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ABSTRACT. In this note we prove two 'Wolstenholme-type' Theorems on q-
binomial coefficients, with the help of a result on partition of integers modulo
prime.
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The famous Wilson's Theorem (which actually first appeared in Leibnitz's
work) states that

(p - I)! == -1 (mod p),
for all primes p. Babbage noticed in 1819 that

(
2P - 1) -= 1 (mod p2

),
p-1

for all primes p 2: 3, and Wolstenholme proved in 1862 that

(
2P - 1) -= 1 (mod p3),
p-1

for all primes p 2: 5. In 1952, Ljunggren generalized this to

(1)
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and Jacobsthal to

(~;) / (~) == 1 (mod pa),

for any integers n > r > 0 and primes p ~ 5, where a is the power of p divid-
ing p3nr(n - r). This exponent could only be increased in case pi Bp-3, the
(p - 3)rd Bernoulli number. Recently, Granville [1] developed several congru-
ences which could lead to the generalization of both Wolstenholm's and Ljung-
gren's Theorems, as well as many other interesing congruences. For example,
he showed that

for all primes p ~ 7. In this paper, we study whether 'Wolstenholme-type'
Theorems hold for q-binomial coefficients o, which as usual, it is defined by
the following formula:

(
n) _ { qqn__/ q:~~~l ... qn~:~ll-l, ~f0 ~ r < n,

- 1, If r - 0,
r

q 0, if r < 0 or r > n.

The first result we obtain is the following theorem:

Theorem 1. Let p ~ 5 be a prime, then for any integer q i= 1,

(
2P - 1) _ 2 qp3 - 1 3= 1 + K p 2 (mod qP - 1),

p - 1 qp2 qP - 1

where K is an integer only depending on p. In particular, when q ~
derives (1) immediately from (2).

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let p ~ 3 be a prime, 0 ~ k < p. Denne f(k) as the number of
eolutions of the congruence,

(2)

1, one

k == il + i2 + ... + ip-l (mod p),

with 1~ il < i2 < ... < ip-l ~ 2p - 1. Then

f (0) - 1 = f ( 1) = f (2) = . . . = f (p - 1).

Proof. For 1 ~ m ~ 2p - 1, define fm(k) as the number of solutions of the
congruence

k == il + i2 + ... + im (mod p), 1 ~ il < i2 < ... < i-; ~ 2p - 1. (3)

Hence fp-I (k) = f(k).
Let Xk be the set of all solutions of (3) for fixed k and m. When 1 <

kl, k2 ~ P - 1, we define a function ¢ between Xk, and Xk2 by

{il, i2, ... ,im} ~ {k2kl il, k2kli2, ... ,k2klim},
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where k is an associate of k, i.e., kk == 1 (mod p).
It is easy to verify that ¢ is a bijection, since the restriction

1 ~ il < ... < im ~ 2p - 1

in (3) could be replaced by

1~ iI ~ iz ~ ... ~ im ~ P

with at most two consecutive i's being equal and at most one i equal to p.
Therefore, for any 1 ~ kl, k2 ~ P - 1, fm(kd = fm(k2); in particular,

f(l) = f(2) = ... = f(p - 1). (4)

Now we want to prove f(O) = f(I)+1. Define Fm(k) as the number of solutions
of the congruence

k == il + i2 + ... + im (mod p), 1~ il < i2 < ... < i-; ~ 2p. (5)

It is easy to verify that for all 1 ~ m ~ p-l, Fm(O) = Fm(l) = ... = Fm(p-l),
since we could establish a bijection between Ykl and Yk2 by

{iI, i2, .. ·, im} -+ {il + (k2 - kdm, i2 + (k2 - kdm, ... , im + (k2 - kl)m},

where Yk = {yd is the set of all solutions of (5). By taking im = 2p, we get
that Fm(k) - fm(k) is equal to fm-l(k), therefore

f(O) - f(1) fp-I(O) - fp-l
Fp_I(O) - fp-2(0) - (Fp_I(I) - fp-2(1)) (6)
-(fp-2(0) - fp-2(1)) = fp-3(0) - fp-3(1)
... = -(h(O) - h(I)) = -(1 - 2) = 1

since p is an odd prime. Combining (4) with (6), the lemma is proved. ~

Proof of Theorem 1. It is well known [2, Th. 348] that

g(1+ q~x) = ~ (~) ql q;<k2
+i)xk

. (7)

Taking n = 2p - 1, ql = qp2 and comparing the coefficients of xp-l on both
sides of (7), one has

f(O) + f(l)ql + ... + f(p - l)qi-1 == (2P - 1) (mod qp3 - 1) (8)
p - 1 qp2

(here f(k) is defined as in the lemma), since qi+P == qi (mod qp3 - 1).
Let q -+ 1 (ql -+ 1). We derive from the lemma that

1+ f(l)p == (2P - 1) (mod p3); (9)
p-l

by Wolstenholme's result (1) we get

f(l) == 0 (mod p2).
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Let f(l) = Kp2. Combining (8) and (9), we deduce (2) from the lemma. ~

The following result is a consequence of the proof of Theorem l.

Corollary 1. Let p 2: 3 be a prime and b a positive integer. If

(2
P - 1) == 1 (mod pb),
p-1

then for any integer q -=I- 1,
b

(
2P - 1) == 1+ K v:: q~ 1- 1 (mod qP

b
- 1).

p - 1 qpb-I qP - - 1

Next, we prove a generalization of (1) modulo pb for an arbitrary positive
integer b.

Theorem 2. Let p 2: 3 be a prime, (q,p) = 1, q"¥:-1 (mod p). Then for any
positive integer b,

(~)qPb_l/G)qPb == (~)
where d is the order of q modulo p, i.e., the smallest positive integer f such
that

(10)

q! == 1 (mod p).

b-lProof. Let qi = qP . Then

qf+j - 1
II j -1i~j~p-i qi

2p-i 1qi -
qi - 1 2~j~p-i

II (11)

Since q"¥:-1 (mod p), d must be no less than 2. Moreover, d is also the order
of q, modulo pb; hence

II
2~j~p-i

j~O (mod d)

The first product on the rightside of (12) is equal to

(~) ==(~)r--i £.::.!. (mod pb).
d qt d

II
2~j~p-i

II
qi9+j)d -1

q{d _ 1

qiP-l+j - 1
qij - 1

(12)

(13)

Noting that qf-i == 1 (mod pb) and that q{ "¥:- 1 (mod p) for any positive
integer j "¥:- 0 (mod d), and using the property of divisibility for integers, one
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has
2p-l 1

ql - == 1
ql - 1

p-l+j 1ql -

q{ - 1

(14)

II (15)
2'Sj'Sp-l

j~O (mod d)

Combining (11) and (15), we deduce (10).

As an example, 2 is a primitive root of 5 and 4 belongs to the order 2 modulo
5 and it is easy to verify that 23b-1 == -1 (mod 53), 25b-1 == -1 (mod pb), then
for an arbitrary positive integer b,

C50) 571 G) 57 == 2 (mod 53),

G)3b-ll G) 3b-l == 2 (mod 3
b
),

Remark. Similarly we could study the generalization of 'Ljunggren-type' The-
orems, however, it seems to be much more complicated.
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