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“I think we’ve got enough information now, don’t you?”

”All we have is one ’fact’ you made up“

“ That’s plenty. By the time we add an introduction, a few illustrations and a conclusion,

it will look like a graduate thesis.”

Calvin & Hobbes
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Abstract

In the clinical praxis Gait Analysis constitutes one of the key tools for the diagnose and

follow up of some pathologies. The conventional approach includes the approximation of the

skeleton by the placement and detection of a set of markers, this procedure has some rele-

vant drawbacks and can be better approached by a markerless strategy, where the dynamics

of the body are estimated without the use of any artifact. The main goal of this thesis is

to present some markerless approaches that allow the characterization of the human gait.

For the analysis pathological gait, we focus on the Parkinson’s Disease, a neurodegenerative

disorder whose symptoms results in difficulty to perform complex motor task among them

walking.

Keywords: Gait Analysis, Parkinson’s Disease, Background Subtraction, Track-

ing

Resumen

En la practica cĺınica el análisis de marcha es una de las herramientas más importantes para

el diagnostico y seguimiento de algunas patoloǵıas. Este análisis incluye la aproximación del

esqueleto mediante marcadores colocados sobre el paciente. Debido a que este procedimiento

tiene algunas desventajas, se han desarrollado aproximaciones sin marcadores para el análisis

de marcha, estas intentan capturar la dinámica del movimiento del paciente prescindiendo

de cualquier artefacto. El objetivo principal de esta tesis es presentar algunas aproxima-

ciones sin marcadores al análisis para marcha patológica. La patoloǵıa que analizamos es

la enfermedad de parkinson, un desorden neurodegenerativo cuyos śıntomas resultan en la

creciente dificultad para realizar tareas motoras complejas entre ellas la marcha.

Palabras Clave: Análisis de marcha, Enfermedad de Parkinson, Substracción de

Fondo, Tracking
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1. Introduction

Gait analysis is one of the key tools for the diagnose and follow up of the Parkinson’s disease,

as the motor symptoms of the disease largely alter the normal gait patterns of the patients;

This analysis is usually performed by the detection of a set of markers in a video sequence

of the patient’s gait, this classic approach has some relevant limitations related with the

approximation of the skeleton by the markers positions.

This thesis analyzes the use of the human gait as biomarker for the Parkinson’s disease under

a markerless approach, were gait patterns are estimated by the detection and tracking of

the human body along a video sequence. The first chapters present the motivations and key

tools for the development of this work. Chapter 2 introduces the classical and the markerless

gait analysis techniques along with the main reasons to use the gait for the clinical diagnose

and follow up of the Parkinson’s disease. Chapter 3 provides a brief overview of the use

biomarkers for the assessment of a pathology and highlights the importance of biomarkers in

the Parkinson’s disease. Chapter 3 analyzes common strategies for background subtraction,

a key tool in markerless analysis which provides information on the dynamics of the human

body in a video sequence.

Chapters 5 , 6, 7 and 8 contain the results of this thesis, with the first 3 presented as published

on international conferences. Chapter 5 presents an extension of the Σ - ∆ estimation for

background subtraction that improves the detection of lower limbs. Chapters 6, 7 introduce

markeless model-less strategies for characterization of gait patterns, where the first one is

based on Motion History Images, and the second uses a sumarization of a visual descriptor

of the frames. Chapter 8 presents a final strategy for characterization of gait patterns built

upon a mechanical model of the lower limbs.



2. Gait Analysis & The Parkinson’s

Disease

A gait analysis consist in a systematic quantification, follow up and interpretation of the tem-

poral sequence of movements that characterize human locomotion. This procedure requires

the collection of kinematic and kinetic data that describe displacements, angles and forces

on the lower limbs and their joints during the gait cycle. These data are obtained from three

primary information sources: video, Electromyography (EMG) and force platforms[14, 5].

Video capture of a gait sequence is one of the common methods used to gather data in gait

analysis; it attempts to establish the position and alignments of the lower limbs from the

image sequence, usually by simplifying the limbs into articulated figures that approximate

the underlying skeleton[3].

Although the estimation of the limb position and alignment, obtained from the video, pro-

vides a useful description of the gait kinematics, it contributes little information about the

muscular activation or the forces generated at the lower limbs. Therefore techniques like

EMG are used to complement the video data gathered in the gait laboratory. EMG mea-

sures the electrical potential generated by muscle cells during muscular activity by means

of surface or needle electrodes, thereby providing insight on muscle activations[54]. Further

information comes out from the analysis of the foot ground reaction forces. This data come

from force platforms located along the patient’s path, recording the forces and moments

along the x,y and z axes and the approximate coordinates of the center of pressure[56].

Other sources of information as pressure mats, gyroscopes, accelerometers, stroboscopic

imagery and instrumented shoes are also used, however these are less common. The set of

tools and techniques dedicated to collect gait data is what is currently known as the gait

laboratory.

2.1. Clinical Gait Analysis

Gait analysis is a topic of interest in many fields: animation, sports science, and surveillance;

In the clinical field it has special relevance as the distortion of gait patterns is an early

clinical manifestation of many diseases, among others diabetes, brain palsy, Parkinson’s

Disease and some musculoskeletal disorders. For these pathologies, gait analysis can be used

to complement other clinical tests either for the identification of a pathology or to assess the

effectiveness of an intervention, with the side gain that it this a not an invasive procedure[41].
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While gait analysis can be performed on a pure observational form i.e. without recording

or measuring any kind of data, the conclusions of such analysis are subjective and based

exclusively on the clinician’s expertise and the discovered gait disturbances can only be

recorded in a descriptive way[31]. Therefore measuring instruments (as those mentioned in

the later section) are used to objectively asses the patient’s gait patterns, in this scenario

two types of gait analysis can be differentiated:

Unassisted Gait Analysis In the unassisted gait analysis the diagnosis is still limited by

the ability of the clinician to handle large amounts of data, generated by the selected

measurement instruments and still relies on his/her expertise with the biomechanics of

the observed pathology or pathologies[57], however the gait deviations are objectively

measured and are available for further examination or follow up.

Assisted gait analysis The assisted gait analysis, applies mathematical methods for data

analysis in order to support the clinician’s diagnose and decision making, reducing the

time spent in analysis, its subjectivity and the probability of a wrong diagnose[41, 57].

In the praxis, the most used source of information for the gait analysis is the kinematic

description of the body parts involved in the gait, i.e. the angles, angular velocity, location,

displacements and speed of the lower limbs. Therefore marker based analysis is the most

common technique for gait analysis[59]. In this setup a set of artifacts that can easily be

recognized in a video sequence (markers) are placed upon some specific anatomical locations,

one or several gait sequences of the patient are then recorded in video Finally, the locations

of the markers are used to approximate the skeleton along the video sequence.

Figure 2-1.: Classical marker based gait analysis workflow

In spite of being a common technique, there are some important drawbacks to marker based

gait analysis that limit its accuracy and effectiveness, largely related with a proper location

of the markers, possible displacements and alteration of the natural gait gesture in such

analysis.
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Smooth tissues displace and rotate relative to the underlying bones, specially near the joints.

Such movement can alter the correspondence between the marker or array of markers and

the anatomical region of interest1, limiting the accuracy of the estimated kinematics. This

error affects every measurement that relies on artifacts placed on the skin of the patient and

usually derives in body segments of variable size, this displacement is a well known source

of error named “Skin Movement Artifact” [3, 29, 32].

The location of the markers can be a relevant source of error, as inaccurate placements of the

markers yield poor estimations of the underlying skeleton. These errors usually propagate,

e.g. a wrong location of the Hip joint center will affect the estimation of the femur alignment

with the center of the knee joint[52]. This error can further accentuate the anatomical

variability of pathological subjects, for example a diabetic foot. This is the main source of

error in modern gait analysis[53, 5].

Finally, marker based strategies commonly ignore the environment where the patient is mov-

ing. Under these conditions, accurate estimation of key events of the gait cycle as the “toe

off” and “heel strike”, are challenging, and usually require of complementary information

obtained from force platforms or EMG[53].

These difficulties can be avoided if instead of estimating the underlying skeleton from a set of

markers, the natural gestures of the movement are captured and then analyzed, an approach

known as the markerless analysis.

2.1.1. Markerless Gait Analysis

In recent years the quick evolution of sensors for motion capture have enabled alternatives to

the marker based analysis, among them the markerless analysis, where the goal is no longer

to identify a set of markers and infer the arrangement of the skeleton, but to recognize and

interpret the human movement using only the shape and dynamics of the human body[59].

Unlike marker based analysis, there is not an established protocol or methodology for mark-

erless gait analysis, however most approaches share 5 general aspects shown in figure 2-2:

Model The model is an apriori knowledge of the observed motion, it is usually a mechanical

or biomechanical approximation. The model initialization is the configuration of every

possible parameter e.g. forces, sizes, degrees of freedom, that might change according

to the observed gait in the video i.e models are adapted to the dynamics of normal or

pathological gait.

Visual Features With an initialized model, visual features that are considered relevant for

the movement analysis are extracted from each frame of the video sequence. Although

a broad range of features can be extracted from an image, the selected visual features

are commonly low level features, e.g edges, optical flow, foreground pixels or blobs,

1When using an array of markers to locate a single region, the relative positions of the markers is altered

due to skin movement, introducing additional noise to the measures
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Figure 2-2.: Markerless gait analysis workflow

because such features can be easily associated with the movement of the human body

in the video[39].

Tracking Single image features provide little information of the human motion in the video

sequence; However, their progression along the video provides useful information on the

dynamics of the gait. This progression can be approximated by a tracking step, where

the goal is to establish a temporal correspondence for the extracted features of the

video, such that a given feature at time t can be related to itself at time t−n (n > 0)[39].

If the tracked features can be associated to the human pose, its is possible to establish

the position and relative alignment of relevant body parts through the video, thus

allowing the estimation of temporal trajectories.

The model, if any, is used at this step as the prior that enables the estimation of the

human pose by Bayesian estimation[].

Feature Analysis Finally the feature analysis step extracts high level information from the

tracked features, normally by classifying the motion into a set of classes as normal or

pathological gait[39].

As mentioned earlier, there is not an established methodology for markerless gait analysis.

Therefore not every approach uses all the described steps, there are approaches without

models which relay exclusively on the extracted features for learning and recognition. Some

approaches might also work without features tracking, in which case some strategy is used

instead to keep the history of the features.

2.2. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive

death of selected neuron populations, specially the dopaminergic neurons, located within the

substantia nigra pars compacta. This results in a loss of the neurotransmitter dopamine,

which generates a series of motor disabilities characteristic of the PD[27, 43].
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The major motor signs and symptoms of PD include tremor, usually at a frequency between 4

and 6 Hz and prominent at the end of the extremities; bradykinesia or slowness of movement,

which is related to the difficulties in planning, initiating and executing movements; rigidity

to passive movement of the limbs and postural deformities, which include flexed neck, elbows

and knees and flexed trunk posture[24]. The advance of these symptoms results in progressive

difficulty to perform complex motor task such as writing, speaking and walking[10].

PD is, worldwide, the second most common neurodegenerative disorder, surpassed only by

Alzheimer’s disease, Yet it is rare in persons under the age of 40, its prevalence is estimated

at 1% for the population between 60 and 69 years of age and nearly 3% among 80 year

people and older[42, 30].

