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ABSTRACT 
 
 
 

Neutronic Analysis of Pebble-Bed Cores with Transuranics.   
 

(December 2007) 
 

Megan Leigh Pritchard, B.S., Texas A&M University 
 

Chair of Advisory Committee:  Dr. Pavel V. Tsvetkov 
 
 
 

 At the brink of nuclear waste repository crises, viable alternatives for the long 

term radiotoxic wastes are seriously being considered worldwide.  Minor actinides serve 

as one of these targeted wastes.  Partitioning and transmutation in fission reactors is one 

possible incineration option and could potentially serve as a source of nuclear fuel 

required for sustainability of energy resources. 

 The objective of this research was to evaluate the neutronic performance of the 

pebble-bed Very High Temperature Reactor (VHTR) configurations with various fuel 

loadings.  The configuration adjustments and design sensitivity studies specifically 

targeted the achievability of spectral variations.  The development of several realistic 

full-core 3D models and validation of all modeling techniques used was a major part of 

this research effort.  In addition, investigating design sensitivities helped identify the 

parameters of primary interest.   

The full-core 3D models representing the prototype and large scale cores were 

created for use with SCALE 5.0 and SCALE 5.1 code systems.  Initially the models 

required the external calculation of a Dancoff correction factor; however, the recent 
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release of SCALE 5.1 encompassed inherent double heterogeneity modeling capabilities.    

The full core 3D models with multi-heterogeneity treatments are in agreement with 

available pebble-bed High Temperature Test Reactor data and were validated through 

benchmark studies.  Analyses of configurations with various fuel loadings have 

indicated promising performance and safety characteristics.  It was found that through 

small configuration adjustments, the pebble-bed design can be tweaked to produce 

desirable spectral shifts.  The future operation of Generation IV nuclear energy systems 

would be greatly facilitated by the utilization of minor actinides as a fuel component.  

This would offer development of new fuel cycles, and support sustainability of a fuel 

source. 
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CHAPTER I 

 

 

INTRODUCTION 

 
 

I.A.  BACKGROUND 

This chapter discusses the current status and purpose of the research efforts 

underway in the United States for the future of nuclear energy.  The work herein was 

performed as part of the United States Department of Energy (DOE) Nuclear Energy 

Research Initiative (NERI) Project, “Utilization of Minor Actinides as a Fuel 

Component for  Ultra-Long Life VHTR Configurations:  Designs, Advantages, and 

Limitations.”  The overall objectives of the NERI project and the specific objectives of 

this research effort are stated in Chapter I.B. 

 

I.A.1  GENERATION IV PROGRAM AND THE VHTR CONCEPT  

The Next Generation Nuclear Plant (NGNP) concept envisions an advanced, 

efficient, next-generation nuclear reactor coupled to modern electricity generation and 

hydrogen producing technologies.  The Generation IV nuclear energy systems are an 

ensemble of nuclear reactor technologies that could be deployed by 2030 and present 

significant improvements in economics, safety, reliability and sustainability over 

currently operating reactor technologies. The Generation-IV International Forum (GIF) 

was established in 2000, comprised of an international membership base of constituents 

that are interested in nuclear energy technologies.  The forum is chartered to investigate  
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new and existing technologies that could be applied to satisfy current and future energy  
 
needs. 

One of the six candidates selected by the group of collaborators is the Very High 

Temperature Reactor (VHTR) design.  This concept has promise to address the goals set 

forth by GIF, including:  nonproliferation and personal protection issues, maximizing 

nuclear safety and conserving natural resources, minimizing repository-bound waste, and 

maintaining a high economic gain and operational efficiency. [1] 

The interest of the United States Department of Energy (U.S. DOE) in the VHTR 

concept stems from specific safety features including low power density, high heat 

capacity, and a passive method of heat removal from the reactor vessel without need for 

active safety systems. 

The VHTR design consists of inert helium-gas coolant and graphite moderator to 

operate in a thermal spectrum with the high outlet temperatures necessary for hydrogen 

production, sea water desalination, or process heat for the petrochemical industry and 

other co-applications.  High Temperature Gas Cooled Reactors (HTGRs) have 

successfully demonstrated the feasibility of the technology.  The VHTR offers an 

extension of the conventional HTGRs with added enhancements including higher 

thermal efficiency and high temperature applications [1]. 

The VHTR concept has been proposed in two design configurations: (1) a 

prismatic core consisting of fuel and graphite blocks and (2) a pebble-bed core 

composed of thousands of fuel and graphite spheres.  Prototypes of each of these 

configurations exist as the High Temperature Test Reactor (HTTR) in Japan and the 

Chinese High Temperature Test Module (HTR-10) in China [1,2]. 



 

 

3

The pebble bed concept consists of thousands of graphite spheres containing 

about 8300 TRISO (TRIstructural ISOtropic) coated fuel particles embedded within the 

fuel region of each graphite sphere [2].  The 6-centimeter diameter sphere has a 5 

centimeter inner graphite matrix containing the micro-particles and an outer layer of 

only graphite.  The ceramic coated fuel particles offer many benefits, including serving 

as a containment vessel for gaseous fission products at high temperatures [3].  Safety 

control features of the pebble bed such as control rods are located in the reflector 

surrounding the cylindrically packed core [4].  A noticeable feature of the pebble-bed 

configuration is its ability to achieve high fuel burn-up. This feature is possible because 

the pebbles migrate through the core slowly and can be returned back into the top for 

another cycle and longer lifetime. The prismatic design core utilizes the same ceramic 

coated fuel particles as used in the pebble-bed design; however, the particles are 

embedded in a static matrix.  Rather than being located within graphite spheres in the 

pebble bed design, the TRISO microparticles are embedded within the fuel region of 

cylindrical compacts to form fuel rods; these rods are in turn inserted within prismatic 

graphite blocks.  The prismatic core is designed to keep all specific safety features such 

as control rods within graphite blocks [4].   

The work of this thesis is focused on the pebble bed cores for the VHTR concept.  

This concept presents inherent challenges, including some not covered in this work, such 

as significant heterogeneity encompassing the pebble and microparticle, constant 

movement and random distribution of pebbles within the core, complex coolant flow 

paths through the bed, and a pebble discharge and reload system. 
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I.A.2 NUCLEAR WASTE MANAGEMENT AND THE ADVANCED 

FUEL CYCLE PROGRAM 

 By the end of the licensed period of operation (about 20-30 years) of current 

nuclear reactors in U.S., the quantity of spent fuel will reach close to 87,000 tons.  The 

constituents of the spent fuel include about 95 wt. % of uranium (with a U-235 

enrichment comparable to that of natural uranium), about 1-2% of transuranic elements 

(primarily plutonium), and 3% of fission products and trace quantities of activation 

elements.   

 Two classes of nuclides will contribute to the radiotoxicity and heat load in a 

spent fuel repository, consisting of short and long lived isotopes.  Fission products 

comprise the bulk of short-term nuclides, and will be vastly reduced by decay within 

500-1000 years after discharge, after which the longer-lived transuranic elements 

(TRUs) and fission products will dominate radiotoxicity and decay heat. Today 

approximately 600 tons of plutonium exist within discharged fuel assemblies from 

commercial reactors; by the end of the licensing period the plutonium inventory will 

increase to approximately 870 tons.   

 The U.S. DOE Advanced Fuel Cycle (AFC) Program is focused on finding 

efficient technologies to enhance spent fuel treatment.  This includes reduction of the 

raw volume of spent fuel, diminution of decay heat sources to expand repository thermal 

capacity, separation of elements, and recycling useful materials from spent fuel for 

transmutation purposes [5]. The program is intended to develop advanced fuel systems 

for Generation IV reactors and foster fuel cycle technologies that will considerably 



 

 

5

reduce the disposal of long-lived, highly radiotoxic transuranic elements while 

reclaiming the valuable energy remaining in spent fuel.  The strategy anticipates a 

transition from the current once-through fuel cycle to one that is progressively more 

sustainable over the next several decades. Successful use of partitioning and 

transmutation of minor actinides could lead to a decrease in waste inventory and 

recovery of additional fuel materials.  The objective of the combined AFC and 

Generation IV programs is to define and implement a sustainable nuclear energy supply 

in the U.S.  This will make better use of natural resources and generate significantly less 

waste than the current open fuel cycle [5,6]. 

 
I.B   RESEARCH OBJECTIVES 

One of the objectives of the U.S. DOE Nuclear Energy Research Initiative 

Project (NERI) is to assess the possibility, advantages, and limitations of VHTRs with 

advanced fuels containing minor actinides.  This research considers and compares 

capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to 

approach continuous reactor lifetime operation without intermediate refueling [7].  The 

combination of VHTR designs with advanced fuels could potentially result in the 

reduction of long-term radiotoxicity and net heat load of high-level waste sent to a 

geologic repository by enabling the recovery of energy contained in spent fuel.  The 

principal mechanism to achieve ultra-long life VHTR configurations is an enhanced 

involvement of self-generated fissile compositions based on spent LWR fuel.  The 

objective of the research in this thesis is to: 

§ Validate several models and various modeling techniques and capabilities 
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§ Analyze configuration variation capabilities to achieve prolonged 

operation without intermediate refueling, 

§ Investigate configuration adjustments to produce spectral shifts, 

§ Notice the effect of design sensitivities with transuranic fuel. 

The study is focused on the impact of design sensitivities on pebble-bed cores 

with advanced materials and their applications. 

The research is focused on the pebble bed core designs with advanced fuels. 

Utilization of minor actinides (obtained from light water reactor (LWR) spent fuel) as a 

fuel component would facilitate development of new fuel cycles and support 

sustainability of a fuel source for nuclear energy, assuring future operation of Generation 

IV nuclear energy systems. Minor actinides include neptunium, americium, and curium.  

These elements will be responsible for the bulk of spent fuel long-term radiotoxicity. 

The pebble bed design offers many incentives for core configuration flexibility 

which can lead to improved fissile properties of minor actinides by neutron spectrum 

shifting.  For example, by altering the moderator pebble to fuel pebble ratio, total 

number of pebbles, or size of the pebbles, various spectral conditions can be achieved 

within the same core. The uncertainties associated with nuclear data and VHTR design 

characteristics will become imperative in understanding the reliability of the VHTR 

modeling. This research analyzes the impact of design uncertainties on pebble-bed cores 

with advanced materials and their applications. It consists of the following studies: 

§ Development of full core model for three dimensional pebble-bed configuration  

§ Reliability analysis of the pebble-bed modeling 

http://en.wikipedia.org/wiki/Neptunium
http://en.wikipedia.org/wiki/Americium
http://en.wikipedia.org/wiki/Curium


 

 

7

§ Configuration variations to achieve advanced design targets 

§ Design sensitivities and their impact on the pebble-bed system applications 

§ System design envelope of the advanced pebble-bed configurations 

 
I.B.1  PRODCEDURE AND METHODS 

A sensitivity analysis can determine the importance of different parameters and 

components of the model (for example design parameters) on the output parameters of 

the model (such as multiplication factor and reactivity).  In the future, an uncertainty 

analysis will be conducted after the sensitivity study to describe how the parameter 

estimate would vary in repeated sampling. 

Uncertainties will appear in both nuclear data and VHTR parameters.  

Discrepancies are obvious among the nuclear data libraries (ENDF/B-6.8, JENDL-3.3, 

JEF-2.2) [8] and contribute to further uncertainties thereby limiting the validity of 

analysis results.  An analysis of existing uncertainty effects on VHTR parameters will 

then focus on the effects due to nuclear data and design parameters.  A reliability 

evaluation of the VHTR modeling will follow this analysis using the previously 

validated three dimensional core models. 

Even clean critical benchmark experiments have uncertainties in the nominal 

system characteristics such as fuel composition and enrichment, impurities, densities, 

critical dimensions, etcetera.  These small deviations are propagated to contribute to an 

overall discrepancy in the calculated responses of the system.  The critical system will 

have an overall keff of unity with some associated uncertainty.  There may exist little 

doubt about the value of keff but there still exist doubt for system parameter 
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measurements.  This may be done by varying the system characteristics and observing 

the effects on the performance characteristics. 

Following these studies the question is posed as to how well the modeling 

approach represents the actual system and actual performance characteristics.  As design 

elements become more and more complex, the attempts to match a previous calculation 

or experiment become more distant.  The model and underlying assumptions must be 

understood to a degree of reliability for realistic applications.  This includes looking at 

the model performance characteristics in some atypical states and analyzing the 

response. 

Using the whole core three dimensional models, a variation analysis 

methodology was developed and applied to studies of VHTR geometry and material 

variations.  Some examples of adjustment parameters include dimensions of fuel 

particles, coatings and pebbles, and fuel material loading characteristics such as 

composition and enrichment.   

 
I.C TECHNICAL STATUS OF THE QUESTION 

An important aspect of any reactor design is the fuel type, its utilization and 

resulting cycle.  Until recently the fuel of choice has been uranium based, typically 

uranium dioxide.  Use of low enriched uranium (LEU) and mixed oxide (MOX) fuels (a 

blend of uranium and plutonium oxides) has become increasingly popular in recent years 

but still pose the issue of storing high level waste. 

Partitioning (chemical separation) and transmutation (transformation via neutron 

bombardment) aims at making nuclear energy more sustainable from the back end of the 
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fuel cycle and implies a separation and utilization of the valuable materials as well as 

minimization of high level waste.  In actuality, the actinides cannot be recovered 

completely from spent fuel and the some actinides will remain in the waste stream.  

However, those which are transformed will produce non-radioactive isotopes or isotopes 

with shorter half-lives.   

The realistic modeling requires a code-to-experiment benchmark analysis to 

assure high fidelity of the applied models and nuclear data.  Code-to-code validation is 

also a beneficial comparison in understanding the use of various code systems.  Use of 

three-dimensional whole-core VHTR models was exercised in the following work. The 

analyses utilized the SCALE (Standardized Computer Analysis for Licensing 

Evaluation) code system [9]. 

There is a double heterogeneity present in using this type of fuel.  The initial 

level of heterogeneity (micro-level) is described by the fuel kernel and surrounding 

layers randomly distributed within an inner graphite matrix of a pebble.  The final level 

of heterogeneity (macro-level) is described by the large number of pebble spheres 

randomly packed into a bed to form the core. The effects of double heterogeneity on 

resonance self-shielding of cross sections can be a difficult phenomena to account for in 

analysis of VHTRs [10].  These effects significantly affect VHTR designs and their 

performance characteristics. In addition, the ability of shifting the neutron spectrum is of 

importance in promising the use of minor actinides as a fuel component.  Since the 

pebble bed design permits flexibility in component configuration, fuel utilization and 
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management, it is possible to improve fissile properties of minor actinides by neutron 

spectrum shifting through configuration adjustments [7].  
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CHAPTER II 

 

 

APPLIED CODE SYSTEMS 

 

 

This chapter will discuss the applied code systems used in modeling, 

benchmarking, and evaluating the VHTR pebble-bed designs.  The 3D whole core 

computational models were developed using SCALE (Standardized Computer Analysis 

for Licensing Evaluation) versions 5.0 and 5.1 [9,11], and DANCOFF-MC:  A 

Computer Program for Monte Carlo Calculation of Dancoff Factors in Irregular 

Geometries [12].  These, among other code systems, are available from the Radiation 

Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory 

(ORNL).  This Department of Energy sponsored center is authorized to collect, maintain, 

analyze, and distribute computer software and data sets in the area of radiation transport 

and safety. 

 The full-core VHTR pebble-bed model was developed in accordance with the 

described benchmark problems in order to validate the model design before further 

performance characteristics studies.  Of primary interest in the benchmark problems was 

the experimental data provided by the IAEA-TECDOC-1382, “Evaluation of High 

Temperature Gas Cooled Reactor Performance:  Benchmark Analysis Related to Initial 

Testing of the HTTR and HTR-10” [2].  The 3D full-core computational model of the 

existing HTR-10 was created for the benchmarking purposes. 
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II.A  SCALE 5.0 

 The 3D full-core pebble-bed VHTR model was initially built using SCALE 

version 5.0.  The modular code system is developed and maintained by ORNL and is 

readily validated and accepted for use in thermal reactor analysis around the world. 

 The SCALE system initially begins with calling upon the Criticality Safety 

Analysis Sequence (CSAS25, CSAS6) control module [13,14].  CSAS was developed 

within the SCALE code system to provide automated, problem-dependent cross section 

processing followed by calculation of the neutron multiplication factor for the systems 

being modeled using KENO.  The two available versions of KENO were utilized 

including KENO-V.a. and KENO-VI corresponding to CSAS25 and CSAS26, 

respectively [15,16].  The code system has several available problem-independent 

multigroup cross section libraries.  For calculations done in SCALE 5.0, the 238 group 

ENDF/B-V cross section library was used [17]. 

 In both sequences, the default execution path follows BONAMI, NITAWL-III, 

XSDRNPM, and KENO [18-20].  BONAMI performs Bondarenko calculations for 

resonance self-shielding, with the cross sections to perform resonance correction for the 

unresolved energy range and create a new master cross section library.  WORKER then 

follows to convert the master multigroup library into a working multigroup library. 

