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Abstract

Multimodal information retrieval is an information retrieval sub-task where queries and

database target elements are composed of several modalities or views. A modality is a

representation of a complex phenomena, captured and measured by different sensors or

information sources, each one encodes some information about it. Each modality represen-

tation contains complementary and shared information about the phenomenon of interest,

this additional information can be used to improve information retrieval process. Several

methods have been developed to take advantage of additional information distributed across

different modalities. Some of them exploit statistical properties in multimodal data to find

correlations and implicit relationships, others learn heterogenous distance functions, and

others learn linear and non-linear projections that transform data from original input space

to a common latent semantic space where different modalities are comparable. In spite the

attention dedicated to this issue, multimodal information retrieval is still an open problem.

This thesis presents a multimodal information retrieval system designed to learn several

mapping functions to transform multimodal data to a latent semantic space, where different

modalities are combined and can be compared to build a multimodal ranking and perform

multimodal information retrieval task. Additionally, a multimodal kernelized latent semantic

embedding method is proposed to construct a supervised multimodal index, integrating

multimodal data and label supervision. This method can perform mappings to three different

spaces where several information retrieval task setups can be performed.

The proposed system and method were evaluated in a multimodal medical case-based re-

trieval task where data is composed of whole-slide images of prostate tissue samples, pathol-

ogist’s text report and Gleason score as a supervised label. Multimodal data and labels

were combined to produce a multimodal index. This index was used to retrieve multimodal

information and achieves outstanding results compared with previous works on this topic.

Non-linear mappings provide more flexibility and representation capacity to the proposed

model. However, constructing the non-linear mapping in a large dataset using kernel meth-

ods can be computationally costly. To reduce the cost and allow large scale applications,

the budget technique was introduced, showing good performance between speed and effec-

tiveness.

Keywords: Multimodal information retrieval, Multimodal latent semantic embedding,

matrix factorization, kernel methods, Multimodal fusion, Multimodal information re-

trieval system.



vi

Resumen

La búsqueda y recuperación de datos multimodales es una importante tarea dentro del

campo de búsqueda y recuperación de información, donde las consultas y los elementos de

la base de datos objetivo están representados por un conjunto de modalidades, donde cada

una de ellas captura un aspecto de un fenómeno de interés. Cada modalidad contiene in-

formación complementaria y común a otras modalidades. Con el fin de tomar ventaja de

la información adicional distribuida a través de las distintas modalidades han sido desar-

rollados muchos algoritmos y métodos que utilizan las propiedades estad́ısticas en los datos

multimodales para encontrar correlaciones impĺıcitas, otros aprenden a calcular distancias

heterogéneas, otros métodos aprenden a proyectar los datos desde el espacio de entrada hasta

un espacio semántico común, donde las diferentes modalidades son comparables y se puede

construir un ranking a partir de ellas.

En esta tesis se presenta el diseño de un sistema para la búsqueda y recuperación de in-

formación multimodal que aprende varias proyecciones no lineales a espacios semánticos

latentes donde las distintas modalidades son representadas en conjunto y es posible realizar

comparaciones y medidas de similitud para construir rankings multimodales. Adicional-

mente se propone un método kernelizado para la proyección de datos a un espacio semántico

latente usando la información de las etiquetas como método de supervisión para construir

in ı́ndice multimodal que integra los datos multimodales y la información de las etiquetas;

este método puede proyectar los datos a tres diferentes espacios semánticos donde varias

configuraciones de búsqueda y recuperación de información pueden ser aplicadas.

El sistema y el método propuestos fueron evaluados en un conjunto de datos compuesto por

casos médicos, donde cada caso consta de una imagen de tejido prostático, un reporte de

texto del patólogo y un valor de Gleason score como etiqueta de supervisión. Combinando

la información multimodal y la información en las etiquetas se generó un ı́ndice multimodal

que se utilizó para realizar la tarea de búsqueda y recuperación de información por contenido

obteniendo resultados sobresalientes.

Las proyecciones no-lineales permiten al modelo una mayor flexibilidad y capacidad de rep-

resentación. Sin embargo calcular estas proyecciones no-lineales en un conjunto de datos

enorme es computacionalmente costoso, para reducir este costo y habilitar el modelo para

procesar datos a gran escala, la técnica del budget fue utilizada, mostrando un buen com-

promiso entre efectividad y velocidad.

Keywords: Multimodal information retrieval, Multimodal latent semantic embedding,

matrix factorization, kernel methods, Multimodal fusion, Multimodal information re-

trieval system.
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1 Introduction

Information retrieval has attracted the attention of researchers for many years. Since the

early 1950s to the present, a considerable amount of effort has been put to solve this issue

effectively and efficiently. The primary goal of an information retrieval system is to satisfy

a user’s information need, giving an ordered collection of relevant elements.

Nowadays, information retrieval systems have gained particular relevance due to the fast

growth of data collections in size and variety. The rapid developments in the internet and

communications technologies have turned users from mere content consumers to producers,

the content also has changed from text/hypertext in the beginnings to multimedia con-

tent nowadays. This pattern is also observed in a wide variety of domains from enterprise

applications to medical information systems.

The pervasive presence of multimedia content and its quick growth makes necessary the de-

velopment of information retrieval systems specialized in indexing and retrieving multimedia

content. This kind of content poses a challenge known as ”semantic gap”, this is, there is not

a direct relationship between its representation and its meaning. Several approaches have

been proposed to overcome this challenge; some are based on feature engineering, others

learn better content representations using latent semantic modeling, others use multi-view

information that is common in multimedia content to learn a common semantic representa-

tion.

Usually, multimedia content contains multimodal information where the same phenomena

is represented across multiple modalities, for example, images come with a text description

like tags, captions or paragraphs; audios come with the author, gender, year and lyrics infor-

mation; videos come with subtitles, transcriptions, image thumbnail, among others. Com-

plementary information in each modality can be used to construct a multimodal semantic

index and thus improve the retrieval system’s performance including additional information

about the phenomena within the retrieval and modeling process.

The main goal of this thesis is to research and to develop a multimodal information retrieval

system based on a non-linear latent semantic strategy to construct a multimodal index

taking advantage of additional information provided by multimodal data to improve retrieval

performance.
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1.1 Motivation

Currently, multimedia data is pervasive; this kind of data is everywhere from web pages

that combine text, images, video, and audio to specialized multimedia platforms like video

streaming services, podcast applications. These technologies combined with the ”web 2.0”

paradigm where the user’s role changed from mere content consumer to a more active role

of consumer/producer (prosumer), have contributed to the fast increase of multimedia data

on the internet. As the amount of data is incremented more difficult is to find relevant

information, to solve this issue it is necessary to develop high-quality information retrieval

systems specialized in processing multimedia content.

Information retrieval systems have played a central role on the internet since the introduction

of world wide web standard in 1989; in its beginnings, the internet was mostly composed of

text/hypertext documents for that reason first web searchers were designed as text informa-

tion retrieval systems with great success. However today the web is composed of multimedia

data with heterogeneous sources. The first step to extract knowledge from this vast and

valuable data resource includes identify and access relevant documents within large data

collections; this task must be performed for future web searches that must be based on mul-

timedia information retrieval systems.

Multimedia and multimodal information retrieval systems have application in different areas

from research to industry. The following list briefly describes some application fields where

multimedia information retrieval systems play an important role:

• Medical and health care: Medical domains generates a large volume of multimedia

and multimodal information every day, for example, Müller et al. [61] described as

in the radiology department of the General University Hospital of Geneva in the year

2002, 12000 images were generated per day, during the same year in the department of

cardiology was generated 1 terabyte of cardiac images. Additional to medical images

huge amount of textual data is generated, this text data includes clinical reports,

medical histories, patient records.

Large collections of multimedia and multimodal data in the medical domain contain

valuable information that can contribute to improving health care services, accelerate

the diagnosis process, train medical staff and support medical research. To enable

these applications it is necessary to construct a robust information retrieval system

that combines multimodal information to determine relevant medical cases to analyze

in each situation.

• Crime prevention: Technology has a central role in crime prevention and surveillance,

for example, security cameras are everywhere and produce many video hours where

only some short events must be audited to provide security, prevent crimes and identify
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suspects. Extract this information from many video hours is a difficult task and must

be executed by an automated system, this system is a multimedia information retrieval

system specialized in video processing.

• Enterprise applications: Enterprises must compete locally and globally. Due to this

pressure enterprises must improve their decision-making process. To take better deci-

sions it is necessary to have the best information, and getting this information from

different sources is the purpose of a multimodal information retrieval system.

• E-commerce: Online stores are becoming more popular, customers demand from these

sites better multimodal retrieval systems that help them to find the right product using

text descriptions, names or photos of similar products.

• Copyright protection and plagiarism prevention: Information retrieval systems provide

a ranked list of similar elements, using these results, automated systems can determine

automatically the amount of similarity between multimedia artistic work, including

paintings, draws, videos, music, and documents. Similarity values can be used to

establish an originality judgment, and protect the author’s work from plagiarism.

Applications listed above are just some of the many where multimodal and multimedia

retrieval systems can be applied.

1.2 Problem statement

Kernel methods have been demonstrated high-quality results and ability to learn complex

relationships hidden in data, with a strong mathematical foundation they draw the attention

of the research community and practitioners, and they were widely adopted and combined

with several machine learning approaches and applied to many challenge issues with much

success. Despite its advantages, kernel methods have several disadvantages related to its

ability to scale efficiently for huge datasets.

Information retrieval systems had had a huge impact on the modern world as the amount

of information grows at an exponential scale, find relevant information becomes more chal-

lenge and essential task. Successful information retrieval systems required precision and

scalability characteristics to be able to fulfil user requirements. Many information retrieval

and recommender systems use a low dimensional representation to construct indexes and

perform retrieval or recommendation, to find these representations many algorithms are ap-

plied, Non-Negative Matrix Factorization is one of these methods with good performance,

but scalability problems due to its need to keep in memory the full term-document matrix.

Nowadays data is not limited to a unique form and format, now data is represented in sev-

eral formats, for instance, an article contains information in form of text, images, diagrams,
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and tables, we need to process these representations as a whole to get the valuable informa-

tion contained within data. Many information retrieval systems focused on only one data

representation or modality independently lost crucial information of complementary repre-

sentations, this limitation constitutes an improvement opportunity for these systems. For

these reasons, in this thesis, a solution to this problematic situation has proposed.

