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Resumen

La canasta de generación eléctrica en Colombia es predominantemente hidroeléctrica. Fenóme-

nos que pudieran generar hidroloǵıas extremas como El Niño o La Niña causan nerviosismo

entre las empresas generadoras de electricidad y por lo tanto, aumenta la volatilidad del

precio de bolsa de enerǵıa eléctrica.

En este trabajo nosotros introducimos un modelo de función de transferencia entre las vo-

latilidades de los Aportes Hidrológicos y el Precio de la Enerǵıa con base en modelos del

tipo SARFIMA-GARCH. El modelo para el Precio de Enerǵıa incorpora estacionalidad y

memoria larga. El modelo de transferencia confirma que el régimen hidrológico influencia

el precio y la parte GARCH del modelo de Precios puede incorporar la volatilidad de los

Aportes Hidrológicos como una variable exógena. Es importante hacer notar que aunque la

volatilidad del precio de bolsa está influenciada por otras variables, aqúı solo se analizará la

influencia de los aportes hidrológicos.

Palabras clave:

Rezagos autoregresivos, Volatilidad, Contagio, Función de transferencia,ADL-Koyck.

Abstract

The electricity generation mix in Colombia is predominantly hydroelectric. Phenomena that

could generate extreme hydrology as El Niño or La Niña cause nervousness among electricity

generators and therefore, the Electricity Spot Price increases the volatility.

In this paper we propose a transfer function model between the volatilities of Water Inflows

and Energy Price based on models of SARFIMA-GARCH type. The model for Energy Prices

incorporates seasonality and long memory. The transfer model confirms that the hydrology

regimen influences the price and the GARCH part of the Price model can incorporate the

volatility of Water Inflows as an exogenous variable. It is important to note that, although

the spot price volatility is influenced by other variables, we only analyze the influence of

water inflows.

Keywords:

Autoregressive lags, Volatility, Contagion, Transfer Function, ADL-Koyck
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1. Introduction

The electricity generation in Colombia is predominantly hydroelectric and therefore, in the

electricity market there exists always an uncertainty about the future behavior of hydro-

logy because the reservoirs are limited and Water Inflows have a stochastic behavior. This

uncertainty implies a change in the strategies of commercial operation among the electri-

city generating companies, especially during periods (or expected) of El Niño and La Niña

phenomena. Throughout Colombian history it has been observed that there is a close rela-

tionship between the rainfall variations and the occurrence of El Niño or La Niña phenomena.

The hydrological uncertainty causes that the generation companies review the different stra-

tegies depending on the current and future availability of resources, however, the future

availability of resources will always have a degree of uncertainty which causes some “ner-

vousness” about what is optimal trading strategy.

When we speak of El Niño or La Niña phenomena, this does not necessarily imply drought

flows or heavy rains in Colombia, respectively. It has been seen that there is a close corre-

lation between the occurrence of these phenomena and the respective hydrological event in

most of the country (see Puertas and Carvajal [36]). Additionally, it has been observed that

the simple expectation of the occurrence of El Niño or La Niña, changes (up or down) the

electricity price (See Quinero et al [37]).

It is important to clarify that the purpose of this thesis is not to find the correlation between

the occurrence of the phenomena of La Niña or El Niño and the hydrology behavior in Co-

lombia - unlike Poveda et al. [35], [34]. The purpose of this work is to find a transfer

model between the Energy Spot Price volatility1 and Water Inflows volatility,

and thereby analyze the response due to the occurrence of phenomena such as

those.

A model for volatility transfer between Water Inflow level and Energy Spot Market Price

allows a better estimation of risk from extreme hydrological phenomena, considering that

the hydrological behavior has a strong stochastic component.

1In this work is very important to distinguish the difference between volatility and variance. Volatility is a

statistical measure of dispersion around the average of any random variable such as market parameters

etc. whereas, the variance measures how far a set of numbers is spread out.



2 1 Introduction

To propose the statistical model to solve the problem (section 4.1), we are inspired by

methods for measuring contagion among financial markets. The model of contagion among

financial markets refers to the way that a particular event in a financial market is transferred

to other financial market.

In Section 1.1 we make a brief description of some useful technical terms of electricity mar-

ket, then in Chapter 2 we show the state of the art of main concepts for the development of

this work. In Chapter 3 we explain some useful statistical concepts and definitions. In this

chapter we explain the definitions and models of time series, volatility, transfer function and

other terms that will be useful in Chapter 4.

In Chapter 4 we explain the statistical model that we use to solve the proposed problem and

in Section 4.2 we show the results of of applying it. Finally, we give some recommendations

and conclusions in Chapter 5. Due to the great importance of the GARCH model for this

work, in Appendix A.3 we describe how to model this kind of processes in R software.

1.1. Some Useful Definitions for the Electricity Market

Here are some basic definitions related to the electricity market.

1.1.1. ONI (Ocean Niño Index) and Water Inflows

The term Water Inflows refers to the sum of the amount of electricity that could be generated

from water flowing down the rivers to the power plants and dams.

The ONI is an index produced by the NOAA (National Oceanic and Atmospheric Adminis-

tration) which is a three-month moving average of sea temperature anomalies in the Niño

3.4 region (5N-5S, 120-170W ) from ERSST (Extended Reconstructed Sea Surface Tempe-

rature).

According to Ramı́rez and Jaramillo [38], there is a statistically significant linear relationship

(P < 0,01 and P < 0,05) between ONI and rains in Colombia from December to February

and from June to September (months historically considered to have low hydrology). They

showed that in the central Andean region of Colombia exists a greater correlation between

rainfall and surface temperature of the Pacific Ocean, represented by ONI.
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1.1.2. Spot Price of Electricity in Colombia

The Electricity Spot Price (also called Marginal Price) is defined as the sum of the Maxi-

mum Bid Price (MPO for its acronym in Spanish) for power plants participating in the spot

market, in other words, the Spot Price is the price offered by the last plant to provide energy

to the demand every hour.

In the Colombian Electricity Market, there is a minimum price for energy supplied from the

agents, that is calculated by XM 2 as the sum of the following terms:

Real Equivalent Cost of Energy (CERE): this is the payment for Reliability Charge

Contributions: Law 99 of 1993 (Environmental Law)

Secondary Service or Frequency Control (AGC)

Contribution for Non-Interconnected Zones - FAZNI.

According to Franco et al. [10], the efficient operation of the electricity market implies that

all generating companies must take the best operational decisions with the best information

available; therefore the electricity companies must have a thorough knowledge about the

dynamics of the electricity price and the mechanisms that determine their evolution.

2Manager Wholesale Energy Market in Colombia



2. State of the Art

2.1. Models for Energy Markets

We briefly review some contributions to the modeling of the electricity price, which we

consider are of relevance for the present work. Koopman et at [40], analyze daily data from

the Nord Pool electricity market from January 4, 1993 to April 10, 2005, and introduce a

seasonal periodic autoregressive fractionally integrated moving average model, of the form

ΦP (Ls)(1− Ls)Dj(t)(Φp(L)Pt + St) = ΘQ(LS)εt, Where εt = White Noise ∼ (0, σ2)

They use a period of s = 7 days and argue that the series for each day needs a particular

order of seasonal fractional differentiation Dj(t), j = 1, 2, ..., 7, each of which is a periodic

function of t of period s = 7. The autoregressive Φp(L) term is a periodic autoregressive

model, i.e. its coefficients are periodic functions of period s as well as the term St which

contains a linear term of exogenous periodic variables.

In Gil and Maya [13], the authors introduce a model for the volatility of Electricity Prices in

the Colombian market. They apply an EGARCH type for the residuals. In contrast, we found

that a GARCH model also provides a satisfactory fit to volatilities from a type of SARFIMA

model. In Castaño and Sierra [6] the authors provide a deep analysis of the monthly time

series of Electricity Prices in the Colombian market. They found that the monthly prices

are not integrated I(1) but did not consider the seasonal component neither the fractional

integration feature of prices, considered in the present contribution. In section 2.1.1 we will

come back to discuss these and other studies to modeling electricity price in Colombia.

2.1.1. Other Models Related to the Colombian Electricity Market

Time series models are widely used to analyze the behavior of the Spot Price of energy and

how it responds to exogenous events, such as El Niño and La Niña.

Relative to the Energy Spot Price series, many articles have been written that attempt

to describe mathematically this series and to try to understand their behavior over time.

Castaño and Sierra [6] presented evidence that the Colombian Spot Price is a stationary

process that changes around several levels. According to the statistical tests, they rejected

the existence of a unit root in the monthly electricity prices series. However, they suggest
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that the price evolves as a stationary process around different levels and there is no linear

deterministic trend. Then, they proposed the following model.

Xt = (Time Series Level Shift)t +
1

1− φ1L− φ3L3
et, Where et ∼ i.i.d(0, σ2) (2-1)

Moreover, Botero and Cano [3] found an increase in volatility due to the latent risk of inter-

vention by Colombian energy regulator for the Spot Price. The authors claim that a special

modeling is required for periods of a market intervention by the regulator.

For Energy Spot Price Series they adjusted an Autoregressive Model of order 2, known as

AR(2) (see equation (2-2)). However, due to multiple interventions and extreme hydrological

phenomena in some periods, the residuals model was modeled in a particular way. That is,

they did an analysis for shorter periods of time where there was some kind of anomaly.

zt = φ0 + φ1zt−1 + φ2zt−2 + εt, Where εt = White Noise ∼ (0, σ2) (2-2)

Other authors, such as Maya and Gil [13] have also developed models of volatility of the

Energy Spot Price in Colombia in order to manage the risk. They found that the Spot Price

of energy can be modeled as a mean reversion, an autoregressive process of the previous day

and with seasonal patterns.

They considered Pt = f(t) + Xt where Pt is the Energy Spot Price, f(t) represents a

deterministic function of time and Xt represents a stochastic diffusion process, such that

dXt = −kXtdt + σdZ where dZ is a Brownian motion and k ∈ R. Additionally, the deter-

ministic component is represented by f(t) = α + βDt +
∑12

i=1 βiMit where D is a dummy

variable that is associated with a weekend or workday, and M is associated for the month i.

Regarding to the Spot Price volatility, they found that the best model is a EGARCH(1, 1).

εt = etσt, et ∼ i.i.d(0, σ2)

log(σ2
t ) = ω + θ1log(σ2

t−1) + δ1

∣∣∣∣ et−1

σt−1

∣∣∣∣ (2-3)

Where ω, θ and δ are coefficients, and σ2
t is the conditional variance.

Recently, Uribe and Trespalacios [45] contrasted different stochastic models for the Spot

Price in Colombia. They proposed a model for the Spot Price Pt that has two components:

a deterministic component f(t) and a stochastic component xt.

Pt = f(t) + xt (2-4)

Where, f(t) is a model with linear trend and deterministic seasonality. The stochastic com-

ponent x(t) of the equation (2-4) is represented by AR(p) or MA(q) or ARMA(p, q) models.
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f(t) = c+ β0t+
11∑
m=1

βmDm + βniñoDstrongniño (2-5)

where, c is a constant, β0 represents a price level increase (in kWh), βm represents the coef-

ficient of each month m, Dm is a categorical variable that takes the value of 1 if the month

is m and 0 otherwise, Dstrongniño represents the occurrence or nonoccurrence of El Niño,

βniño is the expected price level increase.

Uribe and Trespalacios [45] found that the instantaneous variance of monthly average price

changes due to the occurrence of El Niño.

An interesting alternative to simulate the electrical market in the short term was proposed

by Franco et al. [10]. In their work, they combine a climate model to simulate periods of El

Niño and La Niña with a model to simulate the deal price of generators.

2.2. Models of Contagion

The aim of the present work is to apply the idea of financial contagion between stock markets

to the electricity market. Our proposal is to show that there is a transmission of volatility

between the Water Inflows and the Energy Spot Prices.

The volatility is a non-observable time series and it can be estimated by several methods

(see Soofi [41], Chapter 5). The concept of volatility may be interpreted as the “tempera-

ture” or “nervousness” measurement of a stock market; then we want to model this level

of “nervousness” introduced in the electricity market by variations (or expected change) in

Water Inflows, measured by their volatility.

Recent works regarding contagion models have been focused on increasing financial returns

correlation between markets. Forbes et al. [9], discuss the current ambiguity and disagree-

ment in the use of the term “contagion”. They say that this term can be defined as a

significant increase in cross-market linkages after the occurrence of an event.

Pesaran et al, [33] argue that the financial contagion is complex to estimate econometrically.

They say that the selection of the crisis period introduces a bias in the selection of the sam-

ple, this may cause that the estimate of the correlation is not appropriate.

Currently, there is no consensus in the literature about what is a contagion between mar-

kets, however, all definitions converge to make correlation analysis. However, the contagion
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transfer analysis is useful in improving our understanding of several mechanism that have

the potential to destabilize economies and produce financial crises, as Gray [15] page 304,

says. This concept can be extrapolated to the energy sector and its basic components.

Similarly, Forbes et al. [9] argue that the strong links between the globalized economies

do not necessarily reflect a contagion, but rather to a cooperative and coordinated market

movement in all periods and therefore are always “interdependent” and not that spread in

certain periods, as Peckham [32] says.

2.2.1. Auto-regressive Distributed Lag (ADL) Models to Measure

Contagion

The ADL models are widely used to model the values of a dependent variable and it is based

on the current and lagged values of one or several explanatory variables. In Section 3.3 of

this document ADL models are formally presented.

Jung et al. [21] investigated about the transmission of volatility between stock markets in

Hong Kong, Europe and The United States. They proposed a heterogeneous ADL model in

which, when there was a sudden strong increase in volatility, this phenomenon is transferred

to other markets.

However, for issues related to energy markets, the application of ADL has been of recent use.

