A.33) 

 

Integration of Eq. A.33 is carried out numerically. Starting from a very early time (in this work tD= 10-12), 

we assume the value of pressure is equal to the value of pressure derivative. Integration is then taking place 

from the starting point over the time.  
 

It should be noted again that the dimensionless pressure and time used for this calculation differs from what 

is defined traditionally. The dimensionless time with respect to the drainage area is related to our 

dimensionless time through the relation: 
 

DtradtradDA

xxe
trad

tct

kL

kkz
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=

=

,

 (A.34) 

 

The dimensionless pressure, traditionally used in the petroleum industry is related to our uDp  function 

according to the relation: 
 

uDtradtraduD pcp π2, =  (A.35) 

 

In field units, the pressure drawdown is correlated to dimensionless pressure as: 
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and the time as 
 

( )
tradDA
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eet t
kk

yxc
t ,

0002637.0

µφ=  (A.37) 

 

where k is in md, µ in cp, B in resBBL/STB, xe,ye,ze,cx,cy,cz,wx,wy and wz in ft, q in STB/D, pwf and pi in psi, 
t in hr, ct in 1/psi, and φ is dimensionless. 
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APPENDIX B 
 

DIMENSIONLESS PRODUCTIVITY INDEX FROM PRESSURE DATA 

 

In production engineering, the productivity index is defined as the ability of the reservoir to produce hydrocarbon 

per unit pressure drop in the reservoir (volume/time/pressure). 
 

)( wfavg pp

q
J

−
=  (B.1) 

 

In which   
 

q = Flow Rate 

pavg = Average Reservoir Pressure 

pwf = Well Flowing Pressure 
 

Introducing the Dimensionless parameters as the followings the expression for the Dimensionless productivity 

index would be obtained. 
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With: 
 

Pi = Initial Reservoir Pressure 

k = Reservoir Permeability  

h = Reservoir Thickness 

B = Formation Volume Factor  

µ = Fluid Viscosity 
 

Combining Eqs. B.1 through B.3 we have: 
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Assuming a constant compressibility during depletion we can write: 
 

V

p

V
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 (B.5) 

AhV φ=  (B.6) 
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Using the definition for dimensionless pressure and applying it on Eq. B.8 we have: 
  

DA
t

tradavgD t
Ac
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p π

φµ
π 22,, ==   (B.9) 

 

Where; 
 

Ac

kt
t

t
DA φµ

=  (Dimensionless time defined based on drainage area) (B.10) 

 

Combination of Eqs. B.9 and B.4 would lead us to an expression correlating the dimensionless productivity index 

as a function of dimensionless pressure and dimensionless time (Eq. B.11)   
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Or based on the new dimensionless variables defined in Appendix A 
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J
−

=
π2

1  (B.12) 

 

The dimensionless productivity index is time dependent in the transient flow regime and constant in the 

pseudo-steady state.  
 

In field units, the productivity index is expressed as 
 

tradD
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J
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kkz
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=  (B.13) 

 

Where k is in md, µ in cp, B in resBBL/STB, q in STB/D, pwf and pi in psi, t in hr, ct in 1/psi, φ is 
dimensionless and PI is in (STB/D/psi). 
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APPENDIX C 
 

DETAILED RESULTS OF CALCULATION FOR MAXIMUM 

DIMENSIONLESS PRODUCTIVITY INDEX OF THE EXAMPLE CASE, 

PROPPANT NUMBER (NProp) = 0.001 

 
 

In this appendix we provide details of calculation results and complete set of graphs describing the 

production behavior of example problem in chapter IV when 1,000 lb of proppant (NProp =0.001) is used for 

stimulation. All the fracture sizes have been described in ft.  
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Table C.1 — Table of Mathematically Feasible Fracture Sizes for 
Example Case in Chapter IV (NProp =0.001) 

 
 

Nfrac  wx  wy  wz  nfrac  wx  wy  wz 
1  4.4  0.005  50.0  2  660.00  0.03  0.03 
1  332.2  0.005  0.7  2  0.36  0.03  50.00 
1  660.0  0.005  0.3  2  330.18  0.03  0.05 
1  2.2  0.010  50.0  2  660.00  0.03  0.03 
1  331.1  0.010  0.3  2  0.31  0.04  50.00 
1  660.0  0.010  0.2  2  330.16  0.04  0.05 
1  1.5  0.015  50.0  2  660.00  0.04  0.02 
1  330.7  0.015  0.2  2  0.27  0.04  50.00 
1  660.0  0.015  0.1  2  330.14  0.040  0.041 
1  1.1  0.020  50.0  2  660.00  0.040  0.021 
1  330.5  0.020  0.2  2  0.24  0.045  50.000 
1  660.0  0.020  0.1  2  330.12  0.045  0.037 
1  0.9  0.025  50.0  2  660.00  0.045  0.018 
1  330.4  0.025  0.1  2  0.22  0.050  50.000 
1  660.0  0.025  0.1  2  330.11  0.050  0.033 
1  0.7  0.030  50.0  2  660.00  0.050  0.017 
1  330.4  0.030  0.1  3  1.45  0.005  50.000 
1  660.0  0.030  0.1  3  330.73  0.005  0.220 
1  0.6  0.035  50.0  3  660.00  0.005  0.110 
1  330.3  0.035  0.1  3  0.73  0.010  50.000 
1  660.0  0.035  0.0  3  330.36  0.010  0.110 
1  0.5  0.040  50.0  3  660.00  0.010  0.055 
1  330.3  0.040  0.1  3  0.48  0.015  50.000 
1  660.0  0.040  0.0  3  330.24  0.015  0.073 
1  0.5  0.045  50.0  3  660.00  0.015  0.037 
1  330.2  0.045  0.1  3  0.36  0.020  50.000 
1  660.0  0.045  0.0  3  330.18  0.020  0.055 
1  0.4  0.050  50.0  3  660.00  0.020  0.028 
1  330.2  0.050  0.1  3  0.29  0.025  50.000 
1  660.0  0.050  0.0  3  330.15  0.025  0.044 
2  2.2  0.005  50.0  3  660.00  0.025  0.022 
2  331.1  0.005  0.3  3  0.24  0.030  50.000 
2  660.0  0.005  0.2  3  330.12  0.030  0.037 
2  1.1  0.010  50.0  3  660.00  0.030  0.018 
2  330.5  0.010  0.2  3  0.207  0.035  50.000 
2  660.0  0.010  0.1  3  330.104  0.035  0.031 
2  0.7  0.015  50.0  3  660.000  0.035  0.016 
2  330.4  0.015  0.1  3  0.182  0.040  50.000 
2  660.0  0.015  0.1  3  330.091  0.040  0.027 
2  0.54  0.02  50.00  3  660.000  0.040  0.014 
2  330.27  0.02  0.08  3  0.161  0.045  50.000 
2  660.00  0.02  0.04  3  330.081  0.045  0.024 
2  0.44  0.03  50.00  3  660.000  0.045  0.012 
2  330.22  0.03  0.07  3  0.145  0.050  50.000 
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Table C.1— Continued 
 
