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Osorio, whose support and excellent advice was always encouraging for completing my Master

thesis. I am deeply grateful for all the academic and personal teachings. I owe special gratitude to

Professor Manuel Montes, for having provided great advice and giving me the opportunity to have

an internship at INAOE in Mexico. To Professor Thamar Solorio, my most sincere appreciation

for the insightful comments and the encouraging work on authorship attribution.

To all my colleagues in MindLab laboratory, I want to express my gratitude for each advice, coffee
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Abstract

Authorship analysis helps to study the characteristics that distinguish how two different persons

write. Writing style can be extracted in several ways, like using bag of words strategies or hand-

crafted features. However, with the growing of Internet, we have been able to witness an increase

in the amount of user generated data in social networks like Facebook or Twitter. There is an

increasing need in generating automatic methods capable of analyzing the style of a document for

tasks like: determining the age of the author, determining the gender of the author, determining

the authorship of the document given a set of possible authors, etc. Previous tasks are better

known as author profiling and authorship attribution. Although capturing the style of an author

can be a challenging task, in this thesis we explore representation learning strategies, in order to

take advantage of the large amount of data generated by social media.

In this thesis, we learned proper representations for the text inputs that were able to learn such

patterns that are only distinguishable to an author (authorship attribution) or a social group of

authors (author profiling). Proposed methods were compared using different publicly available

datasets using social media data. Both author profiling and authorship attribution tasks are ad-

dressed using representation learning techniques such as convolutional neural networks and gated

multimodal units. Our unimodal author profiling approach was submitted to the profiling shared

task of the laboratory on digital forensics and stylometry(PAN).

For authorship attribution, we proposed a convolutional neural network using character n-grams

as input. We found that our approach outperformed standard attribution based methods as well

as word based convolutional neural networks. For the author profiling task, we proposed one

convolutional neural network for unimodal author profiling and adapted a gated multimodal unit

for multimodal author profiling. The multimodal nature of user generated content consists of a

scenario where the social group of an author can be determined not only using his/her written texts

but using also the images that the user shared across the social networks. Gated multimodal units

outperformed standard information fusion strategies: early and late fusion.

Keywords: Machine learning, Supervised Learning, Representation Learning, Au-

tomatic Authorship Analysis, Authorship Attribution, Author Profiling, Multimodal

Author Profiling
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1 Introduction

Nowadays, social networks generate a significant volume of information. This volume is derived

from the number of interactions between users in such networks. Images, text, and videos are

examples of the elements that users post. The scientific community is using this large amount

of information to generate automatic analysis methods that allow to characterize the information

generated by users. For example, a twitter user can generate a variety of information describing her

preferences, interactions with other users and opinions on specific topics. Website review portals

such as Internet Movie Database (IMDB) are another source of information. IMDB offers a platform

that allows users to write their review about a movie. This review describes positive, negative or

neutral opinion of a movie. Although it does not generate the same amount of information as

Twitter, it generates large amounts of text written by real users. Furthermore, the development

of automatic methods for text analysis in large volumes of data can create and support different

business models and applications.

1.1 Problem definition

Authorship analysis is the process of studying the characteristics of a document written by an

author, in order to identify features associated with its authorship. Authorship analysis can also

be divided into several subtasks.

One of them is authorship attribution (AA), which consists of automatically identifying the

authorship of a new document of unknown or disputed authorship. Each document is represented

using a set of features and the authorship is determined using computational learning methods. The

problem of AA can be divided into two types: open-set and closed-set. In the closed-set domain,

the model evaluates the authorship of a new document from a predetermined set of authors, where

the evaluated document was written by one of the pre-established authors. The open-set tasks

establish that the author of the unseen document is not necessarily found in the list of candidate

authors.

Another task in authorship analysis is author profiling (AP), which studies the use of language

across several demographic groups. AP is based on the hypothesis that social groups (profiles)

share the use of language. Unlike authorship attribution, the target classes consist of demographic

groups, which can be based on the author’s gender, age, origin country, personality traits, among

others. The process of extracting characteristics is very similar to the AA’s process.

Feature extraction process in authorship analysis has been approached originally using techniques

of stylometry. Stylometry aims to measure certain textual characteristics of the writings of each

author. Overall, traditional methods for authorship analysis have focused on building representa-

tions using stylistic and content based features. Stylistic features attempt to model phenomena

such as use of punctuation marks, average length of a sentence, use or misuse of grammar rules,
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spelling mistakes and use of emojis. Content features attempt to capture the topics that an user

writes about. Both types of features can be extracted using bag of n-grams representations.

Although these features have shown competitive performance in authorship analysis, they have

also several shortcomings. For instance, when we build a bag of character n-grams representation

for a document, we treat each document as a simple sequence of characters, then the frequency of

occurrence for each n-gram is calculated. This representation poses three problems:

• This representation is very dependent on the vocabulary (total number of n-grams in all

documents), so it can not scale easily. Many machine learning algorithms can not scale and

work properly for solving the task while dealing with high dimensionality inputs.

• Each document will only contain a few words from the total vocabulary. This means, the bag

of n-grams representation of each document will only have some values different than zero.

This problem consists of sparsity, where many elements of the input will be zero. Sparsity

affects certain learning algorithms which rely on heavy parameter updates and therefore will

tend to overfit.

• The third problem is the inability to capture relationships between n-grams, since the bag of

n-grams representation simply captures the presence or absence of a certain n-gram, therefore,

two documents with a similar semantic meaning would have totally different representations

using bag of n-grams. Additionally, Bag of n-grams ignores the sequence order of n-grams.

For improving document representation we will use representation learning based strategies.

Representation learning offers the opportunity to build distributed representations that solve the

problem of high dimensionality, sparsity and the inability to capture relationships between docu-

ments. Learned representations using neural networks are also considered distributed, which means

several features in the representation can coexist and are not mutually exclusive. Also these repre-

sentations have the additional advantage that they can be adapted perfectly to the supervised task

that is being solved, either authorship attribution or author profiling. Approaching these tasks

using neural networks involves solving three subproblems: first, to choose an appropriate input rep-

resentation of the text; second, to determine if neural networks based approaches perform better

than traditional methods; and third, what text inputs are more important for the neural model.

• How to learn an appropriate representation for authorship analysis tasks?

• Does this representation improves the use of traditional methods for authorship analysis?

• What kind of features are more important for the text classification method?

1.2 Objectives

Main objective To develop a method for automatic authorship analysis using deep neural net-

works.
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Specific objectives

• To design a deep neural network architecture for automatically identify author of a text

(authorship attribution).

• To design a deep neural network architecture for automatically characterize the author of a

text (author profiling).

• To build efficient implementation of the deep neural network models that take advantage of

acceleration hardware (GPUs).

• To evaluate the models in different authorship attribution and author profiling tasks.

1.3 Results and contributions

The results and contributions of this work can be summarized as follows:

• Shrestha, P., Sierra, S., Gonzalez, F.A., Montes, M, Rosso, P., Solorio, T.. ”Convolu-

tional Neural Networks for Authorship Attribution of Short Texts”. In: Proceedings of the

15th Conference of the European Chapter of the Association for Computational Linguistics:

Volume 2, Short Papers (2017)

In this work, we propose a convolutional neural network for the authorship attribution task.

Our method is compared against standard attribution methods like bag of words and it is

also compared against different kinds of text representation strategies. My contributions in

this work include participation in the development of the code, design and execution of the

experiments, writing of the draft and camera ready versions for the EACL 2017 conference

and poster presentation for the conference.

• Sierra, S., Montes, M., Solorio, T., Gonzalez, F.A.. ”Convolutional Neural Networks for

Author Profiling”. In: Working Notes Papers of the CLEF (2017)

In this work, we propose a convolutional neural network for the author profiling task. Our

method is compared against standard profiling methods and it is also compared against

different kinds of text representation strategies. My contributions in this work include the

development of the code, design and execution of the experiments, writing of the draft and

camera ready versions for the CLEF conference. Also this work was part of an evaluation lab

named as PAN, which evaluates tasks in digital forensics like author profiling. Our work was

in the top-8 methods among more than 22 participating teams.

• Shrestha, P., Sierra, S., Montes, M, Rosso, P., Solorio, T., Gonzalez, F.A.. ”A New Multi-

channel Convolutional Neural Network for Authorship Attribution of Social Media Data”.

In: Information Processing and Management (under revision)

In this work, we propose a multi-channel convolutional neural network for the authorship

attribution task. Our method is compared against standard attribution methods like bag of

words and it is also compared against different kinds of text representation strategies. My

contributions in this work include participation in the development of the code, design and

execution of the experiments and writing.
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1.4 Outline

The document is organized in five chapters. Chapter 1 presents the problem definition, the main

and specific objectives and the contributions of this work. Chapter 2 presents an overview of the

state of the art for text representation techniques, authorship attribution and author profiling. In

Chapter 3, a convolutional neural network for solving the authorship attribution task is presented.

Chapter 4 presents a convolutional neural network for author profiling and an extension of this

work to a multimodal author profiling scenario. Finally, Chapter 5 outlines some of the concluding

remarks and future work.



2 Background and related work

The classification of texts is a task that consists of assigning a category or label to a document. To be

able to do classification, the document must first be represented through a series of characteristics,

which will then be used as input for machine learning methods. In recent years, the representation of

text has become an important component of natural language processing, where it has been chosen

to acquire or learn the meaning of a word using computational methods [1]. LeCun, Bengio, and

Hinton [2] shows the distributed nature of word representations learned with deep neural networks

as. Distributed representations have a greater expression capability, since they can express multiple

concepts at the same time and their many configurations are a result from the variation observed

from the data. Later in the chapter, there will be exposed different ways to represent a text, but the

center of this background are the representations learned by neural networks. These representations

are obtained through language models trained with neural networks. In this section we will show

what a language model consists of and how the training of these models has evolved. At the same

time, some of the characteristics that show the vector spaces induced by these models will be shown.

Subsequently, some of the most recent works that address the problem of semantic compositionality

will be shown. Finally, it will be shown how the use of representations learned by neural networks

can help concrete tasks of text classification.