This is the case of Zachmann and Hirschhausen [49] who tested the following hypothesis: “an

increase in the prices of carbon emissions have a greater impact on wholesale energy prices

than the decrease in the marginal cost of generation in the German energy market”. This is

a hypothesis which is known for many years in the energy sector, however, only recently a

geometric ADL model (See Section 3.3.1) was used to evaluate it .



3. Framework

We provide a brief description of the principal concepts and theories used in the development

of this work.

3.1. Some Time Series Models

Models for time series data can have many forms and represent different stochastic processes.

Throughout this work, we will refer to ARMA, SARMA, ARIMA, SARIMA, ARFIMA and

SARFIMA models. According to Holand and Lund [18], in sections 3.1.1, 3.1.2 and 3.1.3 we

will make a formal definition of these concepts. Additionally, in Appendix A.2 we explain

the conceptual bases to model time series in R software.

3.1.1. ARMA and SARMA Models

The Autoregressive Moving Average (ARMA) process refers to a model which provide a

parsimonious description of a stationary stochastic process in terms of two polynomials:

auto-regressive and moving average.

A SARMA model is an ARMA model, but with a seasonal component S. In the definitions

3.1 and 3.2 we explain these concepts.

Definition 3.1. If p, q are non-negative integers, then an ARMA(p, q) process is defined as

(Xn, n ∈ Z) with zero mean, solution of the recursive equation

Φp(L)Xn = Θq(L)εn (3-1)

Where εn ∼White Noise(0, σ2), Φp(L) = 1−φ1L−...−φpLp and Θq(L) = 1−θ1L−...−θqLq.
The roots of Φp(L) and Θq(L) lie outside the unit circle in the complex plane and have not

common roots.

Definition 3.2. A process (Xn, n ∈ Z) is SARMA(p, q)(ps, qs), if it satisfies the following

recursive equation:

Φp(L)ΦPs(L
s)Xn = Θq(L)ΘQs(L

s)εn (3-2)

Where εn ∼ White Noise(0, σ2), S is the period of the process Xn (S is a positive integer,

for example S= 4, 12, ...), Φp(L) = 1 − φ1L − ... − φpL
p, Θq(L) = 1 − θ1L − ... − θqL

q,
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ΦPs(L) = 1− φ1L− ...− φPsLPs and ΘQs(L) = 1− θ1L− ...− θQsLQs . The roots of Φp(L),

Θq(L), ΦPs(L) and ΘQs(L) lie outside the unit circle in the complex plane and have not

common roots between Φp(L) and Θq(L) and between ΦPs(L) and ΘQs(L).

3.1.2. ARIMA and SARIMA Models

The Autoregressive Integrated Moving Average (ARIMA) model is a generalization of an

ARMA model (see section 3.1.1). The ARIMA models are applied in some cases where data

show evidence of non-stationarity or when a differentiation can be applied to remove the

homogeneous non-stationarity. A SARIMA model is an ARIMA model, but with a seasonal

component.

Definition 3.3. If p, d, q are non-negative integers, then an ARIMA(p, d, q) process is de-

fined as (Xn, n ∈ Z) with zero mean, solution of the recursive equation

Φp(L)(1− L)dXn = Θq(L)εn (3-3)

Where εn ∼White Noise(0, σ2), Φp(L) = 1−φ1L−...−φpLp and Θq(L) = 1−θ1L−...−θqLq.
d is the number of nonseasonal differences needed for stationarity. The roots of Φp(L) and

Θq(L) lie outside the unit circle in the complex plane and have not common roots.

Definition 3.4. If p, d, q, P,D,Q, s are non-negative integers, then a SARIMA(p, d, q)(P,D,Q)[s]

process is defined as (Xn, n ∈ Z) with zero mean, solution of the recursive equation

ΦPs(L)Φp(L)(1− L)d(1− Ls)DXn = Θq(L)ΘQs(L)εn (3-4)

Where εn ∼ White Noise(0, σ2), S is the period of the process Xn (S is a positive integer,

for example S= 4, 12, ...), Φp(L) = 1 − φ1L − ... − φpL
p, Θq(L) = 1 − θ1L − ... − θqL

q,

ΦPs(L) = 1 − φ1L − ... − φPsL
Ps and ΘQs(L) = 1 − θ1L − ... − θQsL

Qs . d and D are the

number of nonseasonal differences needed for stationarity in the ordinary and seasonal com-

ponents, respectively.

The roots of Φp(L), Θq(L), ΦPs(L) and ΘQs(L) lie outside the unit circle in the complex plane

and have not common roots between Φp(L) and Θq(L) and between ΦPs(L) and ΘQs(L).

3.1.3. ARFIMA and SARFIMA Models

These models are a generalization of ARIMA models (see Section 3.1.2) by allowing non-

integer values of the differencing parameter. The ARFIMA and SARFIMA models are useful

in modeling time series with long memory. That is, the ACF decay more slowly than an

exponential decay.
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Definition 3.5. If p, q are non-negative integers and d ∈ R is the fractional differencing

parameter. Then an ARFIMA(p, d, q) process is defined as (Xn, n ∈ Z) with zero mean,

solution of the recursive equation

Φp(L)(1− L)dXn = Θq(L)εn (3-5)

Where εn ∼White Noise(0, σ2), Φp(L) = 1−φ1L−...−φpLp and Θq(L) = 1−θ1L−...−θqLq.
The roots of Φp(L) and Θq(L) lie outside the unit circle in the complex plane and have not

common roots. Also, in case of stationary series:

If d ∈ (0,0; 0,5) the process exhibits the property of long memory

If d ∈ (−0,5; 0,0) the process exhibits the property of intermediate memory

If d = 0 the process exhibits the property of short memory

If d ≥ 0,5 the ARFIMA process is non-stationary although for d ∈ [0,5; 1,0) it is level

reverting in the sense that there is no long run impact of an innovation on the value

of the process, as Lopes et al. [28] says.

If d ≥ 1 the level-reversion property no longer holds

If d ≤ −0,5 the ARFIMA process is non invertible.

Definition 3.6. If p, q, P,D,Q, s are non-negative integers and d ∈ R is the degree or para-

meter of differencing. Then a SARFIMA(p, d, q)(P,D,Q)[s] process is defined as (Xn, n ∈
Z) with zero mean, solution of the recursive equation

ΦPs(L)Φp(L)(1− L)d(1− L)DXn = Θq(L)ΘQs(L)εn (3-6)

Where εn ∼ White Noise(0, σ2), S is the period of the process Xn (S is a positive integer,

for example S= 4, 12, ...), Φp(L) = 1 − φ1L − ... − φpL
p, Θq(L) = 1 − θ1L − ... − θqL

q,

ΦPs(L) = 1 − φ1L − ... − φPsLPs and ΘQs(L) = 1 − θ1L − ... − θQsLQs .The roots of Φp(L),

Θq(L), ΦPs(L) and ΘQs(L) lie outside the unit circle in the complex plane and have not

common roots between Φp(L) and Θq(L) and between ΦPs(L) and ΘQs(L).

The properties of d remain similar to those described in the definition 3.5.

3.2. Some Volatility Models

The volatility concept underlies the financial mathematics field and it refers to the measu-

rement of changes in frequency and intensity of series. It is used as a measure of “nervous-

ness”that affects an asset because of particular events. It is important to clarify that the

volatility does not measure changes in the time series, it measures the degree of dispersion
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of series. In other words, volatility is equivalent to the standard deviation of the returns of

an asset (daily, monthly, yearly).

The volatility σT for a time horizon T, is expressed as σT = σx
√
T Where σx is volatility in

the horizon of a unit.

3.2.1. The Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) Models

Based on Francq and Zakoian [11] Chapter 2, the GARCH models assume the volatility of

the current error term to be a function of the actual sizes of the previous time periods’ error

term. Let εt denote the error terms (return residuals, with respect to a mean process). These

εt are split into a stochastic piece et and a time-dependent standard deviation σt, so that

εt = σtet, et ∼ i.i.d(0, 1) (3-7)

Where et and σt are two independent stationary processes, this ensures that the εt series has

zero marginal mean because E[εt] = E[σt]E[et] = 0. Similarly, it is shown that the conditio-

nal mean is zero because E[εt|εt−1] = E[σt|εt−1]E[et|εt−1] = 0.

Regarding the variance, as we assumed that εt is a stationary process, then, the marginal

variance (σ2) is constant. Therefore, E[ε2t ] = E[σ2
t ]E[e2

t ] = E[σ2
t ] = σ2. However, the process

εt has a not constant conditional variance: V ar[ε2t |εt−1] = E[σ2
t |εt−1]E[e2

t ] = σ2
t . Therefore,

σt has a dynamical structure, with the value t according to previous values of t. That is,

σt = f(σt−1, σt−2, ...).

Making a correlation analysis, it is important to remember the independence of et and σt
and therefore εt lacks of autocorrelation. Regarding the autocovariance it is noted that these

are zero. In fact, E[εtεt−k] = E[σtetσt−k] = E[et]E[σtσt−k] = 0.

Definition 3.7. (See Francq and Zakoian [11] Chapter 2) We say that a process (εn, n ∈ Z)

is GARCH(p, q) if its two conditional moments exist and satisfy:

1. E(εt|εu, u < t) = 0, t ∈ Z

2. There exist constants ω, αi, i = 1, 2, ..., q and βj, j = 1, 2, ..., p such that

σ2
t = V ar(εt|εu, u < t) = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, t ∈ Z (3-8)
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proposition 3.1. According to Lindner [26], A necessary and sufficient condition for a

process εn ∼ GARCH(p, q) defined by the equations (3-8) be strictly stationary with E(ε2n) <

∞ is

p∑
j=1

βi +

q∑
i=1

αi < 1 (3-9)

If additionally it holds that Max(1,
√

E(e4
n))
∑q

i=1
αi

(1−
∑p
j=1 βj)

< 1 then E(ε4n) <∞

In (3-8), if p = 0 then it is known as ARCH(q) model. According to Bera and Higgins [2],

when a high-order ARCH(q) model is obtained, it is not easy to work with. Therefore, you

should try to fit a GARCH(p, q) model.

FIGARCH Model

The acronym FIGARCH(p, d, q) refers to a model Fractionally Integrated Generalized Au-

toregressive Conditional Heteroscedastic. This kind of model is mainly used for describing

the observed persistence and long memory in the volatility of a time series, as Tayefi and

Ramanathan, says [42].

Definition 3.8. We say that a process (ε2n, n ∈ Z) is FIGARCH if ε2n can be defined as

ARMA(máx(p, q), q) process with white noise ηt = ε2n − σ2
t ,

If ε2n = σnen, Such that:(
1−

q∑
j=1

αjL
j −

p∑
i=1

βiL
i

)
(1− L)d ε2n = β0 +

(
1−

q∑
j=1

αjL
j

)
ηt. (3-10)

Where et ∼ i.i.d, β0 > 0, βi ≥ 0, 1 ≤ i ≤ p y αj ≥ 0, 1 ≤ j ≤ q and d is a fraction 0 < d < 1.

For a FIGARCH model to be covariance stationary and invertible the parameter d must be

defined as 0 < d < 0,5. In the FIGARCH model, d must not be less than zero because of the

non-negativity conditions imposed on the conditional variance equation.

3.3. Review of Some Infinite Distributed Lags Models

A Distributed Lag Model is a time series model in which a regression equation is used to

predict current values of a dependent variable. In this section we follow closely Judge et al

[20], Chapter 10.

This kind of models are based on the current and lagged values of an explanatory variable,

xt. Thus, yt = (ν0 +ν1L+ν2L
2 + ...)xt + εt = ν(L)xt + εt, where yt is the dependent variable,
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xt is the explanatory variable and εt is a zero mean stationary stochastic process. As this

model have an infinite number of parameters, then we will assume a more parsimonious

model:

yt =
γ(L)

φ(L)
xt +

α(L)

θ(L)
εt , εt = white noise ∼ N(0, σ2

εt) (3-11)

Where γ(L) = 1 − γ1L − γ2L
2 − ... − γs′s′L, φ(L) = 1 − φ1L − φ2L

2 − ... − γr′Lr
′
, α(L) =

1−α1L−α2L
2−...−αq′Lq

′
, θ(L) = 1−θ1L−θ2L

2−...−θp′Lp
′
and r′, s′, p′, q′ are non-negative

integers. The roots of γ(L), φ(L), α(L) and θ(L) lie outside the unit circle in the complex

plane and have not common roots between γ(L) and φ(L) and between α(L) and θ(L).

According to Judge et al [20], (page 378, Table 10.1 “Infinite Distributed Lag Models”),

some types of Autoregressive Distributed Lag (ADL) are:

Rational Lag whith ARMA Errors

Gamma Lag

Exponential Lag

In sections 3.3.1, 3.3.2 and 3.3.3, we explain each of these ADL types.

3.3.1. Rational Lag With ARMA errors

According to Judge et al. this kind of models can be specified using the transfer functions

methodology of Box and Jenkins [5].

Due to the historical and practical significance of Box and Jenkins identification methodo-

logy, we will make a full statement of the method for fitting the parameters of the model

(3-11). There exists other methods to find the parameters such as The Approximation of

Lag Structure or The Common Factor Analysis, however, in this section we will discuss only

the methodology of Box and Jenkins.

Let, xt and yt be stationary series. Additionally, consider that xt and yt are related by a

linear filter v(L), so that, as explained Wei [46], page 322, the equation (3-12) is called the

transfer function model .

yt = v0xt + v1xt−1 + v2xt−2 + ...+ nt

= v(L)xt + nt (3-12)

where, nt is the noise of the system, which it is independent of the input time series xt.

v(L) =
∑∞

j=0 vjL
j is the transfer function filter of (3-12). The coefficients (vj) are called

the impulse response function. When xt is assumed as an ARMA process then the equation
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(3-12) is knows as the ARMAX model.