After an average of 5 years of disease, most of patients also develop non-motor symptoms,

among them: cognitive decline, depression and autonomic failure as well as pain and sensory

symptoms, after 15 years from diagnosis, more than 70% of patients would have died and

about half of those surviving, require nursing-home care[46]. This marked impact on the

quality of life along with the treatment costs, which have been estimated up to e8000 (direct

costs) and e7000 (indirect cost) per patient a year[2], the absence of a cure for the disease2

and the aging of the population, project the PD as one of the most relevant health concerns

in the years to come.

2.2.1. Diagnose and Follow up of the Parkinson’s Disease

A reliable and easily applicable diagnostic test or marker to confirm the presence or advance

of PD is not yet available[30]. The only way to confirm a PD diagnosis is assessing the

presence of Lewy Bodies in the substantia nigra, however, given the location of the substantia

nigra in the midbrain (see figure 2-3), this procedure can only be performed during an

autopsy[50].

In the clinical praxis, diagnosis and assessment of the advance of PD can be difficult, specially

for the early stages, as it lies on clinical observation and interpretation of motor features

as those already described in section 2.2 [23, 24]. This analysis strongly depends on the

expertise of the specialist. After an initial diagnose, long term follow up of the patient

is required to revisit and improve the initial diagnosis, and to assess the progression of

the disease, based mostly on the appearance of additional symptoms and responsiveness to

levodopa therapy[30].

The progress of the PD, is commonly evauated with the UPDRS3 (Unified Parkinson’s Dis-

ease Rating Scale), designed to capture diverse signs of the PD, as the diminished cognitive

abilities, difficulty while performing everyday tasks and rigidity, among others[48].

2Currently, there is no cure for the PD, treatment is limited to relief from the symptoms and its effectiveness

usually declines with the advance of the disease [43].
3Other scales as “Hoehn & Yahr“ and “Schwab and England Activities of Daily Living” are also used to

asses the progress of the PD, however the most common is UPDRS
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Figure 2-3.: Location of the substantia nigra (29).

Even with this protocol and rating scales, diagnosis and advance assessment of PD can still

be subjective and inaccurate, studies have shown that between 10% and 25% of PD diagnoses

can not be confirmed at the autopsy, specially those made at the early or intermediate stages

[12, 28, 26].

2.2.2. Altered Gait Patterns on The Parkinson’s Disease

As mentioned in section 2.2, PD results in the difficulty to perform complex motor tasks,

thus altered gait patterns are among the most relevant signs for diagnose and follow up of

PD[13]. There are several studies that relate some of the PD rating scales with quantitative

evaluations that can be performed in the gait laboratory[48].

Excluding severe cases, patients with PD can walk straightforwardly without external assistance[36],

however their limbs move at a slower rate and with a smaller amplitude than those of healthy

people on the same age group. They also show difficulties while performing simultaneous

motor or cognitive tasks as walking and speaking, or changing the walk direction, finally

PD patients usually have difficulties to move in environments with obstacles or restricted

spaces[8].

The natural straight-line gait gestures under semi-controled conditions, as those of a gait

laboratory, are affected in the PD, specifically patients with the disease show:
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• Diminished or absent arm swing.

• Reduced trunk rotation.

• Lean forward stance.

• Low amplitude movements at the hips, knee and ankles.

• Short stride, with reduced step cadence.

• Reduced foot clearance.

A patient wit PD walks at an average speed of 40 to 60 meters per minute in straight line,

far under the average of 70-90 meters per minute of a healthy person. The average number

of steps per minute is between 100 and 110 per minute, similar to the average of a healthy

subject, however the amplitude of the steps is reduced for persons with PD, between 0.4 and

0.9 meters compared with the normal stride length, between 1.2 y 1.5 meters. Finally the

amount of time of gait cycle that the PD patient spends in double stance is larger, compared

with healthy subjects: for the former it is over 35% and for the later it is between 20% and

30% [35, 51, 36, 25, 44].

Given the set of well known and measurable patterns, gait analysis constitutes, in the clinical

praxis, one of the key tools for the diagnose and follow up of PD.

2.3. Conclusions

Markerless gait analysis is an alternative to marker-based analysis, where the difficulties

associated with the marker location and possible displacements are no longer an issue. The

markerless analysis provides a better source of information as it allows the capture of the

natural gesture and dynamics of the gait without oversimplifying the human figure to the

underlying skelleton.

The Parkinson’s Disease affects the motor capabilities, changing the characteristic straight

line gait patterns. Such alterations can be studied in a gait laboratory, as a result, walking

patterns can be established for individuals with Parkinson’s Disease, which differ from those

of healthy subjects and vary as the disease advances.

As the markerless gait analysis allows detection and follow up of the gait dynamics of an

individual, it should be possible to discover and measure the characteristic straight line

walking patterns of the Parkinson’s Disease with a markerless framework and establish the

difference between those patterns and normal gait patterns.



3. Biomarkers & The Parkinson’s

Disease

In recent years, new technologies and tools have been developed to support clinical diagnose,

decision making, treatment, disease monitoring and drug discovery and development. These

techniques relay often on the identification of biological characteristics that serve as an

indicator of a particular disease or physiological state and the development of tools to analyze

them. Such indicators are known as biomarkers and are commonly used to monitor and

predict the health of an individual or population[20].

3.1. Biomarkers

Following the National Institutes of Health definitions working group, a Biomarker is “a

characteristic that is objectively measured and evaluated as an indicator of normal biological

process, pathogenic process, or pharmacologic responses to a therapeutic intervention”[21].

Thus biomarkers are commonly used in clinical studies, where the efficacy of an intervention

must be evaluated in an quantitative and unbiased manner and for disease detection and

quantification[49].

There are three essential properties for a biological characteristic to be considered as a valid

biomarker; First there must exist a biological plausibility between the biological process

and the biomarker, that is, a link between the process and the measures obtained from

the biomarker exists; Second the biomarker should be sensitive and specific, when used

for disease detection the biomarker should have the ability to identify positive and negative

results with low error rate, when used for drug test or disease quantification, the effects of the

treatment should be reflected on the measures of the biomarker; Third a biomarker should

be standardized, it must be reliable over time, and between subjects and laboratories. There

are other desirable properties for a biomarker as non invasiveness and simple utilization these

are however not required[49, 20].

Based on this properties there are 3 criteria to evaluate the the validity of a biomarker[20]:

Criterion validity Measures the correlation of the biomarker with the gold standard of a

given pathology, it also measures the ability of the biomarker to reflect the effectiveness

of an intervention.
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Construct validity Refers to the existence of scientific evidence that demonstrates the link

between the clinical outcome and the biomarker.

Face validity Face validity refers to the biological plausibility of the biomarker

It is clear from the later definitions and properties that there must exists a relationship

between the biological process and the characteristic selected as biomarker, there are however

two ways this relationship can be established: the biomarker can either be an indicator of

the actual pathological process or of its clinical phenotype. The first option is preferred as

those biomarkers can be used in the very early stages of a pathology, and are usually more

accurate than biomarkers associated to a clinical phenotype, as erroneous results could be

obtained due to other pathologies that generate a similar phenotype[37].

Biomarkers associated with the clinical phenotype are only preferred if it is not possible to

obtain information of the pathological process or to asses the effectiveness of an intervention

specifically designed to handle the symptoms of a pathology[37].

Finally, there are two common approaches to construct biomarkers which are closely asso-

ciated to the relationship between the biomarker and the biological process, a bottom up

approach uses the knowledge of the underlying pathological process for the construction of

the biomarker, but as stated above this is not always possible, thus top down approaches

build biomarkers based on the related clinical phenotype of a given pathology[20, 37].

3.2. Biomarkers in the Parkinson’s disease

A biomarker can be used to assess the existence of a pathology or the effectiveness of an

intervention. The Parkinson’s Disease (PD) and its treatments are not an exception, accurate

information about the ongoing disease process can be used to direct treatments, however,

as stated in chapter 2, PD results from the death of neurons located in a region of the

brain which can only be directly analyzed postmortem. This lack of information on the

actual disease process, along with clinical signs that fluctuate over time, limit the existing

biomarkers to those targeted at the pathological phenotype and make it difficult to monitor

PD in an accurate and unbiased manner[37], hence there are currently two main goals for

the development of biomarkers for the PD:

Diagnosis improvement. Novel biomarkers could improve the reliability of PD diagnose,

as mentioned in chapter 2 between 10% to 25% of PD diagnoses can not be confirmed, such

errors can be largely attributed to the existence of syndromes that have similar signs (tremor,

hypokinesia, rigidity, and postural instability) without the characteristic neurodegenerative

process of PD[]. Novel biomarkers are also key for the early diagnosis of PD, it is known

that the characteristics signs of PD appear after a loss of 50% to 60% of the dopaminergic

neuron cells[27, 37] a process which lasts around 5 years []; An accurate diagnose during this

stage could lead to better treatments, capable of delaying the onset of important motor and

non-motor symptoms.
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Parkinson’s disease progression & follow up. After a PD diagnose, it is important

to have a quantitative indicator of the advance of the disease at the moment of diagnosis

and during treatment to assess its effectiveness. Biomarkers and their progression are an

objective source of information to make such assessments, avoiding the subjectivity of an

analysis based exclusively on the clinician expertise and the possible inter-observer variability

of some rating scales [37].

3.2.1. Biomarkers for the Parkinson’s disease

As it is not possible to analyze the subtantia nigra directly, several biomarkers have been

developed for the analysis of the clinical phenotype of the PD, here is a brief list of the most

commonly used biomarkers for the diagnose and follow up of the disease:

Imaging Brain Imaging is one of the most interesting biomarkers for the PD, as it allows

to gather information from the substantia nigra, thus image markers might be able to

detect the early pathological process of the PD. Some image modalities as Positron

Emission Tomography and Single Photon Emission Computed Tomography have been

used to discover signs of the cell loss that characterizes PD, however there is still not

a reliable biomarker for PD based on brain imaging[37].

Clinical testing Besides the motor signs described in section 2.2, there are other clinical

markers related to the PD. Studies have shown that affected olfactory discrimina-

tion, sleep disorders, retinal degeneration, gastrointestinal dysfunction and depression

among others signs are associated to the PD[23]. Still among these biomarkers, motor

disorders are those that are best documented and are the easier to assess objectively.

Biochemical The analysis of markers in the cerebrospinal fluid or plasma is a known aid for

the diagnosis of neurological disorders, similar approaches have been tried for the PD.

Although some biomarkers based on protein and oxidative stress have been studied,

there is still not a reliable diagnostic biomarker directly related to the degenerative

process characteristic of PD[23, 37].

Genetic While genetic markers can not asses the existence or advance of PD, they are useful

to estimate the risk of PD for a given individual or population. Although some genes

leading to Mendelian inheritance of PD and parkinsonism have been identified, it still

remains unclear how to use a genetic test as a reliable predictor of PD[23].

3.2.2. Conclusions

Currently the construction of biomarkers for the PD is limited to top down approaches as the

underlaying pathological process can only be directly evaluated during an autopsy. Among

those PD biomarkers targeted at the pathological phenotype, the analysis of gait patterns
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is one of the most convenient as there are well known gait patterns for the normal gait, that

gets largely altered during the different stages of the disease.