 NITAWL-III applies the Nordheim Integral Treatment to perform neutron cross 

section processing in the resonance energy range.  This module performs a fine group 

calculation of the slowing down flux across each resonance with subsequent flux 

weighting of the resonance cross sections.  NITAWL also contains a built in Dancoff 
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factor calculation tool utilizing the SUPERDAN algorithm, however, this factor can also 

be externally supplied.  The resulting output of NITAWL is a converted cross section 

library from problem-independent to problem-dependent form.  The Nordheim integral 

treatment has built in assumptions which prove to be an excellent method for processing 

resonance cross sections for use in the analysis of light water reactor (LWR) fuel pin 

cells, and large homogeneous media, but should be exercised with caution in other 

applications. 

 CENTRM/PMC is an optional module as an alternative to NITAWL-III and is 

discussed in Chapter II.C. 

 The XSDRNPM module uses a one-dimensional discrete ordinates transport code 

to perform neutron calculations in creating a homogenized cell-weighted mixture cross-

section based on the unique unit cell.  These cell-weighted cross sections are then passed 

to KENO for full system analysis. 

 KENO-V.a and KENO-VI are multigroup Monte Carlo criticality safety codes 

applied to calculate the effective multiplication factor for a 3D system.  Geometry 

capabilities in KENO allow modeling of any shape that can be described with quadratic 

equations.  KENO-VI has enhanced capabilities such as geometrically intersecting 

regions, but at the expense of computational time when compared to KENO-V.a. 

 A schematic flow chart of the CSAS6 control module path is shown in Fig. 1. 
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Fig. 1.  Flow Chart of the CSAS6 Control Module in SCALE 5.0 

 

 There are several limitations associated with CSAS6, some of which come as a 

result of using preprocessed multigroup cross sections.  Other limitations are derived 

from assumptions in the Nordheim integral treatment and can be eliminated by using 

CENTRM/PMC as the resolved resonance processor.  The limitation of CSAS6 using 

CENTRM/PMC is as follows [13,14]: 

§ 2D effects such as fuel rods in assemblies where some positions are filled with 

control rod guide tubes, burnable poison rods and/or fuel rods of different 
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enrichments.  The cross sections are processed as if the rods are in an infinite 

lattice of rods. 

And those associated with using NITAWL-III are as follows [19]: 

§ The treatment assumes no resonance overlap from other resonances or other 

material regions. 

§ The treatment of an external moderator assumes an asymptotic flux present at the 

absorber-moderator interface. 

§ The treatment of spatial transport uses the first-flight escape probability for the 

absorber, the two-region reciprocity theorem, and Dancoff factors.  For correct 

multi-heterogeneity treatment, a Dancoff factor must be calculated externally and 

supplied as input. 

§ The treatment assumes no flux profile interference from resonance material in 

adjacent zones. 

II.B.  DANCOFF-MC 

 A Monte Carlo method is implemented in the computer code DANCOFF-MC in 

order to calculate the Dancoff correction factor which is then input into SCALE 5.0 to 

determine the flux reduction in the resonance integral calculations [12]. 

 The initial, historical definition of the Dancoff correction factor was proposed by 

Dancoff and Ginsburg and stated that in a closely packed lattice, the flow of resonance 

neutrons into the fuel is reduced as compared to the flow of resonance neutrons into a 

single fuel lump with an infinite moderator because of the shadowing effects of 

surrounding fuel lumps.  The Dancoff factor is then the relative reduction of the flow 
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[21].  A more common definition found today is that derived from the method of 

collision probabilities.  This states that the Dancoff factor is the probability that an 

isotropically emitted neutron from the surface of a fuel element will have a collision in 

the fuel region of a surrounding fuel element without colliding with a moderator nucleus 

on the way. Through Monte Carlo methods, DANCOFF-MC calculates the factor based 

on the latter definition [22]. 

 The DANCOFF-MC code can accommodate an array of geometries including 

spherical fuel elements and account for those surrounding a single pellet.  The input 

values for DANCOFF-MC allow for varying fuel region, clad, and gap radii, annular 

configurations, and macroscopic fuel and clad cross sections.   

 Neutrons are emitted from the surface of the fuel lump and tracked via histories 

until an intersection with another fuel region. The Monte Carlo method uses random 

numbers to establish an arbitrary starting position and direction for travel. Analytical 

methods are used to calculate the neutron path length and the transport probabilities in 

the given material.   

 The SCALE 5.0 code system has a built in method for calculating the Dancoff 

factor based on the SUPERDAN algorithm [23].  This algorithm is not directly 

applicable to VHTR configurations.  Many reactor physics code systems do an automatic 

calculation of the Dancoff factor based on certain assumptions and approximations that 

may not be valid [24]. 

 There are limitations associated with the DANCOFF-MC program.  The 

complexity of the problem restricts the ability of rods and pellets to be mixed in the 
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same arrangement.  The central cylindrical axis must be parallel to rod arrangements, 

and calculation of the “grey-effect” is not available for annular geometries. 

 An option for external entry of a Dancoff factor is available in the SCALE 

package and this option is utilized taking the factor from the DANCOFF-MC result.  The 

externally calculated result is inserted into the input file for the VHTR pebble-bed 

SCALE model as shown in Fig. 1 and is expected to improve the accuracy of the 

neutronic results. 

II.C  SCALE 5.1 

  

 November of 2006 marked the anticipated release of the newest version of the 

SCALE code package.  Version 5.1 has numerous enhancements to the code to allow 

more general and easier modeling and analysis.  Growth in nuclear systems designs 

requires this growth in code systems to accommodate current and future research. 

 Some of the major renovations to version 5.1 are in the following areas: 

§ New ORIGEN-ARP libraries 

§ New covariance libraries in TSUNAMI 

§ KENO-VI array and hole enhancements 

§ GeeWiz/KENO3D calculates KENO-VI volumes 

§ ENDF/B-VI data and HTML output 

§ Double heterogeneity capabilities in CENTRM 

§ Three dimensional depletion calculation in TRITON 

Of primary interest for this work is the enhancement of continuous energy CENTRM 

transport code to accommodate double heterogeneous unit cells.  This capability in 
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SCALE 5.1 can eliminate the need for external Dancoff factor calculation in 

DANCOFF-MC [25].   

The DOUBLEHET cell treatment is essentially a combination of MULTIREGION 

and LATTICECELL treatments.  Specifications in the cell declaration include number of 

grain types, and number of particles, pitch, or volume fraction.  The grains are 

homogenized into a new mixture to be used in the fuel element (macro-cell) cell 

calculation.  These grains and fuel elements are treated as 1-D cells. 

The primary weakness in CENTRM/PMC is that it assumes only 1-D spatial 

variations.  This is acceptable for most cases but can break down in systems with 2-D or 

3-D behavior, except for doubly-heterogeneous fuels such as those in HTGRs.  These are 

handled with the DOUBLEHET treatment [25,26]. 

When the DOUBLEHET unit cell type is selected, first the point-wise flux 

disadvantage factors (the flux depression in the fuel due to absorption of neutrons) in the 

first level of heterogeneity (TRISO particle) are calculated with the 1-D point-wise SN 

code CENTRM.  The point-wise flux disadvantage factors are then used to generate the 

cell-weighted point-wise cross sections for the homogenized fuel region in the fuel 

element.  In the second CENTRM run, these spatially-averaged point-wise cross sections 

are used to calculate the flux distribution in the fuel element.  PMC, a coupled code to 

CENTRM, will then generate the multi-group, problem-dependent cross sections.   

When double heterogeneity treatment is used in SCALE 5.1, the default cross-

section processor is the CENTRM/PMC/CHOPS sequence.  CENTRM and PMC work 

together to produce a set of problem-dependent group cross sections using a pointwise 
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continuous energy cross section library and a cell description.  The CHOPS module is 

called to compute cell-homogenized point data for a CENTRM nuclear data library [25]. 

A schematic, similar to Fig. 1 is shown in Fig. 2 for the SCALE sequence following 

a DOUBLEHET unit cell declaration.  The primary functions of each module are 

mentioned. 

 

 

Fig. 2.  Flow Chart of the CSAS6 Control Module in SCALE 5.1 
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CHAPTER III 

 

 

VHTR PEBBLE-BED MODEL 

 

 

III.A.  VHTR PEBBLE-BED CORE 

 Described in the preceeding sections is a detailed synopsis of the development of 

the three dimensional full-core pebble-bed VHTR configurations.  The model 

description as well as the validation and verification aspects of the initial design is based 

on China’s 10 MW High Temperature Gas cooled reactor test module (HTR-10).  The 

first section (III.A.1) provides general information about the HTR-10 and its 

experimental program.  The next section (III.A.2) describes the computational model 

and its purpose. 

 
III.A.1  HTR-10 

 The HTR-10 is a graphite moderated, helium cooled, modular reactor which 

includes spherical fuel elements with fuel regions containing fuel particles.  The HTR-10 

design program began in the late 1980s with an effort to incorporate original German 

pebble-bed technology and China’s plans to move forward with a modular HTGR [1]. 

 The primary objectives of the HTR-10 program are (1) to acquire knowledge in 

the design, construction and operation of HTGRs, (2) to demonstrate inherent safety 

features of the modular HTGR, and (3) to establish a facility to produce experimental 

results.  The design specifications of the HTR-10 are shown in Table I. 
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Table I.  HTR-10 Design Specifications 

Reactor thermal power 10 MW 

Primary helium pressure 3.0 Mpa 

Active core volume 5 m
3
 

Reactor core diameter 180 cm 

Average core height 197 cm 

Average helium temperature at reactor outlet 700 ˚C 

Average helium temperature at reactor inlet 250 ˚C 

Helium mass flow rate at full power 4.3 kg/s 

Main steam pressure at steam generator outlet 4.0 Mpa 

Main steam temperature at steam generator 440 ˚C 

Feed water temperature 104 ˚C 

Fuel-to-graphite ball ratio 0.57/0.43 

Number of control rods in side reflector 10 

Number of absorber ball units in side reflector 7 

Nuclear fuel UO2 

Heavy metal loading per fuel element 5 

Enrichment of fresh fuel element 17% 

Number of fuel elements in equilibrium core 27 000 

Fuel loading mode multi-pass 

 

 
 In selecting a reference pebble-bed design to model, several factors were 

considered including the availability of design parameters and experimental and 

computational results.  The HTR-10 program had the most available reference material 

for core specifications, material characteristics, and other relevant information to 

develop the computational model.  Experimental test results were also available for 

experiment-to-code benchmark studies as well as analytical computation results for 

code-to-code benchmarks [2]. 
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III.A.2  VHTR MODEL WITH PEBBLE-BED CONFIGURATION 

 

 The core of the initial pebble-bed model based on the HTR-10 consists of a 5 m3 

graphite cavity which is 180 cm in diameter and 197 cm in total height.  The “active 

core” region has an active height filled with fuel while the remainder is a helium cavity.  

The fuel region is surrounded by axial and radial graphite reflectors.  A vertical cross 

section of the HTR-10 model is shown in Fig. 3 (not to scale). 

 

Fig. 3.  Vertical Cross Sectional View of the HTR-10 Model (KENO 3D) 
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The radial graphite reflector consists of two concentric rings of borings.  The 

inner ring of borings contains ten control rod channels and three irradiation channels all 

with a diameter of 13 cm.  The remaining seven of the 20 borings are absorber ball 

channels with a rectangular cross section through the middle and semi circle cross 

sections at each end.  Helium flow channels, 8 cm in diameter, make up the outer ring of 

borings.  These regions can be seen in the horizontal cross sectional view shown in Fig. 

4. 
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Fig. 4.  Horizontal Cross Sectional View of the HTR-10 Model 

 

A reactor physics model is shown in Fig. 5.  A configuration for benchmark 

study purposes is constructed following this representation. 
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Fig. 5.  Vertical Cross Section with Zone Material Identification Numbers 
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 The numbers shown each indicate a zone with a material of specific properties, 

including density, nuclides included, and temperature.  The schematic diagram has radial 

and axial axes to illustrate the size and layout of each zone.  These dimensions are 

shown in centimeters.  The zone identification numbers correspond to material 

properties as described in Table II. 

 

Table II.  Homogenized Atom Density of Nuclide in Reflector Zones (1/ barn-cm) 
Zone 

Number Carbon Natural boron Remarks 

1 7.29410E-02 3.29811E-03 Boronated carbon bricks 

2 8.51462E-02 4.57148E-07 Top graphite reflector 

3 1.45350E-2 7.80384E-08 Cold helium chamber 

4 8.02916E-02 4.31084E-07 Top reflector 

5   Top core cavity 

6 5.38275E-02 2.88999E-07 
Dummy balls, simplified as graphite of 
lower density 

7 8.51047E-02 4.56926E-07 Bottom reflector with hot helium borings 

8 7.81408E-02 4.19537E-07 Bottom reflector structures 

9 8.23751E-02 4.42271E-07 Bottom reflector structures 

10 8.43647E-02 2.98504E-04 Bottom reflector structures 

11 8.17101E-02 1.56416E-04 Bottom reflector structures 

12 8.50790E-02 2.09092E-04 Bottom reflector structures 

13 8.19167E-02 3.58529E-05 Bottom reflector structures 

14 5.41118E-02 5.77456E-05 Bottom reflector structures 

15 3.32110E-02 1.78309E-07 Bottom reflector structures 

16 8.81811E-02 3.58866E-05 Bottom reflector structures 

17 7.65984E-02 3.46349E-03 Boronated carbon bricks 

18 7.97184E-02 0.00000E+00 Carbon bricks 

19 7.61157E-02 3.44166E-01 Boronated carbon bricks 

20 8.78374E-02 4.71597E-07 Graphite reflector structure 

21 5.79696E-02 3.11238E-07 Graphite reflector structure 

22 8.82418E-02 4.73769E-07 Graphite reflector structure 

24 8.79541E-02 1.68369E-04 Graphite reflector structure 

29 5.24843E-02 1.81969E-07 Graphite reflector structure 

42 8.79637E-02 1.62903E-04 Graphite reflector structure 

48 5.82699E-02 3.12850E-07 Graphite reflector structure 

57 7.28262E-02 3.91003E-07 Graphite reflector structure 

60 8.79538E-02 1.68369E-04 Graphite reflector, cold helium flow region 

81 7.97184E-02 0.00000E+00 
Dummy balls, but artificially taken as 
carbon bricks 
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III.A.3  FUEL REGION 

 The models constructed for the HTR-10 are explicit in modeling all structural 

features, nuclide compositions, and regions independently, with the exception of the fuel 

region.  A pebble fuel element consists of TRISO fuel particles embedded within a 

graphite matrix in the shape of a sphere (fuel element properties listed in Table V).  Each 

of the approximately 27,000 pebbles contains about 8,300 coated fuel particles which 

contain a small, spherical fuel kernel of 17% enriched (low enriched in 235U) uranium 

dioxide (UO2) with TRISO coatings.  The TRISO coating is made up of four layers:  a 

low density, porous, pyrolitic carbon (PyC) buffer layer closest to the fuel kernel, a high 

density isotropic PyC layer, a silicon carbide barrier layer, and final outer PyC layer.  

These coatings have the principal purpose to contain fission products.  The coating 

characteristics are individually listed in Table III. 

 

Table III.  TRISO Particle Material Specifications 

Layer Composition density (g/cm
3
) radius (mm) 

fuel kernel UO2 10.41 0.300 

coating 1 PyC 1.14 0.359 

coating 2 PyC 1.89 0.390 

coating 3 SiC 3.20 0.419 

coating 4 PyC 1.87 0.465 

 
 
 
 The spherical fuel element has a total diameter of 6 cm:  5 cm diameter inner 

region is composed of the graphite matrix containing the TRISO particles, the outer 0.5 

cm thick covering is solely graphite to serve as a moderator material around the fuel and 
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to protect the fuel region during pebble motion.  Fig. 6 shows a schematic of the TRISO 

particle and how it is contained in the pebble. 

 

 

Fig. 6.  Fuel Element Schematic 
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 There were two modeling techniques used for the pebble bed core.  The first 

method involved homogenizing only the fuel regions in the fuel pebbles, while the 

second homogenized the entire pebble bed including fuel pebbles and dummy graphite 

pebbles.  The identifiers used for these models are as follows:  the explicit pebble model, 

and the homogenized model.  Both models properly account for the double heterogeneity 

features as it is described later in this thesis. Aside from the fuel region of each of the 

models, the remainder of design stayed the same. 

