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ABSTRACT. In this article we obtain estimates of Strichartz type, of maximal
type, and of local type for the linearized KPI and KPII equations. These es-
timates show the gain of regularity of the solutions of these equations and are
obtained by a detailed analysis of the oscillatory integrals which give the solu-
tions explicitly.
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0. Introduction

We say that an evolution equation presents regularizing effects if, for ¢ > 0,
the solution u of the Cauchy problem for this equation is, in some sense, better
than the initial datum ug, for ¢t = 0.

This gain of regularity, for equations which are reversible and conservative,
is in general measured by mixed LP-L? space-time norms of the solution. These
norms often involve fractional derivatives. For more details, see, for example,
[CS] and [KPV1].

In this paper we study certain regularizing effects for the linearizations of
the Kadomtsev-Petviashvili equation (KP):

(ut + Uzzr + Utz)r F uyy =0 (0.1)
Partially supported by Colciencias, grant No. 139-93 .
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38 P. ISAZA, J. MEJIA & V. STALLBOHM.
Equation (0.1) with “—” sign (respectively with “+” sign) is called KPI (re-
spectively KPII). More precisely we will consider the problem

(Ut + uxzz)x F Uyy = 0 } (02)

u(z,y,0) = uo(z,y) .

The study of these effects for linearized equations has been succesfully used to
prove existence of solutions for nonlinear evolution equations with dispersive
linear part and nonregular initial data. In particular, a wide variety of articles
using this approach in the Schrédinger and Korteweg-de Vries (KdV) equations
has been recently published.

In the case of the linearizations of the KP equation, these effects will be
obtained by a detailed analysis of the oscillatory integrals which, by means of
the Fourier Transform, give the explicit solution of problem (0.2).

The methods we use here were suggested to us by the work done by C.
Kenig, G. Ponce, and L. Vega [KPV1, KPV2], for the KdV equation.

Let {Uy(t)} and {Us(t)} be the groups describing the solutions of (0.2) with
“_7” and “47 signs respectively, namely

1 o s
3 (0ucle.9) = g [ e OHsermaneac
R2

= C[Li(- - t) *uo)(z,y) =12, (0.3)

where ¢ = (€,7), #1(0) = € + I, ¢2(¢) = € — %, and Li(, 1) is defined by
the oscillatory integrals:

Ii(z,y,t) = /ei[twj(C)+r€+yn] d¢ j=1,2. (0.4)

R2

In [S], J.C. Saut proved that there is C' > 0 with |I;(z,y,t)| < ]%, and from
this inequality he establishes certain LP — L? (time-space) effects of Strichartz
type for the groups U;. Similar results have been obtained by A. Faminskii
and L. Vega ([F]).

In this article we obtain estimates of Strichartz type, of maximal type, and
of local type for the linearized KPI and KPII equations.

In order to formulate and prove our results we need to introduce some defi-
nitions and notations. The form of the phase functions ¢; in (0.3) suggests to
consider the following regions in the -plane:

Q:={¢CeR?||n| < V26%},
V2,

F:={Cer|In> 5
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and a partition of the unity {a, 3} of R? — {0} subordinated to Q and I'. The
functions @ and  may be chosen in such a way that, in the regions where they
are not zero,

log| = |8l ~n~ %, (0.5)
lagel = 1Beel ~ 0™, (0.6)
log| = |B,| ~ €72, (0.7)
!a,,,,! = |ﬂrm| v f_4o (0.8)

We will need to write U;(t) as a sum W;(t) + Vj(t) where W;(t) and V;(t) are
defined by means of the Fourier Transform as:
W; (O)uo]™(¢) : = [U;()uo] " (Oex((), (0.9)
(Vi (®)uo]™(¢) = = [U; (H)uo] " (O)B(C) - (0.10)
For s € R, D; and Dy will be operators defined by

(Dzu)"(¢) = = [ u(<)

(Dyu)~(€) : = [n[*u(() -
On the other side, || ||Lzrz , I llzoce,, Il ||L1L;y will denote the norms of the
following spaces L9(Ry; LP(R?,)), LI(Ry; LP(R2,)), LI(Ry; LP([-T,T] x Ry)),

respectiveley.
Our results in this work are gathered in the following theorems:

Theorem 1. There exists a constant C such that

|D=Ur (uollzs e, < C(I|DF wollz, + [|1D§ uollz2,) (0.11)
DU (Juollps Lz, < C(I[DFuollzz, + [[Dyuollzz,) - (0.12)