The main goal of this thesis is to research and develop effective and efficient methods and

strategies to construct multimodal information retrieval systems. These systems perform

the information retrieval task over multimodal data collections that are common in many

application fields like web search engines, biomedical applications, e-commerce, multimedia

indexing, among others.

Currently, multimedia data is pervasive and contains valuable information that can improve

decision and business process. However, extracting information from multimedia data is a

difficult task due to the ”semantic gap”, this is, the disparity between its computational

representation and its semantic content. To narrow the semantic gap many approaches

have been proposed, some of them use machine learning algorithms to learn the complex

relationships between input features and semantic content. Despite significant advances in

contributions to reducing the semantic gap, this is still an open problem where more research

is necessary.

The present research tries to develop a multimodal information retrieval system and indexing

algorithm that takes advantage of multi-view representation common in multimedia data to

learn non-linear projection that model complex relationships between input features and

latent semantic content. This important issue poses the following research questions:

• How to model complex relationships between features and semantic content

in multimodal data?

• How to combine multimodal information to construct a joint representa-

tion?

• How to perform a non-linear latent semantic embedding on multimodal

data?

• How to use tag and class labels to improve semantic representations and

narrow the semantic gap?

• How to design a large-scale multimodal information retrieval system?

• How to use kernel methods to induce non-linear mappings?

• How the kernel selection affects the algorithm performance?
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• How the budget size impacts on retrieval effectiveness?

1.3 Objectives

1.3.1 General goal

To develop and to evaluate a strategy to perform multimodal retrieval using non-linear latent

semantic embeddings methods.

1.3.2 Specific objectives

• To design a multimodal latent semantic embedding strategy to construct a multimodal

index based on kernel methods to allow non-linear modeling.

• To develop a prototype information retrieval system to perform multimodal informa-

tion retrieval.

• To evaluate the performance of the proposed retrieval system in a multimodal retrieval

task.

1.4 Results and Contributions

The main contributions of this thesis can be summarized as follows:

• Contreras, V. H., Lara, J. S., Perdomo, O. J., Gonzalez, F.A., Supervised Online Ma-

trix Factorization for Histopathological Multimodal Retrieval. Published manuscript.

This work proposes a multimodal information retrieval system that uses MKSE-CM

algorithm as an indexing strategy. The proposed method was tested over a multimodal

medical dataset.

• Contreras, V. H., Lara, J. S., Gonzalez, F. A., Multimodal Kernel Semantic Regres-

sion for Medical Case Retrieval. Manuscript in preparation.

This paper presents an extension of MKSE-CM method adapted to perform a mul-

timodal regression over Gleason scores on a medical dataset. The proposed indexing

algorithm takes advantage of domain knowledge encoded within Gleason scores and

allows to perform retrieval using three different projection spaces.

Vanegas, J. A., Contreras, V. H., Escalante, H. J., Gonzalez, F. A. Supervised On-line

Kernel Semantic Embedding for Cross-Modal Retrieval. Manuscript submitted.

This paper describes the Multimodal Kernel Semantic Embedding for Cross-Modal retrieval

(MKSE-CM) method, that takes as input feature representations of two modalities and
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learns a non-linear latent semantic embedding to a common hidden space where data sam-

ples from different modalities can be compared. This model is a supervised method and

takes advantage of label information to improve and align the latent semantic representa-

tion. Additionally, this algorithm can predict labels on test data and use these predictions

as an indexing space. This work was jointly developed with Jorge Vanegas PhD and Fabio

González PhD. My main contribution was in proposing and implementing semantic align-

ment on the method, performing experiments and helping with the paper writing.

1.5 Outline

The remain chapters of this thesis are organized as follows:

• Chapter 2 Background and definitions: Introduces general definitions and theoreti-

cal concepts related to kernel methods, Latent semantic embedding, and large scale

strategies.

• Chapter 3 Related Work: presents a review of the related work on the topic of non-

linear latent semantic embedding applied to multimodal information retrieval.

• Chapter 4 Multimodal information retrieval System for medical case retrieval: In this

chapter we proposed a multimodal information retrieval system and applied then to

medical case retrieval problem.

• Chapter 5 Multimodal Kernelized Latent Semantic Regression: This chapter intro-

duces a new indexing algorithm based on non-linear latent semantic embedding.

• Chapter 6 Conclusions and Future work: This chapter closes the discussion and

presents the conclusions obtained from the accomplished work. Future work subsection

suggests additional research opportunities on this field.



2 Background and Definitions

This chapter describes notation, definitions, and concepts used through this thesis document.

The first part of this chapter defines the information retrieval task and its main variants,

followed by kernel methods definition and latent semantic embeddings process description,

and finally, the similarity and the performance measures employed in information retrieval

are explained.

2.1 Information retrieval

Information retrieval task (IR) can be defined as the procedure of finding and access rele-

vant material within a vast data collection in response to a user’s information need expressed

through a query [56]. Usually, these data collections are unstructured.

According to the query and the collection modality setups, the information retrieval task can

be classified into two big groups: content-based retrieval (CBR), where only one modality is

involved; and multimodal retrieval, where two or more modalities interact. This distinction

is important due to depending on the modality representation and the interaction between

the queries and the target collection the information retrieval process requires a different

approach. This classification and some of its related task are shown in Figure 2-1.

2.1.1 Content-based retrieval

Content-based retrieval is an information retrieval sub-task where queries and target data

collection are expressed in the same modality. This setup is also known as query by example

(QBE) because the query is an example of expected results [32].

In this retrieval setup as the queries and the target collection share a modality representation,

a direct similarity measurement can be performed after a feature extraction process.

Content-based image retrieval, document retrieval, music retrieval, 3D model retrieval are

some examples of this task.

Content-Based image retrieval

Content-based image retrieval is a prototypical example of QBE systems; in this setup, an

image is provided as a query example, and the system’s response is an ordered list of images
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Figure 2-1: Information retrieval sub-task classification according to modal interaction.

Left side shown content-based retrieval sub-task where only one modality is

involved; on right side multimodal information retrieval sub-task where two or

more modalities interact.

with similar content.

Document retrieval

In document retrieval, the query and the target database are text documents. Queries can

be a keyword list, short phrases or a paragraph.

Music retrieval systems

In music information retrieval systems, queries are digital audio files or symbolic music

notation, and target collection is composed of audio files representation.

2.2 Multimodal information retrieval

Multimodal data arise from the measure and capture information about the same entity of

interest using different sensors, each sensor produces a representation, modality or view of
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the entity; and interaction of two or more modalities constitute a multimodal representation

[44].

Currently, multimodal data is a common data representation, for example, internet articles

like Wikipedia are composed of illustrative images and textual descriptions. These two

modalities are different expressions of the same abstract entity, the article’s topic.

2.2.1 Multimodal information retrieval

In multimodal information retrieval (MIR) task both query and target collection are con-

stituted by multimodal data. MIR systems use data fusion techniques to construct joint

models and multimodal indexes and thus perform the retrieval task.

2.2.2 Cross-modal information retrieval

Cross-modal information retrieval is a MIR sub-task with a special relevance due to its

applications as a proxy task for more complex ones, like scene understanding, multimodal

question answering, automatic image description, automatic video captioning, among others.

In the cross-modal information retrieval setup, queries are expressed in one modality and

target elements are expressed in another modality, for example, queries can be images and

target elements can be suitable text descriptions that match query content.

2.3 Kernel methods

Kernel methods allow to work in a feature space by implicitly defining a non-linear mapping

Φ from input space Rn to an inner product space F know as feature space. The feature space

is usually a high-dimensional space; even feature space can be an infinite-dimensional space.

Once data have been embedded into feature space, linear algorithms can be applied to them

to discover patterns and relationships [72].

Φ : Rn → F (2-1)

The best-known kernel method is the support vector machine (SVM). The SVM is a linear

method designed to find the optimal hyperplane that separates two classes with the maximum

margin. However, efficiency and effectiveness of SVM it is limited to be applied in linearly

separable data collections, to overcome this limitation SVM was combined with kernels

methods increasing its generalization capacity; non-linear data can be separated mapping

them to an appropriate feature space where they are linearly separable [69].
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kernel trick

The main advantage of kernels methods lies in the ”kernel trick”. The kernel trick performs

an implicit projection to feature space using a kernel function. Compute the kernel function

is equivalent to calculate the inner product in feature space without executing the projection

process explicitly [69].

k(x, y) =< Φ(x),Φ(y) > (2-2)

2.4 Latent semantic embedding methods

The principal purpose of latent semantic embedding algorithms is to project data from a

high-dimensional space to a low-rank space where similarities between data samples are

preserved. These algorithms usually use statistical and mathematical methods to model

the underlying topics which constitute the bases of semantic space thus when an item is

projected from input space to a latent semantic space its content is represented as a linear

combination of latent topics.

Latent semantic embeddings are widely used in information retrieval task due to its advan-

tages: from latent representation construct an index to speed up retrieval process is easier,

perform similarity measures in latent space is faster than in input space and requires less

computational resources [18].

Many algorithms produce latent semantic embeddings, some of the best-known methods are

latent semantic analysis (LSA) [18, 45, 41] algorithm that decomposes the term-document

matrix using singular value decomposition (SVD) to find the latent representation [17],

probabilistic latent semantic analysis (PLSA) [36, 37] models the hidden variables as a

probabilistic mixture and non-negative matrix factorization (NMF) recognized for its ease

interpretability [47, 48, 38, 87].

2.4.1 Non-Negative Matrix Factorization

Non-Negative Matrix factorization (NMF) algorithm is an unsupervised method that perform

matrix decomposition to learn a latent semantic embedding for data samples. For a given

input matrix X ∈ Rn×d with n features and d samples, the matrix factorization problem

can be posed as find two matrices W ∈ Rn×l and H ∈ Rl×d whose product approximate

input matrix X ≈ WH; values for W and H can be found solving the following optimization

problem [35, 95]:
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minimize
W,H

‖X −WH‖F

subject to W ≥ 0 H ≥ 0
(2-3)

where W ∈ Rn×l is known as the basics matrix, H ∈ Rl×d is known as the encoding matrix,

non-negative constraints ensure interpretability and cluster properties, l is a hyper-parameter

that determines the number of latent topics in latent semantic space. Columns in H matrix

contains the latent representation of documents in data collection, using this representation

an index can be constructed using latent topics as indexers.