 

nfrac  wx  wy  wz  nfrac  wx  wy  wz 
3  330.073  0.050  0.022  4  660.000  0.050  0.008 
3  660.000  0.050  0.011  5  0.871  0.005  50.000 
4  1.089  0.005  50.000  5  330.436  0.005  0.132 
4  330.545  0.005  0.165  5  660.000  0.005  0.066 
4  660.000  0.005  0.083  5  0.436  0.010  50.000 
4  0.545  0.010  50.000  5  330.218  0.010  0.066 
4  330.272  0.010  0.082  5  660.000  0.010  0.033 
4  660.000  0.010  0.041  5  0.290  0.015  50.000 
4  0.363  0.015  50.000  5  330.145  0.015  0.044 
4  330.182  0.015  0.055  5  660.000  0.015  0.022 
4  660.000  0.015  0.028  5  0.218  0.020  50.000 
4  0.272  0.020  50.000  5  330.109  0.020  0.033 
4  330.136  0.020  0.041  5  660.000  0.020  0.017 
4  660.000  0.020  0.021  5  0.174  0.025  50.000 
4  0.218  0.025  50.000  5  330.087  0.025  0.026 
4  330.109  0.025  0.033  5  660.000  0.025  0.013 
4  660.000  0.025  0.017  5  0.145  0.030  50.000 
4  0.182  0.030  50.000  5  330.073  0.030  0.022 
4  330.091  0.030  0.027  5  660.000  0.030  0.011 
4  660.000  0.030  0.014  5  0.124  0.035  50.000 
4  0.156  0.035  50.000  5  330.062  0.035  0.019 
4  330.078  0.035  0.024  5  660.000  0.035  0.009 
4  660.000  0.035  0.012  5  0.109  0.040  50.000 
4  0.136  0.040  50.000  5  330.054  0.040  0.016 
4  330.068  0.040  0.021  5  660.000  0.040  0.008 
4  660.000  0.040  0.010  5  0.097  0.045  50.000 
4  0.121  0.045  50.000  5  330.048  0.045  0.015 
4  330.061  0.045  0.018  5  660.000  0.045  0.007 
4  660.000  0.045  0.009  5  0.087  0.050  50.000 
4  0.109  0.050  50.000  5  330.044  0.050  0.013 
4  330.054  0.050  0.016  5  660.000  0.050  0.007 



 

 

8
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Table C.2 — Locus of Maxima for Example Case in Chapter IV as a Function of Number of Fractures and Permeability 

Anisotropy (NProp =0.001) 
 

 

 nfrac  wx  wy  wz  kv/kh  JD, pss, max , 1 fracture  JD, pss, max , Total  Fracture Contribution 
1  660.00  0.050  0.03  1.000  1.2953  1.2953  0.1229 
2  660.00  0.050  0.02  1.000  0.7010  1.4020  0.1913 
3  660.00  0.050  0.01  1.000  0.5154  1.5462  0.2676 
4  660.00  0.050  0.01  1.000  0.4319  1.7278  0.3339 
5  660.00  0.050  0.01  1.000  0.3846  1.9231  0.3900 
1  660.00  0.050  0.03  0.100  0.6971  0.6971  0.1389 
2  660.00  0.043  0.02  0.100  0.3794  0.7588  0.2211 
3  660.00  0.050  0.01  0.100  0.2789  0.8368  0.2981 
4  660.00  0.050  0.01  0.100  0.2311  0.9246  0.3619 
5  660.00  0.043  0.01  0.100  0.2030  1.0151  0.4148 
1  0.79  0.028  50.00  0.010  0.3225  0.3225  0.2722 
2  0.54  0.020  50.00  0.010  0.1802  0.3605  0.3523 
3  0.58  0.013  50.00  0.010  0.1314  0.3941  0.4094 
4  0.44  0.013  50.00  0.010  0.1069  0.4277  0.4535 
5  0.35  0.013  50.00  0.010  0.0920  0.4601  0.4887 
1  0.79  0.028  50.00  0.001  0.1649  0.1649  0.5397 
2  0.54  0.020  50.00  0.001  0.1051  0.2101  0.6191 
3  0.36  0.020  50.00  0.001  0.0820  0.2461  0.6715 
4  0.44  0.013  50.00  0.001  0.0697  0.2788  0.7079 
5  0.35  0.013  50.00  0.001  0.0621  0.3106  0.7354 
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Figure C.1 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.001, kx = ky = kz = 1 md) 
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Figure C.2 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.001, kx = ky = 1 md, kz = 0.1 md) 
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Figure C.3 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example 
Case (NProp = 0.001, kx = ky = 1 md, kz = 0.01 md) 
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Figure C.4 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.001, kx = ky = 1 md, kz = 0.001 md) 
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Figure C.5 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.001, kx = ky = kz = 1 md) 

 



 

 

86

1.0 1.0

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

F
ra

ct
ur

e 
C

on
tr

ib
ut

io
n 

to
 F

lo
w

 (
F

ra
ct

io
n)

10
-10

10
-10

10
-9

10
-9

10
-8

10
-8

10
-7

10
-7

10
-6

10
-6

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

Dimensionless Time Based on Drainage Area ( tDA)