 
III.A.3.1 EXPLICIT PEBBLE MODEL 

 
 The explicitly modeled pebble core is one of the most detailed representations 

possible to implement within the SCALE code system.  As opposed to homogenizing the 

entire bed of pebbles in the fuel region, only the TRISO particles are homogenized 

within the central graphite matrix of the pebble.  An example of this scheme is shown in 

Figure 7.  A half sphere slice made up of TRISO particles in a graphite matrix, is shown 

homogenized into a central region. 
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Fig. 7.  Fuel Pebble Homogenization Scheme 

 

 The modeling ability is well represented in SCALE by creating an array of 

spheres arranged in a triangular-pitch (dodecahedral) lattice.  The cross sectional view of 

the unit cell for this lattice is shown in Fig. 8 and contains three regions:  1) fuel kernel, 

2) all coating layers, 3) outer graphite matrix.  Given the number of fuel particles per 

fuel compact and the geometric construction of each, the unit cell dimensions were 

calculated and are listed in Table IV. 
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Fig. 8.  Vertical Cross Section of Triangular Pitch Unit Cell (Explicit Pebble Model) 

 

 Table IV gives the dimensions of each region in the unit cell.  These values were 

calculated based on the number of particles per pebble, pebble geometry specifications, 

and specified void fractions. 
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Table IV.  Unit Cell Dimensions (Explicit Pebble Model) 

Fuel Kernel Diameter 0.050 cm 

Fuel Coating Diameter 0.091 cm 

Pitch 0.2085 cm 

  

 

A random packing fraction of pebbles is considered in the range of 0.61-0.62 (or 

void fraction of 0.38-0.39).  This random packing cannot directly be simulated in 

SCALE, thus a body-centered cubic (BCC) lattice structure was implemented.  This unit 

cell contains a fuel pebble at the center and fractions of moderator pebbles at each corner 

for a total of two spheres in a unit cell.  This design facilitates altering the moderator-to-

fuel pebble ratio.  By simply changing the diameter of the moderator pebble, the desired 

ratio is achieved.  Figure 9 gives an idea how this unit cell was constructed and stacked 

into an array to form the core.  The final array size of a fully loaded cylindrical core is 

27 by 27 by 21 unit cells. 

 



 

 

32

 

Fig. 9.  BCC Unit Cell Schematic (KENO 3D) 

 



 

 

33

 Geometry specifications for the pebble-bed model were kept the same in both 

model configurations.  These included moderator to fuel pebble ratio, radii, packing 

fraction, and unit cell dimension.  They are summarized in Table V. 

 

Table V.  Pebble-Bed Geometry Specifications 

Fuel to Moderator Pebble Ratio 57:30 

Fuel Pebble Radius 3.0 cm 

Fuel Region Radius 2.5 cm 

Graphite Shell Thickness 0.5 cm 

Packing Fraction 0.61 

Moderator Pebble Radius 2.731 cm 

Unit Cell Size 6.8873 cm 

 

 
 The input file created for this model contained 347 lines of code with 124 

geometry regions.  The computations were run on three machines:  1) 2005 Dell 

Precision 670 Elite Workstation with 4 GB of RAM and a 3.80 GHz processor, 2)   2006 

Dell Precision Workstation with two dual core processors and 4 GB of RAM, and 3)  the 

Oak Ridge National Laboratory NUC Cluster.  This cluster is composed of 30 machines 

which are four processor Compaq Alphas.  The processors are the Alpha AXP (667 

MHz), a 64 bit RISC microprocessor.  The memory on most machines is 2 GB, 4-6 GB 

on some, 18 GB on one and 31 GB on another. Most of the calculations were run with 

200 generations and 1,000 histories per generation, resulting in a sample size of 200,000 

and a four hour runtime for machine 1 and 2, and about a two to three hour runtime for 

machine 3. 
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III.A.3.2 HOMOGENIZED MODEL 

 In the fully homogenized model, the entire pebble bed core is lumped into one 

homogeneous region.  This virtually smears the fuel particles with the graphite matrix, 

moderator pebbles, and void space (occupied by helium coolant).  The SCALE module 

CSAS6 was used in a similar fashion to the explicit pebble model with the triangular-

pitch (dodecahedral) lattice.  The cell contains three regions:  1) UO2 fuel kernel, 2) 

homogenized TRISO coatings, and 3) mixture containing a fraction of the graphite 

matrix from the fuel pebble, moderator pebbles, and void space between pebbles in the 

core.  This unit cell setup is shown as a cross section in Fig. 10.  

 

 
Fig. 10.  Vertical Cross Section for Triangular Pitch Unit Cell (Homogenized Model)  



 

 

35

 The unit cell dimensions for this model are shown in Table VI.  These are based 

on knowing the number of particles per fuel element, the number of fuel elements, and 

the geometry of the fuel region. 

 
 

Table VI.  Unit Cell Measurements for Homogenized Model 

Fuel Kernel Diameter 0.05 cm 

Fuel Coating Diameter 0.091 cm 

Pitch 0.3562 cm 

  

 
III.B.  DOUBLE HETEROGENEITY TREATMENT 

The two VHTR designs both encounter modeling complications with double 

heterogeneity.  The first level of heterogeneity is seen with the microparticle fuel.  Each 

fuel kernel is surrounded first by the coating layers of the TRISO particle, and then by 

the central graphite matrix of the pebble.  Within each pebble, the central fuel region 

(containing the randomly distributed microparticles) is surrounded first by the graphite 

shell of the pebble and in addition, by the helium coolant and dummy graphite pebbles.  

This produces two level of heterogeneity. 

There are various neutron streaming passages formed by the pebble-bed voids, 

coolant channels, instrumentation and handling channels, plenums, etc.  The proximity 

to outer and central reflector regions is also an important factor that influences the 

VHTR physics.  

The resonance self-shielding effects are determined by the microscopic flux 

behavior in the fuel, which strongly depends on the geometry of the fuel configuration.  
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As a result, the resonance absorption should be calculated on the basis of the 

microscopic lattice of the coated fuel microparticles.  The neutron mean free path in this 

lattice is so large compared to the dimensions of a pebble that the lattice cannot be 

considered infinite.  Therefore, other pebbles as well as additional core features cannot 

be neglected [27-29]. 

III.B.1. SCALE 5.0 AND DANCOFF FACTOR 

As part of the unit cell declaration in creating the SCALE version 5.0 input file, 

CSAS6 allows for an externally entered Dancoff correction factor.  This factor can 

greatly improve the accuracy of the model (Chapter II.B) and was calculated using 

DANCOFF-MC.  The program input values are:  the type of lattice, radius of the 

environment (the number of pitches within the radius of the fuel pebble), fuel radius, 

outer coating radius, pitch, total macroscopic cross section for the coating, and total 

macroscopic cross section of the graphite matrix containing the TRISO particles.  The 

cross sections were taken from the materials at 0.0253 eV (2200 m/sec, room 

temperature).  This modeling also uses an array of spheres in a triangular-pitch 

(dodecahedral) lattice.  The input values are listed in Table VII. 

 

Table VII.  DANCOFF-MC Input Parameters 

Environment Σcoating Σmoderator Fuel Radius Coating Radius Pitch 

8.4 pitches 0.37 cm
-1
 0.402 cm

-1
 0.02985 cm 0.04645 cm 0.3562 cm 
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 Fig. 11 is an illustration of the cross section of a fuel pebble with the central 

graphite matrix containing TRISO particles.  The environment dimension is shown in 

this picture. 

 

    
Fig. 11.  Pebble Representation for DANCOFF-MC Input Parameters 

 
  

 

 The homogenized model had calculations initially run using the SCALE 5.0 code 

package.  Since this version of the SCALE system requires an externally entered 

Dancoff factor for proper double heterogeneity treatment, DANCOFF-MC was used to 

produce it.  The value produced for the homogeneous model was 0.24564.  This number 

corresponds to the probability that a neutron isotropically emitted from the surface of a 

fuel element will enter another fuel element without colliding with a moderator nucleus 

environment 
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along the way.  This Dancoff factor is specific for the specified moderator to fuel ratio as 

listed in Table I.  As the ratio is altered, a new factor is produced. 

 

III.B.2  SCALE 5.1 AND DOUBLEHET 

 With the release of SCALE version 5.1 came the enhanced capabilities of 

directly modeling a doubly heterogeneous unit cell in the CSAS6 unit cell declaration.  

The unit cell was recreated for the homogeneous model for comparison, exactness, and 

consistency using the DOUBLEHET cell declaration option.   

 This option has two input regions:  Layer 1 (microparticle level) and Layer 2 

(pebble level).  Layer 1 includes the TRISO particle (fuel and all coatings) and an outer 

matrix.  The outer matrix is essentially the inner pebble graphite matrix material.  Fig. 12 

shows a cross section representation of the unit cell for Layer 1 and each dimension used 

in the declaration.  Table VIII gives the input parameters for the cell with measurements 

and material makeup. 
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Fig. 12.  Cross Sectional Representation of Layer 1 for DOUBLEHET Unit Cell 

 

Table VIII.  CSAS Input Parameters for Layer 1 of DOUBLEHET Unit Cell 

GFR fuel radius UO2 0.02985 

COATR coating radius SiC, PyC 0.04645 

MATRIX Inner graphite matrix Graphite no dimension 

NUMPAR number of particles TRISO 8300 

 
 
 

 The second level of heterogeneity (Layer 2) is made up of the pebble and 

surrounding helium coolant.  This level includes three zones which are described by the 

user’s choice.  This modeling procedure had two methods, labeled A and B.  Both 

modeling approaches label the inner most zone (Zone 1) as the fuel region.  This region 
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is the inner pebble graphite matrix containing the TRISO particles (taken from layer 1).  

Approach A puts the outer graphite shell of the pebble plus a fraction of the surrounding 

moderator pebbles into Zone 2.  The helium coolant alone then comprises Zone 3.  In 

Approach B, Zone 2 contains only the outer graphite shell of the pebble, and Zone 3 is 

made up of the helium coolant and a fraction of the surrounding moderator pebbles.  The 

mathematical relationships for the geometrics can be seen in Appendix X.   

 Fig. 13 is a general picture of how the cross section of Layer 2 looks and where 

each zone is located.  Tables IX and X give the makeup of those zones for each 

modeling approach and the dimensions used for CSAS6 input. 

 

 

Fig. 13.  Cross Sectional Representation of Layer 2 for DOUBLEHET Unit Cell 
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Table IX.  Material Makeup for Two DOUBLEHET Modeling Approaches 
  Approach A Approach B 

Zone 2 
Outer graphite shell of 
fuel pebble + moderator 

pebble fraction 

Outer graphite shell 
of fuel pebble 

Zone 3 surrounding coolant 
Surrounding coolant 
+ moderator pebble 

fraction 

 
 

 
Table X.  CSAS Input Parameters for Layer 2 of DOUBLEHET Unit Cell        

fuelr 2.5000 cm 

cladr 3.4341 cm 

hpitch 3.6400 cm 
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CHAPTER IV 

 

 

RELIABILITY ANALYSIS OF THE PEBBLE-BED MODELING 

 

 

IV.A VALIDATION OF THE PEBBLE-BED CORE MODEL  

 

 (BENCHMARK ANALYSIS) 

 

  The benchmark problems are derived from start-up core physics tests and include 

analysis of the initial criticality (critical height benchmark), control rod worth (for initial 

and full core), and the isothermal temperature coefficient of reactivity. 

  Because the sufficiently well-defined HTR-10 experimental benchmark data are 

very limited, both experiment-to-code and code-to-code model evaluations were 

performed for the developed 3D VHTR pebble-bed core model.  Due to the significant 

differences between code systems, the experiment-to-code model evaluations were of 

paramount importance in determining performance of the developed 3D pebble-bed 

model.  The code-to-code model evaluation was performed only to compensate for 

scarcity of the available experimental information. 

 All calculations were performed in SCALE version 5.0 at room temperature 

(300K) with a Dancoff correction factor of 0.2527, as calculated by DANCOFF-MC.  

The total sample size for all benchmark cases was 200,000:  1,000 histories per 

generation and 200 generations.   

 
IV.A.1  INITIAL CRITICALITY BENCHMARK 

 

 This benchmark involves evaluating the height of the fuel loading in the pebble-

bed region at which the core produces an effective multiplication factor (keff) of 1.0.  
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This height is measured in centimeters from the upper surface of the conus region.  The 

measurement was taken with the core under a helium atmosphere with all control rods 

withdrawn.  The available height for pebbles to fill is 197 cm.  The remainder of the 

region not filled with pebbles is a space containing helium. 

 Results from the initial criticality benchmark problem were compared to 

available experimental data for the same problem.  The actual measured critical core 

height is one of the available experimental values describing the HTR-10 core.   

 
IV.A.2  ISOTHERMAL TEMPERATURE COEFFICIENT BENCHMARK 

 

 This analysis included a calculation of the effective multiplication factor of the 

full (5 m3) core under helium atmosphere and core temperatures of 300K, 393K, 473K, 

and 523K also with control rods withdrawn.  

 The obtained SCALE 5.0, CSAS6/KENO-VI sequence results were compared to 

the various code-to-code benchmark results for the temperature coefficient benchmark 

problem produced by researchers worldwide using the following code systems: 

§ VSOP – diffusion at the whole-core level (China – ENDF/B-V, GAM-

THERMOS-CITATION, 4-group whole-core calculations, 3D reactor geometry) 

§ PANTHER – diffusion at the whole-core level (The Netherlands – JEF 2.2, 

coupled 2D thermal-hydraulics/3D diffusion, 2-group whole-core calculations, 

3D reactor geometry) 

§ SRAC – diffusion at the whole-core level (Japan – JENDL-3.2, 6-group whole-

core calculations) 
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§ MCNP – continuous energy Monte Carlo at the whole-core level (U.S. and China 

– ENDF/B-V, 3D reactor geometry) 

 
The isothermal temperature coefficient, αT

n, for the fully-loaded core was 

evaluated using the effective multiplication factors, kn and kn+1, according to the 

following relationship: 
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where: 

αT
n : Temperature coefficient between Tn and Tn+1 (∆k / k / K) 

Tn: Core temperature at nth measurement (K) 

Tn+1: Core temperature at n+1
th measurement (K) 

kn: Effective multiplication factor at Tn 

kn+1: Effective multiplication factor at Tn+1 

The critical control rod positions are changed with temperature elevation in the 

actual reactor operation.  However, the control rod position is not changed in the 

calculation to obtain reactivity difference. 

 
IV.A.3  SUMMARY OF BENCHMARK RESULTS 

 

 In the present analysis, a 10% discrepancy between computed values and the 

available experimental values was considered as the model acceptability threshold [8].  

The results of the benchmark analysis showing comparison to experimental and code 

data are summarized in Table XI. 
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Table XI.  Experiment-to-Code and Code-to-Code Benchmark Analysis 

 
 
 

 The HTR-10 cases with the control rods fully withdrawn resulted in the 

discrepancies in keff up to +1.5% in the homogenized core model and +16.4% in the 

explicit pebble model.  The observed over prediction of the homogenized core model is 

due to the small size of the pebble-bed affecting calculations using SCALE 5.0 and the 

limited availability of HTR-10 design data.   

The explicit pebble model produced larger deviations on the order or 14-16%.  

This is due to ambiguity of available information regarding modeling techniques and the 

core configuration.  The computational results for the homogenized core are in 

agreement with the available experimental data.  The obtained results from the 

Isothermal Core 
Temperature 

HTR-10 
Benchmark [2] 

SCALE 5.0 (CSAS6, 238 Group, ENDF/B-V) 

3D VHTR Model 
Discrepancy 

(%) 

Dancoff Correction Factor - 0.2527 - 

Critical Pebble-Bed 
Height (cm) 123.06 126.10 +2.47 

Core Multiplication, keff (Control Rods Withdrawn, Isothermal Core) 

300K 1.1358 
Homo Core 1.153 ± 0.002 +1.5 

Expl Pebble 1.321 ± 0.003 +16.3 

393K 1.1262 Homo Core 1.135 ± 0.002 +0.8 

Expl Pebble 1.301 ± 0.002 +15.5 

473K 
1.1168 

(interpolation) 
Homo Core 1.125 ± 0.002 +0.3 

Expl Pebble 1.286 ± 0.002 +14.6 

523K 1.1111 Homo Core 1.115 ± 0.002 +0.3 

Expl Pebble 1.274 ± 0.002 +14.7 

Isothermal Temperature Coefficient, αT (∆k/k/K) 

Isothermal Core  -9.70E-05 
Homo Core -1.40E-04 +39.8 

Expl Pebble -1.30E-04 +31.6 
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experiment-to-code benchmark analysis resulted in successful validation of the VHTR 

pebble-bed core model with the homogenized fuel region.   

 There was a larger deviation (40%, 32%) of the temperature coefficient of 

reactivity from available computational results.  There are several possibilities for this 

large discrepancy.  It is expected that increasing the sample size of the model would lead 

to reducing the discrepancy some.  In addition, there are differences due to the reactor 

physics features and limited design information. 

 The initial results for critical pebble-bed height at 300K are consistent with 

published benchmark data to within 3%.  A code-to-experiment discrepancy of less than 

10% is generally accepted internationally and was the targeted goal in this research in 

order to proceed with using the model.  This data validates the 3D full core model and 

hybrid calculations using the SCALE code system. 

 
IV.B  PROTOTYPE PEBBLE-BED VHTR CONFIGURATION 

 

 The pebble-bed configuration with fully withdrawn control rods, and a fully 

homogenized core at a height of 123.06 cm was chosen as the prototype configuration.  