2.5 Similarity and distances measurements

Information retrieval systems and methods presented in this thesis learn a non-linear map

from input space to latent semantic spaces, to construct a rank result list, the system must

calculate a similarity value between query and target elements and using this value ordered

the result list. In this section, we describe the principal distance and similarity measures

employed to calculate the similarity score in information retrieval systems.

In this thesis, we employ kernel methods to learn a latent semantic embedding, these em-

beddings are vector spaces with inner product operation, vector spaces with this features

are known as Hilbert spaces, in these spaces similarity can be calculated using similarity

functions, such as cosine similarity, or also can be calculated from distances functions since

those are inversely related to similarity scores. While similarity score normally varies be-

tween 0 and 1, being 0 not at all similarity and 1 total similarity; the distances functions

vary in ranges from 0 to infinite, in this case, 0 means not distances or perfect similarity,

whereas bigger values represent less similarity.

The Minkowski distances is one of the most common distance functions use to calculate the

distance between two vectors X = [x1, . . . , xn] ∈ Rn and Y = [y1, . . . , yn] ∈ Rn within a

vector space. The generalized vector distance function or Minkowski distance in Rn vector

space can be defined as follows [42, 33, 29]:

D(X, Y ) = (
n∑
i=1

|xi − yi|p)
1
p (2-4)

where p ∈ R and p ≥ 1.

The most common vector distances employed in applications are Euclidean distance where

p = 2 and Manhattan distance where p = 1.
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Cosine similarity is another metric frequently used to measure the similarity between vectors

on Hilbert space. This similarity function measures the cosine of the angle between two vec-

tors in inner product space. Its range varies from -1 to 1, as near to 1 greater the similarity.

Cosine similarity can be described as follows [73]:

similarity = cos(θ) =
X ·Y
‖X‖‖Y‖

=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

(2-5)

From a statistical point of view, we found centered correlation (CC) or Pearson’s Correlation

Coefficient (PCC) similarity function. This function computes the linear correlation between

two random variables X and Y. Its range varies between -1 and 1, being values near to -1 an

inverse linear relationship, values near to 1 represents a direct linear relationship and values

near to 0 means, not linear relationship found. PCC can be defined as follows [5]:

CC =

∑n
i=1(xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
=
cov(X, Y )

σXσY
(2-6)

where x is the mean value of X, and y is the mean value of Y , cov(X, Y ) is the covariance

of variables X, Y, σX and σY are the standard deviations of variables X and Y respectively.

As is shown in equation 2-6 CC also can be calculated as the cosine similarity of centered

variables.

2.6 Performance measures

The fundamental purpose of an information retrieval system is to satisfy the user’s infor-

mation need, but How to measure the fulfillment of this goal? To answer this question, we

need to measure the system effectiveness using a set of performance metrics widely accepted

and employed in this field that allows an objective comparison between IR systems. In the

following, we describe the principal performance measures applied to evaluate information

retrieval systems.

2.6.1 Precision

Precision (P) computes the fraction of relevant items retrieved over the total number of

retrieved elements. This metric does not take into account the order in which results are

presented [57, 80].

Precision =
Number of relevant items retrieved

Total number of items retrieved
= P (relevant|retrieved) (2-7)
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2.6.2 Recall

Recall (R) computes the fraction of relevant items retrieved over the total number of relevant

items. This metric does not take into account the order in which results are presented [57, 80].

Recall =
Number of relevant items retrieved

Total number of relevant items
= P (retrieved|relevant) (2-8)

2.6.3 Precision@k

Human attention is a scarce resource for that reason it is not common for a user to review

every item in the result list. Good information retrieval systems present relevant items first

in the result list. Precision at k (P@k) computes the precision value considering only the

k items at the top of the result list, where k is a fixed value cut off point. Some common

values for k are 5, 10, 30 and thus we have P@5, P@10, P@30 values [57].

2.6.4 bpref

The binary preference-based measure (bpref) computes a preferred relation whenever rele-

vant items are retrieved before non-relevant within a ranked results list [80].

bpref =
1

R

∑
r

(1− |n ranked higher than r|
min(R,N)

) (2-9)

Where R is the total number of relevant items for a given query, N is the total number

of non-relevant items, r is the number of relevant retrieved items and n is the number of

non-relevant items retrieved.

2.6.5 Average precision

Average precision (AP) computes the average of precision values for each recall level in

ranked result list. This measure combines precision and recall for a given query and takes

into account order in result list [90].

AP =

∑
r P@r

R
(2-10)

Where R is the total number of relevant items, r is the position of last relevant item retrieved,

P@r computes precision at r − th item.

2.6.6 Mean Average Precision

Mean Average Precision (MAP) is the most extended and widely used performance metric

for evaluating information retrieval systems. This measure computes the arithmetic mean of

AP values for a set of queries [57, 80]. MAP takes into account the order of ranked results
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list and summaries system’s response to a set of queries into only one value between 0 and

1 where the best results are near to 1. MAP is frequently used to compare the performance

of different retrieval systems given the same queries.

MAP (Q) =
1

|Q|

|Q|∑
j=1

APj (2-11)

Where |Q| is the cardinal of queries set.

2.6.7 Geometric Mean Average Precision

Geometric Mean Average precision (GMAP) is the geometric mean of AP values. This mea-

sure is commonly used to highlight improvements in low-performance topics [80, 4].

GMAP = n

√∏
n

APn (2-12)



3 Related Work

This chapter presents a summary of related works on multimodal information retrieval sys-

tems, multimodal data fusion approaches, kernel methods, and large-scale solutions for mul-

timodal latent semantic embeddings.

3.1 Multimodal data fusion

Multimodal information retrieval is an important information retrieval task where queries

and target database elements are represented using multimodal data. Multimodal data is

composed of several media representations that capture an aspect of a complex phenomenon.

Each modality has its own data representation, scale, and feature extraction process, for

this reason, combining the information distributed in the different modalities to improve

information retrieval system’s performance is a challenge. To solve this challenge three main

approaches have been proposed: early fusion, late fusion, and intermediate fusion. Lahat

et al. performed an extensive review on multimodal information retrieval, this review also

contains main definitions describe above and use cases applications on health care, medical

diagnosis, audio-visual multimodal retrieval, meteorological monitoring, among others [44].

3.1.1 Early fusion

In the early fusion approach, feature representations are combined to produce a joint rep-

resentation, for this reason, this approach is also known as feature level fusion [59]. This

approach has been used in many applications like video analysis and retrieval, audio and

text retrieval, multimodal question answering, image-text retrieval, etc [40].

In the multimodal video retrieval field, we found Snoek et al. work where they tested early

and late fusion approaches in the video retrieval task, early fusion approach combines vi-

sual, audio and text modalities concatenating them into a multimodal representation, then

the multimodal representation is introduced into a supervised learning algorithm to perform

retrieval. They concluded that late fusion had slightly better results in several semantic

categories, however, for some categories, early fusion has a significant advantage over late

fusion [74].
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Depeursinge and Müller in ImageCLEF contest summarize methods employed to solve the

proposed multimodal retrieval challenge they mention curse of the dimensionality as one of

the main weakness of early fusion approaches, that weakness can be mitigated using feature

weights combined [20].

3.1.2 Late fusion

In the late fusion approach, the outputs, decisions or similarity rankings of different retrieval

systems are combined to produce a final response[58]. In this approach, each modality is

processed by independent subsystems that produce their own decisions; then these decisions

are combined using various strategies, for example, a convex combination of rankings, voting

systems, weighted sums, among others for this reason this approach is also known as decision

level fusion [59].

Late fusion approach has been applied to multimodal video retrieval in this experiment Snoek

et al. use late fusion to combine decisions for image, audio and text, they found that late

fusion approach slightly improves results for several semantic categories but performance it

is limited for some categories where early fusion outperform this approach [74].

Guenes and Picardi studied the effect of late and early fusion on the performance of affect

recognition system, combining face and body features. They concluded that late fusion by

averaging decisions worked better than early or unimodal features, also they reported an

especial advantage of late fusion allowing dynamically integrate face and body information

showing promising and robustness results [31].

Ye et al. introduce a robust late fusion with rank minimization method where multiple

model predictions are combined into a matrix and a late fusion is executed throughout ma-

trix decomposition of joint matrix decision, this approach has shown a robust behaviour and

is a viable alternative to averaging, voting and other traditional late fusion approaches [89].

Zheng et al. introduced a query-adaptative late fusion method for multimodal image re-

trieval that perform a late fusion at score-level showing feasibility of score-level fusion and

outperformed other fusion schemes [94]. Bruno and Marchand-Maillet introduce a late fusion

approach to combine clusters modelling their latent relationships and produce a multiview

probabilistic cluster that outperforms early fusion approach [11]. Liu et al. proposed a

multi-view clustering approach based on late fusion incomplete clustering matrices are im-

puted as the multiview clustering is constructed [54]. Sample specific late fusion method

was introduced by Liu et al. this method learnt a late fusions weights for each sample ob-

taining higher weights for similar multimodal samples and a low one for negative or different

semantic class, similar to the proposed method in this thesis [51].
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Late fusion approaches had shown more flexibility than early fusion methods and in several

tasks outperforms early approaches.

3.1.3 Intermediate fusion

Additional to late and early fusion approaches there are additional approaches to fusion mul-

timodal heterogeneous data, this alternative approaches can be denominated as intermediate

fusion approach. Intermediate fusion approaches are different from late and early fusion ap-

proaches in that the fusion of modalities is performed not at the feature or the decision level,

this fusion is performed in an intermediate-level, for example, the method proposed in this

thesis execute fusion at latent semantic embedding, combining latent representations of each

modality.