In relation to vj:

If
∑
|vj| < ∞ then the transfer function model is stable, that is to say, a bounded

input always produces a bounded output

If vj = 0 for j < 0 the transfer function model is causal. Thus, the system does not

respond to input series until they have been applied to the system. That is to say, the

present output is affected only by the current and past input values xt. From now on,

we will assume causal models .

Additionally, for the equation (3-12) we assume that xt follows an ARMA process φx(L)xt =

θx(L)αt, then αt = φx(L)
θx(L)

xt where αt is white noise, also called prewhitened input series.

Moreover, yt is defined by the expression θx(L)βt = φx(L)yt, then βt = φx(L)
θx(L)

yt.

The purposes of Box and Jenkins methodology is to identify and estimate the impulse res-

ponse function v(L) and the noise nt based in the input series xt and the output series yt.

It is common to represent the impulse response function v(L) as a rational function

v(L) =
∞∑
0

vjL
j =

ω(L)Lb

δ(L)
(3-13)

Where b is a delay parameter representing the actual time lag that elapses before the impulse

of the input variable produces an effect on the output variable, ω(L) = ω0−ω1L− ...−ωsLs
and δ(L) = 1− δ1L− ...− δrLr. For a stable system the roots of ω(L) and δ(L) lie outside

the unit circle in the complex plane and have not common roots as indicated by Wei [46],

page 325.

Rewriting the equation (3-13) and expanding it, we get the equation (3-14)

[1− δ1L− ...− δrLr][v0 + v1 + v2L
2 + ...] = [ω0 − ω1L− ...− ωsLs]Lb (3-14)

Thus, we have that,

b is determined by vj = 0 for j < b and vb 6= 0

r is determined by the pattern of the impulse response weights through pattern of the

autocorrelation function

After found b and r values, we can found s easily using that vj = 0 for j > b + s if

r 6= 0. The value of s is found by checking where the pattern of decay for impulse

response weight begins.



3.3 Review of Some Infinite Distributed Lags Models 15

According to Wei [46], pages 324 and 325, some transfer functions may exhibit the following

behavior:

1. The transfer function contains a finite number of impulse response weights. For this

kind of transfer function r = 0 and the impulse respond weights start in vb = ω0 and

finish at vb+s = −ωs. (See: typical impulse weights of (b,0,0)(b,0,1)(b,0,2) in table 3-1)

2. The impulse response weights decay exponentially from the value of s. (See: typical

impulse weights of (b,1,0)(b,1,1)(b,1,2) in table 3-1)

3. The impulse response weights shows an exponential decay or damped sinusoid wave.

The shape depends on the roots of the polynomial δ(L) = 1− δ1L− δ2L
2 − ... = 0. If

the roots are real, then the impulse response weights follows an exponential decay. In

contrast if the roots are complex the impulse response weights follows a damped sine

wave. (See: typical impulse weights of (b,2,0)(b,2,1)(b,2,2) in table 3-1)

The Cross Correlation Function (CCF)

To understand the definition of the CCF it is necessary to remember the concepts related to

autocovariance and cross-autocorrelation. Here we follow closely Wei [46], Chapter 14.

The cross-covariance between two processes (Xt, Yt, t ∈ Z), is defined as the function

γx,y(k) = Cov(Xt, Yt+k) = E((Xt − µx)(Yt+k − µy)) for k = 0,±1,±2, ... (3-15)

such that,

γx,y(k) = γy,x(−k). (3-16)

An estimator for γx,y(k) is defined as

γ̂x,y(k) =


1

T

T−k∑
t=1

(Xt − X̄)(Yt+k − Ȳ ), k = 0, 1, 2, . . .

1

T

T+k∑
t=1

(Xt − X̄)(Yt−k − Ȳ ), k = 0,−1,−2, . . .

(3-17)

The CCF measures the strenght and direction of correlation between two stochastic processes

and it is defined as

ρxy(k) =
γxy(k)

σxσy
(3-18)

If the input series is white noise and ρx(k) = 0 for k 6= 0, it can be shown that the equation

(3-18) can be written as

vk =
σx
σy
ρxy (3-19)
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(b,r,s) Transfer function Typical impulse weights

(b,0,0) v(L)xt = ω0xt−b

(b,0,1) v(L)xt = (ω0 − ω1L)xt−b

(b,0,2) v(L)xt = (ω0 − ω1L− ω2L
2)xt−b

(b,1,0) v(L)xt = ω0

1−δ1Lxt−b

(b,1,1) v(L)xt = ω0−ω1L
1−δ1L xt−b

(b,1,2) v(L)xt = ω0−ω1L−ω2L2

1−δ1L xt−b

(b,2,0) v(L)xt = ω0

1−δ1L−δ2L2xt−b

(b,2,1) v(L)xt = ω0−ω1L
1−δ1L−δ2L2xt−b

(b,2,2) v(L)xt = ω0−ω1L−ω2L2

1−δ1L−δ2L2 xt−b

Table 3-1.: Typical impulse weights according to the transfer function type.
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Thus, the impulse response function vk is directly proportional to the cross-correlation fun-

ction ρxy(k). It is important to say that the CCF is defined only when xt and yt are jointly

stationary bivariate process.

It can be shown that, from the definition of αt and βt, the equation (3-19) can be written as

vk =
σβ
σα
ραβ(k) (3-20)

Construction of Transfer Function Models

To build a transfer function model it is necessary to define the cross-correlation function,

according to the equation (3-18). To test if certain values of the ρxy(k) are zero, we compare

the CCF with their standard error.

In this work, it is used the prewhitening methodology proposed by Box and Jenkins [4],

Chapters 10 and 11, and which is clearly explained by Wei, [46], Chapter 14, and by Hipel

and McLeod [17], Chapter 16. To identify the Transfer Function Model the first step is to

prewhite the input series, that is to say, if φx(L)xt = θx(L)αt then, αt = φx(L)
θx(L)

xt where αt is

a white noise series with zero mean and variance σ2
α.

After prewhittening the series, it is calculated the filtered ouput series (βt) to transformate

the ouput series yt, such that, βt = φx(L)
θx(L)

yt.

Then, it is calculated the prewhiten input series and the filtered output series, then we

proceed to calculate the sample CCF (ρ̂αβ(k)) between αt and βt to estimate νk.

ν̂k =
σ̂β
σ̂α
ρ̂αβ(k)

To identify the parameters b, r and s of the equation (3-21), we should compare whith the

known theoretical patterns of νk, which are shown in table 3-1

ν̂(L) =
ω̂(L)

δ̂(L)
Lb =

ω0 − ω1L− ...− ωsLs

1− δ1L− ...− δrLr
Lb (3-21)

Once we obtain the preliminary transfer function, we can calculate the estimated noise series:

n̂t = yt −
ω̂(L)

δ̂(L)
Lbxt (3-22)

Combining the equations (3-21) and (3-22), we obtain the equation

yt =
ω(L)

δ(L)
xt−b + nt, nt =

θ(L)

φ(L)
εt, εt ∼ White Noise(0, σ2

at) (3-23)

Note that the equations (3-23) contains a finite number of parameters. In Appendix A.1 we

explain how to implement in R Software the Box and Jenkins methodology.
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Geometric Lag Model

A special case of Rational Lag Model with ARMA errors, is the Geometric Lag Model, also

known as ADL Koyck model.

Definition 3.9. The ADL-Koyck is defined as a transfer model between two stationary

process in covariance. (Xn), (Yn), n ∈ Z is given by

Yn = µ+ α

∞∑
j=0

λjXn−j + Zn, where Zn ∼ ARMA(p, q) (3-24)

Let, (3-25) a model that describes yt in terms of x∗t which is defined as an unobservable

expected value.

yt = α0 + α1x
∗
t + et (3-25)

If the expectation of x∗t is revised in proportion to the error associated with the previous

level of expectation, it can be demostrated that

x∗t =
∞∑
i=0

λ(1− λ)ixt−1−i (3-26)

where 0 < λ < 1 is the coefficient of expectation and xt−1 is the actual observable value.

Note that x∗t describes a decay geometrically lag form as function of all past values. If we

substitute (3-26) in (3-25), then:

yt = α0 + α1

∞∑
i=0

λ(1− λ)ixt−1−i + εt (3-27)

Koyck [25] shows that (3-27) can be rewritten as

yt =α0 + α1

∞∑
i=0

λixt−i + εt

=α0 +
α1

1− λL
xt + εt

=α0(1− λ) + α1xt + λyt−1 + εt − λεt−1 (3-28)

3.3.2. Gamma Lag

The Gamma Distributed Lag is a model porposed by Tsurumi [44]. It is described by the

equation (3-29).

yt = α

∞∑
i=1

is−1e−ixt−i + εt, εt ∼White Noise(0, σ2) (3-29)
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If we truncate the sum of 3-29 at m, such that m is sufficiently large, then it is true that:

yt = α
∞∑
i=1

is−1e−ixt−i + εt = α

m∑
i=1

is−1e−ixt−i + αηt + εt (3-30)

where ηt =
∑∞

i=m+1 i
s−1e−ixt−i. From equation (3-30), Tsurumi [44] showed that if m is a

very large number, then ηt behaves as a constant and the error is very small. Additionally, he

suggests to choose a value of m that minimizes the estimated residual variance. Therefore,

with m large, the term αηt can be omitted.

Schmidt [39], suggests to replace is−1 of the equation (3-30) by (i + 1)s−1. Additionally, to

increase the flexibility, he proposed that s− 1 = δ/(1− δ); 0 ≤ δ < 1 and a γ parameter.

Thus, the equation (3-30) becomes:

yt = α
m∑
i=1

(i+ 1)
δ

1−δ e−γixt−i + εt (3-31)

If e−γi = λi, 0 ≤ λ < 1, then (3-31) becomes in (3-32).

yt = α
m∑
i=1

(i+ 1)
δ

1−δλixt−i + εt, 0 ≤ λ < 1, 0 ≤ δ < 1 (3-32)

According to Theil et al. [43], the gamma distribution has the maximum entropy and the

Autoregressive Distributed Lag (ADL)-Gamma should be used for situations that have a

tendency to show that behavior.

3.3.3. Exponential Lag

Lütkepohl [29] proposed a lag model which avoids the sign changes in the weights of the lags.

According to the equation (3-33), the Exponential Lags family depends of the constant α

and the parameter pk.

yt = α
∞∑
i=0

e
∑m
k=1 pkxt−i + εt, t = 1, 2, 3, ..., T, εt ∼White Noise(0, σ2) (3-33)

In order to find the maximum likelihood estimation for (3-33), the sum of the squared error

is minimized.

S = (y(T0)− f(T0))′(y(T0)− f(T0)) (3-34)

Where y(T0) = (yT0 , yT1 , ..., yT )′ and

f(T0) =

[
α

T0−1∑
i=0

e
∑m
k=1 pkxT0−i , ..., α

T−1∑
i=0

e
∑m
k=1 PmxT−i

]′
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Where T0 is some positive number. It is clear that T0 has no impact on the asymptotic pro-

perties of the estimators. The problem with the ADL-exponential is selecting the polynomial

order of m.

According to Judge [20], for a stationary process the xt values could simply be replaced by

the mean of the observed value of xt.



4. Statistical Model And Results

In this chapter, we present the statistical model to solve the problem proposed in Chapter 1.

Each result obtained is adequately referenced to the respective R Software code in Appendix

B.

4.1. Statistical Model

Here, we describe the statistical model used to solve the problem proposed in chapter 1. We

assume two time series: Water Inflows (At) and Energy Spot Price (Pt). Both series are co-

variance stationary (as we shown below) but possibly fractionally integrated. The proposed

model is based on the log-square-volatility of these series, denoted by log(σ2
A,t) and log(σ2

P,t)

respectively.

The volatilities are defined as conditional standard deviations of a covariance stationary

processes, and assumed a non-observable covariance stationary processes themselves. For

the case of a generic time series Yt, if Ft−1 denotes the information up to time t − 1, the

volatility is defined as

σY,t =
√
V ar(Yt|Ft−1), t = 1, 2, ...

There exist several procedures for extracting the non-observable volatility processes associa-

ted with a time series. The one we apply here is based on GARCH-type models. We first

fit a general SARFIMA model to both series. Then the residuals of both models are fitted

to a general FIGARCH model, and then the respective volatilities are computed. Finally, a

transfer function model or Box-Jenkins model or a Distributed Lag Model as is known in the

econometric literature, is fitted to the volatilities. As can be observed, the proposed model

is a three-step one. We now proceed to give a more formal description of each of the steps:

First step: fit a SARFIMA processes to the time series At and Pt. We say that At and

Pt follow a SARFIMA(p, d, q)(P,D,Q)[s] model with seasonal component of period

s, if it is the solution of the equation (3-6) with Xn = At or Pt.

In case of d = 0, D = 0, the model (3-6) is a SARMA(p, q)(P,Q)[s] model. We also

admit the case d = D = 1 which correspond to a SARIMA(p, 1, q)(P, 1, Q)[s] model
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(See definitions 3.2 and 3.4).

The process εn in (3-6) is assumed to be a White Noise (0, σ2) uncorrelated sequence of

constant variance, which includes the case of GARCH and FIGARCH types of White

Noise. A process εt is a GARCH(p, q) process if it satisfies the definition 3.7 and a

FIGARCH(p,d,q) process if it satisfies the definition 3.8.

Second step: fits models GARCH or FIGARCH (defined in the first step) to the resi-

duals εt from model for series At and Pt. We apply an adequate test for discriminating

between GARCH and FIGARCH process. From these fits we obtain the corresponding

estimators for σ2
A,t and σ2

P,t . It is worth mention that these two processes are covariance

stationary by construction.