 

 ye/ nfrac

xe 

ze 

Legend :
 

  Fracture Contribution to Flow
 

 Fracture Contribution as a Function of Dimensionle ss Time
 and Number of Fractures ( NProp  = 0.001, kx=  ky= 1 md,  kz= 0.1 md)

n frac  = 1

3

2

4

n frac  = 5

Well/Reservoir Schematic :

  
 

 

Figure C.6 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.001, kx = ky = 1 md, kz = 0.1 md) 
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Figure C.7 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.001, kx = ky = 1 md, kz = 0.01 md) 
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Figure C.8 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 0.001, kx = ky = 1 md, kz = 0.001 md) 
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APPENDIX D 
 

DETAILED RESULTS OF CALCULATION FOR MAXIMUM 

DIMENSIONLESS PRODUCTIVITY INDEX OF THE EXAMPLE CASE, 

PROPPANT NUMBER (NProp) = 0.01 

 
 

In this appendix we provide details of calculation results and complete set of graphs describing the 

production behavior of example problem in chapter IV when 10,000 lb of proppant (NProp =0.01) is used for 

stimulation. All the fracture sizes have been described in ft.  
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Table D.1 — Table of Mathematically Feasible Fracture Sizes for 
Example Case in Chapter IV (NProp =0.01) 

 
 

nfrac  wx  wy  wz  nfrac  wx  wy  wz 
1  660.0  0.000  50.0  2  4.36  0.03  50.00 
1  43.6  0.005  50.0  2  332.18  0.03  0.66 
1  351.8  0.005  6.2  2  660.00  0.03  0.33 
1  660.0  0.005  3.3  2  3.63  0.03  50.00 
1  21.8  0.010  50.0  2  331.82  0.03  0.55 
1  340.9  0.010  3.2  2  660.00  0.03  0.28 
1  660.0  0.010  1.7  2  3.11  0.04  50.00 
1  14.5  0.015  50.0  2  331.56  0.04  0.47 
1  337.3  0.015  2.2  2  660.00  0.035  0.236 
1  660.0  0.015  1.1  2  2.72  0.040  50.000 
1  10.9  0.020  50.0  2  331.36  0.040  0.411 
1  335.4  0.020  1.6  2  660.00  0.040  0.206 
1  660.0  0.020  0.8  2  2.42  0.045  50.000 
1  8.7  0.025  50.0  2  331.21  0.045  0.365 
1  334.4  0.025  1.3  2  660.00  0.045  0.183 
1  660.0  0.025  0.7  2  2.18  0.050  50.000 
1  7.3  0.030  50.0  2  331.09  0.050  0.329 
1  333.6  0.030  1.1  2  660.00  0.050  0.165 
1  660.0  0.030  0.6  3  660.00  0.000  50.000 
1  6.2  0.035  50.0  3  14.52  0.005  50.000 
1  333.1  0.035  0.9  3  337.26  0.005  2.153 
1  660.0  0.035  0.5  3  660.00  0.005  1.100 
1  5.4  0.040  50.0  3  7.26  0.010  50.000 
1  332.7  0.040  0.8  3  333.63  0.010  1.088 
1  660.0  0.040  0.4  3  660.00  0.010  0.550 
1  4.8  0.045  50.0  3  4.84  0.015  50.000 
1  332.4  0.045  0.7  3  332.42  0.015  0.728 
1  660.0  0.045  0.4  3  660.00  0.015  0.367 
1  4.4  0.050  50.0  3  3.63  0.020  50.000 
1  332.2  0.050  0.7  3  331.82  0.020  0.547 
1  660.0  0.050  0.3  3  660.00  0.020  0.275 
2  660.0  0.000  50.0  3  2.90  0.025  50.000 
2  21.8  0.005  50.0  3  331.45  0.025  0.438 
2  340.9  0.005  3.2  3  660.00  0.025  0.220 
2  660.0  0.005  1.7  3  2.420  0.030  50.000 
2  10.9  0.010  50.0  3  331.210  0.030  0.365 
2  335.4  0.010  1.6  3  660.000  0.030  0.183 
2  660.0  0.010  0.8  3  2.074  0.035  50.000 
2  7.3  0.015  50.0  3  331.037  0.035  0.313 
2  333.63  0.02  1.09  3  660.000  0.035  0.157 
2  660.00  0.02  0.55  3  1.815  0.040  50.000 
2  5.45  0.02  50.00  3  330.908  0.040  0.274 
2  332.72  0.02  0.82  3  660.000  0.040  0.138 
2  660.00  0.02  0.41  3  1.613  0.045  50.000 
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Table D.1 — Continued  
 

 

nfrac  wx  wy  wz  nfrac  wx  wy  wz 
3  330.807  0.045  0.244  4  330.545  0.050  0.165 
3  660.000  0.045  0.122  4  660.000  0.050  0.083 
3  1.452  0.050  50.000  5  660.000  0.000  50.000 
3  330.726  0.050  0.220  5  8.712  0.005  50.000 
3  660.000  0.050  0.110  5  334.356  0.005  1.303 
4  660.000  0.000  50.000  5  660.000  0.005  0.660 
4  10.890  0.005  50.000  5  4.356  0.010  50.000 
4  335.445  0.005  1.623  5  332.178  0.010  0.656 
4  660.000  0.005  0.825  5  660.000  0.010  0.330 
4  5.445  0.010  50.000  5  2.904  0.015  50.000 
4  332.723  0.010  0.818  5  331.452  0.015  0.438 
4  660.000  0.010  0.413  5  660.000  0.015  0.220 
4  3.630  0.015  50.000  5  2.178  0.020  50.000 
4  331.815  0.015  0.547  5  331.089  0.020  0.329 
4  660.000  0.015  0.275  5  660.000  0.020  0.165 
4  2.723  0.020  50.000  5  1.742  0.025  50.000 
4  331.361  0.020  0.411  5  330.871  0.025  0.263 
4  660.000  0.020  0.206  5  660.000  0.025  0.132 
4  2.178  0.025  50.000  5  1.452  0.030  50.000 
4  331.089  0.025  0.329  5  330.726  0.030  0.220 
4  660.000  0.025  0.165  5  660.000  0.030  0.110 
4  1.815  0.030  50.000  5  1.245  0.035  50.000 
4  330.908  0.030  0.274  5  330.622  0.035  0.188 
4  660.000  0.030  0.138  5  660.000  0.035  0.094 
4  1.556  0.035  50.000  5  1.089  0.040  50.000 
4  330.778  0.035  0.235  5  330.545  0.040  0.165 
4  660.000  0.035  0.118  5  660.000  0.040  0.083 
4  1.361  0.040  50.000  5  0.968  0.045  50.000 
4  330.681  0.040  0.206  5  330.484  0.045  0.146 
4  660.000  0.040  0.103  5  660.000  0.045  0.073 
4  1.210  0.045  50.000  5  0.871  0.050  50.000 
4  330.605  0.045  0.183  5  330.436  0.050  0.132 
4  660.000  0.045  0.092  5  660.000  0.050  0.066 
4  1.089  0.050  50.000         
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Table D.2 — Locus of Maxima for Example Case in Chapter IV as a Function of Number of Fractures and Permeability 