In several cases, intermediate fusion approaches combine multimodal information inside

a model, at the training phase. For example, we found some techniques like model co-

training[91] where two models are trained simultaneously and they share weights and com-

bine results from model layers to complement learning with learned information in other

models. In the field of Multimodal representation learning, we found the Gated Multimodal

Unit (GMU) developed by Arevalo et al. and applied successfully to movie gender classi-

fication using poster images and users reviews, this unit can be easily integrated into deep

learning models [2].

3.2 Multimodal information retrieval methods

This section summaries several approaches employed to execute multimodal information

retrieval task.

3.2.1 CCA and KCCA

First approaches to performing multimodal information retrieval task were based on statis-

tical methods like Canonical Correlation Analysis (CCA) that find the directions where the

correlation between two datasets is maximized, some works have used the matrices learned

by CCA model as projection matrices from original input space to a joint latent semantic

space where similarity measure can be computed and then used to produce a multimodal

ranking[67].

CCA model was extended to perform non-linear mappings using kernel methods, in this form

we find KCCA (Kernel CCA) that has been employed to perform a non-linear mapping from

input space to a feature space where these two modalities are compatible and a similarity

function can be applied on them [65].
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3.2.2 Multimodal NMF

Non-negative matrix factorization NMF is a matrix decomposition method usually employed

in blind source separation, spectral clustering, information retrieval, and recommender sys-

tems, among others. This model was extended to perform multimodal fusion. First ap-

proaches to multimodal-NMF were found in González et al. works [28, 12, 82] where a ma-

trix factorization is performed first in one modality and then preserving previously learned

matrix H the new factorization process is realized over other modalities, this approach was

used to index and retrieval multimedia data and for medical information retrieval.

3.2.3 Deep learning approaches

Deep learning has attracted the attention of many researchers and currently is one of the hot

topics in machine learning and applications, for this reason, many deep learning approaches

have been proposed for multimodal information retrieval task.

Rastegar et al. present a multimodal deep learning framework with cross weights (MDL-

CW), in this work the authors concluded that this method where weights among modalities

are shared and a multimodal representation is reached throughout concatenate layer outper-

forms traditional multimodal retrieval methods such as KCCA [68]. Shao et al. proposed a

deep CCA model combined with hypergraph semantic embedding (HSE)producing a DCCA-

PHS model with competitive performance, in addition to this model the author introduced

a search-based similarity measure inspired by PageRank algorithm independent from modal

origin [71].

Srivastava et al. present a Multimodal Deep Belief Neural Network (DBN) that can learn

a joint probability distribution from multimodal data, with this learned distributions the

model can generate missing modalities and samples from each modality, their results show

that this model can outperform traditional models such as Support Vector Machines and

Latent Dirichlet Allocation in the classification task. In a posterior work, authors explored

a similar approach but with Deep Boltzmann Machines obtaining similar results [75, 76].

Cross-modal retrieval is a related multimodal retrieval task. He et al. proposed a model

for bidirectional representation learning using convolutions for image and text, through the

use of cosine similarity between image and text samples learning similarities between posi-

tive samples and differences from negative samples, this algorithm shows better performance

than traditional cross-modal retrieval methods like CCA and KCCA [34]. Similarly, Feng et

al. developed a correspondence autoencoder (Corr-AE) where hidden representations of two

unimodal autoencoders are correlated, combining representation learning and correlation

learning in a single process, they also extend the basic model to models (Corr-Cross-AE)

and (Corr-Full-AE) where cross reconstruction was incorporated, in other related work this
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author also proposed the correspondence restricted Boltzmann Machine model (Corr-RBM)

with similar performance and approach, in posterior work Peng et al. introduced cross-media

multiple deep network (CMDN) which learn a combined representation from hierarchical

learning where intra-modality and inter-modality are learned in the first stages and then are

combined to produce a multimodal score. [23, 22, 64].

Another popular approach for cross-modal retrieval is based in hash codes, this is a binary

codification of documents for each modality the retrieval process is executed measuring the

similarity of hashing codes from query and target documents using Hamming distance, Ma

et al. proposed a global and local semantics-preserving based deep hashing for cross-modal

retrieval in this work author proposed a deep learning architecture where hamming codes and

features are learned along within model architectures using local semantic preserving struc-

ture and regularization objective functions where the hamming distance function between

hash codes are minimized [55]. Li et al. combined self-supervised learning and generative

adversarial neural networks (GAN) into a model denominated self-supervised adversarial

hashing (SSAH), this model outperformed the state of the art in the cross-modal retrieval

task, this model uses semantic labels, text and visual data to learn semantically related

hashing codes [49]. Wu et al. also employed a generative approach as Li did but with the

advantage that using cycle-consistent loss this model can learn multimodal hash codes with-

out explicit pairing samples [86]. Wang et al. introduced a model able to learn compact

hash codes imposing an orthogonal regularization for codes, this regularization reduces the

redundancy of information inside hash codes as other hashing methods this algorithm learn

features and hash codes from raw data [84].

3.3 Kernel methods

Kernel methods are very popular due to its strong mathematical foundation, that has at-

tracted the attention of mathematicians, statisticians and computer scientists. Kernel meth-

ods can perform a mapping from original space known as input space to a Hilbert space,

known as feature space, where a set of learning algorithms can be applied over transformed

data. An advantage of these methods is their ability to perform non-linear mappings with-

out an explicit calculation of transformation, this is achieved using the Kernel trick, where

applying the kernel function to input data can induce implicitly a non-linear mapping [72].

3.3.1 Large scale approaches

The huge amount of multimodal data generated requires large scale algorithms and methods

to process them. Several large scale approaches have been proposed in the literature to

deal with large scale data. First, we found the online learning approach where the update
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process in the training phase is executed in mini-batches or random subsets of the training

set [70, 9, 7, 8], this combined with the Stochastic Gradient Descent optimization method

where the solution space is explored finding an optimal value based on information obtained

from each mini-batch [6, 39].

In kernel methods, the large scale approaches include the Budget method where the kernel

matrix is calculated against a random subset of the training set called a budget that contains

a reduced number of samples [85, 13, 21]. Another popular approaches are based on spectral

decomposition. In this category we found the Random Fourier Features [66, 14] and the

Nystrom methods where the complete kernel matrix is approximated by a low-rank matrix

[25, 24, 43, 88].

3.4 Multimodal information retrieval systems

Multimodal information retrieval systems have attracted the attention of researchers and

companies for a long time. One of the best-known examples of these systems, we found

IBM’s content-based image retrieval system QBIC (Querying Image by content using Colour,

Texture and Shape) [62]. Although, this system was designed to be used to retrieve images

their internal design implies data fusion techniques as used in multimodal retrieval systems

because Colour descriptions, Texture and shape act like multimodal representations of the

same phenomena, in this case, the image is the natural phenomena and it can be represented

with several descriptors sensible to different aspects of the image. QBIC also allowed adding

textual information attached to images in the database describing the whole image or a

certain region or object within it. However, in this system text data was not used to execute

queries or complement image features.

Medical domain is an interesting field where multimodal information retrieval systems can

be employed to improve medical practice, patient attention and treatment, reduce costs and

times. Müller et al. [60] present a survey where different information retrieval systems are

described, despite this work is focused to Content-Based Image retrieval the author draws

the attention to the potential of improvement that can be reached combining textual features

with visual features and patient records providing contextual information that potentially

can improve system performance and enrich image representations.

In 2010 Bozzon and Fraternali [10] present a general architecture for multimodal informa-

tion retrieval systems where content providers and developers applied several techniques to

each modality to get a high-level semantic representation for each modality, understand-

ing this process as the association of image content with high-level semantic concepts such

as ”sky”, ”city”, etc. To perform a semantic association, the three-stage process was pro-

posed composed by a stage of transformation where preprocessing is performed, the next

stage corresponds to a feature extraction operation where low-level representations are gen-
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erated for each modality and at the final stage, high-level semantics was introduced through

classification mechanism, where a low-level representation for data is used to predict high-

level concepts and with these high-level concepts with can index and query multimodal data.

Ghosh et al. [26] publish a review where seven multimodal retrieval systems where compared

in performance and feature and semantic gaps. Five of these systems retrieve figures from

biomedical papers databases using text query and information from captions and full-text

content, the remaining two systems IRMA and iMedLine allow text and images queries, us-

ing features such as colour, shape and texture to represent image content. Despite, advances

showed in these multimodal retrieval systems there is still a huge semantic gap due to em-

ployed of global image descriptors that do not take into account region of interest, objects

in images and in general ignore semantic content within an image.

Liu et al. [53] applied hashing methods over graphs manifolds to perform related seman-

tic retrieval. This work describes a scalable unsupervised graph-based hashing method to

retrieve semantic similar neighbours, this method reach scalability applying the budget ap-

proach to approximate the adjacency matrix by a low-rank matrix reducing the training time

from quadratic to linear. This method was applied to MNIST(70k) and NUS-WIDE(270k)

dataset outperforming other hashing algorithms.

Liu et al.[52] presented a method based on supervised kernel methods. Authors show the

method KSH (Kernel-Based Supervised Hashing) the aim of this method is to construct

a hash code representation for queries and targets employing kernels to induce non-linear

ability to deal with non-linear separable samples, The supervision is used to learn the hash

codes according to labels using a greedy algorithm to train the system. The time complexity

of the method is bounded by the following function:

O((nm+ l2m+m2l +m3)r)

where n corresponds to the number of samples in the training set, m corresponds to a ran-

domly selected subset of training samples that conform the budget and are used to construct

a reduced version of the kernel matrix, l corresponds the label space size conformed for the

number of different labels in the train set, and r is the size of hash code in bits. The proposed

method was applied to two datasets CIFAR-10 and Tiny-1M, outperforming the previous

hashing approaches.

Mourao et al. [59] proposed a system with rank fusion method for multimodal medical infor-

mation retrieval. The proposed system NovaMedSearch uses best representations available

for text and image and allow query expansion using a medical thesaurus, after retrieving

data for each modality they can be combined using a ranking fusion approach, this method

was tested on ImageCLEF 2013, the experiments showed that in general best performance
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is achieved when Inverse Square Ranking (ISR) was employed.

Zhang et al.[92] proposed a multimodal re-ranking strategy, where a ranking is constructed

for each modality and the final ranking is the combination of the individual rankings using

graph fusion approach for heterogeneous and it was tested on 120 breast tissue images from

40 patients achieving 80% accuracy.