Third step: fits a transfer function model to these volatilities processes (defined in the

second step). A transfer function model is a statistical model describing the relationship

between an output time series, yt and one or more input time series. In case of one input

xt the model is defined as a linear causal filter plus an error, of the form described

by equation (3-12) in which the process νt is assumed to be independent from xt
and it follows an ARMA model νt = α(L)

θ(L)
et with et ∼ i.i.d(0, σ2

e) and α(z), θ(z) are

polynomials such that their roots all lie outside the unit circle in the complex plane and

have not common roots. Transfer function models are seldom applied in form (3-12)

because of the infinite number of parameters. Instead, a more parsimonious form is

adopted, of the form (3-11).

The more concrete model we apply so as to establish a relationship between log-square

volatility: log(σ2
A,t) and log(σ2

P,t) is

log(σ2
P,t) = µ+

θq′(L)

φp′(L)
log(σ2

A,t−b) + νt (4-1)

Where, νt = θ(L)
φ(L)

εt, εt ∼ White Noise(0, σ2
at)

4.2. Model-Building Procedure

We now proceed estimate the parameters of model (4-1). We divided the whole procedure

into a three step one, as we described in Section 4.1. Let us remind that the data consist

of the daily time series At of Water Inflows in GWh and Pt the daily Energy Spot Price in

$COP/kWh, as quoted from the Colombian electricity market, between July 1, 1998 and

May 31, 2013. In Figure 4-1, we show the graphs of At and Pt series. For the development

of this section we use the R software code shown in Appendix B.1.
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Figure 4-1.: Water Inflows (above) and Energy Price (below)
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4.2.1. Step One: Fitting SARFIMA Models for the Series At and Pt

Here, we do a preliminary analysis of the Water Inflows (At) and the Energy Spot Prices

(Pt) time series.

Analysis of the Water Inflows Series

From Figure 4-2(a), time series At displays a strong annual seasonality component. The

estimated periodogram appears in Figure 4-2(c),(d). The dominant peaks are located at

periods 365 days and 180 days, observed with more detail in Figure 4-2(d).
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Figure 4-2.: Plot, ACF and Periodogram of At

Then, it can be assumed a seasonality with period s = 365 days. The estimated autocorre-
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lation function (ACF) appears in Figure 4-2(b) and confirms this fact because it displays

a periodic-like behavior. For now, we exclude the possibility of long memory because the

absences of a peak at frequency zero in the periodogram; however later we will make some

formal test regarding the long memory of the series. We did not apply a log transformation

because the series displays a stable variance.

In table 4-1 different tests are done to characterize the series1 where from six unit-root test

applied only the KPSS test detected a unit root.

Test
Null Hipothesis

Test value
Critical values

Reject if Test value < Critical value 1 % 5 %

Augmented Dickey-Fuller unit root -12.50 -3.43 -2.86

DF-GLS unit root -9.40 -2.57 -1.94

KPSS stationary 3.08 0.73 0.46

Phillips-Perron unit root -23.94 -3.96 -3.41

Schmidt-Phillips unit root and a linear trend -32.28 -3.56 -3.02

Zivot-Andrews unit root with a structural break -15.03 -5.34 -4.8

Table 4-1.: Unit root test for the Water Inflow time series

The test of long memory Rescaled Range R/S of Lo [27, 16] provides strong evidence against

the null hypothesis (d = 0), as we show in Table 4-2. Also, in Table 4-3 the Rescaled Range

R/S modified Test (see Giraitis et.al [14, 16]) shows strong evidence of long memory.

Ho: d = 0

data: A t R/S Statistic = 4.8814 Bandwidth q = 4

significance level: 0.05 0.1

critical value: 1.747 1.62

Table 4-2.: Long Memory Test: Rescaled Range R/S of Lo forAt

The usual test for seasonal unit roots are Canova-Hansen and Hyllebert-Engle-Granger-Yoo,

but these are available in the R software only for periods s = 4, 12, not for s = 365 days.

Then, we will not apply a formal test for the presence of a seasonal unit root, but we will

include a SARIMA model as an admissible model. However, it is known from experience

that the hydrological seasonality is 365 days because it is related to terrestrial cycles around

1All test used p=3 lags for the approximating AR(p) process and with the option of non-cero mean, from

the R package fUnitRoots of Wuertz et al.[47]
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Ho: d = 0

data: A t V/S Statistic = 2.4484 Bandwidth q = 4

significance level: 0.01 0.05 0.1

critical value: 0.2685 0.1869 0.1518

Table 4-3.: Modified Long Memory Test: Rescaled Range R/S Modified of Giraitis et.al

[14] forAt

the sun.

Through Akaike Information Criterion (AIC), the SARIMA model chosen was anARIMA(7, 1, 2)

(season=0) - See equation (4-2). We argue that the annual seasonal component can in fact

be assimilated to a stochastic trend giving rise to an ordinary (not seasonal) unit root. When

we applied ordinary (i.e. daily) differentiation a stationary ARMA(7,2) results, although the

results in Table 4-1, where from six unit-root test applied only the KPSS test detected a

unit root.

Φ7(L)(1− L)At = Θ2(L)εt (4-2)

The orders p=7, q=2 were established using a minimum AIC criteria, implemented in the

R function auto.arima, from the forecast package [19]. This model was fitted using the R

arima function. In Table 4-4 appears the parameters for the model. Additionally, in Table

4-5 appears the Ljung-Box test, not rejecting the null for uncorrelated residuals.

Estimate Std. Error z value Pr(>|z|)
ar1 -0.2005 0.1138 -1.7616 0.0781 .

ar2 0.4523 0.0610 7.4145 1.221e-13 ***

ar3 0.0634 0.0180 3.5068 0.0004 ***

ar4 0.0402 0.0167 2.4030 0.0162 *

ar5 0.0295 0.0164 1.8004 0.0717 .

ar6 0.0038 0.0161 0.2375 0.8122

ar7 0.0425 0.0156 2.7193 0.0065 **

ma1 -0.1796 0.1133 -1.5853 0.1129

ma2 0.6798 -0.1007 -6.7503 1.475e-11 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4-4.: Parameters of the At ∼ ARIMA(7, 1, 2) model

In Table 4-6 we show the respective residuals which have high kurtosis and asymmetry.
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Null hypothesis: uncorrelated residuals

X-squared df p-value

73.1414 60 0.1187

Table 4-5.: Ljung-Box Test for the residuals of At ∼ ARIMA(7, 1, 2)

Residuals of A ∼ ARIMA(7, 1, 2)

Size 5571

Mean 0.0034

St.Dev 32.6375

Skewness 1.4025

Kurtosis 5.7982

Minimum -130.4896

Maximum 275.0039

Table 4-6.: Residues of A ∼ ARIMA(7, 1, 2)

Figure 4-3 displays values Ât calculated as simulated values of an ARIMA(7, 1, 2) with

input values the estimated residuals ε̂t from the ARIMA(7, 1, 2), versus the observed ones

At. It is observed that the model fits very well.

Analysis of the Spot Price Series

From Figure 4-1, it is suspected that the variance Pt does not have stable behavior over

time. It is known that, the logarithmic transformation stabilizes the variance of the series

without changing its autocorrelation structure and its correlation with other variables. Then

we proceeded with the log of the spot prices log(Pt).

The periodogram and the autocorrelation function (ACF) of the log-prices are shown in

Figures 4-4(a) and (b), respectively. It can be observed that the ACF is rather persistent

and shows a slow decay. The periodogram shows a sharp peak at ω = 0. But it shows also

dominant peaks at frequencies ω = k/7, k = 1, 2, 3. Then, a possible long memory effect and

a seasonal component of period s=7 should be included in the model.

Because it is customary in the financial econometrics literature to differentiate log-prices,

we applied the same six unit-root test from Table 4-1, for detecting an ordinary unit root.

All the results2 in Table 4-7 reject the null hypothesis of a unit root, and of stationarity in

case of KPSS test. In principle one should not differentiate the log prices.

2All test used p=3 lags for the approximating AR(p) process and with the option of non-cero mean, from

the R package fUnitRoots of Wuertz et al.[47]



28 4 Statistical Model And Results

2000 2005 2010

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

dates

A
p

Figure 4-3.: Observed values of At (dots) versus simulated values of At (continuous)



4.2 Model-Building Procedure 29

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

−
3

0
−

1
0

0

frequency

s
p

e
c
tr

u
m

 (
d

B
)

(a)

bandwidth = 0.00315, 80% C.I. is (−1.65, 2.09)dB

0 2 4 6 8 10 12

−
0

.2
0

.2
0

.6
1

.0

(b)

Lag
A

C
F

0.0 0.1 0.2 0.3 0.4 0.5

−
3

0
−

1
0

0

frequency

s
p

e
c
tr

u
m

 (
d

B
)

(c)

bandwidth = 0.00045, 80% C.I. is (−1.65, 2.09)dB

0 20 40 60 80

0
.0

0
.4

0
.8

(d)

Lag

A
C

F

0.0 0.1 0.2 0.3 0.4 0.5

−
3

0
−

2
0

−
1

0

frequency

s
p

e
c
tr

u
m

 (
d

B
)

(e)

bandwidth = 0.00045, 80% C.I. is (−1.65, 2.09)dB

0 20 40 60 80

0
.0

0
.2

0
.4

(f)

Lag

A
C

F

Figure 4-4.: Periodograms and ACF of: log(Pt) → (a) and (b). (1 − L7)0,35log(Pt) → (c)

and (d). (1− L7)0,35(1− L)0,29log(Pt)→ (e) and (f).
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Test
Null Hipothesis

Test value
Critical values

Reject if Test value < Critical value 1 % 5 %

Augmented Dickey-Fuller unit root -7.2 -3.43 -2.86

DF-GLS unit root -2.54 -2.57 -1.94

KPSS stationary 8.77 0.73 0.46

Phillips-Perron unit root -8.92 -3.43 -2.86

Schmidt-Phillips unit root and a linear trend -4.62 -3.56 -3.02

Zivot-Andrews unit root with a structural break -10.28 -5.34 -4.80

Table 4-7.: Unit root test for the log prices of electricity time series

For examining a possible non-seasonal long memory effect, we applied the Rescaled Range

R/S Test of Lo [27, 16] and the Modified Rescaled Range V/S of Giraitis et.al [14, 16]. Both

tests reject the null hypothesis Ho: d = 0, see Table 4-8.

Ho: d = 0

Data: R/S Statistic = 2.3485 Bandwidth q = 60

Significance level: 0.05 0.1

Critical value: 1.747 1.62

Data: V/S Statistic = 0.4478 Bandwidth q = 60

Significance level: 0.01 0.05 0.1

Critical value: 0.2685 0.1869 0.1518

Table 4-8.: Long Memory Test: R/S of Lo and V/S of Giraitis et.al

Then, we include a fractional non-seasonal differentiation, but is accomplished through the

filter (4-3) with s = 1 and a fractional order |d| < 1
2

(1− Ls)D =
∞∑
i=1

Γ(i−D)

Γ(−D)Γ(1 + i)
Lis (4-3)

But for examining the possibility of seasonal fractional integration we applied the same filter

(4-3) with s = 7 and another fractional order |ds| < 1
2
. The filter (4-3) was implemented

in the R language from an original S-Plus program from Katayama [23, 22] for cases s = 1

and s = 7. We explored several values for d, ds ∈ (0; 0,5), such that fitting the following

SARFIMA model (4-4) resulted in significant coefficients and uncorrelated residuals εt.

Φp(L)ΦP (Ls)(1− Ls)ds(1− L)dlog(Pt) = Θq(L)ΘQ(Ls)εt (4-4)
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With s = 7 and ds = 0,35 the filtered log-price (1−Ls)dslog(Pt) presents an autocorrelation

function and a periodogram shown in Figures 4-4(c) and 4-4(d) respectively; one can observe

that the seasonal effect was filtered out but a long memory effects remains. After applying

the filter (4-3) with d = 0,29 and s = 1 the long memory effect disappears, as shown in

Figures 4-4(e) and 4-4(f), leaving a covariance stationary process. Based on a minimum

AIC search a SARMA(1, 3)(0, 2)[7] was finally chosen for the series

(1− Ls)ds(1− L)dlog(Pt) (4-5)

The coefficients of model (4-4) were estimated by maximum likelihood and are displayed in

Table 4-9. The final model for the log-prices is then

Φ1(L)(1− L7)0,35(1− L)0,29log(Pt) = Θ3(L)Θ2(L7)εt (4-6)

In Table 4-10 we show the Ljung-Box text not rejecting the null of uncorrelated residuals.

We adopted the suggestion of Hyndman and Khandakar [19] to set the number of degrees

in the Ljung-Box test. In case of periodicity they recommend setting df = 2s. Figure 4-5

shows the fitted values of model (4-4) versus the observed log-prices.

Estimate Std. Error z value Pr(>|z|)
ar1 0.917009 0.011299 81.1561 <2.2e-16 ***

ma1 -0.504215 0.017576 -28.6881 <2.2e-16 ***

ma2 -0.048592 0.016033 -3.0307 0.00244 **

ma3 -0.037423 0.015712 -2.3818 0.01723 *

sma1 -0.241719 0.014480 -16.693 <2.2e-16 ***

sma2 -0.061141 0.014106 -4.3345 1.46e-05 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4-9.: Estimated Parameters of model 4-4

Null hypothesis: uncorrelated

X-squared df p-value

16.9762 14 0.2574

Table 4-10.: Ljung-Box Test for the residuals of model 4-4

In Table 4-11 we show the respective residuals which have high kurtosis and asymmetry.