2.1 Text representation

2.1.1 Language Modeling

The distributional hypothesis states that words that occur in similar contexts tend to have a

similar meaning [3]. Using this hypothesis, language models extract information from the semantic

relationships between words contained in a large corpus. Language models consist essentially of

the probability of occurrence of a particular sequence of words. That is, in a language model, the

string ”the cat sits at the table” has a higher probability than the string ”the cat sits on the table”.

Usually the probability of a sequence of words (w1, . . . , wn) is represented as P (w1, . . . , wn) and is

modeled according to its context, i.e., the words before and after the sequence.

P (w1, . . . , wT ) =

T∏
i=1

P (wi|w1 . . . , wi−1) ∼
T∏
i=1

P (wi|wi−(n−1) . . . , wi−1)

Neural networks are machine learning tools that allow us to learn language models in tandem

with a vector representation for words [4]. Because these spaces have been constructed taking

into account the distributional hypothesis, it is possible to affirm that the distance between two

vectors represents the semantic similarity between two words [5]. In addition, the vector spaces
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induced by these models present a low dimensionality compared with other strategies of textual

representation that can have dimensions of the size of the corpus vocabulary. This problem is

known as the ”curse of dimensionality” and that is what made it difficult to address the problem

of learning a language model [4]. In the field of neural networks, this problem has been addressed

using multilayer perceptrons and recurrent networks. [4, 6] represented the first learning method

of large-scale language models using neural networks. In this work, they implemented a neural

network architecture, using the most common type of neural networks for modeling the language.

This architecture is known as multilayer perceptron or ”feedforward neural networks”. This neural

network had an input layer, a hidden layer and an output layer. This network had as its basic idea

to learn at the same time a representation of the words in a vector space of low dimensionality and

the parameters of the joint probability function that would express the probability of a sequence

of words. This probability was calculated in the output layer with an algorithm known as softmax

which enables to establish a well-defined multinomial distribution between classes, i.e., words.

Despite its advantages, the model is computationally expensive. This work also shows the capacity

of the neural networks to learn distributed representations that help to solve the problem of high

dimensionality.

The main advantage of this kind of representation is how neural networks assign cell activation

patterns to different inputs, with the idea that similar entries will have similar activation patterns

[7]. Several algorithms for learning in natural language processing take advantage of these dis-

tributed representations because they are allowed to group similar concepts. The training of neural

networks is usually done through ”Backpropagation”, an algorithm which consists of adjusting the

weights of the connections between layers of the neural network trying to reduce the prediction

error of the output layer of the network. It is also considered an optimization problem where we

try to minimize the error in the output, for which an algorithm known as stochastic descent gra-

dient (SGD) is commonly used. SGD allows to estimate how much the weights of the connections

between layers have to be modified. In the end, we expect that certain cells in the intermediate

layers are activated in the presence of a certain input pattern.

On the other hand, recurrent neural networks have recently been proposed to address the issue

of language modeling [8, 9]. Feedforward neural networks always receive a fixed-size entry, i.e.,

they can only take into account a determined number of fixed words that constitute the context

of a word. The advantage of recurrent networks is that they can process inputs of any size in a

sequential manner, since they have recurrent connections that enable the network to learn long-

term relationships. Although it has been established that some methods like stochastic descending

gradient have difficulties to learn long-term patterns [10]. Recurrent neural networks consist of

an input layer, a hidden or context layer and an output layer. The difference with multilayer

perceptrons is that this layer of context has access in a time t to the state of the same context

layer at time t − 1. This is also known as recurrent connection. Training in recurrent networks

is performed using ”Backpropagation through the time” (BPTT). BPTT calculates the error and

propagates it through the recurrent connections a certain amount of steps back in time. In the

last layer, the probability distribution over the word sequence is calculated, where the number of

possible classes is equal to the size of the corpus vocabulary, which makes the task of calculating

this distribution complicated. This calculation is carried out using a softmax type classifier in both

recurrent networks and in multilayer perceptrons.
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Despite this, softmax is computationally expensive when carried out over a large number of

classes, so it has been proposed for this particular case the use of a hierarchical softmax (HS) [11].

HS uses an underneath representation of the words through a binary tree. This simplification of

softmax has also been used for the training of multilayer perceptron networks [12]. Mnih and Teh

[13] address the problem of computational cost making a smarter sampling of the words it chooses

to train through a technique known as contrastive noise. These distributed representations are

learned in an unsupervised fashion with the goal of creating general purpose representations for

text classification tasks. Once the language models have been trained, they can also be used as ex-

tractors of text features for semantic classification tasks. One advantage of the learned vectors with

neural language models is that these distributed representations are very useful in different natu-

ral language processing tasks [14]. The intention of this work was to learn these representations

through multitasking learning. The tasks on which the model was trained were: part-of-speech

tagging, named entity recognition, text partitioning, language modeling and synonymy detection.

This work also showed that it was not necessary to extract syntactic information from the text

to obtain semantic information. Subsequently, the same authors, in collaboration with other re-

searchers, formulated a neural network architecture [15] that can be trained on large volumes of

non-annotated text, in order to learn robust representations of text. These representations were

then independently tested in tasks such as part-of-speech tagging, text partitioning, semantic role

labeling and named entity recognition.

Later in 2013, Mikolov et al. [12, 16] addressed the computational cost issue using a network of

feedforward neural network without hidden layers. Having a reduced number of layers also reduces

the number of parameters that had to be estimated during the training and therefore reduces the

computational complexity. This language model is known as word2vec. The training of this model

can be done with the idea described above of hierarchical softmax or also using negative sampling.

In addition to the computational efficiency that word2vec offers, this models learns an embedded

space that presents certain similarities between pairs of words, also named linguistic regularities

[17] by Mikolov et al.. These linguistic regularities can be semantic or syntactic and are used as an

evaluation measure to determine if a model is capable of capturing singular / plural relationships

such as: car: cars; dog: dogs; country: capital; Germany: Berlin; France: Paris. Interestingly

these relationships are found by simply using arithmetic on the vectors, for example, the word

vector for ”Germany” will be very close to the result of the result of the vector operation between

the following words: vector(’France’) - vector (’Paris’) + vector (’Berlin’). However, it has been

shown that these regularities can be obtained in embedded spaces, not only by neural networks but

by distributional representations in general [18]. To measure how well a language model captured

these linguistic regularities, an evaluation strategy was found in the literature, also known as an

analogy problem [16]. It consists in determining the missing word in the analogy ”if a is to b as

c is to ”, where the missing space is the word that the model must be able to predict. Analogies

can be evaluated at syntactic and semantic relationships between words [17].

2.1.2 Semantic compositionality

From the field of computational linguistics, these language models have been positioned as a tool

for learning the meaning of words. There is an interest in this problem because the ability to learn



2.1 Text representation 8

good representations of sentences, paragraphs or even documents can help to solve specific tasks

of text classification such as sentiment analysis, paraphrase detection, machine translation, among

others. This problem is known as semantic compositionality. Some works have focused on learning

strategies to combine two words and form expressions [19–21]. These works focused on learning

simple vector composition functions such as addition, substraction and element-wise multiplication.

However, the literature suggests that the relationships between words must be learned jointly with

the word representation training process. Le and Mikolov [22] propose an interesting line of work,

which consists of integrating the learning of language models in neural networks with the learning

of representations at the sentence level. In this work the word2vec model is extended and they

proposed to learn the sentence’s representation as an additional word during the training process

(this method has been known as ’doc2vec’), however, it lacks of a concrete method to infer unseen

sentences during training.

Li, Luong, and Jurafsky [23] use a strategy with recurrent networks as auto-encoders. This

work proposes using an encoder in the first instance to build an embedded representation of the

sentences and then, through a decoder, to use this representation for reconstructing the original

sentence. Kiros et al. [24] follow a similar approach known as Skip-Thoughts, in which a recurrent

network is used to train a model that is capable of representing sentences. The key to the training

of this method is to use an encoder-decoder architecture. This strategy consists of first choosing

a tuple of 3 joint sentences (st−1, st, st+1), then sentence (st) is represented using an encoder,

and its representation is used for reconstructing context sentences (st−1, st+1) using two decoders.

The advantage of this encoder is that it serves as a generic feature extractor for any sentence, as

the authors demonstrate in concrete tasks of semantic similarity such as detection of similarity

between sentences, paraphrasing detection and textual classification. These works motivate the

idea of incorporating the learning of relationships between words that make up the meaning of a

sentence to the training of a language model.

2.1.3 Text classification

One of the interests of this thesis is to apply the learned representations through neural networks

to a task of text classification, concretely, authorship attribution and author profiling. As shown

previously, neural networks have demonstrated the ability to induce a space where a measure of

similarity between words can be established. Next, we will name some tasks that take advantage

of the notion of semantic similarity as a discriminating element between classes.

Paraphrase detection is a well-known task in the field of semantic similarity. It consists in de-

termining if two sentences are describing the same idea. Dolan, Quirk, and Brockett [25] released

the so called dataset ”Microsoft Research Paraphrase Corpus”, which consists of a total of 4076

pairs of training sentences and 1725 test pairs. The state of the art strategy was established by

Madnani, Tetreault, and Chodorow [26], whom work uses 8 metrics from machine translation do-

main (MTMETRICS) and overall it takes advantage of several external resources to the dataset.

On the other hand, there is another set of paraphrasing data on Twitter [27] that contains ap-

proximately 18,000 couples of paraphrasing (or not paraphrasing) in training and 1000 couples in

test. Also in [27], the best state of the art strategy is reported, which uses multi-instance learning

about different extracted lexical characteristics about the words of each sentence, such as topics,
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Figure 2.1: Closed-set case for authorship attribution. The task consists in determining the author of an

unseen document.

part-of-speech tags and cardinality. The key to this strategy is to learn the patterns of relationship

between these characteristics together, in order to recognize which patterns make a couple of sen-

tences a paraphrase. The task of paraphrasing has also been related to the detection of plagiarism.

The detection of plagiarism is to identify when an author uses the ideas of someone else without

recognizing the contribution made by the other person. In [28], they proposed to formulate the

detection of plagiarism as a problem of paraphrasing, with the intention of identifying not only if

there is plagiarism, but also to identify the kind of plagiarism that occurs. The identification of key

elements to model semantic similarity in text classification can also help to solve other problems

that do not require predicting a category but a numeric value. One of these problems is known

as semantic similarity between sentences and it consists of determining on a numerical scale how

similar two sentences are. The dataset that has gained popularity for this strategy is known as

SICK dataset [29]. Currently the best strategy that addresses this task is called Tree-LSTM [30].