Anisotropy (NProp =0.01) 
 

 

nfrac  wx  wy  wz  kv/kh  JD, pss, max , 1 fracture  JD, pss, max , Total  Fracture Contribution 

1  660.00  0.050  0.33  1.000  1.3090  1.3090  0.1347 
2  660.00  0.050  0.17  1.000  0.7090  1.4181  0.2076 
3  660.00  0.050  0.11  1.000  0.5233  1.5700  0.2891 
4  660.00  0.050  0.08  1.000  0.4405  1.7620  0.3596 
5  660.00  0.050  0.07  1.000  0.3935  1.9676  0.4176 
1  10.89  0.020  50.00  0.100  0.7363  0.7363  0.2027 
2  3.11  0.035  50.00  0.100  0.4028  0.8055  0.2950 
3  1.71  0.043  50.00  0.100  0.2961  0.8882  0.3677 
4  1.28  0.043  50.00  0.100  0.2440  0.9758  0.4220 
5  660.00  0.043  0.08  0.100  0.2134  1.0670  0.4585 
1  10.89  0.020  50.00  0.010  0.3999  0.3999  0.4244 
2  3.96  0.028  50.00  0.010  0.2531  0.5062  0.5618 
3  2.64  0.028  50.00  0.010  0.2015  0.6045  0.6407 
4  1.56  0.035  50.00  0.010  0.1739  0.6955  0.6901 
5  1.24  0.035  50.00  0.010  0.1558  0.7791  0.7242 
1  10.89  0.020  50.00  0.001  0.2561  0.2561  0.6937 
2  3.96  0.028  50.00  0.001  0.1914  0.3829  0.7887 
3  2.64  0.028  50.00  0.001  0.1632  0.4897  0.8360 
4  1.56  0.035  50.00  0.001  0.1460  0.5841  0.8629 
5  1.24  0.035  50.00  0.001  0.1338  0.6689  0.8805 
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Figure D.1 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = kz = 1 md) 
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Figure D.2 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = 1 md, kz = 0.1 md) 



 

 

9
5 

5 5

4 4

3 3

2 2

1 1

0 0

D
im

en
si

on
le

ss
 P

ro
du

ct
iv

ity
 In

de
x 

(
J D

)

10
-6

10
-6

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

Dimensionless Time Based on Drainage Area ( tDA)

 

ye/ nfrac

xe 

ze 

n frac  = 1

n frac  = 5

Legend :
 

   Dimensionless Productivity Index ( JD)
 

Transient Flow
Region

 

 Dimensionless Productivity Index as a Function of Dimensionless Time
 and Number of Fractures ( NProp  = 0.01, kx=  ky=  kz= 0.01 md)

Pseudosteady-State Flow
Region

 

n frac  = 1

3

2

4

n frac  = 5

3

Well/Reservoir Schematic :

 
 

 

Figure D.3 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = 1 md, kz = 0.01 md) 
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Figure D.4 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = 1 md, kz = 0.001 md) 
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Figure D.5 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = kz = 1 md) 
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Figure D.6 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = 1 md, kz = 0.1 md) 



 

 

9
9 

1.0 1.0

0.9 0.9

0.8 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

F
ra

ct
ur

e 
C

on
tr

ib
ut

io
n 

to
 F

lo
w

 (
F

ra
ct

io
n)

10
-10

10
-10

10
-9

10
-9

10
-8

10
-8

10
-7

10
-7

10
-6

10
-6

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

Dimensionless Time Based on Drainage Area ( tDA)

 

 ye/ nfrac

xe 

ze 

Legend :
 

  Fracture Contribution to Flow
 

 Fracture Contribution as a Function of Dimensionle ss Time
 and Number of Fractures ( NProp  = 0.01, kx=  ky= 1 md,  kz= 0.01 md)

n frac  = 1

3

2

4

n frac  = 5

Well/Reservoir Schematic :

  
 

 

Figure D.7 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = 1 md, kz = 0.01 md) 
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Figure D.8 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.01, kx = ky = 1 md, kz = 0.001 md) 
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APPENDIX E 
 

DETAILED RESULTS OF CALCULATION FOR MAXIMUM 

DIMENSIONLESS PRODUCTIVITY INDEX OF THE EXAMPLE CASE, 

PROPPANT NUMBER (NProp) = 0.1 

 
 

In this appendix we provide details of calculation results and complete set of graphs describing the 

production behavior of example problem in chapter IV when 100,000 lb of proppant (NProp =0.1) is used for 

stimulation. All the fracture sizes have been described in ft.  
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Table E.1 — Table of Mathematically Feasible Fracture Sizes for 
Example Case in Chapter IV (NProp =0.1) 