We considered necessary to give some comments about the fitted values presented in Figure

4-5. Given invertibility conditions, the model (4-4) can be re-written in the form

log(Pt) =
1

(1− L)0,29

1

(1− L7)0,35

Θ3(L)Θ2(L7)

Φ1(L)
εt (4-7)
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Figure 4-5.: Fitted values from model 4-4 (continuous line) versus observed values (dotted)

Residuals of the Energy Spot Price model (4-6)

Size 5571

Mean 0.0002

St.Dev 0.1039

Skewness -0.4136

Kurtosis 7.9078

Minimum -1.18

Maximum 0.78

Table 4-11.: Residuals of the Energy Spot Price model (4-6)
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It was evaluated in three steps. First the filter Θ3Θ2(L7)
Φ1(L)

was applied to the residuals εt. Then

the resulting series was filtered through the inverse of filter (4-3) with d = 0,35, 1
(1−L7)0,35

,

calculated with the R function ImpulseVMA() of library portes of Mahdi and McLeod [30],

using a convolution (without the circular option). The resulting series was again filtered

through the inverse of filter (4-3) with d = 0,29, 1
(1−L)0,29

using the same operations as in the

preceding step. The final series is what we call the “fitted values” in Figure 4-5.

4.2.2. Step Two: Fitting GARCH Models and Volatility Estimation

For the residues εt of models for At and Pt we calculated the Lagrange Multiplier (LM) Test

for conditional heteroscedasticity of ARCH type. The results are shown in Table 4-12.

Null hypothesis: no ARCH effects

Residuals of Chi-squared df p-value

Model 4-2 245.872 12 < 2.2e-16

Model 4-6 362.441 14 < 2.2e-16

Table 4-12.: ARCH LM-test

According to the discussion in Chapter 3.2.1 and the definition 3.7 and 3.8, we adjust a

GARCH(p, q) or FIGARCH(p, d, q) model to εA,t and εP,t series, where the subscripts A

and P refer to the Water Inflows and Spot Price, respectively.

With the ugarchfit() function from the rugarch library written by Ghalanos [12], for

Water Inflow residues series we found the GARCH(1,1) model presented the best fit. This

model is defined by the following system.

εA,t =σA,teA,t

σ2
A,t =ω + β1σ

2
A,t−1 + α1ε

2
A,t−1 (4-8)

On the other hand, for log-Price residues series we found the GARCH(2,2) model presented

the best fit. This model is defined by the following system.

εP,t =σP,teP,t

σ2
P,t =ω + β1σ

2
P,t−1 + β2σ

2
P,t−2 + α1ε

2
P,t−1 + α2ε

2
P,t−2 (4-9)

If
∑p

j=1 βi +
∑q

i=1 αi < 1, then it guarantees that the process (σt) is covariance stationary,

such that εt = σtet, and et ∼ White Noise i.i.d(0, σ2),.

The ugarchfit() function of the rugarch library allows to model the distribution of errors

εt. To incorporate the skewness and the excess of kurtosis observed in the εt, which is observed
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in Tables 4-6 and 4-11, we use a Normal Inverse Gaussian (NIG) distribution, introduced

by Barndorff [1].

A random variable X is said to be distributed according to a NIG distributions if its density

function is given by

f(x) =
αδK1(α

√
δ2 + (x− µ)2)

π
√
δ2 + (x− µ)2

eδγ+β(x−µ), −∞ < x <∞, (4-10)

Where the parameters are α, δ > 0, µ ∈ R, 0 ≤ |β| < α, γ =
√
α2 − β2 and Kκ(.), κ ≥ 0 is

the modified Bessel function of third class with index κ.

Therefore, if X ∼ NIG(µ, α, β, δ) then E(X) = µ + δβ/γ, V ar(X) = δα2/γ3, skewness

γ1 = 3β/(α
√
δγ), kurtosis γ2 = 3(1 + 4β2/α2)/(δγ).

The estimation results are shown in Tables 4-13 and 4-14. In Table 4-15, we show a sum-

mary of the main statistics for σA,t and σP,t.

Estimate Std. Error t value value Pr(>|t|)
ω 5.34317 1.491268 3.583 0.00034 ***

α1 0.12482 0.009470 13.181 0.00000 ***

β1 0.87418 0.009816 89.057 0.00000 ***

Skew 0.66337 0.015176 43.711 0.00000 ***

Shape 1.51269 0.124687 12.132 0.00000 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4-13.: Coefficients of GARCH(1, 1) +NIG(0, α, β, 1) for At

In Figure 4-6 we show the original series At and Pt with their respective estimated volati-

lities. The Spot Price volatility is scaled by a factor 2,5. For example, it can be seen that

during 2010 occurred a strong decrease in water inflows which generate an increase in the

Spot Price and its volatility. From mid 2012 to mid 2013 we observed a prolonged decline in

contributions which resulted in higher prices and volatilities. On the other hand, the years

with stable water inflows as 2002-2005 generated a low volatility and stable prices.

4.2.3. Step Three: Fitting a Transfer Function Model to Volatilities

Before checking for a transfer function between the log-square volatility of the Water Inflows

and the Energy Spot Prices (see equation (4-1)), we will evaluate if there is a cointegration
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Estimate Std. Error t value value Pr(>|t|)
ω 0.000090 0.000028 3.2178 0.001292 **

α1 0.151447 0.018775 8.0666 0.000000 ***

α2 0.006334 0.004068 3.5570 0.001469 **

β1 0.227398 0.075276 3.0209 0.002520 **

β2 0.595694 0.075831 7.8556 0.000000 ***

Skew -0.05520 0.023239 -2.3757 0.017517 *

Shape 1.066390 0.096499 11.0508 0.000000 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4-14.: Coefficients of GARCH(2, 2) +NIG(0, α, β, 1) for Pt

σA,t σP,t
Size 5571 5571

Minimum 7.6651 0.032411

Maximum 109.4405 0.385192

Mean 30.0579 0.097770

Stdev 13.9657 0.043602

Skewness 1.0107 1.307059

Kurtosis 1.7879 2.647669

Table 4-15.: Summary statistics for σA,t and σP,t
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Figure 4-6.: Graph above: Water Inflow At. Graph below: Spot Price Pt. Grey color: Ori-

ginal time series. Red color: Estimated volatility σ̂A,t and σ̂P,t
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model, such as:

σP,t = α + βσA,t +Rt (4-11)

Rt = ρRt−1 + εt

εt ∼ N(0, σ2)

In Figure 4-7, we show the result of the evaluation of the cointegration according to equation

(4-11). We can conclude that log(σ2
A,t) does not seem to be integrated, also log(σ2

P,t) does

not seem to be integrated and log(σ2
A,t) and log(σ2

P,t) do not appear to be cointegrated.
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Figure 4-7.: Cointegration between log(σ2
A,t) and log(σ2

P,t)
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The estimation of the transfer function model (4-1)

log(σ2
P,t) = µ+

θq′(L)

φp′(L)
log(σ2

A,t−b) + νt

Can be done through several strategies. One which is well known is the Box-Jenkings pre-

whitening procedure, based on the cross-correlation of the observed data and in an (someti-

mes subtle) identification procedure which compares the cross correlation of several simple

transfer function models (4-1) with the observed one, choosing as the optimal model the one

with the more similar cross-correlation. We briefly review the Box-Jenkins pre-whitening

procedure. This procedure is best explained in Section 3.3.1.

If (At, Pt) are two processes jointly stationary its cross-covariance function is defined as

γA,P (k) = Cov(At, Pt+k) = E((At − µA)(Pt+k − µP )) for k = 0,±1,±2, ... (4-12)

And it satisfies γA,P (k) = γPt,At(−k). An estimator of γAt,Pt(k) is

γ̂A,P (k) =


1

T

T−k∑
t=1

(At − Ā)(Pt+k − P̄ ), k = 0, 1, 2, . . .

1

T

T+k∑
t=1

(At − Ā)(Pt−k − P̄ ), k = 0,−1,−2, . . .

(4-13)

The cross correlation is defined as

ρA,P (k) =
γA,P (k)

σA,tσP,t
(4-14)

Where σA,t =
√
V ar(At) and σP,t =

√
V ar(Pt). Using (4-12) well known estimators of va-

riances, an estimator ρ̂A,P of the cross correlation in (4-13) can be defined immediately.

The Box-Jenkins pre-whitening methodology consists of several steps (see Wei [46], Chapter

14). In the first one, a general stationary SARFIMA model (3-6) with Xn = At or Pt, is

fitted to log(σ2
A,t) input series. For instance, an ARFIMA of the form.

Φp(L)(1− L)dlog(σ2
A,t) = α0 + Θq(L)Ut (4-15)

Where Ut is white noise with variance σ2
U . One can solve (4-15) for Ut, assuming the inver-

tibility conditions for Θq(L), and we obtain

Ut =
Φp(L)(1− L)d

Θq(L)
log(σ2

A,t)−
α0

Θq(1)
(4-16)
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And additionally, it can be found a sequence (πj, j = 0, 1, 2, ...) such that the following

identity is true, and defines the linear filter π(L).

π(L) =
Φp(L)(1− L)d

Θq(L)
=
∞∑
j=0

πjL
j (4-17)

With
∑∞

j=0 |πj| < ∞ and π0 = 1.The linear filter π(L) is known as prewhitening filter.

Applying this filter to the input series, we obtain

αt =
Φp(L)(1− L)d

Θq(L)
log(σ2

A,t) (4-18)

Applying the same prewhitening filter to the output series log(σ2
P,t) we obtain a filtered

output series

βt =
Φp(L)(1− L)d

Θq(L)
log(σ2

P,t) (4-19)

Letting εt = φσAθ
−1
σA
νt the transfer function model model (4-1) becomes

βt = ν(L)αt + εt (4-20)

The impulse response weights νj for the transfer function can be found as

νk =
σβ
σα
ραβ(k) (4-21)

In Figure 4-8 we obtain the Cross Correlation Function (CCF) whit the respective weights

νk, which according (4-20), it measures the strength of association between log(σ2
P,t) and

log(σ2
A,t).

From Figure 4-8, we can conclude that the effect of the Water Inflows volatility begins to

manifest in the Spot Price volatility after four days. According tables of typical impulse

weights (see table 3-1) the transfer model identified was

log(σ2
P,t) = µ+ Θ′q(L)Lblog(σ2

A,t) + νt (4-22)

With q′ = 4, b = 4, µ = −4,857421 such that νt follows an ARMA(2, 1). The Table 4-16

shows the estimated coefficients of the ARMA(2, 1) and of Θq′(L).

Table 4-17 shows the Ljung Box for the residuals of the ARMA(2, 1) model.

The transfer function model can be expressed as

log(σ2
P,t) = µ+ (1− θL4)log(σ2

A,t−4) +
1− θ1L

1− φ1L+ φ2L2
et (4-23)

Such that et ∼ White Noise (0, σ2)
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Figure 4-8.: Cross Correlation Function between log(σ2
P,t) and log(σ2

A,t)

Estimate Std. Error z value Pr(>|z|)
ar1 0.296789 0.017251 17.2039 < 2.2e-16 ***

ar2 0.678637 0.016600 40.8826 < 2.2e-16 ***

ma1 0.210381 0.022587 9.3144 < 2.2e-16 ***

intercept -4.857421 0.223091 -21.7733 < 2.2e-16 ***

x-MA0 -0.006052 0.013774 -0.4394 0.6604

x-MA1 -0.011936 0.015352 -0.7775 0.4368

x-MA2 0.018629 0.015827 1.1770 0.2392

x-MA3 -0.019364 0.015354 -1.2612 0.2072

x-MA4 0.057877 0.013779 4.2004 2.664e-05 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4-16.: Coefficients of the transfer function model
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Null hypothesis: uncorrelated residuals

X-squared df p-value

19.4143 14 0.1497

Table 4-17.: Ljung Box Test for the residuals of the ARMA(2, 1)

4.3. Some Parametric Models Evaluated.

In Section 4.2, we saw that it is possible to establish a parametric ADL-Rational model (See

equation (4-23)). However, we will try to adjust other models.

Initially, we will try to make an adjustment by an ADL-Gamma model (it was explained

in Section 3.3.2) and then, we will try an adjustment by the ADL-Koyck model (it was

explained in Section 3.3.1, page 18).

4.3.1. Model: ADL-Gamma

The ADL Gamma model was proposed by Bollerslev [24] in 1986 and it is shown in the

equation (4-24).

yt = µ+ α
∞∑
j=0

(j + 1)δ/(1−δ)λjxt−j + et (4-24)

where δ, λ ∈ (0, 1), µ, α ∈ R, (et, t ∈ Z) and xt, t ∈ Z is a covariance stationary process that

supports a causal representation, xt =
∑∞

k=0 ψkZk, Zk ∼White Noise (0, σ2
x) with k ∈ Z.

We propose a methodology for estimating the parameters of the model (4-24). This methodo-

logy is explained in Appendix C. When we use this methodology, we obtain the parameters

for the equation (4-24), where yt = log(σ2
P,t) is the log-square volatilities of the Spot Price

and xt = log(σ2
A,t) is the log-square volatilities of the Water Inflows.

µ̂: 2.83051036

α̂: 0.06636876

λ̂: 0.09896834

δ̂: 0.08949369

Graphically, the figure 4-9 contrasts the log(σ2
P,t) calculated with the values of log(σ2

P,t)

evaluated with the estimated parameters µ̂, α̂, λ̂ and δ̂ over log(σ2
A,t). From this figure, it is

evident that the Gamma model can not explain the volatility of the Energy Spot Price from

the Water Inflows.
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Figure 4-9.: Comparison between the original log(σ2
P,t) series (red color) and the output

series with the estimated parameters log(σ2
P,t)|µ̂,α̂,λ̂,δ̂ (blue color) after applying

the model ADL Gamma on log(σ2
A,t)
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4.3.2. Model: ADL-Koyck

According to the ADL-Koyck model, which was explained in Section 3.3.1 (definition 3.9),

we execute the R Software code shown in Appendix B.2.