Theorem 2.
(i) If s > %, then there is a constant C, such that

W1 (Yuollzzrg, < Co(1+T)3|| Diuollzs, - (0.13)
(i) Ifs > %, then there is a constant C, such that
IVi(Yuollezge, < Co(1+T)3I(D7' Dy)*uollrz, (0.14)
(1) Ifs > %, then there is a constant C, such that

=1

NU2(YuollLzeg, < Cs T3

I3 + (D7 Dy)"JuollLz, - (0.15)
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Theorem 3. There exists a constant C such that

1D Wi ()uollpeerz, < Clluollzz, , (0.16)

(D7 Dy)3U;(Yuollpger, < Clluollez, i=1,2,  (0.17)
(Dz + D7 Dy)Us(-JuollLeerz, < Clluollzz, , (0.18)
IDEV; (Yuollzgerz, < Cllucllza, §=1,2.  (0.19)

1. Strichartz type estimates (Proof of Theorem 1)

We consider the oscillatory integrals for the KPI equation

Ais,pit) 1= / elterO+aeromlie |~ $a(() d(
]RQ

Bl(l‘, v, t) sl fei[wl(C)+r€+y'l]|g"%IB(C) d( ,
IR?

and

Aol = [ O tao)
R2

Ba(ayit) = [ eltearbaerm| 2| =g(c)dg

R2

for the KPII equation.

By the symmetry of the problem we carry out our estimates integrating only
in the first quadrant of the { plane.

We will often use the following version of Van der Corput’s lemma: If ¢ €
C¢(R) and ® € C?(R) with |®”(£)| > 1 in the support of ¥, then

b
/ Oy (€) de| < CRITH{|IYllze + ¥/}

a

where C'is a constant independent of a, b, A, ®, and ¥ (see [St], pg. 311).
In particular, if ¥ € C}(R) and ¢ € C?(R) with |¢”(£)| > |A| in the support
of ¢, then

b
/ e ©y(€) de| < CIAI 3 {|[9llzo + [|¥']l21} -
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To estimate A, we consider the regions (see Figure 1)

Ql(t):z{CEQl aa% < Itll2}
Qo(z,t) : = {cem %‘? |t3|% ‘taa—‘?-ﬂl < %m}
Q3(z,t)::{C€Q| ad—? > |tT% lt%fgi+:c'>é|x|} ’

Let {1/)k}2=1 be a collection of functions in C*(IR?) such that their restric-
tions to 2 form a partition of the unity of 2 subordinated to {Qk}izl. Then

3

Ay(z,y,t) = Z/ e lterO+eetynl|e 1= 3o (¢ (()d¢ = T+ 11 + 111 .

k=1]R2

It is easily seen that

msc/
0

To estimate 11 we consider two cases:

(i) If |z| < 2|t|3, then Qy(z,t) = @ and thus I = 0.

(i) If |z| > 2|t|3, we apply Van der Corput’s lemma with respect to £. For this
we observe that in Q5:

ch|_§

V2¢? 5 C
0 It]2

2

0
pal

te1(C) + z€)| = |t(ee+2—)| > 6lt]l¢] > 1 = Clzt|5.

In this way,

| %]
1) < /
0

ol ¥
<c " ixtrﬂusr%a(c)wz(s,n)HL;»(al,a,) in

<C/ I.’L’tl_‘|_|—_ ltl_

For I]1, after integrating by parts with respect to £, we have:

111 = l/ cilter (C)+x£+yn];5 [__#—lﬁl(t—f—( 4)-1/;3 O] dC‘

/ eilter(O+7€) ¢ 1= 3 o () o C)dfld'l
al(ﬂ)
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The derivative in the integral above gives rise to terms of the following types:

awsgé-% R s S Ta
a ) ) 21
% +2) (% +2) (% +2) (@§+o)7

)

which respectively originate 4 integrals 111, j = 0,1,2, 3, with
[III| < |IIIg|+-- -+ |III3].

As in IT we consider the cases (i) and (ii). We restrict ourselves to (i) since
(i1) is similar.

In Q3(z,1): |t +z| > CJta 2| > Cltle?. If |z < 2|t|3, then Qy(z,t) = @,
and thus v¥3 grows from 0 to 1 1n a horizontal interval whose length is of order
|t|=5. Therefore 13 may be constructed in such a way that [¢s,| ~ |t]5. We
also observe that Area{¢ € Q| ¢3, # 0} ~ |t|~!. Hence

|III| < C / Md(.