In this work, recurrent networks and syntax trees are used to determine the similarity between two

sentences.

2.2 Authorship analysis

2.2.1 Authorship attribution

In authorship attribution (AA), we are interested in determining the authorship of an unseen

document. AA is not a new problem. Mendenhall [31] explored several features for characterizing

the works of Shakespeare in the 19th century and determined that it was a difficult task to solve
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for documents with less than 1.000 words. Although, AA can be seen as a text categorization task,

it has a wide variety of evaluation scenarios that make it different from typical text categorization

tasks. According to Stamatatos [32], authorship techniques shifted to computational-based methods

rather than computational-assisted methods. AA process consisted of extracting hand-crafted

features like word and character frequencies, sentence length, word length, among others.At the

beginning of the 21th century, AA had a great boost derived from the advances in other related

fields. Advances in information retrieval field allowed the use of text representation techniques for

classifying large volumes of text, while natural language processing (NLP) techniques allowed the

extraction of some more advanced representation like Part-Of-Speech (POS) tags [32].

One of the focus of authorship works has been attribution of long texts such as books [33–35]. In

the last years, there has been an increasing amount of available text from social networks, therefore

AA has shifted towards the study of short texts such as tweets [36, 37], blogs [38] or emails [39].

According to Stamatatos [32], performing AA on short texts also depends on several factors: the

number of candidate authors, the text size and number of available texts for training. Performing

AA involves a feature extraction process and an algorithm training process. Feature extraction

process include a wide range of features such as lexical, syntactic and application-based features

[32]. Lexical features can be word and character n-grams. Syntactic features like Part-of-Speech

(POS) tags are also used for authorship attribution. Application-based features have into account

the use of topic models that capture topics in the documents [40–42]. Additional features can be

extracted from a document using measures like complexity measures, the readability index, among

others. Most of the representation strategies lead to a high dimensionality representation space.

As can be seen on [33], a dimensionality reduction or a feature selection step must be performed

in order to apply consistently machine learning algorithms that have a good performance but may

not scale properly.

Most authorship attribution research make use of character n-grams and/or word-level token

n-grams in one way or the other [32, 36, 37]. Character n-grams are powerful indicators of the

authorship of a document by capturing the style of an author. Character n-grams also are robust

to typos and non-correct use of punctuation marks Stamatatos [32]. These features usually include

whitespaces, in order to capture relationships between several words. According to Sapkota et

al. [43], character n-grams can be sub-categorized on the basis of morphology: affix n-grams,

punctuation n-grams and word-based n-grams. Affix n-grams are found at the beginning or at

the end of a word (prefixes and suffixes). Punctuation n-grams involve sequences of characters

that involve punctuation marks. They found also that affixes and punctuation category of n-grams

were the best for authorship attribution. For instance, punctuation n-grams capture the misuse of

punctuation marks, that is, while some authors prefer to add only one exclamation mark at the end

of a sentence, some other prefer to add two, three o more. This represents an author’s style and

character n-grams are ideal at capturing this. Similarly, the choice of some words is also mostly

unique to an author. Lexical features can help to distinguish between different authors based on

the conscious or unconscious choices they make. Some researchers [32, 44] suggest that smaller

values of n sequential characters result in better performance in authorship tasks. Stamatatos [45]

also use character n-grams as features along with dealing with the problem of class imbalance for

authorship attribution by trying various sampling methods. Lexical-based methods are a strong

baseline to compare with.
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Figure 2.2: Applications of authorship attribution in social media texts.

Authorship attribution of social media texts

The application of authorship attribution to short texts has been motivated by the massive use of

social networks. Social networks like Twitter allow the user to generate text of up to 280 characters

(previously it was up to 140), which motivates the creation of attribution methods oriented to

short texts. The generation of methods capable of evaluating authorship in social networks such

as Twitter, raises the need to establish a preprocessing strategy. Although a tweet is considered a

self-contained document, it has peculiar features such as references to other users, hashtags, urls,

spelling errors, slangs and abbreviations. Applications to AA in short texts have to deal with the

reduced length of the document, to deal with scenarios where the number of authors is very large

and additionally authors can write about a wide variety of topics. Below we describe recent works

that

At the Twitter level, Layton, Watters, and Dazeley [37] collected a data set of 14, 000 users.

Then, using the SCAP [46] method, each user was represented using profile consisting of bag of

character n-grams representation. Characters from 2 to 7-grams were explored. They found that

4-grams generated the best performance for determining authorship on Twitter. They additionally

evaluated the effect of hashtags and usernames preprocessing, finding that if the usernames and

hashtags are kept, the classification accuracy is higher. This is a result from the fact that some

users have constant conversations with certain Twitter accounts, where the tweet includes itself the

mention to the other accounts, therefore the n-grams that constitute the name of an account will

appear more frequently in the profile representation of each user. In another work, Schwartz et al.

[36] propose a method of authorship attribution in short texts. This method is evaluated in two

setups: varying the number of training instances (number of tweets per author), and varying the

number of authors. For the feature extraction process, they explore the use of character n-grams

and word n-grams. For characters, they consider 4-grams, meanwhile at word level they consider

from 2 to 5-grams. Each document is represented as a whole by the occurrence or not of a certain

n-gram. Then, using k-signatures, they represent the presence of a certain characteristic in the
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k% of an author’s text and the absence in the rest of the dataset. Besides the character and word

n-grams, they build features using flexible patterns, which are defined by a sequence of content

words (words that contain information) and functional words (high frequency words like articles

that connect content words). Despite the fact that their results are competitive, they have to define

manually some signature templates for the different authors.

In a similar sense, Iqbal et al. [39] propose a strategy to determine the authorship of an email

through write-prints. These prints are composed of different patterns observed in the writing of a

document. Such patterns are extracted with stylometric measurements. One of the applications

they propose is to present evidence before a court to determine whether or not a document was

written by a person, who is for instance, accused for sending threatening mails.

In review pages like Amazon, the scenario is even more challenging. In many cases there is a

reduced number of opinions per person. In this scenario, Qian et al. [47] proposes a scenario of

attribution of authorship in which, instead of training a classifier that separates the documents of

one author from those of another, it builds a similarity space of documents. In this new similarity

space, it obtains competitive performance by using only a few couple of documents from an author

during the training stage. They also present the scenario in which this method is useful to identify

users who create false accounts and fraudulently promote the opinion about a product. This

scenario can be seen on Figure 2.2.

Most of these traditional methods focus on crafting features and statistics based on lexical choices.

In some other cases, there is need of manually selecting which features are relevant for addressing

the attribution task. Traditional methods have shown the importance of character n-gram input

representations, but we can connect deep learning techniques for solving the attribution task, while

learning a representation for the input text.

Neural representations for authorship attribution

Deep learning representations have achieved outstanding results in several natural language pro-

cessing tasks LeCun, Bengio, and Hinton [2] and Mikolov et al. [12]. Authorship attribution has

started to apply some of the deep learning architectures that have been used successfully for text

categorization. Text categorization has been addressed by Convolutional Neural Networks (CNNs).

This type of neural networks has also shown state-of-the-art performance in various Computer vi-

sion tasks. CNNs applied for text have been used to represent sentences or paragraphs [48–51].

These works use as input either a sequence of words or a sequence of characters. As will be shown

in this work, CNNs can learn local patterns like the use of certain combination of emojis using

character level inputs. Recent works have also used CNN at the character level. Kim et al. [52]

proposed a neural language model that combines a CNN with an RNN through a highway net-

work. Zhang, Zhao, and LeCun [50] trained a neural representation CNN architecture and showed

that these networks outperform traditional approaches on many document classification tasks using

large datasets.

CNNs have been used for authorship attribution only in a few works. Rhodes [53] uses CNN for

authorship attribution using a dataset of books from the Project Gutenberg and another dataset

of books from the PAN 2012 shared task [54]. He achieves a high accuracy percentage (85.7%)

using word representations with CNNs and a voting schema for summarizing the predictions of
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each sample of the books. In other work, Sari, Vlachos, and Stevenson [55] use fastText for

training an authorship attribution model. They use the Bag of tricks model [56], which trains a

distributed representation for word and character n-grams while solving the attribution task. They

try character 2,3,4-grams and word 1,2-grams separately as well as combined on four different

datasets and are able to obtain good performance on the CCAT50 and IMDb62 datasets. It is

worth to mention that n-gram representation was learned along with the supervised task using

fastText. Embeddings from fastText can also be used to initialize the input layer of a CNN.

Multi-channel models for text classification

Multi-channel models, in the context of CNNs, consist of a network with more than one channel,

where each of them will be receiving the same input. Either the representations of the text itself

differs in these channels or the structure and training methods themselves vary for each of these

channels. There have been a few multi-channel models that have been tested on text classification

tasks such as sentiment analysis and subjectivity classification [49, 57]. There are two most common

ways in which multi-channel CNN models are used for text classification in general. First way is

centered around keeping one channel static, while fine tuning pre-trained embeddings in the other

channel [49, 58]. The second method uses different forms of pre-trained embeddings in the different

channels [57].

Apart from these two ways, there is a newer way of using multi-channel models. Here the

various channels get entirely different representations of the input text. We came across only

one such work by Ruder, Ghaffari, and Breslin [58], where they try different single-channel and

multi-channel CNNs, with a combination of static and non-static channels for word sequences and

character sequences. The embedding layer is retrained after initialization for the non-static channel

whereas the embedding layer is not updated after initialization for a static channel.

For their multi-channel models, they combine the feature representations obtained after the

convolutional layer and before max pooling. Since the feature vector from the character channel

will be longer than that from the word channel for a certain filter size, they pad the word feature

vector (padding is usually done with zeros) to make it equal to length the of the character vector

and then add the two vectors in order to obtain the final representation, which is then passed

to a dense layer for authorship attribution. They were unable to obtain good performance over

single-channel models with their methods for the majority of their experiments.

2.2.2 Author Profiling

Author profiling consists of determining a social group of an unknown author [59]. Chambers and

Schilling [60] support this idea with a sociolinguistics observation, where a social group shares a

way of speaking and writing, a dialect. Several profile dimensions for characterizing a social group

have been considered since then, such as age [61], gender [62], native language [63] and personality.