Using the identity (3-28), we obtain the following parameters:

σ̂ = 0,7357568

µ̂ = 4,5833053

λ̂ = 0,6619485

α̂ = −0,1312024

In Figure 4-10 we present a graphical analysis of residuals from the ADL-Koyck model with

the parameters estimated. Additionally, the results of the Box-Ljung test are presented in

Table 4-18.

From Figure 4-10 and Table 4-18, it is obvious that the residuals are not white noise.

Through the auto.arima() function from the forecast library and using the lowest AIC

criterion, we see that the residuals follow an ARIMA(3, 1, 2) model, whose parameters are

shown in Table 4-19.

X-squared df p-value

36006.94 12 < 2.2e-16

Table 4-18.: Ljung-Box Test for ADL-Koyck residuals

Estimate Std. Error z value Pr(>|z|)
ar1 -0.4935463 0.0343276 -14.3776 < 2.2e-16 ***

ar2 0.8973342 0.0064936 138.1870 < 2.2e-16 ***

ar3 0.5458028 0.0304531 17.9227 < 2.2e-16 ***

ma1 -0.6669545 0.0389377 -17.1287 < 2.2e-16 ***

ma2 -0.3301764 0.0388139 -8.5067 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4-19.: Parameters of the residuals ADL-Koyck model

However, when we adjust the residues to the Koyck model, the residuals still are not White

Noise, as we can see in Figure 4-11 and Table 4-20. If we do the Ljung Box test with less



44 4 Statistical Model And Results

0 1000 2000 3000 4000 5000

−
1
.0

0
.0

t

re
s
id

u
o

−1.0 −0.5 0.0 0.5

0
.0

1
.0

2
.0

x

D
e
n
s
it
y

0 10 20 30 40 50 60

0
.0

0
.4

0
.8

Lag

A
C

F

0 10 20 30 40 50 60

0
.0

0
.4

0
.8

Lag

P
a
rt

ia
l 
A

C
F

−4 −2 0 2 4

−
1

.0
0
.0

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 4-10.: Graphical summary of the ADL Koyck Model residuals with the estimated

parameters.
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lags, as we show in Table 4-21, we can see the behavior is approaching to be white noise.

This indicates that the model is spurious and is not recommended to use it.
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Figure 4-11.: Graphical summary of the Koyck Model when we adjust the residuals to an

ARIMA(3,1,2).

X-squared df p-value

88.885 30 9.682e-08

Table 4-20.: Ljung-Box Test for ADL-Koyck residuals after setting an ARIMA(3,1,2)

model.

In Figure 4-12 we show the Koyck model fitted between the log-square volatility of the Spot

Price log(σ2
P,t) (red color) and the log-square volatility of the Water Inflows log(σ2

A,t) (blue

color) after setting an ARIMA(3, 1, 2) to the residuals. However, the residuals of the general

Koyck model, still not been white noise, as we explained earlier.
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Lag X-squared df p-value

25 74.7698 25 7.357e-07

20 68.1616 20 3.625e-07

10 36.6228 10 6.576e-05

5 22.1406 5 0.0004923

Table 4-21.: Ljung-Box Test with different lags for ADL-Koyck residuals after setting an

ARIMA(3,1,2) model.
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Figure 4-12.: Koyck model fit between the volatility of the spot price log(σ2
P,t (red color)

and the volatility of the water inflows log(σ2
A,t (blue color) after setting an

ARIMA(3, 1, 2) to the residuals.



5. Conclusions and Recommendations

Conclusions refer to the models for water inflows and spot price, and the transfer function

model for volatilities.

5.1. Conclusions

Although the water inflows series displays a strong annual seasonal component we did

not apply a SARIMA type model. We do not filtered the seasonal component with a

deterministic periodic function but fitted an ARIMA model which rendered significant

coefficients and white noise residuals of GARCH type.

For the electricity spot price we found two stylized facts which should be included into

any model

• A weekly periodicity: it could be explained, in principle, as an effect from the

power consumption (residential demand), but confirming this fact is left as a

further issue to investigate

• A seasonal and non seasonal fractional integration: the fitted model was of a

SARFIMA type, with a seasonal and non seasonal fractional differentiation filter

which rendered a SARMA type model, with residuals of the GARCH type.

The residuals of At were fitted to a GARCH(1,1) process while log(Pt) residuals were

fitted to a GARCH(2,2). From these models the corresponding log-square volatilities

were estimated.

There is a significant effect from the hydrology into the prices, and the fitted transfer

model 4-23 shows that the water inflows volatility effects are transferred to the energy

spot volatility after approximately 4 days. This conclusion confirms the well accepted

assumption that hydrology affects the spot prices.

About the behavior of agents:

• The agents respond rationally at the behavior of hydrology, suggesting that there

is no market power behavior.

• The delayed response of the Spot Price volatility is due to management regulation

reservoirs, which offers coverage to the Water Inflows volatility to agents that have

this type of reservoirs.
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• The commercial strategy of the electricity companies considered as a fundamental

variable current and past hydrological behavior.

5.2. Recommendations

To model a water inflows series (which has a seasonal component) it can be done

through an ARIMA model. The annual seasonal component can in fact be assimilated

to a stochastic trend giving rise to an ordinary (not seasonal) unit root.

Investigate if the weekly periodicity in the Energy Spot Price series is due to the Power

Consumption (residential demand).

Use a GARCH(1,1) model to represent the volatility of Water Inflows and a GARCH(2,2)

model to represent the volatility of Energy Spot Price in Colombia.

Investigate if water inflows can affect log-prices, not through volatilities but from the

level series.

A question remains though, and it is if water inflows can affect log-prices, not through

volatilities but from the level series. From (4-6) the model for log-prices follows the

system

Φ1(L)(1− L7)0,35(1− L)0,29log(Pt) = Θ3(L)Θ2(L7)εt‘

’ Where, εt = σtet and σ2
P,t = ω + β1σ

2
P,t−1 + β2σ

2
P,t−2 + α1ε

2
t−1 + α2ε

2
P,t−2. The last

equation could be modified so as to include the exogenous variable, log(σ2
A,t−2), such

that, for certain γ

σ2
t = ω + β1σ

2
P,t−1 + β2σ

2
P,t−2 + α1ε

2
t−1 + α2ε

2
P,t−2 + γlog(σ2

A,t−4)

This model would include the effect of water inflows volatilities into the electricity price.

But a model directly relating electricity price and water inflows was not considered

because of the strong annual periodicity in water inflows, and the weekly periodicity

of log-prices, giving a difficult transfer model with two periods, not divisible (365 - 7).

To present the results of this study to regulatory authorities to show that electricity

companies respond rationally to hydrological behavior.



A. Appendix: Time series modeling in R

A.1. Appendix: Box-Jenkins approach for ARIMA(p,d,q)

processes using R

The pi.j() function of the afmtools library, calculates a sequence of coefficients (πj, j =

0, 1, . . . , n), of π(L) filter. This sequence is applied by the filter() function of the stats

library to the series log(σ2
P,t), log(σ2

A,t)− E(log(σ2
A,t)) (centered), to calculate Wt and Ut.

Then, the cross-correlation function is applied by the ccf() function to find the patterns

that could describe the νk. That pattern should give us a guide to define the transfer function

model ν(L).

Box and Jenkins said: [4], pag. 380 “The preliminary estimates ν̂k so obtained are again, in

general, statistically inefficient but can provide a rough basis for selecting suitable opera-

tors...in the transfer function model”.

A.2. Time Series Models in R

The estimation of time series models has been widely studied in the literature. Particularly,

in the development of this work we have used the maximum likelihood method to estimate

the parameters.

The TSA package written by Kung and Ripley, [7] is heavily based on the arima function of

the stats core of R. In this package, the statistical methods to establish the ARIMA model

that best fit the data are: maximum likelihood and minimizing the conditional sum of squa-

res. The default (unless there are missing values) is to use conditional sum of squares to find

starting values, then R use maximum likelihood.

Moreover, the auto.arima() function of the Forecast library returns the best ARIMA mo-

del according to AIC, AICc or BIC value.

The methods used by the auto.arima() function for estimating the best ARIMA model

are describing by Hyndman and Khandakar [19]. Moreover, according to Osborn et al. [31]
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the method used to analyze seasonal differences is the OCSB test (Osborn , Chui, Smith ,

Birchenhall). To estimate the distributed lag model for the volatility, we use ordinary least

squares by using the arimax(). It is important to say that this functions have the ability to

involve and analyze seasonal series. Therefore, everything said for ARIMA series also can be

extrapolated for series ARMA and SARMA.

In the case of the ARFIMA and SARFIMA series, it is necessary the use of afmtools library,

written by Contreras-Reyes et al. [8]. This library is specialized in Estimation, Diagnostic

and Forecasting functions for ARFIMA models.

A.3. GARCH Models in R

Particularly, the rugarch package is specialized in modeling and testing GARCH models.

The testing environment is based on a rolling backtest function. Additionally, this package

has a lot of distributions to be used for modelling innovations. From this package, we use

the ugarchfit() function which fits the data to a wide variety of univariate GARCH models.

The ugarchfit() function uses a hybrid solution strategy. First of all, it attempts a nonlinear

solution, as was proposed by Ye [48]. If this method does not converge then it attempted

with an optimization methods using port routines, next with a random initialization and

multiple restarts of the nonlinear solutions, and if none of these methods converge, then it

try to use the nloptr package which offers the possibility of multiple nonlinear optimization

methods.
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B.1. Application of Statistical Model

ls()

rm(list=ls())

library(itsmr)

library(forecast)

library(TSA)

library(lmtest)

library(tseries)

library(FitARMA)

library(caschrono)

D = read.table(’Precio.Aportes.prn’, header = T, stringsAsFactors=FALSE)

attach(D)

Apt = ts(Ap,frequency=360)

Pbt = ts(Pb,frequency=7)

np = length(Pbt)

dates = as.Date(Fecha,format=’%d/%m/%Y’)

ejex.mes = seq(dates[1],dates[np], ’months’)

ejex.ano = seq(dates[1],dates[np],’years’)

par(mfrow=c(2,1))

plot(dates,Apt, xaxt=’n’, panel.first = grid()

,type=’l’,ylab=’Water Inflows’)

axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

plot(dates,Pbt, xaxt=’n’, panel.first = grid()

,type=’l’,ylab=’Energy Prices’)
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axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

k4 = kernel(’modified.daniell’,c(3,3))

par(mfrow=c(2,1))

plot(dates,Ap, xaxt=’n’, panel.first = grid()

,type=’l’,ylab=’Water Inflows’,xlab=’(a) Time series At’)

axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

acf(Ap,ci.type= ’ma’,350,main=’(a)’)

spec.pgram(Ap, k4,ci = 0.85 ,main=’’,xlab=’(b) Estimated periodogram of At’)

B = spec.pgram(Ap, k4, ci = 0.8,plot=FALSE)

plot(B$freq[B$freq < 0.05],B$spec[B$freq < 0.05],type=’l’,

xlab = ’(frequency < 0.05)’,

ylab = ’spectrum’,main=’(b)’)

abline(v = 1/180,col = ’red’)

abline(v = 1/365,col = ’red’)

auto.arima(Ap, max.p=10, max.q=10,

ic=c(’aicc’,’aic’, ’bic’), test=c(’kpss’,’adf’,’pp’), seasonal.test=c(’ocsb’,’ch’),

allowdrift=TRUE, lambda=NULL, parallel=FALSE, num.cores=2)

Ap_armasubsets=armasubsets(y=Ap,

nar=10,nma=10,

y.name=’r’,

ar.method=’ols’)

par(mfrow=c(3,1))

plot(Ap_armasubsets)

acf(Ap)

pacf(Ap)

EACF=eacf(Ap)

armaselect(Ap,nbmod=50)
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Aju_Ap = Arima(Ap,order=c(7,1,2),

include.mean = TRUE)

coeftest(Aju_Ap)

library(fUnitRoots)

adf.test(Apt,k = trunc((length(Apt)-1)^(1/3)))

urdfTest(Apt, lags = (length(Apt)-1)^(1/3), type = c(’nc’, ’c’, ’ct’), doplot = TRUE)

urersTest(Apt, type = c(’DF-GLS’, ’P-test’), model = c(’constant’, ’trend’),

lag.max = trunc((length(Apt)-1)^(1/3)), doplot = TRUE)

urkpssTest(Apt, type = c(’mu’, ’tau’), lags = c(’short’, ’long’, ’nil’),

use.lag = NULL, doplot = TRUE)

urppTest(Apt, type = c(’Z-alpha’, ’Z-tau’), model = c(’constant’, ’trend’),

lags = c(’short’, ’long’), use.lag = NULL, doplot = TRUE)

ur.pp(Apt, type = c(’Z-tau’), model = c(’trend’),

lags = c(’short’, ’long’), use.lag = NULL)

urspTest(Apt, type = c(’tau’, ’rho’), pol.deg = c(1, 2, 3, 4),

signif = c(0.1), doplot = TRUE)

urzaTest(Apt, model = c(’intercept’, ’trend’, ’both’), doplot = TRUE)

Aju_Ap.hat = fitted(Aju_Ap)

r_Ap.hat = residuals(Aju_Ap)

theta = coef(Aju_Ap)

r_Ap.hat = arima.sim(n = length(Ap),

list(order = c(7,1,2),ar = theta[1:7], ma = theta[8:9]),

innov = r_Ap.hat)+mean(Ap)

par(mfrow=c(1,1))
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plot(dates,Ap,type=’p’,cex=.5,pch=19)

lines(dates,Aju_Ap.hat,lty=1,col=’darkgray’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

par(mfrow=c(2,2))

t = seq(1,length(r_Ap.hat))

plot(t,r_Ap.hat,type=’l’,ylab=’residuals’, main = ’(a)’)

abline(h=0,lty=2)

plot(density(r_Ap.hat),xlab=’x’,main= ’(b)’)

acf(r_Ap.hat,ci.type= ’ma’,60,main=’(c)’)

qqnorm(r_Ap.hat, main=’(d)’)

qqline(r_Ap.hat,col=2)

r_Ap = residuals(Aju_Ap)