1] %
{163, ()0}
If Y3, () # 0, then |€] ~ [t|% and |2&-| ~ [t| %, and thus:
1) < <.

lt|%
On the other side:

¥ 1 ]‘L 3
62712 -— can 2 i
L b¢-3 2
111, <C/ / dédn < — / / > dedny
_ =3 Jend 1321 i Sa-2 " Jent €

13
S e
11| < C / €% pco [ g e / /f6 5 dnde
2 e © S0 e S s
o~ a3
2
lt|3

A similar estimate follows for 1113 if we take into account that in €, ’ 3¢ ‘ =

|6f + 253 < 10/¢|. Hence, we conclude that

C
IAl(-'L', y)t)l < ==

s 1.1)
< (
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To estimate B; we consider the regions (see Figure 2)

0 2
Fi(t)::{cerl 3“’;—;— <W},
o} 1 0 1
Liw.t):= {C €| —(;: Itll ‘t—;;’ +y1 < §ly|} ;
0 0 1
= {cer |52 > o a 52 +a] > i}

and functions 7,,7,,7, € C*(R?—{0}) whose restrictions to I' form a partition
of the unity of I' subordinated to {F,lc}::zl. Then,

3

Bi,y )= Y [l Ot T O dc = 1+ 117+ 111
k=1]R2 £
For I* we have
: P Li=¥ per™d
|]-|:I/e'[tsm(C)+z£+yn]'_| Lm0 de| < / } ™% dp de
1 5 25
. C
T lE

To estimate I1* we see first that ['}(y,t) = @ when |y| < §|t|% If |y| > %|t|’§',
we apply Van der Corput’s lemma with respect to the variable 7. For it we
observe that

’6 ster(¢) + yn]| = 2|£i

Besides, in Ty(y,t), |#| ~ H‘ Thus, if for fixed £ and (n,&) € T'3(y,t), n ranges
between two numbers a;(y,t,€) and az(y,t,£), then:

— eiT€ g ilter(O)+yn] n-3 did
= }/ / KR GIAGELE

cl ¥ 't__ -3 C
<c [T taes o
A T

The integral 111" is estimated by integration by parts with respect to 7:

-
III°| = ‘/ei(twn(<)+:f+yn] 0 [I__I_C)‘rs_
(t% +y

dn ] dCl
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The derivative in the integrand gives rise to 4 terms:

5,217 Bl msm% 2GR

%
(% +y) (32 +y) ) (15 +y) | (1% +y)

which, respectively, originate 4 integrals 117, j = 0,1,2,3, with

\[II*| < [TID3| 4 -« -4 |IIT3) .

As in I we consider the cases (i) and (ii). We limit ourselves to (i) since both
cases can be treated in a similar way. We notice that in T'}(y,t), |t—3’—L + y| >

] ’ If Jy| < 3[t] then I'}(y,t) = @ and therefore y3 grows from 0 to 1 in

a vertlc(xl interval whose length has order IJI%'_ and thus, 73 may be constructed
t

1
in such a way that y3, ~ I—Tlf—li_ Then
—32
! 2

clt|=%  r2elt” % o} | C
II113] < (‘/ / dnd§ < —
| < ey~ % |f[ t?| ) It|z

) c;n%’ l'BﬂII%I_E

Ca"l—g- cm’} |ti‘£i+ I

02772 2|0
/ / IEI I | BIZE Y e < €
It| calt]” 3 cm? |t|

For [I11;| and |I1I;| we obtain the same estimate.
From the above estimates we conclude that

1171 < C d€ dn

IN

N

|B(z,u,0)] < It% . (12)
For 6 € [0,1] let us define
(17 (t)uo] (C) = [€]7%* [Us(t)uo] "(¢)a(¢) + |—|‘ " [U1(t)uo] ~(€)B(C)
The estimates (1.1) and (1.2) imply that
1T (Ouolluz, < E%nuou,,;, -

From a standard argument (see [KPV1]) it follows that

”7;(1)110

Lirz < Clluollez,
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This estimate can be written as:
1Dz 3 Wi (Yo + (D7 D) Vi uollpares < Clluollzz, . (13)
In particular, we have from (1.3) that estimate (0.11) in Theorem 1,
ID:Us (Yuollzgrz, < CUIDZuollzz, + 1D wollzz,)
takes place.

