Two Wolstenholme's type theorems on *q-***binomial coefficients**

TIANXIN CAl GILBERTO GARCÍA-PULGARÍN

Universidad de Antioquia, Medellin, COLOMBIA

ABSTRACT. In this note we prove two 'Wolstenholme-type' Theorems on *q*binomial coefficients, with the help of a result on partition of integers modulo prime.

Keywords and phrases. Wolstenholme's Theorem," q-binomial coefficients, modulo prime powers.

2000 Mathematics Subject Classification. Primary: 11A07. Secondary: 11B65, 05AlO.

The famous Wilson's Theorem (which actually first appeared in Leibnitz's work) states that

 $(p-1)! \equiv -1 \pmod{p}$,

for all primes *p.* Babbage noticed in 1819 that

$$
\binom{2p-1}{p-1} \equiv 1 \pmod{p^2},
$$

for all primes $p \geq 3$, and Wolstenholme proved in 1862 that

$$
\binom{2p-1}{p-1} \equiv 1 \pmod{p^3},\tag{1}
$$

for all primes $p \geq 5$. In 1952, Ljunggren generalized this to

$$
\binom{np}{rp} \equiv \binom{n}{r} \pmod{p^3};
$$

Project supported by Universidad de Antioquia.

and Jacobsthal to

$$
\binom{np}{rp} / \binom{n}{r} \equiv 1 \pmod{p^a},
$$

for any integers $n > r > 0$ and primes $p \geq 5$, where *a* is the power of *p* dividing $p^3nr(n-r)$. This exponent could only be increased in case $p \mid B_{p-3}$, the $(p-3)$ rd Bernoulli number. Recently, Granville [1] developed several congruences which could lead to the generalization of both Wolstenholm's and Ljunggren's Theorems, as well as many other interesing congruences. For example, he showed that

$$
\binom{3p}{2p} / \binom{2p}{p}^3 \equiv \binom{3}{2} / \binom{2}{1}^3 \pmod{p^5}
$$

for all primes $p \ge 7$. In this paper, we study whether 'Wolstenholme-type' Theorems hold for q-binomial coefficients $\binom{n}{r}_q$, which as usual, it is defined by the following formula:

$$
\binom{n}{r}_q = \begin{cases} \frac{q^n - 1}{q - 1} \frac{q^{n-1} - 1}{q^2 - 1} \cdots \frac{q^{n-r+1} - 1}{q^r - 1}, & \text{if } 0 < r \le n, \\ 1, & \text{if } r = 0, \\ 0, & \text{if } r < 0 \text{ or } r > n. \end{cases}
$$

The first result we obtain is the following theorem:

Theorem 1. Let $p \ge 5$ be a prime, then for any integer $q \ne 1$,

$$
\binom{2p-1}{p-1}_{q^{p^2}} \equiv 1 + K p^2 \frac{q^{p^3} - 1}{q^{p^2} - 1} \pmod{q^{p^3} - 1},\tag{2}
$$

where K is an integer only depending on *p*. In particular, when $q \rightarrow 1$, one *derives* (1) *immediately from (2).*

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let $p \geq 3$ be a prime, $0 \leq k < p$. Define $f(k)$ as the number of *eolutions* of *the congruence,*

$$
k \equiv i_1 + i_2 + \cdots + i_{p-1} \pmod{p},
$$

with $1 \le i_1 < i_2 < \cdots < i_{p-1} \le 2p-1$. Then

$$
f(0)-1=f(1)=f(2)=\cdots=f(p-1).
$$

Proof. For $1 \leq m \leq 2p - 1$, define $f_m(k)$ as the number of solutions of the congruence

 $k \equiv i_1 + i_2 + \cdots + i_m \pmod{p}, \ 1 \leq i_1 < i_2 < \cdots < i_m \leq 2p - 1.$ (3) Hence $f_{p-1}(k) = f(k)$.

Let X_k be the set of all solutions of (3) for fixed k and m. When $1 \leq$ $k_1, k_2 \leq p-1$, we define a function ϕ between X_{k_1} and X_{k_2} by

$$
\{i_1,i_2,\ldots,i_m\}\to\{k_2\bar{k_1}i_1,k_2\bar{k_1}i_2,\ldots,k_2\bar{k_1}i_m\},
$$

where \overline{k} is an associate of k , i.e., $kk \equiv 1 \pmod{p}$.