More recently Li et al. [50] published a survey on large scale image retrieval systems. In this

comprehensive work, several dominant techniques and approaches are described showing

the evolution and future directions. Although in this work is notorious the incursion of

deep learning as feature extractor, feature encoding and indexing method with great success

worth it note that hand-crafted features are still very popular due to its specificity and

explainability. Also is important to highlight the more popular methods described many of

then are based on re-ranking, hashing, deep learning and graph approaches.

3.5 Conclusion

Properties in multimodal data have been exploited using different approaches some of them

employ statistical properties in data to establish relationships between different modal rep-

resentations, other approaches learn common representations using mapping functions or

projections from input spaces to semantic spaces. Many of the first approaches show limita-

tions related to scalability, to overcome these limitations many methods based on low-rank

approximation, stochastic gradient descent, and online learning have been proposed. Despite

research developed in this area, multimodal information retrieval is still an open issue that

requires more research and novelty proposals to solve the challenges that this topic poses.



4 Multimodal information retrieval

System for medical case retrieval

This chapter describes a multimodal information retrieval system based on a supervised mul-

timodal kernel semantic embedding model. This system was tested on multimodal medical

case dataset composed of histopathology images and text clinical reports showing outstand-

ing results for the multimodal information retrieval task with a Mean Average Precision value

of 0.6263. This work was published in Proceedings from 14th International Symposium on

Medical Information Processing and Analysis [15].

4.1 Multimodal retrieval system

Complete retrieval pipeline is shown in Figure 4-1. This pipeline can be described as a

process with four phases. Phase 1 performs feature extraction for visual and textual data;

phase 2 build a semantic index using the Multimodal Kernel Latent Semantic Embedding for

Cross-Modal retrieval (MKSE-CM) algorithm proposed by Vanegas [81]; phase 3 produces a

ranking for each modality and then these rankings are combined using late fusion approach

to produce a multimodal ranking; in final phase results are shown. These phases are shown

in Figure 4-1 with doted color lines.

4.1.1 Feature extraction

The feature extraction phase process the query provided by the user, which consists in a

whole slide image (WSI), corresponding to a histopathology sample, along with a short text

report describing the pathologist’s findings. Each modality is processed independently. For

images, the WSI is divided in patches, then each patch is represented as a feature vector using

transfer learning from a pretrained convolutional neural network. For the text modality, each

report is projected to an embedding using Doc2Vec [46]. The textual and visual features are

the input to the semantic indexing system, MKSE-CM, described in the next subsection.

MKSE-CM is a supervised algorithm, thus the Gleason score of each WSI was used as the

corresponding label.
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Figure 4-1: Complete retrieval process in the proposed system.

4.1.2 Latent semantic indexing

For representing the multimodal pairs that correspond to cases with visual and textual infor-

mation we used a multimodal embedding method: Multimodal Kernel Semantic Embedding

for Cross-Modal retrieval (MKSE-CM) proposed by Vanegas [81]. MKSE-CM combines a

deep learning architecture and kernel methods within a modular approach. The main mod-

ules of MKSE-CM are: i) kernelized latent semantic embedding, ii) semantic alignment, iii)

label prediction and iv) cross-alignment reconstruction. Figure 4-2 gives an overall view of

the method. The next subsections describe the different phases.

Kernelized latent semantic embedding

The input image and text are mapped to an embedding latent space using a non-linear

matrix factorization approach [82] based on kernels. A drawback of kernel methods is their

poor scalability due to the need of calculating a full kernel matrix of the training samples.

A strategy to mitigate this effect is to use a ”budget”[19], which is a subset of the training

samples. As shown in Figure 4-2, the kernel of the input samples against the budget is

calculated in the kernel projection layer. Visual and textual kernels are embedded in low-

dimensional representations, hv and ht.

Semantic Alignment

The latent representation for visual, hv, and textual content, ht, are aligned by enforcing a

similarity constraint. If the cosine similarity of hv and ht is small, it is penalized in the loss

function. This promotes an alignment between the latent representations of both modalities.
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Figure 4-2: Multimodal Kernel Embedding for Cross-modal retrieval (MKSE-CM)

architecture.

Label prediction

Including rich semantic information from labels, the model can learn a better latent semantic

embedding. Furthermore, this label information also helps to align the embeddings and can

be used to represent new data in a label semantic space Y [16].

Cross-alignment reconstruction

An additional mechanism to promote the alignment of the latent representations of both

modalities is a cross-reconstruction strategy. The main idea of this strategy is that the

model must learn to reconstruct one modality from the latent representation of the other.

4.1.3 Ranking

In this retrieval setup queries are taken from the testing set and the target elements are

taken from the training set. The relevance criteria is given by Gleason score. Visual (Rv) and
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textual (Rt) rankings are combined with late fusion strategy based on a convex combination

of unimodal rankings, as it is shown in equation 4-1, where Rm stands for multimodal

ranking.

Rm = α ∗Rv + (α− 1) ∗Rt (4-1)

The multimodal ranking (Rm) is used to retrieve results and evaluate performance of the

system.

4.1.4 Complexity Analysis

This section presents complexity analysis for MKSE-CM model.

Space complexity

According to Arora et al. and Vavasis [3, 83] space complexity for Non-Negative Matrix

Factorization can be constrained by the following function:

O(mnp) (4-2)

where m is the number of rows in input matrix, n is the number of columns in input matrix,

p is the dimension of latent semantic space, in our case we have two input matrices Xt a

matrix m × nt and a matrix Xv a matrix m × nv, in this case nt and nv correspond to

textual and visual features and in general we have nt 6= nv. However, when we introduce

kernel computation with a randomly selected subset of k training samples employed budget

method, we got two kernel matrices Kv and Kt each one with size m × k according to

equation 4-2 space complexity required to store these kernel matrices matrices and latent

space embeddings can be calculated as:

O(2mkp) ≈ O(mkp) (4-3)

Since k � n we get a huge reduction on space complexity applying learning in a budget

method. Additional to previous reduction our model can be trained in mini-batches this

means that our model can be trained with stochastic gradient descent algorithms on mini-

batches of few samples, this lead to following spatial complexity upper bound:

O(ηkp) (4-4)

Final space complexity upper bound for MKSE-CM model is shown in equation 4-4 where

η is the number of samples in each mini-batch, k the budget size, and p the size of latent

semantic embedding space.
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Time Complexity

According to Arora et al., Gillis et al. and Vavasis [3, 27, 83] exact solution to NMF problem

is a Np-hard problem with the following upper bound function:

(mn)O(p2) (4-5)

where m is the number of rows in input matrix, n is the number of columns in input matrix

and p corresponds to latent semantic embedding space size.

In Gillis and Vavasis works an online learning setup to find an approximate solution for NMF

problem is presented, this solution can be computed in the quadratic upper room:

O(n2m+ η(nm+ np2)) (4-6)

In equation 4-6 n is the number of columns in input matrix, m is the number of rows in input

matrix, p is the size of latent semantic space and η is the number of mini-batch samples per

epoch.

Extending equation 4-6 to apply learning in a budget and kernel methods we have the

following equation:

O(2k2m+ 2η(km+ kp2)) (4-7)

when k is the budget size, the number of training samples randomly selected and used to

computed a reduced kernel matrices for each modality, m is the number of training samples,

p the size of latent semantic embedding.

As k is fixed value we can factorize it from equation 4-7, we get:

O(2k(km+ η(m+ p2))) (4-8)

Removing constant factor 2k for upper bound equation 4-9 we have the final upper bound

for MKSE-CM:

O(km+ η(m+ p2)) (4-9)

from equation 4-9 as p is a fixed hyper-parameter value usually p� n we can conclude that

MKSE-CM algorithm complexity is linear on number of samples m.
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4.2 Experimental Setup

The goal of the experimental evaluation is to measure the effectiveness of the proposed

multimodal retrieval system to find a ranking of relevant clinical cases given a multimodal

query. Clinical cases are composed of histology images and the pathologist’s text report.

4.2.1 Dataset Description

TCGA-PRAD is a publicly available dataset from the Cancer Genome Atlas project 1 the

one that contains a total of 500 cases of prostate adenocarcinoma. We use a subset of TCGA-

PRAD similar to proposed by Jimenez-del-Toro et al. [79], with a total of 235 cases. Each

case is composed of a Whole-Slide-Image (WSI) and a pathologist’s report. From the total

cases, 141 were taken as the train set, 48 as validation set and 46 as the test set. The Gleason

score for each WSI was extracted manually from reports, thus each case is constituted by

WSI, textual pathologist’s report and Gleason score. The Gleason score is used for train the

MKSE-CM and for construct ground truth for retrieval evaluation.

4.2.2 Feature Extraction

The next subsections describe the feature extraction process for image and text modalities.

Whole-slide Image Representation

The feature extraction process for WSI begins with sampling image in 5000 random patches

with the same size. Then, the patches are passed through a Convolutional Neural Network

(CNN), fined tuned to predict Gleason score, as is described by Jimenez-del-Toro et al. [79],

the CNN employed for feature extraction was based on the GoogleNet architecture whose

last layer was modified to predict high and low Gleason score. The feature representation

for each patch was taken from the layer previews to softmax, which has 1024 neurons, thus

each patch is represented by a 1024-length vector with negative and positive values.

Text Report Representation

The feature extraction process for pathologist’s text report uses Doc2vec model [46], appro-

priate for documents with a variable length. The model was trained with an embedding

dimension of 100. The text representation consists of embedding vector predicted from

Doc2vec, thus each text report associated to one WSI is represented as a feature vector of

length 100.

The MKSE-CM is a supervised model, hence the Gleason score grade associated with each

WSI was used as label supervision.

1Available in https://portal.gdc.cancer.gov/.
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4.2.3 Baseline description

The baseline is reported by Jimenez-del-Toro et al. [79], they proposed a multimodal in-

formation retrieval system for case retrieval based on late fusion. The information retrieval

system was tested on TCGA-PRAD dataset.

The baseline system starts with feature extraction process for textual and image data, similar

to the described in section 4.2.2. Then, a ranking is constructed for each modality measuring

the similarity between query and target features. Finally, the two unimodal rankings are

combined using late fusion to produce the multimodal ranking.

