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ABSTRACT. In this article we obtain estimates of Strichartz type, of maximal
type, and of local type for the linearized KPI and KPII equations. These es-
timates show the gain of regularity of the solutions of these equations and are
obtained by a detailed analysis of the oscillatory integrals which give the solu-
tions explicitly.
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O. Introduction
We say that an evolution equation presents regularizing effects if, for t > 0,
the solution u of the Cauchy problem for this equation is, in some sense, better
than the initial datum un, for t = O.

This gain of regularity, for equations which are reversible and conservative,
is in general measured by mixed LP -U space-time norms of the solution. These
norms often involve fractional derivatives. For more details, see, for example,
[CS] and [KPV1J.

In this paper we study certain regularizing effects for the linearizations of
the Kadomtsev-Petviashvili equation (KP):

(Ut + Uxxx + uUx)x =f Uyy = 0 . (0.1)
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Equation (0.1) with "-" sign (respectively with "+" sign) is called KPI (re-
spectively KPII). More precisely we will consider the problem

(Ut + uxxx)x =F Uyy = 0 }
u(x, y, 0) = uo(x, y).

(0.2)

The study of these effects for linearized equations has been succesfully used to
prove existence of solutions for nonlinear evolution equations with dispersive
linear part and nonregular initial data. In particular, a wide variety of articles
using this approach in the Schrodinger and Korteweg-de Vries (KdV) equations
has been recently published.

In the case of the linearizations of the KP equation, these effects will be
obtained by a detailed analysis of the oscillatory integrals which, by means of
the Fourier Transform, give the explicit solution of problem (0.2).

The methods we use here were suggested to us by the work done by C.
Kenig, G. Ponce, and L. Vega [KPV1, KPV2], for the Kd V'equation.

Let {U1(t)} and {U2(t)} be the groups describing the solutions of (0.2) with
" -" and "+" signs respectively, namely

[Uj (t)uo](x, y) = 2~ J ei[t<Pj(()+x€+Y'11uo(() d(

oc2

=C[lj(-,',t)*uo](x,y) j=1,2, (0.3)

where ( = (C 1]), IOl(() = e + f, 102(() = e - f' and lj(-," t) is defined by
the oscillatory integrals:

Ij(x, y, t) = J ei[t<pj(()+x€+y'1] d( j = 1,2.

OC2
(0.4)

In [S], J.C. Saut proved that there is C > 0 with Ilj(x,y,t)1 ~ m' and from
this inequality he es ablishes certain LP - L" (time-space) effects of Strichartz
type for the groups Uj. Similar results have been obtained by A. Faminskii
and L. Vega ([Fl).

In this article we obtain estimates of Strichartz type, of maximal type, and
of local type for the linearized KPI and KPII equations.

In order to formulate and prove our results we need to introduce some defi-
nitions and notations. The form of the phase functions IOj in (0.3) suggests to
consider the following regions in the (-plane:
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and a partition of the unity {a,,B} of ~2 - {O} subordinated to nand r. The
functions a and ,B may be chosen in such a way that, in the regions where they
are not zero,

lae 1 = l,Be 1 ~ 7]- ~ ,

laeel = l,Beel~ 7]-1 ,

l(7)1 = 1,B7)1 ~ C2
,

l(7)7) 1 = 1,B7)7) I ~ C4
.

(0.5)

(0.6)
(0.7)

(0.8)

We will need to write Uj(t) as a sum Wj(t) + \!j(t) where Wj(t) and Vj(t) are
defined by means of the Fourier Transform as:

[Wj(t)uor(() : = [Uj(t)uor(()a((),
[Vj(t)uor(() : = [Uj(t)uor((),B(() .

. (0.9)
(0.10)

For s E JR, D; and D~ will be operators defined by

(D~u)~(() : = 1~ISu((),
(D~u)~(() : = 17]ISu(() .

On the other side, II Ilu£' , II IlL"£' , II IIL"LP will denote the norms of the
x ty t «v x Ty

following spaces Lq(JRx; LP(JR;y )), Lq (JRt; LP(JR;y )), U (~x; LP ([-T, T] x ~y )),
respectiveley.