To estimate A, using 3 instead of ;, we again divide the region Q into
regions £y, 3, Q3, (see Figure 3), to obtain

|[A2(z,y,8)| < — .
It

(1.4)

For the integral B, we consider the regions (see Figure 4)

rf(t);:{cem pr| o 12 }

o |~ [tf2/3
0 3 0
F%(I,t) = {CEF' 6i£1 >W/\‘tai£1+l <%|.’E|} ,

) 3 |8
2(z,1) := {(e r| aigl < s A ‘taizﬂ

> Hiel}

Following the same methodology used for the linearized KPI equation we con-

clude that c
|B2(z,y,t)| < — -

It

(15)
If for 6 € [0,1] we define
[T2(t)uol (C) = €I [Ua(t)uol (¢)a(C) + |§|‘”[U2<t>uor(<>ﬂ(<>,

then the estimates (1.4) and (1.5), and the standard argument mentioned above
imply that

tTzxrxy —

T3 (Yuollzsrey < Clluollzz, ,

and, in particular, that estimate (0.12) in Theorem 1,

D2 Us(Yuoll s < C(I|D2uollLz, + || Dyuollzz,)

4~ -By

holds.
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2. Estimates of maximal type (Proof of Theorem 2)

The central difference between linearized KPI and KPII equations with re-
spect to the maximal type estimate is that, for the KPI case, it is not possible
to obtain an estimate of the norm ||U1(')Uo||1,gL°T°y~ Instead, estimates for
IW1()uollL2 L, and ||V1(‘)“0“L3L9r°, are derived. On the contrary, for KPII, a
full estimate on the norm [|Uz(-)uo||z2Lgs, can be obtained due to the fact that

=34 9—,— does not vanish.
We estlmate W, by studying the behavior of the oscillatory integral

/ei[w:(c)+rf+yn] dc,

in subregions of 2 where 221 = =3¢2 - g—z has a determined size. By symmetry
it is sufficient to lntegrate m the first quadrant of the ¢ plane.
Let (see Figure 5)
12} ,

Ql = {cem'a“’l
¢1

0 = {ceQ|3.22’°-2 ‘79—

. 2““}, k=12,

{91}, is an open covering of Q with Area(Q2;) < C2%  and C independent
of k. Let {¢x}32, be a collection of functions in C°°(IR‘) whose restrictions to
Q form a partition of the unity of 2 subordinated to {Q} }52,. We will estimate
the oscillatory integrals:

Li(z,y,t) = / ellter(O+setumla(C)yu (¢) ¢
m2
For k = 0, if ltl < 2T and |z'| > 48T, then || > 24 and therefore, for ¢ € Q5

we have that | L+ Z| > Z|%|. Integrating twice by parts with respect to &,
we obtain that IIO (z,y,t)] < Cz~?, where C is independent of 7. If we define

Area(Qg) if |z| < 48T
Ho(.‘l:) = c ]
- 4 if |[z| > 48T,
then
[[HollLy < C(1+T) (2.1)
and

|IL(z,y,1)| < CHo(z) for |t| < 2T and (z,y) € R?. (2.2)
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To estimate I} for k > 1, we apply integration by parts twice with respect to
¢ in the region
Hel}

{cem—te=0 ] 22 +a]>
and Van der Corput’s Lemma in the region

{cem—te=01[22 + o] < 4ot}
This procedure leads us to the following conclusions:

If [t| < 2T and (z,y) € R?, then

i (z,y,t)| < CHi(z), (2.3)

where
ges if |z| <1

$ g
Hi(z) = ;—I}-+§—, if 1 < |z| <487 2%
5 if |z] > 48 T 22 |

when 48 T'2%% > 1. In this case H; € L'(R) and
|Hill,, < C(1+T)52% . (24)

If 48T 2% < 1, |t| < 2T, and (z,y) € R?, then we have (2.3) with

2%k if |z| <1
Hy(z) =

2 iz > 1.

In this case

IHll,, < C2*. (2.4)

We apply now the results obtained for the integrals I}(z,y,t) to estimate the

group Wj.
For k=0,1,---, let

W o] (2,9) = [ A=l C)an(c) e

Then

00

(Wi (t)uo) (z,y) = Y _[Wy (H)uok] (2, ),

k=0
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where ok (C) := Uo({)x,, (¢). Therefore

W1 (Juollzzrg, <Y Wi (Yuokllza s, - (2.5)
k=0

Using duality, Tomas argument [T], and, taking into account (2.4) it can be
proved that
IWE (uokllzazg, < CL+T)52% |luoella, ., k=0,1,2,---