 
 

nfrac  wx  wy  wz  nfrac  wx  wy  wz 
1  660.0  0.003  50.0  2  43.56  0.03  50.00 
1  435.6  0.005  50.0  2  351.78  0.03  6.19 
1  547.8  0.005  39.8  2  660.00  0.03  3.30 
1  660.0  0.005  33.0  2  36.30  0.03  50.00 
1  217.8  0.010  50.0  2  348.15  0.03  5.21 
1  438.9  0.010  24.8  2  660.00  0.03  2.75 
1  660.0  0.010  16.5  2  31.11  0.04  50.00 
1  145.2  0.015  50.0  2  345.56  0.04  4.50 
1  402.6  0.015  18.0  2  660.00  0.035  2.357 
1  660.0  0.015  11.0  2  27.23  0.040  50.000 
1  108.9  0.020  50.0  2  343.61  0.040  3.962 
1  384.5  0.020  14.2  2  660.00  0.040  2.063 
1  660.0  0.020  8.3  2  24.20  0.045  50.000 
1  87.1  0.025  50.0  2  342.10  0.045  3.537 
1  373.6  0.025  11.7  2  660.00  0.045  1.833 
1  660.0  0.025  6.6  2  21.78  0.050  50.000 
1  72.6  0.030  50.0  2  340.89  0.050  3.195 
1  366.3  0.030  9.9  2  660.00  0.050  1.650 
1  660.0  0.030  5.5  3  660.00  0.001  50.000 
1  62.2  0.035  50.0  3  145.20  0.005  50.000 
1  361.1  0.035  8.6  3  402.60  0.005  18.033 
1  660.0  0.035  4.7  3  660.00  0.005  11.000 
1  54.5  0.040  50.0  3  72.60  0.010  50.000 
1  357.2  0.040  7.6  3  366.30  0.010  9.910 
1  660.0  0.040  4.1  3  660.00  0.010  5.500 
1  48.4  0.045  50.0  3  48.40  0.015  50.000 
1  354.2  0.045  6.8  3  354.20  0.015  6.832 
1  660.0  0.045  3.7  3  660.00  0.015  3.667 
1  43.6  0.050  50.0  3  36.30  0.020  50.000 
1  351.8  0.050  6.2  3  348.15  0.020  5.213 
1  660.0  0.050  3.3  3  660.00  0.020  2.750 
2  660.0  0.002  50.0  3  29.04  0.025  50.000 
2  217.8  0.005  50.0  3  344.52  0.025  4.215 
2  438.9  0.005  24.8  3  660.00  0.025  2.200 
2  660.0  0.005  16.5  3  24.200  0.030  50.000 
2  108.9  0.010  50.0  3  342.100  0.030  3.537 
2  384.5  0.010  14.2  3  660.000  0.030  1.833 
2  660.0  0.010  8.3  3  20.743  0.035  50.000 
2  72.6  0.015  50.0  3  340.371  0.035  3.047 
2  366.30  0.02  9.91  3  660.000  0.035  1.571 
2  660.00  0.02  5.50  3  18.150  0.040  50.000 
2  54.45  0.02  50.00  3  339.075  0.040  2.676 
2  357.23  0.02  7.62  3  660.000  0.040  1.375 
2  660.00  0.02  4.13  3  16.133  0.045  50.000 
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Table E.1 — Continued  
 

 

nfrac  wx  wy  wz  nfrac  wx  wy  wz 
3  338.067  0.045  2.386  4  335.445  0.050  1.623 
3  660.000  0.045  1.222  4  660.000  0.050  0.825 
3  14.520  0.050  50.000  5  660.000  0.001  50.000 
3  337.260  0.050  2.153  5  87.120  0.005  50.000 
3  660.000  0.050  1.100  5  373.560  0.005  11.661 
4  660.000  0.001  50.000  5  660.000  0.005  6.600 
4  108.900  0.005  50.000  5  43.560  0.010  50.000 
4  384.450  0.005  14.163  5  351.780  0.010  6.191 
4  660.000  0.005  8.250  5  660.000  0.010  3.300 
4  54.450  0.010  50.000  5  29.040  0.015  50.000 
4  357.225  0.010  7.621  5  344.520  0.015  4.215 
4  660.000  0.010  4.125  5  660.000  0.015  2.200 
4  36.300  0.015  50.000  5  21.780  0.020  50.000 
4  348.150  0.015  5.213  5  340.890  0.020  3.195 
4  660.000  0.015  2.750  5  660.000  0.020  1.650 
4  27.225  0.020  50.000  5  17.424  0.025  50.000 
4  343.613  0.020  3.962  5  338.712  0.025  2.572 
4  660.000  0.020  2.063  5  660.000  0.025  1.320 
4  21.780  0.025  50.000  5  14.520  0.030  50.000 
4  340.890  0.025  3.195  5  337.260  0.030  2.153 
4  660.000  0.025  1.650  5  660.000  0.030  1.100 
4  18.150  0.030  50.000  5  12.446  0.035  50.000 
4  339.075  0.030  2.676  5  336.223  0.035  1.851 
4  660.000  0.030  1.375  5  660.000  0.035  0.943 
4  15.557  0.035  50.000  5  10.890  0.040  50.000 
4  337.779  0.035  2.303  5  335.445  0.040  1.623 
4  660.000  0.035  1.179  5  660.000  0.040  0.825 
4  13.613  0.040  50.000  5  9.680  0.045  50.000 
4  336.806  0.040  2.021  5  334.840  0.045  1.445 
4  660.000  0.040  1.031  5  660.000  0.045  0.733 
4  12.100  0.045  50.000  5  8.712  0.050  50.000 
4  336.050  0.045  1.800  5  334.356  0.050  1.303 
4  660.000  0.045  0.917  5  660.000  0.050  0.660 
4  10.890  0.050  50.000         
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Table E.2— Locus of Maxima for Example Case in Chapter IV as a Function of Number of Fractures and Permeability 
Anisotropy (NProp =0.1) 

 
 

nfrac  wx  wy  wz  kv/kh  JD, pss, max , 1 fracture  JD, pss, max , Total  Fracture Contribution 