Our results in this work are gathered in the following theorems:

Theorem 1. There exists a constant G such that
7 7

IIDxU1 (-)uollLt L~y ~ G(IID} uoliL;y + IIDJ uolIL;J ' (0.11)

IIDxU2(-)uoIILfL~ ~ G(IID;uoIIL;y + IIDyuoIIL;J. (0.12)

Theorem 2.
(i) If s > i, then there is a constant C, such that

iIW1(-)uoIIL;LT'y ~ Gs(l + T)~IID~uoIIL;y' (0.13)

(ii) If s > ~, then there is a constant C, such that

(0.14)

(iii) If s > i, then there is a constant C, such that
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T'heorern 3. There exists a constant C such that

IIDxW10uol/LooL2 < Clluol/£2 , (0.16)x t],/ - xy

I/(D;lDy)~UjOuol/LooL2 < C1luol/L2 j = 1,2, (0.17)
y tx - xy

I/(Dx + o;' Dy)U20uol/Loo£2 < C1luollL2 , (0.18).:r iy - xy

1

IIDIVj OuoilLooL2 < Clluoll£2 j = 1,2. (0.19)
y tx - xy

1. Strichartz type estimates (Proof of Theorem 1)
We consider the oscillatory integrals for the KPI equation

A1(x, y, t) : = J ei[tcpl(O+XHY'7]I~I-~O'() «,
~2

B1(x,y,t): = J ei[tcpl(O+X€+Y'7]I~I-~,B()d(,

~2

and

A2(x, y, t) : = J ei[tCP2(O+X€+Y'7]I~I-20'() d(

~2

B2(x,y,t): = J ei[tCP2(O+X€+Y'7]I~I-2,B()d(

~2

for the KPII equation.
By the symmetry of the problem we carry out our estimates integrating only

in the first quadrant of the ( plane.
We will often use the following version of Van der Corput's lemma: If.,p E

CJ(IR) and <1> E C2(IR) with I<I>"(OI 2: 1 in the support of.,p, then

where C is a constant independent of a, b, >., <1>, and .,p (see [St], pg. 311).
In particular, if.,p E CJ(IR) and ¢J E C2(IR) with !¢J"(OI 2: 1>'1 in the support

of.,p, then
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To estimate Al we consider the regions (see Figure 1)

Let {1/Jk} ~=I be a collection of functions in COO(~2) such that their restric-

tions to 0 form a partition of the unity of 0 subordinated to {Ok} ~=I. Then

3

AI(x,y,t) =:L J ei[t<Pl(O+x{+yryll~I-~Q:(()1/Jk(()d( = I + II + III.
k=IOC2

It is easily seen that

To estimate I I we consider two cases:
(i) If Ixl < 2ltlt, then 02(X, t) = 0 and thus II = O.
(ii) If Ixl 2 2!tlt, we apply Van der Corput's lemma with respect to~. For this
we observe that in O2:

In this way,

For III, after integrating by parts with respect to C we have:
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1]

clfl 1] = '4e

v

~ITI If I ~ITI
u

FIGURE 1.
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The derivative in the integral above gives rise to terms of the following types:

a¢3(C~ aE ¢3C ~ a¢3C ~
(t~ + X)' (t~ + X)' (t~ + x) ,

which respectively originate 4 integrals I I Ij, j = 0, 1,2,3, with

IIlII S IIlIa I + ... + IIII31 .

As in II we consider the cases (i) and (ii). We restrict ourselves to (i) since
(ii) is similar.
Inlh(x, t): It~ + xl > Glt~1 2: Gltle· If [z] < 2ltlt, then Ih(x, t) = 0,

and thus ¢3 grows from 0 to 1 in a horizontal interval whose length is of order
Itl- t. Therefore ¢3 may be constructed in such a way that 1¢3( I ~ It It. We
also observe that Area{ ( E 0 I ¢3( -# O} ~ Itl-1. Hence

IIIlolSG

If ¢3( (() -# 0, then I~I~ Itl-t and I ~ I ~ Itl- t, and thus:

G
Itu; I < -1. .- Itl2

On the other side:

G
It I! .

A similar estimate follows for Iu, if we take into account that in Il, I a;E'f,' I =
16~+ 2%-1 < 10IH Hence, we conclude that

(1.1)
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To estimate B1 we consider the regions (see Figure 2)

and functions I" I" 13 E COO (JR2 - {O}) whose restrictions to r form a partition

of the unity of T subordinated to {rl}~=l' Then,

3

B1(x, u, t) = LJ ei[t'Pl(O+XHY1)]I ~ 1- ~,8((hk(() d( = I* + II" + III* .
k=l~,

For 1* we have

To estimate II" we see first that rHy,t) = 0 when Iyl < ~Itl~. If Iyl ~ ~Itl~,
we apply Van der Corput's lemma with respect to the variable TJ· For it we
observe that

I
[)2 I ItI

[)TJ2 [tipl(() + YTJ] = 2m .
Besides, in q(y,t), 1[1""'" I~I· Thus, if for fixed ~ and (TJ,O E q(y,t), TJranges
between two numbers al(y,t,O and a2(y,t,O, then:

The integral I I 1* is estimated by integration by parts with respect to TJ:
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TJ = :ife
TJ= Itl-t~

v

Ilf I
~Ilfl

21Wt
Itl-t

u

FIGURE 2.
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The derivative in the integrand gives rise to 4 terms:

3 3 5

131'3, Izl-" 131)1'31zl-" 131'31 zl-" i
(tW+y)' (t~+y)' (t~+y)'

which, respectively, originate 4 integrals III;, j = 0,1,2,3, with

IIII',::; IIII~I + ... + IIII; I .
As in II" we consider the cases (i) and (ii). We limit ourselves to (i) since both
cases can be treated in a similar way. We notice that in fHy,t), ItW + YI2:
Clt~l. If Iyl < ~Itl~, then n(y,t) = 0 and therefore 1'3 grows from ° to 1 in

a vertical interval whose length has order 4 and thus, 1'3 may be constructed
Itl3

1

III such a way that 1'3, ~ 1;1r . Then

For III 12'1and I [] 13'1we obtain the same estimate.
From the above estimates we conclude that

CIB1(x,y,t)l::; -.J .

Itl"
(1.2)

For () E [0,1] let us define

The estimates (1.1) and (1.2) imply that

IIT11(t)uollux, < C, IluoliLI
zy ~Ii zy

From a standard argument (see [KPV1]) it follows that

IITi (t)uoIIL4Loo < CiluollL2 .
~ / xy - xy
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This estimate can be written as:

In particular, we have from (1.3) that estimate (0.11) in Theorem 1,

takes place.
To estimate A2, using CP2 instead of CP1, we again divide the region 0 into

regions 01, O2, 03, (see Figure 3), to obtain

(1.4)

For the integral B2 we consider the regions (see Figure 4)

Following the same methodology used for the linearized KPI equation we con-
clude that

C
IB2(x, y, t)1 ~ -1 .

It I'
(1.5)

If for B E [0,1] we define

then the estimates (1.4) and (1.5), and the standard argument mentioned above
imply that

IIT~(-)uoIILfL~ < Clluol\L:~y ,
and, in particular, that estimate (0.12) in Theorem 1,

holds.
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1] = :/fe
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~Ifl ITI ~ITI
u

FIGURE 3.
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FIGURE 4.
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2. Estimates of maximal type (Proof of Theorem 2)

The central difference between linearized KPI and KPII equations with re-
spect to the maximal type estimate is that, for the KPI case, it is not possible
to obtain an estimate of the norm IIUl(-)uoIIL2L~' Instead, estimates for

x Ty

IIWl(-)Uoll£2L~ and 11V1(-)Uoll£2L~ are derived. On the contrary, for KPII, a
x Ty y Tx

full estimate on the norm IIU2(-)uoIIL2L~ can be obtained due to the fact that
x Ty

8 2 2
£:!e.l. = 3' +!L does not vanish8( ~ (2 .

We estimate WI by studying the behavior of the oscillatory integral

in subregions of 0 where W = 3e - z; has a determined size. By symmetry
it is sufficient to integrate in the first quadrant of the ( plane.

Let (see Figure 5)

06 := { ( E 0 I 1
8;1 I < 12} ,

oi := {( E 0 I 3 . 22k-2 < 1
8;1 I < 3 . 22k+2 }, k = 1,2,··· .

{D'Dk=O is an open covering of 0 with Area(Oi) :s C23k
, and C independent

of k. Let {1/>dk=O be a collection of functions in COO(IR2) whose restrictions to
o form a partition of the unity of 0 subordinated to {ODk=O' We will estimate
the oscillatory integrals:

For k = 0, if It I :s 2T and Ixl ~ 48T, then If I ~ 24 and therefore, for ( E 06
we have that IW + f I ~ ~ IH Integrating twice by parts with respect to ~,
we obtain that IIJ(x,y,t)l:s Cx-2, where C is independent ofT. If we define

{
Area(Oo) if Ixl < 48 T

H (x)-
o - ~ if [z] ~ 48 T,

then
IIHoIIL~ :s C(1 + T) (2.1)

and
IIJ(x, u, t)1 :S CHo(x) for It I :S 2T and (x, y) E IR2

. (2.2)
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TJ

TJ = :/fe

v

u

FIGURE 5
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To estimate If for k 2: 1, we apply integration by parts twice with respect to
~ in the region

and Van der Corput's Lemma in the region

This procedure leads us to the following conclusions:
If It I ~ 2T and (x, y) E lR2, then

JIf(x,y,t)1 ~ CHk(x), (2.3)

where
if [z] ~ 1

if 1 < Ixl ~ 48T22k

if Ix I > 48 T 22k
,

when 48T22k > 1. In this case n, E £l(lR) and

(2.4)

If 48T22k
~ 1, It I ~ 2T, and (x,y) E lR2, then we have (2.3) with

{

23k if Ix I ~ 1
Hk(X) = 2" .

x' If Ixl > 1.