4.2.4 Performance Evaluation

The relevance criteria used to determine if a clinical case is relevant for a given query is

based on the Gleason score: a clinical case is relevant if it shares the Gleason score value

with the query.

To measure the effectiveness of the proposed information retrieval system, we employ a

set of commonly used measures in the literature. The most common measure reported in

information retrieval works is Mean Average Precision (MAP). Precision is another measure

of quality for evaluated information retrieval systems. Precision measures the proportion of

relevant elements in the retrieved set. Precision measure does not take into account order

in result set, to provide additional information about the quality of result set precision is

measure at top 10 and 30.

Preferential-based (Bpref) is a performance measure that takes into account the relevant

elements retrieved first than non-relevant.

All performance measures mentioned in this section are described by a real value between 0

and 1, best performance is reached when measure value is close to 1.

4.2.5 Experimental Evaluation

Experimental execution starts with feature extraction process for images and text as de-

scribed in section 4.2.2.

The system requires multimodal cases, image-text pairs, for training phase. In this phase,

the system requires supervision, which is provided by the Gleason score associated with each

WSI.

MKSE-CM is trained at patch level: each patch was associated with their concerned text

report and Gleason score.

Since the model was trained with patches but retrieval task is evaluated at WSI level [79], we

construct the WSI ranking from patches predictions, calculating cosine similarity between

query patches and target patches and then aggregate patch similarities into global WSI

similarity measure. With global WSI similarities we construct the image ranking, similar
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process is applied to construct textual ranking from text predictions that accompanied image

patches.

Results are evaluated using the TREC-eval tool developed for evaluated results in the Text

REtrieval Conference (TREC), the tool was provided with the multimodal Ranking predic-

tion and the ground truth file. Ground truth is constructed under the relevance criteria that

defined two cases are relevant if they share the same Gleason score. The tool produces a

result file with metrics such as MAP, GM-MAP, precision at 10, precision at 30, etc.

4.2.6 Hyperparameter selection

Hyperparameter selection was performed using a random search over 25 configurations, each

configuration was tested on validation set five times, the configuration with the highest mean

MAP on validation was evaluated on the test set. The model output is a 5-dimensional

probabilistic vector that describes the sample’s membership to a certain Gleason score from

6 to 10. This vector space is called label semantic space (Y).

4.3 Results and Discussion

As the baseline, we used the approach presented by Jimenez et al. [79], based on late fusion.

Their experimental setup starts with a feature extraction process for each modality as is

described in subsection 4.2.2, then a ranking is constructed for each modality, and finally

the two rankings are combined using late fusion and convex combination of the unimodal

rankings as is described in equation 4-1, to produce multimodal ranking. Using unimodal

and multimodal rankings, they evaluate retrieval performance of each approach. That results

are shown in the top of the table 4-1. Their reported results demonstrated the advantage

of multimodal retrieval method, based on late fusion, over unimodal retrieval approaches.

In top of the table 4-1 Image retrieval reported the unimodal retrieval results using CNN

visual features, Text retrieval reported the unimodal retrieval results using Doc2vec features

and finally Multimodal stands for multimodal ranking construction based on late fusion of

image and text rankings, these results constitute our baseline[79].

Our approach is based on kernelized latent semantic embedding, results obtained in label

semantic space (Y) are reported in the lower part of the table 4-1 we report our results for

linear, cosine and Radial Basis Function (RBF) kernels, each result also has a budget size

described in the table with capital B letter and the budget size employed.

Results in table 4-1 show that our method has better performance than baseline when the

budget size is enough large, this is very interesting result since the budget was selected

randomly from train patches whose total number is approximately 289.000, with only 10.000

we get competitive results. For the other kernels, we use short budget size because as

the budget size increases the size the computational complexity and space complexity grow
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exponentially with and strong impact on performance when complex kernels are used such

as RBF.

Retrieval Method MAP GM-MAP bpref P@10 P@30

Image retrieval [79] 0.5113 0.3921 0.4706 0.4500 0.4600

Text retrieval [79] 0.4092 0.3561 0.31116 0.4913 0.3775

Multimodal [79] 0.5404 0.4196 0.4890 0.5217 0.4884

MKSE-CM linear Kernel B=10k 0.6263 0.4843 0.6425 0.5667 0.6326

MKSE-CM cosine Kernel B=4k 0.5044 0.3838 0.4301 0.5979 0.5590

MKSE-CM RBF Kernel B=4k 0.4835 0.3675 0.4002 0.5979 0.5090

Table 4-1: Evaluation results for baseline and our method.

4.4 Conclusions

In this chapter, we present a multimodal retrieval system based on online kernel matrix fac-

torization, cross-alignment, semantic alignment, supervised label prediction, and late fusion.

Results show that the proposed strategy has advantages over unimodal retrieval methods,

taking advantage of rich multimodal information and label supervision. We projected the

original representations to a rich semantic label space (Y ) that is compact, low rank and

semantically significant because vector values in that space are related with Gleason scores

of cases. Additionally, our approach has scalability advantages thanks to the application of

a learning in a budget strategy, which uses only a small subset of the train set, improving

train speed and limiting the memory usage to the size of the selected budget.

We found a strong correlation between budget size and algorithm accuracy, as it is shown in

results table 4-1, the bigger the budget proportion respect to train set the better accuracy

is obtained, but at the same time, as the budget is increased the algorithm performance

decays.

Results from table 4-1 show the advantage of multimodal approaches over unimodal in the

information retrieval task applied to histopathology image analysis. Multimodality reduces

the semantic gap in medical image analysis and constitutes a suitable method to construct a

support decision tool to help pathologists in their work, retrieving cases and ranked images.
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Semantic Regression

This chapter introduces the multimodal kernelized latent semantic regression model. This

model performs a supervised non-linear latent semantic embedding using kernel methods and

matrix factorization techniques. The model was used to execute the indexing stage within

a multimodal information retrieval system.

5.1 Introduction

Multimodal information retrieval is a challenging task where queries and target documents

are expressed as a combination of one or more data representations, e.g. text, images, audio,

etc. Dealing with this variety of representations poses different challenges: how to build

algorithms that successfully combine media information to produce accurate information

retrieval results, how to combine heterogeneous information to produce a consistent repre-

sentation, how to determine relevance between queries and target documents when they are

represented in different representation spaces.

The multimodal information is obtained from the measurement of the same phenomena

through different sensors and scales [44], this implies that different phenomena’s characteris-

tics are captured and represented using different modalities. Each modality contains common

and complementary information about the phenomena under analysis, the additional infor-

mation provided by each modality can be used to improve information retrieval performance

[93]. In clinical settings, valuable multimodal information is stored but not fully exploited,

for example in PACS systems were radiology departments store radiology images, they are

usually accompanied by text data in the form of clinical records and radiology reports. Also

in computational pathology laboratories, digital slides repositories store whole slide images

together with pathology reports which are valuable resource for helping physicians to make

informed decisions about rare cases by retrieving similar cases[60].

Notably, the computational pathology setting poses additional challenges, coming from the

nature of the modalities, where images can consist of up to 800.0002 pixels and pathologist

write reports in natural language with variable lengths and specialized medical terminology.

Therefore, designing multimodal strategies that models and fully exploits the correlations

of these complex high dimensional spaces is imperative to simplify and improve clinicians

workflows [78].
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In this paper, we propose a new information retrieval system based on a method that learns

a semantic embedding of multimodal data. This semantic embedding is used by the retrieval

system as a high-level representation to calculate a multimodal ranking of medical cases. The

semantic embedding is built using the Multimodal Kernelized Latent Semantic Regression

method (MKLSR) [82], which performs a kernelized matrix factorization as an embedding

strategy and an information fusion technique applied to learn a multimodal latent semantic

embedding. We evaluated the proposed approach over a multimodal histopathology dataset

that contains documents including text and image modalities. The results show that this

approach is successful in exploiting the multimodal content to find relevant documents.

5.2 Multimodal Kernelized Latent Semantic Regression

Multimodal Kernelized Latent Semantic Regression is a complex model that integrates sev-

eral processes, for an easier analysis and understanding of the model, it was divided into the

following parts: 1) Kernel projection; 2) Latent semantic embedding; 3) Semantic alignment;

4) Multimodal latent semantic embedding; 5) Regression. These parts are shown in figure

5-1 inside dotted-line boxes with a different color for each one.

In the following sections, each model part is described, and the whole model architecture is

analyzed.

Figure 5-1: MKLSR model architecture.

5.2.1 Kernel projection

MKLSR model takes as input text feature vectors Xt ∈ Rd×n with d samples of n features

and visual feature vectors Xv ∈ Rd×m with d samples of m features. These feature vectors

are embedded into a high-dimensional Hilbert space using non-linear projection function.
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5.2.2 Latent semantic embedding

A non-linear latent semantic embedding for each modality can be learned using online kernel-
ized matrix factorization algorithm proposed by Vanegas [81]. According to this formulation
find a latent semantic embedding in feature space for the i-th sample xi is equivalent to
minimize the following loss function:
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where K(·, ·) is a kernel function that implicitly compute inner product of entries in feature

space, B is the Budget matrix, a matrix with b samples, randomly selected from train data

with d samples that satisfy the condition b << d. The optimization process minimize the

loss function updating the values of projection matrices W and W̃ with stochastic gradient

descent optimizer.

Applying equation 5-1 to textual and visual modalities we have the following equations:
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5.2.3 Semantic alignment

As was mentioned in chapter 2 latent representation of data samples are found in encoding

matrix H. In MKLSR the non-linear latent semantic embedding is performed using equation

5-1 in each modality. Latent representations in H matrix are implicitly defined in the equa-

tion 5-1, making explicit for i-th sample in each modality we obtain the following equations

[81]:

hiv = WvK(Bv, x
i
v) (5-4)

hit = WtK(Bt, x
i
t) (5-5)

Equations 5-4 and 5-5 correspond to two independent latent semantic spaces with same size

but unrelated. To take advantage of the additional information in multimodal data, an align-

ment process between these two spaces is introduced. The alignment process enforces the
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semantic similarity between latent spaces, using a cosine similarity function between them.