The relevance of this task has been recognized for its applications that include forensics, marketing

and security concerns.

Author profiling has been addressed in the CLEF conference, under the PAN shared task. PAN

is an evaluation laboratory for digital forensic tasks like plagiarism, authorship and social software

misuse [64]. Gender detection is one of the most popular subtask in author profiling [61, 65–71].
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This task has been approached using two kinds of features, style-based features and content-based

features. Style-based features included n-gram frequencies, punctuations, readability. Whereas

content-based features comprise bag of words, word n-grams, term vectors, named entities, among

others. Previous successful approaches have used style and content features. Argamon et al.

[59] showed experimentally that content features performed better for language, age and gender

profiling. However these features can be very sparse. López-Monroy et al. [72] approached the

profiling task using a low-dimensional non-sparse representation of the documents of every author.

Other studies even describe that not all words matter when establishing the profile of an author,

but suggest that words near a personal pronoun are more discriminative for classifying an author’s

profile [73].

CNNs have proven to be a successful method for classification of texts [48–50]. CNNs have

also shown a good performance on authorship attribution tasks [74]. CNNs are suitable for the

author profiling task, given that they are capable of capturing local-level interactions while learning

profile-specific patterns.

Multimodal author profiling

Nowadays social media has allowed us to communicate and share images, text, audio or video

through the social networks. Although each social network tries to focus on different kinds of users,

most of them allow the users to share their opinion towards an specific topic or to mention recent

events in their life. This has lead to a huge availability of user-generated content. Although, social

networks provide users with privacy options and identity protection, a large number of users make

publicly available their demographic information, opinions, images, tweets or posts. On the other

side, Author profiling has been recognized as a task using only text documents, however this task

can also be addressed using images. There has been a recent interest in exploiting the multimodal

nature of social media data, for instance, images, audio and text. Multimodal approaches use

data fusion techniques, in order to combine different information sources [75]. Information fusion

considers the problem of merging correctly two different representations of the same concept [75,

76].Atrey et al. [76] considers three levels of information fusion: feature level or early fusion, decision

level or late fusion, and hybrid approaches. For this work, feature level consists of extracting text

and visual representations and combining them into a single learning method. These combinations

ignore the intrinsic correlation between modalities [77]. Decision level consists of combining the

output decisions of previously learned classifiers for each modality. Hybrid approaches consist of

methods that create a joint space for representing the different modalities of a concept, for instance

for solving image captioning tasks [78, 79]. Multimodal approaches for author profiling have been

considered by [80–82]. Álvarez-Carmona et al. [80] extend the PAN AP 2014 corpus by extracting

a large set of tweets and images from the original users of this corpus. While their fusion strategy

consists of an early fusion of text and image features. However most of them ignore relations that

could arise from the multimodal nature of the data. Taniguchi et al. [82] propose a hybrid fusion

strategy, where visual concepts are extracted using a CNN, but each concept has a probability of

being associated to a dimension of the profile (male or female). Text representation is extracted

as the probability of a document to belong to a female user or a male user. At the very end, all

the probabilities are concatenated and fed to a logistic regression classifier. Using an integrated
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representation can lead to a better performance, compared to standalone profiling methods. Merler,

Liangliang Cao, and Smith [83] evaluate gender prediction based on a large collection of Twitter

users. Early, late and custom fusion approaches are reported there.

Author profiling task has been approached as a single source task, where texts written by different

authors and different modalities are presented. Gender identification based on the images that an

user posts in his/her social media is a task that has been gaining interest [84–87]. Most of this

works take the images of a social media user, extract the visual concepts, for instance, if a bag is

present in the image and finally associate the presence of this concepts to the gender of the user

(profile). Shigenaka, Tsuboshita, and Kato [85] interestingly propose a neural architecture which

learns a proper representation for the images while associates it with the visual concepts which are

extracted from the images. Multiple sources of information can be combined appropriately using

multimodal representation techniques. Finding an appropriate combination of features is a difficult

task.



3 Using neural networks for authorship

attribution

In this chapter a neural network for authorship attribution for short texts is presented. Repre-

sentation learning models based on neural networks attempt to automatically find data features

useful to solve a learning problem. In the particular case of authorship attribution, stylistic fea-

tures may be found at different levels (morphological, lexical and syntactical). It means that a

model able to automatically capture features at all these different levels must start at the most

simple level. Thus, the model proposed in this chapter has an architecture that receives as input

a sequence of characters n-grams. The complete model is composed of three modules depicted in

3-2: a character embedding module, a convolutional module and a fully connected module. The

gradients of the network are collected using back-propagation. Figure 3.1 displays the proposed

architecture. The architecture is a convolutional neural network that uses a sequence of character

n-grams as input. Our method was evaluated using the dataset proposed by Schwartz et al. [36],

where several setups were used to measure the performance of our method in short texts. At the

end of the chapter, we evaluate qualitatively the results generated by our proposed method using

interpretability techniques. Part of this work was presented for the 2017 edition of the conference

of the european chapter of the association for computational linguistics (EACL 2017):

• Shrestha, P., Sierra, S., Gonzalez, F.A., Montes, M, Rosso, P., Solorio, T.. ”Convolu-

tional Neural Networks for Authorship Attribution of Short Texts”. In: Proceedings of the

15th Conference of the European Chapter of the Association for Computational Linguistics:

Volume 2, Short Papers (2017)

3.1 Character based convolutional neural networks

This neural network takes a sequence of character n-grams as input. Then, for every possible n-

gram in the corpus, a representation is learned using an embedding layer. The embedding layer is

motivated by the previous work developed on distributed representations [2]. The embedding layer

learns a continuous and non sparse of the vector representations of each character n-gram in the

input. Each input is padded, in order to guarantee the same length for all the input samples. The

application of the embedding layer yields a matrix C ∈ Rd×l, where the columns are the embedding

of the character n-gram cj at position j in the input. Also if an input is shorter than l, it is padded

with zeros until every input is of size l. The next component of the architecture is a convolutional

layer, which applies an one-dimension convolution over the matrix C. This convolution is generated

by a parametrized filter H ∈ Rd×w, where w is the width of the filter. As can be seen on Figure

3.1, several filters of different widths are used in order to capture patterns that can involve from
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Figure 3.1: Char-level Convolutional Neural Network. In this concrete case the tweet input is haha oh i

know:).

morphemes up to words. The output C of applying a filter H to the input C is represented by:

O = H · C[i : i+ w − 1]

f = g(H · C[i : i+ w − 1] + b)

where i varies from 1 . . . l − w + 1. Then, a bias is added and a non-linearity g is applied to the

output O. This result f is also known as the feature map f ∈ Rl−w+1. After that, a pooling

function is applied in order to get a fixed representation of the feature maps extracted. Relevant

features get higher activation values in their respective feature maps, so max-over-time pooling [51]

is used. Thus for a m number of filters H the maximum value of each feature map fk is extracted

in the following way:

yk = max
i
fk[i]

where k = 1 . . .m. Overall three different convolutional layers are applied to the input and their

results are pooled and concatenated, generating a vector of 3×m dimensions. Finally, this represen-

tation is fed to a fully connected module, which contains a Softmax layer, with a size depending on

the number of target authors, which performs the final classification. Models using representation

learning techniques have the advantage of finding automatically useful features that help to solve

the classification problem. In authorship attribution domain, stylistic features are found across

morphological, lexical and syntactic levels. This neural network is able to automatically capture

these patterns starting by short sequences of characters and then using convolution to generate

representations of longer sequences.

3.2 Experimental Evaluation

3.2.1 Dataset

We evaluated our approach on the dataset from Schwartz et al. [36] containing ∼9,000 Twitter users

with up to 1,000 tweets each, using the same train/test splits, and normalized URLs, usernames,
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CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W

0.761 0.757 0.712 0.703 0.645 0.548

Table 3-1: Accuracy for 50 authors with 1000 tweets each.

and numbers. We trained separate CNN models with character n-grams (n = 1, 2, 3) on a small

validation set. Here we evaluate our two best-performing models, one on unigrams (CNN-1) and

another on bigrams (CNN-2), against three other systems described below:

SCH: The [36] work uses character 4-grams and word 2-5 grams. They also introduced k-signatures

and flexible patterns to represent the unique signature of an author. Their best system uses a

combination of all these features.

LSTM-2: Long Short Term Memory networks (LSTM) have been successfully used for text clas-

sification [88, 89]. We evaluate an LSTM trained on bigrams, since the LSTM produced better

results on a small validation set.

CHAR: Character and word n-grams have been the core of many AA systems [36, 37, 90]. We

tested various n-gram combinations on the small validation set and our final system uses character

2,3,4-grams with logistic regression.

CNN-W: Many works on CNN use word sequences as input [48, 53]. We also trained a CNN

model with Google Word embeddings [12] fed to a static embedding layer.

All systems use cross-validation over the training set for hyperparameter tuning.

3.2.2 Results

We first experimented with a relatively small set of 50 authors and their 1000 tweets each. The

results are in Table 3-1. The results show that our CNN bigram model (CNN-2) performs very

well on this dataset and outperforms the SCH system by nearly 5%. CNN-1 also exceeds the SCH

method but is marginally worse than CNN-2, showing that there is merit in exploring the training

of a CNN model on n-grams rather than only on single characters.

Layer # of layers Hyperparameters

Embedding 1
l 140

d 300

Convolutional 3

m [500, 500, 500]

w [3, 4, 5]

Pooling max

Fully connected 1 # of units Depends on the # of authors

Table 3-2: Neural network architecture hyperparameters

Table 3-2 contains the combination of hyperparameters for the three modules that generate the

best validation score. Additionally, we have added a dropout layer with 25% dropout after the first

embedding layer for regularization. We then shuffle and group the samples into mini-batches of

size 32 for faster training. We employ Adaptive Moment Estimation [91] with a learning rate of
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1e− 4 to train our network. We train for a maximum of 100 epochs and choose the model with the

lowest validation error.