(For more details on this standard procedure see, for example, [KPV2]).
In a similar way, using (2.1) and (2.2), it may be seen that

W3 (JuoollzzLy, < C(1+T)% lluoollLz, -

Returning to (2.5) we may conclude that for s > I:

IW2Cuallezzs, < C[1+ T ollzy +(1+ 704 3 2% [aelzs]
k=1

C.(1+ 1) 227*(/ (5" lio(OF )
<Ca+T)} ;ﬁ-’)k(/w 6 13o() P dc)

< Cy(1+ T)%||Diuollra, ,

which is (0.13). To estimate V; we study the behavior of the oscillatory integral
/ei[wx(C)+xf+yn]dC

in subregions of I' where %%l — 2—{’- has a determined size. Again, by symmetry,
we consider only the first quadrant and define (see Figure 6)

6,
{Cel“l%«i}. F},:{(er|2-2‘=-1<§7’7—‘<2-2’°+1},
dn

k=1,2,... The collection {I';}§2, is an open covering of I' with Area (ri) <
C2% and C independent of k. Let us consider a collection {¥x }g2, of functions
in C*(R? — {0}) whose restrictions to I' form a partition of the unity of T'
subordinated to {I'}}$2,. We then estimate the integrals

Te(z,y,t) = /e‘["’"(‘)”“""]ﬂ(cwk(()dC
R2
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For k > 1,if |y| < 2-% we estimate Ji by the area of T'}. If [y| > 275, we write

the integral defining J} as the sum of the integral in the region {|¢| < 2——f-}
which is bounded by C27%y~2, and the integral in {|¢| > -I——} which can be
estimated by applying integration by parts twice with respect to 7 in the region

{cem—te=0 %2 |5 Jwibuie=0),

and Van der Corput’s Lemma with respect to 7 in the region
2 91
gel =g =0}t T < Iyl :

With this procedure we conclude that if |t| < 2T, then

|74 (2, y,)| < CHi(y), (2.6)
where
- if  |y<2-%
Hu(y) = { L log(v2 - 2%y) + 25 it 2% < |yl < 16T2F
27 10g(v2 - 2%y)) if |yl > 1672,

when 2-% < 16 7 2%, and

Auly) 20 if  Jyl<2°%
T Shiog(vE 2kl it > 2,

- o

if 2-% > 16 T 2*.
We observe that
[ ellz; <CO1+T)32%, (2.7)
For k = 0, if |y| < 1, then |J}(z,y,t)| < C. If |y| > 1, the integral defining
J} can be divided as the sum of the integral in the region {|¢| < V2 |y|~%3)},
which is bounded by C|y|~%/ -a bound for the area of this region-, and the
integral in the region {|¢| > v/2|y|=%3} which can be estimated by applying
integration by parts twice with respect to 7, to obtain finally that, for [t| < 2T,

IJ(}(J:’yyt)l S Cf{()(y), (28)

where
1 if ly| <16T

ro(y)= & 0k
flyl>16T),
Iy_lf if |y|
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when 7" > 11—6, and
1 if y<1

Ho(y) == .

when T' < %.
The function Hy € L;, and

|Hollzy < C(1+T). (2.9)

We now apply the obtained results about the oscillatory integrals J} (z,y,t) to

estimate the group Vi.
By a procedure similar to that followed to estimate W,, and using (2.6)-

(2.9), we have that

oo
L~ & 5k~
WViOuollzgzs, < C[1+T)Hs0llz + 1+ T 3 2% 15ullzz).
k=1

where @y, = Uoxr: . Therefore, if s > 5/4, then

r —

0 1
WiCuallzzzr, < 0+ Y282 ( [ 2@ &)
k=0 k

[e<] 1
<c,a+mt Yo ([ 2P 4)’
k=0 Fll: 6
< C.(1+T)? (D' Dy)*uollzz, »

and (0.14) is proved.
To study the group U, we consider the sets (see Figure 7)

Qézz{cemz—{s=0}|%“;—2<12}

and, fork=1,2,---,

{2 {c eR?-{6=0}]3-2%%< %‘? <3-22’°+2}.