This case had the best observed agreement with the experimental benchmark.  Table XII 

summarizes basic reactor physics characteristics obtained for the prototype VHTR 

configuration. 
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Table XII. Basic Reactor Physics Characteristics of the Prototype HTR-10 at 300K 

keff 
Fission-Inducing 
Energy (eV) 

Mean Free Path 
(cm) 

Fission Neutron 
Yield 

SCALE 5.0 Run 
Time (min) 

1.153 ± 0.002 0.0491 ± 0.0001 3.352 ± 0.002 2.43729 ± 2E-6 273.47733 

 
  
 
 Through adjusting configurations of the pebble-bed core, it is proposed that 

spectrum shifting can be achieved.  This could provide an end result of improving fissile 

properties of minor actinides.  With this as the final target, the energy-dependent neutron 

flux of the fuel region is a carefully monitored output throughout every analysis.  Fig. 14 

is a plot of the average energy-dependent neutron flux obtained for the cylindrical fuel 

region for the prototype configuration.  The flux profile matched expectations of the 

VHTR system.  This includes a large thermal peak, a 1/E dependence in the resonance 

region and the smaller fast peak. 
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Fig. 14.  Energy-Dependent Neutron Flux in the Fuel Region 

  

Fig. 15 shows the average energy dependent neutron flux in each layer of the 

TRISO microparticle.  These flux values are taken from the output of the XSDRN 

module of SCALE which is responsible for the double heterogeneity cell treatment.  

Zone 1 corresponds to the inner most region, or the fuel kernel, and zone 6 corresponds 

to the outer most region, or the graphite matrix that the TRISO particles are embedded 

within.   
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Fig. 15.  Energy Dependent Neutron Flux in Microparticle Zones 

 

The flux spectrum within the microparticle resembles that from a fast system.  

The small peak in the thermal region and large peak in the fast region are due to the lack 

of moderating graphite in the TRISO particle.  It is composed of a fuel kernel, SiC, and 

PyC, none of which provide sufficient moderating power to cause the thermal energy 
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region to peak significantly.  Many neutrons are born in the fuel which produces the 

large peak in the fast region. 

The average neutron flux through the various zones of the pebble is shown in 

Fig. 16 which is a closer representation to the system spectrum.  Zone 1 corresponds to 

the central fuel region, Zone 2 to the outer graphite shell, and Zone 3 to the matrix. 
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Fig. 16.  Energy Dependent Neutron Flux in Pebble Zones 
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With the presence of more graphite in the pebble compared to that in the 

microparticle, there is much more moderation of fast neutrons.  This additional graphite 

is responsible for the more pronounced thermal peak.  

 
IV.C  NEUTRON SPECTRUM SHIFTING CAPABILITIES 

 Specific spectral characteristics can be varied in the pebble-bed VHTR by mixing 

dummy graphite pebbles and fuel pebbles at a desired ratio.  The degree of heterogeneity 

and the moderator to fuel ratio (M/F ratio) can be adjusted to achieve the desirable 

spectrum shift.  Therefore, there is a possibility to enhance fissile properties of minor 

actinides by configuration adjustments. 

 An easy adjustment of the moderator to fuel ratio is found in the model’s unit 

cell.  Fig. 17 is a simple diagram showing how a cell could look with a different 

moderator to fuel ratio.  The new cell has both a new pitch, and new Dancoff correction 

factor but the same central fuel region.  Table XIII gives these values for the five ratios 

used. 
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Fig. 17.  Unit Cell Geometric Modifications for M/F Ratio Adjustments 

 
Table XIII.  Geometric Specifications for Pebble Ratio Adjustments 

M/F Ratio 
Carbon-to-Fuel 

Atom Ratio 
Pitch (cm) Dancoff Factor 

0/1 735.9 0.31396 0.24676 

1/3 976.3 0.34554 0.24612 

1/1 1277.4 0.39558 0.24577 

2/1 2179.9 0.45282 0.24536 

4/1 3623.9 0.53688 0.24523 

 
 

Table XIV gives a complete summary of the effect of altering the moderator to 

fuel ratio on reactivity, average energy inducing fission, and the system mean free path.  

This table also shows that variations to the moderator to fuel pebble ratio are equivalent 

to the variations of the carbon to fuel atom ratio for the particular core configuration.   
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Table XIV.  Moderator to Fuel Pebble Adjustments for the HTR-10 Core 
Moderator-

to-Fuel 

Pebble Ratio 

Carbon-to-Fuel 

Atom Ratio 

Dancoff 

Factor 
Reactivity (%) 

Average Energy 

Inducing Fission (eV) 

Mean Free Path 

(cm) 

Isothermal whole core criticality calculations at 300 K 

0/1 (0.000) 735.9 0.24676 5.7404 0.07224 ±  4.955E-04 3.497 ± 9.24E-03 

1/3 (0.333) 976.3 0.24612 2.42 0.06190 ±  3.557E-04 3.480 ±  9.95E-03 

1/1.3 (0.750) 1277.4 0.24577 -3.1999 0.05444 ±  3.482E-04 3.481 ±  7.13E-03 

2/1 (2.000) 2179.9 0.24536 -19.6745 0.04499 ±  3.108E-04 3.488 ±  5.23E-03 

4/1 (4.000) 3623.9 0.24523 -47.645 0.03952 ±  1.845E-04 3.488 ±  6.48E-03 

Isothermal whole core criticality calculations at 393 K 

0/1 (0.000) 735.9 0.24676 5.321 0.08365 ±  1.895E-04 3.458 ± 2.53E-03 

1/3 (0.333) 976.3 0.24612 0.5371 0.07170 ±  1.905E-04 3.460 ± 2.90E-03 

1/1.3 (0.750) 1277.4 0.24577 -4.5587 0.06364 ±  1.097E-04 3.462 ± 2.31E-03 

2/1 (2.000) 2179.9 0.24536 -22.43 0.05351 ±  1.164E-04 3.462 ± 2.81E-03 

4/1 (4.000) 3623.9 0.24523 -51.676 0.04821 ±  6.741E-05 3.460 ± 2.00E-03 

Isothermal whole core criticality calculations at 523 K 

0/1 (0.000) 735.9 0.24676 4.3062 0.10002 ±  1.986E-04 3.428 ±  2.33E-03 

1/3 (0.333) 976.3 0.24612 -0.4016 0.08712 ± 1.927E-04 3.434 ±  3.12E-03 

1/1.3 (0.750) 1277.4 0.24577 -6.5871 0.07818 ± 1.373E-04 3.435 ±  2.32E-03 

2/1 (2.000) 2179.9 0.24536 -25.6913 0.06701 ± 1.157E-04 3.442 ±  2.73E-03 

4/1 (4.000) 3623.9 0.24523 -56.2744 0.06104 ± 7.862E-05 3.436 ±  1.96E-03 

Isothermal whole core criticality calculations at 1000 K 

0/1 (0.000) 735.9 0.24676 0.299 0.16297 ±  2.721E-04 3.376 ±  2.18E-03 

1/3 (0.333) 976.3 0.24612 -5.2742 0.14606 ±  2.601E-04 3.387 ±  2.97E-03 

1/1.3 (0.750) 1277.4 0.24577 -12.9944 0.13387 ±  2.087E-04 3.385 ±  2.16E-03 

2/1 (2.000) 2179.9 0.24536 -37.0614 0.11899 ±  1.729E-04 3.386 ±  2.23E-03 

4/1 (4.000) 3623.9 0.24523 -77.3993 0.11106 ±  1.143E-04 3.380 ±  1.73E-03 

 
 
 

Fig. 18 displays the spectra for various moderator to fuel ratios in the fuel 

element at 1000K.  The shift is relatively small compared to what it may look like in a 

large pebble-bed core (300,000 pebbles). 
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Fig. 18.  Spectral Variations in the Prototype Pebble-Bed Core 

 

 At least in principle, promising core features and performance characteristics 

have been demonstrated.  The spectral variations, although slight, give rise to the 

possibility of enhancing fissile properties of minor actinides by configuration 

adjustments.  Under certain spectral conditions, minor actinides should be able to 

contribute to the core neutron balance by compensating for fuel depletion effects through 

their chain transformations. 
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CHAPTER V 

 

 

CONFIGURATION VARIATIONS TO ACHIEVE ADVANCED DESIGN  

 

TARGETS 

 
 

 The work presented in this chapter is part of the analysis of large scale 

configuration adjustments in pebble-bed cores, including the power and cylindrical core 

designs, and advanced actinide fuel loadings. 

  
V.A  LARGE SCALE POWER REACTOR CONFIGURATION 

The HTR-10 is the operating pebble-bed VHTR design and categorized as a 

small-scale VHTR.  The core is about half of that of a full power VHTR [30].  The 

future reactors will most likely have annular core designs, whereas the HTR-10 has a 

cylindrical core design. 

 The annular core design is one of the more promising core designs for future 

industry VHTRs because of its high inherent safety characteristics following a loss of 

coolant accident.  The decay heat removal is enhanced by introduction of the central 

graphite column.  The heat transfer path is shortened since the active core region is 

relatively thin.  As a result, the fuel temperature in a loss of coolant accident can be 

maintained at less than the fuel temperature limit of 1600˚C [29]. 
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 In the effort to integrate this research into a more practical setting, the HTR-10 

research reactor model was transformed into a larger scale, pebble-bed reactor with 

dimensions on the order of a VHTR power reactor.  The reactor was proportionately 

increased in size from the HTR-10 based on documented recommended dimensions of 

the large scale VHTR [31].  In addition to increasing the reactor’s dimensions radially 

and axially, the large graphite column was added down the center of the entire model.  

Since this model was considered in a static environment, the pebble discharge system 

originally modeled in the HTR-10 was eliminated for this design for ease of modeling. 

 The large scale model has an available pebble bed fill height of 379 cm.  The 

remainder of the pebble bed that isn’t filled with pebbles contains helium gas.  Fig. 19 

gives a diagram of the large scale power reactor with the universal dimensions used for 

both the prismatic core and pebble bed core.   
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 Fig. 19.  Vertical Cross Section of Large Scale Power Reactor 

 
 

 The central graphite column has a primary purpose of heat removal, supplying a 

conducting medium for heat dissipation in accidents involving loss of primary coolant 

circulation.  In a large power reactor, safety features such as the central graphite column 

are imperative. 

 
V.A.1  LARGE SCALE MODEL NEUTRON ENERGY DISTRIBUTIONS 

 

 The annular core, like the cylindrical core, contains one fuel region filled to a 

desired height with pebbles.  The neutron energy spectrum for this fuel region was 
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similar in shape to that for the small-scale prototype reactor (HTR-10).  The two spectra 

are shown together in Fig. 20 for a fully homogenized fuel region modeled in KENO-

V.a and run in SCALE version 5.0 using the Dancoff correction factor for double 

heterogeneity treatment. 
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Fig. 20.  Energy Dependent Neutron Flux for Small and Large Scale UO2 Fueled Cores 

 

 As expected, the magnitude of the neutron flux in the large scale pebble-bed core 

is much larger than that in the small scale core.  The large power reactor is more than 
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double the size of the prototype HTR-10 design but for this purpose was filled to a 

height of only 137 cm which resulted in a subcritial core. 

 It is expected to see a difference in the neutron flux spectrum as enrichment is 

increased.  An example of this is seen in Fig. 21 with two enrichments (8% and 17%) of 

UO2 fuel in 
235U.  The higher enrichment of UO2 simply increases the magnitude of the 

thermal peak and leaves the fast region unchanged since 235U is a thermal fission 

material. 
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Fig.21. Energy Dependent Neutron Flux in the Fuel Region of the Large Scale 
Configuration:  Different Fuel Enrichments 
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 There is also a small effect in the thermal peak with increasing temperature.  Fig. 

22 shows an example of how an increase in temperature shifts the spectrum toward 

higher energies.  The location of the peak is a function of the thermal motion of a 

neutron in the system.  As the temperature of the surroundings increases, the thermal 

energy will also increase. 
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Fig. 22.  Energy Dependent Neutron Flux in the Fuel Region of the Large Scale 
Configuration:  Different Temperatures 
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In addition, by utilizing capabilities in SCALE version 5.1, a plot of the average 

energy dependent neutron flux in all regions of the large scale power reactor was 

produced.  Fig. 23 shows how the flux within the fuel kernel compares to that in the 

microparticle system, fuel region of the pebble, entire pebble, and full system. 
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Fig. 23.  Energy Dependent Neutron Flux for All Regions in the Large Scale Core 

 
 
V.B  FUEL LOADINGS CONTAINING ADVANCED ACTINIDES 

 
 The fuel pebbles within the cylindrical small scale and annular large scale core 

configurations were assumed to be loaded with the following fuels in order to perform 

an introductory analysis of the system’s behavior: 
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§ Uranium Dioxide (UO2) 

§ Uranium Carbide (UC) 

§ Transuranics (TRU) 

§ Minor Actinides (MA) 

§ Reactor Grade Plutonium (RGPu) 

 
V.B.1 VALIDATION OF MODELING TECHNIQUES WITH VARIOUS  

 

FUELS 

 
 The new version of SCALE (version 5.1) was released with direct double 

heterogeneity modeling capabilities.  In order to reproduce the unit cell in the newer 

version and authorize its use for continued studies, a small analysis was performed in 

order to compare versions 5.0 and 5.1 of SCALE with and without direct double 

heterogeneity modeling and the two Monte Carlo codes, KENO-V.a and KENO-VI.  

This analysis was performed for the five fuels to get a detailed comparison. 

 
V.B.1.1 SCALE SYSTEMS AND DOUBLE HETEROGENEITY METHODS 

 
 Several previous benchmark studies were selected to be run in the newest 

publicly available version of SCALE for comparison with the previously utilized 

version.  This would not only show discrepancies and shortcomings with the benchmark 

studies but also provide a level ground for future work using the newer version, SCALE 

5.1. 

 Table XV gives some reactor physics parameters associated with the 

performance of the model in each code system.  The deviation between the two systems 
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is generally within the error bar.  The fuel loading height was being held constant for 

other purposes and resulted in a subcritical core.  This was not important for this 

validation and was left alone. 

 

Table XV.  Reactor Physics Results of the Large Scale Pebble Bed Core in KENO-V.a. 

 
Fuel keff 

Fission Inducing 
Energy (eV) 

Mean Free Path 
(cm) 

SCALE 
5.0 

Minor Actinides 0.0530 ± 0.00012 5.716 ±  6.722E-02 3.052 ±  2.646E-03 

Transuranics 0.8182 ± 0.0015 5.751E-01 ±  2.839E-03 3.060 ±  2.349E-03 

Uranium Carbide 0.7785 ± 0.0017 4.846E-02 ±  7.256E-05 3.119 ±  1.731E-03 

Reactor Grade 
Plutonium 0.9448 ± 0.0019 6.076E-01 ±  3.424E-03 3.069 ±  2.612E-03 

Uranium Dioxide 0.9757 ± 0.0022 6.377E-02 ±  1.099E-04 3.120 ±  1.845E-03 

     

SCALE 
5.1 

Minor Actinides 0.0531 ± 0.0001 5.851 ±  6.673E-02 3.286 ± 1.432E-04 

Transuranics 0.8206 ± 0.0013 5.720E-01 ±  2.813E-03 2.897 ± 1.568E-05 

Uranium Carbide 0.7798 ± 0.0016 4.855E-02 ±  8.124E-05 2.437 ± 3.530E-06 

Reactor Grade 
Plutonium 0.9418 ± 0.0015 6.049E-01 ±  2.842E-03 2.894 ± 1.567E-05 

Uranium Dioxide 0.9750 ± 0.0022 6.370E-02 ±  1.080E-04 2.437 ± 2.673E-06 

 
 
 
Fig. 24 displays two energy dependent neutron flux plots for the large scale 

power reactor model using KENO-V.a.  The two spectra are taken from identical input 

files run in SCALE version 5.0 and version 5.1.  It is clear from the diagram that the 

results are basically identical in energy spectra. 
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Fig. 24.  Energy Dependent Neutron Flux for the Large Scale Reactor in KENO-V.a 
 
 
 

 A similar study was performed for the small scale prototype reactor with 

identical results.   

 Validating the use of various double heterogeneity modeling techniques is more 

complex than looking at the two version of SCALE.  An entirely new unit cell 

declaration was implemented as explained in Chapter III.B.2.  Since studies would 

continue with the DOUBLEHET unit cell option in SCALE 5.1, it was necessary to 

make sure that for these purposes it was performing as expected and to evaluate how the 

externally entered Dancoff correction factor from DANCOFF-MC had performed. 
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 This small study was carried out for the small scale cylindrical core using 

SCALE 5.0 with an external Dancoff factor and SCALE 5.1 with DOUBLEHET unit 

cell treatment for five fuels.  All of the cases chosen for this comparison were modeled 

in KENO-VI. 

 Table XVI gives a summary of the results from this study.  All cases are 

subcritical; however, the benchmark was based on the near critical case of UO2 while 

keeping the pebble bed fill height, volume fraction, and other variable parameters at a 

constant value with previous analyses. 