Varying number of authors and tweets

# of authors CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W

100 0.506 0.508 0.425 0.412 0.338 0.241

200 0.481 0.473 0.411 0.409 0.335 0.208

500 0.422 0.417 0.355 0.342 0.298 0.161

1000 0.365 0.359 0.303 0.291 0.248 0.127

Table 3-3: Accuracy comparison for increasing # of authors with 200 tweets per author.

We also wanted to explore how our method fares against the other methods when the problem

becomes more difficult, i.e. when the number of authors increases or when the number of tweets per

author decreases, as done in [36]. The results for increasing number of authors are shown in Table

3-3. Both our CNN models perform fairly well above the other methods for all our experiments.

Although the accuracy decreases with the increasing number of authors, even with 1000 authors our

model obtains an accuracy well above 36%, and there is a 6% improvement over the state-of-the-art

(SCH).

# of tweets CNN-2 CNN-1 SCH CHAR LSTM-2 CNN-W

500 0.724 0.717 0.672 0.655 0.597 0.509

200 0.665 0.665 0.614 0.585 0.528 0.460

100 0.613 0.617 0.565 0.517 0.438 0.417

50 0.542 0.562 0.507 0.466 0.364 0.366

Table 3-4: Accuracy comparison for decreasing # of tweets per author for 50 authors.

We can draw similar conclusions from the results where we decrease the number of tweets per

author as shown in Table 3-4. Following the work in SCH, these results are an average of the

accuracy values obtained from 10 disjoint datasets. The performance of our system is fairly stable

even when the number of tweets per author is low. The improvement margin actually increases

slightly as we move towards a lower number of tweets.

A statistical t-test on the results over the 10 disjoint datasets shows that the difference between

CNN-2 and CHAR, LSTM-2, and CNN-W are statistically significant at p < 0.001. We could not

perform a test with SCH results as the individual disjoint dataset results are not reported. In both

these tables, we can see that the CNN-2 model outperforms the CNN-1 model for experiments

with more data points (higher no. of authors and/or tweets), which can be attributed to CNN-2

having a higher number of parameters to train. CNN-W performs worse than the other systems.

Char-based inputs specialize on stylistic patterns whereas word-based ones focus on content-related

patterns, which are less important for AA. This finding is consistent with previous research in AA

[90, 92, 93].
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CNN-2 CNN-1 CHAR LSTM-2 CNN-W

0.683 0.678 0.609 0.525 0.420

Table 3-5: Accuracy values for 35 authors with 1000 tweets each after bot-like authors removal (15 authors were

bots).

Figure 3.2: Salient sections of a bot-like author’s tweets ([U]:URL, [N]:username, [R]:number).

3.2.3 Bot-like Authors

During analysis, we noticed that nearly 30% of authors behave like automated bots. Their tweets

show repeated patterns, e.g., a title of some news/advertisements with a URL at the end. Since our

goal is to perform AA on humans, we removed these authors manually to create a refined dataset.

There are no comparable experiments in [36], thus we compare only against CHAR, LSTM-2, and

CNN-W as shown in Table 3-5. The accuracies for all of the methods decrease on this dataset as

the bot-like authors are easy to identify. The CNN methods still outperform other methods. Since

SCH’s performance was similar to CHAR on the whole dataset and CNN-2 exceeds CHAR by a

larger margin in this dataset, we can estimate that here too, CNN-2 is likely to outperform SCH.

3.3 Interpretability

Despite the competitive performance of neural representation techniques in several NLP tasks, there

is a lack of understanding about exactly what these models are learning, or how the parameters

relate to the input data. Few empirical studies have attempted to understand the role of RNN

components [94, 95]. In order to analyze what makes neural representation learning suitable for

AA, we look at the most salient sections of a single input tweet. We also perform an analysis of

what types of character n-grams are more important to the model overall.

Salient sections of a tweet Li et al. [96] define a saliency score S(e) as:

w(e) =
∂(Sc)

∂(e)
S(e) = |w(e)|

where the embedding e represents the input and the class score Sc represents the output of our

CNN model. The score indicates how sensitive a model is to the changes in the embedding input,

i.e. in our case, how much a specific n-gram in the text input contributes to the final decision. In

order to visualize saliency per character, we adapted this method by taking the maximum saliency

value per character.

We selected two authors, one bot-like and one human, to analyze what kind of patterns are

learned for specific authors. Figure 3.2 presents two tweets from a bot author. The darker the
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Figure 3.3: Salient sections of a human author’s tweets ([U]:URL, [N]:username, [R]:number).

Figure 3.4: Salient sections comparison of CNN-2 (top) and CNN-1 (mid). The bottom figure is shaded

using the feature weights from logistic regression for CHAR.

shade is, the more salient that section of the tweet is in the attribution decision. This automated

bot seems to follow the pattern Title: URL and sure enough, it is detected by the CNN-2 model as

indicated by dark shading towards the end of both tweets. Similarly, Figure 3.3 shows two tweets

from a human author. We can notice right away that this author has the tendency to use uhm and

we can see this section highlighted in the figure. The author also tends to use consecutive dots, this

too is highlighted, albeit a little less than uhm. Figure 3.4 shows the saliency values for a tweet

from the CNN-2 (top) and the CNN-1 (mid) models. For the CNN-1 model, although uhm and ...

are highlighted, the saliency values are more distributed throughout the tweet, highlighting even

are and hurt. While we can see that the CNN-2 model puts its focus exactly on the uhm, which

is a very distinctive style of this author. Figure 3.4 also has a similar figure for the CHAR model

at the bottom, which we created by using the feature weights from the logistic regression classifier.

Although there is more focus on the uhm part, again, the distribution is more spread out for this

model as well, compared to the CNN-2 model.

N-grams with highest contributions

Dataset Highest activations overall

Bot & non-bot [U], Di, :l, n‘, (:, Xn, KM, o), : , =h, [R], :-, qh, wu, !,

Non-bot only [U], qh, KM, Di, (:, Uh, ;D, :p, [N], , :l, ! , =D, :

Table 3-6: Input char bigrams with highest CNN activations overall ([U]:URL, [N]:username, [R]:number,

:whitespace).

Some n-grams activate several filters, but generate low activation values, meanwhile, other n-
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Dataset Top activations per filter

Bot & non-bot bi, ul, al, ug, me, in, mp, AN, um, an, en, ”w, sa, e

Non-bot only t, m, er, ou, e , in, ed, co, a, is, nd, r, ve, te, st

Table 3-7: Input char bigrams with highest CNN activations per filter ([U]:URL, [N]:username, [R]:number,

:whitespace).

Dataset CHAR top features

Bot & non-bot : [U], :, -, u, r, .. -, X, XD, XD, li, go, ., #

Non-bot only ...,;-), lol, :d, maoo, &&, :)), :-(, :-p, loll, ????, ˆ ˆ

Table 3-8: Input char bigrams with highest activations for baseline model CHAR ([U]:URL, [N]:username,

[R]:number, :whitespace).

grams generate higher activation values but only for a few filters. Both types hold important clues

in understanding our model. We use the intermediate representation of the CNN filters, consisting

of a matrix O ∈ Rn×m where n is the number of n-grams and m is the number of filters. We first

determine the n-grams that generate the highest activation values aggregated over all filters. Table

3-6 shows the top 15 bigrams from this analysis for CNN-2 models trained on the whole dataset

and on the refined dataset. Table 3-8 presents the top positive weighted features from the CHAR

model. We can observe that many of the highest bigrams are uncommon versions of emoticons,

such as (:, :p and ;D that are likely correlated with specific authors. For the bot authors, [U] has

the highest activation since most automated tweets have URLs at the end as their characteristic.

We then also collect the n-grams that have the highest number of filters where their activation is

in the top 3. Table 3-7 shows the top bigrams from this analysis. Here we mostly see bigrams that

are affixes. We can attribute this fact to the importance of morphological features for characterizing

human tweets.

Authorship visualization using PCA

In order to visualize the workings of the CNN model, we pick out 4 authors, where two exhibit

bot-like behavior and the other two exhibit human-like behavior. We use our CNN as feature

extractor and propagate 100 tweets of each author through the network. This yields a vector of

size 150 for each tweet, which we project to 2 dimensions using PCA. As can be seen in Figure

3.5, the CNN learns to clearly differentiate between two bot authors. We can also see that they

follow very predictable patterns like: ” [URL].” or ”: [URL]”, as discussed before. Similarly,

in Figure 3.6, we are comparing two non-bot authors with a bot author. It is harder to distinctly

separate the two non-bot authors, however the classifier is separating the bot and the non-bot

instances very well.

3.4 Conclusions

We presented a strategy for using CNNs with character n-grams for AA of short texts, and pro-

vided a comprehensive comparison against standard approaches. We found that CNNs give better

performance for AA of tweets, and using character n-grams instead of just character sequences can



3.4 Conclusions 23

Figure 3.5: 2D Projection of tweets of two authors. Author 0 and Author 7 show a bot behavior. A clear

separation is performed by the CNN.
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Figure 3.6: 2D Projection of tweets of three authors. Author 0 shows a bot behavior. Authors 12 and 14

show more human behavior
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also improve performance. We were also able to gain some insights on what our architecture is

actually learning. We could see that the network is focusing more on some sections of the text,

making the model a perfect fit for attention models.



4 Using neural networks for author profiling

Author profiling task can vary from gender identification, age identification, personality traits

identification and language variety identification. Each sub task is considered as a profile dimension

of a social group. This chapter focuses on the description of the methods developed for solving the

author profiling task. Author profiling task has been approached as an unimodal task, where the

profile of an user is determined solely by his/her documents. Social media allows us to exploit not

only text but images, video and audio. Thus, the profiling task has been recently approached as a

multimodal task, where the profile is determined by the images and the text a user shares in social

networks like Twitter or Facebook. For each problem, we propose a neural architecture for solving

the profiling task. For unimodal author profiling, we propose a convolutional neural network, that

uses sequences of words as input. This method was evaluated on the author profiling shared task

of the laboratory on digital text forensics and stylometry (PAN). PAN 2017 author profiling shared

task consisted on a corpus of Twitter users, where the objective was to determine the gender and

the specific language variety of an user. Language variety is determined by the native country

of an user. For the multimodal author profiling task, we adapted a gated based architecture for

creating a rich multimodal representation of the texts and images of an user. Our adapted method

was evaluated against information fusion approaches and unimodal approaches using an extended

corpus of the PAN 2014 author profiling shared task. Part of this work was presented as part of

the PAN shared tasks at the Conference and Labs of the Evaluation Forum (CLEF 2017):

1. Sierra, S., Montes, M., Solorio, T., Gonzalez, F.A.. ”Convolutional Neural Networks for

Author Profiling”. In: Working Notes Papers of the CLEF (2017)

4.1 Author profiling using short texts

The proposed method is similar to the CNN-W of the Section 3. The model uses sequences of

words as input instead of character n-grams. Word inputs are capable of capturing content-based

features rather than stylistic based features. In order to evaluate the performance of the model,

a corpus of tweets from different languages was selected. The tweets were tokenized using a plain

word tokenizer, while both case and stopwords were conserved during preprocessing. After that all

the tweets of an author are concatenated and split into k evenly sized sequences of texts. Words

are then represented by non-sparse vectors of dimension e, also known as embeddings. As Figure

4.1 shows, a sequence of words is represented as a matrix C ∈ Re×k where each column corresponds

to the word embedding vector value.