The collection {Q22}32, is an open covering of R? — {{¢ = 0} such that
Area(Q?) < C 23, Let 91,2, -+ be functions in C* (R? — {0}) whose restric-
tions to R? — {€ = 0} form a partition of the unity of R?—{¢ = 0} subordinated
to {2}52,. We estimate the oscillatory integrals

I}z, y,t) = /mz eltea(O+zé4unly, () dC .
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For k=1,2,---, and |z|>1,let
2 2 i, ok=3
le(x):: CGQ ||77|<'| £ |£|<\/§" )
12 V2 i
Qiz(r):{ er||n|>2H v x5 2},

and let p; and po be functions in C*(R?) whose restrictions to Q2 are a par-
tition of the unity of Q7 subordinated to Q7,,Q%,. Then

2
B(zyt)=) /nxz eilte(Orzetunly, (()p;(C) d¢ =: Ax(z,y,t) + Bi(z,y,1).

(2.10)
It is clear that 4
2

[Ax(2,9,0)] < Area(@(x)) < O (2.11)

To estimate By we define

(0 = {ceR - (g =0} | 122 4] > > gkl ufe=o}
9p2

r3(z,1) —{cew—{s-on{t—+ j < gt}

and take functions hy, hy € C°°(R? — {0}) which form a partition of the unity
of R? — {0} subordinated to {I'#,'3}. Then

Bx(z,y,t Z/ t[tw:(()+r€+yﬂ]¢k(C)pz(c)h () d¢
=: Cr(z,y,t) + Dr(z,y,1). (2.12)

Integrating by parts twice with respect to £, we obtain that

ICi(z,y,t)| < — D 1og(2’°|r|) (2.13)

On the other side, Dj is estimated by using Van der Corput’s lemma with
respect to 7 and observing that

2 2t

ba—[ts'?z( +yn] f ;
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In this way,
2%
IDi(z,y, )| < O
Hence, if we define
23): if |I| <1
Hi(z) = { Zlog(2¥|z]) + % if 1< |z|<4. 2%
£ log(2* =) it 497 < el

then, from (2.10)-(2.14), we have that
[Ii(z,y,t)| < CHy(z) if [t|<2 and (z,y)€R™

Also N
Hy €L, and |Hglpx <C2%.

For k =0, if [t| <2 and |z| > 48, in a similar way, we obtain that

C
II(Jz(xyy’t)l S .’C—i lOg |I'

If we define )
Area(Q3) if |z <48
S log |z| if x| > 48,

Ho(z) = {

then

59

(2.14)

(2.15)

(2.16)

Ho € LL(R), and Ig(z,y,t) < CHo(z) if |t|<2 and (z,y)€R%

Denoting ugx := UgXgq2, similarly as we did to obtain (0.13) and (0.14), we

have that for s > %,

o0 o0 i~

Ik ~
1U2(-Yuollzazge, < C D27 |luokllzz, = C Y 2% |[fok /|2
k=0 k=0
[e o]

<c, ot (f
k=0 ﬂ,"

o0 2 1
<G Y2k ( [ (e + T oo )’
k=0

< Gill[D; + (D3 ' Dy) Juollc2, -

2 . s
(on)s

By a homogeneity argument we have that for 77> 0 :

s—1 ¥ 7
 I[Dz + (D' Dy)Juollzz, i s> 7,

NU2(Duollez g, < C:T

which completes the proof of Theorem 2.
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3. Estimates of local type (Proof of Theorem 3)

To estimate (0.3) for Us(t), we divide R? into the right and left halfplanes. We
only integrate in the right half plane, the other estimate being similar.

By the change of variable 8 = ¢2(() = €3 — ﬂg, n = n, we obtain

1 it i ] aO(E(ei 77)7 77)
[Ua(t)uo)(z,y) = o= [ ePe@mmeiny 222" dh dy .
2"1! (3¢2 + %)

Applying Plancherel’s theorem with respect to the variables ¢ and y, it follows
that for all z:
€02 g,(€(+, ), ")
¥+ %
-~ 2 1
_ (/ [4o(& )" 44 dn) 3
J e+ 5y

o |a0(£777)|2 d %
_( 3€2+ZEI;_ = TI) '

U2 Yuel(e ez, = |

L:n

R2

Hence,
I(Dz + D7 Dy)Us()uollre 2, < Clluollzz,

proving (0.18). Similarly, by the change of variables § = ¢1(¢) = €3 + 9;,
n = n, and taking into account that in , 3¢% — g—:— > €2, it can be proved that

(0.16) holds.
Also, if we change variables in (0.3) by 8 = ¢;(¢), £ = €, and apply Plancherel’s
theorem with respect to ¢t and z, we have (0.17):

(D71 Dy) 2 Us (-Yuo| e 2, < Clluolliz, -

From this estimate, and taking into account that |-2’-| > V2|¢| in T, (0.19)
follows.
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