 

Table XVI.  Comparison of Double Heterogeneity Modeling Procedures for All Fuel 
Loadings 

  

DOUBLEHET DANCOFF FACTOR 
  

keff ± keff ± % deviation 

MA 0.0573 0.00013 0.0532 0.0001 7.81 

TRU 0.8179 0.0016 0.8206 0.0013 0.33 

UO2 0.9847 0.0019 0.9750 0.0022 0.99 

UC 0.8335 0.002 0.7798 0.0016 6.44 

RGPu 0.9429 0.0017 0.9418 0.0015 0.12 

 
 

 These results build confidence in the DANCOFF-MC calculations and previous 

modeling methods while indirectly validating the DOUBLHET unit cell treatment in 

SCALE 5.1.  One possible explanation for the high discrepancy in minor actinides is that 

SCALE is not intended to be used for multiplication factors so extremely low thus the 

associated error is high.  In addition, the two versions utilize different nuclear data files 

(ENDF-B/V and ENDF-B/VI, respectively) which could contribute to the difference. 
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V.B.1.2 SCALE SYSTEMS AND MONTE CARLO KENO CODES 

 

 In addition to the versions of SCALE and their associated modeling capabilities, 

the Monte Carlo criticality module, KENO, has two possible geometry packages.  The 

differences between the two were explained in Chapter II.A and the results they 

produced are compared here. 

 Fig. 25 shows the neutron specra for the small scale, uranium dioxide fueled 

configuration in KENO-V.a and KENO-VI.  Both cases were calculated in SCALE 5.0. 
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Fig. 25.  Energy Dependent Neutron Flux for the Large Scale Reactor in KENO 
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 From this plot it is clear that the two versions of KENO produce virtually 

identical results and there are no significant discrepancies between them.  The models 

created in each version should be comparable and interchangeable.  This is important 

because the large power configuration was made only in KENO-V.a. 

 
V.B.2  SPECTRA ADJUSTMENTS WITH ADVANCED FUELS 

 

 Among the five fuels investigated, each produces a slightly different shape flux 

profile based on the individual nuclides involved and their associated cross sections as a 

function of energy. 

 The average energy dependent flux in the homogenized fuel region (for each 

loading:  UO2, UC, TRU, MA, and RGPu) of the large scale power reactor model at 

1123K are shown in Fig. 26.  Fig. 27 is a zoomed in plot from 10 keV to 10 MeV for the 

same fuels at 1523K which has slightly more exaggerated peak differences between 

fuels. 
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Fig. 26.  Energy Dependent Neutron Flux in the Fuel Region for the Large Scale 
Configuration with Advanced Actinides at 1123K 
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Fig. 27.  Energy Dependent Neutron Flux in the Fuel Region for the Large Scale 
Configuration with Advanced Actinides at High Energies and 1523K 

 
 
 

 Figs. 26 and 27 show that it’s difficult to distinguish between the various fuels at 

some points but it is clear that the uranium based fuels (UO2 and UC) display the same 

general profile, marked by a peak in the thermal region.  A slightly larger thermal peak 

is seen in UO2 but is mostly consistent with the UC profile in all other energies.  This 

effect could be contributed to the slightly higher absorption rate of carbide (in UC) at 

thermal energies compared to that of dioxide in UO2. 

 The remaining fuels, TRU, RGPu, and MA, produce a relatively similar flux 

profile, marked by a peak in the fast region and the absence of a thermal peak.  To see 
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this more clearly, the average energy dependent neutron flux for these fuel loadings at 

1123K is provided in Fig. 28.  It is clear that the absence of the thermal neutron peak for 

TRUs, RGPu, and MAs is due to dominant thermal neutron capture in those 

configurations. 
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Fig. 28.  Energy Dependent Neutron Flux in the Fuel Region of the Large Scale 
Configuration with TRU, RGPu, and MA fuel loadings at 1123K 

 
 
 

 As displayed, a definite fast spectrum is evident.  There is a more pronounced 

peak in the MAs at lower energies and while this profile is higher throughout, the RGPu 
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peaks a little above MA in the fast region.  However, according to Fig. 26 at 1523K, the 

RGPu does not have this slightly larger amplitude profile in the fast peak. 

 Table XVII summarizes basic reactor physics characteristics obtain for each of 

the fuel loadings in the large scale power configuration.  A critical system is not reached 

in any of the cases.  In order for the system to become critical, the volume fraction, fuel 

enrichment, or loading height must be increased.  This was addressed in subsequent 

analyses, but for comparison between spectra, criticality was not necessary. 

 

Table XVII.  Basic Reactor Physics of the Large Scale Power Configuration at 1123K 
Fuel keff Fission Inducing Energy (eV) Mean Free Path (cm) 

Minor Actinides 0.0531 ± 0.0001 5.851 ±  6.673E-02 3.286 ±  1.432E-04 

Transuranics 0.8206 ± 0.0013 5.720E-01 ±  2.813E-03 2.897 ±  1.568E-05 

Uranium Carbide 0.7798 ± 0.0016 4.855E-02 ±  8.124E-05 2.437 ±  3.530E-06 

Reactor Grade 
Plutonium 

0.9418 ± 0.0015 6.049E-01 ±  2.842E-03 2.894 ±  1.567E-05 

Uranium Dioxide 0.9750 ± 0.0022 6.370E-02 ±  1.080E-04 2.437 ±  2.673E-06 

 
  

 For comparison purposes, the core configurations with different fuel loadings are 

presented relative to the reference UO2 cores.  Only fuel compositions are varied.  

However, in all cases there was not enough fissile content to achieve criticality but the 

geometry needed to remain fixed.  The minor actinide fuel loading was unable to sustain 

anything near criticality in that arrangement.  Evidence is provided to support the 

proposition that MAs could be blended with uranium based fuels to create a fuel loading 

that would produce a critical system.  The UO2 portion of the fuel would provide the 
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thermal energy peak needed for criticality.  Fig. 29 shows the energy dependent neutron 

fluxes for the large scale pebble-bed core with UO2 and MA fuel loadings at 1523K. 
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Fig. 29  Large Scale Pebble-Bed Core With MAs and UO2 at 1523K 

 

 In Chapter V.A.1 a plot was shown (Fig. 20, p.58) with the spectra for the UO2 

fueled large and small scale pebble-bed VHTR configurations.  There was clear increase 

in magnitude and shape in the large scale annular core.  In addition, Fig. 30 shows this 

same relationship for the MA fueled core. 
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Fig. 30.  Energy Dependent Neutron Flux for Small and Large Scale MA Fueled Cores 

 

 As a preliminary safety analysis, the isothermal temperature coefficient for each 

fuel loading was evaluated.  The temperature range was 100K and the effective 

multiplication factor was determined starting at 1123K until 1523K which produced four 

coefficients per fuel loading.  These were averaged to get a single temperature 

coefficient for each.  Table XVIII shows the calculated values obtained for the 

temperature coefficients for specified fuel loadings for the large scale annular 

configuration.  As noted, the coefficients in all cases are negative. 
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Table XVIII.  Isothermal Temperature Coefficient for Various Fuel Loadings 

Fuel 
Isothermal Temperature Coefficient 

(∆k/k/˚C) 

RGPu -6.107E-05 

UC, 8% LEU -1.909E-04 

UO2 -2.145E-04 

MA -5.541E-03 

TRU -8.513E-05 

 

 
V.C  SAFETY ANALYSIS 

 
 The VHTR systems achieve their safety through their design approach, the 

materials used, and the fuel form.  The key safety features of the VHTRs, in addition to 

the radionuclide retention capability of the TRISO particle, is a small operational excess 

reactivity, a large negative temperature coefficient, and a passive heat removal capability 

of the reactor design.   

 The combination of the small excess reactivity and large negative temperature 

coefficient stops the nuclear fission process with only a conservative temperature rise in 

the core in the event the control and shutdown systems fail.  The introduction of an 

annular core allows fuel decay heat to be conducted through the reactor structures to the 

vessel cavity and further to the atmosphere without intervention.   

 The benchmark study included calculating the isothermal temperature coefficient 

for the critical HTR-10 core; the procedure is described in Chapter IV.A.2.  The 

calculation was extended to the large-scale, annular core for the various fuels as 

described in Chapter V.B.2.  Table XIX shows the calculated values obtained for the 

isothermal temperature coefficient for low enriched Uranium (LEU) fuel in the two 

configurations. 
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Table XIX.  Isothermal Temperature Coefficients 

Core Configuration 
Isothermal Temperature Coefficient 

(∆k/k/˚C) 

HTR-10 -1.40E-04 

Large Scale Annular -2.15E-04 
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CHAPTER VI 

 

 

DESIGN SENSITIVITIES AND THEIR IMPACT ON PEBBLE-BED SYSTEMS 

 

 

 The work presented in this chapter is part of the analysis of small scale 

configuration adjustments and sensitivities to design parameters on the large scale, 

annular pebble-bed core.  Using the system 3D model, a variation analysis method was 

applied to VHTR geometry and material characteristics. 

 The studies included variations in: 

§ enrichment in reactor grade plutonium (RGPu), uranium dioxide (UO2, LEU), 

and transuranics (TRU), 

§ the dimension of the central graphite column, 

§ pebble-bed fuel loading height 

§ number of coated particles per pebble (volume fraction) 

 
VI.A SENSITIVITY OF THE PEBBLE-BED PERFORMANCE TO  

 

LOADING HEIGHT 

 
 The variations in all the listed parameters proved interdependent:  a slight 

manipulation in one parameter produced an ill desired result in another and vice versa.  

Altering enrichment, dimensions of the column, the pebble bed loading height, and the 

volume fraction was done by holding all but one parameter constant, and by getting an 

entire data set with all options investigated.  This essentially allowed an optimization:  

the ability to choose the most desirable configuration with regards to all variables. 
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 Beginning with investigating the effect of loading height, based on the critical 

respective case, three fuel loadings were examined at room temperature.  The 

configurations looked at in this study included:  1) 20% enriched LEU with a 144 cm 

radius central graphite column, 2) 35% enriched RGPu with a 104 cm radius central 

graphite column, and 3) 60% enriched TRU with a 124 cm radius central graphite 

column.  Fig. 31 displays effective multiplication factor as a function of loadings height 

spanning from 20 cm to 360 cm. 
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Fig. 31.  Effect of Core Loading Height on Multiplication Factor for Three Fuel 
Loadings 
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 There is a similar functional dependence of the three fuel’s behaviors.  Beginning 

with a steep climb there is a drastic change in effective multiplication factor for every 

additional cm of fill height.  The curve levels off into a plateau for all fuels; but sooner 

for the TRU and RGPu loadings and slightly later for the LEU loading.  The critical 

height for the TRU and RGPu occurs just past 50 cm and at 150 cm for the LEU fuel.  

The three loadings are not quantitatively comparable because they differ in the central 

graphite column size and fissile content, but the three reasonable combinations are 

comparable. 

 
VI.B SENSITIVITY OF THE PEBBLE-BED PERFORMANCE TO THE  

 

CENTRAL GRAPHITE COLUMN 

 
 The effect of the size of the central graphite column can be seen by selecting one 

critical combination of a fuel loading, volume fraction, pebble-bed fill height, and 

enrichment.  The radius of the full core was altered slightly while increasing the height 

of the central column to keep the fuel region volume consistent.  The original model was 

created with an inner graphite reflector radius of 144 cm.  The effect of changing this to 

124 cm and 104 cm was examined. 

 Fig. 32 shows the effect on the average energy dependent neutron flux from 

altering the radius of the inner reflector.  The plot was taken from the model with 20% 

enriched LEU, a 30% volume fraction, at 300K, and a fill height of 359 cm.  As 

expected, the thermal peak increased in amplitude but all cases retained the same general 

shape through the fast region.  This was most likely due to the increase in the amount of 
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moderating material near the core.  There was a slight shift in the spectrum through the 

resonance and fast regions with increasing dimensions. 
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Fig. 32.  Energy Dependent Neutron Flux for 20% LEU at 359 cm Height 

 

 A detailed look at how the smaller graphite column affects the multiplication 

factor is shown in Table XX for the same fuel loadings that are displayed in Fig. 32.   

 
 

Table XX.  Effect of Central Graphite Column Size on Multiplication Factor 

  

  keff 

Fuel Enrichment Fissile Content 104 cm 124 cm 144 cm 

TRU 60 24 1.1831 1.2046 1.2201 

RGPu 35 21 1.1294 1.1507 1.1619 

LEU 20 20 1.037 1.0494 1.0564 
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 There is a decent increase in the multiplication factor for each fuel loading as the 

radius of the inner reflector is decreased.  The largest jump was seen in the increase from 

104 cm to 124 cm radius, followed by a smaller increase at 144 cm. The largest changes 

were seen in the 60% enriched TRU because it contains the most fissile material of the 

three. 

 
VI.C SENSITIVITY OF THE PEBBLE-BED PERFORMANCE TO  

 

 FUEL ENRICHMENT 

 

 The effect of enrichment on the multiplication factor and flux spectrum is a well 

predicted event.  However, the degree to which these are affected in a pebble-bed core is 

analyzed.  Table XXI displays results for the three types of fuel loadings at various 

enrichments for the three sizes of an inside reflector.  The fissile content is also listed for 

a more consistent comparison between the three.  All cases were calculated with a 

pebble-bed fill height of 359 cm at room temperature and a volume fraction of 30%. 

 Fig. 33 is the corresponding plot associated with Table XXI shown only for the 

two extreme central column sizes. 
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Table XXI.  Summary of Design Sensitivity Effects 
   keff 

Fuel Fuel Enrichment Fissile Content 104 cm 124 cm 144 cm 

LEU 

10 10 0.8529 0.8591 0.8635 

15 15 0.9543 0.9618 0.9684 

20 20 1.037 1.0494 1.0564 

25 25 1.1089 1.1237 1.1339 

30 30 1.1776 1.1892 1.1985 

35 35 1.2317 1.2515 1.2607 

RGPu 

10 6 0.7086 0.7142 0.7155 

15 9 0.8139 0.8251 0.8296 

20 12 0.9087 0.9221 0.92933 

25 15 0.9915 1.0082 1.01736 

30 18 1.064 1.0838 1.0937 

35 21 1.1294 1.1507 1.1619 

TRU 

40 16 1.0266 1.04153 1.055 

60 24 1.1831 1.2046 1.2201 

80 32 1.3114 1.3368 1.3539 

100 40 1.4315 1.4577 1.4783 
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Fig. 33.  Effect of Fissile Content on Multiplication Factor for Three Fuel Loadings 

 

 The TRU and RGPu fuels increased the multiplication factor at a greater rate 

than the LEU fuel.  This same trend was seen in the effect of pebble loading height on 

multiplication factor.  An increase in fissile material has a lesser effect on LEU than on 

the other two fuels. 

 
VI.D  SENSITIVITY OF THE PEBBLE-BED PERFORMANCE TO THE  

 

KERNEL PACKING FRACTION 

 
 Altering the loading ratio of fuel to moderator in any pebble has an odd effect.  

There is a fine line between too much and too little fuel in terms of getting the most 

multiplication.   



 

 

83

 The value analyzed in this section relates the amount of fuel (TRISO particles) to 

the space occupied by the graphite matrix of the central part of the pebble (per pebble).  

These numbers are often described as a volume fraction percent (VF %), number of 

particles per pebble (SCALE input NUMPAR), or fuel loading in grams.  Table XXII 

and Fig. 34 show the effect on multiplication factor as the packing fraction was 

increased from 3% to 80% for four types of fuel loadings. 

 

Table XXII.  Effect of Kernel Packing Fraction on Multiplication Factor at 300 K 

   keff 

VF (%) NUMPAR Loading (g) RGPu 30% RGPu 35% LEU 20% TRU 60% 

3 4,677 2.8 0.8947 0.9033 1.3495 0.8047 

5 7,795 4.7 0.8375 0.8588 1.232 0.8263 

8 12,472 7.5 0.8465 0.8854 1.1247 0.8999 

10 15,590 9.4 0.8718 0.91575 1.0914 0.95027 

12 18,708 11.2 0.8989 0.9501 1.064 0.99212 

14 21,827 13.1 0.92691 0.98318 1.0496 1.0208 

18 28,063 16.8 0.9791 1.0396 1.0367 1.0848 

20 31,180 18.7 1.0022 1.0669 1.036 1.10917 

25 38,976 23.4 1.0535 1.11985 1.0408 1.1604 

30 46,772 28.1 1.0937 1.1619 1.0564 1.2046 

35 54,567 32.7 1.1301 1.1974 1.0692 1.2475 

40 62,360 37.4 1.1582 1.2326 1.0857 1.2843 

50 77,950 46.8 1.2178 1.289 1.1196 1.3508 

60 93,543 56.1 1.2587 1.3377 1.1464 1.4128 

70 109,134 65.5 1.3029 1.3832 1.1677 1.4769 

80 125,724 75.4 1.3429 1.4263 1.1896 1.533 
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Fig. 34. Effective Multiplication Factor as a Function of Kernel Packing Fraction at 300K 

 

The RGPu and TRU loadings began subcritical at 3% and increased to reach 

criticality around 18-20% packing fraction.  The two RGPu fuels began with a slightly 

higher keff at 3% before dipping and rising again slowly.  The LEU fuel loading was the 

only one to have the highest multiplication factor associated with the lowest packing 

fraction.   

The possible reasoning behind this trend is hidden in the amount of moderating 

material present.  At low packing fractions, there is an abundance of graphite in the inner 

matrix of the pebble.  Since the LEU fuel contains the thermal fissile nuclide, 235U, the 
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larger amount of moderating graphite sustains super criticality.  As the amount of 

graphite is replaced with fueled particles, thermal neutrons are less abundant and 

therefore keff is reduced.  RGPu and TRU both contain a large amount of 239Pu and other 

fast fissioning nuclides.  These fuels produce a higher keff when less graphite is present.  