4.1 Author profiling using short texts 27

Figure 4.1: CNN-W. Word embeddings are fed to convolutional and max pooling layers, and the final

classification is done via a softmax layer applied to the final text representation.
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4.1.1 Convolutional Neural Networks using Words

Convolutional Neural Networks using words (CNN-W) receive a fixed-length sequence of words as

input. Figure 4.1 depicts the CNN-W architecture. CNN-W first layer applies a set of convolutional

filters of different sizes. For the concrete case of Figure 4.1 m = {500, 500, 500} and w = {2, 3, 4}.
The convolution operation performed by these filters is only applied in one dimension. Then a max-

pooling over time operation is performed over the output feature maps, where only the maximum

value of each feature map is used. The max pooling outputs for each feature map are concatenated

in a vector. Figure 4.1 shows the output vector of size 1500 composed by the maximum activation

values generated by each convolutional filter over the input. Finally, a softmax layer is added,

where its size An depends on the profiling task. Dropout regularization was also used after the

Embedding layer with a p = 0.25. Given that we train our network using sequences of text of

one author, we used a bagging scheme for prediction stage. If we have n sequences of text for one

author, we generate n predictions for the corresponding author, then we average the predictions

and get the class with the highest value. In that way an author is labeled with its respective gender

and language variety.

4.1.2 Experimental evaluation

Dataset

Our method was evaluated on the PAN AP 2017 shared task. This dataset consists of 10800

Twitter users. For each individual author, an XML document is provided along with his/her

tweets. There are 3000 documents for English, 4200 for Spanish, 1200 for Portuguese and 2400

for Arabic. English tweets were written by native speakers from Australia, Canada, Great Britain,

Ireland, New Zealand and United States. Spanish tweets were gathered from users from Argentina,

Chile, Colombia, Mexico, Peru, Spain and Venezuela. Portuguese tweets did only come from Brazil

and Portugal. Finally, Arabic tweets were collected from users that spoke four variants: Egypt,

Gulf, Levantine and Maghrebi. Each author in the dataset has associated a gender (male or female)

and language variety.

Experimental setup

For each language, we trained separately a model for gender and for language variety. For evalua-

tion, we generated a stratified train/val split for every possible combination of language gender

and language variety. Ten percent of the training documents was used for validation purposes.

The evaluation of the models for the shared task was performed using TIRA [97]. TIRA allows

both organizers and participants to have a common framework for evaluation. Also, participants of

a shared task can deploy and evaluate their method without accessing directly to the test dataset.

We deployed on TIRA the best model found by validation.

Results

Hyperparameters for CNN-W were explored in order to find the sub-optimal combination of

parameters for solving the profiling task. CNN-W architecture was explored at two levels: Input-
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Input Size
English Spanish Portuguese Arabic

Gender Variety Gender Variety Gender Variety Gender Variety

50 0.78 0.83 0.75 0.94 0.83 0.99 0.75 0.80

200 0.79 0.87 0.75 0.95 0.89 0.99 0.73 0.80

300 0.79 0.86 0.77 0.95 0.87 0.99 0.71 0.81

Table 4-1: Validation results using different input sizes on CNN-W.

Filter sizes
English Spanish Portuguese Arabic

Gender Variety Gender Variety Gender Variety Gender Variety

[2, 3] 0.79 0.86 0.77 0.95 0.82 0.99 0.73 0.80

[2, 3, 4] 0.80 0.85 0.76 0.95 0.86 0.99 0.72 0.81

Table 4-2: Validation results using different filter sizes on CNN-W.

level and convolution-level. For Input-related parameters we explored the type of input, the size of

the input and the initialization values of the embeddings. The type of input was either tokenized

sequences of words or sequences of character n-grams. The size of the input also was explored

from a set of possible values {50, 200, 300}. Larger input sizes mean a reduction in the number

of training samples, making the training process difficult for complex architectures. On Table 4-

1, we observed that 200 was a sub-optimal value for the input size. In some cases, 300 showed

a competitive performance, but a larger input size also increases the number of parameters that

the neural network has to learn. Initialization values of the embeddings were also evaluated using

either pretrained embeddings or embeddings trained from scratch using the supervised signal of the

profiling task. Pretrained word embeddings were trained on Wikipedia for every language using

FastText [98]. As can be seen on Table 4-4, pretrained embeddings improved the results.

For convolution-related parameters we explored the size w of the kernels and the number of kernels

m. Larger size of kernels implies capturing long distance relationships between words, however this

is only possible with a sufficient amount of training samples. Accordingly, we explored w from the

set of values {2, 3}, {2, 3, 4}, while the number of filters m varied from 1500 up to 3000. As can

be seen on Table 4-2, different sets of values show competitive performance and both obtain high

accuracy results on different language setups. On the other side, using a large number of filters,

increases the representational capacity of the architecture, however it overfits quickly.

These architecture hyperparameters were found by exploration on the validation split of each

setup and the best combination of parameters can be found in Table 4-3. We found also that

word-based inputs performed better than char-based inputs over all the profiling setups. For

training, we employed Keras [99]. We shuffled the samples into mini-batches of size 32 and used

Gradient Descent with Adaptive Moment Estimation [91] with default learning rate. Validation

loss was monitored during 100 epochs and only models with the best validation accuracy were saved

and used for testing.

4.1.3 Discussion

As can be seen on Table 4-4, we compared CNN-W against other convolutional architectures.

CNN-1 and CNN-2 use the same hyperparameters employed in the model for solving authorship
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Layer Parameters
English Spanish Portuguese Arabic

Gender Variety Gender Variety Gender Variety Gender Variety

Input

Input type word word word word word word word word

Input size 200 200 300 200 200 200 50 300

Pre-trained Yes Yes Yes Yes No Yes Yes Yes

Convolutional
m 1500 1500 1500 1500 1500 1500 1500 1500

w [2, 3, 4] [2, 3] [2, 3] [2, 3, 4] [2, 3, 4] [2, 3, 4] [2, 3] [2, 3, 4]

Table 4-3: Best combination of hyperparameters for the neural network architecture. Possible values for

the hyperparameters are as follows: Input type can be word or char. Input size varied from

{50, 200, 300}. Pre-trained defined if embeddings were trained previously from FastText or not.

Convolutional number of filters m varied from {1500, 3000}. Convolutional sizes of filters w

comprised {2, 3}, {2, 3, 4}
.

Method
English Spanish Portuguese Arabic

Gender Variety Gender Variety Gender Variety Gender Variety

BOW 0.81 0.79 0.73 0.89 0.85 0.99 0.73 0.78

CNN-W 0.79 0.87 0.75 0.95 0.89 0.99 0.73 0.80

CNN-W-FastText 0.80 0.88 0.79 0.96 0.86 0.99 0.75 0.82

CNN-1 0.75 0.73 0.66 0.84 0.80 0.99 0.68 0.79

CNN-2 0.73 0.77 0.71 0.89 0.85 0.99 0.73 0.81

Table 4-4: Validation results using different architectures. CNN-1 and CNN-2 are character input based archi-

tectures. CNN-W and CNN-W-FastText are both trained on word inputs. CNN-W-FastText

uses pretrained word embeddings for its respective language. BOW is a standard Bag-Of-Words

attribution in the Chapter 3. CNN-1 uses character unigrams as input for the convolutional neural

network, while CNN-2 uses character bigrams as input. CNN-W was the best performing model as

the result of the hyperparameter exploration on Tables 4-1 and 4-2. The same architecture was

trained using pretrained word embeddings. FastText [98] reported a method for creating rich word

representations. We adopted previously trained models as the initial values of CNN-W and found

that in most cases pretrained embeddings outperformed the previous results. In English, we found

that BOW performed the best for the gender identification task with 81% of accuracy, however

for language variety identification, CNN-W-FastText performs better with 88% of accuracy. For

Spanish, CNN-W-FastText obtains the highest performance on both gender and language variety

identification. CNN-W-FastText even outperforms BOW by a large margin, specially on language

variety. Spanish language variety is the task with the highest number of classes, but we can argue

that words shared by authors form the same country are very distinctive.

Portuguese variety consisted only of detecting tweets from Portugal and Brazil. Each method

reached a 99% accuracy, thus, there are very specific words for each variety of Portuguese. For

gender detection, pretrained embeddings did not outperform CNN-W, however it reached a com-

petitive performance. In the Arabic setup, CNN-W-FastText got the best performance for both

gender and language variety identification tasks. In the PAN shared task, we were able to evaluate

our best performing method (CNN-W-FastText) on the test split. The test split was not released

to the public, so our method was deployed on the TIRA evaluation system. Table 4-5 shows the
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Language Joint Gender Variety

English 0.66 0.78 0.84

Spanish 0.73 0.77 0.94

Portuguese 0.81 0.82 0.98

Arabic 0.57 0.68 0.79

Table 4-5: Accuracy results on test dataset.

performance results of our method in the test dataset for the four languages. Accuracy is calculated

separately for gender and language variation. For the joint column, accuracy is calculated on the

basis that both gender and language variation were properly predicted.