In this case
(2.4)'

We apply now the results obtained for the integrals If(x, y, t) to estimate the
group WI'

For k = 0, 1, ... , let

Then
00

[WI(t)uo] (x, y) = ~)Wl(t)UOk] (x, y),
k:::O
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where uok(() := uo(OX 1 (0· Therefore
0.

00

IIW1(-)uoIIL2LOO < "'IIWf(')UOkIIL2LOO .x Ty L.J x Ty

k=O
(2.5)

Using duality, Tomas argument [T], and, taking into account (2.4) it can be
proved that

k=0,1,2,· ...

(For more details on this standard procedure see, for example, [KPV2]).
In a similar way, using (2.1) and (2.2), it may be seen that

Returning to (2.5) we may conclude that for s > t:
00

IIW1(-)uoIIL~LTY s C [(1 + T) t IluoollL~+ (1 + T) ~ L 2lf IluokllLd
k=l

00 e 1:s C. (1 + T) ~ {; 2lf (l~(22k ) '!uo( () 1
2 d() '2

:s C.(1 + T)~ ~ 2(t-·)k (l,I~12'luo(()12 d() ~
:s C.(1 + T)tIID~uoliL~y'

which is (0.13). To estimate V1 we study the behavior of the oscillatory integral

J ei[t'Pl()+x<+yry]d(

in subregions of I' where W = T has a determined size. Again, by symmetry,
we consider only the first quadrant and define (see Figure 6)

1'0 = {( E I' I a~l < 4}, 1'1 = {( E I' I 2· 2k
-
1 < a~l < 2· 2k+1

} ,

k = 1,2, ... The collection {rUk=O is an open covering of I' with Area (I'D :s
C23k

, and C independent of k. Let us consider a collection {~dk=O offunctions
in Coo(1R2 - {O}) whose restrictions to r form a partition of the unity of r
subordinated to {ru k=O We then estimate the integrals

Jk(X, v, t):= J ei[tcf>l()+x<+!,ryJ(3(O~k(Od(.

lit'
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TJ = '4}e
TJ = 2k+l~

v

u

FIGURE 6
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For k ~ 1, if Iyl ::::2- ~, we estimate J~ by the area of r]. If Iyl > 2- ~, we write
the integral defining J1 as the sum of the integral in the region {I~I < I~~}
which is bounded by C2-ky-2, and the integral in {I~I > I~~}which can be
estimated by applying integration by parts twice with respect to 17in the region

and Van der Corput's Lemma with respect to T/ in the region

With this procedure we conclude that if It I :::: 2T, then

IJ1(x,y,t)l:::: Cih(y), (2.6)

where

if

if

Iyl ::::2- ~

2- ~ < Iyl ::::16T2k

Iyl> 16T2k
,if

if

if

Iyl ::::2-~

Iyl > 2-~,

if 2- ~ ~ 16 T2k .

We observe that
IljjkIIL~:::: C(1 +T)h¥-. (2.7)

For k = 0, if Iyl ::::1, then IJJ(x, y, t)1 :::: C. If Iyl > 1, the integral defining
JJ can be divided as the sum of the integral in the region {I~I ::::V2IYI-2/3},
which is bounded by Clyl-4/3 -a bound for the area of this region-, and the
integral in the region {I~I > V2lyl-2/3} which can be estimated by applying
integration by parts twice with respect to 17,to obtain finally that, for It I ~ 2T,

IJJ(x,y,t)1 ~ clJo(Y), (2.8)

where

{

I if Iyl ~ 16 T

Ho(Y) = T! I I T--r if y > 16 ,
Iyl!
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when T > 116, and

{

I if IYI:S 1
Ho(Y) := 1 if Iyj> 1,j;iT

when T:S 116,

The function Ho E L~, and

IIHoIIL~ :S C(1 + T). (2.9)

We now apply the obtained results about the oscillatory integrals J1 (x, y, t) to
estimate the group VI·

By a procedure similar to that followed to estimate WI, and using (2.6)-
(2.9), we have that

00

IIVI(-)uoIIL' Loo < C [(1 + T) ~ Ilu~oll£2 + (1+ T) t '" 2¥ Ilu~kIIL'] ,
11 Tx - c ~ c

k=1

where u~k = uOXrk' Therefore, if s > 5/4, then

and (0.14) is proved.
To study the group U2 we consider the sets (see Figure 7)

n~:= { ( E IR2
- {~ = O} I 8~2 < 12 }

and, for k = 1,2,' ., ,

n~:= {( E IR2 - {~ = O} 13· 22k
-
2 < 8~2 < 3 . 22

k+2 } .