Thus, at higher packing fractions these loadings are supercritical. 

Table XXIII gives the same type of result as Table XXII for a different operating 

temperature.  Fig. 35 shows the results in a graphical form.  The trend is similar to that at 

300K but, as expected, the multiplication factors are slightly lower. 

 
Table XXIII.  Effect of Kernel Packing Fraction on Multiplication Factor at 1223K 

   keff 

VF (%) NUMPAR Loading (g) TRU 60% RGPu 35% LEU 20% 

3 4,677 2.8 0.7796 0.8399 1.3404 

5 7,795 4.7 0.8064 0.8174 1.2322 

8 12,472 7.5 0.88265 0.8501 1.1362 

10 15,590 9.4 0.93042 0.882 1.1014 

12 18,708 11.2 0.97131 0.91866 1.079 

14 21,827 13.1 1.00478 0.9498 1.0617 

18 28,063 16.8 1.0622 1.0015 1.052 

20 31,180 18.7 1.0869 1.0279 1.0516 

25 38,976 23.4 1.1401 1.081 1.058 

30 46,772 28.1 1.1853 1.12203 1.0689 

35 54,567 32.7 1.2258 1.15751 1.0836 

40 62,360 37.4 1.2657 1.1924 1.1008 

50 77,950 46.8 1.3378 1.2499 1.1316 

60 93,543 56.1 1.3992 1.30631 1.1576 

70 109,134 65.5 1.4633 1.34893 1.1803 

80 125,724 75.4 1.5215 1.3965 1.2024 
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Fig. 35. Effective Multiplication Factor as a Function of Kernel Packing Fraction at 
1223K. 
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CHAPTER VII 

 

 

CONCLUSIONS 

 
 

 A detailed full core 3D pebble-bed VHTR model was developed.  As an 

imperative part any modeling scheme, the models were verified and validated by 

performing experiment-to-code and code-to-code benchmarking procedures.  In 

addition, two double heterogeneity modeling techniques were compared.  This provided 

ratification for obtained data and results.  Configuration adjustments and design 

sensitivity studies in VHTR pebble-bed cores were performed and included advanced 

actinide fuel loadings. 

 A configuration adjustment was made to the small scale, cylindrical HTR-10 

core to create a large scale, annular core design.  This core is a more realistic layout for 

possible use in future VHTR systems due to its inherent safety features.  The preliminary 

safety analysis of the large scale core showed promising performance characteristics. 

 Fuel loadings consisting of advanced actinide fuels were evaluated for both small 

and large scale models in flux spectra, multiplication factor, and temperature coefficient.  

Initial studies indicate a strong potential for the use of minor actinides as one possible 

fuel component in VHTRs. 

 This research, in combination with similar studies of the VHTR prismatic core, 

offers an excellent basis for transitioning into finalizing the objective of the project as a 

whole:  to assess the possibility, advantages and limitations of achieving ultra-long life 



 

 

88

VHTRs with minor actinides as a fuel component.  This includes a comparison between 

the many VHTR configurations. 

 Several challenges lie ahead for successful completion of future research.  Some 

of the challenges include: 

§ Additional configuration adjustments and heterogeneity treatments, 

§ Uncertainty effects of nuclear data and design parameters 

§ Depletion and error propagation 

§ Final loadings containing minor actinides to assess ultra-long life capabilities 

The primary advantage of the ultra-long life VHTR configurations are their 

inherent capabilities for utilization of minor actinides from spent LWR fuel, reduction of 

spent fuel flows and handling per unit of produced energy, and potential for autonomous 

operation with minimized maintenance.  Their broad deployment would allow reducing 

the long-term radiotoxicity and head load of high level waste sent to a geologic 

repository and most importantly, enable recovery of the energy contained in spent fuel. 

 The completion of this work has laid a basis for the additional research in areas 

which aim to aid the energy crisis facing future generations.  Creating advanced nuclear 

energy systems requires a modeling-based design that relies on simulating features of the 

entire life cycle of the system before actual physical prototyping.  With the ground work 

laid from this research and the modeling-based designs, the Generation IV VHTR can 

transform into a real technology that can deliver electricity and hydrogen, as well as 

assist in spent fuel treatment while being inherently safe, environmentally friendly and 

show proliferation resistance. 
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 Generation IV designs including the VHTR offer seemingly endless possibilities 

and advances, but the primary goal is not far off:   making available to every developing 

country, and every individual, the common commodity we call electricity. 
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APPENDIX A 

 

EXAMPLE SCALE 5.1 INPUT FILE 
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SCALE 5.1 Input File (Power Reactor Model in KENO V.a, Control Rods Withdrawn, 
Part of Sensitivity Study) 
 
'leu20%_vf=0.3_219cm 
=csas25 parm=(centrm) 
PowerReactor(cr removed):LEU 20%=10.41,VF=30%,ModelA 
v6-238 
read comp 
'upper reflector: 
 c-graphite  1 0 0.072941 300 end   
 b           1 0 0.00329811 300 end   
 c-graphite  2 0 0.0851462 300 end   
 b           2 0 4.57148e-07 300 end   
 c-graphite  3 0 0.014535 300 end   
 b           3 0 7.80384e-08 300 end   
 c-graphite  4 0 0.0802916 300 end   
 b           4 0 4.31084e-07 300 end   
'helium coolant: 
 he          5  den=0.0001604 1 300 end   
'dummy balls, simplified as graphite of lower density: 
 c-graphite  6 0 0.0538275 300 end   
 b           6 0 2.88999e-07 300 end   
 c-graphite  7 0 0.0851047 300 end   
 b           7 0 4.56926e-07 300 end   
'bottom reflector: 
 c-graphite  8 0 0.0781408 300 end   
 b           8 0 4.19537e-07 300 end   
 c-graphite  9 0 0.0823751 300 end   
 b           9 0 4.42271e-07 300 end   
 c-graphite  10 0 0.0843647 300 end   
 b           10 0 0.000298504 300 end   
 c-graphite  11 0 0.0817101 300 end   
 b           11 0 0.000156416 300 end   
 c-graphite  12 0 0.085079 300 end   
 b           12 0 0.000209092 300 end   
 c-graphite  13 0 0.0819167 300 end   
 b           13 0 3.58529e-05 300 end   
 c-graphite  14 0 0.0541118 300 end   
 b           14 0 5.77456e-05 300 end   
 c-graphite  15 0 0.033211 300 end   
 b           15 0 1.78309e-07 300 end   
 c-graphite  16 0 0.0881811 300 end   
 b           16 0 3.58866e-05 300 end   
 c-graphite  17 0 0.0765984 300 end   
 b           17 0 0.00346349 300 end   
'carbon bricks on bottom: 
 c-graphite  18 0 0.0797184 300 end   
'radial reflector: 
 c-graphite  19 0 0.0761157 300 end   
 b           19 0 0.344166 300 end   
 c-graphite  20 0 0.0878374 300 end   
 b           20 0 4.71597e-07 300 end   
 c-graphite  21 0 0.0579696 300 end   
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 b           21 0 3.11238e-07 300 end   
 c-graphite  22 0 0.0882418 300 end   
 b           22 0 4.73769e-07 300 end   
 c-graphite  24 0 0.0879541 300 end   
 b           24 0 0.000168369 300 end   
 c-graphite  29 0 0.0524843 300 end   
 b           29 0 1.81969e-05 300 end   
 c-graphite  42 0 0.0879637 300 end   
 b           42 0 0.000162903 300 end   
 c-graphite  48 0 0.0582699 300 end   
 b           48 0 3.1285e-07 300 end   
 c-graphite  57 0 0.0728262 300 end   
 b           57 0 3.91003e-07 300 end   
 c-graphite  60 0 0.0879538 300 end   
 b           60 0 0.000168369 300 end   
'dummy balls, taken as carbon bricks: 
 c-graphite  81 den=1.59 1 300 end  
'dummy balls, simplified as graphite of lower density: 
 c-graphite  83 0 0.0538275 300 end   
 b           83 0 2.88999e-07 300 end  
'fuel kernel, 20% 235:  
 uo2         91 den=10.41 1 1223 92234 0.005407837 92235 20 92238 
79.99459 end   
'fuel coating: 
 b-10        92 0 7.221155e-09 300 end   
 b-11        92 0 2.924932e-08 300 end   
 c-graphite  92 0 0.07291468 300 end   
 silicon     92 0 0.01017942 300 end   
'fuel coating: 
 b-10        95 0 7.221155e-09 300 end   
 b-11        95 0 2.924932e-08 300 end   
 c-graphite  95 0 0.07291468 300 end   
 silicon     95 0 0.01017942 300 end   
'1st Fuel Coating: 
 c-graphite  101 0 0.056255 300 end   
'2nd Fuel coating: 
 c-graphite  102 0 0.095714 300 end  
'3rd Fuel coating: 
 c-graphite  103 0 0.048136 300 end   
 si          103 0 0.048136 300 end                 
'4th Fuel coating: 
 c-graphite  104 0 0.093759 300 end  
'graphite shell + moderator pebble (region 2): 
 c-graphite  96 den=1.59 0.64154 300 end 
'c-graphite  96 den=1.77 0.35846 300 end: 
 he          89 den=0.0001604 1 300 end  
'center graphite matrix: 
 b           98 den=1.69 8.2e-07 300 5010 19.9 5011 80.1 end  
 c-graphite  98 den=1.69 0.99999918 300 end  
end comp 
'MODEL A double heterogeneity treatment with coatings explicit and 
using cellmix, 30% VF: 
read celldata  
doublehet fuelmix=82 end 



 

 