4. Background Subtraction

The initial step of our approach requires the segmentation of the human silhouette in a

gait sequence, the nature of the captures in the gait laboratory i.e. static camera, semi-

controlled illumination conditions and a single person in movement, allows to perform this

segmentation by means of a background subtraction (BS) method, which detects and follows

moving objects along videos sequences through the identification of pixels with large temporal

changes.

Figure 4-1.: Sample gait laboratory sequence, under controlled illumination conditions and

static background the human figure can be segmented by highlighting pixels

with large temporal changes

BS methods assume that a scene is composed of a fixed background and moving objects,

which have different color distributions[6], therefore most BS methods classify pixels as either

background or foreground based on the difference between the pixels and some model of the

background, this can be stated as:

Bt(x, y) =

{
1 if d(It(x, y),Mt(x, y)) > τx,y,t
0 otherwise

(4-1)

Where It(x, y) are the pixels of the frame at time t, Mt(x, y) is the model established up to

time t, d(It,Mt) is a function that measures the difference between the current frame and the
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current model, τx,y,t is a bound that can be updated for each frame or pixel and Bt(x, y) is a

binary image with intensity 1 if the pixel is classified as foreground and 0 for background[6].

In BS problems the construction of a good model of the background is critical. A a naive

approach would use a reference image of the background without any object and classify

as foreground any intensity difference found on the video sequence. Provided that such

reference background can be obtained, this naive approach would only work on controlled

environments, as any illumination change, misalignment of the capture device, change in

the background, noise during the capture or processing of the image sequence will affect the

results[47]. Clearly this approach can be improved with a dynamically updated background

model.

Running Average. The easiest way to build a dynamic Mt is to calculate it as running

average over It:

Mt+1 = (1− α)Mt + αIt (4-2)

Where α is constant with values in the range [0, 1], that controls the balance between the

stability of the update and its speed, for simplicity and efficiency M0 is, most times, set

to I0[58]. Some authors replace the running average by the median calculated on a time

window [t, n], 0 < n < t, as its is more robust to noise at the expense of some computational

complexity[45].

Gaussian model. The later approach is easy to implement and is favored if there are little

computational resources available e.g. the BS algorithm is implemented on an embedded

device. However, it is sensible to noise and to the value of the parameter α, it also builds

an average of the scene including moving objects, which is undesired. This can be better

approached by explicitly modeling the color distribution of the background. One of the most

used models is a Gaussian distribution adjusted to the history of per-pixel intensities up to

time t, or in a time window [t, n], 0 < n < t, thus modeling the background at time t with a

matrix of means µx,y,t and covariances Σx,y,t, thereby changing the background subtraction

problem into an outlier detection problem[6].

Gaussian mixtures. While the latter approach yields better approximations of Mt, some

scenes can not be properly modeled by a single Gaussian distribution, i.e illumination or

parts of the background might change over time, therefore some BS methods employ a

Gaussian mixture to model the background, in such models, Mt is given by a set of means

and covariances {µx,y,t,1,Σx,y,t,1}, {µx,y,t,2,Σx,y,t,2} . . . {µx,y,t,n,Σx,y,t,n} and the labeling of a

pixel as foreground or background is based on the probability:

P (Bx,y,t) =
∑

i

wiη(µx,y,t,i,Σx,y,t,i) (4-3)

Where wi is an assigned weight to the i-th Gaussian distribution used to model the background[45],

again the BS problem is converted into an outlier detection problem.
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Kernel Density Estimation. Non parametric models have also been used for the estima-

tion of Mt, one of the most common is the Kernel Density Estimation, where the probability

function that models the background over a window of N frames:

P (Bt) =
1

N

t−1∑

k=t−N
Kh(It − Ik) (4-4)

Where K is a kernel function with bandwidth h, in these approaches a pixel is considered

foreground if it is unlikely to be generated from the estimated distribution i.e P (Bt) is

low[38].

4.1. Σ−∆ Estimation & Background Subtraction

Among the BS techniques, the Σ−∆ operator represents a family of background subtraction

methods based on the Σ−∆ modulation, well known for their computational efficiency and

capability to work without any prior knowledge of the scene.

The Σ−∆ modulation oversamples a signal at higher rates than the specified by the Nyquist

theorem, increasing the correlation between adjacent frames, thus the quantization error

power spreads over a wide range of frequencies, while the signal power remains within the

signal band, allowing a good separation of the input signal from the quantization noise[9].

The block diagram of a first order Σ−∆ modulator is shown in figure 4-2, the Σ block is an

integrator, and the ∆ block is a quantizer. As the signal is multiplied by the output of the

pulse generator, y(n) is the integral of the differences between the information carrying signal

x(n) and the modulator’s output encoded as a 1-bit signal. This output can be reconstructed

by means of a low pass filter[9].

Figure 4-2.: A first order Σ−∆ modulator
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4.1.1. Σ−∆ modulation for Background Subtraction

When applied in BS tasks the Σ−∆ modulator, dynamically updates a background tracker

Mt(x, y), by comparing each image It(x, y) with Mt(x, y), using a simple updating rule: If

It(x, y) is greater (lower) than Mt(x, y), then a positive increase (decrease) ∆ is performed

so that steady variations on the background are tracked[33]. A detailed description of the

Σ−∆ modulation for Background subtraction can be found in algorithm 11.

Algorithm 1 Basic Σ−∆ Algorithm

Initialization: M0(x) = I0(x)

for each Frame t do

Mt(x) = Mt−1(x) + sgn(It(x)−Mt−1(x))

∆t(x) = |Mt(x)− It(x)|
end for

Initialize: V0(x) = ∆t(x)

for each Frame t do

for each pixel x such that ∆t(x) 6= 0 do

Vt(x) = Vt−1(x) + sgn(N ×∆t(x)− Vt−1(x))

if ∆t(x) < Vt(x) then

Dt(x) = 0

else

Dt(x) = 1

end if

end for

end for

In spite of its simplicity Σ − ∆ operator has several interesting properties as background

tracker. First, the background estimation can be interpreted as a simulation of a digital

conversion of a time-varying analog signal using Σ − ∆ modulation. Second, the Σ − ∆

modulation works better for signals whose absolute time-derivative is less than unity, that

is when the change on the signal is “small“ between samples, common on gait laboratory

sequences. Third, the filter computes the time-variance of the pixels which is a measure of

temporal activity of the pixels that allows the detection of state changes on the pixel, from

“moving“ to “stationary“ or vice-versa. Fourth, the Σ−∆ uses a nonlinear approximation for

statistics Mt and Vt as both are updated by ±1 on each iteration, whereas a linear approach

would be equivalent to the moving average. Fifth, it processes each pixel independently and is

based on simple integer additions and comparisons therefore it demands little computational

resources and is suitable for massive parallel implementations[33, 22].

1The algorithm is written for a 1 dimensional signal, however the Σ −∆ BS operates pixelwise hence the

described algorithm can be applied independently to each pixel of the image
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4.1.2. Multiresolution Σ−∆ Background Subtraction

Although the Σ − ∆ Background Subtraction is one of the most effective yet efficient BS

methods, the method still has some drawbacks, the main one is that it relies on the intensity

of the pixel as its unique descriptor; A more robust approach that uses a multiresolution

strategy to characterize the pixel was proposed during the elaboration of this thesis. The

paper detailing this extension to the Σ−∆ BS can be found on Chapter 5

4.2. Conclusions

Background subtraction techniques can be used as the first step in a markerless approach

for gait analysis, as they highlight the human silhouette in each of the frames of the video

sequence, without the need of artifacts placed upon the patient or any prior knowledge of

the scene.

Among the many Background subtraction techniques, the Σ−∆ operator represents a family

of efficient background trackers that can be extended and applied to the segmentation of the

human silhouette in gait analysis.
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Abstract: This paper introduces a novel method for segmenting the human silhouette in video sequences, based on
a local version of the classical Σ∆ filter. A main difference of our approach is that the filter is not pixel-
wise oriented, but rather region wise adjusted by using scaled estimations of both the pixel intensity and the
horizontal (vertical) gradient, i.e., a multiresolution wavelet decomposition using Haar functions. The classical
Σ∆ filter is independently applied to each component of the obtained feature vector, previously normalized and
a single scalar value is associated to the pixel by averaging the feature vector components. The background
is estimated by setting a threshold in a histogram constructed with these integrated values, attempting to
maximize the interclass variance. This strategy was evaluated in a set of 6 videos, taken from the Human Eva
data set. Results show that the proposed algorithm provides a better segmentation of the human silhouette,
specially in the limbs, which are critical for human movement analysis

1 Introduction

Visual analysis of human motion implies the de-
tection, follow up and characterization of relevant pat-
terns in a sequence of images. Usually the main
features to detect are the position and alignment of
the human body parts (human pose). While visual
markers can be employed for this task(Kirtley, 2005),
the result is usually a simplified model of the human
body. Most detection methods use a background esti-
mation as preprocessing step, attempting to eliminate
pixels with no temporal change.

Background subtraction methods use a sequence
of images ({Ii}i=1:t ) to build a model of the static
scene (Mi), and establish a rule to set a pixel value
in Ii as either background or foreground.

A main contribution of the present paper was to
adapt the classical Σ∆ pixel wise estimation to a lo-
cal version of the filter, which is much more robust
to local variations and tracks better the image object
edges. The basic idea was to approach the pixel in-
formation with a multiresolution decomposition, con-
serving the edge features in the gradient estimations
while the low frequency characteristics regularize the
numerical difference, i.e., a classical wavelet approx-
imation. The obtained Haar coefficients are used in-

dependently in a classical Σ−∆ estimation, averaged
and used to construct an histogram in which an opti-
mal threshold maximizes the interclass variance. This
paper is organized as follows: Section 2 introduces
the Σ−∆ operator, and the proposed extension, sec-
tion 3 demonstrates the effectiveness of the method,
finally section 4 concludes with a discussion of the
proposed method and possible future works.

2 Materials and Methods

Among the background subtraction techniques,
the Σ−∆ operator represents a family of background
subtraction methods, well known for their computa-
tional efficiency and capability to work without any
prior knowledge of the scene, even in no controlled
illumination conditions.

While this operator offers a baseline for back-
ground subtraction in human movement analysis, it
is still limited regarding its accuracy and robustness
to noise. As observed in figure 1, relevant parts of the
human figure, as the shins and lower arms, are miss-
ing. Noise is present on the image, especially while
the model converges to a good approximation of the



background.

Figure 1: Output of the Basic Σ− ∆ Algorithm for a se-
quence of the Human Eva Dataset

These limitations can be attributed to the selected
pixel descriptors in a single frame, i.e. the regu-
lar Σ−∆ uses a single pixel intensity. This may be
better approached by introducing local information.
The present investigation proposes an extension of the
Σ−∆ background subtraction algorithm, focusing on
region features rather than on pixel intensity.