1  660.00  0.050  3.30  1.000  1.3845  1.3845  0.1845 
2  660.00  0.050  1.65  1.000  0.7429  1.4858  0.2571 
3  660.00  0.050  1.10  1.000  0.5478  1.6435  0.3366 
4  660.00  0.050  0.83  1.000  0.4608  1.8431  0.4034 
5  660.00  0.050  0.66  1.000  0.4117  2.0583  0.4588 
1  79.20  0.028  50.00  0.100  0.8297  0.8297  0.3178 
2  39.60  0.028  50.00  0.100  0.4672  0.9344  0.4424 
3  36.30  0.020  50.00  0.100  0.3577  1.0732  0.5333 
4  27.23  0.020  50.00  0.100  0.3059  1.2236  0.5990 
5  21.78  0.020  50.00  0.100  0.2750  1.3750  0.6469 
1  79.20  0.028  50.00  0.010  0.5162  0.5162  0.5681 
2  39.60  0.028  50.00  0.010  0.3431  0.6862  0.7010 
3  36.30  0.020  50.00  0.010  0.2852  0.8556  0.7688 
4  27.23  0.020  50.00  0.010  0.2559  1.0238  0.8116 
5  21.78  0.020  50.00  0.010  0.2373  1.1866  0.8400 
1  79.20  0.028  50.00  0.001  0.3852  0.3852  0.7948 
2  39.60  0.028  50.00  0.001  0.2939  0.5877  0.8673 
3  26.40  0.028  50.00  0.001  0.2571  0.7714  0.9017 
4  27.23  0.020  50.00  0.001  0.2367  0.9470  0.9203 
5  21.78  0.020  50.00  0.001  0.2230  1.1150  0.9331 

 
 



 

 

1
0

5

 

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

D
im

en
si

on
le

ss
 P

ro
du

ct
iv

ity
 In

de
x 

(
J D

)

10
-6

10
-6

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

Dimensionless Time Based on Drainage Area ( tDA)

 

ye/ nfrac

xe 

ze 

n frac  = 1

n frac  = 5

Legend :
 

  Dimensionless Productivity Index  ( JD)
 

Transient Flow
Region

 

 Dimensionless Productivity Index as a Function of Dimensionless Time
 and Number of Fractures ( NProp  = 0.1, kx=  ky=  kz= 1 md)

Pseudosteady-State Flow
Region

 

n frac  = 1

3
2
4

n frac  = 5

3

Well/Reservoir Schematic :

 
 

 

Figure E.1 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 0.1, kx = ky = kz = 1 md) 
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Figure E.2 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 0.1, kx = ky = 1 md, kz = 0.1 md) 



 

 

1
0

7

10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

D
im

en
si

on
le

ss
 P

ro
du

ct
iv

ity
 In

de
x 

(
J D

)

10
-6

10
-6

10
-5

10
-5

10
-4

10
-4

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

Dimensionless Time Based on Drainage Area ( tDA)

 

 ye/ nfrac

xe 

ze 

n frac  = 1

n frac  = 5

Legend :
 

   Dimensionless Productivity Index ( JD)
 

Transient Flow
Region

 

 Dimensionless Productivity Index as a Function of Dimensionless Time
 and Number of Fractures ( NProp  = 0.1, kx=  ky=  kz= 0.01 md)

Pseudosteady-State Flow
Region

 

n frac  = 1

3

2

4

n frac  = 5

3

Well/Reservoir Schematic :

 
 

 

Figure E.3 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 0.1, kx = ky = 1 md, kz = 0.01 md) 
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Figure E.4 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example 
 Case (NProp = 0.1, kx = ky = 1 md, kz = 0.001 md) 
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Figure E.5 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.1, kx = ky = kz = 1 md) 
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Figure E.6 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.1, kx = ky = 1 md, kz = 0.1 md) 
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Figure E.7 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.1, kx = ky = 1 md, kz = 0.01 md) 
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Figure E.8 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 0.1, kx = ky = 1 md, kz = 0.001 md). 
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APPENDIX F 
 

DETAILED RESULTS OF CALCULATION FOR MAXIMUM 

DIMENSIONLESS PRODUCTIVITY INDEX OF THE EXAMPLE CASE, 

PROPPANT NUMBER (NProp) = 1.0 

 
 

In this appendix we provide details of calculation results and complete set of graphs describing the 

production behavior of example problem in chapter IV when 1,000,000 lb of proppant (NProp = 1.0) is used 

for stimulation. All the fracture sizes have been described in ft.  
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Table F.1 — Table of Mathematically Feasible Fracture Sizes for 
Example Case in Chapter IV (NProp = 1.0) 

 
 