It is easy to verify that ϕ is a bijection, since the restriction

 $1 \leq i_1 \leq \cdots \leq i_m \leq 2p-1$

in (3) could be replaced by

$$
1\leq i_1\leq i_2\leq \cdots \leq i_m\leq p
$$

with at most two consecutive i's being equal and at most one i equal to p . Therefore, for any $1 \leq k_1, k_2 \leq p-1$, $f_m(k_1) = f_m(k_2)$; in particular,

$$
f(1) = f(2) = \cdots = f(p-1). \tag{4}
$$

Now we want to prove $f(0) = f(1)+1$. Define $F_m(k)$ as the number of solutions of the congruence

$$
k \equiv i_1 + i_2 + \dots + i_m \pmod{p}, \ \ 1 \le i_1 < i_2 < \dots < i_m \le 2p. \tag{5}
$$

It is easy to verify that for all $1 \le m \le p-1$, $F_m(0) = F_m(1) = \cdots = F_m(p-1)$, since we could establish a bijection between Y_{k_1} and Y_{k_2} by

$$
\{i_1,i_2,\ldots,i_m\}\rightarrow\{i_1+(k_2-k_1)\bar{m},\ i_2+(k_2-k_1)\bar{m},\ldots,i_m+(k_2-k_1)\bar{m}\},
$$

where $Y_k = \{y_k\}$ is the set of all solutions of (5). By taking $i_m = 2p$, we get that $F_m(k) - f_m(k)$ is equal to $f_{m-1}(k)$, therefore

$$
f(0) - f(1) = f_{p-1}(0) - f_{p-1}
$$

= $F_{p-1}(0) - f_{p-2}(0) - (F_{p-1}(1) - f_{p-2}(1))$ (6)
= $-(f_{p-2}(0) - f_{p-2}(1)) = f_{p-3}(0) - f_{p-3}(1)$
= $\cdots = -(f_1(0) - f_1(1)) = -(1 - 2) = 1$

since p is an odd prime. Combining (4) with (6), the lemma is proved. \Box *Proof of Theorem* 1. It is well known [2, Th. 348] that

$$
\prod_{i=1}^{n} (1 + q_1^i x) = \sum_{k=0}^{n} {n \choose k}_{q_1} \frac{k(k+1)}{q_1^{k-2}} x^k.
$$
 (7)

Taking $n = 2p - 1$, $q_1 = q^{p^2}$ and comparing the coefficients of x^{p-1} on both sides of (7), one has

$$
f(0) + f(1)q_1 + \dots + f(p-1)q_1^{p-1} \equiv \binom{2p-1}{p-1}_{q^{p^2}} \pmod{q^{p^3}-1} \tag{8}
$$

(here $f(k)$ is defined as in the lemma), since $q_1^{j+p} \equiv q_1^j \pmod{q^{p^3}-1}$. Let $q \to 1$ $(q_1 \to 1)$. We derive from the lemma that

$$
1 + f(1)p \equiv \binom{2p-1}{p-1} \pmod{p^3};\tag{9}
$$

by Wolstenholme's result (1) we get

 $f(1) \equiv 0 \pmod{p^2}.$ for $f(1) \equiv 0$ (mod p^2). Some if the set of the set of $f(1)$

Let $f(1) = Kp^2$. Combining (8) and (9), we deduce (2) from the lemma. \Box

The following result is ^a consequence of the proof of Theorem l.

Corollary 1. Let $p \geq 3$ be a prime and b a positive integer. If

$$
\binom{2p-1}{p-1} \equiv 1 \pmod{p^b},
$$

then for any integer $q \neq 1$,

$$
\binom{2p-1}{p-1}_{q^{p^{b-1}}} \equiv 1 + K p^{b-1} \frac{q^{p^b}-1}{q^{p^{b-1}}-1} \pmod{q^{p^b}-1}.
$$

Next, we prove a generalization of (1) modulo p^b for an arbitrary positive integer *b.*