2.1 The Σ−∆ Operator

The non linear operator Σ∆ increases the correlation
between adjacent frames by oversampling a signal at
higher rates than the specified by the Nyquist theo-
rem. This operator dynamically updates a background
model Mt(x), by comparing each image It(x) with the
current background model Mt(x), using a simple up-
dating rule: If It(x) is greater (lower) than Mt(x), then
a positive increase (decrease) ∆ is performed. The ab-
solute difference |It(x)−Mt(x)| is used to compute an
estimate of the per pixel variance Vt(x), and based on
this estimate, pixels are classified as either foreground
or background (Manzanera and Richefeu, 2007).

2.2 Region Features

As stated above, a main limitation of the Σ∆ back-
ground subtraction is that it operates exclusively over
the intensity values of a pixel through an image se-
quence It , restricting thereby the accuracy and ro-
bustness of the background estimation process. We
approached herein this problem by projecting each
frame It into a multiresolution space. Unlike a clas-
sical multiresolution decomposition, the different im-
age scales are not herein obtained by a simple down-
sampling of the original image, but rather by a local

Algorithm 1 Basic Σ−∆ Algorithm
Initialization: M0(x) = I0(x)
for each Frame t do

Mt(x) = Mt−1(x)+ sgn(It(x)−Mt−1(x))
∆t(x) = |Mt(x)− It(x)|

end for
Initialize: V0(x) = ∆t(x)
for each Frame t do

for each pixel x such that ∆t(x) 6= 0 do
Vt(x) =Vt−1(x)+ sgn(N×∆t(x)−Vt−1(x))
if ∆t(x)<Vt(x) then

Dt(x) = 0
else

Dt(x) = 1
end if

end for
end for

pixel neighbourhood smoothing upon which a block
Haar wavelet analysis is carried out. In our scheme
we use a set of features calculated from the Speeded
Up Local Descriptor (SULD), proposed by Zhao et
al. (Zhao et al., 2009) and now on used as a pixel
descriptor. The low frequency is computed as the av-
erage of a neighbourhood centred at the pixel, while
the high frequency is calculated by firstly averaging
a spatial shifted version of the previously used neigh-
bourhood, and then differences between the up-down
(left-right) shifted neighbourhoods are stored. The
calculated values are closely related to the gradients
and therefore to the edges along the x and y axes, as
seen in figure 2. Each image pixel is associated to
a feature vector with three components containing an
average of the different scale pixel descriptors, i.e.,
the neighbourhood sizes. This allows to systemati-
cally remove finer details or high-frequency informa-
tion from an image, achieving a compact description
of the most relevant information which is usually pre-
served through multiple scales. Therefore, the first
step of our approach was to build, for each pixel, a
multidimensional feature vector containing the local
first order information.

These features are calculated for each of the n
channels of the image and used as input of the Σ−∆
algorithm, after normalization, yielding a 3n dimen-
sional descriptor for each pixel.

2.2.1 Efficient Feature Calculation

The two first features are calculated as the differ-
ence of the sum of pixel intensities within two shifted
boxes, either vertically or horizontally. This can be
efficiently computed using the summed area table



Figure 2: Descriptors, from left to right: original image, vertically and horizontally filter response maps , sum of values in
region

known as the integral image (Viola and Jones, 2001),
case in which an image (ii) replaces a pixel value (i)
with the sum of the intensity of every pixel located
above and before it, formally:

ii(x,y) = ∑
x′≤x

∑
y′≤y

i(x′,y′) (1)

The use of the integral image optimizes calculation of
the region intensity sum and read as:

∑
j<x′≤k

∑
m<y′≤n

i(x′,y′) = ii( j,m)+ ii(k,n)− ii(k,m)− ii( j,n)

(2)

2.3 Foreground Classification Criteria

The basic Σ−∆ algorithm uses a simple classification
criterion: the last pixel intensity variation (∆t(x)) is
compared with an estimation of the cumulated vari-
ance (Vt(x)), if the result is positive then the pixel is
marked as foreground, otherwise it is considered as
background. This metric does not fit our multidimen-
sional representation: while the mentioned criterion
may be applied to each feature, another metric must
be built to produce a final decision from the obtained
set of per-feature decisions. To overcome these limi-
tations, we propose a multidimensional metric that as-
sociates the feature vector to a single scalar value, ob-
tained by integrating on every feature component and
shifting from the [−1,1] to the [0,2] interval. Each
image pixel is assigned then to a particular (Pt ) value,
an estimate of the regional changes, the higher (lower)
a Pt value is the more (less) likely the corresponding
pixel in It is a foreground pixel. A change is then
defined if the history of regional changes is smaller
than the change reported by the current local analysis.
For achieving so, we exploit the characteristics of the
histogram’s waveform of Pt , where background pixels
are near 0 and their number is significantly larger than
the foreground pixels. Hence we build two classes,
one with a small (large) number of bins which con-
tains most (few) scene pixels: the background (fore-
ground). We are interested in a value that maximizes
the intra-class variance by comparing the variances

of the two previously defined classes. For doing so,
let us suppose that we have k different bins, starting
from an initial bin, a class is composed of a set of
bins that are progressively increased by including new
bins into the class. The algorithm includes new bins
in each class by running forward (backward) over the
histogram, starting from 0 and k for the background
and foreground classes, respectively. The goal is to
stop when the variance of the two classes is alike
and its magnitude is maximum. We search then for
a bin (γ) where the consecutive per group variances
are close and large in magnitude for both classes as
follows: for a histogram with k bins let

αi = var(bin0....bini−1)− var(bin0....bini) (3)

the consecutive variance of a background estimation
composed of bins 0 to i, likewise let

βi = var(bink, ...,bini+1)− var(bink, ...,bini) (4)

the difference of variances for the foreground group
up to bin i. A set of candidate bins Γi is stablished
with

i ∈ Γ ⇐⇒ αi

βi
≈−1 (5)

Among all the candidates in Γi we choose γ as as
the one with the larger magnitude in the variance dif-
ferences i.e.

γ = max
Γi
|αiβi| (6)

2.4 Dataset Description

Validation was carried out with a subset of the Hu-
man Eva Dataset (Sigal et al., 2010), composed from
3 different subjects, each captured from 2 different
cameras for a total of 6 sequences. Each sequence
was manually labeled, as frame n has almost the same
foreground and background of frame n± 1 labeling
was done only once per 10 frames, additionally the
labeling only started at the 40th frame this accounts
for an initial estimation of the background (stabiliza-
tion) of both algorithms.



3 Evaluation and Results

There are well know metrics to evaluate the per-
formance of a binary classification, however most of
these metrics assume that there is approximately a
balanced quantity of elements in the classes. In this
dataset the foreground usually amounts to less than
the 10% of pixels in the image, hence we choose the
true positive rate (TPR), and the Matthews Correla-
tion Coefficient (MCC), the former is independent of
the class distribution, while the later is designed to
measure the quality of the classification even with un-
balanced classes.

During the evaluation of the algorithm it was clear
that scales (box sizes) larger than 11 were not appro-
priate for the segmentation of relative small objects
in movement (like the hands and forearms), also the
body boundaries are not properly located. Therefore
we first seek for a combination of scales between 1
and 11 that provides the best results, for this partic-
ular dataset the selected scales were 1,3 and 5. The
results are summarized in tables 1 & 2.

Sequence Regular Σ−∆ TPR Proposed Σ−∆ TPR
1 37.94% 67.46%
2 55.73% 68.95%
3 31.61% 69.23%
4 57.63% 73.25%
5 48.62% 71.94 %
6 65.86% 78.05%

Table 1: True positive Rate

Sequence Regular Σ−∆ MCC Proposed Σ−∆ MCC
1 0.557 0.683
2 0.707 0.678
3 0.524 0.721
4 0.725 0.731
5 0.656 0.713
6 0.767 0.774

Table 2: Matthews Correlation Coefficient

The TPR of the proposed method outperforms the
regular Σ∆ in every test sequence, this can be at-
tributed to the better detection of the limbs in motion,
specially the shins and forearms (see figure 6).

An interesting feature of the proposed algorithm
can be analysed with table 1, our method offers a large
improvement for sequences 1, 3 and 5 (30.06% aver-
age) however the improvement for sequences 2, 4 and
6 is smaller (13.71% average). This is related to the
background of the sequences, on the first group the
background has several objects of different colors on
it i.e. it contains borders, the background of the later
group has a single color and is nearly flat (see figure

3). The absence of borders lowers the effectiveness of
the proposed algorithm as the input information for
the Σ∆ comes mainly from the intensities of neigh-
bouring pixels.

Figure 3: Sequences 2,4,6 on the left side, sequences 1, 3, 5
on the right side

While the TPR shows a significant improvement
of our algorithm over the regular Σ∆, the MCC shows
cases where there is not a significant improvement
over the base algorithm. This can be attributed to the
nature of the dataset, where the moving object (human
body) is present and in motion on the first frames, this
generates ghosts on every scene for both algorithms,
these ghosts last longer in our algorithm thus increas-
ing the amount of False Positives on the first frames,
drawing down the average MCC for the sequence.

This can be seen in figures 4 and 7, while the first
frames show an MCC for the proposed algorithm un-
der the MCC of the regular sigma delta, on the next
frames (when the ghost starts to fade) the MCC of
our algorithm is better, even in the second sequence,
where out algorithm had an average MCC under the
regular Σ∆ (fig. 4).

Again the nature of the background seems to have
influence on how long the ghosts last, scenes 1, 3
and 5. have ghosts that last shorter than the ghosts
in scenes 2,4,6.

3.1 Performance

As stated on section 2, one of the main features of the
Σ∆ Background subtraction is its computational effi-
ciency, therefore we briefly analyze the performance
penalty of the multiscale features and the new classi-
fication criterion.



Figure 6: Results of the segmentation, from left to right, Original image, regular Σ∆ segmentation, proposed algorithm
segmentation

Figure 4: Comparison of the per frame MCC for sequence
2

Figure 5: Comparison of the per frame MCC for sequence
3

A GNU Octave implementation of both algo-
rithms was tested on an core i7 processor at 3.3 Ghz,
on this set up the average the regular Σ∆ can pro-
cess 6.72 million pixels per second. The speed of the
proposed extension depends on the number of scales
used for the analysis, we calculated the average speed
of the proposed algorithm for a number of scales be-

tween 1 and 9, the results are summarized on table
3

Number of scales Average pixels per second (millions)
1 1.61
2 1.31
3 1.06
4 0.89
5 0.77

Table 3: Proposed algorithm processed pixels per second

Although the base Σ∆ is faster, when the proposed
algorithm is compared with other variations of the
Σ∆ operator for background subtraction proposed on
the literature (Manzanera, 2007)(Lionel Lacassagne,
2009) (Richefeu and Manzanera, 2006) it shows an
average performance (see figure 7).

Figure 7: Speed of other Σ∆ algorithms (million pixels per
second)

4 Conclusions

An novel method for segmenting the human sil-
houette in video sequences based on the Σ∆ back-
ground subtraction, was introduced on this paper, this



method offers a significant improvement in the back-
ground segmentation over the base Σ∆, at the expense
of computational cost.