Table 4-5 indicates how the Arabic setup was challenging for our best performing method

Our architecture was evaluated over sequences of words and characters. We found experimentally

better validation performances using word sequences with pretrained word embeddings. Although

we also found that training a CNN for author profiling produces additional challenges such as

hyperparameter tuning and quick overfitting. In our parameter exploration we encountered models

that were prone to overfit at the very first epochs. We solved this introducing dropout regularization

or using an architecture with a fewer number of parameters. Also, evaluating our method on a

challenging dataset which included different languages, shows how competitive our method is.

4.2 Multimodal author profiling

Text categorization applied to short texts imply a preprocessing step for extracting meaningful

features. Moreover, Twitter restricts the number of characters a user can write on, forcing users to

shorten some expressions and commit spelling mistakes. As can be seen on Figure 4.3, we defined

a methodology for addressing the AP task. A tweet can be composed of merely text, an image

next to a comment, a single image or a retweet. Figure 4.3 illustrates how text and images can

appear on a single tweet. Our multimodal approach consists on finding the best representation for

each modality and then both are combined using a gated multimodal unit (GMU) [100]. GMUs

are capable of learning a rich multimodal representation. At the end of the section, we compare

our adapted method against unimodal results and information fusion strategies.

4.2.1 Unimodal and multimodal representation methods

Here, we describe the features that were extracted from each modality. We also discuss three

information fusion strategies.

Textual representations Common preprocessing of tweets includes filtering of URL’s, accent re-

moval, lowercasing and non-latin character removal. Furthermore, the AP task requires additional

preprocessing steps. These involve hashtags and user mentions removal. While hashtags can be

useful for predicting the topic an user is writing about, hashtags can also contain misleading in-

formation, e.g., #NotGuilty, #NOvsATL. Below in Subsection 4.2.2, we describe the pipeline

used for extracting the textual features.
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Figure 4.2: Gated multimodal unit. xv and xt vectors are the visual and textual representations

respectively and h is the learned representation [100].

Visual representations Images in Twitter can be classified in three categories: profile pics, user-

uploaded images and external images coming from re tweets. Profile pics are usually informative

about the gender of the user [83], while [101] found that they are useful depending on the task

(age or gender). Using features transfered from a deep CNN trained on another domain allows us

to extract robust enough features. VGG-16 [102] is a deep CNN trained on natural images for the

ILSVRC competition [103]. This network has been used as a feature extractor and has proved to

learn highly discriminative features. VGG-16 is composed of two fully connected layers, prior its

final softmax layer. Each of them is composed of 4096 neurons. Each image is scaled to 227× 227

keeping its aspect ratio and fed to the VGG-16 network. Then, the activation values of the last

fully connected layer are collected. A profile representation is built upon the average of the VGG-16

extracted features. A vector of 4096 dimensions will represent each user.

Fusion strategies As depicted in Figure 4.3, both text and images are extracted separately from

the tweets, then, the best set of features for each modality is stored. Three strategies of fusion are

tested:

• Early fusion: Using the best set of features for each modality, a representation is built

for each user concatenating both modalities. L-2 Normalization is applied over the resulting

vector. Then, a classifier is built on top of this representation.

• Late fusion: A classifier is trained on top of the best set of features for each modality. Then,

predictions from both classifiers are combined using a soft scheme, where both predictions

are averaged and the majority class will be chosen as final prediction.

• Learned strategies: A multimodal representation is learned using a Gated Multimodal

Unit (GMU) [100], a neural network architecture that learns an intermediate representation

combining both modalities. During the training process, GMUs are capable of adjusting

their weights, by selecting which parts of the input contribute effectively to solve the AP

task. Figure 4.2 depicts how the gates and the representations are computed.
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Figure 4.3: Different sources of information that are used for the multimodal author profiling task.

Language # of users # of images

Spanish 171 67539

English 280 75571

Table 4-6: Distribution of users for the PAN 2014 AP extended corpus.

Classifiers Logistic Regression and Random Forest were used for the unimodal approaches. Also,

both classifiers were tested for the late and early fusion strategies. Backpropagation was used for

training the GMU architecture.

4.2.2 Experimental evaluation

Dataset

In this section, we describe the corpus used for multimodal author profiling. Álvarez-Carmona et al.

[101] gathered an extended version of the PAN 2014 AP twitter corpus, including all the images

that appeared on the users’ profiles. Table 4-6 presents a general summary of the MAP corpus,

including 279 user profiles in English and 171 in Spanish. Each user has associated a gender {male,

female} and an age range {18-24, 25-34, 35-49, 50-64, 65-N}.

Experimental setup

Our approach addresses two profiling tasks: Gender and age identification. For each of them, we

split the dataset in 70% and 30% training and test set respectively, keeping the proportion for each

class by stratified sampling. From the training subset we took 20% as validation set to explore

hyperparameters of the GMU.

Textual features

The PAN 2014 dataset contains information related to the tweets such as: type of tweet (retweet,

comment, normal tweet), language and timestamp. However, inspecting manually some of the
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tweets collected in the corpus, we found spanish native speakers in the set of english users. In order

to evaluate the effect of the use of english or spanish, there were generated three overlapping sets

of documents for each user:

• All: All the tweets.

• Lang: Only tweets labeled as written in english or spanish (Depending of the PAN AP

language variation).

• No-RT: All the tweets, filtering out the retweets.

For each of these sets, we extracted also a different set of features described in Section 4.2.1.

In order to compare with [101], we also generated a BoW representation, using only the most

frequent unigrams. They are labeled as Bow-2k and Bow-10k, where 2k and 10k correspond to

the considered number of unigrams. After building a textual representation for each user, these

are fed to a classifier.

Visual features

In order to provide a fair comparison with [101], two sets were built using the user’s images:

• All: Profile pics + user images + external images

• Personal: Profile pics + user images

Set All encompasses all the images from an user, while set Personal only contains those images

considered as personal and user-generated.

Parameter selection

Stochastic gradient descent with ADAM optimization [104] was used to learn the weights of the

neural network. Dropout and max-norm regularization were used to control overfitting. Hidden

size ({64, 128, 256, 512}), learning rate (
[
10−3, 10−1

]
), dropout ([0.3, 0.7]), max-norm ([5, 20]) and

initialization ranges (
[
10−3, 10−1

]
) parameters were explored by training 25 models with random

(uniform) hyperparameter initializations and the best was chosen according to validation perfor-

mance. It has been reported that this strategy is preferable over grid search when training deep

models [105]. All the implementation was carried on with the Tensorflow framework.

Results

Unimodal results

As can be seen on Table 4-9, there are three groups of textual features. BOW-baseline is

built using the same setup described by [106]. Modaresi, Liebeck, and Conrad [106] extract a

series of stylistic and content based features. Content features are extracted by a Bag of word

bigrams and unigrams. Stylistic features are extracted using a bag of character n-grams. Since

[106] applies all these features at once for author profiling, we evaluated the effect of each feature

separately. Therefore, content features are extracted in BOW-unigrams and BOW-bigrams.
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Table 4-7: Results for gender task using only the text modality in the English set of users for PAN

AP corpus

Text Features All-text no-rt only-lang

BOW-baseline 0.750 0.785 0.761

BOW-unigrams 0.785 0.785 0.845

BOW-bigrams 0.690 0.700 0.690

BOW-char 0.738 0.738 0.770

BOW-unigram 2k 0.869 0.892 0.892

BOW-unigram 10k 0.845 0.830 0.845

BOW-bigram 2k 0.773 0.750 0.821

BOW-bigram 10k 0.809 0.797 0.830

Table 4-8: Results for gender task using only the text modality in the Spanish set of users for PAN

AP corpus

Text Features All-text no-rt only-lang

BOW-baseline 0.765 0.804 0.569

BOW-unigrams 0.745 0.843 0.647

BOW-bigrams 0.706 0.725 0.608

BOW-char 0.765 0.784 0.549

BOW-unigram 2k 0.824 0.843 0.588

BOW-unigram 10k 0.804 0.843 0.627

BOW-bigram 2k 0.804 0.784 0.569

BOW-bigram 10k 0.765 0.824 0.569

Stylistic features are extracted using the BOW-char. Additionally, we compare to [101], using the

same bag representation of unigrams, but using only top 2.000 (2k) and 10.000 (10k) most frequent

words. As can be seen Table 4-7 and 4-8, the best representation for the gender task is BOW-

unigram 2k. Additionally, considering only the tweets generated by the user, that means, without

including retweets, generates better results. In Table 4-9 and 4-10, the concatenation of content

and stylistic features (BOW-baseline) generates the best results for the age task. However,

considering only tweets in English improves the accuracy of the age classification method. For

Spanish, considering tweets generated by the user produces the age task accuracy.

Visual modality results are very poor compared to the textual modality results. Table 4-11

shows the performance of VGG extracted features in the English split. The results show that using

all the images is better for the age and gender classification task. While Table 4-12 shows that the

choice of source images is only relevant for solving the age classification task.

Multimodal results

Standard multimodal strategies involve early and late fusion strategies. Table 4-13 shows the

summary of results for early, late and GMU methods for English. GMU outperformed the other
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Table 4-9: Results for age task using only the text modality in the English set of users for PAN

AP corpus

Text Features All-text no-rt only-lang

BOW-baseline 0.488 0.511 0.5357

BOW-unigrams 0.511 0.488 0.500

BOW-bigrams 0.488 0.488 0.464

BOW-char 0.500 0.500 0.511

BOW-unigram 2k 0.476 0.452 0.464

BOW-unigram 10k 0.488 0.452 0.488

BOW-bigram 2k 0.428 0.404 0.464

BOW-bigram 10k 0.488 0.488 0.488

Table 4-10: Results for age task using only the text modality in the Spanish set of users for PAN

AP corpus

Text Features All-text no-rt only-lang

BOW-baseline 0.490 0.529 0.490

BOW-unigrams 0.471 0.490 0.490

BOW-bigrams 0.490 0.490 0.490

BOW-char 0.490 0.510 0.510

BOW-unigram 2k 0.373 0.412 0.392

BOW-unigram 10k 0.471 0.431 0.451

BOW-bigram 2k 0.392 0.471 0.451

BOW-bigram 10k 0.471 0.471 0.510

Table 4-11: Results for age and gender task using visual strategies in the English set of users for

PAN AP corpus

Image Features strategy Gender Age

VGG-AVG 0.796 0.428

VGG-AVG-Personal 0.761 0.345

Table 4-12: Results for age and gender task using visual strategies in the Spanish set of users for

PAN AP corpus

Image Features strategy Gender Age

VGG-AVG 0.647 0.314

VGG-AVG-Personal 0.647 0.373
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Table 4-13: Results for age and gender task using multimodal strategies in the English set of users

for PAN AP corpus

Multimodal strategy Gender Age

GMU 0.892 0.571

Late Fusion 0.869 0.500

Early Fusion 0.821 0.381

Table 4-14: Results for age and gender task using multimodal strategies in the Spanish set of users

for PAN AP corpus

Multimodal strategy Gender Age

GMU 0.863 0.569

Late Fusion 0.804 0.353

Early Fusion 0.667 0.392

strategies in both tasks: Gender and Age identification. The difference is bigger for Age identi-

fication task. This is a more complex task because it is an imbalanced multiclass problem. The

GMU was able to take advantage of both modalities better than standard fusion strategies. In the

Spanish setup, GMU also obtained a better performance than standard fusion approaches. As can

be seen on Table 4-14, early and late fusion strategies in the age task are not very competitive. In

Table 4-15, the summary of the results per each modality and for the multimodal approaches is

presented. GMU also is capable of obtaining a better performance than unimodal approaches.