The collection {n~}k°=o is an open covering of IR2
- {~ = O} such that

Area(n~):s C23k. Let 'l/Jl,'l/J2,'" be functions in Coo(IR2
- {O}) whose restric-

tions to IR2 - {~ = O} form a partition of the unity of IR2
- {~ = O} subordinated

to {nDf=o' We estimate the oscillatory integrals
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For k = 1,2,· and Ix! 2: 1, let

" I~I< Y2' ,k-2} ,

I~I> ~ .2k
-
2

} ,v

and let PI and P2 be functions in Coo(lR2) whose restrictions to n~ are a par-
tition of the unity of n~ subordinated to n~I' n~2' Then

2

fl(x, y, i) = L1ei[t'P2()+x{+Y'111f>k (()Pj (() d( =: Adx, v, i) + Bk(x, y, i).
j=1 ~2

(2.10)
It is clear that

(2.11)

To estimate Bk we define

ri(x,i):= {(ElR2_{~=0}lliO;2 +xl> ~lxl}U{~=O} and

r~(x, i) := {( E lR2
- {~ = O} Iii 0;2 + xl < ~lxl}

and take functions b-, h2 E Coo (lR2 - {O}) which form a partition of the unity
oflR2 - {OJ subordinated to {ri,rn. Then

2

Bk(x, y, i) = L1ei(t'P2()+x{+Y'1]1f>k (()P2(()hj (() d(
j=1 ~2

=: Ck(x, y, i) + Dk(x, y, i). (2.12)

Integrating by parts twice with respect to ~, we obtain that

(2.13)

On the other side, Dk is estimated by using Van der Corput's lemma with
respect to T/ and observing that
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Hence, if we define

23k

Hk(x) = { 2: log(2klxl) + 2~
x Ixl'

;: log(2klxl)

then, from (2.10)-(2.14), we have that

IIf(x, y, t)1 'S CHk(x) if

Also

(2.14)

if Ixl<1

if 1'Slxl<4·22k

if 4· 22k 'S lxi,

ItI 'S 2 and (x, y) E IR2. (2.15)

tt, E L~ and IIHkIILl, 'S C21f-. (2.16)

For k = 0, if It I 'S 2 and Ixl 2: 48, in a similar way, we obtain that

IIg(x, y, t)1 'S ~ log Ixl·
x

If we define

{
Area(06)

Ho(x) = ell I~ og x
then

if

if
Ixl < 48

Ixl 2: 48,

HoEL~(IR), and Ig(x,y,t)'SCHo(x) if Itl'S2 and (x,y)EIR2
.

Denoting UOk := uoXn2, similarly as we did to obtain (0.13) and (0.14), we•
have that for s > i,

00 00

IIU2(-)uoliL~LTY 'S C L 21f IluOkllL~y= C L 21flluOkllLZ
k=O k=O

00 2 ~ 1

'S C, L21f(12 ( 2:/2

)'luo((Wd() 2

k=O n.

'S C, f 2et-')k (12 (e + ;: )'IUo((W d() ~
k=O

'S C,II[D; + (D;lDy)']uoliL:;y'

By a homogeneity argument we have that for T > 0 :

7
if s> 4'

which completes the proof of Theorem 2.
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3. Estimates of local type (Proof of Theorem 3)
To estimate (0.3) for U2(t), we divide]R2 into the right and left halfplanes. We
only integrate in the right half plane, the ('t~er estimate being similar.
By the change of variable () = <'o2(() = e - f-' "l = n, we obtain

Applying Plancherel's theorem with respect to the variables t and y, it follows
that for all x:

Hence,

proving (0.18). Similarly, by the change of variables () = <'ol(C) = e + ~,
TI= TI, and taking into account that in 0, 3e - Z; > e, it can be proved that
(0.16) holds.
Also, if we change variables in (0.3) by () = <,OJ ((), ~ =~, and apply Plancherel's
theorem with respect to t and x, we have (0.17):

From this estimate, and taking into account that If 1 > 121(1 in r, (0.19)
follows.
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