The proposed algorithm enhances the pixel de-
scription with local features, allowing a multiscale
representation of each frame, which results in an im-
proved detection of the human body, specially at the
arms and lower limbs, which is critical for tasks that
require a proper description of the dynamics of the
human body, as gait analysis and video surveillance.
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Abstract

Gait patterns may be distorted in a large set of pathologies. In the clinical
practice, the gait is studied using a set of measurements which allow iden-
tification of pathological disorders, thereby facilitating diagnosis, treatment
and follow up. These measurements are obtained from a set of markers,
carefully placed in some specific anatomical locations. This conventional
procedure is obviously invasive and alters the natural movement gestures, a
great drawback for diagnosis and management of the early disease stages.
Instead, markerless approaches attempt to capture the very nature of the
movement with practically no intervention on the movement patterns. This
article introduces a novel markerless strategy for classification of normal and
pathological gaits, using view-based video descriptor of the sagital trajec-
tory, stored in a temporal summarization. The strategy was evaluated in
three groups of patients: normal, musculoskeletal disorders and parkinson’s
disease, obtaining a sensitivity around 80 %.

Keywords: Gait analysis, Motion History Images, Support Vector
Machine, markerless approach

1. Introduction

Distortion of gait patterns are the first clinical manifestation of many
diseases, among others diabetes, brain palsy, cerebral vascular accidents,
neuromuscular dystrophies or accident sequelae. The analysis of human gait
attempts to objectively assess pathologies by following up the hidden gait
dynamic variables. The set of techniques dedicated to perform this analysis
is what is currently known as the gait laboratory, a modern tool devised
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to quantify a disease, to compare the gait with normal patterns and to
efficiently perform the dynamic alignment of lower member prostheses [1, 2].
Most of this gait analysis is carried out with a set of markers, carefully
placed in some specific anatomical locations. This conventional procedure is
invasive and alters the natural movement gestures leading to wrong pattern
measures.

On the other hand, gait dynamic patterns are by nature highly variable
and can be easily contaminated with noise. In early stages, most of these
diseases differ by very little from what is considered a normal pattern so that
classification is a very challenging problem, even for the expert clinicians.
This picture may be worsen if one considers that the basic examination tool,
the markers, can move very easily or even be unobservable, contaminating
the resulting measurement. These factors together lead to subjective clinical
analyses with the consequent limitation in the reproduction of the clinic
management of the patient [3, 4].

Ultimately, this problem has undergone a fundamental transformation
since the objective is not anymore the movement reconstruction from the
anatomical markers, but the accurate tracking of the movement pattern i.e.
the markerless strategy. Research areas as computer vision, automatic sur-
veillance, animation and image processing have already developed some mar-
kerless strategies for diverse applications, namely, biometric identification,
abnormal motion detection, scene reconstruction and activity classification
[5, 6, 7]. These methods attempt an interpretation of human movements
using nothing but the shape and dynamics of the body. This article pre-
sents a precise and efficient markerless framework to identify and classify
different kinds of normal and pathological movements. This approach uses
as input a sagital view video of a patient walking. Every frame is processed
to extract the human silhouette, with which we build a view-based video
descriptors that are a temporal summarization of the motion history. Hu
moments are then computed for each descriptor, a feature vector is obtai-
ned and used to classify patterns as normal or pathological using a classical
Support Vector Machine strategy. Evaluation was performed on a databa-
se with 48 videos from 12 patients, with 3 types of movements: normal,
musculoskeletal disorders and parkinson’s disease. This paper is organized
as follows: Section ‘Materials and Methods’ introduces the proposed marker-
less strategy, Section Results demonstrates the effectiveness of the method
and the last section concludes with a discussion and possible future works.
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2. Materials and Methods

The proposed strategy segments the silhouette and uses it to construct
a gait descriptor: the motion history images(MHI). This descriptor is finally
used as a feature in a classical SVM strategy. The whole method is illustrated
in Figure 1.

Figura 1: Markerless strategy to Classify Pathological Gait Patterns. This approach consist
in a set of step: (a)walking sequence of video, (b) Silhouette extraction process using Σ−∆
algorithm, (c) HMI video descriptor construction, (d) classification method

2.1. Background Estimation for Silhouette Extraction

Temporal description of the patient gait patterns is central at describing
structural changes. Many strategies have been proposed already, they are
currently known as background estimation methods [8, 9, 10]. These methods
use a sequence of images It and build a model of the static scene Mt. Output
of the model is a Image Dt, where the background is represented by Dt(x) =
0 and the foreground is Dt(x) = 1.

Among the background estimation methods, the non linear operator
Σ − ∆ is one of the most robust. This estimator oversamples a signal at
higher rates than the specified by the Nyquist theorem, increasing correla-
tion between the adjacent frames, evaluated for each pixel [9]. The Σ − ∆
operator behaves as a background tracker Mt(x), dynamically updated by
comparing each image It(x) with the current background Mt(x), using a
simple updating rule: If It(x) is greater (lower) than Mt(x), then a positive
increase (decrease) +∆ is performed. The implemented Σ−∆ algorithm is
shown in 1, whose results illustrated in Figure 2(a).
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(a) Walking sequence

(b) Background estimation

Figura 2: Silhouette extraction estimation. (a) Walking sequence of a patient with a muscu-
loskeletal disorder. (b) Results of the Σ − ∆ background estimation

2.2. Video Descriptor

Once the silhouette is extracted from the video, the next step is to build
a video descriptor that represents the dynamic of each walking. In our case,
we use the Motion History Image (MHI) represented by Hτ (x, y, t) [11, 12]
which describes the motion by the segmented silhouette changes D(x, y, t) =
1. This video descriptor consists in a sequence of consecutive silhouettes,
recorded in a single image, i.e., moving pixels are brighter, as follows:

Hτ (x, y, t) =





τ if D(x, y, t) = 1
−max(0, Hτ (x, y, t− 1)− 1)
otherwise.

(a) (b) (c)

Figura 3: Motion History Image descriptor. (a) Normal Gait. (b)Musculo Eskeletical di-
sease.(c) Parkinson Disease

4



Algorithm 1 Σ−∆ Algorithm

Initialization: M0(x) = I0(x)
For each Frame t
Mt(x) = Mt−1(x) + sgn(Itx−Mt−1(x))

∆t(x) = |Mt(x)− Itx|

Initialization: V0(x) = ∆t(x)

For each Frame t
for each pixel x such that ∆t(x) 6= 0
Vt(x) = Vt−1(x) + sgn(N ×∆t(x)− Vt−1(x))

if ∆t(x) < Vt(x) then
Dt(x) = 0

else
Dt(x) = 1

end if

where τ is the spatial window that defines the duration of the sagital pa-
tient motion. Figure 2.2 shows typical results for the video descriptor, in
different kinds of movements. Figure 3(a) shows the typical smooth pattern
of the normal walkings, while figure 3(b) shows a irregular pattern, with
abrupt changes and long duration, typical of the musculoskeletal disorders
[2]. Finally, figure 3(c) shows the video descriptor of a parkinson’s disease
walking, notice the short movement duration due to the short step length,
characteristic of this kind of movement.

2.3. Gait Data

Validation was carried out with recorded sagital views, registered at the
gait lab of the National University, under semi-controlled illumination con-
ditions. The dataset consists of a set of videos captured from 12 patients,
each was recorded 4 times while walking, for a total of 48 video sequences.
The Dataset was divided as follows:

4 patients diagnosed with musculoskeletal disorders.

4 patients diagnosed with parkinson’s disease (No depressive disorder
present).
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Descriptor Samples True Positives True Positives Ratio

Raw Moments 33 21 63 %

Central Moments 33 24 72 %

Scale Invariant Moments 33 26 79 %

Hu Moments 33 11 66 %

Gray Descriptor 33 31 93 %

Cuadro 1: Classification results using Linear Kernel

4 patients with normal gait

2.4. Attributes for Classification

The Classification phase of the proposed method requires a set of attri-
butes to be extracted from each HMI image. As image moments represent
global characteristics of the image objects and provide information about
various geometrical features [13], it is expected that the differences between
the HMI of normal and pathological gaits can be captured by the mentioned
descriptors. Therefore the first seven Raw, Central, Scale Invariant and Hu
moments were selected to characterize each of the images, building a feature
vector of dimension 7 for each HMI image. An additional Gray scale des-
criptor was included, built from a re-scaled version of the luminance channel
of the original color image (it was re-scaled by a factor of 10).

3. Results

Classification was performed using a conventional machine learning met-
hod, a Support Vector Machine (SVM) [14]. The SVM was trained with a
set of attribute vectors, extracted from already labeled HMI images. In this
phase, two types of kernels were employed, polynomial kernels and Radial
Basis Function (RBF). Parameters of the cost function, gamma (for RBF
kernels) and the exponent (for polynomial kernels) were estimated using the
sequential minimal optimization algorithm [15]. The Gait Dataset, with 48
videos, was split into 3 groups according to the type of gait. Each video is
represented by 5 HMI and each class is represented by a total of 80 HMI
images, from which 69 were selected for training and 11 images for test. The
following tables summarize the obtained results.

Classification results using Linear Kernels

Classification results using RBF Kernels
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Descriptor Samples True Positives True Positives Ratio

Raw Moments 33 16 49 %

Central Moments 33 16 49 %

Scale Invariant Moments 33 11 33 %

Hu Moments 33 17 51 %

Gray Descriptor 33 32 96 %

Cuadro 2: Classification results using RBF Kernel

Normal Gait Parkinsonian Gait Musculoskeletal

Descriptor Presicion Recall Presicion Recall Presicion Recall

Raw Moments 0.635 0.91 0.429 0.27 0.429 0.27

Central Moments 0.685 1 0.75 0.545 0.75 0.545

Scale Inv. Moments 0.769 0.91 0.875 0.636 0.875 0.636

Hu Moments 0.75 0.818 0.555 0.445 0.555 0.445

Gray Descriptor 0.91 1 1 0.91 1 0.91

Cuadro 3: Recall and presions for each pathology, Linear Kernel

Recall and Precision measures using Linear Kernel

Recall and Precision measures using RBF Kernel

Tables 1 and 2 show that the re-scaled HMI is much better than the des-
cription based on moments, but at a higher computational cost. On other
hand, scaled invariant and Hu moments, with a sensitivity of 80 % can be
considered as appropriate for most applications, however results with HMI
and a sensitivity of 96 % can even be considered for actual clinical applica-
tions.