100

        gfr=0.02985 91 coatr=0.03588 101 coatr=0.038945 102 
coatr=0.041835 103 coatr=0.04645 104 VF=0.3 matrix=98 end grain 
        pebble sphtriangp right_bdy=white hpitch=3.64 89 fuelr=2.5 
cladr=3.4341 96 end 
end celldata 
read parameter 
           gen=200 
           npg=1000 
           NSK=10 
           FLX=yes 
           FDN=yes 
           PKI=yes 
           FAR=yes 
           GAS=yes 
           FMP=yes 
           MKU=yes 
           FMU=yes 
           SMU=yes 
           NUB=yes 
           CFX=yes 
end parameter 
read geometry  
unit 1 
com='core at height 117.616 cm' 
 zcylinder 18 1 311.793  160  0  
  hole 73 0  0  0  
  hole 21 288.6  0  0  
  hole 21 274.475  89.1823  0  
  hole 21 233.482  169.635  0  
  hole 21 169.635  233.482  0  
  hole 21 89.1823  274.475  0  
  hole 21 0  288.6  0  
  hole 21 -89.1823  274.475  0  
  hole 21 -169.635  233.482  0  
  hole 21 -233.482  169.635  0  
  hole 21 -274.475  89.1823  0  
  hole 21 -274.475  -89.1823  0  
  hole 21 -233.482  -169.635  0  
  hole 21 -169.635  -233.482  0  
  hole 21 -89.1823  -274.475  0  
  hole 21 0  -288.6  0  
  hole 21 -288.6  0  0  
  hole 21 89.1823  -274.475  0  
  hole 21 169.635  -233.482  0  
  hole 21 233.482  -169.635  0  
  hole 21 274.475  -89.1823  0  
 zcylinder 17 1 334  160  0  
 cuboid 0 1  400  -400  400  -400  160  0  
unit 2 
 zcylinder 17 1 334  50.83  0  
  hole 74 0  0  0  
  hole 22 288.6  0  0  
  hole 22 274.475  89.1823  0  
  hole 22 233.482  169.635  0  
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  hole 22 169.635  233.482  0  
  hole 22 89.1823  274.475  0  
  hole 22 0  288.6  0  
  hole 22 -89.1823  274.475  0  
  hole 22 -169.635  233.482  0  
  hole 22 -233.482  169.635  0  
  hole 22 -274.475  89.1823  0  
  hole 22 -274.475  -89.1823  0  
  hole 22 -233.482  -169.635  0  
  hole 22 -169.635  -233.482  0  
  hole 22 -89.1823  -274.475  0  
  hole 22 0  -288.6  0  
  hole 22 -288.6  0  0  
  hole 22 89.1823  -274.475  0  
  hole 22 169.635  -233.482  0  
  hole 22 233.482  -169.635  0  
  hole 22 274.475  -89.1823  0  
 cuboid 0 1  400  -400  400  -400  50.83  0  
unit 3 
 zcylinder 12 1 185.75  25.42  0  
  hole 75 0  0  0  
 zcylinder 16 1 234  25.42  0  
 zcylinder 22 1 311.793  25.42  0  
  hole 23 288.6  0  0  
  hole 23 274.475  89.1823  0  
  hole 23 233.482  169.635  0  
  hole 23 169.635  233.482  0  
  hole 23 89.1823  274.475  0  
  hole 23 0  288.6  0  
  hole 23 -89.1823  274.475  0  
  hole 23 -169.635  233.482  0  
  hole 23 -233.482  169.635  0  
  hole 23 -274.475  89.1823  0  
  hole 23 -274.475  -89.1823  0  
  hole 23 -233.482  -169.635  0  
  hole 23 -169.635  -233.482  0  
  hole 23 -89.1823  -274.475  0  
  hole 23 0  -288.6  0  
  hole 23 -288.6  0  0  
  hole 23 89.1823  -274.475  0  
  hole 23 169.635  -233.482  0  
  hole 23 233.482  -169.635  0  
  hole 23 274.475  -89.1823  0  
 zcylinder 17 1 334  25.42  0  
 cuboid 0 1  400  -400  400  -400  25.42  0  
unit 4 
 zcylinder 12 1 185.75  50.83  0  
  hole 74 0  0  0  
 zcylinder 14 1 214.75  50.83  0  
 zcylinder 15 1 234  50.83  0  
 zcylinder 22 1 311.793  50.83  0  
  hole 56 234  0  15  
  hole 22 274.475  89.1823  0  
  hole 22 233.482  169.635  0  
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  hole 22 169.635  233.482  0  
  hole 22 89.1823  274.475  0  
  hole 22 0  -288.6  0  
  hole 22 -89.1823  274.475  0  
  hole 22 -169.635  233.482  0  
  hole 22 -233.482  169.635  0  
  hole 22 -274.475  89.1823  0  
  hole 22 -274.475  -89.1823  0  
  hole 22 -233.482  -169.635  0  
  hole 22 -169.635  -233.482  0  
  hole 22 -89.1823  -274.475  0  
  hole 22 0  288.6  0  
  hole 22 -288.6  0  0  
  hole 22 89.1823  -274.475  0  
  hole 22 169.635  -233.482  0  
  hole 22 233.482  -169.635  0  
  hole 22 274.475  -89.1823  0  
 zcylinder 17 1 334  50.83  0  
  hole 57 311.8  0  25.4  
 cuboid 0 1  400  -400  400  -400  50.83  0  
unit 5 
 zcylinder 12 1 185.75  25.42  0  
  hole 75 0  0  0  
 zcylinder 13 1 234  25.42  0  
 zcylinder 22 1 311.793  25.42  0  
  hole 23 288.6  0  0  
  hole 23 274.475  89.1823  0  
  hole 23 233.482  169.635  0  
  hole 23 169.635  233.482  0  
  hole 23 89.1823  274.475  0  
  hole 23 0  288.6  0  
  hole 23 -89.1823  274.475  0  
  hole 23 -169.635  233.482  0  
  hole 23 -233.482  169.635  0  
  hole 23 -274.475  89.1823  0  
  hole 23 -274.475  -89.1823  0  
  hole 23 -233.482  -169.635  0  
  hole 23 -169.635  -233.482  0  
  hole 23 -89.1823  -274.475  0  
  hole 23 0  -288.6  0  
  hole 23 -288.6  0  0  
  hole 23 89.1823  -274.475  0  
  hole 23 169.635  -233.482  0  
  hole 23 233.482  -169.635  0  
  hole 23 274.475  -89.1823  0  
 zcylinder 17 1 334  25.42  0  
 cuboid 0 1  400  -400  400  -400  25.42  0  
unit 6 
 zcylinder 10 1 185.75  33.89  0  
  hole 76 0  0  0  
 zcylinder 11 1 234  33.89  0  
 zcylinder 24 1 239.6  33.89  0  
 zcylinder 42 1 252.6  33.89  0  
  hole 27 246.1  0  0  
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  hole 27 144.6538  199.099  0  
  hole 27 76.0491  234.0549  0  
  hole 27 -76.0491  234.0549  0  
  hole 27 -144.6538  199.099  0  
  hole 27 -234.0549  76.0491  0  
  hole 27 -246.1  0  0  
  hole 27 -144.6538  -199.099  0  
  hole 27 -76.0491  -234.0549  0  
  hole 27 76.0491  -234.0549  0  
  hole 27 144.6538  -199.099  0  
  hole 27 234.0549  -76.0491  0  
  hole 27 -199.099  -144.6538  0  
  hole 28 234.0549  76.0491  0  
  hole 28 199.099  144.6538  0  
  hole 28 0  246.1  0  
  hole 28 -199.099  144.6538  0  
  hole 28 -234.0549  -76.0491  0  
  hole 28 0  -246.1  0  
  hole 28 199.099  -144.6538  0  
 zcylinder 24 1 284.6  33.89  0  
 zcylinder 60 1 292.6  33.89  0  
  hole 26 288.6  0  0  
  hole 26 274.475  89.1823  0  
  hole 26 233.482  169.635  0  
  hole 26 169.635  233.482  0  
  hole 26 89.1823  274.475  0  
  hole 26 0  288.6  0  
  hole 26 -89.1823  274.475  0  
  hole 26 -169.635  233.482  0  
  hole 26 -233.482  169.635  0  
  hole 26 -274.475  89.1823  0  
  hole 26 -274.475  -89.1823  0  
  hole 26 -233.482  -169.635  0  
  hole 26 -169.635  -233.482  0  
  hole 26 -89.1823  -274.475  0  
  hole 26 0  -288.6  0  
  hole 26 -288.6  0  0  
  hole 26 89.1823  -274.475  0  
  hole 26 169.635  -233.482  0  
  hole 26 233.482  -169.635  0  
  hole 26 274.475  -89.1823  0  
 zcylinder 24 1 311.793  33.89  0  
 zcylinder 17 1 334  33.89  0  
 cuboid 0 1  400  -400  400  -400  33.89  0  
unit 7 
 zcylinder 9 1 234  47.44  0  
  hole 77 0  0  0  
 zcylinder 22 1 311.793  47.44  0  
  hole 30 246.1  0  0  
  hole 30 144.6538  199.099  0  
  hole 30 76.0491  234.0549  0  
  hole 30 -76.0491  234.0549  0  
  hole 30 -144.6538  199.099  0  
  hole 30 -234.0549  76.0491  0  
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  hole 30 -246.1  0  0  
  hole 30 -144.6538  -199.099  0  
  hole 30 -76.0491  -234.0549  0  
  hole 30 76.0491  -234.0549  0  
  hole 30 144.6538  -199.099  0  
  hole 30 234.0549  -76.0491  0  
  hole 30 -199.099  -144.6538  0  
  hole 31 234.0549  76.0491  0  
  hole 31 199.099  144.6538  0  
  hole 31 0  246.1  0  
  hole 31 -199.099  144.6538  0  
  hole 31 -234.0549  -76.0491  0  
  hole 31 0  -246.1  0  
  hole 31 199.099  -144.6538  0  
  hole 29 288.6  0  0  
  hole 29 274.475  89.1823  0  
  hole 29 233.482  169.635  0  
  hole 29 169.635  233.482  0  
  hole 29 89.1823  274.475  0  
  hole 29 0  288.6  0  
  hole 29 -89.1823  274.475  0  
  hole 29 -169.635  233.482  0  
  hole 29 -233.482  169.635  0  
  hole 29 -274.475  89.1823  0  
  hole 29 -274.475  -89.1823  0  
  hole 29 -233.482  -169.635  0  
  hole 29 -169.635  -233.482  0  
  hole 29 -89.1823  -274.475  0  
  hole 29 0  -288.6  0  
  hole 29 -288.6  0  0  
  hole 29 89.1823  -274.475  0  
  hole 29 169.635  -233.482  0  
  hole 29 233.482  -169.635  0  
  hole 29 274.475  -89.1823  0  
 zcylinder 17 1 334  47.44  0  
 cuboid 0 1  400  -400  400  -400  47.44  0  
unit 8 
 zcylinder 8 1 234  22.43  0  
  hole 78 0  0  0  
 zcylinder 22 1 311.793  22.43  0  
  hole 33 246.1  0  0  
  hole 33 144.6538  199.099  0  
  hole 33 76.0491  234.0549  0  
  hole 33 -76.0491  234.0549  0  
  hole 33 -144.6538  199.099  0  
  hole 33 -234.0549  76.0491  0  
  hole 33 -246.1  0  0  
  hole 33 -144.6538  -199.099  0  
  hole 33 -76.0491  -234.0549  0  
  hole 33 76.0491  -234.0549  0  
  hole 33 144.6538  -199.099  0  
  hole 33 234.0549  -76.0491  0  
  hole 33 -199.099  144.6538  0  
  hole 34 234.0549  76.0491  0  
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  hole 34 199.099  -144.6538  0  
  hole 34 0  246.1  0  
  hole 34 -199.099  -144.6538  0  
  hole 34 -234.0549  -76.0491  0  
  hole 34 0  -246.1  0  
  hole 34 199.099  144.6538  0  
  hole 32 288.6  0  0  
  hole 32 274.475  89.1823  0  
  hole 32 233.482  169.635  0  
  hole 32 169.635  233.482  0  
  hole 32 89.1823  274.475  0  
  hole 32 0  288.6  0  
  hole 32 -89.1823  274.475  0  
  hole 32 -169.635  233.482  0  
  hole 32 -233.482  169.635  0  
  hole 32 -274.475  89.1823  0  
  hole 32 -274.475  -89.1823  0  
  hole 32 -233.482  -169.635  0  
  hole 32 -169.635  -233.482  0  
  hole 32 -89.1823  -274.475  0  
  hole 32 0  -288.6  0  
  hole 32 -288.6  0  0  
  hole 32 89.1823  -274.475  0  
  hole 32 169.635  -233.482  0  
  hole 32 233.482  -169.635  0  
  hole 32 274.475  -89.1823  0  
 zcylinder 17 1 334  22.43  0  
 cuboid 0 1  400  -400  400  -400  22.43  0  
unit 9 
 zcylinder 83 1 179  10.17  0  
  hole 64 0  0  0  
 zcylinder 7 1 234  10.17  0  
 zcylinder 22 1 311.793  10.17  0  
  hole 36 246.1  0  0  
  hole 36 144.6538  199.099  0  
  hole 36 76.0491  234.0549  0  
  hole 36 -76.0491  234.0549  0  
  hole 36 -144.6538  199.099  0  
  hole 36 -234.0549  76.0491  0  
  hole 36 -246.1  0  0  
  hole 36 -144.6538  -199.099  0  
  hole 36 -76.0491  -234.0549  0  
  hole 36 76.0491  -234.0549  0  
  hole 36 144.6538  -199.099  0  
  hole 36 234.0549  -76.0491  0  
  hole 36 -199.099  -144.6538  0  
  hole 37 234.0549  76.0491  0  
  hole 37 199.099  144.6538  0  
  hole 37 0  246.1  0  
  hole 37 -199.099  144.6538  0  
  hole 37 -234.0549  -76.0491  0  
  hole 37 0  -246.1  0  
  hole 37 199.099  -144.6538  0  
  hole 35 288.6  0  0  
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  hole 35 274.475  89.1823  0  
  hole 35 233.482  169.635  0  
  hole 35 169.635  233.482  0  
  hole 35 89.1823  274.475  0  
  hole 35 0  288.6  0  
  hole 35 -89.1823  274.475  0  
  hole 35 -169.635  233.482  0  
  hole 35 -233.482  169.635  0  
  hole 35 -274.475  89.1823  0  
  hole 35 -274.475  -89.1823  0  
  hole 35 -233.482  -169.635  0  
  hole 35 -169.635  -233.482  0  
  hole 35 -89.1823  -274.475  0  
  hole 35 0  -288.6  0  
  hole 35 -288.6  0  0  
  hole 35 89.1823  -274.475  0  
  hole 35 169.635  -233.482  0  
  hole 35 233.482  -169.635  0  
  hole 35 274.475  -89.1823  0  
 zcylinder 17 1 334  10.17  0  
 cuboid 0 1  400  -400  400  -400  10.17  0  
unit 10 
 zcylinder 83 1 189  10.17  0  
  hole 64 0  0  0  
 zcylinder 7 1 234  10.17  0  
 zcylinder 22 1 311.793  10.17  0  
  hole 36 246.1  0  0  
  hole 36 144.6538  199.099  0  
  hole 36 76.0491  234.0549  0  
  hole 36 -76.0491  234.0549  0  
  hole 36 -144.6538  199.099  0  
  hole 36 -234.0549  76.0491  0  
  hole 36 -246.1  0  0  
  hole 36 -144.6538  -199.099  0  
  hole 36 -76.0491  -234.0549  0  
  hole 36 76.0491  -234.0549  0  
  hole 36 144.6538  -199.099  0  
  hole 36 234.0549  -76.0491  0  
  hole 36 -199.099  -144.6538  0  
  hole 37 234.0549  76.0491  0  
  hole 37 199.099  144.6538  0  
  hole 37 0  246.1  0  
  hole 37 -199.099  144.6538  0  
  hole 37 -234.0549  -76.0491  0  
  hole 37 0  -246.1  0  
  hole 37 199.099  -144.6538  0  
  hole 35 288.6  0  0  
  hole 35 274.475  89.1823  0  
  hole 35 233.482  169.635  0  
  hole 35 169.635  233.482  0  
  hole 35 89.1823  274.475  0  
  hole 35 0  288.6  0  
  hole 35 -89.1823  274.475  0  
  hole 35 -169.635  233.482  0  
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  hole 35 -233.482  169.635  0  
  hole 35 -274.475  89.1823  0  
  hole 35 -274.475  -89.1823  0  
  hole 35 -233.482  -169.635  0  
  hole 35 -169.635  -233.482  0  
  hole 35 -89.1823  -274.475  0  
  hole 35 0  -288.6  0  
  hole 35 -288.6  0  0  
  hole 35 89.1823  -274.475  0  
  hole 35 169.635  -233.482  0  
  hole 35 233.482  -169.635  0  
  hole 35 274.475  -89.1823  0  
 zcylinder 17 1 334  10.17  0  
 cuboid 0 1  400  -400  400  -400  10.17  0  
unit 11 
 zcylinder 83 1 199  10.17  0  
  hole 64 0  0  0  
 zcylinder 7 1 234  10.17  0  
 zcylinder 22 1 311.793  10.17  0  
  hole 36 246.1  0  0  
  hole 36 144.6538  199.099  0  
  hole 36 76.0491  234.0549  0  
  hole 36 -76.0491  234.0549  0  
  hole 36 -144.6538  199.099  0  
  hole 36 -234.0549  76.0491  0  
  hole 36 -246.1  0  0  
  hole 36 -144.6538  -199.099  0  
  hole 36 -76.0491  -234.0549  0  
  hole 36 76.0491  -234.0549  0  
  hole 36 144.6538  -199.099  0  
  hole 36 234.0549  -76.0491  0  
  hole 36 -199.099  -144.6538  0  
  hole 37 234.0549  76.0491  0  
  hole 37 199.099  144.6538  0  
  hole 37 0  246.1  0  
  hole 37 -199.099  144.6538  0  
  hole 37 -234.0549  -76.0491  0  
  hole 37 0  -246.1  0  
  hole 37 199.099  -144.6538  0  
  hole 35 288.6  0  0  
  hole 35 274.475  89.1823  0  
  hole 35 233.482  169.635  0  
  hole 35 169.635  233.482  0  
  hole 35 89.1823  274.475  0  
  hole 35 0  288.6  0  
  hole 35 -89.1823  274.475  0  
  hole 35 -169.635  233.482  0  
  hole 35 -233.482  169.635  0  
  hole 35 -274.475  89.1823  0  
  hole 35 -274.475  -89.1823  0  
  hole 35 -233.482  -169.635  0  
  hole 35 -169.635  -233.482  0  
  hole 35 -89.1823  -274.475  0  
  hole 35 0  -288.6  0  
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  hole 35 -288.6  0  0  
  hole 35 89.1823  -274.475  0  
  hole 35 169.635  -233.482  0  
  hole 35 233.482  -169.635  0  
  hole 35 274.475  -89.1823  0  
 zcylinder 17 1 334  10.17  0  
 cuboid 0 1  400  -400  400  -400  10.17  0  
unit 12 
 zcylinder 83 1 209  10.17  0  
  hole 64 0  0  0  
 zcylinder 7 1 234  10.17  0  
 zcylinder 22 1 311.793  10.17  0  
  hole 36 246.1  0  0  
  hole 36 144.6538  199.099  0  
  hole 36 76.0491  234.0549  0  
  hole 36 -76.0491  234.0549  0  
  hole 36 -144.6538  199.099  0  
  hole 36 -234.0549  76.0491  0  
  hole 36 -246.1  0  0  
  hole 36 -144.6538  -199.099  0  
  hole 36 -76.0491  -234.0549  0  
  hole 36 76.0491  -234.0549  0  
  hole 36 144.6538  -199.099  0  
  hole 36 234.0549  -76.0491  0  
  hole 36 -199.099  -144.6538  0  
  hole 37 234.0549  76.0491  0  
  hole 37 199.099  144.6538  0  
  hole 37 0  246.1  0  
  hole 37 -199.099  144.6538  0  
  hole 37 -234.0549  -76.0491  0  
  hole 37 0  -246.1  0  
  hole 37 199.099  -144.6538  0  
  hole 35 288.6  0  0  
  hole 35 274.475  89.1823  0  
  hole 35 233.482  169.635  0  
  hole 35 169.635  233.482  0  
  hole 35 89.1823  274.475  0  
  hole 35 0  288.6  0  
  hole 35 -89.1823  274.475  0  
  hole 35 -169.635  233.482  0  
  hole 35 -233.482  169.635  0  
  hole 35 -274.475  89.1823  0  
  hole 35 -274.475  -89.1823  0  
  hole 35 -233.482  -169.635  0  
  hole 35 -169.635  -233.482  0  
  hole 35 -89.1823  -274.475  0  
  hole 35 0  -288.6  0  
  hole 35 -288.6  0  0  
  hole 35 89.1823  -274.475  0  