nfrac  wx  wy  wz   nfrac  wx  wy  wz 

1  660.0  0.033  50.0  3  660.0  0.025  22.0 

1  622.3  0.035  50.0  3  242.0  0.030  50.0 

1  641.1  0.035  48.5  3  451.0  0.030  26.8 

1  660.0  0.035  47.1  3  660.0  0.030  18.3 

1  544.5  0.040  50.0  3  207.4  0.035  50.0 

1  602.3  0.040  45.2  3  433.7  0.035  23.9 

1  660.0  0.040  41.3  3  660.0  0.035  15.7 

1  484.0  0.045  50.0  3  181.5  0.040  50.0 

1  572.0  0.045  42.3  3  420.8  0.040  21.6 

1  660.0  0.045  36.7  3  660.0  0.040  13.8 

1  435.6  0.050  50.0  3  161.3  0.045  50.0 

1  547.8  0.050  39.8  3  410.7  0.045  19.6 

1  660.0  0.050  33.0  3  660.0  0.045  12.2 

2  660.0  0.017  50.0  3  145.2  0.050  50.0 

2  544.5  0.020  50.0  3  402.6  0.050  18.0 

2  602.3  0.020  45.2  3  660.0  0.050  11.0 

2  660.0  0.020  41.3  4  660.0  0.008  50.0 

2  435.6  0.025  50.0  4  544.5  0.010  50.0 

2  547.8  0.025  39.8  4  602.3  0.010  45.2 

2  660.0  0.025  33.0  4  660.0  0.010  41.3 

2  363.0  0.030  50.0  4  363.0  0.015  50.0 

2  511.5  0.030  35.5  4  511.5  0.015  35.5 

2  660.0  0.030  27.5  4  660.0  0.015  27.5 

2  311.1  0.035  50.0  4  272.3  0.020  50.0 

2  485.6  0.035  32.0  4  466.1  0.020  29.2 

2  660.0  0.035  23.6  4  660.0  0.020  20.6 

2  272.3  0.040  50.0  4  217.8  0.025  50.0 

2  466.1  0.040  29.2  4  438.9  0.025  24.8 

2  660.0  0.040  20.6  4  660.0  0.025  16.5 

2  242.0  0.045  50.0  4  181.5  0.030  50.0 

2  451.0  0.045  26.8  4  420.8  0.030  21.6 

2  660.0  0.045  18.3  4  660.0  0.030  13.8 

2  217.8  0.050  50.0  4  155.6  0.035  50.0 

2  438.9  0.050  24.8  4  407.8  0.035  19.1 

2  660.0  0.050  16.5  4  660.0  0.035  11.8 
3  660.0  0.011  50.0  4  136.1  0.040  50.0 
3  484.0  0.015  50.0  4  398.1  0.040  17.1 
3  572.0  0.015  42.3  4  660.0  0.040  10.3 
3  660.0  0.015  36.7   4  121.0  0.045  50.0 
3  363.0  0.020  50.0  4  390.5  0.045  15.5 
3  511.5  0.020  35.5  4  660.0  0.045  9.2 
3  660.0  0.020  27.5  4  108.9  0.050  50.0 
3  290.4  0.025  50.0  4  384.5  0.050  14.2 
3  475.2  0.025  30.6  4  660.0  0.050  8.3 
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Table F.1 — Continued  
 

 

nfrac  wx  wy  wz 
5  660.0  0.007  50.0 
5  435.6  0.010  50.0 
5  547.8  0.010  39.8 
5  660.0  0.010  33.0 
5  290.4  0.015  50.0 
5  475.2  0.015  30.6 
5  660.0  0.015  22.0 
5  217.8  0.020  50.0 
5  438.9  0.020  24.8 
5  660.0  0.020  16.5 
5  174.2  0.025  50.0 
5  417.1  0.025  20.9 
5  660.0  0.025  13.2 
5  145.2  0.030  50.0 
5  402.6  0.030  18.0 
5  660.0  0.030  11.0 
5  124.5  0.035  50.0 
5  392.2  0.035  15.9 
5  660.0  0.035  9.4 
5  108.9  0.040  50.0 
5  384.5  0.040  14.2 
5  660.0  0.040  8.3 
5  96.8  0.045  50.0 
5  378.4  0.045  12.8 
5  660.0  0.045  7.3 
5  87.1  0.050  50.0 
5  373.6  0.050  11.7 
5  660.0  0.050  6.6 



 

 

1
1

6

Table F.2 — Locus of Maxima for Example Case in Chapter IV as a Function of Number of Fractures and 
Permeability Anisotropy (NProp = 1.0) 

 
 

nfrac  wx  wy  wz  kv/kh  JD, pss, max , 1 fracture  JD, pss, max , Total  Fracture Contribution 

1  547.80  0.050  39.76  1.000  1.7435  1.7435  0.3242 
2  438.90  0.050  24.81  1.000  0.9374  1.8748  0.4239 
3  402.60  0.050  18.03  1.000  0.6989  2.0968  0.5065 
4  384.45  0.050  14.16  1.000  0.5886  2.3544  0.5645 
5  373.56  0.050  11.66  1.000  0.5229  2.6144  0.6072 
1  547.80  0.050  39.76  0.100  1.1816  1.1816  0.4971 
2  438.90  0.050  24.81  0.100  0.6882  1.3764  0.6286 
3  207.43  0.035  50.00  0.100  0.5304  1.5912  0.7197 
4  155.57  0.035  50.00  0.100  0.4605  1.8420  0.7758 
5  124.46  0.035  50.00  0.100  0.4178  2.0890  0.8126 
1  435.60  0.050  50.00  0.010  0.8423  0.8423  0.7268 
2  217.80  0.050  50.00  0.010  0.5705  1.1410  0.8374 
3  170.82  0.043  50.00  0.010  0.4758  1.4275  0.8820 
4  155.57  0.035  50.00  0.010  0.4258  1.7032  0.9042 
5  124.46  0.035  50.00  0.010  0.3939  1.9696  0.9216 
1  435.60  0.050  50.00  0.001  0.7070  0.7070  0.8810 
2  217.80  0.050  50.00  0.001  0.5324  1.0648  0.9320 
3  170.82  0.043  50.00  0.001  0.4570  1.3711  0.9513 
4  155.57  0.035  50.00  0.001  0.4137  1.6547  0.9607 
5  124.46  0.035  50.00  0.001  0.3859  1.9294  0.9680 
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Figure F.1 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 1.0, kx = ky = kz = 1 md) 
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Figure F.2 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 1.0, kx = ky = 1 md, kz = 0.1 md) 
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Figure F.3 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 1.0, kx = ky = 1 md, kz = 0.01 md) 
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Figure F.4 — Dimensionless Productivity Index as a Function of Dimensionless Time and Number of Fractures for Example  
 Case (NProp = 1.0, kx = ky = 1 md, kz = 0.001 md) 
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Figure F.5 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 1.0, kx = ky = kz = 1 md) 
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Figure F.6 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 1.0, kx = ky = 1 md, kz = 0.1 md) 
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Figure F.7 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 1.0, kx = ky = 1 md, kz = 0.01 md) 
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Figure F.8 — Fracture Contribution to Flow as a Function of Dimensionless Time and Number of Fractures for Example  
Case (NProp = 1.0, kx = ky = 1 md, kz = 0.001 md) 
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APPENDIX G 
 

COMPLETE RESULTS OF FIELD APPLICATION  

WHELAN GAS FIELD  

 
 
 

The material balance equation for dry gas volumetric reservoirs has been integrated to the results of DVS 

calculation to obtain the production performance behavior of Whelan gas field in East Texas, USA. This 

Appendix provides figures of the estimation of gas production rate, average reservoir pressure, and 

cumulative gas production of this field for an 80-acre spacing, development plan as a function of the 

completion scheme— Fracture and horizontal section produce together and production only from 

fractures—, number of transverse fractures, and the amount of propant (250,000 and 500,000 lb). Table 

G.1 Provides the reservoir and fluid properties used for the calculations 

 

Table G.1 — Reservoir and Fluid Properties for Whelan Field Example 
 

 