Normal Gait Parkinsonian Gait Musculoskeletal

Descriptor Presicion Recall Presicion Recall Presicion Recall

Raw Moments 0.423 1 1 0.182 0.6 0.272

Central Moments 0.423 1 0.714 0.455 0.001 0

Scale Inv. Moments 0.33 1 0.001 0 0.0015 0

Hu Moments 0.473 0.818 0.001 0 0.571 0.727

Gray Descriptor 0.91 1 1 1 1 0.91

Cuadro 4: Recall and presions for each pathology, RBF Kernel
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4. Conclusion

This paper presented a novel markerless method to identify and classify
normal and pathological human walkings. The whole strategy consists in
extracting the silhouette of the patience for each video frame and use this
information for building a motion history image descriptor (HMI). Image
moments are used to build a feature vector from the HMI descriptors, which
is then used to classify patterns as normal or pathological using a classical
Support Vector Machine strategy. The results obtained show this method
could complement the conventional gait analysis and a first approximation
to a markerless analysis.
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Abstract: Gait patterns may be distorted in a large set of pathologies. In the clinical practice, the gait is studied us-
ing a set of measurements which allow identification of pathological disorders, thereby facilitating diagnosis,
treatment and follow up. These measurements are obtained from a set of markers, carefully placed in some
specific anatomical locations. This conventional procedure is obviously invasive and alters the natural move-
ment gestures, a great drawback for diagnosis and management of the early disease stages, when accuracy is
a crucial issue. Instead, markerless approaches attempt to capture the very nature of the movement with prac-
tically no intervention on the movement patterns. However, these techniques remain still limited concernig
their clinical applications since they do not segment with sufficient precision the human silhouette. This article
introduces a novel markerless strategy for classiying normal and pathological gaits, using a temporal-spatial
characterization of the subject from 2 differents views. The feature vector is constructed by associating the
spatial information obtained with SURF and the temporal information from a Σ-∆ operator. The strategy was
evaluated in three groups of patients: normal, musculoskeletal disorders and parkinsons disease, obtaining a
sensitivity around 60%

1 INTRODUCTION
Distortion of gait patterns are the first clinical man-
ifestation of many diseases, among others diabetes,
brain palsy or accident sequelae. The analysis of hu-
man gait attempts to objectively assess pathologies
by following up the hidden gait dynamic variables.
The set of techniques dedicated to perform this anal-
ysis is what is currently known as the gait laboratory,
a tool devised to quantify a disease, to compare the
gait with normal patterns (Perry and Burnfield, 2010),
(Haiyan Luo and et al., 2010). Most of this gait anal-
ysis is carried out with a set of markers, carefully
placed in some specific anatomical locations. This
conventional procedure is invasive and alters the natu-
ral movement gestures, necessitating strong variations
to achieve diagnosis, i.e., this approach is hardly use-
ful in early stages.

On the other hand, gait dynamic patterns are by
nature highly variable and can be easily contaminated
with noise. In early stages, most of these diseases
differ by very little from what is considered a nor-

mal pattern so that classification is a very challeng-
ing problem, even for the expert clinicians. This pic-
ture may be worsen if one considers that the basic ex-
amination tool, the markers, can move very easily or
can even be unobservable, contaminating the resulting
measurement. These factors together lead to subjec-
tive clinical analyses with the consequent limitation
in the reproduction of the clinic management of the
patient (Kamruzzaman and Begg, 2006), (Wolf and
et al, 2006).

Ultimately, this problem has undergone a funda-
mental transformation since the objective is not any-
more the movement reconstruction from the anatom-
ical markers, but the accurate tracking of the move-
ment pattern i.e. the markerless strategy. Research
areas as computer vision, automatic surveillance, ani-
mation and image processing have already developed
some markerless strategies for diverse applications,
namely, biometric identification, abnormal motion
detection, scene reconstruction and activity classifi-
cation (Turaga et al., 2008), (Klempous, 2009). How-



ever, there are several problems related to extracting
the object of interest from some escenaries, mainly
due to the blurred boundaries between the background
and foreground (Cristani et al., 2010), (McHugh et al.,
2009), an issue that can result in wrong characteriza-
tions.

This article presents an efficient markerless
methodology to identify and classify different kinds
of normal and pathological movements. A non lin-
ear Sigma-Delta (Σ-∆) operator is used to obtain a
temporal movement description as a set of pixels.
Most of them correspond to a particular patient shape
while some small scattered groups belong to the back-
ground. Afterwards, we compute a bounding box
around of largest group and therein we calculate some
local features per frame, using the “Speeded Up Ro-
bust Features”(SURF). A weighting function allows
associating some of these spatial features with rel-
evant temporal information. This weighted feature
vector is used to classify patterns as normal or patho-
logical, applying a classical Support Vector Machine
strategy. Evaluation was performed on a database
with 96 videos from 32 patients, with three types of
movements: normal, musculoskeletal disorders and
Parkinson’s disease. Sensitivity and specificity are
used to assess the utility of this method. This paper is
organized as follows: section 2 briefly outlines the na-
ture of the dataset, section 3 introduces the proposed
markerless strategy, section 4 sumarizes the results &
the effectiveness of the proposed method, finally sec-
tion 5 concludes with a discussion and possible future
works.

2 GAIT DATA
Experimentation was carried out with video se-
quences recorded from 3 views frontal, lateral and
45 degree view, registered at the gait laboratory of
the National University of Colombia, under semi-
controlled illumination conditions. This dataset con-
sists of a set of videos captured from 20 patients, each
one was recorded 4 times while walking, for a total
of 240 video sequences. The Dataset was divided as
follows:

• 8 patients diagnosed with musculoskeletal disor-
ders for a total of 13500 frames.

• 7 patients diagnosed with parkinsons disease (No
depressive disorder present) for a total of 15500
frames.

• 5 patients with normal gait for a total of 14000
frames

3 THE PROPOSED METHOD
Our proposed method begins calculating the tempo-
ral information using a Σ−∆ operator. A bounding
box is superimposed upon the region with the largest
rate of change and the local features are calculated,
within this box, using SURF. A weighting function
chooses the more relevant SURF features, those with
a similar spatial location to the pixels detected by the
Σ−∆ operator, i.e., the features that contain temporal
and spatial information. The obtained feature vector
is used to classify patterns as normal or pathological,
applying a classical SVM, as illustrated in figure 1.

3.1 Σ−∆ Temporal Estimator
Temporal description of the patient gait patterns is
central at describing structural changes. Many strate-
gies have been proposed already, they are currently
known as background estimation methods (Elgam-
mal et al., 2000), (Manzanera and Richefeu, 2007),
(Howe and Deschamps, 2004). These methods use
a sequence of images It and build up a model of the
static scene Mt . The model output is an image Dt ,
where the background is represented by Dt(x)= 0 and
the foreground is Dt(x) = 1.

Algorithm 1 Σ−∆ Algorithm

Initialization: M0(x) = I0(x)
for each Frame t do

Mt(x) = Mt−1(x)+ sgn(Itx−Mt−1(x))
∆t(x) = |Mt(x)− Itx|

end for
Initialize: V0(x) = ∆t(x)
for each Frame t do

for each pixel x such that ∆t(x) 6= 0 do
Vt(x) =Vt−1(x)+ sgn(N×∆t(x)−Vt−1(x))
if ∆t(x)<Vt(x) then

Dt(x) = 0
else

Dt(x) = 1
end if

end for
end for

In our dataset the silhouette extraction is a difficult
task because of the similarity between the foreground
and the background. Hence we use a non linear Σ−∆
operator to obtain a motion descriptor which detects
the most probable localization of the foreground. This
estimator oversamples a signal at higher rates than the
especified by the Nyquist teorem, increasing correla-
tion between the adjacent frames at each pixel (Man-
zanera and Richefeu, 2007). The Σ−∆ operator be-
haves as a background tracker Mt(x), dynamically up-
dated by comparing each image It(x) with the current



Figure 1: Markerless strategy consists in determining a feature vector to describe normal and pathological movement, using a
temporal-spatial gait characterization. Motion is classified using a Support Vector Machine strategy

background Mt(x), using a simple updating rule: If
It(x) is greater (lower) than Mt(x), then a positive in-
crease (decrease) +∆ is performed. The implemented
Σ−∆ is shown in the Algorithm 1.

Upon the region with the largest movement pat-
tern, we compute a center of mass, on top of which
we place a bounding box that contains the object of
interest. This process is speeded up using an integral
image representation of the original images, reduc-
ing the computational cost by 94% (Viola and Jones.,
2004).

3.2 Speeded Up Robust Features
(SURF)

Once the bounding box is extracted, we calculate
some local features of it using the Speeded Up Robust
Features (SURF) descriptor (Herbert Bay and Gool,
2008). This descriptor highlights the salient points
within the bounding box so that each salient point is
described by magnitude, orientation and feature vec-
tors. The SURF method provides invariant image de-
scription, allowing a robust representation against il-
lumination, scale and rotation changes, a useful as-
pect in our problem due to the semi-controlled sce-
nario, different views and patients.

The SURF description is obtained by initially
computing the Hessian matrix H(X ,σ), as follows: -

H(X ,σ) =
[

Lxx(X ,σ) Lxy(X ,σ)
Lxy(X ,σ) Lyy(X ,σ)

]

where X is a especific point, σ is the scale and
Lxx(X ,σ) is the second Gaussian convolution. This
step relies on an integral image to reduce the compu-
tational time. Afterwards, SURF constructs a circular
region surrounding the points of interest, attempting

to assign a unique orientation by estimating the Haar
wavelet coefficients in both directions and thereby
gaining invariance to image rotations. SURF descrip-
tors are thus constructed by extracting square regions
around the points of interest, which are divided in four
sub-regions.

3.3 Feature Extraction
SURF features are used to obtain a summarization
of the gait sequence, they operate exclusively on the
bounding boxes. Once the set of SURF features is
calculated, the values of the SURF descriptor vector
are weighted, following the pixel intensity distribu-
tion obtained from the Σ− ∆ operator. Higher val-
ues are assigned to vectors whose locations belong to
regions with high movement. The proposed summa-
rization is a collection of weighted vectors, arranged
acording to their frame number, on the gait sequence.

As the SURF features produce a variable number
of points of interest for different squences, the final
descriptor of a gait sequence is obtained at quantiz-
ing the complete set of vectors into 5,10,20,40 and
50 clusters using the Expectation Maximization algo-
rithm yielding 5 different descriptors for a single se-
quence.

4 Experimental Results
Classifcation was performed using a Support Vec-

tor Machine (SVM) trained with a set of attribute vec-
tors, extracted from labeled gait sequences. In this
phase, two types of kernels were used, polynomial
and Radial Basis Function (RBF) kernels. Parameters
of the cost function, gamma (RBF kernels) and the
exponent (polynomial kernels) were estimated using
the sequential minimal optimization algorithm (Flake
and Lawrence, 2001).



Class Presicion Recall Sensitivity
Musculo-eskeletical 0.75 0.75 0.75
Normal 0.7 0.66 0.65
Parkinson 0.61 0.64 0.65
Total 0.68 0.68 0.68

Table 1: Presicion, Recall and Sensitivity using Polinomial
Kernel

Class Presicion Recall Sensitivity
Musculo-eskeletical 0.67 0.33 0.33
Normal 0.6 0.95 0.95
Parkinson 0.72 0.41 0.47
Total 0.66 0.64 0.64

Table 2: Presicion, Recall and Sensitivity using RBF Kernel

Tables 1 and 2 summarize the precision, recall,
and sensitivity reproted by our method and the tables
3 and 4 report a confusion matrices for the best 3 clas-
sifiers found. Overall The proposed methodology can
classify pathological and normal gait patterns with a
sensivity and precision above 60% in semi-controlled
environments. The proposed classifiers seem to fa-
vor descriptors built upon lower number of clusters,
as two of the best 3 classifiers use the data with 5 clus-
ters and the other works with 20 clusters.