Table 4-15: Summary for the gender and age task in the multimodal PAN AP 2014 corpus

English Spanish

Modality Representation Gender Age Gender Age

Multimodal GMU 0.892 0.571 0.863 0.569

Late Fusion 0.869 0.500 0.804 0.353

Early Fusion 0.821 0.416 0.667 0.392

Textual BOW-unigrams 2k no rt 0.892 0.452 0.843 0.412

BOW-unigrams no rt 0.785 0.488 0.843 0.490

BOW-baseline only lang 0.761 0.536 0.569 0.490

BOW-baseline no rt 0.785 0.511 0.804 0.529

Visual VGG-AVG 0.791 0.428 0.647 0.314

VGG-AVG-personal 0.761 0.345 0.647 0.373

4.2.3 Discussion

We proposed a new pipeline for addressing profiling tasks on twitter social network. Age and Gender

properties are predicted using visual and textual information. The VGG network was used to get the

visual representation from a set of tweeted images, while different text-based representations were
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Table 4-16: Accuracy per class for the age task in the multimodal PAN AP 2014 corpus

Modality Representation 18-24 25-34 35-49 50-64 >=65

Multimodal Early Fusion 0.000 0.458 0.513 0.125 0.000

Late Fusion 0.000 0.625 0.729 0.000 0.000

GMU 0.000 0.750 0.757 0.188 0.000

Textual BOW-baseline only en 0.000 0.750 0.730 0.000 0.000

BOW-unigrams 2k only en 0.000 0.583 0.648 0.062 0.000

BOW-unigrams only en 0.000 0.667 0.703 0.000 0.000

Visual VGG-AVG 0.000 0.542 0.567 0.125 0.000

VGG-AVG-personal 0.200 0.417 0.459 0.062 0.000

adapted for the particularities of textual content in the tweets. To combine both representation,

we also explored different standard fusion strategies along with the GMU network. This model

has proven to learn good intermediate representations for supervised tasks that involve multiple

information sources.

Experimental results showed unigrams of words perform better than other n-grams. Also, the

combination of visual and textual representation outperforms unimodal approaches. Table 4-16

shows one common problem of all the representation strategies for the age task. This problem

consisted of the low accuracy value per class for imbalanced classes. Although GMU obtains the

best performance overall it still fails at classifying users from less frequent classes. We also observed

that visual representations performed very poorly compared to textual representations. Finally, the

GMU network improves average accuracy from 0.86 to 0.89 in gender identification for English and

from 0.50 to 0.57 in age classification. For Spanish, the GMU network improved average accuracy

from 0.80 to 0.86 in gender identification and from 0.39 to 0.56 in age classification.

4.3 Conclusions

Although, author profiling tasks usually consists of a large number of documents, at prediction

time it only comes to determine the profile of the authors of the documents. One author can

have as many documents as possible, then, a prediction for each document can be made, and

all the predictions have to be combined to generate a single prediction. We used convolutional

neural networks for extracting rich representations, but our models were easy to overfit and strong

regularization strategies were employed like dropout. Before prediction time, we gathered all the

predictions for the documents of one author and generated a single prediction. This combination

sometimes was not optimal and remains as an unexplored field. In spite of the exposed problems, we

were able to propose a competitive neural network for approaching the text based author profiling

task.

Bagging of predictions was a similar issue in the multimodal approach. For instance, in the

English setup of the PAN AP 2014 corpus, after generating one representation for each author, the

number of samples for training was only 196. Therefore our model quickly overfitted, however, we
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found a configuration using dropout where our model was able to outperform standard information

fusion strategies. Next steps in this research involve exploring end-to-end models, where we can

exploit the true nature of each modality, instead of using a compressed representation of each

one.



5 Conclusions and future work

5.1 Conclusions

In this thesis, different neural network architectures were applied for addressing two different au-

thorship analysis tasks: author profiling and authorship attribution. For authorship attribution,

we proposed a method for detecting the authorship of a list of short texts in the domain of Twitter.

Our approach was evaluated in terms of variability of the number of candidate authors and also

was evaluated in terms of the number of available training instances for each author. Our method

consisted of a convolutional neural network architecture that exploited character n-grams based

inputs. Our architecture was compared also against standard approaches for representing texts

in authorship attribution domain and different convolutional-based architectures. Our proposed

architecture achieved the best performance against the other methods in every proposed setup. For

author profiling, we explored two different setups: unimodal profiling using only text and multi-

modal author profiling using text and images. For unimodal profiling, we proposed an architecture

which was similar to the proposed for addressing the authorship attribution task. A convolutional

neural network was proposed using sequences of words as input. Sequences of words are more

suitable for capturing content-based features. Our approach was compared against standard Bag-

of-Words approach and other different convolutional based architectures. Our best performing

method was submitted to the author profiling shared task of the 2017 edition of the laboratory on

digital text forensics and stylometry (PAN). The dataset for evaluating unimodal author profiling

consisted of a series of Twitter authors coming from different countries. The main objective was to

predict both the gender of the author and the specific variation of language. Variations of language

are determined by the native country of the Twitter user. For multimodal author profiling, we

employed an extended dataset of the author profiling shared task of the 2014 edition of the PAN

laboratory. For this corpus, a huge amount o.

Using learned representations through neural approaches obtained better results in authorship

analysis. Feature extraction in authorship analysis is a key step, and we were able to propose

methods for learning a representation while we solved the supervised task: either profiling or

authorship attribution. Next we detail the main conclusions of this work:

1. In authorship attribution, we presented a neural network that outperformed standard ap-

proaches in several setups where the number of training instances varied, as well as the

number of authors (classes) varied.

2. Authorship attribution techniques take a huge advantage of the type of input representation.

In this thesis, we explored word based and character based inputs and found that character-

based inputs provide a better performance when approaching AA tasks.
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3. Saliency models are able to provide valuable insights in neural networks based approaches. In

the AA section, we compared what type of character n-grams affected the performance of the

proposed convolutional neural network. Interpretability is indeed one of the most important

factors for using a method to solve a task.

4. Unlike authorship attribution, author profiling techniques work better using word-based in-

puts. This fact can be due to the content words that different demographic groups. Gender

based groups tend to use different words. People from different groups tend to use also very

specific words.

5. We showed also that using previously learned embeddings improved the performance of our

CNN in the unimodal author profiling task.

6. For multimodal author profiling, we found that GMUs are capable of building a multimodal

representation that is able of outperforming standard information fusion approaches: early

and late fusion.

5.2 Future Work

There are still issues regarding to the application of representation learning techniques to authorship

analysis tasks. There exists a plenty of neural networks based models, however most of them have

a huge amount of parameters to be estimated, which makes it an easy-to-overfit task. As future

work, we propose possible directions of future research:

1. Evaluating attention based models in order to address authorship analysis tasks. Attention

based models have the great advantage of learning automatically which parts of the input are

more important for the supervised task.

2. For the authorship attribution, we only evaluated a single genre attribution scenario, how-

ever there is an increasing trend in the research community towards cross genre authorship

attribution. It is important to isolate those style patterns that are inherent to the author’s

writing style and not dependent to the document’s genre.

3. For multimodal author profiling, we were able to improve results over single modality profiling,

however visual representation was not properly used for characterizing age or gender. This is

difficult because there is not a standard way of representing a visual document for an author,

i.e., to find a proper way for combining the images of an author and extract a combined

representation.

4. For gated multimodal approaches, an end-to-end approach would be an alternative for the

lack of samples at training time. In and end-to-end approach, a proper representation for

text and image would be learned, while a rich multimodal representation is learned using the

GMUs. One single instance for training would be a batch of tweets and images instead of a

single vector combining all the documents and the images from one author.
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[101] Miguel A. Álvarez-Carmona et al. “A visual approach for age and gender identification on

Twitter”. Unpublished paper. 2017.

[102] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image

Recognition”. In: CoRR abs/1409.1556 (2014).

[103] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: Inter-

national Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/

s11263-015-0816-y.

[104] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv

preprint arXiv:1412.6980 (2014).

[105] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimization”.

In: Journal of Machine Learning Research 13.Feb (2012), pp. 281–305.

[106] Pashutan Modaresi, Matthias Liebeck, and Stefan Conrad. “Exploring the Effects of Cross-

Genre Machine Learning for Author Profiling in PAN 2016”. In: CLEF. 2016.

https://github.com/fchollet/keras
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem definition
	Objectives
	Results and contributions
	Outline

	Background and related work
	Text representation
	Language Modeling
	Semantic compositionality
	Text classification

	Authorship analysis
	Authorship attribution
	Author Profiling


	Using neural networks for authorship attribution
	Character based convolutional neural networks
	Experimental Evaluation
	Dataset
	Results
	Bot-like Authors

	Interpretability
	Conclusions

	Using neural networks for author profiling
	Author profiling using short texts
	Convolutional Neural Networks using Words
	Experimental evaluation
	Discussion

	Multimodal author profiling
	Unimodal and multimodal representation methods
	Experimental evaluation
	Discussion

	Conclusions

	Conclusions and future work
	Conclusions
	Future Work

	Bibliography