The following equation describes the optimization problem to align latent semantic spaces:

min
W,W̃

J iφsim = (cos sim(hiv, h
i
t)− 1)2 (5-6)

Minimizing equation 5-6 is equivalent to align latent semantic spaces Hv and Ht.

5.2.4 Multimodal latent semantic embedding

Latent semantic spaces Hv and Ht described in the previous section are per-modal spaces.

Despite these spaces are alignment and comparison between them are possible, they are not

multimodal spaces.

To construct a multimodal space, we combine uni-modal embeddings Hv and Ht concate-

nating them. Then, concatenated spaces are passed through a dense neural network layer

with relu activation function and f neurons, to introduce an additional abstraction level

the output of the dense layer is the multimodal latent semantic embedding that encodes

information from previous embeddings into a unique latent semantic space Hm.

5.2.5 Regression

Regression is the final module in MKLSR algorithm, regression module takes the multimodal

latent semantic embedding representation as its input and produces a real number output

value Yreg ∈ R as its output. The loss function for regression module is defined as follows:

MAE =
1

n

n∑
i=1

|Ytrue − Yreg| (5-7)

where Ytrue is the ground truth real value and Yreg is the output of MKLSR model, n is the

total number of train samples. MAE stands for multimodal Absolute Error a common loss

in regression problem.

5.2.6 MKLSR loss function

MKLSR architecture is shown in figure 5-1, dotted-line boxes highlights the modular con-

struction of the MKLSR, arrows in the figure show the data flow within model in a feed-

forward phase and solid boxes represents embeddings, operations or layers.

In previous sections MKLSR modules were described, in order to earn a better understanding

of this model, module losses was combined into the complete loss function for the model,

described as follows:
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min
W
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φt + α2J

i
φv
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i
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+ λ1..5 ‖W‖22

(5-8)

where J iφt and J iφv are the loss function for latent semantic embedding in textual and visual

data as was defined in equations 5-3 and 5-2. W = (Wt, W̃t,Wv, W̃v,Wm) are the model’s

parameters to be learned during training phase. α1,...,4 controls relative importance of module

losses within the total loss function, λ1,...,5 controls the effect of regularization terms added

to avoid overfitting. MKLSR algorithm is described in algorithm pseudo-code 1.

MKLSR (S = 〈Xv,Xt,Ytrue〉);
Inputs : Xv: visual features representation,

Xt: textual features representation,

Ytrue, label ground truth values

Outputs : Mth : Xv → Ht;

Mvh : Xt → Hv:

Mhm :< Xt,Xv >→ Hm:

Mhmy : Hm → Yreg;
Hyperparameters: b: budget size, l: semantic space dimension f : multimodal

semantic space dimension

/* Budget construction */

B = 〈Bv,Bt〉 ⊂ 〈Xv,Xt〉 : |B| = b� n

/* learn mapping functions to the semantic spaces H and Y */

Mth,Mvh,Mhm,Mhmy = MKLSR(S,B, l, f);

return Mth,Mvh,Mhty,Mhvy;
Algorithm 1: Multimodal Kernelized Latent Semantic Regression (MKLSR)

5.2.7 MKLSR prediction

Once MKLSR model has been trained, input data can be projected to a latent and label

spaces passing it through model. This model can project input data into three different

spaces:

• Latent semantic space per modality: Visual and textual data are projected to Hv

(latent semantic space for visual data) and Ht (latent semantic space for text data),

this is, each modality is projected individually to its corresponding space. Latent

spaces Ht and Hv are real value spaces with size equal to the number of latent topics
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l.

For text data the mapping prediction is defined as follows:

xt ∈ Rd×n Mth−−→ ht ∈ Rd×l (5-9)

For text data the mapping prediction is defined as follows:

xv ∈ Rd×m Mvh−−−→ hv ∈ Rd×l (5-10)

where d is the number of data samples to be projected, n is the number of input

features for text data, m is the number of input features for visual data and l is the

number of latent topics for these spaces.

• Multimodal latent semantic space: Multimodal latent semantic space Hm ∈ Rd×f

is a common space that combines Ht and Hv. Projection to these space can be define

as follows:

(ht, hv)
Mhm−−−→ hm ∈ Rd×f (5-11)

where f is the dimension of multimodal latent semantic space.

• Label space: This space is a real space Y ∈ R that predict a continue value as is

define as follows:

hm
Mhmy−−−→ yreg ∈ R (5-12)

5.2.8 MKLSR in multimodal retrieval process

In the previous section, three different outputs of the MKLSR model were described. This

section explains how these outputs can be used to perform an information retrieval task.

• Latent semantic space per modality: This output produces two latent represen-

tations ht and hv, with the same dimension size. This characteristic allows to apply

similarity measures between them. There are two possible configurations that can be

used with these outputs. First to perform cross-modal retrieval, in this setup the query

is represented using one semantic space representation and in the retrieval phase, it is

compared with target database elements represented in the other modality. The sec-

ond setup executes multimodal information retrieval with late fusion, in this case, the

multimodal ranking is constructed combining visual and textual rankings, generated

comparing query latent representation with target elements one for each modality and

then these results are combined using any of the available late fusion techniques.
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• Multimodal latent semantic space: With this representation performs multimodal

information retrieval is easy we need only compute the similarity between the multi-

modal representation of query and target database elements and construct a ranking

using this information. Under this setup, all process is multimodal for this reason

queries and database target are represented with both modalities.

• Label space: This space is a real number prediction that encodes specific domain

information about Gleason scores used in this experiment, these scores are real values

and follow an ordered similarity, this is, for example, a sample with Gleason score 6 is

more similar to a sample with Gleason score 7 than a sample with Gleason score 10.

To perform a multimodal information retrieval in this space we only need to calculate

the absolute difference between query label value and target elements and rank items

based on that value.

Algorithm complexity

Time and space complexities for this algorithm are identical to those described in subsection

4.1.4 and can be summarized in equation 4-4 for space complexity and equation 4-9 for time

complexity, where we find that this algorithm is linear in number of samples, which is an

scalable and competitive complexity.

5.2.9 Implementation details

MKLSR was implemented as a computational graph taking advantage of deep learning pro-

gramming frameworks like Keras [30] or Tensorflow [1] that also allow using GPU hardware

to improve training speed. To take full advantage of scalability features of deep learning

frameworks the model was reformulated as deep learning model especially the latent se-

mantic embedding module described in equation 2-3 was reformulated as an auto-encoder

for each modality thus the model was trained using adaptive stochastic gradient descent

optimizer Rmsprop on Keras framework.

5.3 Experimental evaluation

5.3.1 Dataset description

TCGA-PRAD is a prostate adenocarcinoma multimodal dataset composed of clinical cases

with tissue samples captured in high-resolution image Whole slide image (WSI) and pathol-

ogist’s text annotations from these annotations the global Gleason score for each case was

extracted. The Gleason score values are between 6 and 10, and measure the aggressiveness

of prostate cancer; Gleason score values 6 and 7 are lower score and values 8,9 and 10 are

high score.
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TCGA-PRAD contains 500 cases in total but in order to balance the samples for each Glea-

son score and preserve same experimental setup of baseline [79] only 141 cases were used for

this experiment.

5.3.2 Feature extraction

The feature extraction process for each modality is presented in the following subsections:

Whole-slide image feature representation

The feature extraction process begins with division of Whole-slide images in patches, then

each patch is processed by a fine-tuned convolutional neural network modified to classify

image patches into high or low Gleason score, then 2000 patches with higher predicted

values was selected to represent WSI [77]. After previous process each WSI is represented

by 2000 feature vectors, with the aim of obtain compact representations for WSI, features

vectors per WSI are combined using bag of visual words (BoVW) model [63].

Finally after exploring different vocabulary sizes for BoVW model the WSI was represented

by a histogram of 300 visual words.

Text report representation

Text reports in this dataset are very short in many cases consist of some abbreviations and

a Gleason score and are of variable length, to extract meaning from this modality we employ

a document embedding algorithm doc2vec[46] with windows size of 5.

5.3.3 Baseline description

The baseline for this experiment is composed of two works, first ”deep multimodal case-based

retrieval for large histopathology datasets”, in this work Jimenez-del-Toro et al. [79] presents

a late fusion approach to perform multimodal information retrieval over the prostate dataset

described in previous sections. In this work, the WSI is divided into around 5000 patches

then each one was classified using a fine-tuned deep neural network trained to classify low

and high Gleason scores, then around 2000 patches with higher predicted values are used to

represent the WSI image. The text modality is represented using a document embedding

doc2vec with a window size of 1 and Gleason score is utilized as a label for all case. A

multimodal ranking is constructed using a convex combination of unimodal rankings. The

ground truth relevance criteria are produced comparing the Gleason score of query and target

database element if these two share a label, they are relevant.

The second baseline is based on work published by Contreras et al. [15] where they used

the same features representation and relevance judgment with an MKSE-CM algorithm as

indexing method.
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5.3.4 Experimental setup

As was described in previous sections MKLSR model can projected data from input space to

three different spaces each of one has its characteristics and procedures next the multimodal

information retrieval process for each space projection is described:

• Latent semantic space per modality: To perform the multimodal information

retrieval task in this space a ranking was constructed for each modality comparing H

representations of query and target database, then the unimodal rankings Rv and Rt

was joined using a convex combination to produce multimodal ranking and retrieval

results.

• Multimodal latent semantic space: To perform a multimodal retrieval task in

this space a similarity function is applied between query and target database elements,

using the similarity values the multimodal ranking is constructed.

• Label space: The output of label space is a real number value, to perform the multi-

modal retrieval in this spaces a distance metric is computed between query value and

target database elements, using this metric the ranking is constructed.

5.4 Results and discussion

As was mentioned in previous sections the MKLSR model can project data into three different

spaces. Table 5-1 shown MAP results obtained after performing a multimodal information

retrieval on latent semantic spaces Hv and Ht applying different kernel combinations for

visual and textual data and three similarity functions, cosine similarity, euclidean distance

and centered correlation distance. The best results in this space was obtained when a RBF

kernel was applied to both modalities, similar results was obtained with the other kernel

except when linear kernel was applied to one or both modalities, this result shows the ability

of kernels to encode non-linear relationships.