Box.test(x = r_Ap, lag = 60, type=’Ljung-Box’)

tsdiag(Aju_Ap, gof.lag=60)

dAp = diff(Ap,1,1)

par(mfrow=c(1,2))

acf(dAp,ci.type= ’ma’,90,main=’’)

spec.pgram(dAp, k4, ci = 0.8,main=’’)

armasubsets_dAp=armasubsets(y=dAp,

nar=14,nma=14,

y.name=’r’,

ar.method=’ols’)

par(mfrow=c(3,1))

plot(armasubsets_dAp)

acf(dAp)

pacf(dAp)

EACF=eacf(dAp)

armaselect(dAp,nbmod=50)

(Aju_dAp = Arima(dAp,order=c(7,0,2),

include.mean = TRUE))



B.1 Application of Statistical Model 55

coeftest(Aju_dAp)

require(FinTS)

require(rugarch)

ArchTest(r_Ap,lag=14)

efectis ARCH

spec3 = ugarchspec(

variance.model=list(model=’fGARCH’, garchOrder=c(1,1),submodel = ’GARCH’),

mean.model=list(armaOrder=c(0,0), include.mean=FALSE),

distribution.model=’nig’)

z2 = as.numeric(r_Ap)

(fit.rAp.et = ugarchfit(data = z2, spec = spec3))

sigma.rAp.et = fit.rAp.et@fit$sigma

t = seq(1,length(sigma.rAp.et))

par(mfrow=c(1,1))

np = length(sigma.rAp.et)

dates = as.Date(dates,format=’%d/%m/%Y’)

ejex.mes = seq(dates[1],dates[np], ’months’)

ejex.ano = seq(dates[1],dates[np],’years’)

plot(dates,sigma.rAp.et, xaxt=’n’, panel.first = grid(),type=’l’

,ylab=’daily volatility of Water Inflows’, xlab=’date’)

axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

abline(v=as.Date(’2002-10-01’))

abline(v=as.Date(’2006-09-01’))

abline(v=as.Date(’2009-09-01’))

abline(v=as.Date(’2010-06-01’))

G = data.frame(dates=dates,sigma.Ap = sigma.rAp.et)

require(MASS)
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write.matrix(G,’volat.aportes.dat’,sep=’ ’)

library(itsmr)

library(forecast)

library(TSA)

source(’filtros.katayama.r’)

lPb = log(Pb)

x = lPb

n = length(x)

lag = 7

ds = 0.35

g = pij.SFId.gen(ds, lag, n)

rpbs = convolve(g, rev(x))[1:n]

require(fracdiff)

fdGPH(rpbs, bandw.exp = 0.5)

fdSperio(rpbs)

d = 0.29

h = pij.FId.gen(d, n)

rpb = convolve(h,rev(rpbs))[1:n]

par(mfrow=c(3,1))

ts.plot(lPb)

ts.plot(rpbs)

ts.plot(rpb)

k4 = kernel(’modified.daniell’, c(3,3))

par(mfrow=c(3,2))

spec.pgram(lPb, k4, taper=0,

log = ’dB’, ci = 0.8, main=’(a)’,xlab=’frequency’)

acf(lPb,90, ci.type = ’ma’, main=’(b)’)
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spec.pgram(rpbs, k4, taper=0,

log = ’dB’, ci = 0.8, main=’(c)’,xlab=’frequency’)

acf(rpbs,90, ci.type = ’ma’, main=’(d)’)

spec.pgram(rpb, k4, taper=0,

log = ’dB’, ci = 0.8, main=’(e)’,xlab=’frequency’)

acf(rpb,90, ci.type = ’ma’, main=’(f)’)

rpbs = ts(rpbs,frequency=7)

lPb = ts(lPb,frequency=7)

rpb = ts(rpb,frequency=7)

auto.arima(rpb)

m.rpb = arima(rpb,order=c(1,0,3),

seasonal = list(order=c(0,0,2),period=7),

include.mean = FALSE)

m.rpb

require(lmtest)

coeftest(m.rpb)

r1 = residuals(m.rpb)

r2 = residuals(m.rpb)[-c(1:5)]

par(mfrow=c(2,2))

t = seq(1,length(r1))

plot(t,r1,type=’l’,ylab=’residuo’)

abline(h=0,lty=2)

plot(density(r1),xlab=’x’,main= ’’)

acf(r1,ci.type= ’ma’,60,main=’’)

qqnorm(r1)

qqline(r1,col=2)

Box.test(x = r1, lag = 14, type=’Ljung-Box’)
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Box.test(x = r2, lag = 14, type=’Ljung-Box’)

tsdiag(m.rpb, gof.lag=50)

y = residuals(m.rpb)

b=coef(m.rpb)

phi <- b[1]

theta <- b[2:4]

sphi <- c(0)

stheta <- b[5:6]

period <- 7

d <- 0

ds <- 0

require(polynom)

bs <- polynomial(c(rep(0,period),1))

b1 <- polynomial(c(0,1))

arpoly <- polynomial (c(1,-phi) )

mapoly <- polynomial (c(1,theta) )

sarpoly <- polynomial(c(1,-sphi) )

smapoly <- polynomial(c(1,stheta) )

fullarpoly <- arpoly*predict(sarpoly,bs)

fullmapoly <- mapoly*predict(smapoly,bs)

mo <- list()

mo$ar <- -coef(fullarpoly)[-1]

mo$ma <- coef(fullmapoly)[-1]

p <- length(mo$ar)

q <- length(mo$ma)

n <- length(y)

if(p>0 || q>0 )

{x <- arima.sim(model=mo,n=n, innov = y)



B.1 Application of Statistical Model 59

}else{x <- y} # parameter checking may be necessary here...

if(d+ds > 0){ # undifference: diffinv is better but initial values need care...

pdiff <- (1-b1)^d * (1-bs)^ds

if(is.null(init))

init <- numeric( length(coef(pdiff)) - 1 ) # order of pdiff, no function poly.order?

x <- filter(x, -coef(pdiff)[-1], method = ’recursive’, init =init )

res <- ts(c(init,x),frequency=period)

}else{

res <- ts(x,frequency=period)

}

ds = 0.35

d = 0.29

nt = 30

library(portes)

g = g[1:141]

ginv = ImpulseVMA(phi=-g[-1],

theta = numeric(0),Trunc.Series = 140)

ginv = as.numeric(ginv)

yest.s = convolve(ginv,rev(res),type=’o’)[1:length(res)]

h = h[1:170]

hinv = ImpulseVMA(phi=-h[-1],

theta = numeric(0),Trunc.Series = 170)

hinv = as.numeric(hinv)

yest = convolve(hinv,rev(yest.s),type=’o’)[1:length(yest.s)]

yest[c(1:3)] = mean(yest)

par(mfrow=c(1,1))

t = seq(1,length(lPb))

plot(t,yest-mean(yest)+mean(lPb),type=’l’,
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col=’darkgray’,lwd=2,ylab=’log-price energy’)

points(t,lPb,

col = ’black’,pch=19,cex=0.5)

lines(t,yest-mean(yest)+mean(lPb),

col = ’darkgray’)

require(FinTS)

require(rugarch)

ArchTest(r1,lag=14)

spec3 = ugarchspec(

variance.model=list(model=’fGARCH’, garchOrder=c(2,2),submodel = ’GARCH’),

mean.model=list(armaOrder=c(0,0), include.mean=TRUE),

distribution.model=’nig’)

z1 = as.numeric(r1)

(fit.rpb.et = ugarchfit(data = z1, spec = spec3))

sigma.rpb.et = fit.rpb.et@fit$sigma

t = seq(1,length(sigma.rpb.et))

par(mfrow=c(1,1))

plot(t,sigma.rpb.et,type=’l’)

np = length(sigma.rpb.et)

fechas = as.Date(Fecha[-c(1:5)],format=’%d/%m/%Y’)

ejex.mes = seq(fechas[1],fechas[np], ’months’)

ejex.ano = seq(fechas[1],fechas[np],’years’)

plot(fechas,sigma.rpb.et, xaxt=’n’, panel.first = grid(),type=’l’

,ylab=’daily volatility of price’, xlab=’date’)

axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

abline(v=as.Date(’2002-10-01’))

abline(v=as.Date(’2006-09-01’))

abline(v=as.Date(’2009-09-01’))

abline(v=as.Date(’2010-06-01’))
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H = data.frame(dates=dates,sigma.Pb = sigma.rpb.et)

require(MASS)

write.matrix(H,’volat.precio.dat’,sep=’ ’)

## rs.test calculates the statistic of the modified R/S test

##

## x: time series

## q: number of lags included for calculation of covariances

##

## significance level: 0.05, 0.1

## critical value: 1.747, 1.62

##

## References: Lo (1991), Long-term Memory in Stock Market Prices,

## Econometrica 59, 1279--1313

## Christoph Helwig Christoph.Helwig at gmx.net

rs.test <- function(x, q, alpha)

{

xbar <- mean(x)

N <- length(x)

r <- max(cumsum(x-xbar)) - min(cumsum(x-xbar))

kovarianzen <- NULL

for (i in 1:q)

{

kovarianzen <- c(kovarianzen,

sum((x[1:(N-i)]-xbar)*(x[(1+i):N]-xbar)))

}

if (q > 0)

s <- sum((x-xbar)^2)/N + sum((1-(1:q)/(q+1))*kovarianzen)*2/N

else

s <- sum((x-xbar)^2)/N

rs <- r/(sqrt(s)*sqrt(N))

method <- ’R/S Test for Long Memory’

names(rs) <- ’R/S Statistic’

names(q) <- ’Bandwidth q’

structure(list(statistic = rs, parameter = q, method = method,

data.name=deparse(substitute(x))), class=’htest’)
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}

## vs.test calculates the statistic of the modified V/S test

##

## x: time series

## q: number of lags included for calculation of covariances

##

## significance level: 0.01, 0.05, 0.1

## critical value: 0.2685, 0.1869, 0.1518

##

## References: Giraitis, Kokoszka und Leipus (2000), Rescaled variance

## and related tests for long memory in volatility and levels

##

vs.test <- function(x, q, alpha)

{

xbar <- mean(x)

N <- length(x)

v <- sum((cumsum(x-xbar))^2) - (sum(cumsum(x-xbar)))^2/N

kovarianzen <- NULL

for (i in 1:q)

{

kovarianzen <- c(kovarianzen,

sum((x[1:(N-i)]-xbar)*(x[(1+i):N]-xbar)))

}

if (q > 0)

s <- sum((x-xbar)^2)/N + sum((1-(1:q)/(q+1))*kovarianzen)*2/N

else

s <- sum((x-xbar)^2)/N

vs <- v/(s*N^2)

method <- ’V/S Test for Long Memory’

names(vs) <- ’V/S Statistic’

names(q) <- ’Bandwidth q’

structure(list(statistic = vs, parameter = q, method = method,

data.name=deparse(substitute(x))), class=’htest’)

}

rs.test(x=Apt, q=4, alpha=0.05)

rs.test(x=lPb, q=4, alpha=0.05)

rs.test(x=rpbs, q=4, alpha=0.05)
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rs.test(x=rpb, q=4, alpha=0.05)

## hip nula Ho: d = 0

## significance level: 0.05, 0.1

## critical value: 1.747, 1.62

vs.test(x=Apt, q=4, alpha=0.05)

vs.test(x=lPb, q=4, alpha=0.05)

vs.test(x=rpbs, q=4, alpha=0.05)

vs.test(x=rpb, q=4, alpha=0.05)

## hip nula Ho: d = 0

## significance level: 0.01, 0.05, 0.1

## critical value: 0.2685, 0.1869, 0.1518

basicStats(r_Ap, ci = 0.95)

basicStats(r1, ci = 0.95)

basicStats(sigma.rAp.et, ci = 0.95)

basicStats(sigma.rpb.et, ci = 0.95)

np = length(Pbt)

dates = as.Date(Fecha,format=’%d/%m/%Y’)

ejex.mes = seq(dates[1],dates[np], ’months’)

ejex.ano = seq(dates[1],dates[np],’years’)

par(mfrow=c(2,1))

plot(dates,Apt, xaxt=’n’, panel.first = grid()

,type=’l’,ylab=’Water Inflows’)

lines(dates,sigma.rAp.et,lty=1,col=’red’)

axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)

plot(dates,Pbt/100, xaxt=’n’, panel.first = grid()

,type=’l’,ylab=’Spot Prices’, ylim=c(0,3))

lines(dates,sigma.rpb.et*2,lty=1,col=’red’)

axis.Date(1, at=ejex.mes, format=’%m/%y’)

axis.Date(1, at=ejex.ano, labels = FALSE, tcl = -0.2)
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r1ap = r_Ap/sigma.rAp.et

r1ap=r1ap[-c(1:5)]

r1pb = r2/sigma.rpb.et

par(mfrow=c(3,2))

t = seq(1,length(r1ap))

plot(t,r1ap,type=’l’,ylab=’residuo’)

abline(h=0,lty=2)

plot(density(r1ap),xlab=’x’,main= ’’)

acf(r1ap,ci.type= ’ma’,60,main=’’)

pacf(r1ap,60,main=’’)

qqnorm(r1ap)

qqline(r1ap,col=2)

windows()

par(mfrow=c(3,2))

t = seq(1,length(r1pb))

plot(t,r1pb,type=’l’,ylab=’residuo’)

abline(h=0,lty=2)

plot(density(r1pb),xlab=’x’,main= ’’)

acf(r1pb,ci.type= ’ma’,60,main=’’)

pacf(r1pb,60,main=’’)

qqnorm(r1pb)

qqline(r1pb,col=2)

cpgram(r1ap,main=’ ’)

cpgram(r1pb,main=’ ’)