5 Conclusion
This paper has introduced a novel markerless

method that allows to characterize normal and patho-
logical human gait patterns. The whole markerless
strategy consists in determining a feature vector for
describing normal and pathological movement, using
a temporal-spatial gait characterization from 3 differ-
ents views. The feature vector is constructed by asso-
ciating the spatial information obtained from SURF
and the temporal information from a Σ−∆ operator.
Motion is classified using a classical Support Vec-
tor Machine strategy. Results demonstrate that this
method can complement the conventional gait anal-
ysis since it assigns objective pattern measurements.
The methodology presented in this work constitutes a
first approximation to understanding the complex dy-
namic of the gait. From this kind of analyzes, we ex-
pect it would be possible to set up an assembly of de-

Class Musculo-
eskeletical

Normal Parkinson

Musculo-
eskeletical

9 1 2

Normal 2 14 5
Parkinson 1 5 11

Table 3: Confusion Matrix using Polynomial Kernel

Class Musculo-
eskeletical

Normal Parkinson

Musculo-
eskeletical

4 5 3

Normal 1 20 0
Parkinson 1 8 8

Table 4: Confusion Matrix using RBF Kernel

scriptors which allow to accurately describe motions
patterns and quantify gait semantics.

REFERENCES

Cristani, M., Farenzena, M., Bloisi, D., and Murino,
V. (2010). Background subtraction for automated
multisensor surveillance: A comprehensive review.
EURASIP Journal on Advances in Signal Processing,
24:17.

Elgammal, A., Harwood, D., and Davis, L. (2000). Non-
parametric model for background subtraction. pages
751–767.

Flake, G. W. and Lawrence, S. (2001). Efficient svm regres-
sion training with smo.

Haiyan Luo, S. C. and et al., D. W. (2010). A remote mark-
erless human gait tracking for e-healthcare based on
content-aware wireless multimedia communications.
IEEE Wireless Communications,.

Herbert Bay, Andreas Ess, T. T. and Gool, L. V. (2008).
Speeded-up robust features (surf). Comput. Vis. Image
Underst, 110:346359.

Howe, N. R. and Deschamps, A. (2004). Better Foreground
Segmentation Through Graph Cuts. ArXiv Computer
Science e-prints.

Kamruzzaman, J. and Begg, R. K. (2006). Support vector
machines and other pattern recognition approaches to
the diagnosis of cerebral palsy. IEEETrans. Biomed.
Eng., 53:2479–2490.

Klempous, R. (2009). Biometric motion identification
based on motion capture. 243:335–348.

Manzanera, A. and Richefeu, J. (2007). A new motion
detection algorithm based on [sigma]-[delta] back-
ground estimation. 28(3):320–328.

McHugh, J., Konrad, J., Saligrama, V., and Jodoin, P.-M.
(2009). Foreground-adaptive background subtraction.
Signal Processing Letters, IEEE, 16(5):390 –393.

Perry, J. and Burnfield, J. M. (2010). Gait Analysis: Normal
and Pathological Function. NJ.Slack.

Turaga, P., Chellappa, R., Subrahmanian, V. S., and Udrea,
O. (2008). Machine recognition of human activities:
A survey. Circuits and Systems for Video Technology,
IEEE Transactions on, 18(11):1473–1488.

Viola, P. and Jones., M. J. (2004). Robust real-time face
detection. Int. J. Comput. Vision,, 57:137 154.

Wolf, S. and et al, T. L. (2006). Automated feature assess-
ment in instrumented gait analysis. Gait and Posture,
23:331–338.



8. Model Based Analysis of Gait

Patterns

This chapter presents a markeless strategy to characterize gait patterns in a video sequence.

Unlike the previous, this approach closely follows the steps presented in section 2.1.1 for the

markerless analysis of human gait, here a structural model of the lower limbs is used as the

main source of information.

Our main goal is to establish the alignment of the lower limbs during a gait sequence, this

will allow us to compare the dynamics of normal and pathological patients.

Overall we approach this task, as a filtering problem, where the hidden states are the align-

ments of the lower limbs during a gait cycle and the observations are the estimation of the

human silhouette.

The first step is to select a sub-set of frames which contains a full gait cycle of the right leg for

every patient. There are two main motivations for this choice: First, all the video captures

were made from a sagital point of view, under this set-up one of the legs is occluded during

some intervals of the gait cycle, in our sequences the right leg occludes the left. Second:

Parkinson’s Disease is a degenerative disorder of the central nervous system, thus altered

gait patterns must be observed in both lower limbs.

For the estimation of the human silhouette each subset of frames is processed with the

extension of the Σ - ∆ Estimation1 presented in chapter 5. Then we use a model to generate

a set of possible alignments of the lower limbs (hidden states of the filtering problem). Every

generated template is then transformed into squares, so that a template can be matched to

the output of the background subtraction as proposed by Mohr et al.[40] (see section 8.3).

The processed gait sequences, the transformed template set and the matching strategy are

used in a particle filter strategy. The result of this process for each frame is the most likely

configuration of the lower limbs. Each estimated configuration is stored and then whole set

of angles estimated at the lower limbs is used for characterization of the gait as presented

on section 8.4.

1We exclude the final step that classifies the pixels as background or foreground, as this process would yield

a binary image which can not be properly matched with the model’s templates.
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8.1. Human Gait Models

A gait model is an a priori knowledge of the observed gait pattern, such models are commonly

used to define a set of valid configurations of the body parts that are considered relevant for

an analysis and the possible transitions between configurations. According to the strategy

used to define the set of configurations and transitions, we can distinguish two types of

models[1, 11]:

Structural Models Whose configurations provide knowledge on the approximate geometric

structure of the body parts in motion. But provide little information on the transitions

between states.

Bio-Mechanical Models Which explicitly model the participation of muscles, bones, ten-

dons and other tissues considered relevant in human gait. In these models the geomet-

ric structure and possible transitions are a result of the modeled interactions of the

participating elements.

In this work, we use a structural model of the lower limbs, whose valid poses are defined

by the average angles created during a gait cycle of a normal person. As the data used to

generate these configurations is ordered from the beginning to the end of a gait cycle, the

model also provides information on the possible state transitions.

The model generates the angles between: torso and thigh (Hip Flexion Extension), tight

and shin (Knee Flexion Extension), shin and foot (Plantar Flexion). While these are not all

the possible angular displacements of the lower limbs during a gait cycle, these are the most

relevant to analyze a walking sequence captured from a sagital view.

These angles allow to locate and rotate truncated cones to simulate the movement of the

lower limbs, our model has 3 cones for each limb, which represent the tight, shin and foot,

an additional cone represents the waist see figure 8-1. With this setup we are capable of

producing 100 different templates that are used as prior for the tracking step.

8.2. Filtering

A filtering problem consists of a recursive estimation of the state of a dynamic system from

a set of observations [17], formally the system changes states according to:

Xt = f(Xt−1,Wt) (8-1)

Where Xt is the state of the system at time t, Wt is a noise present on the transition process

at time t and f is a state transition function. The set of states Xt can not be directly

observed, instead an observable state Zt is generated by:

Zt = h(Xt, Vt) (8-2)
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Figure 8-1.: Sample model poses during a gait cycle

Where h maps from the space state Xi into the observations space Zi and Vt is noise on the

observations at time t. The main goal of a filtering strategy is to build an estimate of the

hidden set of states Xi by analyzing a temporal sequence of observable and noisy Zi states.

There are optimal solutions to filtering problems, nevertheless these solutions apply for

specific conditions. One of the best known is the kalman filter[34], which assumes that f is

linear and noises W and V are Gaussian and uncorrelated, this assumptions allow to derive a

solution to the filtering problem in terms of means and covariances. A more general solution

requires a different approach.

8.2.1. Bayesian Filtering

A Bayesian approach to a filtering problem, does not relies on characteristics of function

f (or its parameters) neither makes direct assumptions over noises W and V , but rather

attempts to estimate a posterior probability p(Xt|Z1:t) based on available information[34].

While a general analytic expression for p(Xt|Z1:t) can not be obtained[7], a recurrence ex-

pression can be built if the likelihood p(Zt|Xt) and posterior pdf at time t− 1 are known (or

can be approximated)[34]. Under this conditions the posterior can be written by means of

the Chapman Kolmogorov equation as2:

p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1 (8-3)

Later at time t, when Zt is observable, the prior might be updated using the bayes rule:

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Zt|Z1:t−1)
(8-4)

2The derivation of this equations can be found in appendix A
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Where the normalization term is also a recurrence

p(Zt|Z1:t−1) =

∫
p(Zt|Xt)p(Xt|Z1:t−1)dxt (8-5)

Notice that equations 8-4 and 8-5 depend on the likelihood function p(Zk|Xk), which is an

approximation of the map Zk = h(Xk, Vk), also equation 8-3 implies some knowledge on

the transition function f to build p(Xt|Xt−1). The solution to the filtering problem using a

Bayesian framework can only be approximated if there exists some knowledge of (prior on)

the dynamic system.

Again the recursions above can not be solved analytically[4], however they can be approxi-

mated algorithmically. Amongst the best known approximations are Monte Carlo methods,

where the posterior probability is estimated by a set of weighted random samples as follows:

Let p(X|Zt) represent the knowledge of model state X obtained from observations Z up to

time t, it can be represented by a set of N particles {p1
t , p

2
t , ..., p

N
t } and a set of associated

weights {w1
t , w

2
t , ..., w

N
t }, where the weight assignation wit ∝ p(Zt|X = pit), hence posterior

for state Xk can be approximated by its expected value[16].

p(X|Zt) ≈ E[X] =
N∑

i=1

witp
i
t (8-6)

As the number of samples grows, the estimate E[X] is closer to the actual pdf. With a

very large set of samples this characterization becomes an equivalent representation to the

posterior pdf.[17].

8.2.2. The Annealed Particle Filtering

The Annealed Particle Filtering (APF) is one of the Monte Carlos methods used to estimate

the posterior pdf. It is based on the simulated annealing method, which approaches the

minimum of a function u(x) by drawing samples from a distribution created over the target

function, it is defined as[16]:

p(x) = Ce−λu(x) (8-7)

With C a normalization constant.

Notice that a small λ generates a broad distribution with peaks around the smallest values

of u, as λ grows the probability mass concentrates on the minimum of u. This behavior can

be used to find the minimum of function u in an iterative process, which starts by randomly

drawing samples {s0
i } from p with an initial small λ0, then λ0 is increased to λ1 and a new

set of samples {s1
j} is drawn, this time, samples are generated from both the distribution

p(x) and the last drawn samples {s0
i }, λi keeps growing and new set of samples are drawn

again, on the long run, the samples drawn {sni } with a large λn approach the minimum of

the function.
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The same strategy is used on the APF to approach the posterior p(X|Z) at time t by a

series of posteriors pi(X|Z) with 0 ≤ i ≤ n, the transitions between the posteriors on this

sequence are determined by the values of the weighting function.

Overall the steps for an APF can be written as:[15]:

1. At time t an annealing run is started at layer M , let m = M

2. Each layer of the current annealing run is initialized with unweighted particles Pk,m.

3. Each of these particles is then assigned a weight

wik,m ∝ w(Zk, p
i
k,m)

These weights are normalized so that:
∑
wik,m = 1, the resulting set of weighted

particles is noted as Pw
k,m

4. N particles are draw randomly form Pw
k,m, with probability equal to their weight, these

particles are used to generate the next particle layer by:

pnk,m−1 = pnk,m +B

Where B is multivariate Gaussian noise with mean 0.