  Whelan 
Net Pay (ft)  200 
Hor. Permeability (md)  0.9 
Porosity (%)  8.8 
Initial Pressure (psia)  3500 
Reservoir Temperature(°F)  220 
Gas Gravity  0.63 
Gas in Place(BCF)  11.907 
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Figure G.1 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 250,000 lb 

 
 

10
-1

10
0

10
1

10
2

10
3

G
as

 P
ro

du
ct

io
n 

R
at

e,
 

q
g
 (

M
M

S
C

F
D

)

10
-2

10
-1

10
0

10
1

10
2

10
3

Production Time (Days)

Gas Production Rate as a Function of Production Tim e 
and Number of Fractures for Whelan Example

(80 Acres Spacing, Total 500,000 lb of Proppant)  

Legend :
 

 Fracture + Horizontal Well
 Fracture Only

5

nfrac  = 5

nfrac  = 1
nfrac  = 1

 2
 3

 4
 3

5

5

nfrac  = 1

 3

5

 

 
 

Figure G.2 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 500,000 lb 
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Figure G.3 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 250,000 lb Proppant) 
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Figure G.4 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 500,000 lb Proppant) 
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Figure G.5 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 250,000 lb Proppant)  
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Figure G.6 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Whelan Field (80 Acres Spacing, 500,000 lb Proppant) 
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APPENDIX H 
 

COMPLETE RESULTS OF FIELD APPLICATION  

 PERCY WHEELER GAS FIELD  

 
 
 

The material balance equation for dry gas volumetric reservoirs has been integrated to the results of DVS 

calculation to obtain the production performance behavior of Percy Wheeler gas field in East Texas, USA. 

This Appendix provides figures of the estimation of gas production rate, average reservoir pressure, and 

cumulative gas production of this field for an 80-acre spacing, development plan as a function of the 

completion scheme— Fracture and horizontal section produce together and production only from 

fractures—, number of transverse fractures, and the amount of propant (250,000 and 500,000 lb). ). Table 

H.1 Provides the reservoir and fluid properties used for the calculations 

 

Table H.1 — Reservoir and Fluid Properties for Percy Wheeler Field 
Example 

 

  Percy Wheeler 
Net Pay (ft)  200 
Hor. Permeability (md)  0.05 
Porosity (%)  10.3 
Initial Pressure (psia)  3000 
Reservoir Temperature(°F)  245 
Gas Gravity  0.62 
Gas in Place(BCF)  11.495 
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Figure H.1 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for Percy 
Wheeler Field (80 Acres Spacing, 250,000 lb Proppant) 
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Figure H.2 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for Percy 
Wheeler Field (80 Acres Spacing, 500,000 lb Proppant) 
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Figure H.3 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Wheeler Field (80 Acres Spacing, 250,000 lb 
Proppant) 
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Figure H.4 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Wheeler Field (80 Acres Spacing, 500,000 lb 
Proppant) 
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Figure H.5 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Wheeler Field (80 Acres Spacing, 250,000 lb 
Proppant) 

 
 

6

5

4

3

2

1

0

C
um

ul
at

iv
e 

G
as

 P
ro

du
ct

io
n,

 
G

P
 (

B
C

F
)

10009008007006005004003002001000

Production Time (Days)

Cumulative Gas Production as a Function of Producti on Time 
and Number of Fractures for Percy Wheeler Example

(80 Acres Spacing, Total 500,000 lb of Proppant) 

Legend :
 

 Fracture + Horizontal Well
 Fracture Only nfrac  = 5

nfrac  = 5

nfrac  = 1

 2

nfrac  = 1

 2

 3

 4  3

 4

 
 

 

Figure H.6 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Percy Wheeler Field (80 Acres Spacing, 500,000 lb 
Proppant) 
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APPENDIX I 
 

COMPLETE RESULTS OF FIELD APPLICATION  

APPLEBY NORTH GAS FIELD 

 
 
 

The material balance equation for dry gas volumetric reservoirs has been integrated to the results of DVS 

calculation to obtain the production performance behavior of Appleby North field in East Texas, USA. 

This Appendix provides figures of the estimation of gas production rate, average reservoir pressure, and 

cumulative gas production of this field for an 80-acre spacing, development plan as a function of the 

completion scheme— Fracture and horizontal section produce together and production only from 

fractures—, number of transverse fractures, and the amount of propant (250,000 and 500,000 lb). ). Table 

I.1 Provides the reservoir and fluid properties used for the calculations 

 

Table H.1— Reservoir and Fluid Properties for Percy Wheeler Field Example 

 

  Appleby North 
Net Pay (ft)  60 
Hor. Permeability (md)  0.01 
Porosity (%)  8.8 
Initial Pressure (psia)  2800 
Reservoir Temperature(°F)  254 
Gas Gravity  0.61 
Gas in Place(BCF)  2.706 
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Figure I.1 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 250,000 lb 
Proppant) 

 
 

10
-1

10
0

10
1

10
2

10
3

G
as

 P
ro

du
ct

io
n 

R
at

e,
 

q
g
 (

M
M

S
C

F
D

)

10
-2

10
-1

10
0

10
1

10
2

10
3

Production Time (Days)

Gas Production Rate as a Function of Production Time 
and Number of Fractures for Appleby North Example

(80 Acres Spacing, Total 500,000 lb of Proppant)  

Legend :
 

 Fracture + Horizontal Well
 Fracture Only

nfrac  = 5

nfrac  = 5

nfrac  = 1

2

nfrac  = 1

3

4

 

 
 

Figure I.2 — Gas Production Rate as a Function of Production Time, 
Number of Fractures, and Completion Scheme for 
Appleby Nprth Field (80 Acres Spacing, 500,000 lb 
Proppant) 
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Figure I.3 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 250,000 lb 
Proppant) 
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Figure I.4 — Average Reservoir Pressure as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 500,000 lb 
Proppant) 
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Figure I.5 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 250,000 lb 
Proppant) 
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Figure I.6 — Cumulative Gas Production as a Function of Production 
Time, Number of Fractures, and Completion Scheme for 
Appleby North Field (80 Acres Spacing, 500,000 lb 
Proppant) 
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