  hole 35 169.635  -233.482  0  
  hole 35 233.482  -169.635  0  
  hole 35 274.475  -89.1823  0  
 zcylinder 17 1 334  10.17  0  
 cuboid 0 1  400  -400  400  -400  10.17  0  
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unit 13 
 zcylinder 83 1 219  10.17  0  
  hole 64 0  0  0  
 zcylinder 7 1 234  10.17  0  
 zcylinder 22 1 311.793  10.17  0  
  hole 36 246.1  0  0  
  hole 36 144.6538  199.099  0  
  hole 36 76.0491  234.0549  0  
  hole 36 -76.0491  234.0549  0  
  hole 36 -144.6538  199.099  0  
  hole 36 -234.0549  76.0491  0  
  hole 36 -246.1  0  0  
  hole 36 -144.6538  -199.099  0  
  hole 36 -76.0491  -234.0549  0  
  hole 36 76.0491  -234.0549  0  
  hole 36 144.6538  -199.099  0  
  hole 36 234.0549  -76.0491  0  
  hole 36 -199.099  -144.6538  0  
  hole 37 234.0549  76.0491  0  
  hole 37 199.099  144.6538  0  
  hole 37 0  246.1  0  
  hole 37 -199.099  144.6538  0  
  hole 37 -234.0549  -76.0491  0  
  hole 37 0  -246.1  0  
  hole 37 199.099  -144.6538  0  
  hole 35 288.6  0  0  
  hole 35 274.475  89.1823  0  
  hole 35 233.482  169.635  0  
  hole 35 169.635  233.482  0  
  hole 35 89.1823  274.475  0  
  hole 35 0  288.6  0  
  hole 35 -89.1823  274.475  0  
  hole 35 -169.635  233.482  0  
  hole 35 -233.482  169.635  0  
  hole 35 -274.475  89.1823  0  
  hole 35 -274.475  -89.1823  0  
  hole 35 -233.482  -169.635  0  
  hole 35 -169.635  -233.482  0  
  hole 35 -89.1823  -274.475  0  
  hole 35 0  -288.6  0  
  hole 35 -288.6  0  0  
  hole 35 89.1823  -274.475  0  
  hole 35 169.635  -233.482  0  
  hole 35 233.482  -169.635  0  
  hole 35 274.475  -89.1823  0  
 zcylinder 17 1 334  10.17  0  
 cuboid 0 1  400  -400  400  -400  10.17  0  
unit 14 
 zcylinder 83 1 234  12.11  0  
  hole 65 0  0  0  
 zcylinder 22 1 311.793  12.11  0  
  hole 39 246.1  0  0  
  hole 39 144.6538  199.099  0  
  hole 39 76.0491  234.0549  0  
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  hole 39 -76.0491  234.0549  0  
  hole 39 -144.6538  199.099  0  
  hole 39 -234.0549  76.0491  0  
  hole 39 -246.1  0  0  
  hole 39 -144.6538  -199.099  0  
  hole 39 -76.0491  -234.0549  0  
  hole 39 76.0491  -234.0549  0  
  hole 39 144.6538  -199.099  0  
  hole 39 234.0549  -76.0491  0  
  hole 39 -199.099  -144.6538  0  
  hole 40 234.0549  76.0491  0  
  hole 40 199.099  144.6538  0  
  hole 40 0  246.1  0  
  hole 40 -199.099  144.6538  0  
  hole 40 -234.0549  -76.0491  0  
  hole 40 0  -246.1  0  
  hole 40 199.099  -144.6538  0  
  hole 38 288.6  0  0  
  hole 38 274.475  89.1823  0  
  hole 38 233.482  169.635  0  
  hole 38 169.635  233.482  0  
  hole 38 89.1823  274.475  0  
  hole 38 0  288.6  0  
  hole 38 -89.1823  274.475  0  
  hole 38 -169.635  233.482  0  
  hole 38 -233.482  169.635  0  
  hole 38 -274.475  89.1823  0  
  hole 38 -274.475  -89.1823  0  
  hole 38 -233.482  -169.635  0  
  hole 38 -169.635  -233.482  0  
  hole 38 -89.1823  -274.475  0  
  hole 38 0  -288.6  0  
  hole 38 -288.6  0  0  
  hole 38 89.1823  -274.475  0  
  hole 38 169.635  -233.482  0  
  hole 38 233.482  -169.635  0  
  hole 38 274.475  -89.1823  0  
 zcylinder 17 1 334  12.11  0  
 cuboid 0 1  400  -400  400  -400  12.11  0  
unit 15 
 zcylinder 82 1 234  219.286  0  
  hole 66 0  0  0  
 zcylinder 22 1 311.793  219.286  0  
  hole 42 246.1  0  0  
  hole 42 144.6538  199.099  0  
  hole 42 76.0491  234.0549  0  
  hole 42 -76.0491  234.0549  0  
  hole 42 -144.6538  199.099  0  
  hole 42 -234.0549  76.0491  0  
  hole 42 -246.1  0  0  
  hole 42 -144.6538  -199.099  0  
  hole 42 -76.0491  -234.0549  0  
  hole 42 76.0491  -234.0549  0  
  hole 42 144.6538  -199.099  0  
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  hole 42 234.0549  -76.0491  0  
  hole 42 -199.099  -144.6538  0  
  hole 43 234.0549  76.0491  0  
  hole 43 199.099  144.6538  0  
  hole 43 0  246.1  0  
  hole 43 -199.099  144.6538  0  
  hole 43 -234.0549  -76.0491  0  
  hole 43 0  -246.1  0  
  hole 43 199.099  -144.6538  0  
  hole 41 288.6  0  0  
  hole 41 274.475  89.1823  0  
  hole 41 233.482  169.635  0  
  hole 41 169.635  233.482  0  
  hole 41 89.1823  274.475  0  
  hole 41 0  288.6  0  
  hole 41 -89.1823  274.475  0  
  hole 41 -169.635  233.482  0  
  hole 41 -233.482  169.635  0  
  hole 41 -274.475  89.1823  0  
  hole 41 -274.475  -89.1823  0  
  hole 41 -233.482  -169.635  0  
  hole 41 -169.635  -233.482  0  
  hole 41 -89.1823  -274.475  0  
  hole 41 0  -288.6  0  
  hole 41 -288.6  0  0  
  hole 41 89.1823  -274.475  0  
  hole 41 169.635  -233.482  0  
  hole 41 233.482  -169.635  0  
  hole 41 274.475  -89.1823  0  
 zcylinder 17 1 334  219.286  0  
 cuboid 0 1  400  -400  400  -400  219.286  0  
unit 16 
 zcylinder 5 1 234  156.22  0  
  hole 67 0  0  0  
 zcylinder 22 1 311.793  156.22  0  
  hole 45 246.1  0  0  
  hole 45 144.6538  199.099  0  
  hole 45 76.0491  234.0549  0  
  hole 45 -76.0491  234.0549  0  
  hole 45 -144.6538  199.099  0  
  hole 45 -234.0549  76.0491  0  
  hole 45 -246.1  0  0  
  hole 45 -144.6538  -199.099  0  
  hole 45 -76.0491  -234.0549  0  
  hole 45 76.0491  -234.0549  0  
  hole 45 144.6538  -199.099  0  
  hole 45 234.0549  -76.0491  0  
  hole 45 -199.099  -144.6538  0  
  hole 46 234.0549  76.0491  0  
  hole 46 199.099  144.6538  0  
  hole 46 0  246.1  0  
  hole 46 -199.099  144.6538  0  
  hole 46 -234.0549  -76.0491  0  
  hole 46 0  -246.1  0  
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  hole 46 199.099  -144.6538  0  
  hole 44 288.6  0  0  
  hole 44 274.475  89.1823  0  
  hole 44 233.482  169.635  0  
  hole 44 169.635  233.482  0  
  hole 44 89.1823  274.475  0  
  hole 44 0  288.6  0  
  hole 44 -89.1823  274.475  0  
  hole 44 -169.635  233.482  0  
  hole 44 -233.482  169.635  0  
  hole 44 -274.475  89.1823  0  
  hole 44 -274.475  -89.1823  0  
  hole 44 -233.482  -169.635  0  
  hole 44 -169.635  -233.482  0  
  hole 44 -89.1823  -274.475  0  
  hole 44 0  -288.6  0  
  hole 44 -288.6  0  0  
  hole 44 89.1823  -274.475  0  
  hole 44 169.635  -233.482  0  
  hole 44 233.482  -169.635  0  
  hole 44 274.475  -89.1823  0  
 zcylinder 17 1 334  156.22  0  
 cuboid 0 1  400  -400  400  -400  156.22  0  
unit 17 
 zcylinder 4 1 234  42.36  0  
  hole 68 0  0  0  
 zcylinder 22 1 311.793  42.36  0  
  hole 48 246.1  0  0  
  hole 48 144.6538  199.099  0  
  hole 48 76.0491  234.0549  0  
  hole 48 -76.0491  234.0549  0  
  hole 48 -144.6538  199.099  0  
  hole 48 -234.0549  76.0491  0  
  hole 48 -246.1  0  0  
  hole 48 -144.6538  -199.099  0  
  hole 48 -76.0491  -234.0549  0  
  hole 48 76.0491  -234.0549  0  
  hole 48 144.6538  -199.099  0  
  hole 48 234.0549  -76.0491  0  
  hole 48 -199.099  -144.6538  0  
  hole 49 234.0549  76.0491  0  
  hole 49 199.099  144.6538  0  
  hole 49 0  246.1  0  
  hole 49 -199.099  144.6538  0  
  hole 49 -234.0549  -76.0491  0  
  hole 49 0  -246.1  0  
  hole 49 199.099  -144.6538  0  
  hole 47 288.6  0  0  
  hole 47 274.475  89.1823  0  
  hole 47 233.482  169.635  0  
  hole 47 169.635  233.482  0  
  hole 47 89.1823  274.475  0  
  hole 47 0  288.6  0  
  hole 47 -89.1823  274.475  0  
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  hole 47 -169.635  233.482  0  
  hole 47 -233.482  169.635  0  
  hole 47 -274.475  89.1823  0  
  hole 47 -274.475  -89.1823  0  
  hole 47 -233.482  -169.635  0  
  hole 47 -169.635  -233.482  0  
  hole 47 -89.1823  -274.475  0  
  hole 47 0  -288.6  0  
  hole 47 -288.6  0  0  
  hole 47 89.1823  -274.475  0  
  hole 47 169.635  -233.482  0  
  hole 47 233.482  -169.635  0  
  hole 47 274.475  -89.1823  0  
 zcylinder 17 1 334  42.36  0  
 cuboid 0 1  400  -400  400  -400  42.36  0  
unit 18 
 zcylinder 3 1 234  16.944  0  
  hole 69 0  0  0  
 zcylinder 21 1 239.6  16.944  0  
 zcylinder 29 1 252.6  16.944  0  
  hole 50 246.1  0  0  
  hole 50 144.6538  199.099  0  
  hole 50 76.0491  234.0549  0  
  hole 50 -76.0491  234.0549  0  
  hole 50 -144.6538  199.099  0  
  hole 50 -234.0549  76.0491  0  
  hole 50 -246.1  0  0  
  hole 50 -144.6538  -199.099  0  
  hole 50 -76.0491  -234.0549  0  
  hole 50 76.0491  -234.0549  0  
  hole 50 144.6538  -199.099  0  
  hole 50 234.0549  -76.0491  0  
  hole 50 -199.099  -144.6538  0  
  hole 51 234.0549  76.0491  0  
  hole 51 199.099  144.6538  0  
  hole 51 0  246.1  0  
  hole 51 -199.099  144.6538  0  
  hole 51 -234.0549  -76.0491  0  
  hole 51 0  -246.1  0  
  hole 51 199.099  -144.6538  0  
 zcylinder 48 1 284.6  16.944  0  
 zcylinder 57 1 292.6  16.944  0  
 zcylinder 22 1 311.793  16.944  0  
 zcylinder 17 1 334  16.944  0  
 cuboid 0 1  400  -400  400  -400  16.944  0  
unit 19 
 zcylinder 2 1 234  67.2  0  
  hole 70 0  0  0  
 zcylinder 20 1 239.6  67.2  0  
 zcylinder 22 1 311.793  67.2  0  
  hole 52 246.1  0  0  
  hole 52 144.6538  199.099  0  
  hole 52 76.0491  234.0549  0  
  hole 52 -76.0491  234.0549  0  
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  hole 52 -144.6538  199.099  0  
  hole 52 -234.0549  76.0491  0  
  hole 52 -246.1  0  0  
  hole 52 -144.6538  -199.099  0  
  hole 52 -76.0491  -234.0549  0  
  hole 52 76.0491  -234.0549  0  
  hole 52 144.6538  -199.099  0  
  hole 52 234.0549  -76.0491  0  
  hole 52 -199.099  -144.6538  0  
  hole 53 234.0549  76.0491  0  
  hole 53 199.099  144.6538  0  
  hole 53 0  246.1  0  
  hole 53 -199.099  144.6538  0  
  hole 53 -234.0549  -76.0491  0  
  hole 53 0  -246.1  0  
  hole 53 199.099  -144.6538  0  
 zcylinder 17 1 334  67.2  0  
 cuboid 0 1  400  -400  400  -400  67.2  0  
unit 20 
 zcylinder 1 1 234  48.7  0  
  hole 71 0  0  0  
 zcylinder 19 1 239.6  48.7  0  
 zcylinder 17 1 334  48.7  0  
  hole 54 246.1  0  0  
  hole 54 144.6538  199.099  0  
  hole 54 76.0491  234.0549  0  
  hole 54 -76.0491  234.0549  0  
  hole 54 -144.6538  199.099  0  
  hole 54 -234.0549  76.0491  0  
  hole 54 -246.1  0  0  
  hole 54 -144.6538  -199.099  0  
  hole 54 -76.0491  -234.0549  0  
  hole 54 76.0491  -234.0549  0  
  hole 54 144.6538  -199.099  0  
  hole 54 234.0549  -76.0491  0  
  hole 54 -199.099  -144.6538  0  
  hole 55 234.0549  76.0491  0  
  hole 55 199.099  144.6538  0  
  hole 55 0  246.1  0  
  hole 55 -199.099  144.6538  0  
  hole 55 -234.0549  -76.0491  0  
  hole 55 0  -246.1  0  
  hole 55 199.099  -144.6538  0  
 cuboid 0 1  400  -400  400  -400  48.7  0  
unit 21 
com='20 helium flow channels (unit 1)' 
 zcylinder 5 1 4  160  0  
unit 22 
com='20 helium coolant channels (unit 2,4)' 
 zcylinder 5 1 4  50.83  0  
unit 23 
com='20 helium coolant channels (unit 3,5)' 
 zcylinder 5 1 4  25.42  0  
unit 26 
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com='20 helium coolant channels (unit 6)' 
 zcylinder 5 1 3.85  33.89  0  
unit 27 
com='13 irradition/control rod channels (unit 6)' 
 zcylinder 5 1 6.25  33.89  0  
unit 28 
com='7 absorber ball channels (unit 6)' 
 zcylinder 5 1 5.3  33.89  0  
unit 29 
com='20 helium coolant channels (unit 7)' 
 zcylinder 5 1 4  47.44  0  
unit 30 
com='13 irradition/control rod channels (unit 7)' 
 zcylinder 5 1 6.5  47.44  0  
unit 31 
com='7 absorber ball channels (unit 7)' 
 zcylinder 5 1 5.3  47.44  0  
unit 32 
com='20 helium coolant channels (unit 8)' 
 zcylinder 5 1 4  22.43  0  
unit 33 
com='13 irradition/control rod channels (unit 8)' 
 zcylinder 5 1 6.5  22.43  0  
unit 34 
com='7 absorber ball channels (unit 8)' 
 zcylinder 5 1 5.3  22.43  0  
unit 35 
com='20 helium coolant channels (unit 9-13)' 
 zcylinder 5 1 4  10.17  0  
unit 36 
com='13 irradition/control rod channels (unit 9-13)' 
 zcylinder 5 1 6.5  10.17  0  
unit 37 
com='7 absorber ball channels (unit 9-13)' 
 zcylinder 5 1 5.3  10.17  0  
unit 38 
com='20 helium coolant channels (unit 14)' 
 zcylinder 5 1 4  12.11  0  
unit 39 
com='13 irradition/control rod channels (unit 14)' 
 zcylinder 5 1 6.5  12.11  0  
unit 40 
com='7 absorber ball channels (unit 14)' 
 zcylinder 5 1 5.3  12.11  0  
unit 41 
com='fuel: 20 helium coolant channels (unit 15)' 
 zcylinder 5 1 4  219.286  0  
unit 42 
com='fuel: 13 irradition/control rod channels (unit 15)' 
 zcylinder 5 1 6.5  219.286  0  
unit 43 
com='fuel: 7 absorber ball channels (unit 15)' 
 zcylinder 5 1 5.3  219.286  0  
unit 44 
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com='void: 20 helium coolant channels (unit 16)' 
 zcylinder 5 1 4  156.22  0  
unit 45 
com='void: 13 irradition/control rod channels (unit 16)' 
 zcylinder 5 1 6.5  156.22  0  
unit 46 
com='void: 7 absorber ball channels (unit 16)' 
 zcylinder 5 1 5.3  156.22  0  
unit 47 
com='20 helium coolant channels (unit 17)' 
 zcylinder 5 1 4  42.36  0  
unit 48 
com='13 irradition/control rod channels (unit 17)' 
 zcylinder 5 1 6.5  42.36  0  
unit 49 
com='7 absorber ball channels (unit 17)' 
 zcylinder 5 1 5.3  42.36  0  
unit 50 
com='13 irradition/control rod channels (unit 18)' 
 zcylinder 5 1 6.25  16.944  0  
unit 51 
com='7 absorber ball channels (unit 18)' 
 zcylinder 5 1 5.3  16.944  0  
unit 52 
com='13 irradition/control rod channels (unit 19)' 
 zcylinder 5 1 6.25  67.2  0  
unit 53 
com='7 absorber ball channels (unit 19)' 
 zcylinder 5 1 5.3  67.2  0  
unit 54 
com='13 irradition/control rod channels (unit 20)' 
 zcylinder 5 1 6.25  48.7  0  
unit 55 
com='7 absorber ball channels (unit 20)' 
 zcylinder 5 1 5.3  48.7  0  
unit 56 
com='hot gas duct in region 22, (unit 4)' 
 xcylinder 5 1 14.9  75.5  1  
unit 57 
com='hot gas duct in region 17, (unit 4)' 
 xcylinder 5 1 14.9  20.5  1  
unit 58 
com='graphite center (unit 4)' 
 zcylinder 1 1 144  30  0  
unit 59 
com='graphite center (unit 3)' 
 zcylinder 1 1 144  15  0  
unit 60 
com='graphite block (unit 1)' 
 zcylinder 1 1 144  70  0  
unit 61 
com='graphite column (unit 6)' 
 zcylinder 1 1 144  20  0  
unit 62 
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com='graphite column (unit 7)' 
 zcylinder 1 1 144  28  0  
unit 63 
com='graphite column (unit 8)' 
 zcylinder 1 1 144  13.236  0  
unit 64 
com='graphite column (unit 9 and 10)' 
 zcylinder 1 1 144  10.17  0  
unit 65 
com='graphite column (unit 11-14)' 
 zcylinder 1 1 144  12.11  0  
unit 66 
com='graphite column (unit 15)' 
 zcylinder 1 1 144  219.286  0  
unit 67 
com='graphite column (unit 16)' 
 zcylinder 1 1 144  156.22  0  
unit 68 
com='graphite columnn (unit 17)' 
 zcylinder 1 1 144  42.36  0  
unit 69 
com='graphite column (unit 18)' 
 zcylinder 1 1 144  16.944  0  
unit 70 
com='graphite column (unit 19)' 
 zcylinder 1 1 144  67.2  0  
unit 71 
com='graphite column (unit 20)' 
 zcylinder 1 1 144  48.7  0  
unit 72 
 zcylinder 18 1 144  70  0  
unit 73 
com='graphite column (unit 1)' 
 zcylinder 1 1 144  160  0  
unit 74 
com='graphite column (unit 2,4)' 
 zcylinder 1 1 144  50.83  0  
unit 75 
com='graphite column (unit 3,5)' 
 zcylinder 1 1 144  25.42  0  
unit 76 
com='graphite column (unit 6)' 
 zcylinder 1 1 144  33.89  0  
unit 77 
com='graphite column (unit 7)' 
 zcylinder 1 1 144  47.44  0  
unit 78 
com='graphite column (unit 8)' 
 zcylinder 1 1 144  22.43  0  
end geometry 
read array 
ara=1 nux=1 nuy=1 nuz=20  gbl=1 
fill 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
end fill 
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end array 
end data 
end 
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