Theorem 2. Let $p \ge 3$ be a prime, $(q, p) = 1$, $q \ne 1 \pmod{p}$. Then for any *positive integer b,*

$$
\binom{2p}{p}_{q^{p^{b-1}}} \bigg/ \binom{2}{1}_{q^{p^b}} \equiv \binom{\frac{2(p-1)}{d}}{\frac{p-1}{d}} \pmod{p^b},\tag{10}
$$

where ^d is the order of *^q modulo p, i.e., the smallest positive integer f such that*

$$
q^f\equiv 1\pmod{p}.
$$

Proof. Let $q_1 = q^{p^{b-1}}$. Then

$$
\binom{2p}{p}_{q_1} / \binom{2}{1}_{q_1^p} = \prod_{1 \le j \le p-1} \frac{q_1^{p+j} - 1}{q_1^j - 1}
$$
\n
$$
= \frac{q_1^{2p-1} - 1}{q_1 - 1} \prod_{2 \le j \le p-1} \frac{q_1^{p-1+j} - 1}{q_1^j - 1}.
$$
\n(11)

Since $q \neq 1 \pmod{p}$, *d* must be no less than 2. Moreover, *d* is also the order

of
$$
q_1
$$
 modulo p^b ; hence
\n
$$
\prod_{2 \le j \le p-1} \frac{q_1^{p-1+j} - 1}{q_1^j - 1} = \prod_{1 \le j \le \frac{p-1}{d}} \frac{q_1^{(\frac{p-1}{d}+j)d} - 1}{q_1^{jd} - 1} \prod_{\substack{2 \le j \le p-1 \\ j \ne 0 \pmod{d}}} \frac{q_1^{p-1+j} - 1}{q_1^j - 1}.
$$
\n(12)

The first product on the rightside of (12) is equal to

$$
\left(\frac{\frac{2(p-1)}{d}}{\frac{p-1}{d}}\right)_{q_1^d} \equiv \left(\frac{\frac{2(p-1)}{d}}{\frac{p-1}{d}}\right) \pmod{p^b}.\tag{13}
$$

Noting that $q_1^{p-1} \equiv 1 \pmod{p^b}$ and that $q_1^j \not\equiv 1 \pmod{p}$ for any positive integer $j \not\equiv 0 \pmod{d}$, and using the property of divisibility for integers, one

has

$$
\frac{q_1^{2p-1}-1}{q_1-1} \equiv 1 \pmod{p^b},\tag{14}
$$

$$
\prod_{\substack{2 \le j \le p-1 \\ j \not\equiv 0 \pmod{d}}} \frac{q_1^{p-1+j} - 1}{q_1^j - 1} \equiv 1 \pmod{p^b}.
$$
 (15)

Combining (11) and (15) , we deduce (10) .

As an example, 2 is a primitive root of 5 and 4 belongs to the order 2 modulo 5 and it is easy to verify that $2^{3^{b-1}} \equiv -1 \pmod{5^3}$, $2^{5^{b-1}} \equiv -1 \pmod{p^b}$, then for an arbitrary positive integer *b,*

$$
\binom{10}{5}_{57} / \binom{2}{1}_{57} \equiv 2 \pmod{5^3}, \quad \binom{10}{5}_{182} / \binom{2}{1}_{182} \equiv 2 \pmod{5^4},
$$

$$
\binom{6}{3}_{3^b-1} / \binom{2}{1}_{3^b-1} \equiv 2 \pmod{3^b}, \quad \binom{10}{5}_{5^b-1} / \binom{2}{1}_{5^b-1} \equiv 6 \pmod{5^b}.
$$

Remark. Similarly we could study the generalization of 'Ljunggren-type' Theorems, however, it seems to be much more complicated.

Acknowledgement. The first author is grateful to Prof. Andrew Granville for his constructive comments and valuable suggestion.

References

- [I] A. GRANVILLE, *Arithmetic properties of binomial coefficients I: binomial coefficients modulo prime powers,* Canadian Mathematical Society Conference Proceeding, 20 (1997), 253-276.
- [2J G. H. HARDY AND E. M. WRIGHT, *An introduction to the theory of numbers,* Clarendom Press, Oxford, Fourth Edition, 1965.

(Recibido en febrero de 2001)

DEPARTAMENTO DE MATEMATICAS UNIVERSIDAD DE ANTIOQUIA MEDELLIN, COLOMBIA e -mail: tcai@matematicas.udea.edu.co *e-mail:* gigarcia@e-math.ams.org

ार्ज