Box.test(x = r1ap, lag = 14, type=’Ljung-Box’)

Box.test(x = r1pb, lag = 14, type=’Ljung-Box’)

Da = read.table(’volat.aportes.dat’, header=TRUE, stringsAsFactors=FALSE)

Db = read.table(’volat.precio.dat’, header=TRUE, stringsAsFactors=FALSE)

fechas = Db$fechas
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sigma.Pb = log(Db$sigma.Pb^2)[-c(1:5)]

sigma.Ap = log(Da$sigma.Ap^2)[-c(1:5)]

length(sigma.Ap)

length(sigma.Pb)

par(mfrow=c(2,1))

t = seq(1,length(sigma.Pb))

plot(t,sigma.Ap,type=’l’,ylab=’daily Water Inflows volatility’, xlab=’date’,main=’(a)’)

plot(t,sigma.Pb,type=’l’,ylab=’daily log-Price volatility’, xlab=’date’,main=’(b)’)

y = sigma.Pb

x = sigma.Ap

x = ts(x,frequency=180)

y = ts(y,frequency=7)

require(e1071)

FinTS.stats(x)

FinTS.stats(y)

ndiffs(x=x,test=’pp’,max.d=3)

ndiffs(x=x,test=’adf’,max.d=3)

ndiffs(x=x,test=’kpss’,max.d=3)

ndiffs(x=y,test=’pp’,max.d=3)

ndiffs(x=y,test=’adf’,max.d=3)

ndiffs(x=y,test=’kpss’,max.d=3)

nsdiffs(x)

nsdiffs(y)

auto.arima(x, stationary=TRUE, seasonal=FALSE)

auto.arima(y)
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res.rpb=armasubsets(y=x,

nar=14,nma=14,

y.name=’r’,

ar.method=’ols’)

par(mfrow=c(1,1))

plot(res.rpb)

res.rpb=armasubsets(y=y,

nar=14,nma=14,

y.name=’r’,

ar.method=’ols’)

par(mfrow=c(1,1))

plot(res.rpb)

x = ts(x,frequency=7)

px = 2; qx = 3;

mx = arima(x,order=c(px,0,qx))

coeftest(mx)

library(portes)

B = ImpulseVMA(phi=numeric(0),

theta = mx$coef[1:px],Trunc.Series = 25)

B = as.numeric(B)

Wn = filter(x=y, filter=B,’conv’, sides = 1, circular = TRUE)

Un = filter(x=x, filter=B,’conv’, sides = 1, circular = TRUE)

length(Wn)

length(Un)

par(mfrow=c(1,1))

XY.n=ts.intersect(Wn, Un)
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ccf(as.numeric(XY.n[,1]),as.numeric(XY.n[,2]),

main=’’,ylab=’CCF’)

abline(v=0)

(mtr2 = arimax(y, order = c(2,0,1),

xtransf = data.frame(x=lag(x,-4)),

transfer = list(c(0,4)),

method=’ML’))

coeftest(mtr2)

B.2. Setting a ADL-Koyck model

x = sigma.rap.et

y = sigma.rpb.et

Ds = data.frame(x=x)

m1 = arimax(x = y, order = c(0,0,1),

include.mean = TRUE, xtransf = Ds,

transfer = list(c(1,0,0)))

m1$coef

r = m1$residuals[-c(1:5)]

t = seq(1,length(r))

par(mfrow=c(3,2))

plot(t,r,type="l",ylab="residuo")

abline(h=0,lty=2)

plot(density(r),xlab="x",main= "")

acf(r,60,main="")

pacf(r,60,main="")

qqnorm(r)

qqline(r,col=2)

Box.test(x = r, lag = 12, type="Ljung-Box")

lambda = -0.0002892297

mu = 9.4510943216

alpha = 0.0062267536

sigma = 0.8370285898
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n = length(y)

y_asterisco = double(n)

et = m1$residuals

y[1] = x[1]

for(j in 2:n){

y_asterisco[j] = (1-lambda)*mu + lambda*y[j-1] + alpha*x[j] + et[j]-lambda*et[j-1]}

y = sigma.rpb.et

windows()

t = seq(1,length(x))

par(mfrow=c(1,1))

plot(t,y,type="l",col="blue")

lines(t,y_asterisco,col="red")

Ds = data.frame(x=x)

(m3 = arimax(x = y_asterisco, order = c(5,1,0),

include.mean = TRUE, xtransf = Ds,

transfer = list(c(1,0,0))))

r3 = m3$residuals[-c(1:5)]

t3 = seq(1,length(r3))

par(mfrow=c(3,2))

plot(t3,r3,type="o",ylab="residuo")

abline(h=0,lty=2)

plot(density(r3),xlab="x",main= "")

acf(r3,30,main="")

pacf(r3,30,main="")

qqnorm(r3)

qqline(r3,col=2)

Box.test(x = r3, lag = 12, type="Ljung-Box")

B.3. Accurate Simulation of ADL-Gamma

fk = function(k){ (1+k)^(delta/(1-delta))*lambda^k}

n = 500
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x=arima.sim(n = n, list(ar=c(0.8897, -0.4858), ma=c(-0.2279, 0.2488)),

rand.gen = function(n, ...) sqrt(0.1796) * rt(n, df = 5))

delta = 0.3

lambda = 0.5

mu = 0

alpha = 2.5

B = fk(c(0:(n-1)))

et = rnorm(n,0,sd=1)

y = mu+alpha*filter(x=rev(x), filter=B, sides = 1, circular = TRUE)+et

t = seq(1,length(x))

par(mfrow=c(1,1))

plot(t,y,type="l",col="gray")

lines(t,x,col="red")

B.4. Parameter estimation for Gamma transfer function

mat_alpha=function(equis, ye, delta, lambda)

{

m.alpha = matrix(0,nrow=length(delta),ncol=length(lambda))

suma = rep(0,length(equis))

for(d in 1:length(delta))

{

for(b in 1:length(lambda))

{

for (i in 0:(length(equis)-1))

suma[i+1] = (i+1)^(delta[d]/(1-delta[d]))*lambda[b]^i

Y.asterisco=filter(x=rev(equis), filter=suma, sides = 1, circular = TRUE)

alpha=sum(ye)/sum(Y.asterisco)

m.alpha[d,b]=alpha

}

}

colnames(m.alpha, do.NULL = FALSE)
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colnames(m.alpha) = colnames(m.alpha, do.NULL = FALSE, prefix = "lambda.")

rownames(m.alpha) = rownames(m.alpha, do.NULL = FALSE, prefix = "delta.")

m.alpha

}
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methodology for Gamma transfer

function

To simulate an exactly ADL-Gamma we run the R code showed in Appendix B.3. Here were

simulated 500 data such that Xt ∼ ARMA(2, 2). Additionally, we define the parameters

δ = 0,3, λ = 0,5, µ = 0, α = 2,5

Then, we generate the figure C-1 from the R code of Appendix B.3. The red line is the data

from the input variable xt and the blue line is the data of the output variable yt, according

to the model 4-24.

From the values xt and yt simulated, we estimate the parameters α̂, δ̂ y λ̂ to test the met-

hodology that we propose.

Considering that
∑t=T

t=1 (yt − αy∗t )2 = 0, then:

t=T∑
t=1

y2
t − 2αyty

∗
t + α2y∗t = 0 (C-1)

It can be shown easily that the solution of equation C-1 is α = yt
y∗t

, where yt are the actual

output values of the transfer function and y∗t is defined as

y∗t =
∞∑
j=0

(j + 1)δ/(1−δ)λjxt−j (C-2)

where δ, λ ∈ (0, 1), µ, α ∈ R, (et, t ∈ Z)

Then, a matrix of (d x b) size is constructed, where d is the number of δ’s to be evaluated

in equation C-2, such that δ ∈ (0, 1), according to a defined step size. Equivalently, b is the

number of λ’s, such that λ ∈ (0, 1) to be evaluated in equation C-2 according to a defined

step size.

For example: if we choose a step size of 0.1 for δ and λ, then according to solution found

for (C-1) and substituting the respective values of δ and λ in the equation C-2, the matrix

is evaluated as follows:
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Figure C-1.: Simulation of the model 4-24 with parameters δ = 0,3, λ = 0,5, µ = 0, α = 2,5
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According to the above explanation, we run the R code shown in Appendix B.4 then we take

the values of xt and yt of the previous simulation.

Then, we obtained the following matrix of values of α for different values of δ and λ with

step size of 0.1.

lambda.1 lambda.2 lambda.3 lambda.4 lambda.5
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delta.1 6.048668 5.443800806 4.8389340500 4.234067e+00 3.629201e+00

delta.2 6.048668 5.397685248 4.7517270034 4.111520e+00 3.478011e+00

delta.3 6.048668 5.335509186 4.6356241635 3.950729e+00 3.283013e+00

delta.4 6.048668 5.247672279 4.4745599543 3.732276e+00 3.024468e+00

delta.5 6.048668 5.115626785 4.2390957712 3.422872e+00 2.671433e+00

delta.6 6.048668 4.899420726 3.8711472400 2.963847e+00 2.177520e+00

delta.7 6.048668 4.500194245 3.2490229550 2.257280e+00 1.490785e+00

delta.8 6.048668 3.634564720 2.1389393815 1.213316e+00 6.505585e-01

delta.9 6.048668 1.615412804 0.5433189109 1.911980e-01 6.510858e-02

delta.10 6.048668 0.006982882 0.0003887481 3.200256e-05 2.781568e-06

lambda.6 lambda.7 lambda.8 lambda.9 lambda.10

delta.1 3.024334e+00 2.419467e+00 1.814600e+00 1.209734e+00 6.048668e-01

delta.2 2.852476e+00 2.236728e+00 1.633525e+00 1.047570e+00 4.887120e-01

delta.3 2.635365e+00 2.011777e+00 1.418127e+00 8.639971e-01 3.682070e-01

delta.4 2.355788e+00 1.732404e+00 1.162964e+00 6.606992e-01 2.493711e-01

delta.5 1.990181e+00 1.385833e+00 8.671190e-01 4.461977e-01 1.423008e-01

delta.6 1.512167e+00 9.677868e-01 5.443801e-01 2.419467e-01 6.048668e-02

delta.7 9.183728e-01 5.112567e-01 2.423841e-01 8.566116e-02 1.475679e-02

delta.8 3.207566e-01 1.391771e-01 4.904021e-02 1.173819e-02 1.082441e-03

delta.9 2.016223e-02 5.259711e-03 1.018379e-03 1.115476e-04 2.944967e-06

delta.10 2.133641e-07 1.209970e-08 3.887951e-10 4.081597e-12 2.528821e-15

Taking as reference the values of the above matrix, the values of δ and λ are searched that

minimize the difference with the real yt value.

Ec =
T∑
t=0

(Y − α
∞∑
j=0

(j + 1)δ/(1−δ)λjt−j)
2 (C-3)

Where,

Ec = squared error difference between the actual response and the estimated.

Y = real value of the response series.

α = possible value of the parameter α found in the previous step of this procedure.

δ = possible value of the parameter δ.

λ = possible value of the parameter λ.

According to the above matrix of combinations of values of δ and λ, the matrix of the possible

combinations of α is calculated, and it is shown in the following matrix
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lambda.1 lambda.2 lambda.3 lambda.4 lambda.5 lambda.6 lambda.7

delta.1 2793.394 2220.9061 1695.2098 1227.3468 842.3478 583.1465 515.2630

delta.2 2793.394 2180.2647 1627.8605 1148.8101 771.6735 544.1616 536.0733

delta.3 2793.394 2126.2217 1541.0241 1052.0622 692.0263 513.7095 589.7559

delta.4 2793.394 2051.3686 1426.0290 932.5004 607.5859 508.0826 704.7814

delta.5 2793.394 1942.1931 1269.6948 787.8158 534.5975 565.1369 935.6143

delta.6 2793.394 1772.3258 1054.6184 630.7786 525.8447 773.3436 1384.0449

delta.7 2793.394 1488.5999 777.8200 543.7005 742.5749 1330.5856 2215.4745

delta.8 2793.394 1013.5422 597.8708 885.1438 1615.8763 2583.1171 3566.4338

delta.9 2793.394 759.0987 1533.2749 2685.3753 3793.9130 4605.7420 5056.2018

delta.10 2793.394 4127.8433 5679.6288 5978.5824 5830.5919 5689.0276 5304.3959

lambda.8 lambda.9 lambda.10

delta.1 731.7250 1359.499 2552.115

delta.2 840.2731 1570.044 2820.200

delta.3 1007.4279 1853.359 3136.415

delta.4 1267.9130 2236.087 3499.296

delta.5 1676.6358 2747.345 3892.260

delta.6 2310.5646 3400.663 4269.976

delta.7 3235.9757 4142.427 4550.212

delta.8 4362.6893 4760.466 4654.311

delta.9 5167.5442 4868.450 4673.529

delta.10 4720.2810 4752.224 4734.264

From the above matrix, we note that the lower value is located at position 4x6 equivalent

to values of δ̂ = 0,3 and λ̂ = 0,5. These values are consistent with the values simulated.

Looking for the same equivalent position to α in the first matrix, it is noted that α̂ =

2,355788 ≈ 2,36. An error of 1.047022 is calculated, which is considered low.

In the figure C-2 we compare the original output series with the output series with the

estimated parameters. It shows that the proposed methodology does a good estimation of

the parameters for the Gamma transfer function.
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Figure C-2.: Graphical comparison of the series of original output (blue) and the output

series with the estimated parameters.
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