5. The process is repeated from step 1 until layer 0 is reached

6. The final set Pw
k,0 is used to estimate the most likely state configurations as

Xk =
N∑

i=0

wik,0p
i
k,0

The outlined algorithm does not have an explicit initialization process that provides an initial

state estimation (set of particles) at time t = 0. We solve this issue by an special annealing

run on the first frame on which a particle is assigned to every possible model configuration

on every possible position of the frame, the results of this runs are the set of particles at

time t = 1, where the annealing continues as presented above.

This special first run obviously generates a very large set of particles which increases the

running time of the algorithm, however the weighting process of each particle works inde-

pendently, and parallelization can be easily achieved to compensate for the extra amount of

particles. Our implementation uses a 6 core CPU (12 logical cores) and is able to process

gait cycles of approximate 40 frames in an average of 12 minutes, where the initial annealing

run takes about 1
4

of the total processing time.



46 8 Model Based Analysis of Gait Patterns

8.3. Matching

As stated in section 8.2.1 a critical step on the estimation of the posterior on Bayesian

Filtering is the estimation of the likelihood p(X|Z) (or weighting function for the APF). As

our prior is a structural model from which a series of images can be obtained representing

each of its configurations, a template matching strategy is a natural choice for the estimation

of p(X|Z).

A template Matching problem with an image I and a template M can be stated as finding

a transformation T of the pixel coordinates of M , such that it brings M to a location on I

that gives a best match for a given distance measure d [19]:

max
T

d(T (M), I) (8-8)

Several distance measures can be built between the template image and the image sequence,

however there is a restriction on the chosen function: it must be evaluated over a very large

set of particles during several annealing runs in many frames, hence we need a function that

can be efficiently evaluated.

As we have a single object of interest on the image (the right leg) and a template whose

shape must match that object, we choose a very simple and well known distance measure

where a template has a best match if it completely overlaps the object of interest and no

part of the template overlaps a region outside of the object of interest.

8.3.1. Matching Algorithm

To find the pose of the right leg at a given frame we use a known template matching strategy

for articulated objects proposed by Mohr et al. [40]. Where each template is represented

by a set of mutually disjoint rectangles Rs, allowing to represent the probability of finding

a template at position p by means of the covered and uncovered areas of Rs when shifted to

position p. This computation is speedup by means of an integral image[55] I, formally:

Ps(p) =
∑

Ri∈Rs

(I((vix, v
i
y) + p) + I((uix, u

i
y) + p)− I((vix, u

i
y) + p)− I((uix, v

i
y) + p))) (8-9)

Where ui and vi are the upper left corner and lower right corner of the rectangle Ri.

Mohr et al. also consider the background distribution Ps̄(p) which has the same formula as

equation 8-9 but the rectangle set Rs covers the background instead of the the template.

This yields a final form for the probability of finding a template at position P as:

P (p) = e
1
2

(Pn
s (p)+Pn

s̄ (p)) (8-10)

Where P n
s (p) and P n

s̄ (p) are resolution independent (normalized) forms of 8-9 for the fore-

ground and background respectively. However, as we do not deal with different resolutions
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of the templates or the images on the video, but rather with different template shapes (to

adapt to the anatomical variability of our patients), we limit ourself to the unnormalized

forms of Ps and Ps̄ for equation 8-10 and normalize over the results for a given frame.

Another difference of our matching scheme is that we do not build a template hierarchy to

increase the overall performance of the matching process, as for the particle filter we need a

probability estimation for every template.

8.4. Pathological Gait Characterization

Our dataset is composed of 12 patients, 6 normal subjects and 6 patients with parkinson’s

disease, whose gait sequences were captured from a sagital view at the gait laboratory of the

Universidad Nacional de Colombia, under semi-controlled illumination conditions.

For the characterization of the gait patterns we initially apply the procedure described earlier

in this chapter, and compare the estimated angles during a gait cycle of a given patient with

the average patterns of a normal person. We use the Frechet distance to quantify their

similarity.

The Frechet distance (δF ) is a measure of similarity between curves that takes into account

the location and ordering of the points along the curves[18]. Informally the Frechet distance

can be thought as the length of the shortest leash that joins a dog and its owner, when one

of them walks on curve f and the other on curve g under the condition that any of them

can change its speed, butbacktracking is not allowed.

Formally: let f and g be curves defined by f : [a, b] → V and g : [a′, b′] → V the Frechet

distance between these curves is defined as:

δF (f, g) = inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))) (8-11)

Where α and β are arbitrary continuous nondecreasing functions3 from [0, 1] to [a, b] and

[a′, b′] respectively.

Figures 8-2 and 8-3 show how the Frechet distance is used in our analysis: the first shows the

estimated values of the hip flexion extension (HFE) angle of a normal subject of our dataset

(red curve) along with the average angles for a normal person (blue curve) during a gait cycle,

the second one shows this same average along with the estimated the hip flexion extension

angles of a patient with Parkinson’s Disease of our dataset. Notice how the estimated angles

for the healthy subject closely resembled those of the average normal pattern which yields a

small Frechet distance. For the Parkinson patient the overall shape of the estimated angles

resembles those of the normal pattern, however it has a smaller amplitude which yields a

larger Frechet distance.

3Non decreasing functions assure that backtracking is not allowed
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Figure 8-2.: Hip Flexion Extension comparison, normal average pattern (blue) and the

pattern of a normal subject (red)

Figure 8-3.: Hip Flexion Extension comparison, normal average pattern (blue) and the

pattern of patient with parkinson (red)

8.4.1. Results

The calculated Frechet distances for each patient are summarized in table 8-1, per group

averages are shown in table 8-2

The angle created between the shin and foot is not used for this characterization as the

segmentation step yields poor results for the feet, this is due to the capture conditions where
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Patient Group δF Hip Flexion Extension δF Knee Flexion Extension

am Normal 22.80 40.39

ar Normal 37.91 53.02

ca Normal 55.39 53.03

hl Normal 24.42 38.63

jc Normal 27.55 42.49

mg Normal 33.31 41.56

es Parkinson 62.84 51.68

fm Parkinson 38.25 65.8

hg Parkinson 55.09 63.97

jj Parkinson 66.46 69.36

mv Parkinson 95.63 111.51

ni Parkinson 77.27 33.8

Table 8-1.: Frechet distances calculated for the angles hip flexion extension & knee flexion

extension for all patients

Group δF HFE δF KFE

Normal 33.56 ± 12.09 44.85 ± 6.45

Parkinson 64.92 ± 18.96 66.02 ± 25.8

Table 8-2.: Means and standard deviations for the groups of normal and Parkinson patients

the patients are dressed in a black suit and the platform where they walk is also black.

Results show that, in average, normal patients have a smaller Frechet distance to the average

normal pattern for both measured angles. The angles measured for the knee flexion exten-

sion (KFE) seem to be particularly useful for characterization as the mean of both classes

largely differs and standard deviations are small compared to this distance.

Results also show that normal patients have a smaller inter class variability for both mea-

sured angles, especially for the knee flexion extension, this means that under the proposed

approach is much easier to characterize normal gait patterns than characterize parkinsonian

gait patterns.

8.5. Conclusions

The proposed strategy for markeless characterization of gait patterns using the Σ - ∆ esti-

mation for background subtraction, an structural model for state generation, and particle

filter for belief estimation is effective, as it allows to estimate the dynamics of the lower limbs



50 8 Model Based Analysis of Gait Patterns

from on a video sequence of both normal and parkinsonian gait.

The frechet distance is an effective metric to characterize the normal and parkinsonian

gait patterns, by comparing them to an average pattern, especially when applied to the

estimations of the KFE angles.



9. Conclusions and Future Work

This thesis has explored the problem of the characterization of gait patterns with marker-

less strategies in the Parkinson Disease, both model-less and model-based approaches were

presented.

The main motivation for a markerless analysis of the Parkinson’s Disease was the well known

drawbacks of marker-based analysis (as inaccurate placement, and displacement of the un-

derlying skin), the altered gait patterns on the Parkinson’s Disease, and the fact that a

bio-marker directly related to the degenerative process characteristic of Parkinson’s Disease

remains unknown.

One of the fundamental tools in markerless analysis of human motion is the background

segmentation, as it allows to detect and follow moving objects along videos sequences. This

segmentation process was part of the work on this thesis and the results are in chapter 5,

where an extension of the Σ - ∆ estimation for background subtraction is introduced. This

extension enhances the pixel description with local features, allowing a multiscale repre-

sentation of each frame, this improves the detection of the lower limbs, a key task for the

markerless analysis of gait.

The first strategies presented for markerless analysis are model-less strategies based on seg-

mentation of the human silhouette and the extraction of visual descriptors from it. Chapter

6 approaches the analysis of human gait by the construction of a motion history images with

the silhouettes extracted from a gait sequence, these images summarize the movements on

a gait sequences and are used for gait classification in a classical SVM approach. Chapter 7

presented an strategy which associated the spatial information obtained from SURF features

with the the temporal information obtained from the Σ - ∆ operator, again a summarization

was built and a classic SVM approach was used for classifications.

Chapter 8 presented a more complex, model based, approach for the characterization of hu-

man gait, centered on the recognition of the pose of the lower limbs during a gait sequence,

a problem which is approached with a Bayesian filtering strategy that uses an structural

model of the human leg as prior. The Frechet distance is used to obtain measure of the

difference between gait patterns.
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There remain at least two interesting topics to continue with the work presented in this thesis.

The first is to further explore the features on the images and the summarizations presented

on chapters 6 and 7 in order to understand which characteristics are the most discriminative,

such and understanding might not only improve the performance of the classification but

might also allow to simplify the analysis of the descriptor and even the construction of new

ones. The second is to use a more complete model of the human body in the approach pro-

posed on chapter 8, such a model would enable a more complete analysis of the parkinsonian

gait, where some features as larger double stance and lean forward stance could be properly

measured.

Ultimately, these works might lead to a better quantification and representation of patters on

the parkinsonian gait, which would allow the assessment of the disease but most importantly

will be helpful to objectively estimate its progression.



A. Derivation of relevant Particle Filter

Equations

The Chapman-Kolmogorov equation is an identity for transition densities on a Markovian

stochastic process, defined as:

p(Xn|Xs) =

∫
p(Xn|Xr)f(Xr|Xs)dXr (A-1)

Let Zi be the set of noisy observations, and Xi the set of unobservable states on a filtering

problem as presented in chapter 8. A recurrence expression for p(X|Z) can be found using

equation A-1 if the posterior at time t − 1 p(Xt−1|Zt−1) and the dynamics of the system

p(Xt|Xt−1) are know or can be approximated[4].

p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt (A-2)

Notice that p(Xt|Zt−1) is a prior on the state distribution at time t, also at time t Zk
becomes observable which allows to estimate a likelihood p(Zt|Xt). With a prior and a

likelihood Bayes rule can be applied to obtain a posterior[4]:

p(Xt|Zt) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Z1:t)
(A-3)

Using the same argument as above, the denominator can also be expressed as a recurrence:

p(Z1:t) = P (Zt|Z1:t−1) =

∫
p(Zt|Xt)p(Xt|Z1:t−1)dxt (A-4)

p(Xt|Zt) is the posterior probability that must be estimated in a Bayesian approach to a

filtering problem.
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