In table 5-2 shown MAP results for different kernels in the multimodal latent semantic space

Hm. Results in this table show a performance improvement compare with results in the table

5-1.

The results shown in the table 5-3 show an improvement with respect to the shown in

previous spaces, this is due to this space is contains the highest semantic content and is

directly related with relevance judgment employed for this algorithm.

Results shown in tables 5-4 compare the proposed MKLSR model against baseline results

with different metrics, in this table only the best results in each approach are included. The

results in this table show that in MAP MKLSE surpasses the performance of MKLSE-CM

model but in general these two algorithms have a some similar behavior because they are

based on the same principle but implemented in different ways.
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Kernel Heuc Hcos Hcorr

Linear-Linear 0.319 0.342 0.341

Cos-Cos 0.547 0.552 0.552

RBF - RBF 0.566 0.583 0.583

Chi-Cos 0.554 0.568 0.567

Chi-Linear 0.444 0.405 0.399

Chi-RBF 0.590 0.543 0.543

RBF-Cos 0.514 0.551 0.551

RBF-Linear 0.347 0.364 0.365

Table 5-1: MAP results for multimodal information retrieval in latent semantic spaces Hv

and Ht. With different similarity measures euc: Euclidean distance, cos: Cosine

similarity corr: centered correlation.

Kernel Heuc Hcos Hcorr

Linear-Linear 0.521 0.482 0.472

Cos-Cos 0.582 0.563 0.564

RBF - RBF 0.612 0.587 0.589

Chi-Cos 0.581 0.586 0.582

Chi-Linear 0.508 0.437 0.438

Chi-RBF 0.611 0.550 0.551

RBF-Cos 0.584 0.601 0.607

RBF-Linear 0.456 0.500 0.453

Table 5-2: MAP results for multimodal information retrieval in multimodal latent semantic

space Hm. With different similarity measures euc: Euclidean distance, cos:

Cosine similarity corr: centered correlation.

Kernel ymae Ycos Ycorr Yeuc

Linear-Linear 0.613 0.597 0.597 0.597

Cos-Cos 0.655 0.617 0.617 0.617

RBF - RBF 0.651 0.628 0.628 0.616

Chi-Cos 0.624 0.609 0.609 0.616

Chi-Linear 0.642 0.616 0.616 0.616

Chi-RBF 0.653 0.635 0.635 0.635

RBF-Cos 0.633 0.630 0.626 0.626

RBF-Linear 0.589 0.565 0.565 0.565

Table 5-3: MAP results for multimodal information retrieval in label space Yreg. With

different similarity measures euc: Euclidean distance, cos: Cosine similarity

corr: centered correlation, mae: mean absolute error.
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Retrieval Method MAP GM-MAP bpref P@10 P@30

Image retrieval [79] 0.5113 0.3921 0.4706 0.4500 0.4600

Text retrieval [79] 0.4092 0.3561 0.31116 0.4913 0.3775

Multimodal [79] 0.5404 0.4196 0.4890 0.5217 0.4884

MKSE-CM [15] 0.6263 0.4843 0.6425 0.5667 0.6326

MKLSR 0.6552 0.4536 0.5952 0.5696 0.5609

Table 5-4: Evaluation results against baseline.

5.5 Conclusions

In this chapter MKLSR model was presented, this model can projected data from input

space to a three different spaces that have shown according to results in tables 5-1, 5-2,

5-3 a competitive performance in the multimodal information retrieval task. MKLSR model

shows a similar performance in the task as MKSE-CM model employed for same task in

chapter 4, this is due to they common concept design. The best results in the multimodal

information retrieval task was obtained in both algorithms MKLSR and MKSE-CM when

the retrieval was executed over label space (Y ), this is due to label space incorporates a

greater amount of semantic information provided by labels in dataset, in this case Gleason

scores.
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In this chapter principal conclusions and remarks obtained from this research work are

exposed.

6.1 Conclusions

6.1.1 Kernel functions

Kernel function selection has a huge impact on the model performance, as was shown in the

results of experiments in chapters 4 and 5. For this reason, kernel function selection is a

crucial hyper-parameter for models. Despite experimentation, we cannot determine a priori

what kind of kernel is the most appropriate to a certain data modality or application; thus

kernel function selection is an empirical process where several kernels should be tested for

each modality.

6.1.2 Model semantic relationships

Feature extraction process and kernel function selection are critical to obtaining the best

performance of these methods. However, this is only the first step, in the process to en-

sure the learning semantic relationships between low-level feature, kernel representation and

high-level semantic concepts we employed the supervision process with labels as a codified

representation of high-level concepts. Use supervised setup improve embedding quality and

whole model performance in retrieval and classification tasks.

6.1.3 Joint Representation

Find the best way to produce a joint representation of heterogenous multimodal data is

one of the main objectives of this work. From experimentation executed on different con-

figurations, we can conclude that the best way to produce a joint data representation from

multimodal data is through intermediate fusion approaches, these techniques can flexibly

combine multimodal data representations with weights learned as the trained process. For

instance, in the method presented at chapter 5 a joint representation is constructed combin-

ing latent semantic embeddings for each modality with a dense neural network that learnt
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weights for each component on the concatenated multimodal vector. Intermediate fusion

techniques show better performance than late or early fusion.

6.1.4 Non-linear mappings

Through kernel trick a non-linear mapping to a high dimensional Hilbert space can be

induced without explicit data projection. Selecting different kernel functions different linear

or non-linear mappings can be induced. Kernel trick is pretty useful to deal with non-linear

separable data in a transparent form as if it were linear-separable data.

6.1.5 Supervised learning to narrow the semantic gap

One of the most complicated challenges issues in machine learning is reducing the semantic

gap, the difference between data representation and meaning. Despite, the difficulty of this

issue, we found that supervised learning methods and inclusion of labels within the training

stage reduce the semantic gap and improved learnt latent representations. An additional

advantage of supervised learning setup is that models can predict labels, being able to also

perform classification or regression tasks.

6.1.6 How to design a large scale multimodal retrieval systems

To develop a large scale information retrieval systems we need to ensure that selected algo-

rithms and indexing techniques have space and time worst-case complexities bounded by the

lowest complexity functions as is possible, in an ideal case bound functions are constant or

linear in the number of samples. Usually, highly scale systems exceeded hardware capacities,

for this reason, online learning techniques play an essential role such as stochastic gradient

descent and train on mini-batch, with these kinds of techniques only a small subset of whole

training data was loaded in memory each time. Another problem to consider is the curse

of dimensionality both in training and indexing phase, this issue can be treated with sev-

eral techniques, for instance, learning in a budget or dimensionality reduction techniques,

to reduce computing time kernel matrices can be precomputed and load it for each min-batch.

In the inference stage, these systems need to fulfil several non-functional requirements such

as high availability, high performance, high throughput and fault tolerance. To success-

fully fulfil user’s requirements distributed systems for serving and training will be highly

recommendable.

6.1.7 Impact of budget size and selection method

The budget size has a huge impact on the effectiveness and efficiency of the proposed models.

There is a trade-off between efficiency and effectiveness, because as the budget size increases
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the effectiveness and accuracy of the model also increases, but on the other side, as the

budget size is increased the efficiency and performance of the model decreases.

The technique employed to select budget samples also have a huge impact on this model, at

this moment best performance was achieved when budget samples were selected randomly,

other methods such as using clustering centroid as budget’s samples, or sorted selection had

got poor results.

6.1.8 Similarity function

The functions applied to determine the similarity between the query and target database

representations have a quite impact on the multimodal information retrieval process. In this

thesis, we found that some distance function performs better than others in many cases, this

is the case of the cosine similarity and centered correlation functions that take advantage of

the geometric and the statistics properties of vector spaces with inner product like feature

spaces inducted by kernel functions.

6.1.9 Latent semantic embeddings

Label space retrieval

The previous results show that the best performance in multimodal information retrieval are

obtained on label semantic spaces Y , this is due to these spaces incorporate a rich semantic

and domain information through class labels.

Multimodal latent space retrieval

The proposed algorithm MKLSR can produce two different latent representations. In the

first representation, the model learns a latent representation for each modality (Hv, Ht)

and then aligns them using cosine similarity. In the second representation, the previously

learned representations (Hv, Ht) are concatenated and passed through a dense layer with

relu activation producing a new multimodal latent representation Hm. Comparing the results

obtained by these two representations, we can conclude that the multimodal representation

Hm outperforms the results obtained by (Hv, Ht) representations, but at the same time Hm

is less flexible because it always requires the presence of textual and visual data in query

and database to work in the correct form.

6.2 Future Work

The future work and other research directions are described in this section.
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6.2.1 Budget selection strategies

The budget has a huge impact on the effectiveness and efficiency of multimodal information

retrieval systems. Currently, the size of the budget is selected using a random search process

and the composition of the budget is chosen in a random way. These strategies do not

follow any systematic approach to find the best budget size and the best elements for budget

construction.

In large scale problems, there is a redundancy assumption that states that the information

in a dataset can be characterized and represented using a small portion of the total data.

Following this assumption, the proposed research direction is to design a systematic approach

to select elements for the budget in such a way that the selected elements preserve dataset

information and structure without redundancy thus producing a representative budget with

the smallest size.

6.2.2 Deep learning integration

This model incorporates some elements of deep learning elements like layer organization but

it is not a deep learning model, to take advantage of deep learning models, structure and its

ability to learn composed abstract representations from low-level features. A future research

direction can be oriented to unify this model with deep learning models and produce an

end to end model that incorporates deep learning representation learning ability, non-linear

kernel, and latent semantic embedding strategies to perform a multimodal latent semantic

spaces.

6.2.3 Semi-supervised non-linear latent semantic embedding

Algorithms presented in this thesis MKLSR and MKSE are supervised methods. These

algorithms can be extended to learn in a semi-supervised setup. The semi-supervised learning

approach provides to the algorithm with greater flexibility and capacity to learn from the

label and unlabeled data. In real work applications, it is common to find partially labeled

datasets.
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[8] Bottou, Léon ; Le Cun, Yann: On-line learning for very large data sets. In: Applied

stochastic models in business and industry 21 (2005), Nr. 2, S. 137–151
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